
The Interface Kit –1

4 The Interface Kit

Introduction . 9
Framework for the User Interface 9

Application Server Windows10
BWindow Objects. .11
BView Objects .11

Drawing Agent12
Message Handler12

The View Hierarchy. .13
Drawing and Message-Handling

in the View Hierarchy14
Overlapping Siblings14

The Coordinate Space. 14
Coordinate Systems 15
Coordinate Geometry. 16
Mapping Coordinates to Pixels. 17
Screen Pixels . .17

Drawing .18
View Coordinate Systems. 18

Frame and Bounds Rectangles19
Scrolling .19

The Clipping Region .20
The View Color . .22
The Mechanics of Drawing23

Graphics Environment 23
The Pen . .24
Colors. .25
Patterns . .26
Drawing Modes. 27

Views and the Server .31
The Update Mechanism. 32

Forcing an Update 32
Erasing the Clipping Region33
Drawing during an Update33
Drawing outside of an Update 34

2 – The Interface Kit

Picking Pixels to Stroke and Fill 34
Stroking Thin Lines 35
Stroking Curved Lines 37
Filling and Stroking Rectangles 37
Filling and Stroking Polygons 39
Stroking Thick Lines40

Responding to the User .41
Interface Messages .41
Hook Functions for Interface Messages 44

Dispatching . .45
The Focus View 46
Kinds of Keyboard Messages 46

Message Protocols .47
Keyboard Information. 47

Key Codes .48
Kinds of Keys .50
Modifier Keys .51
Character Mapping53
Key States .56

Class Descriptions . .57

BAlert .59
Overview .59
Constructor .60
Member Functions. .61

BBitmap. .63
Overview .63

Bitmap Data . .63
The Bounds Rectangle 63
The Color Space 64

Specifying the Image .65
Transparency .66

Constructor and Destructor .66
Member Functions. .67

BBox. .71
Overview .71
Constructor and Destructor .71
Member Functions. .72

BButton .73
Overview .73
Hook Functions .74
Constructor .74
Member Functions. .74

The Interface Kit –3

BCheckBox . .77
Overview .77
Constructor .77
Member Functions. .78

BColorControl .81
Overview .81
Constructor and Destructor .81
Member Functions. .82

BControl .85
Overview .85
Hook Functions .86
Constructor and Destructor .86
Member Functions. .87

BListView .93
Overview .93

Displaying the List .93
Selecting and Invoking Items93

Hook Functions .94
Constructor and Destructor .95
Member Functions. .95

BMenu . 105
Overview . 105

Menu Hierarchy . 105
Menu Items . 105

Hook Functions . 106
Constructor and Destructor 106
Member Functions. . 108

BMenuBar. . 117
Overview . 117

The Key Menu Bar . 117
A Kind of BMenu . 118

Constructor and Destructor 118
Member Functions. . 119

BMenuField . 121
Overview . 121
Constructor and Destructor 121
Member Functions. . 122

4 – The Interface Kit

BMenuItem . 127
Overview . 127

Kinds of Items. . 127
Shortcuts and Triggers 127
Marked Items . 128
Disabled Items . 128

Hook Functions . 128
Constructor and Destructor 129
Member Functions. . 130

BPicture . 139
Overview . 139

Recording a Picture . 139
The Picture Definition. 139

Constructor and Destructor 140
Member Functions. . 141

BPictureButton . 143
Overview . 143
Constructor and Destructor 144
Member Functions. . 145

BPoint . 149
Overview . 149
Data Members . 149
Constructor . 150
Member Functions. . 150
Operators . 151

BPolygon . 155
Overview . 155
Constructor and Destructor 155
Member Functions. . 156
Operators . 157

BPopUpMenu. . 159
Overview . 159
Constructor and Destructor 160
Member Functions. . 161

BPrintJob . 163
Overview . 163
Constructor and Destructor 165
Member Functions. . 166

The Interface Kit –5

BRadioButton . 171
Overview . 171
Constructor . 171
Member Functions. . 172

BRect . 175
Overview . 175
Data Members . 176
Constructor . 177
Member Functions. . 177
Operators . 182

BRegion . 185
Overview . 185
Constructor and Destructor 185
Member Functions. . 186
Operators . 188

BScrollBar . 189
Overview . 189

The Update Mechanism. 189
Value and Range . 190
Scroll Bar Options . 191

Hook Functions . 191
Constructor and Destructor 191
Member Functions. . 192

BScrollView . 197
Overview . 197
Constructor and Destructor 197
Member Functions. . 198

BSeparatorItem . 201
Overview . 201
Constructor and Destructor 201
Member Functions. . 202

BStringView . 203
Overview . 203
Constructor and Destructor 203
Member Functions. . 204

BTextControl . 207
Overview . 207
Constructor and Destructor 208
Member Functions. . 208

6 – The Interface Kit

BTextView. . 213
Overview . 213

Resizing . 213
Shortcuts and Menu Items 213
Newlines and Carriage Returns 215

Hook Functions . 215
Constructor and Destructor 215
Member Functions. . 216

BView . 233
Overview . 233

Views and Windows 233
User Interface . 234

Keyboard Navigation 234
Drag and Drop 235

Locking the Window 236
Derived Classes . 236

Hook Functions . 237
Constructor and Destructor 238
Member Functions. . 241

BWindow . 285
Overview . 285

View Hierarchy . 286
Window Threads . 286
Quitting . 286

Hook Functions . 287
Constructor and Destructor 288
Member Functions. . 291

Global Functions . 313

Constants and Defined Types . 335
Constants . 335
Defined Types . 346

The Interface Kit –7

Interface Kit Inheritance Hierarchy

BObject
(Support Kit)

BWindowBLooper
(Application Kit)

BHandler
(Application Kit)

BAlert

BView BTextView

BControl

BCheckBox

BPoint

BTextControl

BColorControl

BBox

BStringView

BRect

BPolygon

BRegion

BPicture

BBitmap

BRadioButton

BPictureButton

BPrintJob

BButton

BScrollBar

BScrollView

BListView

BMenuItem BSeparatorItem BMenu

BMenuBar

BPopUpMenu

BMenuField

8 – The Interface Kit

The Interface Kit –9

4 The Interface Kit

Most Be applications have an interactive and graphical user interface. When they start up,
they present themselves to the user on-screen in one or more windows. The windows
display areas where the user can do something—there may be menus to open, buttons to
click, text fields to type in, images to drag, and so on. Each user action on the keyboard or
mouse is packaged as aninterface message and reported to the application. The
application responds to each message as it is received. At least part of the response is
always a change in what the window displays—so that users can see the results of their
work.

To run this kind of user interface, an application has to do three things. It must:

• Manage a set of windows,
• Draw within the windows, and
• Respond to interface messages.

The application, in effect, carries on a conversation with the user. It draws to present itself
on-screen, the user does something with the keyboard or mouse, the event is reported to
the application in a message, and the application draws in response, prompting more user
actions and more messages.

The Interface Kit structures this interaction with the user. It defines a set of C++ classes
that give applications the ability to manage windows, draw in them, and efficiently
respond to the user’s instructions. Taken together, these classes define a framework for
interactive applications. By programming with the Kit, you’ll be able to construct an
application that effectively uses the capabilities of the BeBox.

This chapter first introduces the conceptual framework for the user interface, then
describes all the classes, functions, types, and constants the Kit defines. The reference
material that follows this introduction assumes the concepts and terminology presented
here.

Framework for the User Interface

A graphical user interface is organized around windows. Each window has a particular
role to play in an application and is more or less independent of other windows. While

Framework for the User Interface

10 – The Interface Kit

working on the computer, users think in terms of windows—what’s in them and what can
be done with them—perhaps more than in terms of applications.

The design of the software mirrors the way the user interface works: it’s also organized
around windows. Within an application, each window runs in its own thread and is
represented by a separate BWindow object. The object is the application’s interface to the
window the system provides; the thread is where all the work that’s centered on the
window takes place.

Because every window has its own thread, the user can, for example, scroll the contents of
one window while watching an animation in another, or start a time-consuming
computation in an application and still be able to use the application’s other windows. A
window won’t stop working when the user turns to another window.

Commands that the user gives to a particular window initiate activity within that window’s
thread. When the user clicks a button within a window, for example, everything that
happens in response to the click happens in the window thread (unless the application
arranges for other threads to be involved). In its interaction with the user, each window
acts on its own, independently of other windows.

Application Server Windows

In a multitasking environment, any number of applications might be running at the same
time, each with its own set of windows on-screen. The windows of all running
applications must cooperate in a common interface. For example, there can be only one
active window at a time—not one per application, but one per machine. A window that
comes to the front must jump over every other window, not just those belonging to the
same application. When the active window is closed, the window behind it must become
active, even if it belongs to a different application.

Because it would be difficult for each application to manage the interaction of its windows
with every other application, windows are assigned, at the lowest level, to a separate
entity, the Application Server. The Server’s principal role in the user interface is to
provide applications with the windows they require.

Everything a program or a user does is centered on the windows the Application Server
provides. Users type into windows, click buttons in windows, drag images to windows,
and so on; applications draw in windows to display the text users type, the buttons they
can click, and the images they can drag.

The Application Server, therefore, is the conduit for an application’s message input and
drawing output:

• It monitors the keyboard and mouse and sends messages reporting each user
keystroke and mouse action to the application.

• It receives drawing instructions from the application and interprets them to render
images within windows.

Framework for the User Interface

The Interface Kit –11

The Server relieves applications of much of the burden of basic user-interface work. The
Interface Kit organizes and further simplifies an application’s interaction with the Server.

BWindow Objects

Every window in an application is represented by a separate BWindow object.
Constructing the BWindow establishes a connection to the Application Server—one
separate from, but initially dependent on, the connection previously established by the
BApplication object. The Server creates a window for the new object and dedicates a
separate thread to it.

The BWindow object is a kind of BLooper, so it spawns a thread for the window in the
application’s address space and begins running a message loop where it receives and
responds to interface messages from the Server. The window thread in the application is
directly connected to the dedicated thread in the Server.

The BWindow object, therefore, is in position to serve three crucial roles:

• It can act as the application’s interface to a Server window. It has functions that the
application can call to manipulate the window programmatically—move it, resize it,
close it, and so on. It also declares the hook functions that the system calls to notify
the application that the user manipulated the window.

• It can organize message-handling within the window thread. Since it runs the
window’s message loop, it gets to decide how each message should be handled. It’s
the focus and central distribution point for all messages that initiate activity in the
thread.

• As the entity that holds rendered images, it can manage the objects that produce
those images. (This is discussed under “BView Objects” below.)

All other Interface Kit objects play roles that depend on a BWindow. They draw in a
window, respond to interface messages received by a window, or act in support of other
objects that draw and respond to messages.

BView Objects

For purposes of drawing and message-handling, a window can be divided up into smaller
rectangular areas calledviews. Each view corresponds to one part of what the window
displays—a scroll bar, a document, a list, a button, or some other more or less self-
contained portion of the window’s contents.

An application sets up a view by constructing a BView object and associating it with a
particular BWindow. The BView object is responsible for drawing within the view
rectangle, and for handling interface messages directed at that area.

Framework for the User Interface

12 – The Interface Kit

Drawing Agent

A window is a tablet that can retain and display rendered images, but it can’t draw them;
for that it needs a set of BViews. A BView is an agent for drawing, but it can’t render the
images it creates; for that it needs a BWindow. The two kinds of objects work hand in
hand.

Each BView object is an autonomous graphics environment for drawing. Some aspects of
the environment, such as the list of possible colors, are shared by all BViews and all
applications. But within those broad limits, every BView maintains an independent
graphics state. It has its own coordinate system, current colors, drawing mode, clipping
region, pen position, and so on.

The BView class defines the functions that applications call to carry out elemental drawing
tasks—such as stroking lines, filling shapes, drawing characters, and imaging bitmaps.
These functions are typically used to implement another function—calledDraw()—in a
class derived from BView. This view-specific function draws the contents of the view
rectangle.

The BWindow will call the BView’sDraw() function whenever the window’s contents (or
at least the part that the BView has control over) need to be updated. A BWindow first
asks its BViews to draw when the window is initially placed on-screen. Thereafter, they
might be asked to refresh the contents of the window whenever the contents change or
when they’re revealed after being hidden or obscured. A BView might be called upon to
draw at any time.

BecauseDraw() is called on the command of others, not the BView, it can be considered to
drawpassively. It presents the view as it currently appears. For example, theDraw()
function of a BView that displays editable text would draw the characters that the user had
inserted up to that point.

BViews also drawactively in response to messages reporting the user’s actions. For
example, text is highlighted as the user drags over it and is replaced as the user types.
Each change is the result of a system message reported to the BView. For passive
drawing, the BView implements a function (Draw()) that others may call. For active
drawing, it calls the drawing functions itself (it may even callDraw()).

Message Handler

The drawing that a BView does is often designed to prompt a user response of some
kind—an empty text field with a blinking caret invites typed input, a menu item or a
button invites a click, an icon looks like it can be dragged, and so on.

When the user acts, system messages that report the resulting events are sent to the
BWindow object, which determines which BView elicited the user action and should
respond to it. For example, a BView that draws typed text can expect to respond to
messages reporting the user’s keystrokes. A BView that draws a button gets to handle the
messages that are generated when the button is clicked. The BView class derives from
BHandler, so BView objects are eligible to handle messages dispatched by the BWindow.

Framework for the User Interface

The Interface Kit –13

Just as classes derived from BView implementDraw() functions to draw within the view
rectangle, they also implement the hook functions that respond to interface messages.
These functions are discussed later, under “Hook Functions for Interface Messages” on
page 44.

Largely because of its graphics role and its central role in handling interface messages,
BView is the biggest and most diverse class in the Interface Kit. Most other Interface Kit
classes are derived from it.

The View Hierarchy

A window typically contains a number of different views—all arranged in a hierarchy
beneath thetop view, a view that’s exactly the same size as the content area of the window.
The top view is a companion of the window; it’s created by the BWindow object when the
BWindow is constructed. When the window is resized, the top view is resized to match.
Unlike other views, the top view doesn’t draw or respond to messages; it serves merely to
connect the window to the views that the application creates and places in the hierarchy.

As illustrated in the diagram below, the view hierarchy can be represented as a branching
tree structure with the top view at its root. All views in the hierarchy (except the top view)
have one, and only one, parent view. Each view (including the top view) can have any
number of child views.

In this diagram, the top view has four children, the container view has three, and the
border view one. Child views are located within their parents, so the hierarchy is one of
overlapping rectangles. The container view, for example, takes up some of the top view’s
area and divides its own area into a document view and two scroll bars.

When a new BView object is created, it isn’t attached to a window and it has no parent.
It’s added to a window by making it a child of a view already in the view hierarchy. This
is done with theAddChild() function. A view can be made a child of the window’s top
view by calling BWindow’s version ofAddChild().

text field

buttonbordergraph

top view

view

vertical horizontal

container

scroll barscroll bar

view view

document
view

Framework for the User Interface

14 – The Interface Kit

Until it’s assigned to a window, a BView can’t draw and won’t receive reports of events.
BViews know how to produce images, but it takes a window to display and retain the
images they create.

Drawing and Message-Handling in the View Hierarchy

The view hierarchy determines what’s displayed where on-screen, and also how user
actions are associated with the responsible BView object:

• When the views in a window are called upon to draw, parents draw before their
children; children draw in front of their ancestors.

• Mouse events (like the mouse-down and mouse-up events that result from a click)
are associated with the view where the cursor is located. Since the cursor points to
the frontmost view at any given location, it’s likely to be pointing at a view close to
the bottom of the hierarchy. It’s those views—the ones that have no children—that
are responsible for most of the drawing and message-handling for the window.
Views farther up the hierarchy tend to contain and organize those at the bottom.

Overlapping Siblings

Although children wait for their parents when it comes time to draw and parents defer to
their offspring when it comes to time to respond to interface messages, sibling views are
not so well-behaved. Siblings don’t draw in any predefined order. This doesn’t matter, as
long as the view rectangles of the siblings don’t overlap. If they do overlap, it’s
indeterminate which view will draw last—that is, which one will draw on top of the other.

Similarly, it’s indeterminate which view will be associated with mouse events in the area
the siblings share. It may be one view or it may be the other, and it won’t necessarily be
the one that drew the image the user sees.

Therefore, it’s strongly recommended that sibling views should be arranged so that they
don’t overlap.

The Coordinate Space

To locate windows and views, draw in them, and report where the cursor is positioned
over them, it’s necessary to have some conventional way of talking about the display
surface. The same conventions are used whether the display device is a monitor that
shows images on a screen or a printer that puts them on a page.

Framework for the User Interface

The Interface Kit –15

In Be software, the display surface is described by a standard two-dimensional coordinate
system where they-axis extends downward and thex-axis extends to the right, as
illustrated below:

y coordinate values are greater towards the bottom of the display and smaller towards the
top,x coordinate values are greater to the right and smaller to the left.

The axes define a continuous coordinate space where distances are measured by floating-
point values (floats). All quantities in this space—including widths and heights,x andy
coordinates, font sizes, angles, and the size of the pen—are floating point numbers.

Floating-point coordinates permit precisely stated measurements that can take advantage
of display devices with higher resolutions than the screen. For example, a vertical line 0.4
units wide would be displayed using a single column of pixels on-screen, the same as a
line 1.4 units wide. However, a 300 dpi printer would use two pixel columns to print the
0.4-unit line and six to print the 1.4-unit line.

A coordinate unit is 1/72 of an inch, roughly equal to a typographical point. However, all
screens are considered to have a resolution of 72 pixels per inch (regardless of the actual
dimension), so coordinate units count screen pixels. One unit is the distance between the
centers of adjacent pixels on-screen.

Coordinate Systems

Specific coordinate systems are associated with the screen, with windows, and with the
views inside windows. They differ only in where the two axes are located:

• The global orscreen coordinate system has its origin, (0.0, 0.0), at the left top corner
of the screen. It’s used for positioning windows on-screen, < for arranging multiple
screens connected to the same machine, > and for comparing coordinate values that
weren’t originally stated in a common coordinate system.

• A window coordinate system has its origin at the left top corner of the content area
of a window. It’s used principally for positioning views within the window. Each
window has its own coordinate system so that locations within the window can be
specified without regard to where the window happens to be on-screen.

x-axis

y-axis (50.0, 22.5)

(25.0, 15.0)

(20.0, –5.0)

(0.0, 0.0)

(–10.0, 10.0)

(37.5, 5.0)

Framework for the User Interface

16 – The Interface Kit

• A view coordinate system has its default origin at the left top corner of the view
rectangle. However, scrolling can shift view coordinates and move the origin.
View-specific coordinates are used for all drawing operations and to report the
cursor location in most system messages.

Coordinate Geometry

The Interface Kit defines a handful of basic classes for locating points and areas within a
coordinate system:

• A BPoint object is the simplest way to specify a coordinate location. Each object
stores two values—anx coordinate and ay coordinate—that together locate a
specific point, (x, y), within a given coordinate system.

• A BRect object represents a rectangle; it’s the simplest way to designate an area
within a coordinate system. The BRect class defines a rectangle as a set of four
coordinate values—corresponding to the rectangle’s left, top, right, and bottom
edges, as illustrated below:

The sides of the rectangle are therefore parallel to the coordinate axes. The left and
right sides delimit the range ofx coordinate values within the rectangle, and the top
and bottom sides delimit the range ofy coordinate values. For example, if a
rectangle’s left top corner is at (0.8, 2.7) and its right bottom corner is at
(11.3, 49.5), all points havingx coordinates ranging from 0.8 through 11.3 and
y coordinates from 2.7 through 49.5 lie inside the rectangle.

If the top of a rectangle is the same as its bottom, or its left the same as its right, the
rectangle defines a straight line. If the top and bottom are the same and also the left
and right, it collapses to a single point. Such rectangles are still valid—they specify
real locations within a coordinate system. However, if the top is greater than the
bottom or the left greater than the right, the rectangle is invalid; it has no meaning.

bottom

top

left

right

(0.0, 0.0)

y-axis

x-axis

Framework for the User Interface

The Interface Kit –17

• A BPolygon object represents a polygon, a closed figure with an arbitrary number of
sides. The polygon is defined as an ordered set of points. It encloses the area that
would be outlined by connecting the points in order, then connecting the first and
last points to close the figure. Each point is therefore a potential vertex of the
polygon.

• A BRegion object defines a set of points. A region can be any shape and even
include discontinuous areas.

Mapping Coordinates to Pixels

The device-independent coordinate space described above must be mapped to the pixel
grid of a particular display device—the screen, a printer, or some other piece of hardware
that’s capable of rendering an image. For example, to display a rectangle, it’s necessary to
find the pixel columns that correspond to its right and left sides and the pixel rows that
correspond to its top and bottom.

This depends entirely on the resolution of the device. In essence, each device-independent
coordinate value must be translated internally to a device-dependent value—an integer
index to a particular column or row of pixels. In the coordinate space of the device, one
unit equals one pixel.

This translation is easy for the screen, since, as mentioned above, there’s a one-to-one
correspondence between coordinate units and pixels. It reduces to rounding floating-point
coordinates to integers. For other devices, however, the translation means first scaling the
coordinate value to a device-specific value, then rounding. For example, the point
(12.3, 40.8) would translate to (12, 41) on the screen, but to (51, 170) on a 300 dpi printer.

Screen Pixels

To map coordinate locations to device-specific pixels, you need to know only two things:

• The resolution of the device, and
• The location of the coordinate axes relative to pixel boundaries.

The axes are located in the same place for all devices: Thex-axis runs left to right along
the middle of a row of pixels and they-axis runs down the middle of a pixel column. They
meet at the very center of a pixel.

Because coordinate units match pixels on the screen, this means that all integral
coordinate values (those without a fractional part) fall midway across a screen pixel. The

Drawing

18 – The Interface Kit

following illustration shows where variousx coordinate values fall on thex-axis. The
broken lines represent the division of the screen into a pixel grid:

As this illustration shows, it’s possible to have coordinate values that lie on the boundary
between two pixels. A later section, “Picking Pixels to Stroke and Fill” on page 34,
describes how these values are mapped to one pixel or the other.

Drawing

Drawing is done by BView objects. As discussed above, the views within a window are
organized into a hierarchy—there can be views within views—but each view is an
independent drawing agent and maintains a separate graphics environment. This section
discusses the framework in which BViews draw, beginning with view coordinate systems.
Detailed descriptions of the functions mentioned here can be found in the BView and
BWindow class descriptions.

View Coordinate Systems

As a convenience, each view is assigned a coordinate system of its own. By default, the
coordinate origin—(0.0, 0.0)—is located at the left top corner of the view rectangle. (For
an overview of the coordinate systems assumed by the Interface Kit, see “The Coordinate
Space” on page 14 above.)

When a view is added as a child of another view, it’s located within the coordinate system
of its parent. A child is considered part of the contents of the parent view. If the parent
moves, the child moves with it; if the parent view scrolls its contents, the child view is
shifted along with everything else in the view.

Since each view retains its own internal coordinate system no matter who its parent is,
where it’s located within the parent, or where the parent is located, a BView’s drawing and
message-handling code doesn’t need to be concerned about anything exterior to itself. To
do its work, a BView need look no farther than the boundaries of its own view rectangle.

x-axis

y-axis

0.0 2.51.0 3.753.25–1.0 4.54.0

Drawing

The Interface Kit –19

Frame and Bounds Rectangles

Although a BView doesn’t have to look outside its own boundaries, it does have to know
where those boundaries are. It can get this information in two forms:

• Since a view is located within the coordinate system of its parent, the view rectangle
is initially defined in terms of the parent’s coordinates. This defining rectangle for a
view is known as itsframe rectangle. (See the BView constructor and theFrame()
function.)

• When translated from the parent’s coordinates to the internal coordinates of the view
itself, the same rectangle is known as thebounds rectangle. (See theBounds()
function.)

The illustration below shows a child view 180.0 units wide and 135.0 units high. When
viewed from the outside, from the perspective of its parent’s coordinate system, it has a
frame rectangle with left, top, right, and bottom coordinates at 90.0, 60.0, 270.0, and
195.0, respectively. But when viewed from the inside, in the view’s own coordinate
system, it has a bounds rectangle with coordinates at 0.0, 0.0, 180.0, and 135.0:

When a view moves to a new location in its parent, its frame rectangle changes but not its
bounds rectangle. When a view scrolls its contents, its bounds rectangle changes, but not
its frame. The frame rectangle positions the view in the world outside; the bounds
rectangle positions the contents inside the view.

Since a BView does its work in its own coordinate system, it refers to the bounds rectangle
more often than to the frame rectangle.

Scrolling

A BView scrolls its contents by shifting coordinate values within the view rectangle—that
is, by altering the bounds rectangle. If, for example, the top of a view’s bounds rectangle
is at 100.0 and its bottom is at 200.0, scrolling downward 50.0 units would put the top at
150.0 and the bottom at 250.0. Contents of the view withy coordinate values of 150.0 to
200.0, originally displayed in the bottom half of the view, would be shifted to the top half.

parent view
60.0
0.0

135.0
195.0

90.0 0.0 180.0 270.0

child view

Drawing

20 – The Interface Kit

Contents withy coordinate values from 200.0 to 250.0, previously unseen, would become
visible at the bottom of the view. This is illustrated below:

Scrolling doesn’t move the view—it doesn’t alter the frame rectangle—it moves only
what’s displayed inside the view. In the illustration above, a “data rectangle” encloses
everything the BView is capable of drawing. For example, if the view is able to display an
entire book, the data rectangle would be large enough to enclose all the lines and pages of
the book laid end to end. However, since a BView can draw only within its bounds
rectangle, everything in the data rectangle with coordinates that fall outside the bounds
rectangle would be invisible. To make unseen data visible, the bounds rectangle must
change the coordinates that it encompasses. Scrolling can be thought of as sliding the
view’s bounds rectangle to a new position on its data rectangle, as is shown in the
illustration above. However, as it appears to the user, it’s moving the data rectangle under
the bounds rectangle. The view doesn’t move; the data does.

The Clipping Region

The Application Server clips the images that a BView produces to the region where it’s
permitted to draw.

This region is never any larger than the view’s bounds rectangle; a view cannot draw
outside its bounds. Furthermore, since a child is considered part of its parent, a view can’t
draw outside the bounds rectangle of its parent either—or, for that matter, outside the
bounds rectangle of any ancestor view. In addition, since child views draw after, and
therefore logically in front of, their parents, a view concedes some of its territory to its
children.

Thus, thevisible region of a view is the part of its bounds rectangle that’s inside the
bounds rectangles of all its ancestors, minus the frame rectangles of its children. This is
illustrated in the figure below. It shows a hierarchy of three views. The area filled with a
crosshatch pattern is the visible region of viewA; it omits the area occupied by its child,
view B. The visible region of viewB is colored dark gray; it omits the part of the view that

bounds
rectangle

data
rectangle

100.0

250.0

150.0

200.0

300.0

100.0

250.0

150.0

200.0

300.0

Drawing

The Interface Kit –21

lies outside its parent. ViewC has no visible region, for it lies outside the bounds
rectangle of its ancestor, viewA:

The visible region of a view might be further restricted if its window is obscured by
another window or if the window it’s in lies partially off-screen. The visible region
includes only those areas that are actually visible to the user. For example, if the three
views in the illustration above were in a window that was partially blocked by another
window, their visible regions might be considerably smaller. This is illustrated below:

Note that in this case, viewA has a discontinuous visible region.

The Application Server clips the drawing that a view does to a region that’s never any
larger than the visible region. On occasion, it may be smaller. For the sake of efficiency,
while a view is being automatically updated, theclipping region excludes portions of the
visible region that don’t need to be redrawn:

view A

view B

view C

view A

view B

view C

another
window

Drawing

22 – The Interface Kit

• When a view is scrolled, the Application Server may be able to shift some of its
contents from one portion of the visible region to another. The clipping region
excludes any part of the visible region that the Server was able to update on its own;
it includes only the part where the BView must produce images that were not
previously visible.

• If a view is resized larger, the clipping region may include only the new areas that
were added to the visible region. (But see theflags argument for the BView
constructor.)

• If only part of a view is invalidated (by theInvalidate() function), the clipping
region is the intersection of the visible region and the invalid rectangle.

An application can also limit the clipping region for a view by passing a BRegion object to
ConstrainClippingRegion(). The clipping region won’t include any areas that aren’t in the
region passed. The Application Server calculates the clipping region as it normally would,
but intersects it with the specified region.

You can obtain the current clipping region for a view by callingGetClippingRegion().
(See also the BRegion class description.)

The View Color

Every view has a basic, underlying color. It’s the color that fills the view rectangle before
the BView does any drawing. The user may catch a glimpse of this color when the view is
first shown on-screen, when it’s resized larger, and when it’s erased in preparation for an
update. It will also be seen wherever the BView fails to draw in the visible region.

In a sense, the view color is the canvas on which the BView draws. It doesn’t enter into
any of the object’s drawing operations except to provide a background. Although it’s one
of the BView’s graphics parameters, it’s not one that any drawing functions refer to.

By default, the view color is white. You can assign a different color to a view by calling
BView’s SetViewColor() function. If you set the color toB_TRANSPARENT_32_BIT, the
Application Server won’t erase the view’s clipping region before an update. This is
appropriate only if the view erases itself by touching every pixel in the clipping region
when it draws.

Drawing

The Interface Kit –23

The Mechanics of Drawing

Views draw through a set of primitive functions such as:

• DrawString(), which draws a string of characters,

• DrawBitmap(), which produces an image from a bitmap,

• DrawPicture(), which executes a set of recorded drawing instructions,

• StrokeLine(), StrokeArc(), and otherStroke...() functions, which stroke lines along
defined paths, and

• FillEllipse(), FillRect(), and otherFill...() functions, which fill closed shapes.

The way these functions work depends not only on the values that they’re passed—the
particular string, bitmap, arc, or ellipse that’s to be drawn—but on previously set values in
the BView’s graphics environment.

Graphics Environment

Each BView object maintains its own graphics environment for drawing. The view color,
coordinate system, and clipping region are fundamental parts of that environment, but not
the only parts. It also includes a number of parameters that can be set and reset at will to
affect the next image drawn. These parameters are:

• Font attributes that determine the appearance of text the BView draws. (See
SetFontName() and its companion functions.)

• A symbol set that determines how character codes are mapped to visual symbols
(glyphs). (SeeSetSymbolSet().)

• Two pen parameters—a location and a size. The pen location determines where the
next drawing will occur and the pen size determines the thickness of stroked lines.
(SeeMovePenBy() andSetPenSize().)

• Two current colors—ahigh color and alow color—that can be used either alone or
in combination to form a pattern or halftone. The high color is used for most
drawing. The low color is sometimes set to the underlying view color so that it can
be used to erase other drawing or, because it matches the view background, make it
appear that drawing has not touched certain pixels.

(The high and low colors roughly match what other systems call the fore and back,
or foreground and background, colors. However, neither color truly represents the
color of the foreground or background. The terminology “high” and “low” is meant
to keep the sense of two opposing colors and to match how they’re defined in a
pattern. A pattern bit is turned on for the high color and turned off for the low color.
See theSetHighColor() andSetLowColor() functions and the “Patterns” section
below.)

Drawing

24 – The Interface Kit

• A drawing mode that determines how the next image is to be rendered. (See the
“Drawing Modes” section below and theSetDrawingMode() function.)

By default, a BView’s graphics parameters are set to the following values:

Font Kate (a 9-point bitmap font, no rotation, 90° shear)
Symbol Set Macintosh
Pen position (0.0, 0.0)
Pen size 1.0 coordinate units
High color Black (red, green, and blue components all equal to 0)
Low color White (red, green, and blue components all equal to 255)
Drawing mode Copy mode (B_OP_COPY)
View color White (red, green, and blue components all equal to 255)
Clipping region The visible region of the view
Coordinate system Origin at the left top corner of the bounds rectangle

However, as the next section, “Views and the Server” on page 31, explains, these values
take effect only when the BView is assigned to a window.

The Pen

The pen is a fiction that encompasses two properties of a view’s graphics environment: the
current drawing location and the thickness of stroked lines.

The pen location determines where the next image will be drawn—but only if another
location isn’t explicitly passed to the drawing function. Some drawing functions alter the
pen location—as if the pen actually moves as it does the drawing—but usually it’s set by
calling MovePenBy() or MovePenTo().

The pen that draws lines (through the variousStroke...() functions) has a malleable tip that
can be made broader or narrower by calling theSetPenSize() function. The larger the pen
size, the thicker the line that it draws.

The pen size is expressed in coordinate units, which must be translated to a particular
number of pixels for the display device. This is done by scaling the pen size to a device-
specific value and rounding to the closest integer. For example, pen sizes of 2.6 and 3.3
would both translate to 3 pixels on-screen, but to 7 and 10 pixels respectively on a 300 dpi
printer.

The size is never rounded to 0; no matter how small the pen may be, the line never
disappears. If the pen size is set to 0.0, the line will be as thin as possible—it will be
drawn using the fewest possible pixels on the display device. (In other words, it will be
rounded to 1 for all devices.)

If the pen size translates to a tip that’s broader than one pixel, the line is drawn with the tip
centered on the path of the line. Roughly the same number of pixels are colored on both
sides of the path.

Drawing

The Interface Kit –25

A later section, “Picking Pixels to Stroke and Fill” on page 34, illustrates how pens of
different sizes choose the pixels to be colored.

Colors

The high and low colors are specified asrgb_color values—full 32-bit values with
separate red, green, and blue color components, plus an alpha component for transparency.
Although there may sometimes be limitations on the colors that can be rendered on-
screen, there are no restrictions on the colors that can be specified.

The way colors are specified for a bitmap depends on the color space in which they’re
interpreted. The color space determines thedepth of the bitmap data (how many bits of
information are stored for each pixel) and itsinterpretation (whether the data represents
shades of gray or true colors, whether it’s segmented into color components, what the
components are, how they’re arranged, and so on). Five possible color spaces are
recognized:

B_MONOCHROME_1_BIT One bit of data per pixel, where 1 is black and 0 is
white.

B_GRAYSCALE_8_BIT Eight bits of data per pixel, where a value of 255 is
black and 0 is white.

B_COLOR_8_BIT Eight bits of data per pixel, interpreted as an index into
a list of 256 colors. The list is part of the system color
map, and is the same for all applications.

B_RGB_16_BIT < This color space is currently undefined. >

B_RGB_32_BIT Four components of data per pixel—red, green, blue,
and alpha—with eight bits per component. A
component value of 255 yields the maximum amount
of red, green, or blue, and a value of 0 indicates the
absence of that color. < The alpha component is
currently ignored. It will specify the coverage of the
color—how transparent or opaque it is. >

The components in theB_RGB_32_BIT color space are
meshed rather than separated into distinct planes; all
four components are specified for the first pixel before
the four components for the second pixel, and so on.
Unlike anrgb_color, the color components are
arranged in reverse order—blue, green, red—followed
by alpha. This is the natural order for many display
devices.

The screen can be configured to display colors in either theB_COLOR_8_BIT color space or
theB_RGB_32_BIT color space. When it’s in theB_COLOR_8_BIT color space, specified

Drawing

26 – The Interface Kit

rgb_colors are displayed as the closest 8-bit color in the color list. (See the BBitmap class
and thesystem_colors() global function.)

Patterns

Functions that stroke a line or fill a closed shape don’t draw directly in either the high or
the low color. Rather they take apattern, an arrangement of one or both colors that’s
repeated over the entire surface being drawn.

By combining the low color with the high color, patterns can produce dithered colors that
lie somewhere between two hues in theB_COLOR_8_BIT color space. Patterns also permit
drawing with less than the solid high color (for intermittent or broken lines, for example)
and can take advantage of drawing modes that treat the low color as if it were transparent,
as discussed below.

A pattern is defined as an 8-pixel by 8-pixel square. Thepattern type is 8 bytes long, with
one byte per row and one bit per pixel. Rows are specified from top to bottom and pixels
from left to right. Bits marked 1 designate the high color; those marked 0 designate the
low color. For example, a pattern of wide diagonal stripes could be defined as follows:

pattern stripes = { 0xc7, 0x8f, 0x1f, 0x3e,
 0x7c, 0xf8, 0xf1, 0xe3 };

Patterns repeat themselves across the screen, like tiles that are laid side by side. The
pattern defined above looks like this:

The dotted lines in this illustration show the separation of the screen into pixels. The
thicker black line outlines one 8-by-8 square that the pattern defines.

The outline of the shape being filled or the width of the line being stroked determines
where the pattern is revealed. It’s as if the screen was covered with the pattern just below
the surface, and stroking or filling allowed some of it to show through. For example,
stroking a one-pixel wide horizontal path in the pattern illustrated above would result in a

Drawing

The Interface Kit –27

dotted line, with the dashes (in the high color) slightly longer than the spaces between (in
the low color):

When stroking a line or filling a shape, the pattern serves as the source image for the
current drawing mode, as explained under “Drawing Modes” below. The nature of the
mode determines how the pattern interacts with the destination image, the image already
in place.

The Interface Kit defines three patterns:

• B_SOLID_HIGH consists only of the high color,
• B_SOLID_LOW has only the low color, and
• B_MIXED_COLORS mixes the two colors evenly, like the pattern on a checkerboard.

B_SOLID_HIGH is the default pattern for all drawing functions. Applications can define as
many other patterns as they need.

Drawing Modes

When a BView draws, it in effect transfers an image to a target location somewhere in the
view rectangle. The drawing mode determines how the image being transferred interacts
with the image already in place at that location. The image being transferred is known as
thesource image; it might be a bitmap or a pattern of some kind. The image already in
place is known as thedestination image.

In the simplest and most straightforward kind of drawing, the source image is simply
painted on top of the destination; the source replaces the destination. However, there are
other possibilities. There are nine different drawing modes—nine distinct ways of
combining the source and destination images. The modes are designated by
drawing_mode constants that can be passed toSetDrawingMode():

B_OP_COPY B_OP_MIN B_OP_ADD
B_OP_OVER B_OP_MAX B_OP_SUBTRACT
B_OP_ERASE B_OP_INVERT B_OP_BLEND

B_OP_COPY is the default mode and the simplest. It transfers the source image to the
destination, replacing whatever was there before. The destination is ignored.

In the other modes, however, some of the destination might be preserved, or the source
and destination might be combined to form a result that’s different from either of them.
For these modes, it’s convenient to think of the source image as an image that exists
somewhere independent of the destination location, even though it’s not actually visible.
It’s the image that would be rendered at the destination inB_OP_COPY mode.

Drawing

28 – The Interface Kit

The modes work for all BView drawing functions—including those that stroke lines and
fill shapes, those that draw characters, and those that image bitmaps. The way they work
depends foremost on the nature of the source image—whether it’s apattern or abitmap.
For theFill...() andStroke...() functions, the source image is a pattern that has the same
shape as the area being filled or the area the pen touches as it strokes a line. For
DrawBitmap(), the source image is a rectangular bitmap.

• Only a source pattern has designated “high” and “low” colors. Even if a source
bitmap has colors that match the current high and low colors, they’re not handled
like the colors in a pattern; they’re treated just like any other color in the bitmap.

• On the other hand, only a source bitmap can have transparent pixels. In the
B_COLOR_8_BIT color space, a pixel is made transparent by assigning it the
B_TRANSPARENT_8_BIT value. In theB_RGB_32_BIT color space, a pixel assigned the
B_TRANSPARENT_32_BIT value is considered transparent. These values have meaning
only for source bitmaps, not for source patterns. If the current high or low color in a
pattern happens to have a transparent value, it’s still treated as the high or low color,
not like transparency in a bitmap.

The way the drawing modes work also depends on the color space of the source image and
the color space of the destination. The following discussion concentrates on drawing
where the source and destination both contain colors. This is the most common case, and
also the one that’s most general.

When applied to colors, the nine drawing modes fall naturally into four groups:

• TheB_OP_COPY mode, which copies the source image to the destination.

• TheB_OP_OVER, B_OP_ERASE, andB_OP_INVERT modes, which—despite their
differences—all treat the low color in a pattern as if it were transparent.

• TheB_OP_ADD, B_OP_SUBTRACT, andB_OP_BLEND modes, which combine colors in
the source and destination images.

• TheB_OP_MIN andB_OP_MAX modes, which choose between the source and
destination colors.

The following paragraphs describe each of these groups in turn.

Copy Mode. In B_OP_COPY mode, the source image replaces the destination. This is
the default drawing mode and the one most commonly used. Because this mode doesn’t
have to test for particular color values in the source image, look at the colors in the
destination, or compute colors in the result, it’s also the fastest of the modes.

If the source image contains transparent pixels, their transparency will be retained in the
result; the transparent value is copied just like any other color. However, the appearance
of a transparent pixel when shown on-screen is indeterminate. If a source image has
transparent portions, it’s best to transfer it to the screen inB_OP_OVER or another mode.

Drawing

The Interface Kit –29

In all modes other thanB_OP_COPY, a transparent pixel in a source bitmap preserves the
color of the corresponding destination pixel.

Transparency Modes. Three drawing modes—B_OP_OVER, B_OP_ERASE, and
B_OP_INVERT—are designed specifically to make use of transparency in the source image;
they’re able to preserve some of the destination image. In these modes (and only these
modes) the low color in a source pattern acts just like transparency in a source bitmap.

• TheB_OP_OVER mode places the source image “over” the destination; the source
provides the foreground and the destination the background. In this mode, the
source image replaces the destination image (just as in theB_OP_COPY mode)—
except where a source bitmap has transparent pixels and a source pattern has the low
color. Transparency in a bitmap and the low color in a pattern retain the destination
image in the result.

By masking out the unwanted parts of a rectangular bitmap with transparent pixels,
this mode can place an irregularly shaped source image on top of a background
image. Transparency in the source foreground lets the destination background show
through. The versatility ofB_OP_OVER makes it the second most commonly used
mode, afterB_OP_COPY.

• TheB_OP_ERASE mode doesn’t draw the source image at all. Instead, it erases the
destination image. LikeB_OP_OVER, it preserves the destination image wherever a
source bitmap is transparent or a source pattern has the low color. But everywhere
else—where the source bitmap isn’t transparent and the source pattern has the high
color—it removes the destination image, replacing it with the low color.

Although this mode can be used for selective erasing, it’s simpler to erase by filling
an area with theB_SOLID_LOW pattern inB_OP_COPY mode.

• TheB_OP_INVERT mode, likeB_OP_ERASE, doesn’t draw the source image. Instead,
it inverts the colors in the destination image. As in the case of theB_OP_OVER and
B_OP_ERASE modes, where a source bitmap is transparent or a source pattern has the
low color, the destination image remains unchanged in the result. Everywhere else,
the color of the destination image is inverted.

These three modes also work for monochrome images. If the source image is
monochrome, the distinction between source bitmaps and source patterns breaks down.
Two rules apply:

• If the source image is a monochrome bitmap, it acts just like a pattern. A value of 1
in the bitmap designates the current high color and a value of 0 designates the
current low color. Thus, 0, rather thanB_TRANSPARENT_32_BIT or
B_TRANSPARENT_8_BIT, becomes the transparent value.

• If the source and destination are both monochrome, the high color is necessarily
black (1) and the low color is necessarily white (0)—but otherwise the drawing
modes work as described. With the possible colors this severely restricted, the three
modes are reduced to boolean operations:B_OP_OVER is the same as a logical ‘OR’,

Drawing

30 – The Interface Kit

B_OP_INVERT the same as logical ‘exclusive OR’, andB_OP_ERASE the same as an
inversion of logical ‘AND’.

Blending Modes. Three drawing modes—B_OP_ADD, B_OP_SUBTRACT, and
B_OP_BLEND—combine the source and destination images, pixel by pixel, and color
component by color component. As in most of the other modes, transparency in a source
bitmap preserves the destination image in the result. Elsewhere, the result is a
combination of the source and destination. The high and low colors of a source pattern
aren’t treated in any special way; they’re handled just like other colors.

• B_OP_ADD adds each component of the source color to the corresponding
component of the destination color, with a component value of 255 as the limit.
Colors become brighter, closer to white.

By adding a uniform gray to each pixel in the destination, for example, the whole
destination image can be brightened by a constant amount.

• B_OP_SUBTRACT subtracts each component of the source color from the
corresponding component of the destination color, with a component value of 0 as
the limit. Colors become darker, closer to black.

For example, by subtracting a uniform amount from the red component of each
pixel in the destination, the whole image can be made less red.

• B_OP_BLEND averages each component of the source and destination colors (adds
the source and destination components and divides by 2). The two images are
merged into one.

These modes work only for color images, not for monochrome ones. If the source or
destination is specified in theB_COLOR_8_BIT color space, the color will be expanded to a
full B_RGB_32_BIT value to compute the result; the result is then contracted to the closest
color in theB_COLOR_8_BIT color space.

Selection Modes. Two drawing modes—B_OP_MAX andB_OP_MIN—compare each
pixel in the source image to the corresponding pixel in the destination image and select
one to keep in the result. If the source pixel is transparent, both modes select the
destination pixel. Otherwise,B_OP_MIN selects the darker of the two colors and
B_OP_MAX selects the brighter of the two. If the source image is a uniform shade of gray,
for example,B_OP_MAX would substitute that shade for every pixel in the destination
image that was darker than the gray.

Like the blending modes,B_OP_MIN andB_OP_MAX work only for color images.

Drawing

The Interface Kit –31

Views and the Server

Windows lead a dual life—as on-screen entities provided by the Application Server and as
BWindow objects in the application. BViews have a similar dual existence—each BView
object has a shadow counterpart in the Server. The Server knows the view’s location, its
place in the window’s hierarchy, its visible area, and the current state of its graphics
parameters. Because it has this information, the Server can more efficiently associate a
user action with a particular view and interpret the BView’s drawing instructions.

BWindows become known to the Application Server when they’re constructed; creating a
BWindow object causes the Server to produce the window that the user will eventually see
on-screen. A BView, on the other hand, has no effect on the Server when it’s constructed.
It becomes known to the Server only when it’s attached to a BWindow. The Server must
look through the application’s windows to see what views it has.

A BView that’s not attached to a window therefore lacks a counterpart in the Server. This
restricts what some functions can do. Four groups of functions are affected:

• Drawing functions—DrawBitmap(), FillRect(), StrokeLine(), and so on—don’t work
for unattached views. A BView can’t draw unless it’s in a window.

• The scrolling functions—ScrollTo() andScrollBy()—require the BView to be in a
window. Manipulations of a view’s coordinate system are carried out in its Server
counterpart.

• Functions that indirectly depend on a BView’s graphics parameters—such as
GetMouse(), which reports the cursor location in the BView’s coordinates, and
StringWidth(), which returns how much room a string would take up in the BView’s
font—also require the BView to belong to a window. These functions need
information that an unattached BView can’t provide.

• The functions that set and return graphics parameters—such asSetDrawingMode(),
PenLocation(), SetFontSize(), andSetHighColor()—are also restricted. A view’s
graphic state is kept within the Server (where it’s needed to carry out drawing
instructions); BViews that the Server doesn’t know about don’t have a valid
graphics state.

Nevertheless, it’s possible to assign a value to a graphics parameter before the
BView is attached to a window. The value is simply cached until the view becomes
part of a window’s view hierarchy. It’s then set as the current value for the
parameter. Values set while the BView belongs to a window change the current
value, but not the cached value. Therefore, if the BView is removed from the view
hierarchy and reinstated as part of another hierarchy, the last cached value will be
reestablished as the current value.

Functions that return graphics parameters report the current value while the BView
is attached to a window, and the cached value when it’s unattached.

Because of these restrictions, you may find it difficult to complete the initialization of a
BView at the time it’s constructed. Instead, you may need to wait until the BView receives

Drawing

32 – The Interface Kit

anAttachedToWindow() notification informing it that it has been added to a window’s
view hierarchy. This function is called for each view that’s added to a window, beginning
with the root view being attached, followed by each of its children, and so on down the
hierarchy. After all views have been notified with anAttachedToWindow() function call,
they each get anAllAttached() notification, but in the reverse order. A parent view that
must adjust itself to calculations made by a child view when it’s attached to a window can
wait until AllAttached() to do the work.

These two function calls are matched by another pair—DetachedFromWindow() and
AllDetached()—which notify BViews that they’re about to be removed from the window.

The Update Mechanism

The Application Server sends a message to a BWindow whenever any of the views within
the window need to be updated. The BWindow then calls theDraw() function of each out-
of-date BView so that it can redraw the contents of its on-screen display.

Update messages can arrive at any time. A BWindow receives one whenever:

• The window is first placed on-screen, or is shown again after having been hidden.

• Any part of the window becomes visible after being obscured.

• The views in the window are rearranged—for example, if a view is resized or a child
is removed from the hierarchy.

• Something happens to alter what a particular view displays. For example, if the
contents of a view are scrolled, the BView must draw any new images that scrolling
makes visible. If one of its children moves, it must fill in the area the child view
vacated.

• The application forces an update by “invalidating” a view, or a portion of a view.

Update messages take precedence over other kinds of messages. To keep the on-screen
display as closely synchronized with event handling as possible, the window acts on
update messages as soon as they arrive. They don’t need to wait their turn in the message
queue.

(Update messages do their work quietly and behind the scenes. You won’t find them in the
BWindow’s message queue, they aren’t handled by BWindow’sDispatchMessage()
function, and they aren’t returned by BLooper’sCurrentMessage().)

Forcing an Update

When a user action or a BView function alters a view in a window—for example, when a
view is resized or its contents are scrolled—the Application Server knows about it. It
makes sure that an update message is sent to the window so the view can be redrawn.

Drawing

The Interface Kit –33

However, if code that’s specific to your application alters a view, you’ll need to inform the
Server that the view needs updating. This is done by calling theInvalidate() function. For
example, if you write a function that changes the number of elements a view displays, you
might invalidate the view after making the change, as follows:

void MyView::SetNumElements(long count)
{
 if (numElements == count)
 return;
 numElements = count;
 Invalidate();
}

Invalidate() ensures that the view’sDraw() function—which presumably looks at the new
value of thenumElements data member—will be called automatically.

At times, the update mechanism may be too slow for your application. Update messages
arrive just like other messages sent to a window thread, including the interface messages
that report events. Although they take precedence over other messages, update messages
must wait their turn. The window thread can respond to only one message at a time; it will
get the update message only after it finishes with the current one.

Therefore, if your application alters a view and callsInvalidate() while responding to an
interface message, the view won’t be updated until the response is finished and the
window thread is free to turn to the next message. Usually, this is soon enough. But if it’s
not, if the response to the interface message includes some time-consuming operations, the
application can request an immediate update by calling BWindow’sUpdateIfNeeded()
function.

Erasing the Clipping Region

Just before sending an update message, the Application Server prepares the clipping
region of each BView that is about to draw by erasing it to the view background color.
Note that only the clipping region is erased, not the entire view, and perhaps not the entire
area where the BView will, in fact, draw.

The Server foregoes this step only if the BView’s background color is set to the magical
B_TRANSPARENT_32_BIT color.

Drawing during an Update

While drawing, a BView may set and reset its graphics parameters any number of times—
for example, the pen position and high color might be repeatedly reset so that whatever is
drawn next is in the right place and has the right color. These settings are temporary.
When the update is over, all graphics parameters are reset to their initial values.

If, for example,Draw() sets the high color to a shade of light blue, as shown below,

SetHighColor(152, 203, 255);

Drawing

34 – The Interface Kit

it doesn’t mean that the high color will be blue whenDraw() is called next. If this line of
code is executed during an update, light blue would remain the high color only until the
update ends orSetHighColor() is called again, whichever comes first. When the update
ends, the previous graphics state, including the previous high color, is restored.

Although you can change most graphics parameters during an update—move the pen
around, reset the font, change the high color, and so on—the coordinate system can’t be
touched; a view can’t be scrolled while it’s being updated. Since scrolling causes a view
to be updated, scrolling during an update would, in effect, be an attempt to nest one update
in another, something that can’t logically be done (since updates happen sequentially
through messages). If the view’s coordinate system were to change, it would alter the
current clipping region and confuse the update mechanism.

Drawing outside of an Update

Graphics parameters that are set outside the context of an update are not limited; they
remain in effect until they’re explicitly changed. For example, if application code calls
Draw(), perhaps in response to an interface message, the parameter values thatDraw() last
sets would persist even after the function returns. They would become the default values
for the view and would be assumed the next timeDraw() is called.

Default graphics parameters are typically set as part of initializing the BView once it’s
attached to a window—in anAttachedToWindow() function. If you want aDraw()
function to assume the values set byAttachedToWindow(), it’s important to restore those
values after any drawing the BView does that’s not the result of an update. For example, if
a BView invokesSetHighColor() while drawing in response to an interface message, it will
need to restore the default high color when done.

If Draw() is called outside of an update, it can’t assume that the clipping region will have
been erased to the view color, nor can it assume that default graphics parameters will be
restored when it’s finished.

Picking Pixels to Stroke and Fill

This section discusses how the various BViewStroke...() andFill...() functions pick specific
pixels to color. Pixels are chosen after the pen size and all coordinate values have been
translated to device-specific units. Device-specific values measure distances by counting
pixels; one unit equals one pixel on the device.

A device-specific value can be derived from a coordinate value using a formula that takes
the size of a coordinate unit and the resolution of the device into account. For example:

device_value = coordinate_value × (dpi / 72)

dpi is the resolution of the device in dots (pixels) per inch, 72 is the number of coordinate
units in an inch, anddevice_value is rounded to the closest integer.

Drawing

The Interface Kit –35

To describe where lines and shapes fall on the pixel grid, this section mostly talks about
pixel units rather than coordinate units. The accompanying illustrations magnify the grid
so that pixel boundaries are clear. As a consequence, they can show only very short lines
and small shapes. By blowing up the image, they exaggerate the phenomena they
illustrate.

Stroking Thin Lines

The thinnest possible line is drawn when the pen size translates to 1 pixel on the device.
Setting the size to 0.0 coordinate units guarantees a one-pixel pen on all devices.

A one-pixel pen follows the path of the line it strokes and makes the line exactly one pixel
thick at all points. If the line is perfectly horizontal or vertical, it touches just one row or
one column of pixels, as illustrated below. (The grid of broken lines shows the separation
of the display surface into pixels.)

Only pixels that the line path actually passes through are colored to display the line. If a
path begins or ends on a pixel boundary, as it does for examples (a) and (b) above, the
pixels at the boundary aren’t colored unless the path crosses into the pixel. The pen
touches the fewest possible number of pixels.

A line path that doesn’t enter any pixels, but lies entirely on the boundaries between
pixels, colors the pixel row beneath it or the pixel column to its right, as illustrated by (f)
and (g) above. A path that reduces to a single point lying on the corner of four pixels, as
does (h) above, colors the pixel at its lower right. < However, currently, it’s indeterminate
which column or row of adjacent pixels would be used to display vertical and horizontal
lines like (f) and (g) above. Point (h) would not be visible. >

One-pixel lines that aren’t exactly vertical or horizontal touch just one pixel per row or
one per column. If the line is more vertical than horizontal, only one pixel in each row is

(a)

(c)

(e)

(f)

(d)

(b)

(h)

(g)

Drawing

36 – The Interface Kit

used to color the line. If the line is more horizontal than vertical, only one pixel in each
column is used. Some illustrations of slanted one-pixel thick lines are given below:

Although a one-pixel pen touches only pixels that lie on the path it strokes, it won’t touch
every pixel that the path crosses if that would mean making the line thicker than specified.
When the path cuts though two pixels in a column or row, but only one of those pixels can
be colored, the one that contains more of the path (the one that contains the midpoint of
the segment cut by the column or row) is chosen. This is illustrated in the close-up below,
which shows where a mostly vertical line crosses one row of pixels:

However, before a choice is made as to which pixel in a row or column to color, the line
path is normalized for the device. For example, if a line is defined by two endpoints, it’s
first determined which pixels correspond to those endpoints. The line path is then treated
as if it connected the centers of those pixels. This may alter which pixels get colored, as is

(j)(i)

(k)

(l)

(m)

Drawing

The Interface Kit –37

illustrated below. In this illustration, the solid black line is the line path as originally
specified and the broken line is its normalized version:

This normalization is nothing more than the natural consequence of the rounding that
occurs when coordinate values are translated to device-specific pixel values.

Stroking Curved Lines

Although all the diagrams above show straight lines, the principles they illustrate apply
equally to curved line paths. A curved path can be treated as if it were made up of a large
number of short straight segments.

Filling and Stroking Rectangles

The following illustration shows how some rectangles, represented by the solid black line,
would be filled with a solid color.

A rectangle includes every pixel that it encloses and every pixel that its sides pass through.
However, as rectangle (q) illustrates, it doesn’t include pixels that its sides merely touch at
the boundary.

If the pixel grid in this illustration represents the screen, rectangle (q) would have left, top,
right, and bottom coordinates with fractional values of .5. Rectangle (n), on the other

(p)

(o) (q)

(n)

Drawing

38 – The Interface Kit

hand, would have coordinates without any fractional parts. Nonfractional coordinates lie
at the center of screen pixels.

Rectangle (n), in fact, is the normalized version of all four of the illustrated rectangles. It
shows how the sides of the four rectangles would be translated to pixel values. Note that
for a rectangle like (q), with edges that fall on pixel boundaries, normalization means
rounding the left and top sides upward and rounding the right and bottom sides downward.
This follows from the principal that the fewest possible number of pixels should be
colored.

Although the four rectangles above differ in size and shape, when filled they all cover a
6 × 4 pixel area. You can’t predict this area from the dimensions of the rectangle.
Because the coordinate space is continuous andx andy values can be located anywhere,
rectangles with different dimensions might have the same rendered size, as shown above,
and rectangles with the same dimensions might have different rendered sizes, as shown
below:

If a one-pixel pen strokes a rectangular path, it touches only pixels that would be included
if the rectangle were filled. The illustration below shows the same rectangles that were
presented above, but strokes them rather than fills them:

Each of the rectangles still covers a 6× 4 pixel area. Note that even though the path of
rectangle (q′) lies entirely on pixel boundaries, pixels below it and to its right are not
touched by the pen. The pen touches only pixels that lie within the rectangle.

(s)(r)

(p′)

(o′) (q′)

(n′)

Drawing

The Interface Kit –39

If a rectangle collapses to a straight line or to a single point, it no longer contains any area.
Stroking or filling such a rectangle is equivalent to stroking the line path with a one-pixel
pen, as was discussed in the previous section.

Filling and Stroking Polygons

The figure below shows a polygon as it would be stroked by a one-pixel pen and as it
would be filled:

The same rules apply when stroking each segment of a polygon as would apply if that
segment were an independent line. Therefore, the pen may not touch every pixel the
segment passes through.

When the polygon is filled, no additional pixels around its border are colored. As is the
case for a rectangle, the displayed shape of filled polygon is identical to the shape of the
polygon when stroked with a one-pixel pen. The pen doesn’t touch any pixels when
stroking the polygon that aren’t colored when the polygon is filled. Conversely, filling
doesn’t color any pixels at the border of the polygon that aren’t touched by a one-pixel
pen.

(u)(t)

Drawing

40 – The Interface Kit

Stroking Thick Lines

A pen that’s thicker than one pixel touches the same pixels that a one-pixel pen does, but it
adds extra columns and rows adjacent to the line path. A thick pen tip is, in effect, a linear
brush that’s held perpendicular to the line path and kept centered on the line. The
illustration below shows two short lines, each five pixels thick:

The thickness or a vertical or horizontal line can be measured in an exact number of
pixels. When the line is slanted, as it is for (t) above, the stroking algorithm tries to make
the line visually approximate the thickness of a vertical or horizontal line. In this way,
lines retain their shape even when rotated.

(w)

(v)

Responding to the User

The Interface Kit –41

When a rectangle is stroked with a thick pen, the corners of the rectangle are filled in, as
shown in the example below:

Responding to the User

The BWindow and BView classes together define a structure for responding to user
actions on the keyboard and mouse. These actions generateinterface messages that are
delivered to BWindow objects. The BWindow distributes responsibility for the messages
it receives to other objects, typically BViews.

This section describes the messages that report user actions, and the way that BWindow
and BView objects are structured to respond to them.

Interface Messages

Twenty interface messages are currently defined. Two of them command the window to
do something in particular:

• A B_ZOOM instruction tells the window to zoom to a larger size—or to return to its
normal size having previously been zoomed larger. The message is typically caused
by the user operating the zoom button in the window’s title tab.

• A B_MINIMIZE instruction tells the window to replace itself on-screen with a token
representation—or to restore itself having been previously minimized. This
message is typically caused by the user double-clicking the window tab (or the
window token).

(x)

Responding to the User

42 – The Interface Kit

All other interface messages reportevents—something that happened, rather than
something that the application must do. In most cases, the message merely reports what
the user did on the keyboard or mouse. However, in some cases, the event may reflect the
way the Application Server interpreted or handled a user action. The Server might
respond directly to the user and pass along an message that indicates what it did—moved a
window or changed a value, for example. In a few cases, the event may even reflect what
the application thinks the user intended—that is, an application might interpret one or
more generic user actions as a more specific event.

The following five messages report atomic user actions on the keyboard and mouse:

• A B_KEY_DOWN message reports a single key-down event. Key-down events occur
when the user presses a character key on the keyboard. After the initial event (and a
brief threshold), most keys generate repeated key-down events—as long as the user
continues to hold the key down and doesn’t press another key. Only character keys
produce keyboard events. The modifier keys—Shift, Control, Caps Lock, and so
on—don’t produce events of any kind but may affect the character that’s reported
for another key.

• A B_KEY_UP message reports the event that occurs when the user releases the
character key. < Although defined, this message is currently not used. Key-up
events are unreported. >

• A B_MOUSE_DOWN message reports a single mouse-down event. A mouse-down
event occurs when the user presses one of the mouse buttons while the cursor is over
the content area of a window. The event is recognized (the message is generated)
only for the first button the user presses—that is, only if no other mouse buttons are
down at the time.

• A B_MOUSE_UP message reports the event that occurs when the user releases the
mouse button. The event is recognized only for the last button the user releases—
that is, only if no other mouse button remains down.

• A B_MOUSE_MOVED message captures some small portion of the cursor’s
movement into, within, or out of a window. If the cursor isn’t over a window, it’s
movement isn’t reported; it doesn’t create mouse-moved events. (All interface
events are associated with windows.) Repeated mouse-moved events occur as the
user moves the mouse.

The five messages above are all directed at particular views—the view where the cursor is
located or where typed input appears. Three others also concern views:

• A B_VIEW_MOVED message is sent when a view is moved within its parent’s
coordinate system. This can be a consequence of a programmatic action or of the
parent view being automatically resized. If the parent view is being continuously
resized because the user is resizing the window, repeated mouse-moved events may
be reported.

• A B_VIEW_RESIZED message is delivered when a view is resized, perhaps because the
program resized it or possibly as an automatic consequence of the window being

Responding to the User

The Interface Kit –43

resized. If the resizing is continuous, because the user is resizing the window,
repeated view-resized events are reported.

• A B_VALUE_CHANGED message reports that the Application Server changed a value
associated with an object. Currently, a value-changed event occurs only for
BScrollBar objects. Repeated events are reported as the user manipulates a scroll
bar.

A few messages concern events that affect the window itself:

• A B_WINDOW_ACTIVATED message reports an activation event. This event occurs
when a window becomes the active window and again when it gives up that status.
The single action of clicking a window to make it active might result in two
activation events—one for the window that gains active-window status and one for
the window that relinquishes it—plus a mouse-down and a mouse-up event.

• A B_QUIT_REQUESTED message is interpreted by a BWindow object as a request to
close the window. Quit-requested events occur when the user clicks a window’s
close button, or when the system perceives some other reason to request the window
to quit.

• A B_WINDOW_MOVED message records the new location of a window that has been
moved, either programmatically or by the user. When the user drags a window,
repeated messages are generated, each one capturing a small portion of the
window’s continuous movement. Only one window-moved event is reported when
the program moves a window.

• A B_WINDOW_RESIZED message reports that a window has been resized, again either
programmatically or by the user. The message is generated repeatedly as the user
resizes the window, but only once each time the application resizes it.

A few messages report changes to the on-screen environment for a window:

• A B_SCREEN_CHANGED message reports that the configuration of the screen—the
size of the pixel grid it displays or the color space of the frame buffer—has changed.
Such changes may require the window to take compensatory measures.

• A B_WORKSPACE_ACTIVATED message reports that the active workspace (the one
displayed on-screen) has changed. All windows that live in the previously active
workspace and in the one that has been newly activated are notified of the change.

• A B_WORKSPACES_CHANGED message notifies the window that the set of
workspaces in which it can be displayed has changed.

Two messages are produced by the save panel:

• A B_SAVE_REQUESTED message is sent when the user operates the panel to request
that a document be saved.

• A B_PANEL_CLOSED message is sent when the application or the user closes the
panel.

Responding to the User

44 – The Interface Kit

Finally, there’s one message that doesn’t derive from a user action:

• PeriodicB_PULSE messages are posted at regularly spaced intervals, like a steady
heartbeat. Pulses don’t involve any communication between the application and the
Server. They’re generated as long as no other events are pending, but only if the
application asks for them.

An application doesn’t have to wait for a message to discover what the user is doing on the
keyboard and mouse. Two BView functions,GetKeys() andGetMouse(), can provide an
immediate check on the state of these devices.

Hook Functions for Interface Messages

Interface messages are generated and delivered to the application as the user acts. The
Application Server determines which window an action affects and notifies the
appropriate window thread. Messages for keyboard events are delivered to the current
active window; messages announcing mouse events are sent to the window where the
cursor is located.

However, the message is just an intermediary. As soon as it arrives, the BWindow
dispatches it to initiate action within the window thread. Typically, one of the BViews
associated with the window is asked to respond to the message—usually the BView that
drew the image that elicited the user action. But some messages are handled by the
BWindow itself.

Interface messages are dispatched by calling a virtual function that’s matched to the
message. If the message delivers an instruction, the function is named for the action that
should be taken. For example, a zoom instruction is dispatched by calling theZoom()
function. If the message reports an event, the function is named for the event. For
example, the BView where a mouse-down event occurs is notified with aMouseDown()
function call. When the user clicks the close box of a window, generating a quit-requested
event, the BWindow’sQuitRequested() function is called.

The chart below lists the virtual functions that are called to initiate the application’s
response to interface messages, and the base classes where the functions are declared.
Each application can implement these message-specific functions in a way that’s
appropriate to its purposes.

Message type Virtual function Class

B_ZOOM Zoom() BWindow
B_MINIMIZE Minimize() BWindow

B_KEY_DOWN KeyDown() BView
B_KEY_UP none
B_MOUSE_DOWN MouseDown() BView
B_MOUSE_UP none
B_MOUSE_MOVED MouseMoved() BView

Responding to the User

The Interface Kit –45

B_VIEW_MOVED FrameMoved() BView
B_VIEW_RESIZED FrameResized() BView
B_VALUE_CHANGED ValueChanged() BScrollBar

B_WINDOW_ACTIVATED WindowActivated() BWindow and BView
B_QUIT_REQUESTED QuitRequested() BLooper
B_WINDOW_MOVED FrameMoved() BWindow
B_WINDOW_RESIZED FrameResized() BWindow

B_SCREEN_CHANGED ScreenChanged() BWindow
B_WORKSPACE_ACTIVATED WorkspaceActivated() BWindow
B_WORKSPACES_CHANGED WorkspacesChanged() BWindow

B_SAVE_REQUESTED SaveRequested() BWindow
B_PANEL_CLOSED SavePanelClosed() BWindow

B_PULSE Pulse() BView

< B_KEY_UP messages are currently not produced. >B_MOUSE_UP messages are produced,
but they aren’t dispatched by calling a virtual function. A BView can determine when a
mouse button goes up by callingGetMouse() from within itsMouseDown() function. As
it reports information about the location of the cursor and the state of the mouse buttons,
GetMouse() removes mouse messages from the BWindow’s message queue, so the same
information won’t be reported twice.

A BWindow reinterprets aB_QUIT_REQUESTED message, originally defined for the
BLooper class in the Application Kit, to mean a user request to close the window.
However, it doesn’t redeclare theQuitRequested() hook function that it inherits from
BLooper.

Dispatching

Notice, from the chart above, that the BWindow class declares the functions that handle
instructions and events directed at the window itself.FrameMoved() is called when the
user moves the window,FrameResized() when the user resizes it,WindowActivated()
when it becomes, or ceases to be, the active window,Zoom() when it should zoom larger,
and so on.

Although the BWindow handles some interface messages, the most common ones—those
reporting direct user actions on the keyboard and mouse—are handled by BViews. When
the BWindow receives a keyboard or mouse message, it must decide which view is
responsible.

This decision is relatively easy for messages reporting mouse events. The cursor points to
the affected view. For example, when the user presses a mouse button, the BWindow calls
theMouseDown() virtual function of the view under the cursor. When the user moves the
mouse, it calls theMouseMoved() function of each view the cursor travels through.

Responding to the User

46 – The Interface Kit

However, there’s no cursor attached to the keyboard, so the BWindow object must keep
track of the view that’s responsible for messages reporting key-down events. That view is
known as thefocus view.

The Focus View

The focus view is whatever view happens to be displaying the current selection (possibly
an insertion point) within the window, or whatever check box, button, or other gadget is
currently marked to show that it can be operated from the keyboard.

The focus view is expected to respond to the user’s keyboard actions when the window is
the active window. When the user presses a key on the keyboard, the BWindow calls the
focus view’sKeyDown() function. If the focus view displays editable data, it’s also
expected to handle commands that target the current selection, such as commands to cut,
copy, or paste data.

The focus typically doesn’t stay on one view all the time; it shifts from view to view. It
may change as the user changes the current selection in the window—from text field to
text field, for example. Or it changes when the user navigates from one view to another by
pressing the Tab key. Only one view in the window can be in focus at a time.

Views put themselves in focus when they’re selected by a user action of some kind. For
example, when a BView’sMouseDown() function is called, notifying it that the user has
selected the view, it can grab the focus by callingMakeFocus(). When a BView makes
itself the focus view, the previous focus view is notified that it has lost that status.

A view should become the focus view if:

• It has aKeyDown() function to display typed characters,
• It has aKeyDown() function so that the user can operate it from the keyboard, or
• It can show the current selection, whether or not it has aKeyDown() function.

A view should highlight the current selection only while it’s in focus.

BViews make themselves the focus view (with theMakeFocus() function), but BWindows
report which view is currently in focus (with theCurrentFocus() function).

Kinds of Keyboard Messages

The focus view gets most keyboard messages, but not all. Three kinds ofB_KEY_DOWN
messages are conscripted for special tasks:

• If the user holds a Command key down while pressing a character key, the
Command-character combination is interpreted as a keyboard shortcut (typically for
a menu item, but possibly for some other control device). Instead of assigning the
message to a view, the BWindow tries to issue the command associated with the
shortcut.

Responding to the User

The Interface Kit –47

• If the user holds an Option key down while pressing the Tab key, the Option-Tab
combination is interpreted as an instruction to change the focus view. Instead of
assigning the message to a view, the BWindow forces the change. This is done to
enable keyboard navigation in all circumstances.

• If the window has a default button and the user presses the Enter key, the window
assigns the message to the button, so that it can respond to the key-down event as it
would to a click. A “default button” is simply a button that can be operated from the
Enter key on the keyboard.

In all other cases, the BWindow assigns the message to the current focus view.

Message Protocols

The BMessage objects that convey interface messages typically contain various kinds of
data describing the events they report or clarifying the instructions they give. In most
cases, the message contains more information than is passed to the function that starts the
application’s response. For example, aMouseDown() function is passed the point where
the cursor was located when the user pressed the mouse button. But aB_MOUSE_DOWN
BMessage also includes information about when the event occurred, what modifier keys
the user was holding down at the time, which mouse button was pressed, whether the
event counts as a solitary mouse-down, the second event of a double-click, or the third of a
triple-click, and so on.

A MouseDown() function can get this information by taking it directly from the
BMessage. The BMessage that the window thread is currently responding to can be
obtained by calling theCurrentMessage() function, which the BWindow inherits from
BLooper. For example, aMouseDown() function might check whether the event is a
single-click or the second of a double-click as follows:

void MyView::MouseDown(BPoint point)
{
 long num = Window()->CurrentMessage()->FindLong("clicks");
 if (num == 1) {
 . . .
 }
 else if (num == 2) {
 . . .
 }
 . . .
}

TheMessage Protocols appendix lists the contents of all interface messages.

Keyboard Information

Most information about what the user is doing on the keyboard comes to applications by
way of messages reporting key-down events. The application can usually determine what

Responding to the User

48 – The Interface Kit

the user’s intent was in pressing a key by looking at the character recorded in the message.
But, as discussed under “B_KEY_DOWN” on page 7 of theMessage Protocols appendix, the
message carries other keyboard information in addition to the character—the key the user
pressed, the modifier states that were in effect at the time, and the current state of all keys
on the keyboard.

Some of this information can be obtained in the absence of key-down messages:

• The Interface Kit has a globalmodifiers() function that returns the current modifier
states, and

• The BView class has aGetKeys() function that can provide the current state of all
the keys and modifiers on the keyboard.

This section discusses in detail the kinds of information that you can get about the
keyboard through interface messages and these functions.

Key Codes

To talk about the keys on the keyboard, it’s necessary first to have a standard way of
identifying them. For this purpose, each key is arbitrarily assigned a numerical code.

The illustrations on the next two pages show the key identifiers for a typical keyboard.
The codes for the main keyboard are shown on page 49. This diagram shows a standard
101-key keyboard and an alternate version of the bottom row of keys—one that adds a
Menu key and left and right Command keys.

The codes for the numerical keypad and for the keys between it and the main keyboard are
shown on page 50.

Different keyboards locate keys in slightly different positions. The function keys may be
to the left of the main keyboard, for example, rather than along the top. The backslash key
(0x33) shows up in various places—sometimes above the Enter key, sometimes next to
Shift, and sometimes in the top row (as shown here). No matter where these keys are
located, they have the codes indicated in the illustrations.

The BMessage that reports a key-down event contains an entry named “key” for the code
of the key that was pressed.

Responding to the User

The Interface Kit –49

0x
01

E
sc

^

0x
176

% 0x
165

$

0x
154

#

0x
143

@ 0x
132

!

0x
121

~

0x
11‘

)

0x
1b0

(

0x
1a9

*

0x
198

&

0x
187

Q 0x
27

W 0x
28

E

0x
29

R

0x
2a

T

0x
2b

Y

0x
2c

U

0x
2d

O 0x
2f

I

0x
2e

0x
26

Ta
b

0x
3b

C
ap

s
Lo

ck
A

0x
3c

S

0x
3d

D

0x
3e

F

0x
3f

G 0x
40

H

0x
41

J

0x
42

L

0x
44

K

0x
43

Z

0x
4c

X

0x
4d

C

0x
4e

V

0x
4f

B

0x
50

N

0x
51

M 0x
52

0x
4b

S
hi

ft

0x
5c

C
on

tr
ol

0x
5d

A
lt

0x
5e

F
1

0x
02

F
2

0x
03

F
3

0x
04

F
4

0x
05

F
5

0x
06

F
6

0x
07

F
7

0x
08

F
8

0x
09

)

0x
1b0

O 0x
2f L

0x
44

M 0x
52

P

0x
30

{

0x
31[

}

0x
32]

+

0x
1d=

— 0x
1c–

:

0x
45;

”

0x
46’

<

0x
53,

?

0x
55/

>

0x
54.

|

0x
33\ 0x

47

E
nt

er

B
ac

k-
sp

ac
e

0x
1e

0x
56

S
hi

ft

0x
60

C
on

tr
ol

0x
5f

A
lt

F
9

0x
0a

F
10

0x
0b

F
11

0x
0c

F
12

0x
0d

0x
5c

C
on

tr
ol

0x
5d

A
lt

0x
66

C
om

m
an

d

0x
5f

A
lt

0x
60

C
on

tr
ol

0x
68

M
en

u

0x
67

C
m

d

0x
5e

Responding to the User

50 – The Interface Kit

Kinds of Keys

Keys on the keyboard can be distinguished by the way they behave and by the kinds of
information they provide. A principal distinction is betweencharacter keys andmodifier
keys:

• Character keys are mapped to particular characters; they generate key-down events
when pressed. Keys not mapped to characters don’t generate events.

• Modifier keys set states that can be discerned independently of key-down events
(through themodifiers() function). Some modifier keys—like Caps Lock and Num
Lock—toggle in and out of a locked modifier state. Others—like Shift and
Control—set the state only while the key is being held down.

If a key doesn’t fall into one of these categories or the other, there’s nothing for it to do; it
has no role to play in the interface. For most keys, the categories are mutually exclusive.
Modifier keys are typically not mapped to characters, and character keys don’t set modifier
states. However, the Scroll Lock key is an exception. It both sets a modifier state and
generates a character.

Page
Down

0x360x35

Page
Up

0x21

Scroll
Lock

0x0f

Delete

0x34

0x1f 0x20

Sys
Rq

0x7e

Print
Screen

0x0e

0x7f

0x10

0x61 0x62 0x63

0x57

Break

Home

Pause

End

Insert

•
Delete

0x65

Num
Lock

0x22

*

0x24

/

0x23

4

0x48

6

0x4a

9
PgUp

0x39

8

0x38

7
Home

0x37

0
Insert

0x64

1
End

0x58

2

0x59

3
PgDn

0x5a

5

0x49

–

0x25

Enter

0x5b

+

0x3a

Responding to the User

The Interface Kit –51

Keys can be distinguished on two other grounds as well:

• Repeating keys produce a continuous series of key-down events, as long as the user
holds the key down and doesn’t press another key. After the initial event, there’s a
slight delay before the key begins repeating, but then events are generated in rapid
succession.

All keys are repeating keys except for Pause, Break, and the three that set locks
(Caps Lock, Num Lock, and Scroll Lock). Even modifier keys like Shift and
Control would repeat if they were mapped to characters (but, since they’re not, they
don’t produce any key-down events at all).

• Dead keys are keys that don’t produce characters until the user strikes another key
(or the key repeats). If the key the user strikes after the dead key belongs to a
particular set, the two keys together produce one character (one key-down event). If
not, each produces a separate character. The key-down event for the dead key is
delayed until it can be determined whether it will be combined with another key to
produce just one event.

Dead keys are dead only when the Option key is held down. They’re most
appropriate for situations where the user can imagine a character being composed of
two distinguishable parts—such as ‘a’ and ‘e’ combining to form ‘æ’.

The system permits up to five dead keys. By default, they’re reserved for
combining diacritical marks with other characters. The diacritical marks are the
acute (´) and grave (`) accents, dieresis (¨), circumflex (ˆ), and tilde (˜).

There’s a system key map that determines the role that each key plays—whether it’s a
character key or a modifier key, which modifier states it sets, which characters it produces,
whether it’s dead or not, how it combines with other keys, and so on. The map is shared
by all applications.

Users can modify the key map with the Keyboard utility. Applications can look at it (and
perhaps modify it) by calling thesystem_key_map() global function. See that function on
page 327 for details on the structure of the map. The discussion here assumes the default
key map that comes with the computer.

Modifier Keys

The role of a modifier key is to set a temporary, modal state. There are eight modifier
states—eight different kinds of modifier key—defined functionally. Three of them affect
the character that’s reported in a key-down event:

• TheShift key maps alphabetic keys to the uppercase version of the character, and
other keys to alternative symbols.

• TheControl key maps alphabetic keys to Control characters—those with ASCII
values (character codes) below 0x20.

Responding to the User

52 – The Interface Kit

• TheOption key maps keys to alternative characters, typically characters in an
extended set—those with ASCII values above 0x7f.

Two modifier keys permit users to give the application instructions from the keyboard:

• When theCommand key is held down, the character keys perform keyboard
shortcuts.

• TheMenu key initiates keyboard navigation of menus. Pressing and releasing a
Command key (without touching another key) accomplishes the same thing.

Three modifiers toggle in and out of locked states:

• TheCaps Lock key reverses the effect of the Shift key for alphabetic characters.
With Caps Lock on, the uppercase version of the character is produced without the
Shift key, and the lowercase version with the Shift key.

• TheNum Lock key similarly reverses the effect of the Shift key for keys on the
numeric keypad.

• TheScroll Lock key temporarily prevents the display from updating. (It’s up to
applications to implement this behavior.)

There are two things to note about these eight modifier states. First, since applications can
read the modifiers directly from the messages that report key-down events and obtain them
at other times by calling themodifiers() andGetKeys() functions, they are free to interpret
the modifier states in any way they desire. They’re not tied to the narrow interpretation of,
say, the Control key given above. Control, Option, and Shift, for example, often modify
the meaning of a mouse event or are used to set other temporary modes of behavior.

Second, the set of modifier states listed above doesn’t quite match the keys that are
marked on a typical keyboard. A standard 101-key keyboard has left and right
“Alt(ernate)” keys, but lacks those labeled “Command,” “Option,” or “Menu.”

The key map must, therefore, bend the standard keyboard to the required modifier states.
The default key map does this in three ways:

• Because the “Alt(ernate)” keys are close to the space bar and are easily accessible,
the default key map assigns them the role of Command keys.

• It turns the right “Control” key into an Option key. Therefore, there’s just one
functional Control key (on the left) and one Option key (on the right).

• It leaves the Menu key unmapped. It relies on the Command key as an adequate
alternative for initiating keyboard navigation of menus.

The illustration below shows the modifier keys on the main keyboard, with labels that
match their functional roles. Users can, of course, remap these keys with the Keyboard

Responding to the User

The Interface Kit –53

utility. Applications can remap them by callingset_modifier_key() or
system_key_map().

Current modifier states are reported in a mask that can be tested against these constants:

B_SHIFT_KEY B_COMMAND_KEY B_CAPS_LOCK
B_CONTROL_KEY B_MENU_KEY B_NUM_LOCK
B_OPTION_KEY B_SCROLL_LOCK

The ..._KEY modifiers are set if the user is holding the key down. The ..._LOCK modifiers
are set only if the lock is on—regardless of whether the key that sets the lock happens to
be up or down at the time.

If it’s important to know which physical key the user is holding down, the one on the right
or the one on the left, the mask can be more specifically tested against these constants:

B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

If no keyboard locks are on and the user isn’t holding a modifier key down, the modifiers
mask will be 0.

The modifiers mask is returned by themodifiers() function and, along with other keyboard
information, by BView’sGetKeys(). It’s also included as a “modifiers” entry in every
BMessage that reports a keyboard or mouse event.

Character Mapping

Most keys are mapped to more than one character. The precise character that the key
produces depends on which modifier keys are being held down and which lock states the
keyboard is in at the time the key is pressed.

Caps Lock

Shift

OptionCommandControl Command

Shift

Responding to the User

54 – The Interface Kit

A few examples are given in the table below:

Key No modifiers Shift alone Option alone Shift & Option Control

0x15 ‘4’ ‘$’ ‘¢’ ‘4’
0x18 ‘7’ ‘&’ ‘¶’ ‘§’ ‘7’
0x26 B_TAB B_TAB B_TAB B_TAB B_TAB
0x2e ‘i’ ‘I’ B_TAB
0x40 ‘g’ ‘G’ ‘ ’ 0x07
0x43 ‘k’ ‘K’ ‘ ◊’ B_PAGE_UP
0x51 ‘n’ ‘N’ ‘ñ’ ‘Ñ’ 0x0e
0x55 ‘/’ ‘?’ ‘ ÷’ ‘¿’ ‘/’
0x64 B_INSERT ‘0’ B_INSERT ‘0’ B_INSERT

The mapping follows some fixed rules, including these:

• If a Command key is held down, the Control keys are ignored. Command trumps
Control. Otherwise, Command doesn’t affect the character that’s reported for the
key. If only Command is held down, the character that’s reported is the same as if
no modifiers were down; if Command and Option are held down, the character
that’s reported is the same as for Option alone; and so on.

• If a Control key is held down (without a Command key), Shift, Option, and all
keyboard locks are ignored. Control trumps the other modifiers (except for
Command).

• Num Lock applies only to keys on the numerical keypad. While this lock is on, the
effect of the Shift key is inverted. Num Lock alone yields the same character that’s
produced when a Shift key is down (and Num Lock is off). Num Lock plus Shift
yields the same character that’s produced without either Shift or the lock.

• Menu and Scroll Lock play no role in determining how keys are mapped to
characters.

The default key map also follows the conventional rules for Caps Lock and Control:

• Caps Lock applies only to the 26 alphabetic keys on the main keyboard. It serves to
map the key to the same character as Shift. Using Shift while the lock is on undoes
the effect of the lock; the character that’s reported is the same as if neither Shift nor
Caps Lock applied. For example, Shift-G and Caps Lock-G both are mapped to
uppercase ‘G’, but Shift-Caps Lock-G is mapped to lowercase ‘g’.

However, if the lock doesn’t affect the character, Shift plus the lock is the same as
Shift alone. For example, Caps Lock-7 produces ‘7’ (the lock is ignored) and Shift-
7 produces ‘&’ (Shift has an effect), so Shift-Caps Lock-7 also produces ‘&’ (only
Shift has an effect).

• When Control is used with a key that otherwise produces an alphabetic character,
the character that’s reported has an ASCII value 0x40 less than the value of the
uppercase version of the character (0x60 less than the lowercase version of the
character). This often results in a character that is produced independently by

Responding to the User

The Interface Kit –55

another key. For example, Control-I produces theB_TAB character and Control-L
producesB_PAGE_DOWN.

When Control is used with a key that doesn’t produce an alphabetic character, the
character that’s reported is the same as if no modifiers were on. For example,
Control-7 produces a ‘7’.

The Interface Kit defines constants for characters that aren’t normally represented by a
visible symbol. This includes the usual space and backspace characters, but most invisible
characters are produced by the function keys and the navigation keys located between the
main keyboard and the numeric keypad. The character values associated with these keys
are more or less arbitrary, so you should always use the constant in your code rather than
the actual character value. Many of these characters are also produced by alphabetic keys
when a Control key is held down.

The table below lists all the character constants defined in the Kit and the keys they’re
associated with.

Key label Key code Character reported

Backspace 0x1e B_BACKSPACE
Tab 0x26 B_TAB
Enter 0x47 B_ENTER
(space bar) 0x5e B_SPACE

Escape 0x01 B_ESCAPE
F1 – F12 0x02 through 0x0d B_FUNCTION_KEY
Print Screen 0x0e B_FUNCTION_KEY
Scroll Lock 0x0f B_FUNCTION_KEY
Pause 0x10 B_FUNCTION_KEY
System Request0x7e 0xc8
Break 0x7f 0xca

Insert 0x1f B_INSERT
Home 0x20 B_HOME
Page Up 0x21 B_PAGE_UP
Delete 0x34 B_DELETE
End 0x35 B_END
Page Down 0x36 B_PAGE_DOWN

(up arrow) 0x57 B_UP_ARROW
(left arrow) 0x61 B_LEFT_ARROW
(down arrow) 0x62 B_DOWN_ARROW
(right arrow) 0x63 B_RIGHT_ARROW

Responding to the User

56 – The Interface Kit

Several keys are mapped to theB_FUNCTION_KEY character. An application can determine
which function key was pressed to produce the character by testing the key code against
these constants:

B_F1_KEY B_F6_KEY B_F11_KEY
B_F2_KEY B_F7_KEY B_F12_KEY
B_F3_KEY B_F8_KEY B_PRINT_KEY (the “Print Screen” key)
B_F4_KEY B_F9_KEY B_SCROLL_KEY (the “Scroll Lock” key)
B_F5_KEY B_F10_KEY B_PAUSE_KEY

Note that key 0x30 (P) is also mapped toB_FUNCTION_KEY when the Control key is held
down.

Key States

You can look at the state of all keys on the keyboard at a given moment in time. This
information is captured and reported in two ways:

• As the “states” entry in everyB_KEY_DOWN message, and
• As thekey_states bitfield reported by BView’sGetKeys() function.

In both cases, the bitfield is an array of 16 bytes,

uchar states[16];

with one bit standing for each key on the keyboard. Bits are numbered from left to right,
beginning with the first byte in the array, as illustrated below:

Bit numbers start with 0 and match key codes. For example, bit 0x3c corresponds to theA
key, 0x3d to theS key, 0x3e to theD key, and so on. The first bit is 0x00, which doesn’t
correspond to any key. The first meaningful bit is 0x01, which corresponds to the Escape
key.

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00

0x0f
0x0e
0x0d
0x0c
0x0b
0x0a
0x09
0x08

0x12
0x11
0x10

0 0 0 0 0 0 0 0 0 0 0 . . .0 0 0 0 0 0 0 0

Class Descriptions

The Interface Kit –57

When a key is down, the bit corresponding to its key code is set to 1. Otherwise, the bit is
set to 0. However, for the three keys that toggle keyboard locks—Caps Lock (key 0x3b),
Num Lock (key 0x22), and Scroll Lock (key 0x0f)—the bit is set to 1 if the lock is on and
set to 0 if the lock is off, regardless of the state of the key itself.

To test the bitfield against a particular key,

• Select the byte in thestates array that contains the bit for that key,
• Form a mask for the key that can be compared to that byte, and
• Compare the byte to the mask.

For example:

if (states[keyCode>>3] & (1 << (7 - (keyCode%8))))
 . . .

Here, the key code is divided by 8 to obtain an index into thestates array. This selects the
byte (theuchar) in the array that contains the bit for that key. Then, the part of the key
code that remains after dividing by 8 is used to calculate how far a bit needs to be shifted
to the left so that it’s in the same position as the bit corresponding to the key. This mask is
compared to thestates byte with the bitwise& operator.

Class Descriptions

The classes in the Interface Kit work together to define a program structure for drawing
and responding to the user. The two classes at the core of the structure—BWindow and
BView—have been discussed extensively above. Other Kit classes either derive from
BWindow and BView or support the work of those that do. The Kit defines several
different kinds of BViews that you can use in your application. But every application does
some unique drawing and has some application-specific responses to messages, so it must
also invent some BViews of its own.

To learn about the Interface Kit for the first time, it’s recommended that you first read this
introduction, then look at the BView and BWindow class descriptions, followed by the
descriptions of other classes as they interest you. It also might be useful to look at
supporting classes—like BPoint and BRect—early.

The class overview should help you determine which specific functions you need to turn to
in order to get more information about a class. The class constructor is often a good place
to start, as it contains general information on how instances of the class are initialized.

If you haven’t already read about the BApplication object and the messaging classes in the
Application Kit, be sure to do so. A program must have a BApplication object before it
can use the Interface Kit.

A reference to the Interface Kit follows. The classes are presented in alphabetical order,
beginning with BAlert.

Class Descriptions

58 – The Interface Kit

The Interface Kit –59

BAlert

Derived from: public BWindow

Declared in: <interface/Alert.h>

Overview

A BAlert places a modal window on-screen in front of other windows and keeps it there
until the user dismisses it. The window is analert panel that has a message for the user to
read and one or more buttons along the bottom that present various options for the user to
choose among. Operating a button with the keyboard or mouse selects a course of action
and dismisses the panel (closes the window). The message in the alert panel might warn
the user of something or convey some information that the application doesn’t want the
user to overlook. Typically, it asks a question that the user must answer (by operating the
appropriate button).

The alert panel stays on-screen only temporarily, until the user operates one of the buttons.
As long as it’s on-screen, other parts of the application’s user interface are disabled.
However, the user can continue to move windows around and work in other applications.

It’s possible to design such a panel using a BWindow object, some BButtons, and other
views. However, the BAlert class provides a simple way to do it. There’s no need to
construct views and arrange them, or call functions to show the window and then get rid of
it. All you do is:

• Construct the object.

• Call SetShortcut() if you want the user to be able to operate window buttons from
the keyboard. (The button on the right is automatically made the default button and
can be operated by the Enter key.)

• Call Go() to put the window on-screen.

For example:

BAlert *alert;
long result;

alert = new BAlert("", "Time’s up! Do you want to continue?",
 "Cancel", "Continue", NULL,
 B_WIDTH_FROM_WIDEST, B_WARNING_ALERT);
alert->SetShortcut(0, B_ESCAPE);
result = alert->Go();

Constructor BAlert

60 – The Interface Kit

Go() doesn’t return until the user operates a button to dismiss the panel. When it returns,
the window will have been closed, the window thread will have been killed, and the
BAlert object will have been deleted.

The valueGo() returns indicates which button dismissed the panel. If the user clicked the
“Cancel” button in this example or pressed the Escape key, the return result would be 0. If
the user clicked “Continue”, the result would be 1. Since the BAlert sets up the rightmost
button as the default button for the window, the user could also operate the “Continue”
button by pressing the Enter key.

Constructor

BAlert()
BAlert(const char *title, const char *text,

const char *firstButton,
const char *secondButton= NULL,
const char *thirdButton= NULL,
button_widthwidth= B_WIDTH_AS_USUAL,
alert_typetype= B_INFO_ALERT)

Creates an alert panel as a modal window. The window displays sometext for the user to
read, and can have up to three buttons. There must be at least afirstButton; the others are
optional. The BAlert must also have atitle, even though the panel doesn’t have a title tab
to display it. The title can beNULL or an empty string.

The buttons are arranged in a row at the bottom of the panel so that one is always in the
right bottom corner. They’re placed from left to right in the order specified to the
constructor. If labels for three buttons are provided,firstButton will be on the left,
secondButton in the middle, andthirdButton on the right. If only two labels are provided,
firstButton will come first andsecondButton will be in the right bottom corner. If there’s
just one label (firstButton), it will be at the right bottom location.

By default, the user can operate the rightmost button by pressing the Enter key. If a
“Cancel” button is included, it should be assigned theB_ESCAPE character as a keyboard
shortcut. Other buttons can be assigned other shortcut characters. Use BAlert’s
SetShortcut() function to set up the shortcuts, rather than BWindow’sAddShortcut().
Shortcuts added by a BWindow require the user to hold down a Command key, while
those set by a BAlert don’t.

By default, all the buttons have a standard, minimal width (B_WIDTH_AS_USUAL). This is
adequate for most buttons, but may not be wide enough to accommodate an especially
long label. To let the width of each button adjust to the width of its label, set thewidth
parameter toB_WIDTH_FROM_LABEL. To ensure that the buttons are all the same width, yet
wide enough to display the widest label, set thewidth parameter to
B_WIDTH_FROM_WIDEST.

BAlert Member Functions

The Interface Kit –61

For more hands-on manipulation of the buttons, you can get the BButton objects that the
BAlert creates by calling theButtonAt() function. To get the BTextView object that
displays thetext string, you can callTextView().

There are various kinds of alert panels, depending on the content of the textual message
and the nature of the options presented to the user. Thetype parameter should classify the
BAlert object as one of the following:

B_EMPTY_ALERT
B_INFO_ALERT
B_IDEA_ALERT
B_WARNING_ALERT
B_STOP_ALERT

Currently, the alerttype is used only to select a representative icon that’s displayed at the
left top corner of the window. AB_EMPTY_ALERT doesn’t have an icon.

After the BAlert is constructed,Go() must be called to place it on-screen. Before
returning,Go() destroys the object. You don’t need to write code to delete it.

See also: Go(), SetShortcut()

Member Functions

ButtonAt()
inline BButton *ButtonAt(long index) const

Returns a pointer to the BButton object for the button atindex. Indices begin at 0 and
count buttons from left to right. The BButton belongs to the BAlert object and should not
be freed.

See also: TextView()

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Overrides the BView function to adjust the layout within the panel when its dimensions
change. This function is called as the panel is being resized; there’s no need to call it or
override it in application code.

See also: BWindow::FrameResized()

Member Functions BAlert

62 – The Interface Kit

Go()
long Go(void)

Calls theShow() virtual function to place the alert panel on-screen, sets the modal loop for
the BAlert in motion, and returns when the loop has quit and the window has been closed.
The value returned is the index of the button that the user operated to dismiss the window.
Buttons are numbered from left to right, beginning with 0.

To put an alert panel on-screen, simply construct a BAlert object, set its keyboard
shortcuts, if any, and call this function. See the example code in the “Overview” section
above.

Before returning, this function deletes the BAlert object, and all the objects it created.

See also: the BAlert constructor

MessageReceived()
virtual voidMessageReceived(BMessage *message)

Closes the window in response to messages posted from the window’s buttons. There’s no
need for your application to call or override this function.

SetShortcut()
void SetShortcut(long index, charshortcut)

Sets ashortcut character that the user can type to operate the button atindex. Buttons are
indexed from left to right beginning with 0. By default,B_ENTER is the shortcut for the
rightmost button.

A “Cancel” button should be assigned theB_ESCAPE character as a shortcut.

The shortcut doesn’t require the user to hold down a Command key or other modifier
(except for any modifiers that would normally be required to produce theshortcut
character).

The shortcut is valid only while the window is on-screen.

TextView()
inline BTextView *TextView(void) const

Returns a pointer to the BTextView object that contains the textual information that’s
displayed in the panel. The object is created and the text is set when the BAlert is
constructed. The BTextView object belongs to the BAlert and should not be freed.

See also: the BAlert constructor,ButtonAt()

The Interface Kit –63

BBitmap

Derived from: public BObject

Declared in: <interface/Bitmap.h>

Overview

A BBitmap object is a container for an image bitmap; it stores pixel data—data that
describes an image pixel by pixel. The class provides a way of specifying a bitmap from
raw data, and also a way of creating the data from scratch using the Interface Kit graphics
mechanism.

BBitmap functions manage the bitmap data and provide information about it. However,
they don’t do anything with the data. Placing the image somewhere so that it can be seen
is the province of BView functions—such asDrawBitmap() andDragMessage()—not this
class.

Bitmap Data

An image bitmap records the color values of pixels within a rectangular area. The pixels
in the rectangle, as on the screen, are arranged in rows and columns. The data is specified
in rows, beginning with the top row of pixels in the image and working downward to the
bottom row. Each row of data is aligned on a long word boundary and is read from left to
right.

New BBitmap objects are constructed with two pieces of information that prepare them to
store bitmap data—a bounds rectangle and a color space. For example, this code

BRect rect(0.0, 0.0, 39.0, 79.0);
BBitmap *image = new BBitmap(rect, B_COLOR_8_BIT);

constructs a bitmap of 40 rows and 80 pixels per row. Each pixel is specified by an 8-bit
color value.

The Bounds Rectangle

A BBitmap’s bounds rectangle serves two purposes:

• It sets the size of the image. A bitmap covers as many pixels as its bounds rectangle
encloses—under the assumption that one coordinate unit equals one pixel, as it does
when the display device is the screen.

Overview BBitmap

64 – The Interface Kit

Since a bitmap can’t contain a fraction of a pixel, the bounds rectangle shouldn’t
contain any fractional coordinates. Without fractional coordinates, each side of the
bounds rectangle will be aligned with a column or a row of pixels. The pixels
around the edge of the rectangle are included in the image, so the bitmap will
contain one more column of pixels than the width of the rectangle and one more row
than the rectangle’s height. (See the BRect class “Overview” on page 175 for an
illustration.)

• It establishes a coordinate system that can be used later by drawing functions, such
asDrawBitmap() andDragMessage(), to designate particular points or portions of
the image.

For example, if one BBitmap was constructed with this bounds rectangle,

BRect firstRect(0.0, 0.0, 60.0, 100.0);

and another with this rectangle,

BRect secondRect(60.0, 100.0, 120.0, 200.0);

they would both have the same size and shape. However, the coordinates
(60.0, 100.0) would designate the right bottom corner of the first bitmap, but the left
top corner of the second.

< If a BBitmap object enlists BViews to create the bitmap data, it must have a bounds
rectangle with (0.0, 0.0) at the left top corner. >

The Color Space

The color space of a bitmap determines its depth (how many bits of information are
stored for each pixel) and its interpretation (what the data values mean). These five
color spaces are currently defined:

B_MONOCHROME_1_BIT
B_GRAYSCALE_8_BIT
B_COLOR_8_BIT
B_RGB_16_BIT
B_RGB_32_BIT

< Currently, bitmap data is stored only in theB_RGB_32_BIT, B_COLOR_8_BIT, and
B_MONOCHROME_1_BIT color spaces. TheB_GRAYSCALE_8_BIT andB_RGB_16_BIT color
spaces are not used at the present time. >

In theB_RGB_32_BIT color space, the color of each pixel is specified by its red, green, and
blue components. In theB_COLOR_8_BIT color space, colors are specified as byte indices
into the color map. In theB_MONOCHROME_1_BIT color space, a value of 1 means black
and 0 means white. (A more complete description of the five color spaces can be found
under “Colors” on page 25 of the introduction to this chapter.)

BBitmap Overview

The Interface Kit –65

Specifying the Image

BBitmap objects begin life empty. When constructed, they allocate sufficient memory to
store an image of the size and color space specified. However, the memory isn’t
initialized. The actual image must be set after construction. This can be done by
explicitly assigning pixel values with theSetBits() function:

image->SetBits(rawData, numBytes, 0, COLOR_8_BIT);

In addition to this function, BView objects can be enlisted to produce the bitmap. Views
are assigned to a BBitmap object just as they are to a BWindow (by calling theAddChild()
function). In reality, the BBitmap sets up a private, off-screen window for the views.
When the views draw, the window renders their output into the bitmap buffer. The
rendered image has the same format as the data captured by theSetBits() function. SetBits()
and BViews can be used in combination to create a bitmap.

The BViews that construct a bitmap behave a bit differently than the BViews that draw in
regular windows:

• In contrast to BViews attached to an ordinary window, the BViews assigned to a
BBitmap can create an image off-screen. When an ordinary window is hidden, it
doesn’t render images; its BViews may draw, but they don’t produce image data.
However, the BViews assigned to a BBitmap produce an off-screen bitmap.

• Because they never appear on-screen, the BViews that produce a bitmap image
never handle events and never get update messages telling them to draw. You must
call their drawing functions directly in your own code.

This is typically done just once, to create the bitmap. After that, the BViews can be
discarded; they’ll never be called upon to update the image. However, if the bitmap
will change—perhaps to reflect decisions the user makes as the program runs—the
BViews can be retained to make the changes.

• Because there are no update messages, the output buffer to the Application Server
isn’t automatically flushed. You must flush it explicitly in application code. This is
best done by callingSync(), rather thanFlush(), so that you can be sure the entire
image has been rendered before the bitmap is used.

• A BBitmap has no background color against which images are drawn. Your code
must color every pixel within the bounds rectangle.

• Views that are attached to a BWindow normally draw in the window’s thread.
However, views attached to a BBitmap don’t draw in a separate thread; the BBitmap
doesn’t set up an independent thread for its private window.

So that you can manage the BViews that are assigned to a BBitmap, the BBitmap class
duplicates a number of BWindow functions—such asAddChild(), FindView(), and
ChildAt().

A BBitmap that enlists views to produce the bitmap consumes more system resources than
one that relies solely onSetBits(). Therefore, by default, BBitmaps refuse to accept

Constructor and Destructor BBitmap

66 – The Interface Kit

BViews. If BViews will be used to create bitmap data, the BBitmap constructor must be
informed so that it can set up the off-screen window and prepare the rendering mechanism.

Transparency

Color bitmaps can have transparent pixels. When the bitmap is imaged in a drawing mode
other thanB_OP_COPY, its transparent pixels won’t be transferred to the destination view.
The destination image will show through wherever the bitmap is transparent.

To introduce transparency into aB_COLOR_8_BIT bitmap, a pixel can be assigned a value
of B_TRANSPARENT_8_BIT. In aB_RGB_32_BIT bitmap, a pixel can be assigned the special
value ofB_TRANSPARENT_32_BIT. (OrB_TRANSPARENT_32_BIT can be made the high or low
color of the BView drawing the bitmap.)

Transparency is covered in more detail under “Drawing Modes” on page 27 of the chapter
introduction.

See also: system_colors()

Constructor and Destructor

BBitmap()
BBitmap(BRectbounds, color_spacemode, boolacceptsViews = FALSE)

Initializes the BBitmap to the size and internal coordinate system implied by thebounds
rectangle and to the depth and color interpretation specified by themode color space.

This function allocates enough memory to store data for an image the size ofbounds at the
depth required bymode, but does not initialize any of it. All pixel data should be
explicitly set using theSetBits() function, or by enlisting BViews to produce the bitmap. If
BViews are to be used, the constructor must be informed by setting theacceptsViews flag
to TRUE. This permits it to set up the mechanisms for rendering the image, including an
off-screen window to contain the views.

< Currently, onlyB_RGB_32_BIT, B_COLOR_8_BIT, andB_MONOCHROME_1_BIT are
acceptable as the color spacemode. B_RGB_16_BIT is not supported for the present release
andB_GRAYSCALE_8_BIT is reinterpreted asB_COLOR_8_BIT. >

< If the BBitmap accepts BViews, the left and top sides of itsbounds rectangle must be
located at 0.0. >

BBitmap Member Functions

The Interface Kit –67

~BBitmap()
virtual ~BBitmap(void)

Frees all memory allocated to hold image data, deletes any BViews used to create the
image, gets rid of the off-screen window that held the views, and severs the BBitmap’s
connection to the Application Server.

Member Functions

AddChild()
virtual voidAddChild(BView *aView)

AddsaView to the hierarchy of views associated with the BBitmap, attaching it to an off-
screen window (one created by the BBitmap for just this purpose) by making it a child of
the window’s top view. IfaView already has a parent, it’s removed from that view
hierarchy and adopted into this one. A view can serve only one window at a time.

Like AddChild() in the BWindow class, this function calls the BView’s
AttachedToWindow() function to inform it that it now belongs to a view hierarchy. Every
view that descends fromaView also becomes attached to the BBitmap’s off-screen
window and receives its ownAttachedToWindow() notification.

AddChild() fails if the BBitmap was not constructed to accept views.

See also: BWindow::AddChild(), BView::AttachedToWindow(), RemoveChild(), the
BBitmap constructor

Bits()
inline void *Bits(void) const

Returns a pointer to the bitmap data. The data lies in memory shared by the application
and the Application Server. The length of the data can be obtained by calling
BitsLength()—or it can be calculated from the height of the bitmap (the number of rows)
and the number of bytes per row.

A B_RGB_32_BIT bitmap holds the data in an internal format that’s most natural for screen
display devices. In this format, the color components are ordered BGRA (blue, green, red,
alpha).

See also: Bounds(), BytesPerRow(), BitsLength()

Member Functions BBitmap

68 – The Interface Kit

BitsLength()
inline longBitsLength(void) const

Returns the number of bytes that were allocated to store the bitmap data.

See also: Bits(), BytesPerRow()

Bounds()
inline BRectBounds(void) const

Returns the bounds rectangle that defines the size and coordinate system of the bitmap.
This should be identical to the rectangle used in constructing the object.

See also: the BBitmap constructor

BytesPerRow()
inline longBytesPerRow(void) const

Returns how many bytes of data are required to specify a row of pixels. For example, a
monochrome bitmap (one bit per pixel) 80 pixels wide would require twelve bytes per row
(96 bits). The extra sixteen bits at the end of the twelve bytes are ignored. Every row of
bitmap data is aligned on a long word boundary.

ChildAt(), CountChildren()
BView *ChildAt(long index) const

long CountChildren(void) const

ChildAt() returns the child BView atindex, or NULL if there’s no child atindex. Indices
begin at 0 and count only BViews that were added to the BBitmap (added as children of
the top view of the BBitmap’s off-screen window) and not subsequently removed.

CountChildren() returns the number of BViews the BBitmap currently has. (It counts only
BViews that were added directly to the BBitmap, not BViews farther down the view
hierarchy.)

These functions fail if the BBitmap wasn’t constructed to accept views.

See also: BWindow::ChildAt(), BView::Parent()

BBitmap Member Functions

The Interface Kit –69

ColorSpace()
inline color_spaceColorSpace(void) const

Returns the color space of the data being stored (not necessarily the color space of the data
passed to theSetBits() function). Once set by the BBitmap constructor, the color space
doesn’t change.

Thecolor_space data type is defined ininterface/InterfaceDefs.h and is explained on
page 25 of the introduction to this chapter.

See also: the BBitmap constructor

CountChildren() see ChildAt()

FindView()
BView *FindView(BPointpoint) const
BView *FindView(const char *name) const

Returns the BView located atpoint within the bitmap, or the BView tagged withname.
The point must be somewhere within the BBitmap’s bounds rectangle, which must have
the coordinate origin, (0.0, 0.0), at its left top corner.

If the BBitmap doesn’t accept views, this function fails. If no view draws at thepoint
given, or no view associated with the BBitmap has thename given, it returnsNULL.

See also: BView::FindView()

Lock(), Unlock()
bool Lock(void)

void Unlock(void)

These functions lock and unlock the off-screen window where BViews associated with the
BBitmap draw. Locking works for this window and its views just as it does for ordinary
on-screen windows.

Lock() returnsFALSE if the BBitmap doesn’t accept views or if its off-screen window is
unlockable (and therefore unusable) for some reason. Otherwise, it doesn’t return until it
has the window locked and can returnTRUE.

See also: BLooper::Lock() in the Application Kit

Member Functions BBitmap

70 – The Interface Kit

RemoveChild()
virtual boolRemoveChild(BView *aView)

RemovesaView from the hierarchy of views associated with the BBitmap, but only if
aView was added to the hierarchy by calling BBitmap’s version of theAddChild()
function.

If aView is successfully removed,RemoveChild() returnsTRUE. If not, it returnsFALSE.

See also: AddChild()

SetBits()
void SetBits(const void *data, long length, longoffset, color_spacemode)

Assignslength bytes ofdata to the BBitmap object. The new data is copied into the
bitmap beginningoffset bytes (not pixels) from the start of allocated memory. To set data
beginning with the first (left top) pixel in the image, theoffset should be 0; to set data
beginning with, for example, the sixth pixel in the first row of aB_RGB_32_BIT image, the
offset should be 20. The offset counts any padding required to align rows of data.

The source data is specified in themode color space, which may or may not be the same as
the color space that the BBitmap uses to store the data. If not, the following conversions
are automatically made:

• B_MONOCHROME_1_BIT andB_RGB_32_BIT to B_COLOR_8_BIT.
• B_COLOR_8_BIT andB_GRAYSCALE_8_BIT to B_RGB_32_BIT.

Colors may be dithered in the conversion toB_COLOR_8_BIT, so that the resulting image
will match the original as closely as possible, despite the lost information.

If the color spacemode is B_RGB_32_BIT, thedata should be triplets of three 8-bit
components—red, green, and blue, in that order—without an alpha component. Although
stored as 32-bit quantities, the input data is only 24 bits. Rows of source data do not need
to be aligned.

However, if the source data is in anymode other thanB_RGB_32_BIT, padding must be
added so that each row is aligned on along word boundary.

This function works for all BBitmaps, whether or not BViews are also enlisted to produce
the image.

See also: Bits()

The Interface Kit –71

BBox

Derived from: public BView

Declared in: <interface/Box.h>

Overview

A BBox draws a labeled border around other views. It serves only to label those views
and organize them visually. It doesn’t respond to messages.

The border is drawn around the edge of the view’s frame rectangle. If the BBox has a
label, the border at the top of box is broken where the label appears (and the border is inset
from the top somewhat to make room for the label).

The current pen size of the view determines the width of the border, which by default is
1.0 coordinate unit. If you make the border thicker, it will be inset somewhat so that none
of it is clipped by the BBox’s frame rectangle. The label is drawn in the current font,
which by default is the Erich bitmap font. Both the border and the label are drawn in the
current high color; the default high color is black.

The views that the box encloses should be made children of the BBox object.

Constructor and Destructor

BBox()
BBox(BRectframe, const char *name= NULL,

ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW)

Initializes the BBox by passing all arguments to the BView constructor, and sets the font
for displaying the label to the 9.0-point Erich bitmap font. However, the new object
doesn’t have a label; callSetLabel() to assign it one.

See also: SetLabel()

Member Functions BBox

72 – The Interface Kit

~BBox()
virtual ~BBox(void)

Frees the label, if the BBox has one.

Member Functions

Draw()
virtual voidDraw(BRectupdateRect)

Draws the box and its label. This function is called automatically in response to update
messages.

See also: BView::Draw()

SetLabel(), Label()
void SetLabel(const char *string)

const char *Label(void) const

These functions set and return the label that’s displayed along the top edge of the box.
SetLabel() copiesstring and makes it the BBox’s label, freeing the previous label, if any.
If string is NULL, it removes the current label and frees it.

Label() returns a pointer to the BBox’s current label, orNULL if it doesn’t have one.

The Interface Kit –73

BButton

Derived from: public BControl

Declared in: <interface/Button.h>

Overview

A BButton object draws a labeled button on-screen and responds when the button is
clicked or when it’s operated from the keyboard. If the BButton is thedefault button for
its window and the window is the active window, the user can operate it by pressing the
Enter key.

BButtons have a single state. Unlike check boxes and radio buttons, the user can’t toggle
a button on and off. However, the button’s value changes while it’s being operated.
During a click (while the user holds the mouse button down and the cursor points to the
button on-screen), the BButton’s value is set to 1 (B_CONTROL_ON). Otherwise, the value
is 0 (B_CONTROL_OFF).

This class depends on the control framework defined in the BControl class. In particular,
it calls these BControl functions:

• SetValue() to make each change in the BControl’s value. This is a hook function
that you can override to take collateral action when the value changes.

• Invoke() to post a message each time the button is clicked or operated from the
keyboard. You can designate the object that should handle the message by calling
BControl’sSetTarget() function. A model for the message is set by the BButton
constructor (or by BControl’sSetMessage() function).

• IsEnabled() to determine how the button should be drawn and whether it’s enabled
to post a message. You can call BControl’sSetEnabled() to enable and disable the
button.

A BButton is an appropriate control device for initiating an action. Use a BCheckBox,
BPictureButton, or BRadioButtons to set a state.

Hook Functions BButton

74 – The Interface Kit

Hook Functions

MakeDefault() Makes the BButton the default button for its window or
removes that status; can be augmented by derived classes to
take note when the status of the button changes.

Constructor

BButton()
BButton(BRectframe, const char *name,

const char *label,
BMessage *message,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BButton by passing all arguments to the BControl constructor. BControl
initializes the button’slabel and assigns it a modelmessage that identifies the action that
should be carried out when the button is invoked.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class and are passed up the inheritance hierarchy to the BView constructor
without change.

When the button is attached to a window, it will be resized so that the height of itsframe
rectangle exactly accommodates the height of its label, given the BButton’s current font.

See also: the BControl and BView constructors,BControl::Invoke()

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version of this function to set the background color of the button
to match the background color of its parent. This function also resizes the button
vertically so that its height is just adequate to display the label and the button border. The
height of the label depends on the BView’s font.

Finally, it makes sure that the BButton does not consider itself the default button for the
window to which it has just become attached—even if it may have been the default button
for the window to which it was previously attached.

See also: BView::AttachedToWindow(), BControl::AttachedToWindow(), MakeDefault()

BButton Member Functions

The Interface Kit –75

Draw()
virtual voidDraw(BRectupdateRect)

Draws the button and labels it. If the BButton’s value is anything but 0, the button is
highlighted. If it’s disabled, it drawn in muted shades of gray. Otherwise, it’s drawn in its
ordinary, enabled, unhighlighted state.

See also: BView::Draw()

IsDefault() see MakeDefault

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the inherited version ofKeyDown() to respond to messages reporting that the
user pressed the Enter key or the space bar. Its response is to:

• Momentarily highlight the button and change its value, and
• Post a copy of the model BMessage to the target receiver.

The BButton can expectKeyDown() function calls when it’s the focus view for the active
window (which results when the user navigates to it) and also when it’s the default button
for the window andaChar is B_ENTER.

See also: BControl::Invoke(), BView::KeyDown(), MakeDefault()

MakeDefault(), IsDefault()
virtual voidMakeDefault(boolflag)

bool IsDefault(void) const

MakeDefault() makes the BButton the default button for its window whenflag is TRUE, and
removes that status whenflag is FALSE. The default button is the button the user can
operate by striking the Enter key when the window is the active window.IsDefault()
returns whether the BButton is currently the default button.

A window can have only one default button at a time. Setting a new default button,
therefore, may deprive another button of that status. WhenMakeDefault() is called with
an argument ofTRUE, it generates aMakeDefault() call with an argument ofFALSE for
previous default button. Both buttons are redisplayed so that the user can see which one is
currently the default.

The default button can also be set by calling BWindow’sSetDefaultButton() function.
That function makes sure that the button that’s forced to give up default status and the
button that obtains it are both notified throughMakeDefault() function calls.

Member Functions BButton

76 – The Interface Kit

MakeDefault() is therefore a hook function that can be augmented to take note each time
the default status of the button changes. It’s called once for each change in status, no
matter which function initiated the change.

See also: BWindow::SetDefaultButton()

MouseDown()
virtual voidMouseDown(BPointpoint)

Overrides the BView version ofMouseDown() to track the cursor while the user holds the
mouse button down. As the cursor moves in and out of the button, the BButton’s value is
reset accordingly. TheSetValue() virtual function is called to make the change each time.

If the cursor is inside the BButton’s bounds rectangle when the user releases the mouse
button, this function posts a copy of the model message so that it will be dispatched to the
target object.

See also: BView::MouseDown(), BControl::Invoke(), BControl::SetTarget()

The Interface Kit –77

BCheckBox

Derived from: public BControl

Declared in: <interface/CheckBox.h>

Overview

A BCheckBox object draws a labeled check box on-screen and responds to a keyboard
action or a click by changing the state of the device. A check box has two states: An “X”
is displayed in the box when the object’s value is 1 (B_CONTROL_ON), and is absent when
the value is 0 (B_CONTROL_OFF). The BCheckBox is invoked (it posts a message to the
target receiver) whenever its value changes in either direction—when it’s turned onand
when it’s turned off.

A check box is an appropriate control device for setting a state—turning a value on and
off. Use menu items or buttons to initiate actions within the application.

Constructor

BCheckBox()
BCheckBox(BRectframe, const char *name,

const char *label,
BMessage *message,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BCheckBox by passing all arguments to the BControl constructor. BControl
initializes thelabel of the check box and assigns it a modelmessage that encapsulates the
action that should be taken when the state of the check box changes.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class and are passed unchanged to the BView constructor.

When the BCheckBox is attached to a window, the height of itsframe rectangle will be
adjusted so that it has exactly the right amount of room to display the check box icon and
the label, given its current font. The object draws at the vertical center of its frame
rectangle beginning at the left side.

See also: the BControl and BView constructors,AttachedToWindow()

Member Functions BCheckBox

78 – The Interface Kit

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version ofAttachedToWindow() to set the view and low colors of
the BCheckbox to the match its parent’s view color, and to resize the view vertically to fit
the height of the label it displays. The height of the label depends on the BCheckBox’s
font, which the BControl constructor sets to the Emily bitmap font.

See also: BControl::AttachedToWindow()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the check box and its label. If the current value of the BCheckBox is 1
(B_CONTROL_ON), it’s marked with an “X”. If the value is 0 (B_CONTROL_OFF), it’s
empty.

See also: BView::Draw()

MouseDown()
virtual voidMouseDown(BPointpoint)

Responds to a mouse-down event within the check box by tracking the cursor while the
user holds the mouse button down. If the cursor is inside the bounds rectangle when the
user releases the mouse button, this function toggles the value of the BCheckBox and calls
Draw() to redisplay it. If the box was empty before the mouse-down event, it will be
marked afterward; if marked before, it will be empty afterwards.

When the value of the BCheckBox changes, a copy of the model BMessage is posted so
that it can be delivered to the object’s target handler. See BControl’sInvoke() and
SetTarget() functions for more information. The message is dispatched by calling the
target’sMessageReceived() virtual function.

BCheckBox Member Functions

The Interface Kit –79

The target object can get a pointer to the BCheckBox from the message, and use it to
discover the object’s new value. For example:

void MyHandler::MessageReceived(BMessage *msg)
{
 . . .
 BCheckBox *box = (BCheckBox *)msg->FindObject("source");
 if (message->Error() == B_NO_ERROR) {
 long value = box->Value();
 . . .
 }
 . . .
}

See also: BControl::Invoke(), BControl::SetTarget(), andBControl::SetValue()

Member Functions BCheckBox

80 – The Interface Kit

The Interface Kit –81

BColorControl

Derived from: public BControl

Declared in: <interface/ColorControl.h>

Overview

A BColorControl object displays an on-screen device that permits users to pick a color. It
reports the color as its current value—anrgb_color data structure stored as along integer.
If a model message is provided, it announces each change in value by sending a copy of
the message to a designated target.

When the screen is 8 bits deep, the BColorControl object presents users with a matrix of
the 256 available colors. The user chooses a color by pressing the primary mouse button
while the cursor is over one of the cells in the matrix. Dragging from cell to cell changes
the selected color. The arrow keys can similarly change the selection when the object is
the focus view. The BColorControl’s value changes each time the selection does.

When the screen is 32 bits deep, the BColorControl object displays ramps for each color
component. The user changes the current color by modifying a red, green, or blue
component value.

Constructor and Destructor

BColorControl()
BColorControl(BPoint leftTop, color_control_layoutmatrix, longcellSide,

const char *name, BMessage *message= NULL,
boolbufferedDrawing= FALSE)

Initializes the BColorControl so that the left top corner of its frame rectangle will be
located at the statedleftTop point in the coordinate system of its parent view. The frame
rectangle will be large enough to display 256 color cells arranged in the specifiedmatrix,
which can be any of the following constants:

B_CELLS_4x64
B_CELLS_8x32
B_CELLS_16x16
B_CELLS_32x8
B_CELLS_64x4

Member Functions BColorControl

82 – The Interface Kit

For example,B_CELLS_4x64 lays out a matrix with four cell columns and 64 rows;
B_CELLS_32x8 specifies 32 columns and 8 rows. Each cell is a squarecellSide coordinate
units on a side.

When the screen is 32 bits deep, the same frame rectangle will display four color ramps,
one each for the red, green, and blue components, plus a disabled ramp for the alpha
component. You might choosematrix andcellSize values with a view toward how the
resulting bounds rectangle would be divided into four horizontal rows.

Thename argument assigns a name to the object as a BHandler. It’s the same as the
argument declared by the BView constructor.

If a modelmessage is supplied, the BColorControl will announce every change in color
value by callingInvoke() (defined in the BControl class) to post a copy of the message to a
designated target.

If the bufferedDrawing flag isTRUE, all changes to the on-screen display will first be made
in an off-screen bitmap and then copied to the screen. This makes the drawing smoother,
but it requires more memory.

The initial value of the new object is 0, which when translated to anrgb_color structure,
means black.

See also: BHandler::SetName(), BControl::Invoke()

~BColorControl()
virtual ~BColorControl(void)

Gets rid of the off-screen bitmap, if one was requested when the object was constructed.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version of this function to set the BColorControl’s view color and
low color to be the same as its parent’s view color.

See also: BControl::AttachedToWindow(), BView::SetViewColor()

BColorControl Member Functions

The Interface Kit –83

Draw()
virtual voidDraw(BRectupdateRect)

Overrides the BView version of this function to draw the color control.

See also: BView::Draw()

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the BControl version ofKeyDown() to allow the user to navigate within the
color control using the arrow keys.

See also: BControl::KeyDown()

MouseDown()
virtual voidMouseDown(BPointpoint)

Overrides the BView version of this function to allow the user to operate the color control
with the mouse.

See also: BView::MouseDown()

SetValue(), ValueAsColor()
virtual voidSetValue(longcolor)
virtual voidSetValue(rgb_colorcolor)

rgb_colorValueAsColor(void)

These functions set and return the BColorControl’s current value—the last color that the
user selected.

The version ofSetValue() that takes along argument is essentially the same as the
BControl version of the function, which it augments only to take care of class-internal
housekeeping details. The version that takes anrgb_color argument packs the information
from that structure into along integer and passes it to the other version of the function.
Like all other objects that derive from BControl, a BColorControl stores its current value
as along; no information is lost in the translation from anrgb_color structure to an
integer.

ValueAsColor() is an alternative to theValue() function inherited from the BControl class.
It returns the object’s current value as anrgb_color; Value() returns it as along.

See also: BControl::SetValue()

Member Functions BColorControl

84 – The Interface Kit

The Interface Kit –85

BControl

Derived from: public BView

Declared in: <interface/Control.h>

Overview

BControl is an abstract class for views that draw control devices on the screen. Objects
that inherit from BControl emulate, in software, real-world control devices—like the
switches and levers on a machine, the check lists and blank lines on a form to fill out, or
the dials and knobs on a home appliance.

Controls translate the messages that report generic mouse and keyboard events into other
messages with more specific instructions for the application. A BControl object can be
customized by setting the message it posts when invoked and the target object that should
handle the message.

Controls also register a current value, stored as along integer that’s typically set to
B_CONTROL_ON or B_CONTROL_OFF. The value is changed only by callingSetValue(), a
virtual function that derived classes can implement to be notified of the change.

The Interface Kit currently includes six classes derived from BControl—BButton,
BPictureButton, BRadioButton, BCheckBox, BColorControl, and BTextControl. In
addition, it has two classes—BListView and BMenuItem—that implement control devices
but are not derived from this class. BListView shares an interface with the BList class (of
the Support Kit) and BMenuItem is designed to work with the other classes in the menu
system.

As BListView and BMenuItem demonstrate, it’s possible to implement a control device
that’s not a BControl. However, it’s simpler to take advantage of the code that’s already
provided by the BControl class. That way you can keep a simple programming interface
and avoid reimplementing functions that BControl has defined for you. If your application
defines its own control devices—dials, sliders, selection lists, and the like—they should be
derived from BControl.

Hook Functions BControl

86 – The Interface Kit

Hook Functions

SetEnabled() Enables and disables the control device; can be augmented
by derived classes to note when the state of the object has
changed.

SetValue() Changes the value of the control device; can be augmented
to take collateral action when the change is made.

Constructor and Destructor

BControl()
BControl(BRectframe, const char *name,

const char *label, BMessage *message,
ulongresizingMode, ulongflags)

Initializes the BControl by setting its initial value to 0 (B_CONTROL_OFF), assigning it a
label, and registering a modelmessage that captures what the control does—the command
it gives when it’s invoked and the information that accompanies the command. Thelabel
and themessage can each beNULL.

Thelabel is copied, but themessage is not. The BMessage object becomes the property of
the BControl; it should not be deleted, posted, assigned to another object, or otherwise
used in application code. The label and message can be altered after construction with the
SetLabel() andSetMessage() functions.

The BControl class doesn’t define aDraw() function to draw the label or aMouseDown()
function to post the message. (It does defineKeyDown(), but only to enable keyboard
navigation between controls.) It’s up to derived classes to determine how thelabel is
drawn and how themessage is to be used. Typically, when a BControl object needs to take
action (in response to a click, for example), it calls theInvoke() function, which copies the
model message and posts the copy so that it will be dispatched to the designated target.
By default, the target is the window where the control is located, butSetTarget() can
designate another handler.

Before posting a copy of the model message,Invoke() adds two data entries to it, under
the names “when” and “source”. These names should not be used for data items in the
model.

Theframe, name, resizingMode, andflags arguments are identical to those declared for the
BView class and are passed unchanged to the BView constructor.

The BControl begins life enabled, and the Emily bitmap font is made the default font for
all control devices.

See also: the BView constructor,BLooper::PostMessage() in the Application Kit,
SetLabel(), SetMessage(), SetTarget(), Invoke()

BControl Member Functions

The Interface Kit –87

~BControl()
virtual ~BControl(void)

Frees the model message and all memory allocated by the BControl.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Overrides BView’s version of this function to make the BWindow to which the BControl
has become attached the default target for theInvoke() function, provided that another
target hasn’t already been set. To designate the target, it callsSetTarget(), a virtual
function.

AttachedToWindow() is called for you when the BControl becomes a child of a view
already associated with the window.

See also: BView::AttachedToWindow(), BView::SetFontName(), Invoke(), SetTarget()

Command() see SetMessage()

Invoke()
protected:

void Invoke(void)

Copies the BControl’s model BMessage and posts the copy so that it will be dispatched to
the designated target. The following two pieces of information are added to the copy
before it’s posted:

Data name Type code Description

“when” B_DOUBLE_TYPE When the control was invoked, as
measured in microseconds from the time
the machine was last booted.

“source” B_OBJECT_TYPE A pointer to the BControl object. This
permits the message handler to request
more information from the source of the
message.

These two names shouldn’t be used for data entries in the model.

Member Functions BControl

88 – The Interface Kit

If the control doesn’t have a target BHandler, but it does have a designated BLooper where
it can post the message, it will ask the BLooper for its preferred handler and name it as the
target. Since the preferred handler for a BWindow object is the current focus view, this
option allows control devices to be targeted to whatever view happens to be in focus at the
time. See theSetTarget() function for information on how to designate a target BHandler
and BLooper for the control.

Invoke() is designed to be called from theMouseDown() andKeyDown() functions
defined for derived classes; it’s not called for you in BControl code. It’s up to each
derived class to define what user actions trigger the call toInvoke()—what activity
constitutes “invoking” the control.

This function doesn’t check to make sure the BControl is currently enabled. Derived
classes should make that determination before callingInvoke().

See also: SetTarget(), SetMessage(), SetEnabled()

IsEnabled() see SetEnabled()

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the BView version ofKeyDown() to toggle the BControl’s value and call
Invoke() whenaChar is theB_SPACE character orB_ENTER. This is done to facilitate
keyboard navigation and make all derived control devices operable from the keyboard.
Some derived classes—BCheckBox in particular—find this version of the function to be
adequate. Others, like BRadioButton, reimplement it.

KeyDown() is called only when the BControl is the focus view in the active window.
(However, if the window has a default button,B_ENTER events will be passed to that object
and won’t be dispatched to the focus view.)

See also: BView::KeyDown(), MakeFocus()

Label() see SetLabel()

MakeFocus()
virtual voidMakeFocus(bool focused = TRUE)

Augments the BView version of this function to call the BControl’sDraw() function when
the focus changes. This is done to aid keyboard navigation among control devices. If the
Draw() function of a derived class has a section of code that checks whether the object is in
focus and marks the on-screen display to show that it is (and removes any such marking
when it isn’t), the visual part of keyboard navigation will be taken care of. The derived

BControl Member Functions

The Interface Kit –89

class doesn’t have to reimplementMakeFocus(). Most of the derived classes
implemented in the Interface Kit depend on this version of the function.

See also: BView::MakeFocus(), KeyDown()

SetEnabled(), IsEnabled()
virtual voidSetEnabled(boolenabled)

bool IsEnabled(void) const

SetEnabled() enables the BControl if theenabled flag isTRUE, and disables it ifenabled is
FALSE. IsEnabled() returns whether or not the object is currently enabled. BControls are
enabled by default.

While disabled, a BControl won’t let the user navigate to it; theB_NAVIGABLE flag is
turned off ifenabled is FALSE and turned on again ifenabled is TRUE.

Typically, a disabled BControl also won’t post messages or respond visually to mouse and
keyboard manipulation. To indicate this nonfunctional state, the control device is
displayed on-screen in subdued colors. However, it’s left to each derived class to carry out
this strategy in a way that’s appropriate for the kind of control it implements. The
BControl class merely marks an object as being enabled or disabled; none of its functions
take the enabled state of the device into account.

Derived classes can augmentSetEnabled() (override it) to take action when the control
device becomes enabled or disabled. To be sure thatSetEnabled() has been called to
actually make a change, its current state should be checked before calling the inherited
version of the function. For example:

void MyControl::SetEnabled(bool enabled)
{
 if (enabled == IsEnabled())
 return;
 BControl::SetEnabled(enabled);
 /* Code that responds to the change in state goes here . */
}

Note, however, that you don’t have to overrideSetEnabled() just to update the on-screen
display when the control becomes enabled or disabled. If the BControl is attached to a
window, the Kit’s version ofSetEnabled() always calls theDraw() function. Therefore,
the device on-screen will be updated automatically—as long asDraw() has been
implemented to take the enabled state into account.

See also: the BControl constructor

Member Functions BControl

90 – The Interface Kit

SetLabel(), Label()
virtual voidSetLabel(const char *string)

const char *Label(void) const

These functions set and return the label on a control device—the text that’s displayed, for
example, on top of a button or alongside a check box or radio button. The label is a null-
terminated string.

SetLabel() makes a copy ofstring, replaces the current label with it, frees the old label,
and updates the control on-screen so the new label will be displayed to the user—but only
if the string that’s passed differs from the current label. The label is first set by the
constructor and can be modified thereafter by this function.

Label() returns the current label. The string it returns belongs to the BControl and may be
altered or freed without notice.

See also: the BControl constructor,BView::AttachedToWindow(), BView::SetFontName()

SetMessage(), Message(), Command()
virtual voidSetMessage(BMessage *message)

BMessage *Message(void) const

ulongCommand(void) const

SetMessage() sets the model BMessage that defines what the BControl does, and frees the
message that was previously set.Message() returns a pointer to the BMessage that’s the
current model, andCommand() returns itswhat data member. The message is first set by
the BControl constructor.

BecauseInvoke() adds “when” and “source” entries to the messages it posts, these two
names shouldn’t be used for any data entries in the model BMessage.

The model message passed toSetMessage() and returned byMessage() belongs to the
BControl object; it can be modified in application code, but it shouldn’t be deleted (except
by passingNULL to SetMessage()), posted, or put to any other use.

See also: the BControl constructor,Invoke(), SetTarget()

SetTarget(), Target()
virtual longSetTarget(BHandler *target)
virtual longSetTarget(BLooper *looper, booltargetsPreferredHandler)

BHandler *Target(BLooper **looper = NULL) const

These functions set and return the object that’s targeted to handle the messages that the
BControl posts (through itsInvoke() function).

BControl Member Functions

The Interface Kit –91

The version ofSetTarget() that takes a single argument sets thetarget BHandler object.
It’s successful only if thetarget can reveal, through itsLooper() function, a BLooper
object whereInvoke() can post messages so that they will be dispatched to that target.
Therefore, thetarget BHandler must either:

• Be a BLooper itself (such as a BWindow), so that it can fulfill the roles of both
BLooper and BHandler, or

• Have been added to a BLooper (as BViews are attached to BWindows).

Armed with both the BLooper and the target BHandler,Invoke() calls the BLooper’s
PostMessage() function and names thetarget as the object that should handle the
message:

theLooper->PostMessage(theMessage, target);

After being set as the control’starget, the BHandler must maintain its association with the
BLooper. If it moves to another BLooper,PostMessage() will fail.

The version ofSetTarget() that takes two arguments sets the BLooper object where the
BControl’sInvoke() function should post messages. If thetargetsPreferredHandler flag is
FALSE, messages will be targeted to thelooper object itself—it will also act as the handler.
In other words, passing a BLooper andFALSE to the version ofSetTarget() that takes two
arguments accomplishes the same thing as simply passing the BLooper alone to the
version that takes one argument. These two lines of code accomplish the same thing:

myControl->SetTarget(someLooper, FALSE);
myControl->SetTarget(someLooper);

The two-argument version ofSetTarget() becomes interesting only if the
targetsPreferredHandler flag isTRUE. In this case, messages are targeted to thelooper’s
preferred handler (the object returned by itsPreferredHandler() function). This permits
the targeting decision to be made dynamically, at the timeInvoke() is called:

looper ->PostMessage(theMessage, looper ->PreferredHandler());

For example, the preferred handler of a BWindow object is the current focus view.
Therefore, by passing a BWindowlooper andTRUE to SetTarget(),

myControl->SetTarget(someWindow, TRUE);

the control device can be targeted to whatever BView happens to be in focus at the time
the control is invoked. This is useful for controls that act on the current selection. (Note,
however, that if thePreferredHandler() is NULL, thelooper itself becomes the target, just as
it would if thetargetsPreferredHandler flag wereFALSE.)

When successful,SetTarget() returnsB_NO_ERROR. It fails and returnsB_BAD_VALUE if
the proposedtarget or looper is NULL. The one-argument version also returns
B_BAD_VALUE if it can’t discover a BLooper from the target handler.

Target() returns the current target and, if a pointer to alooper is provided, fills in the
BLooper whereInvoke() will post messages. If the target BHandler is the preferred

Member Functions BControl

92 – The Interface Kit

handler of thelooper, Target() returnsNULL. In other words, passing a BLooper andTRUE
to SetTarget() causesTarget() to report that there is alooper, but aNULL target—the
BLooper is known, but the BHandler is not. Passing a BLooper andFALSE to SetTarget()
causesTarget() to report that the same object is bothlooper and target.

By default (established byAttachedToWindow()), both roles—BLooper and BHandler—
are filled by the BWindow where the control device is located.

See also: BHandler::Looper() andBLooper::PreferredHandler() in the Application Kit,
BWindow::PreferredHandler(), Invoke(), AttachedToWindow()

SetValue(), Value()
virtual voidSetValue(longvalue)

long Value(void) const

These functions set and return the value of the BControl object.

SetValue() assigns the object a new value. If thevalue passed is in fact different from the
BControl’s current value, this function calls the object’sDraw() function so that the new
value will be reflected in what the user sees on-screen; otherwise it does nothing.

Value() returns the current value.

Classes derived from BControl should callSetValue() to change the value of the control
device in response to user actions. The derived classes defined in the Be software kits
change values only by calling this function.

SinceSetValue() is a virtual function, you can override it to take note whenever a control’s
value changes. However, if you want your code to act only when the value actually
changes, you must check to be sure the new value doesn’t match the old before calling the
inherited version of the function. For example:

void MyControl::SetValue(long value)
{
 if (value != Value()) {
 BControl::SetValue(value);
 /* MyControl’s additions to SetValue() go here */
 }
}

Remember that the BControl version ofSetValue() does nothing unless the new value
differs from the old.

Target() see SetTarget()

Value() see SetValue()

The Interface Kit –93

BListView

Derived from: public BView

Declared in: <interface/ListView.h>

Overview

A BListView is a view that displays a list of items the user can select and invoke. This
class is based on the BList class of the Support Kit. Every member function of the BList
class is replicated by BListView, so you can treat a BListView object just like a BList.
BListView simply makes the list visible.

Displaying the List

In both classes, the list keeps track of data pointers. Adding an item to the list adds only
the pointer; the data itself isn’t copied. Neither class imposes a type restriction on the data
(both declare items to be typevoid *). However, by default, BListView assumes they’re
pointers to strings (typechar *). Its functions can display the strings, highlight them when
selected, and so on. As long as only string pointers are placed in the list, a BListView
object can be used as is. However, if the list is to contain another kind of data, it’s
necessary to derive a class from BListView and reimplement some of its hook functions.

When the contents of the list change, the BListView makes sure the visible list on-screen
is updated. However, it can know that something changed only when a data pointer
changes, since pointers are all that the list records. If any pointed-to data is altered, but the
pointer remains the same, you must force the list to be redrawn (by calling the
InvalidateItem() function or BView’sInvalidate()).

Selecting and Invoking Items

The user can click an item in the list to select it and double-click an item to both select and
invoke it. The user can also select and invoke items from the keyboard. The navigation
keys (such as Down Arrow, Home, and Page Up) select items; Enter invokes the item
that’s currently selected.

The BListView highlights the selected item, but otherwise it doesn’t define what, if
anything, should take place when an item is selected. You can determine that yourself by
registering a “selection message” (a BMessage object) that should be delivered to a target
destination whenever the user selects an item.

Hook Functions BListView

94 – The Interface Kit

Similarly, the BListView doesn’t define what it means to “invoke” an item. You can
register a separate “invocation message” that’s posted whenever the user double-clicks an
item or presses Enter while an item is selected. For example, if the user double-clicks an
item in a list of file names, a message might be posted telling the BApplication object to
open that file.

A BListView doesn’t have a default selection message or invocation message. Messages
are posted only if registered with theSetSelectionMessage() and
SetInvocationMessage() functions. The registered message is only a model. When an
item is selected or invoked, the BListView makes a copy of the model, adds information to
the copy about itself and the item, then posts the copy. See the function descriptions for
information on the data that automatically gets added to the message.

See also: the BList class in the Support Kit

Hook Functions

DrawItem() Draws the character string that the item points to; can be
reimplemented to draw from another kind of data.

HighlightItem() Highlights the item by inverting all the colors in its frame
rectangle; can be reimplemented to highlight in a different
way.

Invoke() Posts the invocation message, if one has been registered for
the BListView; can be augmented to do whatever else may
be necessary when a item is invoked.

ItemHeight() Returns the height of a single item, assuming that it’s a
character string and is to be drawn in the current font; can
be reimplemented to return the height required to draw a
different kind of item. All items are taken to have the same
height.

Select() Highlights the selected item and posts the selection
message, if one has been registered for the BListView; can
be augmented to take any collateral action that may be
required when the selection changes.

BListView Constructor and Destructor

The Interface Kit –95

Constructor and Destructor

BListView()
BListView(BRectframe, const char *name,

ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags=

B_WILL_DRAW | B_NAVIGABLE | B_FRAME_EVENTS)

Initializes the new BListView. Theframe, name, resizingMode, andflags arguments are
identical to those declared for the BView class and are passed unchanged to the BView
constructor.

The list begins life empty. CallAddItem() or AddList() (documented for the BList class)
to put items in the list. CallSelect() (documented below) to select one of the items so that
it’s highlighted when the list is initially displayed to the user.

See also: the BView constructor,BList::AddItem()

~BListView()
virtual ~BListView(void)

Frees the model messages, if any, and all memory allocated to hold the list of items.

Member Functions

The BListView class reimplementsall of the member functions of the BList class in the
Support Kit. BListView’s versions of these functions work identically to the BList
versions, except that a BListView makes sure that the on-screen display is properly
updated whenever the list changes.

Consequently, this section excludes all functions that BList and BListView have in
common. It concentrates instead on those member functions that deal with the
BListView’s behavior as a view, not as a list. See the BList class for information on the
functions that you can use to manipulate the BListView’s list.

AttachedToWindow()
virtual voidAttachedToWindow(void)

Sets up the BListView so that it’s prepared to draw character strings for items, and makes
the BWindow to which the object has become attached the target for messages posted by
theSelect() andInvoke() functions—provided another target hasn’t already been set.

Member Functions BListView

96 – The Interface Kit

This function is called for you when the BListView becomes part of a window’s view
hierarchy.

See also: BView::AttachedToWindow(), SetTarget()

BaselineOffset()
protected:

float BaselineOffset(void)

Returns the distance from the bottom of an item’s frame rectangle to the baseline where
the item, assuming it is a character string, is drawn. The string is drawn beginning at a
point that’s offset 2.0 coordinate units from the left of the frame rectangle and
BaselineOffset() units from the bottom. The offsets are the same for all items.

This function will give unreliable results unless the BListView is attached to a window.

CurrentSelection()
inline longCurrentSelection(void) const

Returns the index of the currently selected item, or a negative number if no item is
selected.

See also: Select()

Draw()
virtual voidDraw(BRectupdateRect)

Calls theDrawItem() hook function to draw each visible item in theupdateRect area of the
view and highlights the currently selected item by calling theHighlightItem() hook
function.

Draw() is called for you whenever the list view is to be updated or redisplayed; you don’t
need to call it yourself. You also don’t need to reimplement it, even if you’re defining a
list that displays something other than character strings. You should implement data-
specific versions ofDrawItem() andHighlightItem() instead.

See also: BView::Draw(), DrawItem(), HighlightItem()

BListView Member Functions

The Interface Kit –97

DrawItem()
protected:

virtual voidDrawItem(BRectupdateRect, long index)

Draws the item atindex. The default version of this function assumes that the item is a
character string. It can be reimplemented by derived classes to draw differently, based on
other kinds of data.

TheupdateRect rectangle is stated in the BListView’s coordinate system. It’s the portion
of the item’s frame rectangle that needs to be updated. The full frame rectangle of the item
is returned by theItemFrame() function.

TheDraw() function determines which items in the BListView need to be updated and
callsDrawItem() for each one.

See also: ItemHeight(), ItemFrame(), HighlightItem(), BaselineOffset()

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Updates the on-screen display in response to a notification that the BListView’s frame
rectangle has been resized. In particular, this function looks for a vertical scroll bar that’s
a sibling of the BListView. It adjusts this scroll bar to reflect the way the list view was
resized, under the assumption that it must have the BListView as its target.

FrameResized() is called automatically at the appropriate times; you shouldn’t call it
yourself.

See also: BView::FrameResized()

HighlightItem()
protected:

virtual voidHighlightItem(boolflag, long index)

Highlights the item atindex if flag is TRUE, and removes the highlighting ifflag is FALSE.
Items are highlighted by inverting all colors in their frame rectangles.

This function is called (byDraw()) to highlight the selected item and (bySelect()) to
change the item that’s highlighted whenever the selection changes. It can be
reimplemented in a derived class to highlight in a different way.

See also: Select(), Draw()

Member Functions BListView

98 – The Interface Kit

InvalidateItem()
void InvalidateItem(long index)

Invalidates the item atindex so that an update message will be sent forcing the BListView
to redraw it.

See also: BView::Invalidate()

Invoke()
virtual void Invoke(long index)

Invokes the item atindex, provided that theindex isn’t out-of-range.

This function is called whenever the user double-clicks an item in the list, or presses the
Enter key while the BListView is the current focus view for the window and there’s a
selected item. It can also be called from application code to invoke a particular item;
usuallySelect() would first be called to select the item.

To invoke an item that’s identified by a pointer, first callIndexOf() to find where it’s
located in the list:

long i = myList->IndexOf(someItem);
myList->Select(i);
myList->Invoke(i);

If a model “invocation message” has been registered with the BListView (through
SetInvocationMessage()), Invoke() makes a copy of the message, adds information to the
copy identifying the BListView and the invoked item, and posts the copy so that it will be
handled by the designated target. The default target (established byAttachedToWindow())
is the BWindow where the BListView is located.SetTarget() can be called to name
another BHandler for the message. It can also be called to set a particular BLooper where
the message should be posted, but to let that BLooper’s preferred handler respond to the
message. In this case, the exact target will be picked whenInvoke() is called.

What it means to “invoke” an item depends entirely on the BMessage that’s posted and the
receiver’s response when it gets the message. This function does nothing but post the
message.

See also: Select(), SetInvocationMessage(), SetTarget()

IsItemSelected()
inline boolIsItemSelected(long index) const

ReturnsTRUE if the item atindex is currently selected, andFALSE if it’s not.

See also: CurrentSelection()

BListView Member Functions

The Interface Kit –99

ItemFrame()
protected:

BRectItemFrame(long index) const

Returns the frame rectangle of the item atindex. The rectangle defines the area where the
item is drawn; it’s stated in the coordinate system of the BListView. The rectangle is
calculated from the ordinal position of the item in the list and the value returned by
ItemHeight().

It’s expected that you’d need to find an item’s frame rectangle only if you’re implementing
a DrawItem() function.

< This function currently doesn’t check to be sure that the index is in range. >

See also: DrawItem()

ItemHeight()
protected:

virtual floatItemHeight(void) const

Returns how much vertical room is required to draw a single item in the list—how high
each item’s frame rectangle should be. The BListView callsItemHeight() extensively to
determine where items are located and where to draw them. By default, it returns a height
sufficient to draw a character string in the current font.

A derived class that draws items other than character strings should reimplement
ItemHeight() so that it returns the height required to draw one of its items.

See also: DrawItem()

KeyDown()
virtual voidKeyDown(ulongaChar)

Permits the user to operate the list using the following keys:

Keys Perform Action

Up Arrow and Down Arrow Select the items that are immediately before and
immediately after the currently selected item.

Page Up and Page Down Select the items that are one viewful above and
below the currently selected item—or the first and
last items if there’s no item a viewful away.

Home and End Select the first and last items in the list.

Enter and the space bar Invoke the currently selected item.

Member Functions BListView

100 – The Interface Kit

This function also incorporates the inherited BView version so that the Tab key can
navigate to another view.

KeyDown() is called to reportB_KEY_DOWN messages when the BListView is the focus
view of the active window; you shouldn’t call it yourself.

See also: BView::KeyDown(), Select(), Invoke()

MakeFocus()
virtual voidMakeFocus(bool focused= TRUE)

Overrides the BView version ofMakeFocus() to draw an indication that the BListView
has become the focus for keyboard events when thefocused flag isTRUE, and to remove
that indication when the flag isFALSE.

See also: BView::MakeFocus()

MouseDown()
virtual voidMouseDown(BPointpoint)

Determines which item is located atpoint and callsSelect() to select it (for a single-click
or the first event in a series) andInvoke() to invoke it (for a double-click or the second in a
series).

This function also makes the BListView the focus view so the user can operate the list
from the keyboard.

MouseDown() is called to notify the BListView of a mouse-down event; you don’t need to
call it yourself.

See also: BView::MouseDown(), Select(), Invoke()

Select()
virtual voidSelect(long index)

Selects the item located atindex, provided that theindex isn’t out-of-range. This function
removes the highlighting from the previously selected item and highlights the new
selection, scrolling the list so the item is visible if necessary. Selecting an item also marks
it as the item thatCurrentSelection() returns and that the Enter key can invoke.

Select() is called whenever the user selects an item, using either the keyboard or the
mouse. It can also be called from application code to set an initial selection in the list or
change the current selection.

BListView Member Functions

The Interface Kit –101

If a model “selection message” has been registered with the BListView,Select() copies the
message, adds information to the copy identifying the list and the item that was selected,
and posts the copy so that it will be dispatched to the target BHandler. If a message hasn’t
been registered, “selecting” an item simply means to highlight it and mark is as the
selected item.

Typically, BListViews are set up to post a message when an item is invoked, but not when
one is selected.

See also: SetSelectionMessage(), Invoke()

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear()
virtual voidSetFontName(const char *name)

virtual voidSetFontSize(floatpoints)

virtual voidSetFontRotation(floatdegrees)

virtual voidSetFontShear(floatangle)

SetFontName(), SetFontSize(), andSetFontShear() augment their BView counterparts to
recalculate the layout of items in the list when the font changes. However, the list is not
automatically redisplayed in the new font.

SetFontRotation() is disabled; a rotated font is incompatible with a list horizontal items.

See also: BView::SetFontName()

SetInvocationMessage(), InvocationMessage(),
InvocationCommand()

virtual voidSetInvocationMessage(BMessage *message)

BMessage *InvocationMessage(void) const

ulong InvocationCommand(void) const

These functions set and return information about the BMessage that the BListView posts
when an item is invoked.

SetInvocationMessage() assignsmessage to the BListView, freeing any message
previously assigned. The message becomes the responsibility of the BListView object and
will be freed only when it’s replaced by another message or the BListView is freed; you
shouldn’t free it yourself. Passing aNULL pointer to this function deletes the current
message without replacing it.

The BListView treats the BMessage as its “invocation message,” a model for the message
it posts when an item in the list is invoked. TheInvoke() function makes a copy of the
model and adds two pieces of relevant information. It then posts the copy, not the original.

Member Functions BListView

102 – The Interface Kit

The added information identifies the BListView and the invoked item:

Data name Type code Description

“source” B_OBJECT_TYPE A pointer to the BListView object.

“index” B_LONG_TYPE The index of the item that was invoked.

These names should not be used for any data that you add to the modelmessage.

Given this information, the message receiver can get a pointer to item data. For example:

void myWindow::MessageReceived(BMessage *message)
{
 BListView *theList;
 long theIndex;
 char *theItem;
 . . .
 theList = (BListView *)message->FindObject("source");
 if (message->Error() == B_NO_ERROR) {
 theIndex = message->FindLong("index");
 if (message->Error() == B_NO_ERROR) {
 theItem = (char *)theList->ItemAt(theIndex);
 . . .
 }
 }
 . . .
 }

(Although not shown in this example, you might also want to use thecast_as() macro to
make sure that it’s safe to cast the “source” object pointer to the BListView class.)

InvocationMessage() returns a pointer to the model BMessage and
InvocationCommand() returns itswhat data member. The message belongs to the
BListView; it can be altered by adding or removing data, but it shouldn’t be deleted. Nor
should it be posted or sent anywhere, since that would eventually free it. To get rid of the
current message, pass aNULL pointer toSetInvocationMessage().

See also: Invoke(), the BMessage class

SetSelectionMessage(), SelectionMessage(), SelectionCommand()
virtual voidSetSelectionMessage(BMessage *message)

BMessage *SelectionMessage(void) const

ulongSelectionCommand(void) const

These functions set, and return information about, the message that a BListView posts
whenever one of its items is selected. They’re exact counterparts to the invocation
message functions described above underSetInvocationMessage(), except that the
“selection message” is posted whenever an item in the list is selected, rather than when

BListView Member Functions

The Interface Kit –103

invoked. It’s more common to take action (to post a message) on invoking an item than on
selecting one.

Themessage thatSetSelectionMessage() assigns to the BListView is a model for the
messages that theSelect() function posts. Select() copies the model and posts the copy.
It adds the same two pieces of information to the copy as are added to the invocation
message:

Data name Type code Description

“source” B_OBJECT_TYPE A pointer to the BListView object.

“index” B_LONG_TYPE The index of the item that was selected.

You should not use these names for data you add to the modelmessage.

See also: Select(), SetInvocationMessage(), the BMessage class

SetSymbolSet()
virtual voidSetSymbolSet(const char *name)

Augments its BView counterpart to recalculate the layout of the list when the symbol set
changes.

See also: BView::SetSymbolSet()

SetTarget(), Target()
virtual longSetTarget(BHandler *target)
virtual longSetTarget(BLooper *target, booltargetsPreferredHandler)

BHandler *Target(BLooper **looper = NULL) const

These functions set and return the object that’s expected to handle messages the
BListView posts (through itsSelect() andInvoke() functions).

The version ofSetTarget() that takes a single argument sets thetarget BHandler object.
It’s successful only if it can also discern a BLooper object where the BListView can post
messages so that they will be dispatched to that target. To post a message, the BListView
calls the BLooper’sPostMessage() function and names thetarget as the object that should
receive the message:

theLooper->PostMessage(theMessage, target);

Therefore, thetarget BHandler must either:

• Have been added to a BLooper, or
• Be a BLooper itself, so that it can fulfill the roles of both BLooper and BHandler.

Member Functions BListView

104 – The Interface Kit

Once it’s set as the BListView’starget, the BHandler must continue its association with
the BLooper. If it moves to another BLooper,PostMessage() will fail.

The version ofSetTarget() that takes two arguments sets the BLooper object where the
BListView function should post messages. If thetargetsPreferredHandler flag isFALSE,
messages will be targeted to thelooper object itself—it will also act as the handler. In
other words, passing a BLooper andFALSE to the version ofSetTarget() that takes two
arguments accomplishes the same thing as simply passing the BLooper alone to the
version that takes one argument. These two lines of code are equivalent:

myListView->SetTarget(someLooper, FALSE);
myListView->SetTarget(someLooper);

However, if thetargetsPreferredHandler flag isTRUE, messages are targeted to the
looper’s preferred handler (the object returned by itsPreferredHandler() function). This
permits the targeting decision to be made dynamically:

looper ->PostMessage(theMessage, looper ->PreferredHandler());

For a BWindow, the preferred handler is the current focus view. Therefore, by passing a
BWindow looper andTRUE to SetTarget(),

myListView->SetTarget(someWindow, TRUE);

the BListView can be targeted to whatever BView happens to be in focus at the time an
item is invoked. (Note, however, that if thelooper’s PreferredHandler() is NULL, the
BLooper itself becomes the target, just as it would if thetargetsPreferredHandler flag
wereFALSE.)

When successful,SetTarget() returnsB_NO_ERROR. It fails and returnsB_BAD_VALUE if
the proposedtarget or looper is NULL. The one-argument version also returns
B_BAD_VALUE if it can’t discover a BLooper from the target handler.

Target() returns the current target and, if a pointer to alooper is provided, fills in the
BLooper where the BListView will post messages. If the target BHandler is the preferred
handler of thelooper, Target() returnsNULL. In other words, passing a BLooper andTRUE
to SetTarget() causesTarget() to report that there is alooper, but aNULL target; the
BLooper is known, but the target BHandler is not. Passing a BLooper andFALSE to
SetTarget() causesTarget() to report that the same object is bothlooper and target.

By default (established byAttachedToWindow()), the BWindow where the list is located
acts as both BLooper and BHandler.

See also: BView::Looper(), BWindow::PreferredHandler(), Invoke(), AttachedToWindow()

The Interface Kit –105

BMenu

Derived from: public BView

Declared in: <interface/Menu.h>

Overview

A BMenu object displays a pull-down or pop-up list of menu items. Menus organize the
features of an application—the common ones as well as the more obscure—and provide
users with points of entry for most everything the application can do.

Menus categorize the features of the application—all formatting possibilities might be
grouped in one menu, a list of documents in another, graphics choices in a third, and so on.
The arrangement of menus presents an outline of how the various parts of the application
fit together.

Menu Hierarchy

Menus are hierarchically arranged; an item in one menu can control another menu. The
controlled menu is asubmenu; the menu that contains the item that controls it is its
supermenu. A submenu remains hidden until the user operates the item that controls it; it
becomes hidden again when the user is finished with it. A submenu can have its own
submenus, and those submenus can have submenus of their own, and so on—although it
becomes hard for users to find their way around in a menu hierarchy that becomes too
deep.

The menu at the root of the hierarchy is displayed in a window as a list—perhaps a list of
just one item. Since it, unlike other menus, doesn’t have a controlling item, it must remain
visible. A root menu is therefore a special kind of menu in that it behaves more like an
ordinary view than do other menus, which stay hidden. Root menus should belong to the
BMenuBar class, which is derived from BMenu. The typical root menu is a menu bar
displayed across the top of a window (hence the name of the class).

Menu Items

Each item in a menu is a kind of BMenuItem object. An item can be marked (displayed
with a check mark to its left), assigned a keyboard shortcut, enabled and disabled, and
given a “trigger” character that the user can type to invoke the item when its menu is open
on-screen.

Hook Functions BMenu

106 – The Interface Kit

Every item has a particular job to do. If an item controls a submenu, its job is to show the
submenu on-screen and hide it again. All other items give instructions to the application.
When invoked by the user, they post a BMessage object to a target BHandler. What the
item does depends on the content of the BMessage and the BHandler’s response to it.

The BMenu and BMenuItem classes share some functions that accomplish the same thing
when called for a submenu or for the supermenu item that controls the submenu. For
example, setting the target for a BMenu (SetTarget()) sets the target for each of its items.
Disabling a submenu (SetEnabled()) is the same as disabling the item that controls it; the
user will be able to bring the submenu to the screen, but none of its items will work. This,
in effect, disables all items and menus in the branch of the menu hierarchy under the
superitem.

Hook Functions

ScreenLocation() Can be implemented to have the menu appear on-screen at
some location other than the default.

Constructor and Destructor

BMenu()
public:

BMenu(const char *name, menu_layoutlayout= B_ITEMS_IN_COLUMN)
BMenu(const char *name, floatwidth, floatheight)

protected:
BMenu(BRectframe, const char *name, ulongresizingMode, ulongflags,

menu_layoutlayout, boolresizeToFit)

Initializes the BMenu object. Thename of the object becomes the initial label of the
supermenu item that controls the menu and brings it to the screen. (It’s also the name that
can be passed to BView’sFindView() function.)

A new BMenu object doesn’t contain any items; you need to callAddItem() to set up its
contents.

BMenu Constructor and Destructor

The Interface Kit –107

A menu can arrange its items in any of three ways:

B_ITEMS_IN_COLUMN The items are stacked vertically in a column, one
on top of the other, as in a typical menu.

B_ITEMS_IN_ROW The items are laid out horizontally in a row, from
end to end, as in a typical menu bar.

B_ITEMS_IN_MATRIX The items are arranged in a custom fashion, such as
a matrix.

EitherB_ITEMS_IN_ROW or the defaultB_ITEMS_IN_COLUMN can be passed as thelayout
argument to the public constructor. (A column is the default for ordinary menus; a row is
the default for BMenuBars.) This version of the constructor isn’t designed for
B_ITEMS_IN_MATRIX layouts.

A BMenu object can arrange items that are laid out in a column or a row entirely on its
own. The menu will be resized to exactly fit the items that are added to it.

However, when items are laid out in a custom matrix, the menu needs more help. First,
the constructor must be informed of the exactwidth andheight of the menu rectangle. The
version of the constructor that takes these two parameters is designed just for matrix
menus—it sets the layout toB_ITEMS_IN_MATRIX. Then, when items are added to the
menu, the BMenu object expects to be informed of their precise positions within the
specified area. The menu isnot resized to fit the items that are added. Finally, when items
in the matrix change, you must take care of any required adjustments in the layout
yourself.

The protected version of the constructor is supplied for derived classes that don’t simply
devise different sorts of menu items or arrange them in a different way, but invent a
different kind of menu. If theresizeToFit flag isTRUE, it’s expected that thelayout will be
B_ITEMS_IN_COLUMN or B_ITEMS_IN_ROW. The menu will resize itself to fit the items that
are added to it. If the layout isB_ITEMS_IN_MATRIX, theresizeToFit flag should beFALSE.

~BMenu()
virtual ~BMenu(void)

Deletes all the items that were added to the menu and frees all memory allocated by the
BMenu object. Deleting the items serves also to delete any submenus those items control
and, thus, the whole branch of the menu hierarchy.

Member Functions BMenu

108 – The Interface Kit

Member Functions

AddItem()
bool AddItem(BMenuItem *item)
bool AddItem(BMenuItem *item, long index)
bool AddItem(BMenuItem *item, BRectframe)
bool AddItem(BMenu *submenu)
bool AddItem(BMenu *submenu, long index)
bool AddItem(BMenu *submenu, BRectframe)

Adds an item to the menu list atindex—or, if no index is mentioned, to the end of the list.
If items are arranged in a matrix rather than a list, it’s necessary to specify the item’sframe
rectangle—the exact position where it should be located in the menu view. Assume a
coordinate system for the menu that has the origin, (0.0, 0.0), at the left top corner of the
view rectangle. The rectangle will have the width and height that were specified when the
menu was constructed.

The versions of this function that take anindex (even an implicit one) can be used only if
the menu arranges items in a column or row (B_ITEMS_IN_COLUMN or B_ITEMS_IN_ROW);
it’s an error to use them for items arranged in a matrix. Conversely, the versions of this
function that take aframe rectangle can be used only if the menu arranges items in a
matrix (B_ITEMS_IN_MATRIX); it’s an error to use them for items arranged in a list.

If a submenu is specified rather than anitem, AddItem() constructs a controlling
BMenuItem for the submenu and adds the item to the menu.

If it’s unable to add the item to the menu—for example, if theindex is out-of-range or the
wrong version of the function has been called—AddItem() returnsFALSE. If successful, it
returnsTRUE.

See also: the BMenu constructor, the BMenuItem class,RemoveItem()

AddSeparatorItem()
bool AddSeparatorItem(void)

Creates an instance of the BSeparatorItem class and adds it to the end of the menu list,
returningTRUE if successful andFALSE if not (a very unlikely possibility). This function is
a shorthand for:

BSeparatorItem *separator = new BSeparatorItem;
AddItem(separator);

A separator serves only to separate other items in the list. It counts as an item and has an
indexed position in the list, but it doesn’t do anything. It’s drawn as a horizontal line

BMenu Member Functions

The Interface Kit –109

across the menu. Therefore, it’s appropriately added only to menus where the items are
laid out in a column.

See also: AddItem(), the BSeparatorItem class

AreTriggersEnabled() see SetTriggersEnabled()

AttachedToWindow()
virtual voidAttachedToWindow(void)

Finishes initializing the BMenu object by setting graphics parameters and laying out
items. This function is called for you each time the BMenu is assigned to a window. For
a submenu, that means each time the menu is shown on-screen.

See also: BView::AttachedToWindow()

CountItems()
long CountItems(void) const

Returns the total number of items in the menu, including separator items.

Draw()
virtual voidDraw(BRectupdateRect)

Draws the menu. This function is called for you whenever the menu is placed on-screen
or is updated while on-screen. It’s not a function you need to call yourself.

See also: BView::Draw()

FindItem()
BMenuItem *FindItem(const char *label) const
BMenuItem *FindItem(ulongcommand) const

Returns the item with the specifiedlabel—or the one that posts a message with the
specifiedcommand. If there’s more than one item in the menu hierarchy with that
particularlabel or associated with that particularcommand, this function returns the first
one it finds. It recursively searches the menu by working down the list of items in order.
If an item controls a submenu, it searches the submenu before returning to check any
remaining items in the menu.

If none of the items in the menu hierarchy meet the stated criterion,FindItem() returns
NULL.

Member Functions BMenu

110 – The Interface Kit

FindMarked()
BMenuItem *FindMarked(void)

Returns the first marked item in the menu list (the one with the lowest index), orNULL if no
item is marked.

See also: SetRadioMode(), BMenuItem::SetMarked()

Hide(), Show()
protected:

void Hide(void)

void Show(boolselectFirst)
virtual voidShow(void)

These functions hide the menu (remove the BMenu view from the window it’s in and
remove the window from the screen) and show it (attach the BMenu to a window and
place the window on-screen). If theselectFirst flag passed toShow() is TRUE, the first item
in the menu will be selected when it’s shown. IfselectFirst is FALSE, the menu is shown
without a selected item.

The version ofShow() that doesn’t take an argument simply calls the version that does and
passes it aselectFirst value ofFALSE.

These functions are not ones that you’d ordinarily call, even when implementing a derived
class. You’d need them only if you’re implementing a nonstandard menu of some kind
and want to control when the menu appears on-screen.

See also: BView::Show(), Track()

IndexOf()
long IndexOf(BMenuItem *item) const
long IndexOf(BMenu *submenu) const

Returns the index of the specified menuitem—or the item that controls the specified
submenu. Indices record the position of the item in the menu list. They begin at 0 for the
item at the top of a column or at the left of a row and include separator items.

If the menu doesn’t contain the specifieditem, or the item that controlssubmenu, the
return value will beB_ERROR.

See also: AddItem()

BMenu Member Functions

The Interface Kit –111

InvalidateLayout()
void InvalidateLayout(void)

Forces the BMenu to recalculate the layout of all menu items and, consequently, its own
size. It can do this only if the items are arranged in a row or a column. If the items are
arranged in a matrix, it’s up to you to keep their layout up-to-date.

All BMenu and BMenuItem functions that change an item in a way that might affect the
overall menu automatically invalidate the menu’s layout so it will be recalculated. For
example, changing the label of an item might cause the menu to become wider (if it needs
more room to accommodate the longer label) or narrower (if it no longer needs as much
room as before).

Therefore, you don’t need to callInvalidateLayout() after using a Kit function to change a
menu or menu item; it’s called for you. You’d call it only when making some other
change to a menu.

See also: the BMenu constructor

IsEnabled() see SetEnabled()

IsLabelFromMarked() see SetLabelFromMarked()

IsRadioMode() see SetRadioMode()

ItemAt(), SubmenuAt()
BMenuItem *ItemAt(long index) const

BMenu *SubmenuAt(long index) const

These functions return the item atindex—or the submenu controlled by the item atindex.
If there’s no item at the index, they returnNULL. SubmenuAt() is a shorthand for:

ItemAt(index)->Submenu()

It returnsNULL if the item atindex doesn’t control a submenu.

See also: AddItem()

Member Functions BMenu

112 – The Interface Kit

KeyDown()
virtual voidKeyDown(ulongaChar)

Handles keyboard navigation through the menu. This function is called to respond to
messages reporting key-down events. It should not be called from application code.

See also: BView::KeyDown()

Layout()
protected:

menu_layoutLayout(void) const

ReturnsB_ITEMS_IN_COLUMN if the items in the menu are stacked in a column from top to
bottom,B_ITEMS_IN_ROW if they’re stretched out in a row from left to right, or
B_ITEMS_IN_MATRIX if they’re arranged in some custom fashion. By default BMenu items
are arranged in a column and BMenuBar items in a row.

The layout is established by the constructor.

See also: the BMenu and BMenuBar constructors

RemoveItem()
BMenuItem *RemoveItem(long index)
bool RemoveItem(BMenuItem *item)
bool RemoveItem(BMenu *submenu)

Removes the item atindex, or the specifieditem, or the item that controls the specified
submenu. Removing the item doesn’t free it.

• If passed anindex, this function returns a pointer to the item so you can free it. It
returns aNULL pointer if the item couldn’t be removed (for example, if theindex is
out-of-range).

• If passed anitem, it returnsTRUE if the item was in the list and could be removed,
andFALSE if not.

• If passed asubmenu, it returnsTRUE if the submenu is controlled by an item in the
menu and that item could be removed, andFALSE otherwise.

When an item is removed from a menu, it loses its target; the cached value is set toNULL.
If the item controls a submenu, it remains attached to the submenu even after being
removed.

See also: AddItem()

BMenu Member Functions

The Interface Kit –113

ScreenLocation()
protected:

virtual BPointScreenLocation(void)

Returns the point where the left top corner of the menu should appear when the menu is
shown on-screen. The point is specified in the screen coordinate system.

This function is called each time a hidden menu (a submenu of another menu) is brought
to the screen. It can be overridden in a derived class to change where the menu appears.
For example, the BPopUpMenu class overrides it so that a pop-up menu pops up over the
controlling item.

See also: the BPopUpMenu class

SetEnabled(), IsEnabled()
virtual voidSetEnabled(boolenabled)

bool IsEnabled(void) const

SetEnabled() enables the BMenu if theenabled flag isTRUE, and disables it ifenabled is
FALSE. If the menu is a submenu, this enables or disables its controlling item, just as if
SetEnabled() were called for that item. The controlling item is updated so that it displays
its new state, if it happens to be visible on-screen.

Disabling a menu disables its entire branch of the menu hierarchy. All items in the menu,
including those that control other menus, are disabled.

IsEnabled() returnsTRUE if the BMenu, and every BMenu above it in the menu hierarchy,
is enabled. It returnsFALSE if the BMenu, or any BMenu above it in the menu hierarchy, is
disabled.

See also: BMenuItem::SetEnabled()

SetLabelFromMarked(), IsLabelFromMarked()
protected:

void SetLabelFromMarked(boolflag)

bool IsLabelFromMarked(void)

SetLabelFromMarked() determines whether the label of the item that controls the menu
(the label of the superitem) should be taken from the currently marked item within the
menu. Ifflag is TRUE, the menu is placed in radio mode and the superitem’s label is reset
each time the user selects a different item. Ifflag is FALSE, the setting for radio mode
doesn’t change and the label of the superitem isn’t automatically reset.

Member Functions BMenu

114 – The Interface Kit

IsLabelFromMarked() returns whether the superitem’s label is taken from the marked item
(but not necessarily whether the BMenu is in radio mode).

See also: SetRadioMode()

SetRadioMode(), IsRadioMode()
virtual voidSetRadioMode(boolflag)

bool IsRadioMode(void)

SetRadioMode() puts the BMenu in radio mode ifflag is TRUE and takes it out of radio
mode ifflag is FALSE. In radio mode, only one item in the menu can be marked at a time.
If the user selects an item, a check mark is placed in front of it automatically (you don’t
need to call BMenuItem’sSetMarked() function; it’s called for you). If another item was
marked at the time, its mark is removed. Selecting a currently marked item retains the
mark.

IsRadioMode() returns whether the BMenu is currently in radio mode. The default radio
mode isFALSE for ordinary BMenus, butTRUE for BPopUpMenus.

SetRadioMode() doesn’t change any of the items in the menu. If you want an initial item
to be marked when the menu is put into radio mode, you must mark it yourself.

WhenSetRadioMode() turns radio mode off, it callsSetLabelFromMarked() and passes it
an argument ofFALSE—turning off the feature that changes the label of the menu’s
superitem each time the marked item changes. Similarly, whenSetLabelFromMarked()
turns on this feature, it callsSetRadioMode() and passes it an argument ofTRUE—turning
radio mode on.

See also: BMenuItem::SetMarked(), SetLabelFromMarked()

SetTargetForItems()
virtual longSetTargetForItems(BHandler *target)

This function is a convenience for assigning the sametarget BHandler to all the items in
the menu. It works through the list of items in order, calling BMenuItem’sSetTarget()
virtual function for each one. If it’s unable to set the target of any item, it aborts and
returns the error it encountered. If successful in setting thetarget of all items, it returns
B_NO_ERROR. See BMenuItem’sSetTarget() for information on acceptabletarget values.

This function doesn’t work recursively; it acts only on items currently in the BMenu, not
on items that might be added later nor on items in submenus.

See also: BMenuItem::SetTarget()

BMenu Member Functions

The Interface Kit –115

SetTriggersEnabled(), AreTriggersEnabled()
virtual voidSetTriggersEnabled(boolflag)

bool AreTriggersEnabled(void) const

SetTriggersEnabled() enables the triggers for all items in the menu ifflag is TRUE and
disables them ifflag is FALSE. AreTriggersEnabled() returns whether the triggers are
currently enabled or disabled. They’re enabled by default.

Triggers are displayed to the user only if they’re enabled, and only when keyboard actions
can operate the menu.

Triggers are appropriate for some menus, but not for others.SetTriggersEnabled() is
typically called to initialize the BMenu when it’s constructed, not to enable and disable
triggers as the application is running. If triggers are ever enabled for a menu, they should
always be enabled; if they’re ever disabled, they should always be disabled.

See also: BMenuItem::SetTrigger()

Show() see Hide()

SubmenuAt() see ItemAt()

Superitem(), Supermenu()
BMenuItem *Superitem(void) const

BMenu *Supermenu(void) const

These functions return the supermenu item that controls the BMenu and the supermenu
where that item is located. The supermenu could be a BMenuBar object. If the BMenu
hasn’t been made the submenu of another menu, both functions returnNULL.

See also: AddItem()

Track()
protected:

BMenuItem *Track(boolopenAnyway= FALSE, BRect *clickToOpenRect= NULL)

Initiates tracking of the cursor within the menu. This function passes tracking control to
submenus (and submenus of submenus) depending on where the user moves the mouse. If
the user ends tracking by invoking an item,Track() returns the item. If the user didn’t
invoke any item, it returnsNULL. The item doesn’t have to be located in the BMenu; it
could, for example, belong to a submenu of the BMenu.

If the openAnyway flag isTRUE, Track() opens the menu and leaves it open even though a
mouse button isn’t held down. This enables menu navigation from the keyboard. If a

Member Functions BMenu

116 – The Interface Kit

clickToOpenRect is specified and the user has set the click-to-open preference,Track() will
leave the menu open if the user releases the mouse button while the cursor is inside the
rectangle. The rectangle should be stated in the screen coordinate system.

Track() is called by the BMenu to initiate tracking in the menu hierarchy. You would need
to call it yourself only if you’re implementing a different kind of menu that starts to track
the cursor under nonstandard circumstances.

The Interface Kit –117

BMenuBar

Derived from: public BMenu

Declared in: <interface/MenuBar.h>

Overview

A BMenuBar is a menu that can stand at the root of a menu hierarchy. Rather than appear
on-screen when commanded to do so by a user action, a BMenuBar object has a settled
location in a window’s view hierarchy, just like other views. Typically, the root menu is
the menu bar that’s drawn across the top of the window. It’s from this use that the class
gets its name.

However, instances of this class can also be used in other ways. A BMenuBar might
simply display a list of items arranged in a column somewhere in a window. Or it might
contain just one item, where that item controls a pop-up menu (a BPopUpMenu object).
Rather than look like a “menu bar,” the BMenuBar object would look something like a
button.

The Key Menu Bar

The “real” menu bar at the top of the window usually represents an extensive menu
hierarchy; each of its items typically controls a submenu.

The user should be able to operate this menu bar from the keyboard (using the arrow keys
and Enter). There are two ways that the user can put the BMenuBar and its hierarchy in
focus for keyboard events:

• Clicking an item in the menu bar. If the “click to open” preference is not turned off,
this opens the submenu the item controls so that it stays visible on-screen and puts
the submenu in focus.

• Pressing the Menu key, or pressing and releasing a Command key. This puts the
BMenuBar in focus and selects its first item.

Either method opens the entire menu hierarchy to keyboard navigation.

If a window’s view hierarchy includes more than one BMenuBar object, the Menu key (or
Command) must choose one of them to put in focus. By default, it picks the last one that
was attached to the window. However, theSetKeyMenuBar() function defined in the
BWindow class can be called to designate a different BMenuBar object as the “key” menu
bar for the window.

Constructor and Destructor BMenuBar

118 – The Interface Kit

A Kind of BMenu

BMenuBar inherits most of its functions from the BMenu class. It reimplements the
AttachedToWindow(), Draw(), andMouseDown() functions that set up the object and
respond to messages, but these aren’t functions that you’d call from application code;
they’re called for you.

The only real function (other than the constructor) that the BMenuBar class adds to those
it inherits isSetBorder(), which determines how the list of items is bordered.

Therefore, for most BMenuBar operations—adding submenus, finding items, temporarily
disabling the menu bar, and so on—you must call inherited functions and treat the object
like the BMenu that it is.

See also: the BMenu class

Constructor and Destructor

BMenuBar()
BMenuBar(BRectframe, const char *name,

ulongresizingMode=
B_FOLLOW_LEFT_RIGHT | B_FOLLOW_TOP,

menu_layoutlayout= B_ITEMS_IN_ROW,
bool resizeToFit= TRUE)

Initializes the BMenuBar by assigning it aframe rectangle, aname, and aresizingMode,
just like other BViews. These values are passed up the inheritance hierarchy to the BView
constructor. The default resizing mode (B_FOLLOW_LEFT_RIGHT | B_FOLLOW_TOP) is
designed for a true menu bar (one that’s displayed along the upper edge of a window). It
permits the menu bar to adjust itself to changes in the window’s width, while keeping it
glued to the top of the window frame.

The layout argument determines how items are arranged in the menu bar. By default,
they’re arranged in a row as befits a true menu bar. If an instance of this class is being
used to implement something other than a horizontal menu, items can be laid out in a
column (B_ITEMS_IN_COLUMN) or in a matrix (B_ITEMS_IN_MATRIX).

If the resizeToFit flag is turned on, as it is by default, the frame rectangle of the BMenuBar
will be automatically resized to fit the items it displays. This is generally a good idea,
since it relieves you of the responsibility of testing user preferences to determine what size
the menu bar should be. Because the font and font size for menu items are user
preferences, items can vary in size from user to user.

WhenresizeToFit is TRUE, theframe rectangle determines only where the menu bar is
located, not how large it will be. The rectangle’sleft andtop data members are respected,
but theright andbottom sides are adjusted to accommodate the items that are added to the
menu bar.

BMenuBar Member Functions

The Interface Kit –119

Two kinds of adjustments are made if thelayout is B_ITEMS_IN_ROW, as it typically is for a
menu bar:

• The height of the menu bar is adjusted to the height of a single item.

• If the resizingMode includesB_FOLLOW_LEFT_RIGHT, the width of the menu bar is
adjusted to match the width of its parent view. This means that a true menu bar (one
that’s a child of the window’s top view) will always be as wide as the window.

Two similar adjustments are made if the menu barlayout is B_ITEMS_IN_COLUMN:

• The width of the menu bar is adjusted to the width of the widest item.

• If the resizingMode includesB_FOLLOW_TOP_BOTTOM, the height of the menu bar is
adjusted to match the height of its parent view.

After setting up the key menu bar and adding items to it, you may want to set the
minimum width of the window so that certain items won’t be hidden when the window is
resized smaller.

Change theresizingMode, thelayout, and theresizeToFit flag as needed for BMenuBars
that are used for a purpose other than to implement a true menu bar.

See also: the BMenu constructor,BWindow::SetSizeLimits()

~BMenuBar()
virtual ~BMenuBar(void)

Frees all the items and submenus in the entire menu hierarchy, and all memory allocated
by the BMenuBar.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Finishes the initialization of the BMenuBar by setting up its graphics environment, and by
making the BWindow to which it has become attached the target handler for all items in
the menu hierarchy, except for those items for which a target has already been set.

This function also makes the BMenuBar the key menu bar, the BMenuBar object whose
menu hierarchy the user can navigate from the keyboard. If a window contains more than
one BMenuBar in its view hierarchy, the last one that’s added to the window gets to keep

Member Functions BMenuBar

120 – The Interface Kit

this designation. However, the key menu bar should always be the real menu bar at the top
of the window. It can be explicitly set with BWindow’sSetKeyMenuBar() function.

See also: BWindow::SetKeyMenuBar()

Border() see SetBorder()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the menu—whether as a true menu bar, as some other kind of menu list, or as a
single item that controls a pop-up menu. This function is called as the result of update
messages; you don’t need to call it yourself.

See also: BView::Draw()

MouseDown()
virtual voidMouseDown(BPointpoint)

Initiates mouse tracking and keyboard navigation of the menu hierarchy. This function is
called to notify the BMenuBar of a mouse-down event.

See also: BView::MouseDown()

SetBorder(), Border()
void SetBorder(menu_bar_borderborder)

menu_bar_borderBorder(void) const

SetBorder() determines how the menu list is bordered. Theborder argument can be:

B_BORDER_FRAME The border is drawn around the entire frame rectangle.
B_BORDER_CONTENTS The border is drawn around just the list of items.
B_BORDER_EACH_ITEM A border is drawn around each item.

Border() returns the current setting. The default isB_BORDER_FRAME.

The Interface Kit –121

BMenuField

Derived from: public BView

Declared in: <interface/MenuField.h>

Overview

A BMenuField object displays a labeled pop-up menu. It’s a simple object that employs a
BMenuBar object to control a BMenu. All it adds to what a BMenuBar can do on its own
is a label and a more control-like user interface that includes keyboard navigation.

The functions defined in this class resemble those of a BControl (SetLabel(), IsEnabled()),
especially a BTextControl (SetDivider(), Alignment()). However, unlike a real BControl
object, a BMenuField doesn’t maintain a current value and it can’t be invoked or post
messages. All the control work is done by items in the BMenu.

Constructor and Destructor

BMenuField()
BMenuField(BRectframe, const char *name,

const char *label,
BMenu *menu,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BMenuField object with the specifiedframe rectangle,name, resizingMode,
andflags. These arguments are the same as for any BView object and are passed
unchanged to the BView constructor. When the object is attached to a window, the height
of its frame rectangle will be adjusted to fit the height of the text it displays, which
depends on the user’s preferred font for menus.

By default, the frame rectangle is divided horizontally in half, with thelabel displayed on
the left and themenu on the right. This division can be changed with theSetDivider()
function. Themenu is assigned to a BMenuBar object and will pop up under the user’s
control. For most uses, themenu should be a BPopUpMenu object.

Member Functions BMenuField

122 – The Interface Kit

~BMenuField()
virtual ~BMenuField(void)

Frees the label, the BMenuBar object, and other memory allocated by the BMenuField.

Member Functions

Alignment() see SetAlignment()

AttachedToWindow(), AllAttached()
virtual voidAttachedToWindow(void)

virtual voidAllAttached(void)

These functions override their BView counterparts to make the BMenuField’s background
color match the color of its parent view and to adjust the height of the view to the height of
the BMenuBar child it contains. The height of the child depends on the size of the user’s
preferred font for menus.

See also: BView::AttachedToWindow()

Divider() see SetDivider()

Draw()
virtual voidDraw(BRectupdateRect)

Overrides the BView version of this function to draw the view’s border and label. The
way the menu field is drawn depends on whether it’s enabled or disabled and whether or
not it’s the current focus for keyboard actions.

See also: BView::Draw()

IsEnabled() see SetEnabled()

BMenuField Member Functions

The Interface Kit –123

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the BView version ofKeyDown() to permit keyboard navigation to and from
the view and to allow users to open the menu by pressing the space bar.

See also: BView::KeyDown()

Label() see SetLabel()

MakeFocus()
virtual voidMakeFocus(bool focused)

Augments the BView version ofMakeFocus() to enable keyboard navigation. This
function callsDraw() when the BMenuField becomes the focus view and when it loses that
status.

See also: BView::MakeFocus()

Menu(), MenuBar()
BMenu *Menu(void) const

BMenuBar *MenuBar(void) const

Menu() returns the BMenu object that pops up when the user operates the BMenuField;
MenuBar() returns the BMenuBar object that contains the menu. The BMenuBar is
created by the BMenuField; the menu is assigned to it during construction.

See also: the BMenuField constructor

MouseDown()
virtual voidMouseDown(BPointpoint)

Overrides the BView version ofMouseDown() to enable users to pop up the menu using
the mouse, even if the cursor isn’t directly over the menu portion of the bounds rectangle.

See also: BView::MouseDown()

Member Functions BMenuField

124 – The Interface Kit

SetAlignment(), Alignment()
virtual voidSetAlignment(alignmentlabel)

alignmentAlignment(void) const

These functions set and return the alignment of the label in its portion of the frame
rectangle.

B_ALIGN_LEFT The label is aligned at the left side of the bounds
rectangle.

B_ALIGN_RIGHT The label is aligned at the right boundary of its portion of
the bounds rectangle.

B_ALIGN_CENTER The label is centered in its portion of the bounds
rectangle.

The default isB_ALIGN_LEFT.

SetDivider(), Divider()
virtual voidSetDivider(floatxCoordinate)

float Divider(void) const

These functions set and return thex coordinate value that divides the bounds rectangle
between the label’s portion on the left and the portion that holds the menu on the right.
The coordinate is expressed in the BMenuField’s coordinate system.

The default divider splits the bounds rectangle in two equal sections. By resetting it, you
can provide more or less room for the label or the menu.

SetEnabled(), IsEnabled()
virtual voidSetEnabled(boolenabled)

bool IsEnabled(void) const

SetEnabled() enables the BMenuField if theenabled flag isTRUE, and disables it if the flag
is FALSE. IsEnabled() returns whether or not the object is currently enabled. When
disabled, the BMenuField doesn’t respond to mouse and keyboard manipulations.

If the enabled flag changes the current state of the object,SetEnabled() causes the view to
be redrawn, so that its new state can be displayed to the user.

BMenuField Member Functions

The Interface Kit –125

SetLabel(), Label()
virtual voidSetLabel(const char *string)

const char *Label(void) const

SetLabel() frees the current label and, if the argument it’s passed is notNULL, replaces it
with a copy ofstring. Label() returns the current label. The string it returns belongs to the
BMenuField object.

See also: the BMenuField constructor

Member Functions BMenuField

126 – The Interface Kit

The Interface Kit –127

BMenuItem

Derived from: public BObject

Declared in: <interface/MenuItem.h>

Overview

A BMenuItem is an object that contains and displays one item within a menu. By default,
Menu items are displayed simply as textual labels, like “Options...” or “Save As”.
Derived classes can be defined to draw something other than a label—or something in
addition to the label.

Kinds of Items

Some menu items play a role in helping users navigate the menu hierarchy. They give the
user access to submenus. A submenu remains hidden until the user operates the item that
controls it.

Other items accomplish specific actions. When the user invokes the item, a message is
posted so that it will be delivered to a target BHandler, usually the window where the
menu at the root of the hierarchy (a BMenuBar object) is displayed. The action that the
item initiates, or the state that it sets, depends entirely on the message and the handler’s
response to it.

The target handler and the message can be customized for every item. Each BMenuItem
retains a model for the BMessage it posts and can have a target that’s different from other
items in the same menu.

Items can also have a visual presence, but do nothing. Instances of the BSeparatorItem
class, which is derived from BMenuItem, serve only to visually separate groups of items
in the menu.

Shortcuts and Triggers

Any menu item (except for those that control submenus) can be associated with a
keyboard shortcut, a character the user can type in combination with a Command key (and
possibly other modifiers) to invoke the item. The shortcut character is displayed in the
menu item to the right of the label. All shortcuts for menu items require the user to hold
down the Command key.

Hook Functions BMenuItem

128 – The Interface Kit

A shortcut works even when the item it invokes isn’t visible on-screen. It, therefore, has
to be unique within the window (within the entire menu hierarchy).

Every menu item is also associated with atrigger, a character that the user can type
(without the Command key) to invoke the item. The trigger works only while the menu is
both open on-screen and can be operated using the keyboard. It therefore must be unique
only within a particular branch of the menu hierarchy (within the menu).

The trigger is one of the characters that’s displayed within the item—either the keyboard
shortcut or a character in the label. When it’s possible for the trigger to invoke the item,
the character is underlined. Like shortcuts, triggers are case-insensitive.

For an item to have a keyboard shortcut, the application must explicitly assign one.
However, by default, the Interface Kit chooses and assigns triggers for all items. The
default choice can be altered by theSetTrigger() function.

Marked Items

An item can also be marked (with a check mark drawn to the left of the label) in order to
indicate that the state it sets is currently in effect. Items are marked by theSetMarked()
function. A menu can be set up so that items are automatically marked when they’re
selected and exactly one item is marked at all times. (SeeSetRadioMode() in the BMenu
class.)

Disabled Items

Items can also be enabled or disabled (by theSetEnabled() function). A disabled item is
drawn in muted tones to indicate that it doesn’t work. It can’t be selected or invoked. If
the item controls a specific action, it won’t post the message that initiates the action. If it
controls a submenu, it will still bring the submenu to the screen, but all the items in
submenu will be disabled. If an item in the submenu brings its own submenu to the
screen, items in that submenu will also be disabled. Disabling the superitem for a
submenu in effect disables a whole branch of the menu hierarchy.

See also: the BMenu class, the BSeparatorItem class

Hook Functions

All BMenuItem hook functions are protected. They should be implemented only if you
design a special type of menu item that displays something other than a textual label.

Draw() Draws the entire item; can be reimplemented to draw the
item in a different way.

BMenuItem Constructor and Destructor

The Interface Kit –129

DrawContents() Draws the item label; can be reimplemented to draw
something other than a label.

GetContentSize() Provides the width and height of the item’s content area,
which is based on the length of the label and the current
font; can be reimplemented to provide the size required to
draw something other than a label.

Highlight() Highlights the item when it’s selected; can be
reimplemented to do highlighting in some way other than
the default.

Constructor and Destructor

BMenuItem()
BMenuItem(const char *label, BMessage *message,

charshortcut = NULL, ulongmodifiers= NULL)
BMenuItem(BMenu *submenu, BMessage *message= NULL)

Initializes the BMenuItem to displaylabel (which can beNULL if the item belongs to a
derived class that’s designed to display something other than text) and assigns it a model
message (which also can beNULL).

Whenever the user invokes the item, the model message is copied and the copy is posted
and marked for delivery to the target handler. Three pieces of information are added to the
copy before it’s posted:

Data name Type code Description

“when” B_DOUBLE_TYPE The time the item was invoked, as
measured in microseconds since the
machine was last booted.

“source” B_OBJECT_TYPE A pointer to the BMenuItem object.

“index” B_LONG_TYPE The index of the item, its ordinal position
in the menu. Indices begin at 0.

These names should not be used for any data that you place in themessage.

By default, the target of the message is the window associated with the item’s menu
hierarchy—the window where the BMenuBar at the root of the hierarchy is located.
Another target can be designated by calling theSetTarget() function.

The constructor can also optionally set a keyboard shortcut for the item. The character
that’s passed as theshortcut parameter will be displayed to the right of the item’s label.
It’s the accepted practice to display uppercase shortcut characters only, even though the
actual character the user types may not be uppercase.

Member Functions BMenuItem

130 – The Interface Kit

Themodifiers mask, not theshortcut character, determines which modifier keys the user
must hold down for the shortcut to work—including whether the Shift key must be down.
The mask can be formed by combining any of the modifiers constants, especially these:

B_SHIFT_KEY
B_CONTROL_KEY
B_OPTION_KEY
B_COMMAND_KEY

However,B_COMMAND_KEY is required for all keyboard shortcuts; it doesn’t have to be
explicitly included in the mask. For example, setting theshortcut to ‘U’ with no modifiers
would mean that the letter ‘U’ would be displayed alongside the item label and Command-
u would invoke the item. The sameshortcut with aB_SHIFT_KEY modifiers mask would
mean that the uppercase character (Command-Shift-U) would invoke the item.

If the BMenuItem is constructed to control asubmenu, it can’t take a shortcut and it
typically doesn’t post messages—its role is to bring up the submenu. However, it can be
assigned a modelmessage if the application must take some collateral action when the
submenu is opened. The item’s initial label will be taken from the name of the submenu.
It can be changed after construction by callingSetLabel().

See also: SetTarget(), SetMessage(), SetLabel()

~BMenuItem()
virtual ~BMenuItem(void)

Frees the item’s label and its model BMessage object. If the item controls a submenu, that
menu and all its items are also freed. Deleting a BMenuItem destroys the entire menu
hierarchy under that item.

Member Functions

Command() see SetMessage()

ContentLocation()
protected:

BPointContentLocation(void) const

Returns the left top corner of the content area of the item, in the coordinate system of the
BMenu to which it belongs. The content area of an item is the area where it displays its
label (or whatever graphic substitutes for the label). It doesn’t include the part of the item
where a check mark or a keyboard shortcut could be displayed, nor the border and
background around the content area.

BMenuItem Member Functions

The Interface Kit –131

You would need to call this function only if you’re implementing aDrawContent()
function to draw the contents of the menu item (likely something other than a label). The
content rectangle can be calculated from the point returned by this function and the size
specified byGetContentSize().

If the item isn’t part of a menu, the return value is indeterminate.

See also: GetContentSize(), DrawContent()

Draw(), DrawContent()
protected:

virtual voidDraw(void)

virtual voidDrawContent(void)

These functions draw the menu item and highlight it if it’s currently selected. They’re
called by theDraw() function of the BMenu where the item is located whenever the menu
is required to display itself; they don’t need to be called from within application code.

However, they can both be overridden by derived classes that display something other
than a textual label. TheDraw() function is called first. It draws the background for the
entire item, then callsDrawContent() to draw the label within the item’s content area.
After DrawContent() returns, it draws the check mark (if the item is currently marked) and
the keyboard shortcut (if any). It finishes by callingHighlight() if the item is currently
selected.

Both functions draw by calling functions of the BMenu in which the item is located. For
example:

void MyItem::DrawContent()
{
 . . .
 Menu()->DrawBitmap(image);
 . . .
}

A derived class can override eitherDraw(), if it needs to draw the entire item, or
DrawContent(), if it needs to draw only within the content area. ADraw() function can
find the frame rectangle it should draw within by calling the BMenuItem’sFrame()
function; aDrawContent() function can calculate the content area from the point returned
by ContentLocation() and the dimensions provided byGetContentSize().

WhenDrawContent() is called, the pen is positioned to draw the item’s label and the high
color is appropriately set. The high color may be a shade of gray, if the item is disabled, or
black if it’s enabled. If some other distinction is used to distinguish disabled from enabled
items,DrawContent() should check the item’s current state by callingIsEnabled().

Note: If a derived class implements its ownDrawContent() function, but still wants to
draw a textual string, it should do so by assigning the string as the BMenuItem’s label and

Member Functions BMenuItem

132 – The Interface Kit

calling the inherited version ofDrawContent(), not by callingDrawString(). This
preserves the BMenuItem’s ability to display a trigger character in the string.

See also: Highlight(), Frame(), ContentLocation(), GetContentSize()

Frame()
BRectFrame(void) const

Returns the rectangle that frames the entire menu item, in the coordinate system of the
BMenu to which the item belongs. If the item hasn’t been added to a menu, the return
value is indeterminate.

See also: BMenu::AddItem()

GetContentSize()
protected:

virtual voidGetContentSize(float *width, float *height)

Writes the size of the item’s content area into the variables referred to bywidth andheight.
The content area of an item is the area where its label (or whatever substitutes for the
label) is drawn.

A BMenu callsGetContentSize() for each of its items as it arranges them in a column or a
row; the function is not called for items in a matrix. The information it provides helps
determine where each item is located and the overall size of the menu.

GetContentSize() must report a size that’s large enough to display the content of the item
(and separate one item from another). By default, it reports an area just large enough to
display the item’s label. This area is calculated from the label and the BMenu’s current
font.

If you design a class derived from BMenuItem and implement your ownDraw() or
DrawContent() function, you should also implement aGetContentSize() function to report
how much room will be needed to draw the item’s contents.

See also: DrawContent(), ContentLocation()

Highlight()
protected:

virtual voidHighlight(boolflag)

Highlights the menu item whenflag is TRUE, and removes the highlighting whenflag is
FALSE. Highlighting simply inverts all the colors in the item’s frame rectangle (except for
the check mark).

BMenuItem Member Functions

The Interface Kit –133

This function is called by theDraw() function whenever the item is selected and needs to
be drawn in its highlighted state. There’s no reason to call it yourself, unless you define
your own version ofDraw(). However, it can be reimplemented in a derived class, if items
belonging to that class need to be highlighted in some way other than simple inversion.

See also: Draw()

IsEnabled() see SetEnabled()

isMarked() see SetMarked()

IsSelected()
protected:

bool IsSelected(void) const

ReturnsTRUE if the menu item is currently selected, andFALSE if not. Selected items are
highlighted.

Label() see SetLabel()

Menu()
BMenu *Menu(void) const

Returns the menu where the item is located, orNULL if the item hasn’t yet been added to a
menu.

See also: BMenu::AddItem()

Message() see SetMessage()

SetEnabled(), IsEnabled()
virtual voidSetEnabled(boolenabled)

bool IsEnabled(void) const

SetEnabled() enables the BMenuItem if theenabled flag isTRUE, disables it ifenabled is
FALSE, and updates the item if it’s visible on-screen. If the item controls a submenu, this
function calls the submenu’sSetEnabled() virtual function, passing it the same flag. This
ensures that the submenu is enabled or disabled as well.

Member Functions BMenuItem

134 – The Interface Kit

IsEnabled() returnsTRUE if the BMenuItem is enabled, its menu is enabled, and all menus
above it in the hierarchy are enabled. It returnsFALSE if the item is disabled or any objects
above it in the menu hierarchy are disabled.

Items and menus are enabled by default.

When using these functions, keep in mind that:

• Disabling a BMenuItem that controls a submenu serves to disable the entire menu
hierarchy under the item.

• Passing an argument ofTRUE to SetEnabled() is not sufficient to enable the item if
it’s located in a disabled branch of the menu hierarchy. It can only undo a previous
SetEnabled() call (with an argument ofFALSE) on the same item.

See also: BMenu::SetEnabled()

SetLabel(), Label()
virtual voidSetLabel(const char *string)

const char *Label(void) const

SetLabel() frees the item’s current label and copiesstring to replace it. If the menu is
visible on-screen, it will be redisplayed with the item’s new label. If necessary, the menu
will become wider (or narrower) so that it fits the new label.

The Interface Kit calls this virtual function to:

• Set the initial label of an item that controls a submenu to the name of the submenu,
and

• Subsequently set the item’s label to match the marked item in the submenu, if the
submenu was set up to have this feature.

Label() returns a pointer to the current label.

See also: BMenu::SetLabelFromMarked(), the BMenuItem constructor

SetMarked(), IsMarked()
virtual voidSetMarked(boolflag)

bool IsMarked(void) const

SetMarked() adds a check mark to the left of the item label ifflag is TRUE, or removes an
existing mark ifflag is FALSE. If the menu is visible on-screen. it’s redisplayed with or
without the mark.

BMenuItem Member Functions

The Interface Kit –135

IsMarked() returns whether the item is currently marked.

See also: BMenu::SetLabelFromMarked(), BMenu::FindMarked()

SetMessage(), Message(), Command()
virtual voidSetMessage(BMessage *message)

BMessage *Message(void) const

ulongCommand(void) const

SetMessage() makesmessage the model BMessage for the menu item, deleting any
previous message assigned to the item. The model message is first set by the BMenuItem
constructor;SetMessage() allows you to change the message in midstream. You might
need to change it, for example, when the item’s label changes. Passing aNULL message
frees the current model BMessage object without replacing it.

When a menu item is invoked, its model message is copied, relevant information is added
to the copy, and the copy is posted so that it will be dispatched to the target BHandler.
(The information that gets added to the copy is described under the BMenuItem
constructor.)

Message() returns a pointer to the BMenuItem’s model message andCommand() returns
its what data member. If the BMenuItem doesn’t post a message, both functions return
NULL.

The BMessage thatMessage() returns belongs to the BMenuItem. You can modify it by
adding and removing data, but you shouldn’t delete it or do anything that will cause it to
be deleted. In particular, you shouldn’t post or send the message anywhere, since that
would transfer ownership to a message loop and subject the message to automatic
deletion.

It’s possible to set and return a model BMessage for a separator item. However, the
message will never be used.

See also: the BMenuItem constructor,SetTarget()

SetShortcut(), Shortcut()
virtual voidSetShortcut(charshortcut, ulongmodifiers)

charShortcut(ulong *modifiers = NULL) const

SetShortcut() sets theshortcut character that’s displayed at the right edge of the menu item
and the set ofmodifiers that are associated with the character. These two arguments work
just like the arguments passed to the BMenuItem constructor. See the constructor for a
more complete description.

Shortcut() returns the character that’s used as the keyboard shortcut for invoking the item,
and writes a mask of all the modifier keys the shortcut requires to the variable referred to

Member Functions BMenuItem

136 – The Interface Kit

by modifiers. Since the Command key is required to operate the keyboard shortcut for any
menu item,B_COMMAND_KEY will always be part of themodifiers mask. The mask can
also be tested against theB_CONTROL_KEY, B_OPTION_KEY, andB_SHIFT_KEY constants.

The shortcut is initially set by the BMenuItem constructor.

See also: the BMenuItem constructor

SetTarget(), Target()
virtual longSetTarget(BHandler *target)
virtual longSetTarget(BLooper *target, booltargetsPreferredHandler)

BHandler *Target(BLooper **looper = NULL) const

These functions set and return the object that’s targeted to handle messages posted by the
BMenuItem.

The version ofSetTarget() that takes a single argument sets thetarget BHandler object.
It’s successful only if it can also discern a BLooper object where the BMenuItem can post
messages so that they will be dispatched to that target. To post a message, the BMenuItem
calls the BLooper’sPostMessage() function and names thetarget as the object that should
receive the message:

theLooper->PostMessage(theMessage, target);

Therefore, thetarget BHandler must be able, through itsLooper() function, to reveal the
BLooper object with which it is associated. It can do so if:

• It’s a BLooper itself (such as a BWindow), so that it can fulfill the roles of both
BLooper and BHandler.

• It has been added to a BLooper (as BViews are added to BWindows).

Once it becomes the BMenuItem’starget, the BHandler must maintain its association with
the BLooper. If it moves to another BLooper,PostMessage() will fail.

The version ofSetTarget() that takes two arguments sets the BLooper object where the
BMenuItem should post messages. If thetargetsPreferredHandler flag isFALSE, messages
will be targeted to thelooper object itself—it will act both as BLooper and BHandler. In
other words, passing a BLooper andFALSE to the version ofSetTarget() that takes two
arguments accomplishes the same thing as simply passing the BLooper alone to the
version that takes one argument. These two lines of code have the same result:

myItem->SetTarget(someLooper, FALSE);
myItem->SetTarget(someLooper);

The two-argument version ofSetTarget() becomes interesting only if the
targetsPreferredHandler flag isTRUE. In this case, messages are targeted to thelooper’s

BMenuItem Member Functions

The Interface Kit –137

preferred handler (the object returned by itsPreferredHandler() function). This permits
the targeting decision to be made dynamically, when the user invokes the item:

looper ->PostMessage(theMessage, looper ->PreferredHandler());

For example, the preferred handler for a BWindow object is the current focus view.
Therefore, by passing a BWindowlooper andTRUE to SetTarget(),

myItem->SetTarget(someWindow, TRUE);

the menu item can be targeted to whatever BView happens to be in focus at the time the
user operates the menu. This is useful for items—like Cut, Copy, and Paste—that act on
the current selection. (Note, however, that if thelooper’s PreferredHandler() is NULL, the
BLooper itself becomes the target, just as it would if thetargetsPreferredHandler flag
wereFALSE.)

When successful,SetTarget() returnsB_NO_ERROR. It fails and returnsB_BAD_VALUE if
the proposedtarget or looper is NULL. The one-argument version also returns
B_BAD_VALUE if it can’t discover a BLooper from the proposedtarget.

Target() returns the current target and, if a pointer to alooper is provided, fills in the
BLooper where the BMenuItem will post messages. If the target BHandler is the preferred
handler of thelooper, Target() returnsNULL. In other words, passing a BLooper andTRUE
to SetTarget() causesTarget() to report that there is alooper, but aNULL target; the
BLooper is known, but the target BHandler is not. Passing a BLooper andFALSE to
SetTarget() causesTarget() to report that the same object is bothlooper and target.

By default, the BLooper and BHandler roles are both filled by the BWindow at the root of
the menu hierarchy (the BWindow where the menu bar is located). These defaults are
established when the BMenuItem becomes part of a menu hierarchy that’s rooted in a
window, but only if anothertarget (or looper) hasn’t already been set. If a target hasn’t
been set and the BMenuItem isn’t part of a rooted menu hierarchy,Target() returnsNULL.

See also: BView::Looper(), BWindow::PreferredHandler()

SetTrigger(), Trigger()
virtual voidSetTrigger(chartrigger)

charTrigger(void) const

SetTrigger() sets thetrigger character that the user can type to invoke the item while the
item’s menu is open on-screen. If atrigger is not set, the Interface Kit will select one for
the item, so it’s not necessary to callSetTrigger().

The character passed to this function has to match a character displayed in the item—
either the keyboard shortcut or a character in the label. The case of the character doesn’t
matter; lowercase arguments will match uppercase characters in the item and uppercase
arguments will match lowercase characters. When the item can be invoked by its trigger,
the trigger character is underlined.

Member Functions BMenuItem

138 – The Interface Kit

If more than one character in the item matches the character passed,SetTrigger() tries first
to mark the keyboard shortcut. Failing that, it tries to mark an uppercase letter at the
beginning of a word. Failing that, it marks the first instance of the character in the label.

If the trigger doesn’t match any characters in the item, the item won’t have a trigger, not
even one selected by the system.

Trigger() returns the character set bySetTrigger(), or NULL if SetTrigger() didn’t succeed or
if SetTrigger() was never called and the trigger is selected automatically.

See also: BMenu::SetTriggersEnabled()

Shortcut() see SetShortcut()

Submenu()
BMenu *Submenu(void) const

Returns the BMenu object that the item controls, orNULL if the item doesn’t control a
submenu.

See also: the BMenuItem constructor, the BMenu class

Target() see SetTarget()

Trigger() see SetTrigger()

The Interface Kit –139

BPicture

Derived from: public BObject

Declared in: <interface/Picture.h>

Overview

A BPicture object holds a set of drawing instructions in the Application Server, where they
can be reused over and over again simply by passing the object to BView’sDrawPicture()
function. Because it contains instructions for producing an image, not the rendered result
of those instructions, a picture (unlike a bitmap) is independent of the resolution of the
display device.

Recording a Picture

Drawing instructions are captured by bracketing them with calls to a BView’s
BeginPicture() andEndPicture() functions. An empty BPicture object is passed to
BeginPicture(); EndPicture() returns the same object, fully initialized. For example:

BPicture *myPict;
someView->BeginPicture(new BPicture);
/* drawing code goes here */
myPict = someView->EndPicture();

The BPicture object records all of the drawing instructions given to the BView following
theBeginPicture() call and preceding theEndPicture() call. Only the drawing that the
BView does is recorded; drawing done by children and other views attached to the
window is ignored, as is everything except drawing code.

If the BPicture object passed toBeginPicture() isn’t empty, the new drawing is appended
to the code that’s already in place.

The Picture Definition

The picture captures everything that affects the image that’s drawn. It takes a snapshot of
the BView’s graphics parameters—the pen size, high and low colors, font size, and so
on—at the timeBeginPicture() is called. It then captures all subsequent modifications to
those parameters, such as calls toMovePenTo(), SetLowColor(), andSetFontSize().
However, changes to the coordinate system (ScrollBy() andScrollTo()) are ignored.

Constructor and Destructor BPicture

140 – The Interface Kit

The picture records all primitive drawing instructions—such as,DrawBitmap(),
StrokeEllipse(), FillRect(), andDrawString(). It can even include a call toDrawPicture();
one picture can incorporate another.

The BPicture traces exactly what BView drew and reproduces it precisely. For example,
whatever pen size happens to be in effect when a line is stroked will be the pen size that
the picture records, whether it was explicitly set while the BPicture was being recorded or
assumed from the BView’s graphics environment.

The picture makes its own copy of any data that’s passed during the recording session.
For example, it copies the bitmap passed toDrawBitmap() and the picture passed to
DrawPicture(). If that bitmap or picture later changes, it won’t affect what was recorded.

See also: BView::BeginPicture(), BView::DrawPicture(), the BPictureButton class

Constructor and Destructor

BPicture()
BPicture(void)
BPicture(const BPicture &picture)
BPicture(void *data, longsize)

Initializes the BPicture object by ensuring that it’s empty, by copying data from another
picture, or by copyingsize bytes of picturedata. The data should be taken, directly or
indirectly, from another BPicture object.

~BPicture()
virtual ~BPicture(void)

Destroys the Application Server’s record of the BPicture object and deletes all its picture
data.

BPicture Member Functions

The Interface Kit –141

Member Functions

Data()
void *Data(void) const

Returns a pointer to the data contained in the BPicture. The data can be copied from the
object, stored on disk (perhaps as a resource), and later used to initialize another BPicture
object.

See also: the BPicture constructor

DataSize()
long DataSize(void) const

Returns how many bytes of data the BPicture object contains.

See also: Data()

Member Functions BPicture

142 – The Interface Kit

The Interface Kit –143

BPictureButton

Derived from: public BControl

Declared in: <interface/PictureButton.h>

Overview

A BPictureButton object draws a button with a graphic image on its face, rather than a
textual label. The image is set by a BPicture object.

Like other BControl objects, BPictureButtons can have two values,B_CONTROL_OFF and
B_CONTROL_ON. A separate BPicture object is associated with each value. How the
BPictureButton displays these pictures depends on its behavior—whether it’s set to remain
in one state or to toggle between two states:

• A one-state BPictureButton usually has a value of 0 (B_CONTROL_OFF), and it
displays the BPicture associated with that value. However, while it’s being operated
(while the cursor is over the button on-screen and the user keeps the mouse button
down), its value is set to 1 (B_CONTROL_ON) and it displays the alternate picture.
That picture should be a highlighted version of the picture that’s normally shown.

This behavior is exactly like an ordinary, labeled BButton object. Just as a BButton
displays the same label, a one-state BPictureButton shows the same picture. Both
kinds of objects are appropriate devices for initiating an action of some kind.

• A two-state BPictureButton toggles between theB_CONTROL_OFF and
B_CONTROL_ON values. Each time the user operates the button, it’s value changes.
The picture that’s displayed changes with the value. The two BPictures are
alternatives to each other. TheB_CONTROL_ON picture might be a highlighted
version of theB_CONTROL_OFF picture, but it doesn’t need to be. The value of the
object changes only after it has been toggled to the other state, not while it’s being
operated.

This behavior is exactly like a BCheckBox or an individual BRadioButton. Like
those objects, a two-state BPictureButton is an appropriate device for setting a state.

Every BPictureButton must be assigned at least two BPictures. If it’s a one-state button,
one picture will be the one that’s normally shown and another will be shown while the
button is being operated. If it’s a two-state button, one picture is shown when the button is
turned on and one when it’s off.

If a one-state button can be disabled, it also needs to be assigned an image that can be
shown while it’s disabled. If a two-state button can be disabled, it needs two additional

Constructor and Destructor BPictureButton

144 – The Interface Kit

images—one in case it’s disabled while in theB_CONTROL_OFF state and another if it’s
disabled in theB_CONTROL_ON state.

Often the BPictures that are assigned to a BPictureButton simply wrap around a bitmap
image. For example:

BPicture *myPict;
someView->BeginPicture(new BPicture);
someView->DrawBitmap(&buttonBitmap);
myPict = someView->EndPicture();

See also: the BPicture class

Constructor and Destructor

BPictureButton()
BPictureButton(BRectframe, const char*name,

BPicture *off,
BPicture *on,
BMessage *message,
ulongbehavior= B_ONE_STATE_BUTTON,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BPictureButton by assigning it two images—anoff picture that will be
displayed when the object’s value isB_CONTROL_OFF and anon picture that’s displayed
when the value isB_CONTROL_ON—and by setting itsbehavior to either
B_ONE_STATE_BUTTON or B_TWO_STATE_BUTTON. A one-state button displays theoff image
normally and theon image to highlight the button as it’s being operated by the user. A
two-state button toggles between theoff image and theon image (between the
B_CONTROL_OFF andB_CONTROL_ON values). The initial value is set to
B_CONTROL_OFF.

If the BPictureButton can be disabled, it will need additional BPicture images that indicate
its disabled state. They can be set by callingSetDisabledOff() andSetDisabledOn().

All the BPictures assigned to the BPictureButton object become its property. It takes
responsibility for deleting them when they’re no longer needed.

Themessage parameter is the same as the one declared for the BControl constructor. It
establishes a model for the messages the BPictureButton sends to a target object each time
it’s invoked. SeeSetMessage(), SetTarget(), andInvoke() in the BControl class for more
information.

BPictureButton Member Functions

The Interface Kit –145

Theframe, name, resizingMode, andflags parameters are the same as those declared for
the BView constructor. They’re passed up the inheritance hierarchy to the BView class
unchanged. See the BView constructor for details.

See also: the BControl and BView constructors,SetEnabledOff(), BControl::Invoke(),
BControl::SetMessage(), BControl::SetTarget()

~BPictureButton()
virtual ~BPictureButton(void)

Deletes the model message and the BPicture objects that have been assigned to the
BPictureButton.

Member Functions

Behavior() see SetBehavior()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the BPictureButton. This function is called as the result of an update message to
draw the button in its current appearance; it’s also called from theMouseDown() function
to draw the button in its highlighted state.

See also: BView::Draw()

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the inherited version ofKeyDown() to respond whenaChar is B_ENTER or
B_SPACE, by:

• Momentarily highlighting the button,
• Temporarily changing its value while it’s being highlighted, and
• Posting a copy of the model BMessage to the target receiver.

< Note that this function matches the BButtonKeyDown() function. It regards all
BPictureButtons as being one-state buttons. >

See also: BView::KeyDown(), BControl::Invoke()

Member Functions BPictureButton

146 – The Interface Kit

MouseDown()
virtual voidMouseDown(BPointpoint)

Responds to a mouse-down event in the button by tracking the cursor while the user holds
the mouse button down. If the BPictureButton is a one-state object, this function resets its
value as the cursor moves in and out of the button on-screen. TheSetValue() virtual
function is called to make the change each time. If it’s a two-state object, the value is not
reset. < However, the picture corresponding to theB_CONTROL_ON value is shown while
the cursor is in the button on-screen and the mouse button remains down. >

If the cursor is inside the BPictureButton’s bounds rectangle when the user releases the
mouse button, this function posts a copy of the model message so that it will be dispatched
to the target handler. If it’s a one-state object, it’s value is reset toB_CONTROL_OFF. If it’s
a two-state object, it’s value is toggled on or off and the corresponding picture is
displayed.

See also: BView::MouseDown(), BControl::Invoke(), SetBehavior()

SetBehavior(), Behavior()
virtual voidSetBehavior(ulongbehavior)

ulongBehavior(void) const

These functions set and return whether the BPictureButton is aB_ONE_STATE_BUTTON or a
B_TWO_STATE_BUTTON. If it’s a one-state button, its value is normally set to
B_CONTROL_OFF and it displays a fixed image (theoff picture passed to the constructor or
the one passed toSetEnabledOff()). Its value is reset as its being operated and it displays
the alternate image (theon picture passed to the constructor or the one passed to
SetEnabledOn()).

If it’s a two-state button, its value toggles betweenB_CONTROL_OFF andB_CONTROL_ON
each time the user operates it. The image the button displays similarly toggles between
two pictures (theoff andon images passed to the constructor or the ones passed to
SetEnabledOff() andSetEnabledOn()).

See also: the BPictureButton constructor

BPictureButton Member Functions

The Interface Kit –147

SetEnabledOff(), SetEnabledOn(), SetDisabledOff(), SetDisabledOn(),
EnabledOff(), EnabledOn(), DisabledOff(), DisabledOn

virtual voidSetEnabledOff(BPicture *picture)

virtual voidSetEnabledOn(BPicture *picture)

virtual voidSetDisabledOff(BPicture *picture)

virtual voidSetDisabledOn(BPicture *picture)

inline BPicture *EnabledOff(void) const

inline BPicture *EnabledOn(void) const

inline BPicture *DisabledOff(void) const

inline BPicture *DisabledOn(void) const

These functions set and return the images the BPictureButton displays. Each
BPictureButton object needs to be assigned at least two BPicture objects—one
corresponding to theB_CONTROL_OFF value and another corresponding to the
B_CONTROL_ON value. These are the images that are displayed when the BPictureButton
is enabled, as it is by default. They’re initially set when the object is constructed and can
be replaced by calling theSetEnabledOff() andSetEnabledOn() functions.

If a BPictureButton can be disabled, it needs to display an image that indicates its disabled
condition. A two-state button might be disabled when its value is eitherB_CONTROL_OFF
or B_CONTROL_ON, so it needs two BPictures to indicate disabling, one corresponding to
each value. They can be set by callingSetDisabledOff() andSetDisabledOn().

The value of a one-state button is alwaysB_CONTROL_OFF (except when it’s being
operated), so it needs only a single BPicture to indicate disabling; you can set it by calling
SetDisabledOff().

All four of theSet...() functions free the image previously set, if any, and replace it with
picture. Thepicture belongs to the BPictureButton; it should not be freed or assigned to
any other object.

The last four functions listed above return the BPictureButton’s four images, orNULL if it
hasn’t been assigned a BPicture object in the requested category.

See also: the BPictureButton constructor

Member Functions BPictureButton

148 – The Interface Kit

The Interface Kit –149

BPoint

Derived from: none

Declared in: <interface/Point.h>

Overview

BPoint objects represent points on a two-dimensional coordinate grid. Each object holds
anx coordinate value and ay coordinate value declared as public data members. These
values locate a specific point, (x, y), relative to a given coordinate system.

Because the BPoint class defines a basic data type for graphic operations, its data members
are publicly accessible and it declares no virtual functions. It’s a simple class that doesn’t
inherit from BObject or any other class and doesn’t retain class information that it can
reveal at run time. In the Interface Kit, BPoint objects are typically passed and returned by
value, not through pointers.

For an introduction to coordinate geometry on the BeBox, see “The Coordinate Space” on
page 14.

Data Members

float x The coordinate value measured horizontally along the
x-axis.

float y The coordinate value measured vertically along they-axis.

Constructor BPoint

150 – The Interface Kit

Constructor

BPoint()
inline BPoint(floatx, floaty)
inline BPoint(const BPoint&point)
inline BPoint(void)

Initializes a new BPoint object to (x, y), or to the same values aspoint. For example:

BPoint somePoint(155.7, 336.0);
BPoint anotherPoint(somePoint);

Here, bothsomePoint andanotherPoint are initialized to (155.7, 336.0).

If no coordinate values are assigned to the BPoint when it’s declared,

BPoint emptyPoint;

its initial values are indeterminate.

BPoint objects can also be initialized or modified using theSet() function,

emptyPoint.Set(155.7, 336.0);
anotherPoint.Set(221.5, 67.8);

or the assignment operator:

somePoint = anotherPoint;

See also: Set(), the assignment operator

Member Functions

ConstrainTo()
void ConstrainTo(BRectrect)

Constrains the point so that it lies inside therect rectangle. If the point is already
contained in the rectangle, it remains unchanged. However, if it falls outside the
rectangle, it’s moved to the nearest edge. For example, this code

BPoint point(54.9, 76.3);
BRect rect(10.0, 20.0, 40.0, 80.0);
point.Constrain(rect);

modifies the point to (40.0, 76.3).

See also: BRect::Contains()

BPoint Operators

The Interface Kit –151

PrintToStream()
void PrintToStream(void) const

Prints the contents of the BPoint object to the standard output stream (stdout) in the form:

"BPoint(x, y)"

wherex andy stand for the current values of the BPoint’s data members.

Set()
inline voidSet(floatx, floaty)

Assigns the coordinate valuesx andy to the BPoint object. For example, this code

BPoint point;
point.Set(27.0, 53.4);

is equivalent to:

BPoint point;
point.x = 27.0;
point.y = 53.4;

See also: the BPoint constructor

Operators

= (assignment)
inline BPoint&operator =(const BPoint&)

Assigns thex andy values of one BPoint object to another BPoint:

BPoint a, b;
a.Set(21.5, 17.0);
b = a;

Pointb, like pointa, is set to (21.5, 17.0).

Operators BPoint

152 – The Interface Kit

== (equality)
bool operator ==(const BPoint&) const

Compares the data members of two BPoint objects and returnsTRUE if each one exactly
matches its counterpart in the other object, andFALSE if not. In the following example, the
equality operator would returnFALSE:

BPoint a(21.5, 17.0);
BPoint b(17.5, 21.0);
if (a == b)

. . .

!= (inequality)
bool operator !=(const BPoint&) const

Compares two BPoint objects and returnsTRUE unless their data members match exactly
(the two points are the same), in which case it returnsFALSE. This operator is the inverse
of the== (equality) operator.

+ (addition)
BPointoperator +(const BPoint&) const

Combines two BPoint objects by adding thex coordinate of the second to thex coordinate
of the first and they coordinate of the second to they coordinate of the first, and returns a
BPoint object that holds the result. For example:

BPoint a(77.0, 11.0);
BPoint b(55.0, 33.0);
BPoint c = a + b;

Pointc is initialized to (132.0, 44.0).

+= (addition and assignment)
BPoint& operator +=(const BPoint&)

Modifies a BPoint object by adding another point to it. As in the case of the+ (addition)
operator, the members of the second point are added to their counterparts in the first point:

BPoint a(77.0, 11.0);
BPoint b(55.0, 33.0);
a += b;

Pointa is modified to (132.0, 44.0).

BPoint Operators

The Interface Kit –153

– (subtraction)
BPointoperator –(const BPoint&) const

Subtracts one BPoint object from another by subtracting thex coordinate of the second
from thex coordinate of the first and they coordinate of the second from they coordinate
of the first, and returns a BPoint object that holds the result. For example:

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
BPoint c = a - b;

Pointc is initialized to (55.0, –22.0).

–= (subtraction and assignment)
BPoint& operator –=(const BPoint&)

Modifies a BPoint object by subtracting another point from it. As in the case of the
– (subtraction) operator, the members of the second point are subtracted from their
counterparts in the first point. For example:

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
a -= b;

Pointa is modified to (55.0, –22.0).

Operators BPoint

154 – The Interface Kit

The Interface Kit –155

BPolygon

Derived from: public BObject

Declared in: <interface/Polygon.h>

Overview

A BPolygon object represents apolygon—a closed, many-sided figure that describes an
area within a two-dimensional coordinate system. It differs from a BRect object in that it
can have any number of sides and the sides don’t have to be aligned with the coordinate
axes.

A BPolygon is defined as a series of connected points. Each point is a potential vertex in
the polygon. An outline of the polygon could be constructed by tracing a straight line
from the first point to the second, from the second point to the third, and so on through the
whole series, then by connecting the first and last points if they’re not identical.

The BView functions that draw a polygon—StrokePolygon() andFillPolygon()—take
BPolygon objects as arguments.StrokePolygon() offers the option of leaving the polygon
open—of not stroking the line that connects the first and last points in the list. The
polygon therefore won’t look like a polygon, but like an chain of lines fastened at their
endpoints.

Constructor and Destructor

BPolygon()
BPolygon(BPoint *pointList, longnumPoints)
BPolygon(const BPolygon *polygon)
BPolygon(void)

Initializes the BPolygon by copyingnumPoints from pointList, or by copying the list of
points from anotherpolygon. If one polygon is constructed from another, the original and
the copy won’t share any data; independent memory is allocated for the copy to hold a
duplicate list of points.

If a BPolygon is constructed without a point list, points must be set with theAddPoints()
function.

See also: AddPoints()

Member Functions BPolygon

156 – The Interface Kit

~BPolygon()
virtual ~BPolygon(void)

Frees all the memory allocated to hold the list of points.

Member Functions

AddPoints()
void AddPoints(const BPoint *pointList, longnumPoints)

AppendsnumPoints from pointList to the list of points that already define the polygon.

See also: the BPolygon constructor

CountPoints()
inline longCountPoints(void) const

Returns the number of points that define the polygon.

Frame()
inline BRectFrame(void) const

Returns the polygon’s frame rectangle—the smallest rectangle that encloses the entire
polygon.

MapTo()
void MapTo(BRectsource, BRectdestination)

Modifies the polygon so that it fits thedestination rectangle exactly as it originally fit the
source rectangle. Each vertex of the polygon is modified so that it has the same
proportional position relative to the sides of the destination rectangle as it originally had to
the sides of the source rectangle.

The polygon doesn’t have to be contained in either rectangle. However, to modify a
polygon so that it’s exactly inscribed in the destination rectangle, you should pass its
frame rectangle as the source:

BRect frame = myPolygon->Frame();
myPolygon->MapTo(frame, anotherRect);

BPolygon Operators

The Interface Kit –157

PrintToStream()
void PrintToStream(void) const

Prints the BPolygon’s point list to the standard output stream (stdout). The BPoint version
of this function is called to report each point as a string in the form

"BPoint(x, y)"

wherex andy stand for the coordinate values of the point in question.

See also: BPoint::PrintToStream()

Operators

= (assignment)
BPolygon&operator =(const BPolygon&)

Copies the point list of one BPolygon object and assigns it to another BPolygon. After the
assignment, the two objects describe the same polygon, but are independent of each other.
Destroying one of the objects won’t affect the other.

Operators BPolygon

158 – The Interface Kit

The Interface Kit –159

BPopUpMenu

Derived from: public BMenu

Declared in: <interface/PopUpMenu.h>

Overview

A BPopUpMenu is a specialized menu that’s typically used in isolation, rather than as part
of an extensive menu hierarchy. By default, it operates in radio mode—the last item
selected by the user, and only that item, is marked in the menu.

A menu of this kind can be used to choose one from among a limited set of mutually
exclusive states—to pick a paper size or paragraph style, for example, or to select a
category of information. It should not be used to group different kinds of choices (as other
menus may), nor should it include items that initiate actions rather than set states, except
in certain well-defined cases.

A pop-up menu can be used in any of four ways:

• It can be controlled by a BMenuBar object, often one that contains just a single
item. The BMenuBar, in effect, functions as a button that pops up a list. The label
of the marked item in the list can be displayed as the label of the controlling item in
the BMenuBar. In this way, the BMenuBar is able to show the current state of the
hidden menu. When this is the case, the menu pops up so its marked item is directly
over the controlling item.

• A BPopUpMenu can also be controlled by a view other than a BMenuBar. It might
be associated with a particular image the view displays, for example, and appear
over the image when the user moves the cursor there and presses the mouse button.
Or it might be associated with the view as a whole and come up under the cursor
wherever the cursor happens to be. When the view is notified of a mouse-down
event, it calls BPopUpMenu’sGo() function to show the menu on-screen.

• The BPopUpMenu might also be controlled by a particular mouse button, typically
the secondary mouse button. When the user presses the button, the menu appears at
the location of the cursor. Instead of passing responsibility for the mouse-down
event to a BView, the BWindow would intercept it and place the menu on-screen.

• Finally, the application’s main menu must be a BPopUpMenu object. This menu
should be set up to behave like an ordinary menu, even though it’s not included in an
ordinary menu hierarchy. (The main menu is the one that holds items with
application-wide significance, like “About . . .” and “Quit”. It’s accessible when the

Constructor and Destructor BPopUpMenu

160 – The Interface Kit

application is the active application by pressing on the application icon in the left
top corner of the screen. SeeSetMainMenu() in the BApplication class.)

Other thanGo() (and the constructor), this class implements no functions that you’d ever
need to call from application code. In all other respects, a BPopUpMenu can be treated
like any other BMenu.

Constructor and Destructor

BPopUpMenu()
BPopUpMenu(const char *name, boolradioMode = TRUE,

bool labelFromMarked= TRUE,
menu_layoutlayout= B_ITEMS_IN_COLUMN)

Initializes the BPopUpMenu object. If the object is added to a BMenuBar, itsname also
becomes the initial label of its controlling item (just as for other BMenus).

If the labelFromMarked flag isTRUE (as it is by default), the label of the controlling item
will change to reflect the label of the item that the user last selected. In addition, the menu
will operate in radio mode (regardless of the value passed as theradioMode flag). When
the menu pops up, it will position itself so that the marked item appears directly over the
controlling item in the BMenuBar.

If labelFromMarked is FALSE, the menu pops up < so that its first item is over the
controlling item >.

If the radioMode flag isTRUE (as it is by default), the last item selected by the user will
always be marked. In this mode, one and only one item within the menu can be marked at
a time. IfradioMode is FALSE, items aren’t automatically marked or unmarked.

However, theradioMode flag has no effect unless thelabelFromMarked flag isFALSE. As
long aslabelFromMarked is TRUE, radio mode will also beTRUE.

The BPopUpMenu that’s used as the application’s main menu should have both
labelFromMarked andradioMode set toFALSE.

The layout of the items in a BPopUpMenu can be eitherB_ITEMS_IN_ROW or the default
B_ITEMS_IN_COLUMN. It should never beB_ITEMS_IN_MATRIX. The menu is resized so
that it exactly fits the items that are added to it.

The new BPopUpMenu is empty; you add items to it by calling BMenu’sAddItem()
function.

See also: BMenu::SetRadioMode(), BMenu::SetLabelFromMarked()

BPopUpMenu Member Functions

The Interface Kit –161

~BPopUpMenu()
virtual ~BPopUpMenu(void)

Does nothing. The BMenu destructor is sufficient to clean up after a BPopUpMenu.

Member Functions

Go()
BMenuItem *Go(BPointscreenPoint,

booldeliversMessage = FALSE,
boolopenAnyway= FALSE)

BMenuItem *Go(BPointscreenPoint,
booldeliversMessage,
boolopenAnyway,
BRectclickToOpenRect)

Places the pop-up menu on-screen so that its left top corner is located atscreenPoint in the
screen coordinate system.Go() doesn’t return until the user dismisses the menu from the
screen. If the user invoked an item in the menu, it returns a pointer to the item. If no item
was invoked, it returnsNULL.

Go() is typically called from within theMouseDown() function of a BView. For example:

void MyView::MouseDown(BPoint point)
{
 BMenuItem *selected;
 BMessage *copy;
 . . .
 ConvertToScreen(&point);
 selected = myPopUp->Go(point);
 . . .
 if (selected) {
 BLooper *looper;
 BHandler *target = selected->Target(&looper);
 if (target == NULL)
 target = looper->PreferredHandler();
 copy = new BMessage(selected->Message());
 looper->PostMessage(copy, target);
 }
 . . .
}

Go() operates in two modes:

• If the deliversMessage flag isTRUE, the BPopUpMenu works just like a menu that’s
controlled by a BMenuBar. When the user invokes an item in the menu, the item
posts a message to its target.

Member Functions BPopUpMenu

162 – The Interface Kit

• If the deliversMessage flag isFALSE, a message is not posted. Invoking an item
doesn’t automatically accomplish anything. It’s up to the application to look at the
returned BMenuItem and decide what to do. It can mimic the behavior of other
menus and post the message—as shown in the example above—or it can take some
other course of action.

In the example, a copy of the BMessage returned by the item’sMessage() function was
posted, not the returned message itself. Posting the returned message would turn it over to
a message loop, which would eventually delete it. It would then be unavailable the next
time the item was invoked.

Go() always puts the pop-up menu on-screen, but ordinarily keeps it there only as long as
the user holds a mouse button down. When the user releases the button, the menu is
hidden andGo() returns. However, theopenAnyway flag and theclickToOpenRect
arguments can alter this behavior so that the menu will stay open even when the user
releases the mouse button (or even if a mouse button was never down). It will take
another user action—such as invoking an item in the menu or clicking elsewhere—to
dismiss the menu.

If the openAnyway flag isTRUE, Go() keeps the menu on-screen even if no mouse buttons
are held down. This permits a user to open and operate a pop-up menu from the keyboard.
If openAnyway is FALSE, mouse actions determine whether the menu stays on-screen.

If the user has the click-to-open menu preference turned on and releases the mouse button
while the cursor lies inside theclickToOpenRect rectangle,Go() interprets the action as
clicking to open the menu and keeps it on-screen. If the cursor is outside the rectangle
when the mouse button goes up, the menu is removed from the screen andGo() returns.
The rectangle should be stated in the screen coordinate system.

See also: BMenuItem::SetMessage()

ScreenLocation()
protected:

virtual BPointScreenLocation(void)

Determines where the pop-up menu should appear on-screen (when it’s being run
automatically, not byGo()). As explained in the description of the class constructor, this
largely depends on whether the label of the superitem changes to reflect the item that’s
currently marked in the menu. The point returned is stated in the screen coordinate
system.

This function is called only for BPopUpMenus that have been added to a menu hierarchy
(a BMenuBar). You should not call it to determine the point to pass toGo(). However,
you can override it to change where a customized pop-up menu defined in a derived class
appears on-screen when it’s controlled by a BMenuBar.

See also: BMenu::SetLabelFromMarked(), BMenu::ScreenLocation(), the BPopUpMenu
constructor

The Interface Kit –163

BPrintJob

Derived from: public BObject

Declared in: <interface/PrintJob.h>

Overview

A BPrintJob object runs a printing session. It negotiates everything after the user’s initial
request to print—from engaging the Print Server to formatting pages, calling upon
BViews to draw, and spooling the results to the printer.

A print job begins when the user requests the application to print something. In response,
the application should create a BPrintJob object, assign the job a name, and callInitJob()
to initialize the printing environment. For example:

void MyDocumentManager::Print()
{
 BPrintJob *job = new BPrintJob("document");
 if (job->InitJob() < B_NO_ERROR)
 goto end;
 else {
 . . .
 }
 . . .
end:
 delete job;
 return;
}

InitJob() has the Print Server interact with the user to set up the parameters for the job—
the number of copies, the size of the paper, scaling, orientation on the page, and so on.

You may want to store the user’s choices with the document so that they can be used to set
the initial configuration for the job when the document is next printed. By calling

Overview BPrintJob

164 – The Interface Kit

Config(), you can get the job configuration the user set up;SetConfig() initializes the
configuration that’s presented to the user. For example:

BMessage *configuration;
. . .
void MyDocumentManager::Print()
{
 BPrintJob *job = new BPrintJob("document");
 if (configuration)
 job->SetConfig(configuration);
 if (job->InitJob() < B_NO_ERROR)
 goto end;
 if (job->CanContinue()) {
 if (configuration)
 delete configuration;
 configuration = job->Config();
 }
 else
 goto end;
 . . .
}

A number of things can happen to derail a print job after it has started—most significantly,
the user can cancel it at any time. To be sure that the job hasn’t been canceled or
something else hasn’t happened to defeat it, you can callCanContinue() at critical
junctures in your code, as illustrated above. This function will tell you whether it’s
sensible to continue with the job.

The next step after initializing the job is to callBeginPrinting() to set up a spool file and
begin the production of pages. After all the pages are produced,Commit() is called to
commit them to the printer.

job->BeginPrinting();
/* draw pages here */
job->Commit();

BeginPrinting() andCommit() bracket all the drawing that’s done during the job.

Each page is produced by asking one or more BViews to draw within the page’s printable
rectangle (the rectangle that excludes the unprinted margin around the edge of the paper).
You can callDrawView() any number of times for a single page to ask any number of

BPrintJob Constructor and Destructor

The Interface Kit –165

BViews to contribute to the page. After all views have drawn, the page is spooled to the
file that will eventually be committed to the printer. For example:

for (. . .) {
 if (job->CanContinue()) {
 job->DrawView(someView, viewRect, pointOnPage);
 job->DrawView(anotherView, anotherRect, differentPoint);
 . . .
 job->SpoolPage();
 }
 else
 goto end;
}

DrawView() calls the BView’sDraw() function. That function can test whether it’s
drawing on the screen or on the printed page by calling the BViewIsPrinting() function.
SpoolPage() is called just once for each page.

< This is the first release of the printing API; it will be enhanced in future releases to
provide greater control over printing parameters. >

See also: BView::IsPrinting()

Constructor and Destructor

BPrintJob()
BPrintJob(char *name)

Initializes the BPrintJob object and assigns the job aname. The Print Server isn’t
contacted untilInitJob() is called. The spool file isn’t created untilBeginPrinting() starts
the production of pages.

See also: InitJob(), BeginPrinting()

~BPrintJob()
virtual ~BPrintJob(void)

Frees all memory allocated by the object.

Member Functions BPrintJob

166 – The Interface Kit

Member Functions

BeginPrinting()
void BeginPrinting(void)

Opens a spool file for the job and prepares for the production of a series of pages. Call this
function only once per printing session—just after initializing the job and just before
drawing the first page.

See also: Commit()

CancelJob()
void CancelJob(void)

Cancels the print job programmatically and gets rid of the spool file. The job cannot be
restarted; you must delete the BPrintJob object. Create a new object to renew printing.

CanContinue()
bool CanContinue(void)

ReturnsTRUE if there’s no impediment to continuing with the print job, andFALSE if the
user has canceled the job, the spool file has grown too big, or something else has happened
to terminate printing. It’s a good idea to liberally sprinkleCanContinue() queries
throughout your printing code to make sure that the work you’re about to do won’t be
wasted.

Commit()
void Commit(void)

Commits all spooled pages to the printer. This ends the print job; whenCommit() returns,
the BPrintJob object can be deleted.Commit() can be called only once per job.

See also: BeginPrinting()

Config() see SetConfig()

BPrintJob Member Functions

The Interface Kit –167

DrawView(), SpoolPage()
virtual voidDrawView(BView *view, BRectrect, BPointpoint)

void SpoolPage(void)

DrawView() calls upon aview to draw therect portion of its display atpoint on the page.
Theview’s Draw() function will be called withrect passed as the update rectangle. The
rectangle should be stated in the BView’s coordinate system and it should be fashioned so
that the view draws only in the page’s printable rectangle. Thepoint should be stated in a
coordinate system that has the origin at the top left corner of the printable rectangle.

Theview must be attached to a window; that is, it must be known to the Application
Server. However, when printing, a BView can be asked to draw portions of its display that
are not visible on-screen. Its drawing is not limited by the clipping region, its bounds
rectangle, or the frame rectangles of ancestor views.

DrawView() doesn’t look down the view hierarchy; it asks only the namedview to draw,
not any of its children. However, any number of BViews can draw on a page if they are
subjects of separateDrawView() calls.

After all views have drawn and the page is complete,SpoolPage() adds it to the spool file.
SpoolPage() must be called once to terminate each page.

See also: PrintableRect(), BView::Draw()

FirstPage(), LastPage()
long FirstPage(void)

long LastPage(void)

< These functions both currently return 0. >

InitJob()
long InitJob(void)

Engages the Print Server and initializes the job. IfSetConfig() has been called to establish
a recommended configuration for the job, this function will pass it to the Print Server so
the Server can present it to the user. Otherwise, a default configuration will be used.

InitJob() returnsB_ERROR if it has trouble communicating with the Server or if the job
can’t be established for any other reason. It returnsB_NO_ERROR if all goes well.

See also: SetConfig()

LastPage() see FirstPage()

Member Functions BPrintJob

168 – The Interface Kit

PaperRect(), PrintableRect()
BRectPaperRect(void)

BRectPrintableRect(void)

These functions return rectangles that describe the size of a printed page

PaperRect() returns a rectangle that records the presumed size of the paper that the printer
will use. It has 0.0 as its left and top coordinate values, and right and bottom coordinates
that reflect the size of a sheet of paper. The size depends on choices made by the user
when setting up the print job.

PrintableRect() returns a rectangle that encloses the portion of a page where printing can
appear. It’s stated in the same coordinate system as the rectangle returned byPaperRect(),
but excludes the margins around the edge of the paper. When drawing on the printed page,
the left top corner of this rectangle is taken to be the coordinate origin, (0.0, 0.0).

The diagram below illustrates the paper and printable rectangles, along with a closer view
showing the coordinates of the left top corner of the printable rectangle asPrintableRect()
would report them and asDrawView() would assume them, given a half-inch margin.

See also: DrawView()

coordinates returned

paper rectangle printable rectangle

coordinates of the printable

(36.0, 36.0)

rectangle assumed by DrawView()

(0.0, 0.0)

by PrintableRect()

BPrintJob Member Functions

The Interface Kit –169

SetConfig(), Config()
void SetConfig(BMessage *configuration)

BMessage *Config(void)

These functions set and return the group of parameters that configure the Print Server for
the current job. The parameters are recorded in a BMessage object that can be regarded as
a black box; the entries in the message are interpreted by the Print Server and will be
documented when the Server and the print driver API are documented.

Config() can be called to get the current configuration message, which can then be
flattened and stored with the document. You can retrieve it later and pass it toSetConfig()
to set initial configuration values the next time the document is printed, as illustrated in the
“Overview”.

See also: InitJob()

SpoolPage() see DrawView()

Member Functions BPrintJob

170 – The Interface Kit

The Interface Kit –171

BRadioButton

Derived from: public BControl

Declared in: <interface/RadioButton.h>

Overview

A BRadioButton object draws a labeled, two-state button that’s displayed in a group along
with other similar buttons. The button itself is a round icon that has a filled center when
the BRadioButton is turned on, and is empty when it’s off. The label appears next to the
icon.

Only one radio button in the group can be on at a time. When the user clicks a button to
turn it on, the button that’s currently on is turned off. The user can turn a button off only
by turning another one on; one button in the group must be on at all times. The button
that’s on has a value of 1 (B_CONTROL_ON); the others have a value of 0
(B_CONTROL_OFF).

The BRadioButton class handles the interaction between radio buttons in the following
way: A direct user action can only turn on a radio button, not turn it off. However, when
the user turns a button on, the BRadioButton object turns off all sibling BRadioButtons—
all BRadioButtons that have the same parent as the one that was turned on.

This means that a parent view should have no more than one group of radio buttons among
its children. Each set of radio buttons should be assigned a separate parent—perhaps an
empty BView that simply contains the radio buttons and does no drawing of its own.

Constructor

BRadioButton()
BRadioButton(BRectframe, const char *name, const char *label,

BMessage *message,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BRadioButton by passing all arguments to the BControl constructor without
change. BControl initializes the radio button’slabel and assigns it a modelmessage that
identifies the action that should be taken when the radio button is turned on. When the

Member Functions BRadioButton

172 – The Interface Kit

user turns the button on, the BRadioButton posts a copy of themessage so that it can be
delivered to the target handler.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class and are passed without change from BControl to the BView constructor.

The BRadioButton draws at the bottom of its frame rectangle beginning at the left side. It
ignores any extra space at the top or on the right. (However, the user can click anywhere
within theframe rectangle to turn on the radio button). When the object is attached to a
window, the height of the rectangle will be adjusted so that there is exactly the right
amount of room to accommodate the label.

See also: the BControl and BView constructors,AttachedToWindow()

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version ofAttachedToWindow() to set the view and low colors of
the BRadioButton to the match its parent’s view color, and to resize the radio button
vertically to fit the height of the label it displays. The height of the label depends on the
BRadioButton’s font (which the BControl class sets to Emily).

See also: BControl::AttachedToWindow()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the radio button—the circular icon—and its label. The center of the icon is filled
when the BRadioButton’s value is 1 (B_CONTROL_ON); it’s left empty when the value is 0
(B_CONTROL_OFF).

See also: BView::Draw()

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the inherited versions ofKeyDown() to turn the radio button on and post a
message to the target BHandler whenaChar is B_SPACE or B_ENTER.

See also: BView::KeyDown(), SetValue()

BRadioButton Member Functions

The Interface Kit –173

MouseDown()
virtual voidMouseDown(BPointpoint)

Responds to a mouse-down event in the radio button by tracking the cursor while the user
holds the mouse button down. If the cursor is pointing to the radio button when the user
releases the mouse button, this function turns the button on (and consequently turns all
sibling BRadioButtons off), calls the BRadioButton’sDraw() function, and posts a
message that will be delivered to the target BHandler. Unlike a BCheckBox, a
BRadioButton posts the message—it’s “invoked”—only when it’s turned on, not when it’s
turned off.

See also: BControl::Invoke(), BControl::SetTarget(), SetValue()

SetValue()
virtual voidSetValue(longvalue)

Augments the BControl version ofSetValue() to turn all sibling BRadioButtons off (set
their values to 0) when this BRadioButton is turned on (when thevalue passed is anything
but 0).

See also: BControl::SetValue()

Member Functions BRadioButton

174 – The Interface Kit

The Interface Kit –175

BRect

Derived from: none

Declared in: <interface/Rect.h>

Overview

A BRect object represents arectangle, one with sides that parallel thex andy coordinate
axes. The rectangle is defined by its left, top, right, and bottom coordinates, as illustrated
below:

In a valid rectangle, the topy coordinate value is never greater than the bottom
y coordinate, and the leftx coordinate value is never greater than the right.

A BRect is the simplest, most basic way of specifying an area in a two-dimensional
coordinate system. Windows, scroll bars, buttons, text fields, and the screen itself are all
specified as rectangles. For more details on the definition of a rectangle, see “Coordinate
Geometry” on page 16 in the chapter introduction.

When used to define the frame of a window or a view, or the bounds of a bitmap, the sides
of the rectangle must line up on screen pixels. For this reason, the rectangle can’t have
any fractional coordinates. Coordinate units have a one-to-one correspondence with
screen pixels.

Integral coordinates fall at the center of screen pixels, so frame rectangles cover a larger
area than their coordinate values would indicate. Just as the number of elements in an
array is one greater than the largest index, a frame rectangle covers one more column of
pixels than its width and one more row than its height.

bottom

top

left right

y-axis

x-axis

Data Members BRect

176 – The Interface Kit

The figure below illustrates why this is the case. It shows a rectangle with a right side 8.0
units from its left (62.0–54.0) and a bottom 4.0 units below its top (17.0–13.0). Because
the pixels that lie on all four sides of the rectangle are considered to be inside it, there’s an
extra pixel in each direction. When the rectangle is filled on-screen, it covers a 9-pixel-by-
5-pixel area.

Because the BRect structure is a basic data type for graphic operations, it’s constructed
more simply than most other Interface Kit classes: All its data members are publicly
accessible, it doesn’t have virtual functions, it doesn’t inherit from BObject or any other
class, and it doesn’t retain class information that it can reveal at run time. Within the
Interface Kit, BRect objects are passed and returned by value.

Data Members

float left The coordinate value of the rectangle’s leftmost side (the
smallestx coordinate in a valid rectangle).

float top The coordinate value of the rectangle’s top (the smallesty
coordinate in a valid rectangle).

float right The coordinate value of the rectangle’s rightmost side (the
largestx coordinate in a valid rectangle).

float bottom The coordinate value of the rectangle’s bottom (the largest
y coordinate in a valid rectangle).

12

13

14

15

16

17

18

52

(54.0, 13.0)

(62.0, 17.0)

5453 55 5656 58 6059 61 6362 6564

BRect Constructor

The Interface Kit –177

Constructor

BRect()
inline BRect(float left, floattop, floatright, floatbottom)
inline BRect(BPoint leftTop, BPointrightBottom)
inline BRect(const BRect&rect)
inline BRect(void)

Initializes a BRect with its four coordinate values—left, top, right, andbottom. The four
values can be directly stated,

BRect rect(11.0, 24.7, 301.5, 99.0);

or they can be taken from two points designating the rectangle’s left top and right bottom
corners,

BPoint leftTop(11.0, 24.7);
BPoint rightBottom(301.5, 99.0);
BRect rect(leftTop, rightBottom);

or they can be copied from another rectangle:

BRect anotherRect(11.0, 24.7, 301.5, 99.0);
BRect rect(anotherRect);

A rectangle that’s not assigned any initial values,

BRect rect;

is constructed to be invalid (its top and left are greater than its right and bottom), until a
specific assignment is made, typically with theSet() function:

rect.Set(77.0, 2.25, 510.8, 393.0);

See also: Set()

Member Functions

Contains()
bool Contains(BPointpoint) const
bool Contains(BRectrect) const

ReturnsTRUE if point—or rect—lies inside the area the BRect defines, andFALSE if not. A
rectangle contains a point even if the point coincides with one of the rectangle’s corners or
lies on one of its edges.

One rectangle contains another if their union is the same as the first rectangle and their
intersection is the same as the second—that is, if the second rectangle lies entirely within

Member Functions BRect

178 – The Interface Kit

the first. A rectangle is considered to be inside another rectangle even if they have one or
more sides in common. Two identical rectangles contain each other.

See also: Intersects(), the& (intersection) and| (union) operators,BPoint::ConstrainTo()

Height() see Width()

InsetBy()
void InsetBy(floathorizontal, floatvertical)
void InsetBy(BPointpoint)

Modifies the BRect by insetting its left and right sides byhorizontal units and its top and
bottom sides byvertical units. (If apoint is passed, itsx coordinate value substitutes for
horizontal and itsy coordinate value substitutes forvertical.)

For example, this code

BRect rect(10.0, 40.0, 100.0, 140.0);
rect.InsetBy(20.0, 30.0);

produces a rectangle identical to one that could be constructed as follows:

BRect rect(30.0, 70.0, 80.0, 110.0);

If horizontal or vertical is negative, the rectangle becomes larger in that dimension, rather
than smaller.

See also: OffsetBy()

IntegerWidth(), IntegerHeight()
inline longIntegerWidth(void) const

inline longIntegerHeight(void) const

These functions return the width and height of the rectangle expressed as integers.
Fractional widths and heights are rounded up to the next whole number.

See also: Width()

BRect Member Functions

The Interface Kit –179

Intersects()
bool Intersects(BRectrect) const

ReturnsTRUE if the BRect has any area—even a corner or part of a side—in common with
rect, andFALSE if it doesn’t.

See also: the& (intersection) operator

IsValid()
inline boolIsValid(void) const

ReturnsTRUE if the BRect’s right side is greater than or equal to its left and its bottom is
greater than or equal to its top, andFALSE otherwise. An invalid rectangle doesn’t
designate any area, not even a line or a point.

LeftBottom() see SetLeftBottom()

LeftTop() see SetLeftTop()

OffsetBy(), OffsetTo()
void OffsetBy(floathorizontal, floatvertical)
void OffsetBy(BPointpoint)

void OffsetTo(BPointpoint)
void OffsetTo(floatx, floaty)

These functions reposition the rectangle in its coordinate system, without altering its size
or shape.

OffsetBy() addshorizontal to the left and right coordinate values of the rectangle and
vertical to its top and bottom coordinates. (If apoint is passed,point.x substitutes for
horizontal andpoint.y for vertical.)

OffsetTo() moves the rectangle so that its left top corner is atpoint—or at (x, y). The
coordinate values of all its sides are adjusted accordingly.

See also: InsetBy()

Member Functions BRect

180 – The Interface Kit

PrintToStream()
void PrintToStream(void) const

Prints the contents of the BRect object to the standard output stream (stdout) in the form:

"BRect(left , top , right , bottom)"

whereleft, top, right, andbottom stand for the current values of the BRect’s data members.

RightBottom() see SetRightBottom()

RightTop() see SetRightTop()

Set()
inline voidSet(float left, floattop, floatright, floatbottom)

Assigns the valuesleft, top, right, andbottom to the BRect’s corresponding data members.
The following code

BRect rect;
rect.Set(0.0, 25.0, 50.0, 75.0);

is equivalent to:

BRect rect;
rect.left = 0.0;
rect.top = 25.0;
rect.right = 50.0;
rect.bottom = 75.0;

See also: the BRect constructor

SetLeftBottom(), LeftBottom()
void SetLeftBottom(const BPointpoint)

inline BPointLeftBottom(void) const

These functions set and return the left bottom corner of the rectangle.SetLeftBottom()
alters the BRect so that its left bottom corner is atpoint, andLeftBottom() returns its
current left and bottom coordinates as a BPoint object.

See also: SetLeftTop(), SetRightBottom(), SetRightTop()

BRect Member Functions

The Interface Kit –181

SetLeftTop(), LeftTop()
void SetLeftTop(const BPointpoint)

inline BPointLeftTop(void) const

These functions set and return the left top corner of the rectangle.SetLeftTop() alters the
BRect so that its left top corner is atpoint, andLeftTop() returns its current left and top
coordinates as a BPoint object.

See also: SetLeftBottom(), SetRightTop(), SetRightBottom()

SetRightBottom(), RightBottom()
void SetRightBottom(const BPointpoint)

inline BPointRightBottom(void) const

These functions set and return the right bottom corner of the rectangle.SetRightBottom()
alters the BRect so that its right bottom corner is atpoint, andRightBottom() returns its
current right and bottom coordinates as a BPoint object.

See also: SetRightTop(), SetLeftBottom(), SetLeftTop()

SetRightTop(), RightTop()
void SetRightTop(const BPointpoint)

inline BPointRightTop(void) const

These functions set and return the right top corner of the rectangle.SetRightTop() alters
the BRect so that its right top corner is atpoint, andRightTop() returns its current right and
top coordinates as a BPoint object.

See also: SetRightBottom(), SetLeftTop(), SetLeftBottom()

Width(), Height()
inline floatWidth(void) const

inline floatHeight(void) const

These functions return the width of the rectangle (the difference between the coordinates
of its left and right sides) and its height (the difference between its top and bottom
coordinates). If either value is negative, the rectangle is invalid.

The width and height of a rectangle are not accurate guides to the number of pixels it
covers on-screen. As illustrated in the “Overview” to this class, a rectangle without

Operators BRect

182 – The Interface Kit

fractional coordinates covers an area that’s one pixel broader than its coordinate width and
one pixel taller than its coordinate height.

See also: IntegerWidth()

Operators

= (assignment)
inline BRect&operator =(const BRect&)

Assigns the data members of one BRect object to another BRect:

BRect a(27.2, 36.8, 230.0, 359.1);
BRect b;
b = a;

Rectangleb is made identical to rectanglea.

== (equality)
bool operator ==(BRect) const

Compares the data members of two BRect objects and returnsTRUE if each one exactly
matches its counterpart in the other object, andFALSE if any of the members don’t match.
In the following example, the equality operator would returnFALSE, since the two objects
have different right boundaries:

BRect a(11.5, 22.5, 66.5, 88.5);
BRect b(11.5, 22.5, 46.5, 88.5);
if (a == b)
 . . .

!= (inequality)
charoperator !=(BRect) const

Compares two BRect objects and returnsTRUE unless their data members match exactly
(the two rectangles are identical), in which case it returnsFALSE. This operator is the
inverse of the== (equality) operator.

BRect Operators

The Interface Kit –183

& (intersection)
BRectoperator &(BRect) const

Returns the intersection of two rectangles—a rectangle enclosing the area they have in
common. The shaded area below shows where the two outlined rectangles intersect.

The intersection is computed by taking the greatest left and top coordinate values of the
two rectangles, and the smallest right and bottom values. In the following example,

BRect a(10.0, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a & b;

rectanglec will be identical to one constructed as follows:

BRect c(35.0, 40.0, 80.0, 65.0);

If the two rectangles don’t actually intersect, the result will be invalid. You can test for
this by calling theIntersects() function on the original rectangles, or by callingIsValid() on
the result.

See also: Intersects(), IsValid(), the| (union) operator

| (union)
BRectoperator |(BRect) const

Returns the union of two rectangles—the smallest rectangle that encloses them both. The
shaded area below illustrates the union of the two outlined rectangles. Note that it
includes areas not in either of them.

Operators BRect

184 – The Interface Kit

The union is computed by selecting the smallest left and top coordinate values from the
two rectangles, and the greatest right and bottom coordinate values. In the following
example,

BRect a(10.0, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a | b;

rectanglec will be identical to one constructed as follows:

BRect c(10.0, 15.0, 95.0, 100.0);

Note that two rectangles will have a valid union even if they don’t intersect.

See also: the& (intersection) operator

The Interface Kit –185

BRegion

Derived from: public BObject

Declared in: <interface/Region.h>

Overview

A BRegion object describes an arbitrary area within a two-dimensional coordinate system.
The area can have irregular boundaries, contain holes, or be discontinuous. It’s
convenient to think of a region as a set of locations or points, rather than as a closed shape
like a rectangle or a polygon.

The points that a region includes can be described by a set of rectangles. Any point that
lies within at least one of the rectangles belongs to the region. You can define a region
incrementally by passing rectangles to functions likeSet(), Include(), andExclude().

BView'sGetClippingRegion() function modifies a BRegion object so that it represents the
current clipping region of the view. A BView can passGetClippingRegion() a pointer to
an empty BRegion,

BRegion temp;
GetClippingRegion(&temp);

then call BRegion’sIntersects() andContains() functions to test whether the potential
drawing it might do falls within the region:

if (temp.Intersects(someRect))
 . . .

Constructor and Destructor

BRegion()
BRegion(const BRegion®ion)
BRegion(void)

Initializes the BRegion object to have the same area as anotherregion—or, if no other
region is specified, to an empty region.

Member Functions BRegion

186 – The Interface Kit

The original BRegion object and the newly constructed one each have their own copies of
the data describing the region. Altering or freeing one of the objects will not affect the
other.

BRegion objects can be allocated on the stack and assigned to other objects:

BRegion regionOne(anotherRegion);
BRegion regionTwo = regionOne;

However, due to their size, it’s more efficient to pass them by pointer rather than by value.

~BRegion
virtual ~BRegion(void)

Frees any memory that was allocated to hold data describing the region.

Member Functions

Contains()
bool Contains(BPointpoint) const

ReturnsTRUE if point lies within the region, andFALSE if not.

Exclude()
void Exclude(BRectrect)
void Exclude(const BRegion *region)

Modifies the region so that it excludes all points contained withinrect or region that it
might have included before.

See also: Include(), IntersectWith()

Frame()
BRectFrame(void) const

Returns the frame rectangle of the BRegion—the smallest rectangle that encloses all the
points within the region.

If the region is empty, the rectangle returned won’t be valid.

See also: BRect::IsValid()

BRegion Member Functions

The Interface Kit –187

Include()
void Include(BRectrect)
void Include(const BRegion *region)

Modifies the region so that it includes all points contained within therect or region passed
as an argument.

See also: Exclude()

IntersectWith()
void IntersectWith(const BRegion *region)

Modifies the region so that it includes only those points that it has in common with another
region.

See also: Include()

Intersects()
bool Intersects(BRectrect) const

ReturnsTRUE if the BRegion has any area in common withrect, andFALSE if not.

MakeEmpty()
void MakeEmpty(void)

Empties the BRegion of all its points. It will no longer designate any area and its frame
rectangle won’t be valid.

See also: the BRegion constructor

OffsetBy()
void OffsetBy(longhorizontal, longvertical)

Offsets all points contained within the region by addinghorizontal to eachx coordinate
value andvertical to eachy coordinate value.

Operators BRegion

188 – The Interface Kit

PrintToStream()
void PrintToStream(void) const

Prints the contents of the BRegion to the standard output stream (stdout) as an array of
strings. Each string describes a rectangle in the form:

"BRect(left , top , right , bottom)"

whereleft, top, right, andbottom are the coordinate values that define the rectangle.

The first string in the array describes the BRegion’s frame rectangle. Each subsequent
string describes one portion of the area included in the BRegion.

See also: BRect::PrintToStream(), Frame()

Set()
void Set(BRectrect)

Modifies the BRegion so that it describes an area identical torect. A subsequent call to
Frame() should return the same rectangle (unless some other change was made to the
region in the interim).

See also: Include(), Exclude()

Operators

= (assignment)
BRegion&operator =(const BRegion&)

Assigns the region described by one BRegion object to another BRegion:

BRegion region = anotherRegion;

After the assignment, the two regions will be identical, but independent, copies of one
another. Each object allocates its own memory to store the description of the region.

The Interface Kit –189

BScrollBar

Derived from: public BView

Declared in: <interface/ScrollBar.h>

Overview

A BScrollBar object displays a scroll bar that users can operate to scroll the contents of
another view, atarget view. Scroll bars usually come in pairs, one horizontal and one
vertical, and are often grouped as siblings of the target view under a common parent. That
way, when the parent is resized, the target and scroll bars can be automatically resized to
match. (A companion class, BScrollView, defines just such a container view; a
BScrollView object sets up the scroll bars for a target view and makes itself the parent of
the target and the scroll bars.)

The Update Mechanism

BScrollBars are different from other views in one important respect: All their drawing
and event handling is carried out within the Application Server, not in the application. A
BScrollBar object doesn’t receiveDraw() or MouseDown() notifications; the Server
intercepts updates and interface messages that would otherwise be reported to the
BScrollBar and handles them itself. As the user moves the knob on a scroll bar or presses
a scroll arrow, the Application Server continuously refreshes the scroll bar’s image on-
screen and informs the application with a steady stream of messages reporting value-
changed events.

The window dispatches these messages by calling the BScrollBar’sValueChanged()
function. Each function call notifies the BScrollBar of a change in its value and,
consequently, of a need to scroll the target view.

Confining the update mechanism for scroll bars to the Application Server limits the
volume of communication between the application and Server and enhances the efficiency
of scrolling. The application’s messages to the Server can concentrate on updating the
target view as its contents are being scrolled, rather than on updating the scroll bars
themselves.

Overview BScrollBar

190 – The Interface Kit

Value and Range

A scroll bar’s value determines what the target view displays. The default assumption is
that the left coordinate value of the target view’s bounds rectangle should match the value
of the horizontal scroll bar, and the top of the target view’s bounds rectangle should match
the value of the vertical scroll bar. When a BScrollBar is notified of a change of value
(through itsValueChanged() function), it scrolls the target view to put the new value at
the left or top of the bounds rectangle.

The value reported in aValueChanged() notification depends on where the user moves
the scroll bar’s knob and on the range of values the scroll bar represents. The range is first
set in the BScrollBar constructor and can be modified by theSetRange() function.

The range must be large enough to bring all the coordinate values where the target view
can draw into its bounds rectangle. If everything the target view can draw is conceived as
being enclosed in a “data rectangle,” the range of a horizontal scroll bar must extend from
a minimum that makes the left side of the target’s bounds rectangle coincide with the left
side of its data rectangle, to a maximum that puts the right side of the bounds rectangle at
the right side of the data rectangle. This is illustrated in part below:

As this illustration helps demonstrate, the maximum value of a horizontal scroll bar can be
no less than the right coordinate value of the data rectangle minus the width of the bounds
rectangle. Similarly, for a vertical scroll bar, the maximum value can be no less than the
bottom coordinate of the data rectangle minus the height of the bounds rectangle. The
range of a scroll bar subtracts the dimensions of the target’s bounds rectangle from its data
rectangle. (The minimum values of horizontal and vertical scroll bars can be no greater
than the left and top sides of the data rectangle.)

What the target view can draw may change from time to time as the user adds or deletes
data. As this happens, the range of the scroll bar should be updated with theSetRange()
function. The range may also need to be recalculated when the target view is resized.

target view’s
data rectangle

target view’s
bounds rectangle

extent of the
bounds rectangle

range of the
horizontal scroll bar

BScrollBar Hook Functions

The Interface Kit –191

Scroll Bar Options

Users have control over some aspects of how scroll bars look and behave. With the
ScrollBar preferences application, they can choose:

• Whether the knob should be a fixed size, or whether it should grow and shrink to
proportionally represent how much of a document (how much of the data rectangle)
is visible within the target view. A proportional knob is the default.

• Whether double, bidirectional scroll arrows should appear on each end of the scroll
bar, or whether each end should have only a single, unidirectional arrow. Double
arrows are the default.

• Which of three patterns should appear on the knob.

• What the size of the knob should be—the minimum length of a proportional knob or
the fixed length of a knob that’s not proportional. The default length is 15 pixels.

When this class constructs a new BScrollBar, it conforms the object to the choices the user
has made.

See also: set_scroll_bar_info(), BView::ScrollBar(), the BScrollView class

Hook Functions

ValueChanged() Scrolls the target view when the BScrollBar is informed
that its value has changed; can be implemented to alter the
default interpretation of the scroll bar’s value.

Constructor and Destructor

BScrollBar()
BScrollBar(BRectframe, const char *name, BView *target,

longmin, longmax, orientationposture)

Initializes the BScrollBar and connects it to thetarget view that it will scroll. It will be a
horizontal scroll bar ifposture is B_HORIZONTAL and a vertical scroll bar ifposture is
B_VERTICAL.

The range of values that the scroll bar can represent at the outset is set bymin andmax.
These values should be calculated from the boundaries of a rectangle that encloses the
entire contents of the target view—everything that it can draw. Ifmin andmax are both 0,
the scroll bar is disabled and the knob is not drawn.

Member Functions BScrollBar

192 – The Interface Kit

The object’s initial value is 0 < even if that falls outside the range set for the scroll bar >.

The other arguments,frame andname, are the same as for other BViews:

• Theframe rectangle locates the scroll bar within its parent view. For consistency in
the user interface, a horizontal scroll bar should beB_H_SCROLL_BAR_HEIGHT
coordinate units high, and a vertical scroll bar should beB_V_SCROLL_BAR_WIDTH
units wide.

• The BScrollBar’sname identifies it and permits it to be located by theFindView()
function. It can beNULL.

Unlike other BViews, the BScrollBar constructor doesn’t set an automatic resizing mode.
By default, scroll bars have the resizing behavior that befits their posture—horizontal
scroll bars resize themselves horizontally (as if they had a resizing mode that combined
B_FOLLOW_LEFT_RIGHT with B_FOLLOW_BOTTOM) and vertical scroll bars resize
themselves vertically (as if their resizing mode combinedB_FOLLOW_TOP_BOTTOM with
B_FOLLOW_RIGHT).

~BScrollBar()
virtual ~BScrollBar(void)

Disconnects the scroll bar from its target.

Member Functions

GetRange() see SetRange()

GetSteps() see SetSteps()

Orientation()
inline orientationOrientation(void) const

ReturnsHORIZONTAL if the object represents a horizontal scroll bar andVERTICAL if it
represents a vertical scroll bar.

See also: the BScrollBar constructor

BScrollBar Member Functions

The Interface Kit –193

SetProportion(), Proportion()
void SetProportion(float ratio)

float Proportion(void) const

These functions set and return a value between 0.0 and 1.0 that represents the proportion
of the entire document that can be displayed within the target view—the ratio of the width
(or height) of the target’s bounds rectangle to the width (or height) of its data rectangle.
This ratio determines the size of a proportional scroll knob relative to the whole scroll bar.
It’s not adjusted to take into account the minimum size of the knob.

The proportion should be reset as the size of the data rectangle changes (as data is entered
and removed from the document) and when the target view is resized.

SetRange(), GetRange()
void SetRange(longmin, longmax)

void GetRange(long *min, long *max) const

These functions modify and return the range of the scroll bar.SetRange() sets the
minimum and maximum values of the scroll bar tomin andmax. GetRange() places the
current minimum and maximum in the variables thatmin andmax refer to.

If the scroll bar’s current value falls outside the new range, it will be reset to the closest
value—eithermin or max—within range.ValueChanged() is called to inform the
BScrollBar of the change whether or not it’s attached to a window.

If the BScrollBar is attached to a window, any change in its range will be immediately
reflected on-screen. The knob will move to the appropriate position to reflect the current
value.

Setting both the minimum and maximum to 0 disables the scroll bar. It will be drawn
without a knob.

See also: the BScrollBar constructor

SetSteps(), GetSteps()
void SetSteps(longsmallStep, longbigStep)

void GetSteps(long *smallStep, long *bigStep) const

SetSteps() sets how much a single user action should change the value of the scroll bar—
and therefore how far the target view should scroll.GetSteps() provides the current
settings.

When the user presses one of the scroll arrows at either end of the scroll bar, its value
changes by asmallStep. When the user clicks in the bar itself (other than on the knob), it

Member Functions BScrollBar

194 – The Interface Kit

changes by abigStep. For an application that displays text, the small step of a vertical
scroll bar should be large enough to bring another line of text into view.

The default small step is 1, which should be too small for most purposes; the default large
step is 10, which is also probably too small.

< Currently, a BScrollBar’s steps can be successfully set only after it’s attached to a
window. >

See also: ValueChanged()

SetTarget(), Target()
void SetTarget(BView *view)
void SetTarget(const char *name)

inline BView *Target(void) const

These functions set and return the target of the BScrollBar, the view that the scroll bar
scrolls. SetTarget() sets the target toview, or to the BView identified byname. Target()
returns the current target view. The target can also be set when the BScrollBar is
constructed.

SetTarget() can be called either before or after the BScrollBar is attached to a window. If
the target is set byname, the named view must eventually be found within the same
window as the scroll bar. Typically, the target and its scroll bars are children of a container
view that serves to bind them together as a unit.

See also: the BScrollBar constructor,ValueChanged(), BView::ScrollBar()

SetValue(), Value()
void SetValue(longvalue)

long Value(void) const

These functions modify and return the value of the scroll bar. The value is usually set as
the result of user actions;SetValue() provides a way to do it programmatically.Value()
returns the current value, whether set bySetValue() or by the user.

SetValue() assigns a newvalue to the scroll bar and calls theValueChanged() hook
function, whether or not the new value is really a change from the old. If thevalue passed
lies outside the range of the scroll bar, the BScrollBar is reset to the closest value within
range—that is, to either the minimum or the maximum value previously specified.

If the scroll bar is attached to a window, changing its value updates its on-screen display.
The call toValueChanged() enables the object to scroll the target view so that it too is
updated to conform to the new value.

BScrollBar Member Functions

The Interface Kit –195

The initial value of a scroll bar is 0.

See also: ValueChanged(), SetRange()

Target() see SetTarget()

Value() see SetValue()

ValueChanged()
virtual voidValueChanged(longnewValue)

Responds to a notification that the value of the scroll bar has changed tonewValue. For a
horizontal scroll bar, this function interpretsnewValue as the coordinate value that should
be at the left side of the target view’s bounds rectangle. For a vertical scroll bar, it
interpretsnewValue as the coordinate value that should be at the top of the rectangle. It
callsScrollTo() to scroll the target view’s contents accordingly.

ValueChanged() does nothing if a target BView hasn’t been set—or if the target has been
set by name, but the name doesn’t correspond to an actual BView within the scroll bar’s
window.

Derived classes can override this function to interpretnewValue differently, or to do
something in addition to scrolling the target view.

ValueChanged() is called as the result both of value-changed messages received from the
Application Server and ofSetValue() andSetRange() function calls within the application.

See also: SetTarget()

Member Functions BScrollBar

196 – The Interface Kit

The Interface Kit –197

BScrollView

Derived from: public BView

Declared in: <interface/ScrollView.h>

Overview

A BScrollView object is a container for another view, atarget view, typically a view that
can be scrolled. The BScrollView creates and positions the scroll bars the target view
needs and makes itself the parent of the scroll bars and the target view. It’s a convenient
way to set up scroll bars for another view.

If requested, the BScrollView draws a one-pixel wide black border around its children.
Otherwise, it does no drawing and simply contains the family of views it set up.

TheScrollBar() function provides access to the scroll bars the BScrollView creates, so you
can set their ranges and values as needed.

Constructor and Destructor

BScrollView()
BScrollView(const char *name, BView *target,

ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= 0,
boolhorizontal = FALSE,
boolvertical= FALSE,
boolbordered= TRUE)

Initializes the BScrollView. It will have a frame rectangle large enough to contain the
target view and any scroll bars that are requested. Ifhorizontal is TRUE, there will be a
horizontal scroll bar. Ifvertical is TRUE, there will be a vertical scroll bar. Scroll bars are
not provided unless you ask for them.

If bordered is TRUE, as it is by default, the frame rectangle will also be large enough to
draw a narrow black border around the target view and scroll bars. A BScrollView can be
used without scroll bars to simply contain and border the target view.

The BScrollView adapts its frame rectangle from the frame rectangle of the target view. It
positions itself so that its left and top sides are exactly where the left and top sides of the

Member Functions BScrollView

198 – The Interface Kit

target view originally were. It then adds the target view as its child along with any
requested scroll bars. In the process, it modifies the target view’s frame rectangle (but not
its bounds rectangle) so that it will fit within its new parent.

If the resize mode of the target view isB_FOLLOW_ALL_SIDES, it and the scroll bars will be
automatically resized to fill the container view whenever the container view is resized.

The scroll bars created by the BScrollView have an initial range extending from a
minimum of 0 to a maximum of 1000. You’ll generally need to ask for the scroll bars
(using theScrollBar() function) and set their ranges to more appropriate values.

Thename, resizeMode, andflags arguments are identical to those declared in the BView
class and are passed unchanged to the BView constructor.

See also: the BView constructor

~BScrollView()
virtual ~BScrollView(void)

Does nothing.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Resizes scroll bars belonging to BScrollViews that occupy the right bottom corner of a
document window (B_DOCUMENT_WINDOW) so that room is left for the resize knob. This
function assumes that vertical scroll bars areB_V_SCOLL_BAR_WIDTH units wide and
horizontal scroll bars areB_H_SCROLL_BAR_HEIGHT units high. It doesn’t check to make
sure the window is actually resizable.

See also: BView::AttachedToWindow()

Draw()
virtual voidDraw(BRectupdateRect)

Draws a one-pixel wide black border around the target view and scroll views, provided the
bordered flag wasn’t set toFALSE in the BScrollView constructor.

See also: the BScrollView constructor,BView::Draw()

BScrollView Member Functions

The Interface Kit –199

IsBordered() see SetBordered()

ScrollBar()
BScrollBar *ScrollBar(orientationposture) const

Returns the horizontal scroll bar ifposture is B_HORIZONTAL and the vertical scroll bar if
posture is B_VERTICAL. If the BScrollView doesn’t contain a scroll bar with the requested
orientation, this function returnsNULL.

See also: the BScrollBar class

SetBordered(), IsBordered()
virtual voidSetBordered(boolbordered)

inline boolIsBordered(void) const

SetBordered() determines whether a narrow black border will be drawn around the edge of
the view. Calling this function is equivalent to passing abordered flag to the BScrollView
constructor.Bordered() returns the current flag.

See also: the BScrollView constructor

Member Functions BScrollView

200 – The Interface Kit

The Interface Kit –201

BSeparatorItem

Derived from: public BMenuItem

Declared in: <interface/MenuItem.h>

Overview

A BSeparatorItem is a menu item that serves only to separate the items that precede it in
the menu list from the items that follow it. It’s drawn as a horizontal line across the menu
from the left border to the right. Although it has an indexed position in the menu list just
like other items, it doesn’t have a label, can’t be selected, posts no messages, and is
permanently disabled.

Since the separator is drawn horizontally, it’s assumed that items in the menu are arranged
in a column, as they are by default. It’s inappropriate to use a separator in a menu bar or
another menu where the items are arranged in a row.

A separator can be added to a BMenu by constructing an object of this class and calling
BMenu’sAddItem() function. As a shorthand, you can simply call BMenu’s
AddSeparatorItem() function, which constructs the object for you and adds it to the list.

A BSeparatorItem that’s returned to you (by BMenu’sItemAt() function, for example) will
always respondNULL to Message(), Command(), andSubmenu() queries andFALSE to
IsEnabled().

See also: BMenu::AddSeparatorItem()

Constructor and Destructor

BSeparatorItem()
BSeparatorItem(void)

Initializes the BSeparatorItem and disables it.

~BSeparatorItem()
virtual ~BSeparatorItem(void)

Does nothing.

Member Functions BSeparatorItem

202 – The Interface Kit

Member Functions

Draw()
protected:

virtual voidDraw(void)

Draws the item as a horizontal line across the width of the menu.

GetContentSize()
protected:

virtual voidGetContentSize(float *width, float *height)

Provides a minimal size for the item so that it won’t constrain the size of the menu.

SetEnabled()
virtual voidSetEnabled(boolflag)

Does nothing. A BSeparatorItem is disabled when it’s constructed and must stay that way.

The Interface Kit –203

BStringView

Derived from: public BView

Declared in: <interface/StringView.h>

Overview

A BStringView object draws a static character string. The user can’t select the string or
edit it; a BStringView doesn’t respond to user actions. An instance of this class can be
used to draw a label or other text that simply delivers a message of some kind to the user.
Use a BTextView object for selectable and editable text.

You can also draw strings by calling BView’sDrawString() function. However, assigning
a string to a BStringView object locates it in the view hierarchy. The string will be
updated automatically, just like other views. And, by setting the resizing mode of the
object, you can make sure that it will be positioned properly when the window or the view
it’s in (the parent of the BStringView) is resized.

Constructor and Destructor

BStringView()
BStringView(BRectframe, const char *name, const char *text,

ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW)

Initializes the BStringView by assigning it atext string, theB_OP_OVER drawing mode,
and the Erich bitmap font. These last two values are cached and communicated to the
Application Server when the BStringView is attached to a window.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class. They’re passed unchanged to the BView constructor.

Theframe rectangle needs to be large enough to display the entire string in the current
font. The string is drawn at the bottom of the frame rectangle and, by default, is aligned to
the left side. A different horizontal alignment can be set by callingSetAlignment().

See also: SetAlignment()

Member Functions BStringView

204 – The Interface Kit

~BStringView()
virtual ~BStringView(void)

Frees the text string.

Member Functions

Alignment() see SetAlignment()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the string along the bottom of the BStringView’s frame rectangle in the current
high color.

See also: BView::Draw()

SetAlignment(), Alignment()
void SetAlignment(alignmentflag)

inline alignmentAlignment(void) const

These functions align the string within the BStringView’s frame rectangle and return the
current alignment. The alignmentflag can be:

B_ALIGN_LEFT The string is aligned at the left side of the frame
rectangle.

B_ALIGN_RIGHT The string is aligned at the right side of the frame
rectangle.

B_ALIGN_CENTER The string is aligned so that the center of the string falls
midway between the left and right sides of the frame
rectangle.

The default isB_ALIGN_LEFT.

BStringView Member Functions

The Interface Kit –205

SetText(), Text()
void SetText(const char *string)

inline const char *Text(void) const

These functions set and return the text string that the BStringView draws.SetText() frees
the previous string and copiesstring to replace it.Text() returns the null-terminated string.

Member Functions BStringView

206 – The Interface Kit

The Interface Kit –207

BTextControl

Derived from: public BControl

Declared in: <interface/TextControl.h>

Overview

A BTextControl object displays a labeled text field that behaves like other control devices.
When the user takes certain key actions after modifying the text in the field, it posts a
message to a designated target.

There are two parts to the view: A static label on the left, which the user cannot modify,
and an editable field on the right, which behaves just like a one-line BTextView. In fact,
the BTextControl installs a BTextView object as its child to handle editing chores within
this part of the view. It’s this child view that responds to events for the BTextControl
rather than the control object itself.

The child BTextView must become the focus view for the window before the user can
enter or edit text in the field. If the user modifies the contents of the field and then causes
the child to cease being the focus view, the BTextControl posts a copy of its model
message to its target, just like any other BControl object when it’s invoked. The message
notifies the target that the user has finished making changes to the text. (It doesn’t matter
what causes the change in focus—a click in another text field, for example, or aB_TAB
character that navigates to another view.)

The message is also posted when the user types aB_ENTER character, though this doesn’t
change the focus view. It selects all the text in the field.

You can also arrange for another message—a “modification message”—to be posted when
the user makes the first change to the text after the child BTextView has become the focus
view (or afterB_ENTER caused all the text to be selected).

Because the label is drawn by the BTextControl itself and the editable text is drawn by its
child BTextView, you can assign different properties (color or font, for example) to each
string. The BTextControl has only one child, soChildAt() returns it when passed an index
of 0.

Constructor and Destructor BTextControl

208 – The Interface Kit

Constructor and Destructor

BTextControl()
BTextControl(BRectframe, const char *name,

const char *label, const char *text,
BMessage *message,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BTextControl by assigning it alabel and sometext, both of which can be
NULL. If the label is NULL, the text can fill the bounds rectangle. Otherwise, half the view
is assigned to the label and half to the text, though the exact proportion can be changed by
theSetDivider() function. The label always is on the left and the text always on the right.
By default, both label and text are aligned at the left margins of their respective sections;
call SetAlignment() to alter the alignment.

Themessage parameter is the same as the one declared for the BControl constructor. It
establishes a model for the messages the BTextControl will send when it’s invoked. It can
beNULL. SeeSetMessage(), SetTarget(), andInvoke() in the BControl class for more
information.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class and are passed up the inheritance hierarchy to the BView constructor
without change.

See also: SetDivider(), SetAlignment(), BControl::SetMessage(), BControl::SetTarget(),
BControl::Invoke()

~BTextControl()
virtual ~BTextControl(void)

Frees memory allocated by the BTextControl and its BTextView child.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version ofAttachedToWindow() to make the background color of
the BTextControl the same as the background color of its parent and to set up its child
BTextView.

See also: BView::AttachedToWindow(), BControl::AttachedToWindow()

BTextControl Member Functions

The Interface Kit –209

Divider() see SetDivider()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the label. (The BTextControl defers to its child BTextView to draw the editable
text string.)

See also: BView::Draw()

GetAlignment() see SetAlignment()

Label() see SetLabel()

MakeFocus()
virtual voidMakeFocus(boolflag = TRUE)

Passes theMakeFocus() instruction on to the child BTextView. If theflag is TRUE, this
function selects all the text in the child BTextView, which becomes the new focus view for
the window. If theflag is FALSE, the child will no longer be the focus view. If the text has
changed when the child ceases to be the focus view, the BTextControl is considered to
have been invoked; a copy of its model message is posted so that it will be delivered to the
target handler.

Note that the BTextControl itself never becomes the focus view, so will returnFALSE to all
IsFocus() queries.

See also: BView::MakeFocus()

ModificationMessage() see SetModificationMessage()

MouseDown()
virtual voidMouseDown(BPointpoint)

Does nothing. The child BTextView handles the job of responding to the user.

See also: BTextView::MouseDown()

Member Functions BTextControl

210 – The Interface Kit

SetAlignment(), GetAlignment()
virtual voidSetAlignment(alignmentforLabel, alignmentforText)

void GetAlignment(alignment *forLabel, alignment *forText) const

These functions set and report the alignment of the label and the text within their
respective portions of the view. Three settings are possible:

B_ALIGN_LEFT The label or text is aligned at the left boundary of its part
of the view rectangle.

B_ALIGN_RIGHT The label or text is aligned at the right boundary of its
part of the view rectangle.

B_ALIGN_CENTER The label or text is centered within its part of the view
rectangle.

The default alignment isB_ALIGN_LEFT for both label and text.

See also: SetDivider()

SetDivider(), Divider()
virtual voidSetDivider(floatxCoordinate)

float Divider(void) const

These functions set and return thex coordinate value that marks the division between the
label portion of the view rectangle on the left and the text portion on the right. It’s stated
in the coordinate system of the BTextControl.

See also: the BTextControl constructor

SetEnabled()
virtual voidSetEnabled(boolenabled)

Disables the BTextControl if theenabled flag isFALSE, and reenables it ifenabled is TRUE.
BTextControls are enabled by default.

This function augments the BControl version ofSetEnabled(). When the control is
disabled, it makes the text unselectable (and therefore uneditable) and draws it in a way
that displays its disabled state. When the control is re-enabled, it makes the text editable
(and therefore selectable) and draws it as normal text.

See also: BControl::SetEnabled()

BTextControl Member Functions

The Interface Kit –211

SetLabel(), Label()
virtual voidSetLabel(const char *text)

const char *Label(void) const

These functions set and return the label displayed by the BTextControl. The label is first
set by the constructor.

SetModificationMessage(), ModificationMessage()
virtual voidSetModificationMessage(BMessage *message)

BMessage *ModificationMessage(void) const

These functions set and return the message that the BTextControl posts when the user
begins to enter or edit text.

SetModificationMessage() assignsmessage to the BTextControl, freeing the message
previously assigned, if any. The message becomes the responsibility of the BTextControl
object and will be freed only when it’s replaced by another message or the BTextControl is
freed; you shouldn’t free it yourself. Passing aNULL pointer to this function deletes the
current modification message without replacing it.

The assigned BMessage becomes the model for the message that the BTextControl posts
when the user first modifies the text after the child BTextView has become the focus view
(or after the user pressed the Enter key). The message is sent only for the first character
the user types, pastes, or deletes. Subsequent changes don’t invoke the message, until
after the user presses the Enter key to select all the text or after the child BTextView loses
focus view status and regains it again.

Before posting the message, the BTextControl adds two data entries to the copy:

Data name Type code Description

“when” B_DOUBLE_TYPE When the user modified the text, as
measured in microseconds since the
machines was last booted.

“source” B_OBJECT_TYPE A pointer to the BTextControl object.

These names should not be used for any data that you place in the modelmessage.

ModificationMessage() returns the model message.

Member Functions BTextControl

212 – The Interface Kit

SetText(), Text()
virtual voidSetText(const char *text)

const char *Text(void) const

These functions set and return the text displayed by the BTextControl—or rather by its
child BTextView. The text is first set by the constructor.

The Interface Kit –213

BTextView

Derived from: public BView

Declared in: <interface/TextView.h>

Overview

The BTextView class defines a view that displays text on-screen and supports a standard
user interface for entering, selecting, and editing text from the keyboard and mouse. It
also supports the principal editing commands—Cut, Copy, Paste, Delete, and Select All.

BTextView objects are suitable for displaying small amounts of text in the user interface
and for creating textual data in ASCII format. Full-scale text editors and word processors
will need to define their own objects to handle richer data formats.

A BTextView displays all its text in a single font, the font that it inherits as a BView
graphics parameter. Multiple fonts are not supported. Paragraph properties—such as
alignment and tab widths—are similarly uniform for all text displayed within the view.

Resizing

A BTextView can be made to resize itself to exactly fit the text that the user enters. This is
sometimes appropriate for small one-line text fields. See theMakeResizable() function.

Shortcuts and Menu Items

When a BTextView is the focus view for its window, it responds to these standard
keyboard shortcuts for cutting, copying, and pasting text:

• Command-x to cut text and copy it to the clipboard,
• Command-c to copy text without cutting it, and
• Command-v to paste text taken from the clipboard.

These shortcuts work even in the absence of Cut, Copy, and Paste menu items; they’re
implemented by the BWindow for any view that might be the focus view. All the focus
view has to do is cooperate, as a BTextView does, by handling the messages the shortcuts
generate.

Overview BTextView

214 – The Interface Kit

The only trick is to set up menu items that are compatible with the shortcuts. Follow these
guidelines if you put a menu with editing commands in a window that has a BTextView:

• Create Cut, Copy, and Paste menu items and assign them the Command-x,
Command-c, and Command-v shortcuts.

• Assign the items modelB_CUT, B_COPY andB_PASTE messages. These messages
don’t need to contain any information (other than awhat data member initialized to
the proper constant).

• Target the messages to the BWindow’s focus view (or directly to the BTextView).
No changes to the BTextView are necessary. When it gets these messages, the
BTextView calls itsCut(), Copy(), andPaste() functions.

You can also set up menu items that trigger calls to other BTextView editing and layout
functions. Simply create menu items like Select All or Align at Left that are targeted to
the focus view of the window where the BTextView is located, or to the BTextView itself.
The model messages assigned to these items can be structured with whatever command
constants and data entries you wish; the BTextView class imposes no constraints.

Then, in a class derived from BTextView, implement aMessageReceived() function that
responds to messages posted from the menu items by calling BTextView functions like
SelectAll() andSetAlignment(). For example:

void myText::MessageReceived(BMessage *message)
{
 switch (message->what) {
 case SELECT_ALL:
 SelectAll();
 break;
 case ALIGN_AT_LEFT:
 SetAlignment(B_ALIGN_LEFT);
 break;
 case ALIGN_AT_RIGHT:
 SetAlignment(B_ALIGN_RIGHT);
 break;
 . . .
 default:
 BTextView::MessageReceived(message);
 break;
 }
}

TheMessageReceived() function you implement should be sure to call BTextView’s
version of the function, which already handlesB_CUT, B_COPY, andB_PASTE messages.

BTextView Hook Functions

The Interface Kit –215

Newlines and Carriage Returns

A BTextView object treats newline characters (‘\n’, 0x0a) and carriage return characters
(‘\r’, 0x0d) alike. It converts received return characters into newlines and stores them
only as newlines. By default, none of keys on the BeBox is mapped to a carriage return.
TheB_ENTER character is a newline.

Hook Functions

AcceptsChar() Can be implemented to preview the characters the user
types and either accept or reject them before they’re added
to the display.

BreaksAtChar() Breaks word selection on spaces, tabs, and other invisible
characters, permitting all adjacent visible characters to be
selected when the user double-clicks a word. This function
can be augmented to break word selection on other
characters in addition to the invisible ones.

Constructor and Destructor

BTextView()
BTextView(BRectframe, const char *name, BRecttextRect,

ulongresizingMode, ulongflags)

Initializes the BTextView to theframe rectangle, stated in its eventual parent’s coordinate
system, assigns it an identifyingname, sets its resizing behavior toresizingMode and its
drawing behavior withflags. These four arguments—frame, name, resizingMode, and
flags—are identical to those declared for the BView class and are passed unchanged to the
BView constructor.

The text rectangle,textRect, is stated in the BTextView’s coordinate system. It determines
where text in placed within the view’s bounds rectangle:

• The first line of text is placed at the top of the text rectangle. As additional lines of
text are entered into the view, the text grows downward and may actually extend
beyond the bottom of the rectangle.

• The left and right sides of the text rectangle determine where lines of text are placed
within the view. Lines can be aligned to either side of the rectangle, or they can be
centered between the two sides. See theSetAlignment() function.

• When lines wrap on word boundaries, the width of the text rectangle determines the
maximum length of a line; each line of text can be as long as the rectangle is wide.

Member Functions BTextView

216 – The Interface Kit

When word wrapping isn’t turned on, lines can extend beyond the boundaries of the
text rectangle. See theSetWordWrap() function.

The bottom of the text rectangle is ignored; it doesn’t limit the amount of text the view can
contain. The text can be limited by the number of characters, but not by the number of
lines.

The constructor establishes the following default properties for a new BTextView:

• The text is left-aligned.
• The tab width is 44.0 coordinate units.
• Automatic indenting and word wrapping are turned off.
• The text is selectable and editable.
• All characters the user may type are acceptable.

A BTextView isn’t fully initialized until it’s assigned to a window and it receives an
AttachedToWindow() notification.

See also: AttachedToWindow(), the BView constructor

~BTextView()
virtual ~BTextView(void)

Frees the memory the BTextView allocated to hold the text and to store information about
it.

Member Functions

AcceptsChar()
virtual boolAcceptsChar(ulongaChar) const

Implemented by derived classes to returnTRUE if aChar designates a character that the
BTextView can add to its text, andFALSE if not. By returningFALSE, this function prevents
the character from being displayed or retained by the object.

AcceptsChar() is called for every character the user types (including those, like
B_BACKSPACE andB_RIGHT_ARROW, that are used for editing the text). The default
version of this function always returnsTRUE, but it can be overridden in a derived class to
restrict the text the user can enter. For example, a BTextView might reject uppercase
letters, or permit only numbers, or allow only those characters that are valid in a
pathname.

Sometimes, a character will be meaningful and trigger a response of some kind, even
though it can’t be displayed. For example, aB_TAB (0x09) might be rejected as a character
to display, and instead shift the selection to another text field. Similarly, a BTextView that

BTextView Member Functions

The Interface Kit –217

has room to display only a single line of text might returnFALSE for the newline character
(B_ENTER, 0x0a), yet take the occasion to simulate a click on a button.

When rejecting a character outright (not using it to take some other action), an application
has an obligation to explain to the user why the character is unacceptable, perhaps by
displaying an alert panel or dialog box.

As an alternative to implementing anAcceptsChar() function, you can simply inform the
BTextView at the outset that certain characters should not be allowed. Call
DisallowChar() when setting up the BTextView to tell it which characters won’t be
acceptable.

See also: KeyDown(), DisallowChar()

Alignment() see SetAlignment()

AllowChar() see DisallowChar()

AttachedToWindow()
virtual voidAttachedToWindow(void)

Completes the initialization of the BTextView object after it becomes attached to a
window. This function sets up the object so that it can correctly format text and display it.
It makes sure that all properties that were previously set—for example, word wrapping,
tab width, and alignment—are correctly reflected in the display on-screen. In addition, it
callsSetFontName() andSetFontSize() to set the font to the 9.0-point Erich bitmap font
(no rotation, 90° shear).

Because the BTextView uses pulses to animate (or “blink”) the caret, the vertical line that
marks the current insertion point, it enables pulsing in the window and fixes the pulse rate
at 2 per second (once every 500,000 microseconds).

This function is called for you when the BTextView becomes part a window’s view
hierarchy; you shouldn’t call it yourself, though you can override it to set a different
default font and do other graphics initialization. For more information on when it’s called,
see the BView class.

An AttachedToWindow() function that’s implemented by a derived class should begin by
incorporating the BTextView version:

void MyText::AttachedToWindow()
{
 BTextView::AttachedToWindow()
 . . .
}

Member Functions BTextView

218 – The Interface Kit

If it doesn’t, the BTextView won’t be able to properly display the text.

See also: BView::AttachedToWindow(), SetFontName()

BreaksAtChar()
virtual boolBreaksAtChar(ulongaChar) const

Implemented by derived classes to returnTRUE if theaChar character can break word
selection, andFALSE if it cannot. The BTextView class calls this function when the user
selects a word by double-clicking it. A return ofTRUE means that the character breaks the
selection—it cannot be selected as part of the word. A return ofFALSE means that the
character will be included in the selected word.

By default,BreaksAtChar() returnsTRUE if the character is aB_SPACE (0x20), a
B_TAB (0x09), a newline (B_ENTER, 0x0a), or some other character with an ASCII value
less than that of a space, andFALSE otherwise.

It can be reimplemented to add hyphens to the list of characters that break word selection,
as follows:

bool MyTextView::BreaksAtChar(ulong someChar)
{
 if (someChar == '-')
 return TRUE;
 return BTextView::BreaksAtChar(someChar);
}

See also: Text()

CharAt() see Text()

Copy()
virtual voidCopy(BClipboard *clipboard)

Copies the current selection to the clipboard. Theclipboard argument is identical to the
globalbe_clipboard object.

See also: Paste(), Cut()

CountLines() see GoToLine()

CurrentLine() see GoToLine()

BTextView Member Functions

The Interface Kit –219

Cut()
virtual voidCut(BClipboard *clipboard)

Copies the current selection to the clipboard, deletes it from the BTextView’s text, and
removes it from the display. Theclipboard argument is identical to the global
be_clipboard object.

See also: Paste(), Copy()

Delete()
void Delete(void)

Deletes the current selection from the BTextView’s text and removes it from the display,
without copying it to the clipboard.

See also: Cut()

DisallowChar(), AllowChar()
void DisallowChar(ulongaChar)

void AllowChar(ulongaChar)

These functions inform the BTextView whether the user should be allowed to enteraChar
into the text. By default, all characters are allowed. CallDisallowChar() for each
character you want to prevent the BTextView from accepting, preferably when first setting
up the object.

AllowChar() reverses the effect ofDisallowChar().

Alternatively, and for more control over the context in which characters are accepted or
rejected, you can implement anAcceptsChar() function for the BTextView.
AcceptsChar() is called for each key-down event that’s reported to the object.

See also: AcceptsChar()

DoesAutoindent() see SetAutoindent()

DoesWordWrap() see SetWordWrap()

Member Functions BTextView

220 – The Interface Kit

Draw()
virtual voidDraw(BRectupdateRect)

Draws the text on-screen. The Interface Kit calls this function for you whenever the text
display needs to be updated—for example, whenever the user edits the text, enters new
characters, or scrolls the contents of the BTextView.

See also: BView::Draw()

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Overrides the BView version of this function to reset the ranges of the BTextView’s scroll
bars and to update the sizes of their proportional knobs whenever the size of the
BTextView changes.

See also: BView::FrameResized()

GetSelection()
void GetSelection(long *start, long *finish)

Provides the current selection by writing the offset before the first selected character into
the variable referred to bystart and the offset after the last selected character into the
variable referred to byfinish. If no characters are selected, both offsets will record the
position of the current insertion point.

The offsets designate positions between characters. The position at the beginning of the
text is offset 0, the position between the first and second characters is offset 1, and so on.
If the 175th through the 202nd characters were selected, thestart offset would be 174 and
thefinish offset would be 202.

If the text isn’t selectable, both offsets will be 0.

See also: Select()

GetText() see Text()

BTextView Member Functions

The Interface Kit –221

GoToLine(), CountLines(), CurrentLine()
void GoToLine(long index)

long CurrentLine(void) const

inline longCountLines(void) const

GoToLine() moves the insertion point to the beginning of the line atindex. The first line
has an index of 0, the second line an index of 1, and so on. If theindex is out-of-range, the
insertion point is moved to the beginning of the line with the nearest in-range index—that
is, to either the first or the last line.

CurrentLine() returns the index of the line where the first character of the selection—or the
character following the insertion point—is currently located.

CountLines() returns how many lines of text the BTextView currently contains.

Like other functions that change the selection,GoToLine() doesn’t automatically scroll the
display to make the new selection visible. CallScrollToSelection() to be sure that the user
can see the start of the selection.

See also: ScrollToSelection()

Highlight()
void Highlight(longstart, longfinish)

Highlights the characters fromstart throughfinish, wherestart andfinish are the same sort
of offsets into the text array as are passed toSelect().

Highlight() is the function that the BTextView calls to highlight the current selection. You
don’t need to call it yourself for this purpose. It’s in the public API just in case you may
need to highlight a range of text in some other circumstance.

See also: Select()

IndexAtPoint()
long IndexAtPoint(BPointpoint) const
long IndexAtPoint(floatx, floaty) const

Returns the index of the character displayed closest topoint—or (x, y)—in the
BTextView’s coordinate system. The first character in the text array is at index 0.

If the point falls after the last line of text, the return value is the index of the last character
in the last line. If the point falls before the first line of text, or if the BTextView doesn’t
contain any text, the return value is 0.

See also: Text()

Member Functions BTextView

222 – The Interface Kit

Insert()
void Insert(const char *text, long length)
void Insert(const char *text)

Insertslength characters oftext—or if a length isn’t specified, all the characters of thetext
string up to the null character that terminates it—at the beginning of the current selection.
The current selection is not deleted and the insertion is not selected.

See also: SetText()

IsEditable() see MakeEditable()

IsSelectable() see MakeSelectable()

KeyDown()
virtual voidKeyDown(ulongaChar)

Enters text at the current selection in response to the user’s typing. This function is called
from the window’s message loop for every report of a key-down event—once for every
character the user types. However, it does nothing unless the BTextView is the focus view
and the text it contains is editable.

If aChar is one of the arrow keys (B_UP_ARROW, B_LEFT_ARROW, B_DOWN_ARROW, or
B_RIGHT_ARROW), KeyDown() moves the insertion point in the appropriate direction. If
aChar is theB_BACKSPACE character, it deletes the current selection (or one character at
the current insertion point). Otherwise, it checks whether the character was registered as
unacceptable (byDisallowChar()) and it calls theAcceptsChar() hook function to give the
application a chance to reject the character or handle it in some other way. If the character
isn’t disallowed andAcceptsChar() returnsTRUE, it’s entered into the text and displayed.

See also: BView::KeyDown(), AcceptsChar(), DisallowChar()

LineHeight()
inline floatLineHeight(void) const

Returns the height of a single line of text, as measured from the baseline of one line of
single-spaced text to the baseline of the line above or below it.

The height is stated in coordinate units and depends on the current font. It’s the sum of
how far characters can ascend above and descend below the baseline, plus the amount of
leading that separates lines.

See also: BView::GetFontInfo()

BTextView Member Functions

The Interface Kit –223

LineWidth()
float LineWidth(long index = 0) const

Returns the width of the line atindex—or, if no index is given, the width of the first line.
The value returned is the sum of the widths (in coordinate units) of all the characters in the
line, from the first through the last, including tabs and spaces.

Line indices begin at 0.

If the index passed is out-of-range, it’s reinterpreted to be the nearest in-range index—that
is, as the index to the first or the last line.

MakeEditable(), IsEditable()
void MakeEditable(boolflag = TRUE)

bool IsEditable(void) const

The first of these functions sets whether the user can edit the text displayed by the
BTextView; the second returns whether or not the text is currently editable. Text is
editable by default.

To edit text, the user must be able to select it. Therefore, whenMakeEditable() is called
with an argument ofTRUE (or with no argument), it makes the text both editable and
selectable. Similarly, whenIsEditable() returnsTRUE, the text is selectable as well as
editable;IsSelectable() will also returnTRUE.

A value ofFALSE means that the text can’t be edited, but implies nothing about whether or
not it can be selected.

See also: MakeSelectable()

MakeFocus()
virtual voidMakeFocus(boolflag = TRUE)

Overrides the BView version ofMakeFocus() to highlight the current selection when the
BTextView becomes the focus view (whenflag is TRUE) and to unhighlight it when the
BTextView no longer is the focus view (whenflag is FALSE). However, the current
selection is highlighted only if the BTextView’s window is the current active window.

This function is called for you whenever the user’s actions make the BTextView become
the focus view, or force it to give up that status.

See also: BView::MakeFocus(), MouseDown()

Member Functions BTextView

224 – The Interface Kit

MakeResizable()
void MakeResizable(BView *containerView)

Makes the BTextView’s frame rectangle and text rectangle automatically grow and shrink
to exactly enclose all the characters entered by the user. ThecontainerView is a view that
should be resized with the BTextView; typically it’s a view that draws a border around the
text (like a BScrollView object) and is the parent of the BTextView. This function won’t
work without a container view.

MakeResizable() is an alternative to the automatic resizing behavior provided in the
BView class. It triggers resizing on the user’s entry of text, not on a change in the parent
view’s size. The two schemes are incompatible; the BTextView and the container view
should not automatically resize themselves when their parents are resized.

< This function currently requires the text to be either left aligned or center aligned; it
doesn’t work for text that’s right aligned. >

See also: SetAlignment()

MakeSelectable(), IsSelectable()
void MakeSelectable(boolflag = TRUE)

bool IsSelectable(void) const

The first of these functions sets whether it’s possible for the user to select text displayed by
the BTextView; the second returns whether or not the text is currently selectable. Text is
selectable by default.

When text is selectable but not editable, the user can select one or more characters to copy
to the clipboard, but can’t position the insertion point (an empty selection), enter
characters from the keyboard, or paste new text into the view.

Since the user must be able to select text to edit it, callingMakeSelectable() with an
argument ofFALSE causes the text to become uneditable as well as unselectable. Similarly,
if IsSelectable() returnsFALSE, the user can neither select nor edit the text;IsEditable()
will also returnFALSE.

A value ofTRUE means that the text is selectable, but says nothing about whether or not it’s
also editable.

See also: MakeEditable()

MessageReceived()
virtual voidMessageReceived(BMessage *message)

Overrides the BHandler version ofMessageReceived() to handle four messages.

BTextView Member Functions

The Interface Kit –225

If this function gets aB_SIMPLE_DATA message, it looks for a data named “text” registered
asB_ASCII_TYPE. Failing that, it looks for a single character named “char” registered as
B_LONG_TYPE. If successful, it assumes that the message was dragged and dropped on the
view. It changes the current selection to the point of drop and inserts the text or character
at that point.

This function handlesB_CUT, B_COPY, andB_PASTE messages by calling theCut(), Copy(),
andPaste() virtual functions. For the BTextView to get these messages, Cut, Copy, and
Paste menu items should be:

• Assigned model messages withB_CUT, B_COPY, andB_PASTE as theirwhat data
members, and

• Targeted to the BTextView, or to the current focus view in the window that displays
the BTextView.

The BTextView, through this function, takes care of the rest.

To inherit this functionality,MessageReceived() functions implemented by derived
classes should be sure to call the BTextView version.

See also: BMenuItem::SetMessage(), BMenuItem::SetTarget()

MouseDown()
virtual voidMouseDown(BPointpoint)

Selects text and positions the insertion point in response to the user’s mouse actions. If the
BTextView isn’t already the focus view for its window, this function callsMakeFocus() to
make it the focus view.

MouseDown() is called for each mouse-down event that occurs inside the BTextView’s
frame rectangle.

See also: BView::MouseDown(), BView::MakeFocus()

MouseMoved()
virtual voidMouseMoved(BPointpoint, ulongtransit, BMessage *message)

Responds to messages reporting mouse-moved events by changing the cursor to the
standard I-beam image for editing text whenever the cursor enters the view and by
resetting it to the standard hand image when the cursor exits the view.

The cursor is changed to an I-beam only for text that is selectable, and only if the
BTextView is the current focus view in the active window.

See also: BView::MouseMoved()

Member Functions BTextView

226 – The Interface Kit

Paste()
virtual voidPaste(BClipboard *clipboard)

Takes textual data from the clipboard and pastes it into the text. The new text replaces the
current selection, or is placed at the site of the current insertion point.

Theclipboard argument is identical to the globalbe_clipboard object.

See also: Cut(), Copy()

Pulse()
virtual voidPulse(void)

Turns the caret marking the current insertion point on and off when the BTextView is the
focus view in the active window.Pulse() is called by the system at regular intervals.

This function is first declared in the BView class.

See also: BView::Pulse()

ScrollToSelection()
void ScrollToSelection(void)

Scrolls the text so that the beginning of the current selection is within the visible region of
the view, provided that the BTextView is equipped with a scroll bar that permits scrolling
in the required direction (horizontal or vertical).

See also: BView::ScrollBy()

Select()
void Select(longstart, longfinish)

Selects the characters fromstart up tofinish, wherestart andfinish are offsets into the
BTextView’s text. The offsets designate positions between characters. For example,

Select(0, 2);

selects the first two characters of text,

Select(17, 18);

selects the eighteenth character, and

Select(0, TextLength());

BTextView Member Functions

The Interface Kit –227

selects the entire text just as theSelectAll() function does. Ifstart andfinish are the same,
the selection will be empty (an insertion point).

Normally, the selection is changed by the user. This function provides a way to change it
programmatically.

If the BTextView is the current focus view in the active window,Select() highlights the
new selection (or displays a blinking caret at the insertion point). However, it doesn’t
automatically scroll the contents of the BTextView to make the new selection visible. Call
ScrollToSelection() to be sure that the user can see the start of the selection.

See also: Text(), GetSelection(), ScrollToSelection(), GoToLine(), MouseDown()

SelectAll()
void SelectAll(void)

Selects the entire text of the BTextView, and highlights it if the BTextView is the current
focus view in the active window.

See also: Select()

SetAlignment(), Alignment()
void SetAlignment(alignmentwhere)

alignmentAlignment(void) const

These functions set the way text is aligned within the text rectangle and return the current
alignment. Three settings are possible:

B_ALIGN_LEFT Each line is aligned at the left boundary of the text
rectangle.

B_ALIGN_RIGHT Each line is aligned at the right boundary of the text
rectangle.

B_ALIGN_CENTER Each line is centered between the left and right
boundaries of the text rectangle.

The default isB_ALIGN_LEFT.

SetAutoindent(), DoesAutoindent()
void SetAutoindent(boolflag)

bool DoesAutoindent(void) const

These functions set and return whether a new line of text is automatically indented the
same as the preceding line. When set toTRUE and the user types Return at the end of a line

Member Functions BTextView

228 – The Interface Kit

that begins with tabs or spaces, the new line will automatically indent past those tabs and
spaces to the position of the first visible character.

The default value isFALSE.

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear()
virtual voidSetFontName(const char *name)

virtual voidSetFontSize(floatpoints)

virtual voidSetFontRotation(floatdegrees)

virtual voidSetFontShear(floatangle)

These functions override their BView counterparts to recalculate the layout of the text
when the font changes, and to prevent the text displayed by a BTextView object from
being rotated.

Font rotation is disabled; the BTextView version ofSetFontRotation() does nothing. The
other three functions invoke their BView counterparts to change the font, then make sure
the entire text is recalculated and rewrapped for the new font. However, the text display is
not updated.

SetFontName() andSetFontSize() are called byAttachedToWindow() to set the
BTextView’s default font to 9.0-point Erich.

See also: BView::SetFontName()

SetMaxChars()
void SetMaxChars(longmax)

Sets the maximum number of characters that the BTextView can accept. The default is the
maximum number of characters that can be designated by along integer, a number
sufficiently large to accommodate all uses of a BTextView. Use this function only if you
need to restrict the number of characters that the user can enter in a text field.

SetSymbolSet()
virtual voidSetSymbolSet(const char *name)

Overrides its BView counterpart to recalculate the text layout when the symbol set
changes.

See also: BView::SetSymbolSet()

BTextView Member Functions

The Interface Kit –229

SetTabWidth(), TabWidth()
void SetTabWidth(floatwidth)

float TabWidth(void) const

These functions set the distance between tab stops towidth coordinate units and return the
current tab width. Tabs cannot be removed nor can they be individually set; all tabs have a
uniform width. The default tab width is 44.0 coordinate units.

SetText()
void SetText(const char *text, long length)
void SetText(const char *text)

Removes any text currently in the BTextView and copieslength characters oftext to
replace it—or all the characters in thetext string, up to the null character, if alength isn’t
specified. Iftext is NULL or length is 0, this function empties the BTextView. Otherwise, it
copies the required number oftext characters passed to it.

This function is typically used to set the text initially displayed in the view. If the
BTextView is attached to a window, it’s updated to show its new contents.

See also: Text(), TextLength()

SetTextRect(), TextRect()
void SetTextRect(BRectrect)

inline BRectTextRect(void) const

SetTextRect() makesrect the BTextView’s text rectangle—the rectangle that locates where
text is placed within the view. This replaces the text rectangle originally set in the
BTextView constructor. The layout of the text is recalculated to fit the new rectangle, and
the text is redisplayed.

TextRect() returns the current text rectangle.

See also: the BTextView constructor

SetWordWrap(), DoesWordWrap()
void SetWordWrap(boolflag)

bool DoesWordWrap(void) const

These functions set and return whether the BTextView wraps lines on word boundaries,
dropping entire words that don’t fit at the end of a line to the next line. Words break on
tabs, spaces, and other invisible characters; all adjacent visible characters wrap together.

Member Functions BTextView

230 – The Interface Kit

By default, word wrapping is turned off (DoesWordWrap() returnsFALSE). Lines break
only on a newline character (where the user types return).

See also: SetTextRect()

TabWidth() see SetTabWidth()

Text(), GetText(), CharAt()
const char *Text(void)

const char *GetText(char *buffer, long index, long length) const

charCharAt(long index) const

These functions reveal the text contained in the BTextView.

Text() returns a pointer to the text, which may be a pointer to an empty string if the
BTextView is empty. The returned pointer can be used to read the text, but not to alter it
(useSetText(), Insert(), Delete(), and other BTextView functions to do that).

GetText() copies up tolength characters of the text intobuffer, beginning with the
character atindex, and adds a null terminator (‘\0’). The first character in the BTextView
is at index 0, the second at index 1, and so on. Fewer thanlength characters are copied if
there aren’t that many betweenindex and the end of the text. The results won’t be reliable
if the index is out-of-range.

CharAt() returns the specific character located atindex.

The pointer thatText() returns is to the BTextView’s internal representation of the text.
When it returns, the text string is guaranteed to be null-terminated and without gaps.
However, the BTextView may have had to manipulate the text to get it in that condition.
Therefore, there may be a performance price to pay ifText() is called frequently. If you’re
going to copy the text, it’s more efficient to haveGetText() do it for you. If you’re going to
index into the text, it may be more efficient to callCharAt().

The pointer thatText() returns may no longer be valid after the user or the program next
changes the text. Even if valid, the string may no longer be null-terminated and gaps may
appear.

See also: TextLength()

BTextView Member Functions

The Interface Kit –231

TextLength()
long TextLength(void) const

Returns the number of characters the BTextView currently contains—the number of
characters thatText() returns (not counting the null terminator).

See also: Text(), SetMaxChars()

TextRect() see SetTextRect()

WindowActivated()
virtual voidWindowActivated(boolflag)

Highlights the current selection when the BTextView’s window becomes the active
window (whenflag is TRUE)—provided that the BTextView is the current focus view—and
removes the highlighting when the window ceases to be the active window (whenflag is
FALSE).

If the current selection is empty (if it’s an insertion point), it’s highlighted by turning the
caret on and off (blinking it).

The Interface Kit calls this function for you whenever the BTextView’s window becomes
the active window or it loses that status.

See also: BView::WindowActivated(), MakeFocus()

Member Functions BTextView

232 – The Interface Kit

The Interface Kit –233

BView

Derived from: public BHandler

Declared in: <interface/View.h>

Overview

BView objects are the agents for drawing and message handling within windows. Each
object sets up and takes responsibility for a particularview, a rectangular area that’s
associated with at most one window at a time. The object draws within the view rectangle
and responds to reports of events elicited by the images drawn.

Classes derived from BView implement the actual functions that draw and handle
messages; BView merely provides the framework. For example, a BTextView object
draws and edits text in response to the user’s activity on the keyboard and mouse. A
BButton draws the image of a button on-screen and responds when the button is clicked.
BTextView and BButton inherit from the BView class—as do most classes in the Interface
Kit.

The following Kit classes derive, directly or indirectly, from BView:

BControl BButton BMenu
BScrollBar BPictureButton BMenuBar
BScrollView BRadioButton BMenuField
BBox BCheckBox BPopUpMenu
BStringView BColorControl BListView
BTextView BTextControl

Serious applications will need to define their own classes derived from BView.

Views and Windows

For a BView to do its work, you must attach it to a window. The views in a window are
arranged in a hierarchy—there can be views within views—with those that are most
directly responsible for drawing and message handling located at the terminal branches of
the hierarchy and those that contain and organize other views situated closer to its trunk
and root. A BView begins life unattached. You can add it to a hierarchy by calling the
AddChild() function of the BWindow, or of another BView.

Overview BView

234 – The Interface Kit

Within the hierarchy, a BView object plays two roles:

• It’s a BHandler for messages delivered to the window thread. BViews implement
the functions that respond to the most common system messages—including those
that report keyboard and mouse events. They can also be targeted to handle
application-defined messages that affect what they view displays.

• It’s an agent for drawing. Adding a BView to a window gives it an independent
graphics environment. A BView draws on the initiative of the BWindow and the
Application Server, whenever they determine that the appearance of any part of the
view rectangle needs to be “updated.” It also draws on its own initiative in response
to events.

The relationship of BViews to BWindows and the framework for drawing and responding
to the user were discussed in the introduction to this chapter. The concepts and
terminology presented there are assumed in this class description. See especially “BView
Objects” on page 11, “The View Hierarchy” on page 13, “Drawing” beginning on page 18,
and “Responding to the User” beginning on page 41.

BViews can also be called upon to create bitmap images. See the BBitmap class for
details.

User Interface

Since they provide the content that’s displayed within windows, BViews carry most of the
burden of implementing an application’s user interface. Often this is simply a matter of
how a BView implements a hook function—howDraw() presents the view or how
MouseDown() handles a double-click. User-interface guidelines should be followed, but
the BView is essentially on its own. However, in some cases the Interface Kit provides a
mechanism that derived classes can participate in, if they coordinate with Kit-defined
code. Two such mechanisms are described below—keyboard navigation and the drag-
and-drop delivery of messages.

Keyboard Navigation

Keyboard navigation is a mechanism for allowing users to manipulate views—especially
buttons, check boxes, and other control devices—from the keyboard. It gives users the
ability to:

• Move the focus of keyboard actions from view to view within a window by pressing
the Tab key, and

• Operate the view that’s currently in focus by pressing the space bar and Enter key
(to invoke it) or the arrow keys (to move around inside it).

The first ability—navigation between views—is implemented by the Interface Kit. The
second—navigation within a view—is up to individual applications, as are most view-

BView Overview

The Interface Kit –235

specific aspects of the user interface. The only trick, and it’s not a difficult one, is to make
the two kinds of navigation work together.

To have the BView class you implement participate in the navigation mechanism, you
need to coordinate four pieces of code:

• IncludeB_NAVIGABLE in the BView’s flag mask whenever it’s possible for the user
to navigate to it (when it can become the focus view). This flag should be removed
from the mask when the view is disabled, and included again when it’s re-enabled.
The mask is first set on construction and can be altered with theSetFlags() function.

• Make sure the BView’sDraw() function provides some sort of visual indication of
whether the view is the current focus for keyboard actions. Guidelines are
forthcoming on what the indication should be. Currently, Be-defined views
underline text (for example, a button label) when the view is in focus, and avoid
drawing the underline when it’s not.Draw() can callIsFocus() to test the BView’s
current status.

• Override theMakeFocus() hook function to have it change the way the view is
displayed when it becomes the focus view and when it loses that status. It’s perhaps
simplest just to haveMakeFocus() call Draw().

• OverrideKeyDown() to handle the keystrokes that are used to operate the view (for
view-internal navigation). Always incorporate the inherited version so that it can
take care of navigation between views.

Several Kit classes that derive from BView implement these functions. For example,
BControl has a simpleKeyDown() function and aMakeFocus() function that callsDraw().
If you base your class on BControl, you won’t have to implementMakeFocus() and may
find that itsKeyDown() is adequate for your needs.

Drag and Drop

The BView class supports a drag-and-drop user interface. The user can transfer a parcel
of information from one place to another by dragging an image from a source view and
dropping it on a destination view—perhaps a view in a different window or even a
different application.

A source BView initiates dragging by callingDragMessage() from within its
MouseDown() function. The BView bundles all information relevant to the dragging
session into a BMessage object and passes it toDragMessage(). It also passes an image to
represent the data package on-screen.

The Application Server then takes charge of the BMessage object and animates the image
as the user drags it on-screen. As the image moves across the screen, the views it passes
over are informed withMouseMoved() function calls. These notifications give views a
chance to show the user whether or not they’re willing to accept the message being
dragged. When the user releases the mouse button, dropping the dragged message, the
message is delivered to the BWindow and targeted to the destination BView.

Overview BView

236 – The Interface Kit

Aside from creating a BMessage object and passing it toDragMessage(), or
implementingMouseMoved() andMessageReceived() functions to handle any messages
that come its way, there’s nothing an application needs to do to support a drag-and-drop
user interface. The bulk of the work is done by the Application Server and Interface Kit.

Locking the Window

If a BView is attached to a window, any operation that affects the view might also affect
the window and the BView’s shadow counterpart in the Application Server. For this
reason, any code that calls a BView function should first lock the window—so that one
thread can’t modify essential data structures while another thread is using them. A
window can be locked by only one thread at a time.

By default, before they do anything else, almost all BView functions check to be sure the
caller has the window locked. If the window isn’t properly locked, they print warning
messages and fail.

This check should help you develop an application that correctly regulates access to
windows and views. However, it adds a certain amount of time to each function call.
Once your application has been debugged and is ready to ship, you can turn the check off
by calling BWindow’sSetDiscipline() function and passing it an argument ofFALSE. The
discipline flag is separately set for each window.

BView functions can require the window to be locked only if the view has a window to
lock; the requirement can’t be enforced if the BView isn’t attached to a window.
However, as discussed under “Views and the Server” on page 31 of the introduction to this
chapter, many BView functions, including all those that depend on graphics parameters,
don’t work at all unless the view is attached—in which case the window must be locked.

Whenever the system calls a BView function to notify it of something—whenever it calls
WindowActivated(), Draw(), MessageReceived() or another hook function—it first locks
the window thread. The application doesn’t have to explicitly lock the window when
responding to an update, an interface message, or some other notification. The window is
already locked.

Derived Classes

When it comes time for a BView to draw, itsDraw() virtual function is called
automatically. When it needs to respond to an event, a virtual function named after the
kind of event is called—MouseMoved(), KeyDown(), and so on. Classes derived from
BView implement these hook functions to do the particular kind of drawing and message
handling characteristic of the derived class.

• Some classes derived from BView implement control devices—buttons, dials,
selection lists, check boxes, and so on—that translate user actions on the keyboard
and mouse into more explicit instructions for the application. In the Interface Kit,

BView Hook Functions

The Interface Kit –237

BMenu, BListView, BButton, BCheckBox, and BRadioButton are examples of
control devices.

• Other BViews visually organize the display—for example, a view that draws a
border around and arranges other views, or one that splits a window into two or
more resizable panels. The BBox, BScrollBar, and BScrollView classes fall into
this category.

• Some BViews implement highly organized displays the user can manipulate, such
as a game board or a scientific simulation.

• Perhaps the most important BViews are those that permit the user to create,
organize, and edit data. These views display the current selection and are the focus
of most user actions. They carry out the main work of an application. BTextView is
the only Interface Kit example of such a view.

Almost all the BView classes defined in the Interface Kit fall into the first two of these
groups. Control devices and organizational views can serve a variety of different kinds of
applications, and therefore can be implemented in a kit that’s common to all applications

However, the BViews that will be central to most applications fall into the last two groups.
Of particular importance are the BViews that manage editable data. Unfortunately, these
are not views that can be easily implemented in a common kit. Just as most applications
devise their own data formats, most applications will need to define their own data-
handling views.

Nevertheless, the BView class structures and simplifies the task of developing application-
specific objects that draw in windows and interact with the user. It takes care of the lower-
level details and manages the view’s relationship to the window and other views in the
hierarchy. You should make yourself familiar with this class before implementing you
own application-specific BViews.

Hook Functions

AllAttached() Can be implemented to finish initializing the BView after
it’s attached to a window, where the initialization depends
on a descendent view’sAttachedToWindow() function
having been called.

AllDetached() Can be implemented to prepare the BView for being
detached from a window, where the preparations depend on
a descendent view’sDetachedFromWindow() function
having been called.

AttachedToWindow() Can be implemented to finish initializing the BView after it
becomes part of a window’s view hierarchy.

Constructor and Destructor BView

238 – The Interface Kit

DetachedFromWindow() Can be implemented to prepare the BView for its
impending removal from a window’s view hierarchy.

Draw() Can be implemented to draw the view.

FrameMoved() Can be implemented to respond to a message notifying the
BView that it has moved in its parent’s coordinate system.

FrameResized() Can be implemented to respond to a message informing the
BView that its frame rectangle has been resized.

KeyDown() Can be implemented to respond to a message reporting a
key-down event.

MakeFocus() Makes the BView the focus view, or causes it to give up
being the focus view; can be augmented to take any action
the change in status may require.

MouseDown() Can be implemented to respond to a message reporting a
mouse-down event.

MouseMoved() Can be implemented to respond to a notification that the
cursor has entered the view’s visible region, moved within
the visible region, or exited from the view.

Pulse() Can be implemented to do something at regular intervals.
This function is called repeatedly when no other messages
are pending.

WindowActivated() Can be implemented to respond to a notification that the
BView’s window has become the active window, or has
lost that status.

Constructor and Destructor

BView()
BView(BRectframe, const char *name, ulongresizingMode, ulongflags)

Sets up a view with theframe rectangle, which is specified in the coordinate system of its
eventual parent, and assigns the BView an identifyingname, which can beNULL.

When it’s created, a BView doesn’t belong to a window and has no parent. It’s assigned a
parent by having another BView adopt it with theAddChild() function. If the other view
is in a window, the BView becomes part of that window’s view hierarchy. A BView can
be made a child of the window’s top view by calling BWindow’s version of the
AddChild() function.

BView Constructor and Destructor

The Interface Kit –239

When the BView gains a parent, the values inframe are interpreted in the parent’s
coordinate system. The sides of the view must be aligned on screen pixels. Therefore, the
frame rectangle should not contain coordinates with fractional values. Fractional
coordinates will be rounded to the nearest whole number.

TheresizingMode mask determines the behavior of the view when its parent is resized. It
should combine one constant for horizontal resizing,

B_FOLLOW_LEFT
B_FOLLOW_RIGHT
B_FOLLOW_LEFT_RIGHT
B_FOLLOW_H_CENTER

with one for vertical resizing:

B_FOLLOW_TOP
B_FOLLOW_BOTTOM
B_FOLLOW_TOP_BOTTOM
B_FOLLOW_V_CENTER

For example, ifB_FOLLOW_LEFT is chosen, the margin between the left side of the view and
left side of its parent will remain constant—the view’s left side will “follow” the parent’s
left side. Similarly, ifB_FOLLOW_RIGHT is chosen, the view’s right side will follow the
parent’s right side. IfB_FOLLOW_H_CENTER is chosen, the horizontal center of the view
will maintain a constant distance from the horizontal center of the parent.

If the constants name opposite sides of the view rectangle—left and right, or top and
bottom—the view will necessarily be resized in that dimension when the parent is.

If a side is not mentioned, the distance between that side of the view and the
corresponding side of the parent is free to fluctuate. This may mean that the view will
move within its parent’s coordinate system when the parent is resized.B_FOLLOW_RIGHT
plusB_FOLLOW_BOTTOM, for example, would keep a view from being resized, but the
view will move to follow the right bottom corner of its parent whenever the parent is
resized.B_FOLLOW_LEFT plusB_FOLLOW_TOP prevents a view from being resizedand
from being moved.

In addition to the constants listed above, there are two other possibilities:

B_FOLLOW_ALL_SIDES
B_FOLLOW_NONE

B_FOLLOW_ALL_SIDES is a shorthand forB_FOLLOW_LEFT_RIGHT and
B_FOLLOW_TOP_BOTTOM. It means that the view will be resized in tandem with its parent,
both horizontally and vertically.

B_FOLLOW_NONE keeps the view at its absolute position on-screen; the parent view is
resized around it. (Nevertheless, because the parent is resized, the view may wind up
being moved in its parent’s coordinate system.)

Constructor and Destructor BView

240 – The Interface Kit

Typically, a parent view is resized because the user resizes the window it’s in. When the
window is resized, the top view is too. Depending on how theresizingMode flag is set for
the top view’s children and for the descendants of its children, automatic resizing can
cascade down the view hierarchy. A view can also be resized programmatically by the
ResizeTo() andResizeBy() functions.

The resizing mode can be changed after construction with theSetResizingMode()
function.

Theflags mask determines what kinds of notifications the BView will receive. It can be
any combination of these four constants:

B_WILL_DRAW Indicates that the BView does some drawing of its
own and therefore can’t be ignored when the
window is updated. If this flag isn’t set, the BView
won’t receive update notifications—it won’t be
erased to its background color and itsDraw()
function won’t be called.

B_PULSE_NEEDED Indicates that the BView should receivePulse()
notifications.

B_FRAME_EVENTS Indicates that the BView should receive
FrameResized() andFrameMoved() notifications
when its frame rectangle changes—typically as a
result of the automatic resizing behavior described
above. FrameResized() is called when the
dimensions of the view change;FrameMoved() is
called when the position of its left top corner in its
parent’s coordinate system changes.

B_FULL_UPDATE_ON_RESIZE Indicates that the entire view should be updated
when it’s resized. If this flag isn’t set, only the
portions that resizing adds to the view will be
included in the clipping region.

B_NAVIGABLE Indicates that the BView can become the focus
view for keyboard actions. This flag makes it
possible for the user to navigate to the view and put
it in focus by pressing the Tab key. See “Keyboard
Navigation” above.

If none of these constants apply,flags can beNULL. The flags can be reset after
construction with theSetFlags() function.

See also: SetResizingMode(), SetFlags(), BHandler::SetName()

BView Member Functions

The Interface Kit –241

~BView()
virtual ~BView(void)

Removes the BView from the view hierarchy and ensures that each of its descendants is
also removed and destroyed.

Member Functions

AddChild()
virtual voidAddChild(BView *aView)

MakesaView a child of the BView, provided thataView doesn’t already have a parent. If
the BView is attached to a window,aView and all its descendants become attached to the
same window. Each of them is notified of this change throughAttachedToWindow() and
AllAttached() function calls.

AddChild() fails if aView already belongs to a view hierarchy. A view can live with only
one parent at a time.

When a BView object becomes attached to a BWindow, two other connections are
automatically established for it:

• The view is added to the BWindow’s flat list of BHandler objects, making it an
eligible target for messages received by the BWindow.

• The BView’s parent view becomes its next handler. Messages that the BView
doesn’t recognize will be passed to its parent.

See also: BWindow::AddChild(), AttachedToWindow(), BLooper::AddHandler(),
BHandler::SetNextHandler(), RemoveChild()

AddLine() see BeginLineArray()

AllAttached() see AttachedToWindow()

AllDetached() see DetachedFromWindow()

Member Functions BView

242 – The Interface Kit

AttachedToWindow(), AllAttached()
virtual voidAttachedToWindow(void)

virtual voidAllAttached(void)

Implemented by derived classes to complete the initialization of the BView when it’s
assigned to a window. A BView is assigned to a window when it, or one of its ancestors in
the view hierarchy, becomes a child of a view already attached to a window.

AttachedToWindow() is called immediately after the BView is formally made a part of the
window’s view hierarchy and after it has become known to the Application Server and its
graphics parameters are set. TheWindow() function can identify which BWindow the
BView belongs to.

All of the BView’s children, if it has any, also become attached to the window and receive
their ownAttachedToWindow() notifications. Parents receive the notification before their
children, but only after all views have become attached to the window and recognized as
part of the window’s view hierarchy. This function can therefore depend on all ancestor
and descendent views being in place.

For example,AttachedToWindow() can be implemented to set a view’s background color
to the same color as its parent, something that can’t be done before the view belongs to a
window and knows who its parent is.

void MyView::AttachedToWindow()
{
 if (Parent())
 SetViewColor(Parent()->ViewColor());
 inherited::AttachedToWindow();
}

TheAllAttached() notification follows on the heels ofAttachedToWindow(), but works its
way up the view hierarchy rather than down. WhenAllAttached() is called for a BView,
all its descendants have received bothAttachedToWindow() andAllAttached()
notifications. Therefore, parent views can depend on any calculations that their children
make in either function. For example, a parent can resize itself to fit the size of its
children, where their sizes depend on calculations done inAttachedToWindow().

The default (BView) version of both these functions are empty.

See also: AddChild(), Window()

BeginLineArray(), AddLine(), EndLineArray()
void BeginLineArray(longcount)

void AddLine(BPointstart, BPointend, rgb_colorcolor)

void EndLineArray(void)

These functions provide a more efficient way of drawing a large number of lines than
repeated calls toStrokeLine(). BeginLineArray() signals the beginning of a series of up to

BView Member Functions

The Interface Kit –243

countAddLine() calls;EndLineArray() signals the end of the series. EachAddLine() call
defines a line from thestart point to theend point, associates it with a particularcolor, and
adds it to the array. The lines can each be a different color; they don’t have to be
contiguous. WhenEndLineArray() is called, all the lines are drawn—using the then
current pen size—in the order that they were added to the array.

These functions don’t change any graphics parameters. For example, they don’t move the
pen or change the current high and low colors. Parameter values that are in effect when
EndLineArray() is called are the ones used to draw the lines. The high and low colors are
ignored in favor of thecolor specified for each line.

Thecount passed toBeginLineArray() is an upper limit on the number of lines that can be
drawn. Keeping the count close to accurate and within reasonable bounds helps the
efficiency of the line-array mechanism. It’s a good idea to keep it less than 256; above that
number, memory requirements begin to impinge on performance.

See also: StrokeLine()

BeginPicture(), EndPicture()
void BeginPicture(BPicture *picture)

BPicture *EndPicture(void)

BeginPicture() instructs the Application Server to begin recording a set of drawing
instructions for apicture; EndPicture() instructs the Server to end the recording session. It
returns the same object that was passed toBeginPicture().

The BPicture records exactly what the BView draws—and only what the BView draws—
between theBeginPicture() andEndPicture() calls. The drawing of other views is ignored,
as are function calls that don’t draw or affect graphics parameters. The picture captures
only primitive graphics operations—that is, functions defined in this class, such as
DrawString(), FillArc(), andSetFont(). If a complex drawing function (such asDraw()) is
called, only the primitive operations that it contains are recorded.

A BPicture can be recorded only if the BView is attached to a window. The window it’s in
can be off-screen and the view itself can be hidden or reside outside the current clipping
region. However, if the window is on-screen and the view is visible, the drawing that the
BView does will both be captured in thepicture and rendered in the window.

See also: the BPicture class,DrawPicture()

BeginRectTracking(), EndRectTracking()
void BeginRectTracking(BRectrect, ulonghow = B_TRACK_WHOLE_RECT)

void EndRectTracking(void)

These functions instruct the Application Server to display a rectangular outline that will
track the movement of the cursor.BeginRectTracking() puts the rectangle on-screen and

Member Functions BView

244 – The Interface Kit

initiates tracking;EndRectTracking() terminates tracking and removes the rectangle. The
initial rectangle,rect, is specified in the BView’s coordinate system.

This function supports two kinds of tracking, depending on the constant passed as thehow
argument:

B_TRACK_WHOLE_RECT The whole rectangle moves with the cursor. Its
position changes, but its size remains fixed.

B_TRACK_RECT_CORNER The left top corner of the rectangle remains fixed
within the view while its right and bottom edges
move with the cursor.

Tracking is typically initiated from within a BView’sMouseDown() function and is
allowed to continue as long as a mouse button is held down. For example:

void MyView::MouseDown(BPoint point)
{
 ulong buttons;

 BRect rect(point, point);
 BeginRectTracking(rect, B_TRACK_RECT_CORNER);
 do {
 snooze(30.0 * 1000.0);
 GetMouse(&point, &buttons);
 } while (buttons);
 EndRectTracking();

 rect.SetRightBottom(point);
 . . .
}

This example usesBeginRectTracking() to drag out a rectangle from the point recorded for
a mouse-down event. It sets up a modal loop to periodically check on the state of the
mouse buttons. Tracking ends when the user releases all buttons. The right and bottom
sides of the rectangle are then updated from the cursor location last reported by the
GetMouse() function.

See also: ConvertToScreen(), GetMouse()

Bounds()
BRectBounds(void) const

Returns the BView’s bounds rectangle. If the BView is attached to a window, this function
gets the current bounds rectangle from the Application Server. If not, it returns a rectangle
the same size as the BView’s frame rectangle, but with the left and top sides at 0.0.

See also: Frame()

BView Member Functions

The Interface Kit –245

ChildAt() see Parent()

ConstrainClippingRegion()
virtual voidConstrainClippingRegion(BRegion *region)

Restricts the drawing that the BView can do toregion.

The Application Server keeps track of a clipping region for each BView that’s attached to
a window. It clips all drawing the BView does to that region; the BView can’t draw
outside of it.

By default, the clipping region contains only the visible area of the view and, during an
update, only the area that actually needs to be drawn. By passing aregion to this function,
an application can further restrict the clipping region. When calculating the clipping
region, the Server intersects it with theregion provided. The BView can draw only in
areas common to theregion passed and the clipping region as the Server would otherwise
calculate it. The region passed can’t expand the clipping region beyond what it otherwise
would be.

If called during an update,ConstrainClippingRegion() restricts the clipping region only
for the duration of the update.

Calls toConstrainClippingRegion() are not additive; eachregion that’s passed replaces the
one that was passed in the previous call. Passing aNULL pointer removes the previous
region without replacing it. The function works only for BViews that are attached to a
window.

See also: GetClippingRegion(), Draw()

ConvertToParent(), ConvertFromParent()
BPointConvertToParent(BPoint localPoint) const
void ConvertToParent(BPoint *localPoint) const

BRectConvertToParent(BRectlocalRect) const
void ConvertToParent(BRect *localRect) const

BPointConvertFromParent(BPointparentPoint) const
void ConvertFromParent(BPoint *parentPoint) const

BRectConvertFromParent(BRectparentRect) const
void ConvertFromParent(BRect *parentRect) const

These functions convert points and rectangles to and from the coordinate system of the
BView’s parent.ConvertToParent() convertslocalPoint or localRect from the BView’s
coordinate system to the coordinate system of its parent BView.ConvertFromParent()
does the opposite; it convertsparentPoint or parentRect from the coordinate system of the
BView’s parent to the BView’s own coordinate system.

Member Functions BView

246 – The Interface Kit

If the point or rectangle is passed by value, the function returns the converted value. If a
pointer is passed, the conversion is done in place.

Both functions fail if the BView isn’t attached to a window.

See also: ConvertToScreen()

ConvertToScreen(), ConvertFromScreen()
BPointConvertToScreen(BPoint localPoint) const
void ConvertToScreen(BPoint *localPoint) const

BRectConvertToScreen(BRectlocalRect) const
void ConvertToScreen(BRect *localRect) const

BPointConvertFromScreen(BPointscreenPoint) const
void ConvertFromScreen(BPoint *screenPoint) const

BRectConvertFromScreen(BRectscreenRect) const
void ConvertFromScreen(BRect *screenRect) const

ConvertToScreen() convertslocalPoint or localRect from the BView’s coordinate system
to the global screen coordinate system.ConvertFromScreen() makes the opposite
conversion; it convertsscreenPoint orscreenRect from the screen coordinate system to the
BView’s local coordinate system.

If the point or rectangle is passed by value, the function returns the converted value. If a
pointer is passed, the conversion is done in place.

The screen coordinate system has its origin, (0.0, 0.0), at the left top corner of the main
screen.

Neither function will work if the BView isn’t attached to a window.

See also: BWindow::ConvertToScreen(), ConvertToParent()

CopyBits()
void CopyBits(BRectsource, BRectdestination)

Copies the image displayed in thesource rectangle to thedestination rectangle, where
both rectangles lie within the view and are stated in the BView’s coordinate system.

If the two rectangles aren’t the same size, the source image is scaled to fit. If not all of the
destination rectangle lies within the BView’s visible region, the source image is clipped
rather than scaled.

If not all of the source rectangle lies within the BView’s visible region, only the visible
portion is copied. It’s mapped to the corresponding portion of the destination rectangle.

BView Member Functions

The Interface Kit –247

The BView is then invalidated so itsDraw() function will be called to update the part of
the destination rectangle that can’t be filled with the source image.

The BView must be attached to a window.

CountChildren() see Parent()

DetachedFromWindow, AllDetached()
virtual voidDetachedFromWindow(void)

virtual voidAllDetached(void)

Implemented by derived classes to make any adjustments necessary when the BView is
about to be removed from a window’s view hierarchy. These two functions parallel the
more commonly implementedAttachedToWindow() andAllAttached() functions.

DetachedFromWindow() notifications work their way down the hierarchy of views being
detached, followed byAllDetached() notifications, which work their way up the
hierarchy. The second function call permits an ancestor view to take actions that depend
on calculations a descendant might have to make when it’s first notified of being detached.

The BView is still attached to the window when both functions are called.

See also: AttachedToWindow()

DragMessage()
void DragMessage(BMessage *message, BBitmap *image, BPointpoint,

BHandler *replyTarget= NULL)
void DragMessage(BMessage *message, BRectrect,

BHandler *replyTarget= NULL)

Initiates a drag-and-drop session. The first argument,message, is a BMessage object that
bundles the information that will be dragged and dropped on the destination view. Once
passed toDragMessage(), this object becomes the responsibility of—and will eventually
be freed by—the system. You shouldn’t free it yourself, try to access it later, or pass it to
another function. (Since data is copied when it’s added to a BMessage, only the copies are
automatically freed, not the originals.)

The second argument,image, represents the message on-screen; it’s the visible image that
the user drags. Like the BMessage, this BBitmap object becomes the responsibility of the
system; it will be freed when the message is dropped. If you want to keep the image
yourself, make a copy to pass toDragMessage(). The image isn’t dropped on the
destination BView; if you want the destination to have the image, you must add it to the
message as well as pass it as theimage argument.

Member Functions BView

248 – The Interface Kit

The third argument,point, locates the point within the image that’s aligned with the hot
spot of the cursor—that is, the point that’s aligned with the location passed to
MouseDown() or returned byGetMouse(). It’s stated within the coordinate system of the
source image and should lie somewhere within its bounds rectangle. The bounds
rectangle and coordinate system of a BBitmap are set when the object is constructed.

Alternatively, you can specify that an outline of a rectangle,rect, should be dragged
instead of an image. The rectangle is stated in the BView’s coordinate system.
(Therefore, apoint argument isn’t needed to align it with the cursor.)

The final argument,replyTarget, names the object that you want to handle any message
that might be sent in reply to the dragged message. IfreplyTarget is NULL, as it is by
default, any reply that’s received will be directed to the BView object that initiated the
drag-and-drop session.

This function works only for BViews that are attached to a window.

See also: BMessage::WasDropped(), the BBitmap class

Draw()
virtual voidDraw(BRectupdateRect)

Implemented by derived classes to draw theupdateRect portion of the view. The update
rectangle is stated in the BView’s coordinate system. It’s the smallest rectangle that
encloses the current clipping region for the view.

Since the Application Server won’t render anything a BView draws outside its clipping
region, applications will be more efficient if they avoid sending drawing instructions to the
Server for images that don’t intersect withupdateRect. For more efficiency and precision,
you can ask for the clipping region itself (by callingGetClippingRegion()) and confine
drawing to images that intersect with it.

A BView’s Draw() function is called (as the result of an update message) whenever the
view needs to present itself on-screen. This may happen when:

• The window the view is in is first shown on-screen, or shown after being hidden (see
the BWindow version of theHide() function).

• The view is made visible after being hidden (see BView’sHide() function).

• Obscured parts of the view are revealed, as when a window is moved from in high
of the view or an image is dragged across the view.

• The view is resized.

• The contents of the view are scrolled (seeScrollBy()).

• A child view is added, removed, or resized.

BView Member Functions

The Interface Kit –249

• A rectangle has been invalidated that includes at least some of the view (see
Invalidate()).

• CopyBits() can’t completely fill a destination rectangle within the view.

See also: BWindow::UpdateIfNeeded(), Invalidate(), GetClippingRegion()

DrawBitmap(), DrawBitmapAsync()
void DrawBitmap(const BBitmap *image)
void DrawBitmap(const BBitmap *image, BPointpoint)
void DrawBitmap(const BBitmap *image, BRectdestination)
void DrawBitmap(const BBitmap *image, BRectsource, BRectdestination)

void DrawBitmapAsync(const BBitmap *image)
void DrawBitmapAsync(const BBitmap *image, BPointpoint)
void DrawBitmapAsync(const BBitmap *image, BRectdestination)
void DrawBitmapAsync(const BBitmap *image, BRectsource,

BRectdestination)

These functions place a bitmapimage in the view at the current pen position, at thepoint
specified, or within the designateddestination rectangle. Thepoint and thedestination
rectangle are stated in the BView’s coordinate system.

If a source rectangle is given, only that part of the bitmap image is drawn. Otherwise, the
entire bitmap is placed in the view. Thesource rectangle is stated in the internal
coordinates of the BBitmap object.

If the source image is bigger than the destination rectangle, it’s scaled to fit.

The two functions differ in only one respect:DrawBitmap() waits for the Application
Server to finish rendering the image before it returns.DrawBitmapAsync() doesn’t wait; it
passes the image to the Server and returns immediately.

See also: “Drawing Modes” on page 27 in the chapter introduction, the BBitmap class

DrawChar()
void DrawChar(charc)
void DrawChar(charc, BPointpoint)

Draws the characterc at the current pen position—or at thepoint specified—and moves
the pen to a position immediately to the right of the character. This function is equivalent
to passing a string of one character toDrawString(). Thepoint is specified in the BView’s
coordinate system.

See also: DrawString()

Member Functions BView

250 – The Interface Kit

DrawingMode() see SetDrawingMode()

DrawPicture()
void DrawPicture(const BPicture *picture)
void DrawPicture(const BPicture *picture, BPointpoint)

Draws the previously recordedpicture at the current pen position—or at the specified
point in the BView’s coordinate system. The point or pen position is taken as the
coordinate origin for all the drawing instructions recorded in the BPicture.

Nothing that’s done in the BPicture can affect anything in the BView’s graphics state—for
example, the BPicture can’t reset the current high color or the pen position. Conversely,
nothing in the BView’s current graphics state affects the drawing instructions captured in
the picture. The graphics parameters that were in effect when the picture was recorded
determine what the picture looks like.

See also: BeginPicture(), the BPicture class

DrawString()
void DrawString(const char *string)
void DrawString(const char *string, long length)
void DrawString(const char *string, BPointpoint)
void DrawString(const char *string, long length, BPointpoint)

Drawslength characters ofstring—or, if the number of characters isn’t specified, all the
characters in the string, up to the null terminator (‘\0’).

This function places the first character on a baseline that begins at the current pen
position—or at the specifiedpoint in the BView’s coordinate system. It moves the pen to
the baseline immediately to the right of the last character drawn. A series of simple
DrawString() calls (with nopoint specified) will produce a continuous string. For example,
these two lines of code,

DrawString("tog");
DrawString("ether");

will produce the same result as this one:

DrawString("together");

This is a graphical drawing function, so all the characters to be drawn should have visible
representations (including whitespace). Control characters (those with values less than
B_SPACE, 0x20) will be rejected (skipped over) but at a substantial price in performance.

See also: MovePenBy(), SetFontName()

BView Member Functions

The Interface Kit –251

EndLineArray() see BeginLineArray()

EndPicture() see BeginPicture()

EndRectTracking() see BeginRectTracking()

FillArc() see StrokeArc()

FillEllipse() see StrokeEllipse()

FillPolygon() see StrokePolygon()

FillRect() see StrokeRect()

FillRoundRect() see StrokeRoundRect()

FillTriangle() see StrokeTriangle()

FindView()
BView *FindView(const char *name) const

Returns the BView identified byname, or NULL if the view can’t be found. Names are
assigned by the BView constructor and can be modified by theSetName() function
inherited from BHandler.

FindView() begins the search by checking whether the BView’s name matchesname. If
not, it continues to search down the view hierarchy, among the BView’s children and more
distant descendants. To search the entire view hierarchy, use the BWindow version of this
function.

See also: BWindow::FindView(), BHandler::SetName()

Flags() see SetFlags()

Flush(), Sync()
void Flush(void) const

void Sync(void) const

These functions flush the window’s connection to the Application Server. If the BView
isn’t attached to a window, neither function has an effect.

Member Functions BView

252 – The Interface Kit

For reasons of efficiency, the window’s connection to the Application Server is buffered.
Drawing instructions destined for the Server are placed in the buffer and dispatched as a
group when the buffer becomes full. Flushing empties the buffer, sending whatever it
contains to the Server, even if it’s not yet full.

The buffer is automatically flushed on every update. However, if you do any drawing
outside the update mechanism—in response to interface messages, for example—you
need to explicitly flush the connection so that drawing instructions won’t languish in the
buffer while waiting for it to fill up or for the next update. You should also flush it if you
call any drawing functions from outside the window’s thread.

Flush() simply flushes the buffer and returns. It does the same work as BWindow’s
function of the same name.

Sync() flushes the connection, then waits until the Server has executed the last instruction
that was in the buffer before returning. This alternative toFlush() prevents the application
from getting ahead of the Server (ahead of what the user sees on-screen) and keeps both
processes synchronized.

It’s a good idea, for example, to callSync(), rather thanFlush(), after employing BViews to
produce a bitmap image (a BBitmap object).Sync() is the only way you can be sure the
image has been completely rendered before you attempt to draw with it.

(Note that all BViews attached to a window share the same connection to the Application
Server. CallingFlush() or Sync() for any one of them flushes the buffer for all of them.)

See also: BWindow::Flush(), the BBitmap class

Frame()
BRectFrame(void) const

Returns the BView’s frame rectangle. The frame rectangle is first set by the BView
constructor and is altered only when the view is moved or resized. It’s stated in the
coordinate system of the BView’s parent.

If the BView is not attached to a window,Frame() reports the object’s own cached
conception of its frame rectangle. If it is attached,Frame() reports the Application
Server’s conception of the rectangle. When a BView is added to a window, its cached
rectangle is communicated to the Server. While it remains attached, the functions that
move and resize the frame rectangle affect the Server’s conception of the view, but don’t
alter the rectangle kept by the object. Therefore, if the BView is removed from the
window,Frame() will again report the frame rectangle that it had before it was attached,
no matter how much it was moved and resized while it belonged to the window.

See also: MoveBy(), ResizeBy(), the BView constructor

BView Member Functions

The Interface Kit –253

FrameMoved()
virtual voidFrameMoved(BPointparentPoint)

Implemented by derived classes to respond to a notification that the view has moved
within its parent’s coordinate system.parentPoint gives the new location of the left top
corner of the BView’s frame rectangle.

FrameMoved() is called only if theB_FRAME_EVENTS flag is set and the BView is attached
to a window.

If the view is both moved and resized,FrameMoved() is called beforeFrameResized().
This might happen, for example, if the BView’s automatic resizing mode is a combination
of B_FOLLOW_TOP_BOTTOM andB_FOLLOW_RIGHT and its parent is resized both
horizontally and vertically.

The default (BView) version of this function is empty.

< Currently,FrameMoved() is also called when a hidden window is shown on-screen. >

See also: MoveBy(), BWindow::FrameMoved(), SetFlags()

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Implemented by derived classes to respond to a notification that the view has been resized.
The arguments state the newwidth andheight of the view. The resizing could have been
the result of a user action (resizing the window) or of a programmatic one (calling
ResizeTo() or ResizeBy()).

FrameResized() is called only if theB_FRAME_EVENTS flag is set and the BView is attached
to a window.

BView’s version of this function is empty.

See also: ResizeBy(), BWindow::FrameResized(), SetFlags()

GetCharEscapements(), GetCharEdges()
void GetCharEscapements(charcharArray[], long numChars,

floatescapementArray[], float *factor) const

void GetCharEdges(charcharArray[], long numChars,
edge_infoedgeArray[]) const

These two functions are designed for programmers who want to precisely position
characters on the screen or printed page. For each character passed in thecharArray, they
write information about the horizontal dimension of the character into the

Member Functions BView

254 – The Interface Kit

escapementArray or theedgeArray. Both functions assume the BView’s current font.
Therefore, neither has any effect unless the BView is attached to a window.

< These functions provide inaccurate results for bitmap fonts. >

Escapement. An “escapement” is simply the width of a character recorded in very small
units. The units are sufficiently tiny to permit detailed information to be kept in integer
form for every character in the font—although declared asfloats, none of the values in the
escapementArray have fractional parts. Because the units are small, escapement values
are quite large. (The term “escapement” has its historical roots in the fact that the carriage
of a typewriter had to move or “escape” a certain distance after each character was typed
to make room for the next character.)

The escapement of a character measures the amount of horizontal room it requires when
positioned between other characters in a line of text. It includes a measurement of the
space required to display the character itself, plus some extra room on the left and right
edges to separate the character from its neighbors. In a proportionally spaced font, each
character has a distinctive escapement. The illustration below shows the approximate
escapements for the letters ‘l’ and ‘p’ as they might appear together in a word like “help”
or “ballpark.” The escapement for each character is the distance between the vertical
lines:

GetCharEscapements() measures the same space that functions such as BView’s
StringWidth() and BTextView’sLineWidth() do, though it measures each character
individually and records the result in arbitrary (rather than coordinate) units.

The escapement of a character in a particular font is a constant no matter what the font
size. To convert an escapement value to coordinate units, you must multiply it by three
values:

• A floating-point conversion factor,
• The font size (in points), and
• The resolution of the output device.

GetCharEscapements() writes the conversion factor into the variable referred to by
factor. GetFontInfo() can provide the current font size. When the output device is a

lp

BView Member Functions

The Interface Kit –255

printer, the resolution should be the actual resolution (the dpi or “dots per inch”) at which
it prints. When the output device is the screen, the resolution should be 72.0. (This
reflects the fact that screen pixels are taken to equal coordinate units—and one coordinate
unit is 1/72 of an inch, or roughly equivalent to one typographical point.)

Edges. Edge values measure how far a character outline is inset from its left and right
escapement boundaries.GetCharEdges() provides edge values in standard coordinate
units, not escapement units, that take the size of the current font into account. It places the
edge values into an array ofedge_info structures. Each structure has aleft and aright data
member, as follows:

typedef struct {
 float left;
 float right;
} edge_info;

The illustration below shows typical character edges. As in the illustration above, the
solid vertical lines mark escapement boundaries. The dotted lines mark off the part of
each escapement that’s an edge, the distance between the character outline and the
escapement boundary:

This is the normal case. The left edge is a positive value measured rightward from the left
escapement boundary. The right edge is a negative value measured leftward from the right
escapement boundary.

lp

Member Functions BView

256 – The Interface Kit

However, if the characters of a font overlap, the left edge can be a negative value and the
right edge can be positive. This is illustrated below:

Note that the italic ‘l’ extends beyond its escapement to the right, and that the ‘p’ begins
before its escapement to the left. In this case, instead of separating the adjacent characters,
the edges determine how much they overlap.

Edge values are specific to each character and depend on nothing but the character (and
the font). They don’t take into account any contextual information; for example, the right
edge for italic ‘l’ would be the same no matter what letter followed. Edge values therefore
aren’t sufficient to decide how character pairs can be kerned. Kerning is contextually
dependent on the combination of two particular characters.

See also: GetFontInfo()

GetClippingRegion()
void GetClippingRegion(BRegion *region) const

Modifies the BRegion object passed as an argument so that it describes the current
clipping region of the BView, the region where the BView is allowed to draw. It’s most
efficient to allocate temporary BRegions on the stack:

BRegion clipper;
GetClippingRegion(&clipper);
. . .

Ordinarily, the clipping region is the same as the visible region of the view, the part of the
view currently visible on-screen. The visible region is equal to the view’s bounds
rectangle minus:

• The frame rectangles of its children,

• Any areas that are clipped because the view doesn’t lie wholly within the frame
rectangles of all its ancestors in the view hierarchy, and

• Any areas that are obscured by other windows or that lie in a part of the window
that’s off-screen.

lp

BView Member Functions

The Interface Kit –257

The clipping region can be smaller than the visible region if the program restricted it by
callingConstrainClippingRegion(). It will exclude any area that doesn’t intersect with the
region passed toConstrainClippingRegion().

While the BView is being updated, the clipping region contains just those parts of the view
that need to be redrawn. This may be smaller than the visible region, or the region
restricted byConstrainClippingRegion(), if:

• The update occurs during scrolling. The clipping region will exclude any of the
view’s visible contents that the Application Server is able to shift to their new
location and redraw automatically.

• The view rectangle has grown (because, for example, the user resized the window
larger) and the update is needed only to draw the new parts of the view.

• The update was caused byInvalidate() and the rectangle passed toInvalidate()
didn’t cover all of the visible region.

• The update was necessary becauseCopyBits() couldn’t fill all of a destination
rectangle.

This function works only if the BView is attached to a window. Unattached BViews can’t
draw and therefore have no clipping region.

See also: ConstrainClippingRegion(), Draw(), Invalidate()

GetFontInfo()
void GetFontInfo(font_info *fontInfo) const

Writes information about the BView’s current font into the structure referred to by
fontInfo. Thefont_info structure contains the following fields:

font_namename The name of the font, which can be as long as 64
characters, plus a null terminator. The name can be set
by BView’s SetFontName() function.

float size The size of the font in points. It can be set by
SetFontSize().

float shear The shear angle, which is 90.0° by default and can vary
between 45.0° and 135.0°. It can be set by
SetFontShear().

float rotation The angle of rotation, which is 0.0° by default. It’s set by
SetFontRotation().

float ascent How far characters ascend above the baseline.

Member Functions BView

258 – The Interface Kit

float descent How far characters descend below the baseline.

float leading The amount of space separating lines (between the
descent of the line above and the ascent of the line
below).

The ascent, descent, and leading are measured in coordinate units.

This function works only if the BView is attached to a window.

See also: SetFontName()

GetKeys()
long GetKeys(key_info *keyInfo, boolcheckQueue)

Writes information about the state of the keyboard into thekey_info structure referred to
by keyInfo. This structure contains fields that match the BMessage entries that record
information about a key-down event. They are:

ulongchar_code An ASCII character value, such as ‘a’ orB_BACKSPACE.

ulongkey_code A code identifying the key that produced the character.

ulongmodifiers A mask indicating which modifier keys are down and
which keyboard locks are on.

ucharkey_states[16] A bit array that records the state of all the keys on the
keyboard, and all the keyboard locks. This array works
identically to the “states” array passed in a key-down
message. See “Key States” on page 56 for information
on how to read information from the array.

If the checkQueue flag isFALSE, GetKeys() provides information about the current state of
the keyboard. When this is the case, themodifiers field contains the same information that
themodifiers() function returns.

However, if thecheckQueue flag isTRUE, GetKeys() first checks the message queue to see
whether it contains any messages reporting keyboard (key-down or key-up) events. If
there are keyboard messages waiting in the queue, it takes the information from the oldest
message, places it in thekeyInfo structure, and removes the message from the queue. Each
time GetKeys() is called, it gets another keyboard message from the queue. If the queue
doesn’t contain any keyboard messages, it reports the current state of the keyboard, just as
if checkQueue wereFALSE.

When called repeatedly in a loop,GetKeys() will empty the queue of keyboard messages
and then reflect the current state of the keyboard. In this way, you can be sure that your
application has not jumped ahead of the user and overlooked any reports of the user’s
keyboard actions.

BView Member Functions

The Interface Kit –259

This function never looks at the current message, even if it happens to report a keyboard
event andcheckQueue is TRUE. The current message isn’t in the queue; to get information
about it, you must call BLooper’sCurrentMessage() function:

BMessage *current == myView->Window()->CurrentMessge();

If GetKeys() takes a keyboard message from the queue, all thekey_info fields are filled in
from the message. However, if it captures the current state of the keyboard, the
char_code andkey_code fields are set to 0; these fields are appropriate only for reporting
particular events.

GetKeys() returnsB_NO_ERROR if it was able to get the requested information, and
B_ERROR if the return results are unreliable.

See also: KeyDown(), “Keyboard Information” on page 47 of the chapter introduction,
modifiers()

GetMouse()
void GetMouse(BPoint *cursor, ulong *buttons, boolcheckQueue = TRUE) const

Provides the location of the cursor and the state of the mouse buttons. The position of the
cursor is recorded in the variable referred to bycursor; it’s provided in the BView’s own
coordinates. A bit is set in the variable referred to bybuttons for each mouse button that’s
down. This mask may be 0 (if no buttons are down) or it may contain one or more of the
following constants:

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

The cursor doesn’t have to be located within the view for this function to work; it can be
anywhere on-screen. However, the BView must be attached to a window.

If the checkQueue flag is set toFALSE, GetMouse() provides information about the current
state of the mouse buttons and the current location of the cursor.

If checkQueue is TRUE, as it is by default, this function first looks in the message queue for
any pending reports of mouse-moved or mouse-up events. If it finds any, it takes the one
that has been in the queue the longest (the oldest message), removes it from the queue, and
reports thecursor location andbutton states that were recorded in the message. Each
GetMouse() call removes another message from the queue. If the queue doesn’t hold any
B_MOUSE_MOVED or B_MOUSE_UP messages,GetMouse() reports the current state of the
mouse and cursor, just as ifcheckQueue wereFALSE.

This function is typically called from within aMouseDown() function to track the location
of the cursor and wait for the mouse button to go up. By having it check the message
queue, you can be sure that you haven’t overlooked any of the cursor’s movement or

Member Functions BView

260 – The Interface Kit

missed a mouse-up event (quickly followed by another mouse-down) that might have
occurred before the firstGetMouse() call.

See also: modifiers()

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Responds to theB_HANDLERS_REQUESTED message passed as an argument by sending a
B_HANDLERS_INFO message in reply. The reply message contains BMessenger objects for
the BView’s children in an entry labeled “handlers”.

If the receivedmessage contains an entry named “index”, the BView provides a
BMessenger for the child at that index. Otherwise, if themessage contains an entry
labeled “name”, the BView provides a BMessenger for the child with that name. If the
message contains neither an index nor a name, the BView places BMessengers for all its
children in the “handlers” array of the reply.

However, if the “index” or “name” doesn’t successfully designate a child of the BView, or
if the BView doesn’t have any children, this function doesn’t put any BMessengers in the
reply message. Instead, it places an appropriate error code—B_BAD_INDEX,
B_NAME_NOT_FOUND, or B_ERROR—in the message under the name “error”.

You can override this function to use different protocols for specifying child views, or to
prevent the BView from revealing any information about its children.

See also: BHandler::HandlersRequested()

Hide(), Show()
virtual voidHide(void)

virtual voidShow(void)

These functions hide a view and show it again.

Hide() makes the view invisible without removing it from the view hierarchy. The visible
region of the view will be empty and the BView won’t receive update messages. If the
BView has children, they also are hidden.

Show() unhides a view that had been hidden. This function doesn’t guarantee that the
view will be visible to the user; it merely undoes the effects ofHide(). If the view didn’t
have any visible area before being hidden, it won’t have any after being shown again
(given the same conditions).

Calls toHide() andShow() can be nested. For a hidden view to become visible again, the
number ofHide() calls must be matched by an equal number ofShow() calls.

BView Member Functions

The Interface Kit –261

However,Show() can only undo a previousHide() call on the same view. If the view
became hidden whenHide() was called to hide the window it’s in or to hide one of its
ancestors in the view hierarchy, callingShow() on the view will have no effect. For a view
to come out of hiding, its window and all its ancestor views must be unhidden.

Hide() andShow() can affect a view before it’s attached to a window. The view will reflect
its proper state (hidden or not) when it becomes attached. Views are created in an
unhidden state.

See also: BWindow::Hide(), IsHidden()

HighColor() see SetHighColor()

Invalidate()
void Invalidate(BRectrect)
void Invalidate(void)

Invalidates therect portion of the view, causing update messages—and consequently
Draw() notifications—to be generated for the BView and all descendants that lie wholly or
partially within the rectangle. The rectangle is stated in the BView’s coordinate system.

If no rectangle is specified, the BView’s entire bounds rectangle is invalidated.

Since only BViews that are attached to a window can draw, only attached BViews can be
invalidated.

See also: Draw(), GetClippingRegion(), BWindow::UpdateIfNeeded()

InvertRect()
void InvertRect(BRectrect)

Inverts all the colors displayed within therect rectangle. A subsequentInvertRect() call
on the same rectangle restores the original colors.

The rectangle is stated in the BView’s coordinate system.

See also: system_colors() global function

Member Functions BView

262 – The Interface Kit

IsFocus()
bool IsFocus(void) const

ReturnsTRUE if the BView is the current focus view for its window, andFALSE if it’s not.
The focus view changes as the user chooses one view to work in and then another—for
example, as the user moves from one text field to another when filling out an on-screen
form. The change is made programmatically through theMakeFocus() function.

See also: BWindow::CurrentFocus(), MakeFocus()

IsHidden()
bool IsHidden(void) const

ReturnsTRUE if the view has been hidden by theHide() function, andFALSE otherwise.

This function returnsTRUE whetherHide() was called to hide the BView itself, to hide an
ancestor view, or to hide the BView’s window. When a window is hidden, all its views are
hidden with it. When a BView is hidden, all its descendants are hidden with it.

If the view has no visible region—perhaps because it lies outside its parent’s frame
rectangle or is obscured by a window in front—this function may nevertheless return
FALSE. It reports only whether theHide() function has been called to hide the view, hide
one of the view’s ancestors in the view hierarchy, or hide the window where the view is
located.

If the BView isn’t attached to a window,IsHidden() returns the state that it will assume
when it becomes attached. By default, views are not hidden.

See also: Hide()

IsPrinting()
bool IsPrinting(void) const

ReturnsTRUE if the BView is being asked to draw for the printer, andFALSE if the drawing
it produces will be rendered on-screen (or if the BView isn’t being asked to draw at all).

This function is typically called from withinDraw() to determine whether the drawing it
does is destined for the printer or the screen. When drawing to the printer, the BView may
choose different parameters—such as fonts, bitmap images, or colors—than when
drawing to the screen.

See also: the BPrintJob class,Draw()

BView Member Functions

The Interface Kit –263

KeyDown()
virtual voidKeyDown(ulongaChar)

Implemented by derived classes to respond to a message reporting a key-down event.
Whenever a BView is the focus view of the active window, it receives aKeyDown()
notification for each character the user types, except for those that:

• Are produced while a Command key is held down. Command key events are
interpreted as keyboard shortcuts.

• Are produced by the Tab key when an Option key is held down. Option-Tab events
are interpreted as instructions to change the focus view (for keyboard navigation).

• Can operate the default button in a window. The BButton object’sKeyDown()
function is called, rather than the focus view’s.

The argument,aChar, names the character reported in the message. It’s an ASCII value
that takes into account the affect of any modifier keys that were held down or keyboard
locks that were in effect at the time of the keystroke. For example, Shift-i is reported as
uppercase ‘I’ (0x49) and Control-i is reported as aB_TAB (0x09).

The character can be tested against ASCII codes and these constants:

B_BACKSPACE B_LEFT_ARROW B_INSERT
B_ENTER B_RIGHT_ARROW B_DELETE
B_RETURN B_UP_ARROW B_HOME
B_SPACE B_DOWN_ARROW B_END
B_TAB B_PAGE_UP
B_ESCAPE B_FUNCTION_KEY B_PAGE_DOWN

B_ENTER andB_RETURN are the same character, a newline (‘\n’).

Only keys that generate characters produce key-down events; the modifier keys on their
own do not.

You can determine which modifier keys were being held down at the time of the event by
calling BLooper’sCurrentMessage() function and looking up the “modifiers” entry in the
BMessage it returns. IfaChar is B_FUNCTION_KEY and you want to know which key
produced the character, you can look up the “key” entry in the BMessage and test it
against these constants:

B_F1_KEY B_F6_KEY B_F11_KEY
B_F2_KEY B_F7_KEY B_F12_KEY
B_F3_KEY B_F8_KEY B_PRINT_KEY (Print Screen)
B_F4_KEY B_F9_KEY B_SCROLL_KEY (Scroll Lock)
B_F5_KEY B_F10_KEY B_PAUSE_KEY

Member Functions BView

264 – The Interface Kit

For example:

if (aChar == B_FUNCTION_KEY) {
 BMessage *msg = Window()->CurrentMessage();
 long key = msg->FindLong("key");
 if (msg->Error == B_NO_ERROR) {
 switch (key) {
 case B_F1_KEY:
 . . .
 break;
 case B_F2_KEY:
 . . .
 break;
 . . .
 }
 }
}

The BView version ofKeyDown() handles keyboard navigation from view to view
throughB_TAB characters. If the view you define is navigable, itsKeyDown() function
should permitB_SPACE characters to operate the object and perhaps allow the arrow keys
to navigate inside the view. It should also call the inherited version ofKeyDown() to
enable between-view navigation. For example:

void MyView::KeyDown(ulong aChar)
{
 switch (aChar) {
 case B_SPACE:
 /* mimic a click in the view */
 break;
 case B_RIGHT_ARROW:
 /* move one position to the right in the view */
 break;
 case B_LEFT_ARROW:
 /* move one position to the left in the view */
 break;
 default:
 inherited::KeyDown(aChar);
 break;
 }
}

If your BView is navigable but needs to respond toB_TAB characters—for example, if it
permits users to insert tabs in a text string—itsKeyDown() function should simply grab
the characters and not pass them to the inherited function. Users will have to rely on the
Option-Tab combination to navigate from your view.

See also: “Keyboard Information” on page 47 in the chapter introduction,
“B_KEY_DOWN” on page 7 in theMessage Protocols appendix,
BWindow::SetDefaultButton(), modifiers()

BView Member Functions

The Interface Kit –265

LeftTop()
BPointLeftTop(void) const

Returns the coordinates of the left top corner of the view—the smallestx andy coordinate
values within the bounds rectangle.

See also: BRect::LeftTop(), Bounds()

LowColor() see SetHighColor()

MakeFocus()
virtual voidMakeFocus(bool focused = TRUE)

Makes the BView the current focus view for its window (if thefocused flag isTRUE), or
causes it to give up that status (iffocused is FALSE). The focus view is the view that
displays the current selection and is expected to handle reports of key-down events when
the window is the active window. There can be no more than one focus view per window
at a time.

When called to make a BView the focus view, this function invokesMakeFocus() for the
previous focus view, passing it an argument ofFALSE. It’s thus called twice—once for the
new and once for the old focus view.

Calling MakeFocus() is the only way to make a view the focus view; the focus doesn’t
automatically change on mouse-down events. BViews that can display the current
selection (including an insertion point) or that can accept pasted data should call
MakeFocus() in theirMouseDown() functions.

A derived class can overrideMakeFocus() to add code that takes note of the change in
status. For example, a BView that displays selectable data may want to highlight the
current selection when it becomes the focus view, and remove the highlighting when it’s
no longer the focus view. A BView that participates in the keyboard navigation system
should visually indicate that it can be operated from the keyboard when it becomes the
focus view, and remove that indication when the user navigates to another view and it’s
notified that it’s no longer the focus view.

If the BView isn’t attached to a window, this function has no effect.

See also: BWindow::CurrentFocus(), IsFocus()

Member Functions BView

266 – The Interface Kit

MouseDown()
virtual voidMouseDown(BPointpoint)

Implemented by derived classes to respond to a message reporting a mouse-down event
within the view. The location of the cursor at the time of the event is given bypoint in the
BView’s coordinates.

MouseDown() functions are often implemented to track the cursor while the user holds the
mouse button down and then respond when the button goes up. You can call the
GetMouse() function to learn the current location of the cursor and the state of the mouse
buttons. For example:

void MyView::MouseDown(BPoint point)
{
 ulong buttons;
 . . .
 buttons = Window()->CurrentMessage()->FindLong("buttons");
 while (buttons) {
 . . .
 snooze(20.0 * 1000.0);
 GetMouse(&point, &buttons, TRUE);
 }
 . . .
}

It’s important to snooze betweenGetMouse() calls so that the loop doesn’t monopolize
system resources; 20,000.0 microseconds is a minimum time to wait.

To get complete information about the mouse-down event, look inside the BMessage
object returned by BLooper’sCurrentMessage() function. The “clicks” entry in the
message can tell you if this mouse-down is a solitary event or the latest in a series
constituting a multiple click.

The BView version ofMouseDown() is empty.

See also: “B_MOUSE_DOWN” on page 9 in theMessage Protocols appendix,GetMouse()

MouseMoved()
virtual voidMouseMoved(BPointpoint, ulongtransit, BMessage *message)

Implemented by derived classes to respond to reports of mouse-moved events associated
with the view. As the user moves the cursor over a window, the Application Server
generates a continuous stream of messages reporting where the cursor is located.

The first argument,point, gives the cursor’s new location in the BView’s coordinate
system. The second argument,transit, is one of three constants,

B_ENTERED_VIEW,
B_INSIDE_VIEW, or
B_EXITED_VIEW

BView Member Functions

The Interface Kit –267

which explains whether the cursor has just entered the visible region of the view, is now
inside the visible region having previously entered, or has just exited from the view.
When the cursor crosses a boundary separating the visible regions of two views (perhaps
moving from a parent to a child view, or from a child to a parent),MouseMoved() is called
for each of the BViews, once with atransit code ofB_EXITED_VIEW and once with a code
of B_ENTERED_VIEW.

If the user is dragging a bundle of information from one location to another, the final
argument,message, is a pointer to the BMessage object that holds the information. If a
message isn’t being dragged,message is NULL.

A MouseMoved() function might be implemented to ignore theB_INSIDE_VIEW case and
respond only when the cursor enters or exits the view. For example, a BView might alter
its display to indicate whether or not it can accept a message that has been dragged to it.
Or it might be implemented to change the cursor image when it’s over the view.

MouseMoved() notifications should not be used to track the cursor inside a view. Use the
GetMouse() function instead.GetMouse() provides the current cursor location plus
information on whether any of the mouse buttons are being held down.

The default version ofMouseMoved() is empty.

See also: “B_MOUSE_MOVED” on page 10 in theMessage Protocols appendix,
DragMessage()

MoveBy(), MoveTo()
void MoveBy(floathorizontal, floatvertical)

void MoveTo(BPointpoint)
void MoveTo(floatx, floaty)

These functions move the view in its parent’s coordinate system without altering its size.

MoveBy() addshorizontal coordinate units to the left and right components of the frame
rectangle andvertical units to the top and bottom components. Ifhorizontal andvertical
are positive, the view moves downward and to the right. If they’re negative, it moves
upward and to the left.

MoveTo() moves the upper left corner of the view topoint—or to (x, y)—in the parent
view’s coordinate system and adjusts all coordinates in the frame rectangle accordingly.

Neither function alters the BView’s bounds rectangle or coordinate system.

None of the values passed to these functions should specify fractional coordinates; the
sides of a view must line up on screen pixels. Fractional values will be rounded to the
closest whole number.

Member Functions BView

268 – The Interface Kit

If the BView is attached to a window, these functions cause its parent view to be updated,
so the BView is immediately displayed in its new location. If it doesn’t have a parent or
isn’t attached to a window, these functions merely alter its frame rectangle.

See also: FrameMoved(), ResizeBy(), Frame()

MovePenBy(), MovePenTo(), PenLocation()
void MovePenBy(floathorizontal, floatvertical)

void MovePenTo(BPointpoint)
void MovePenTo(floatx, floaty)

BPointPenLocation(void) const

These functions move the pen (without drawing a line) and report the current pen location.

MovePenBy() moves the penhorizontal coordinate units to the right andvertical units
downward. Ifhorizontal orvertical are negative, the pen moves in the opposite direction.
MovePenTo() moves the pen topoint—or to (x, y)—in the BView’s coordinate system.

PenLocation() returns the point where the pen is currently positioned in the BView’s
coordinate system. The default pen position is at (0.0, 0.0).

Some drawing functions also move the pen—to the end of whatever they draw. In
particular, this is true ofStrokeLine(), DrawString(), andDrawChar(). Functions that stroke
a closed shape (such asStrokeEllipse()) don’t move the pen.

The pen location is a parameter of the BView’s graphics environment, which the
Application Server maintains. If the BView doesn’t belong to a window,MovePenTo()
andMovePenBy() cache the location, so that later, when the BView is attached to a
window, it can be handed to the Server to become the initial pen location for the BView. If
the BView belongs to a window, these functions alter the Server parameter, but don’t
change any value that may have previously been cached.PenLocation() returns the
current pen position if the BView is attached, and the cached value if not.

See also: SetPenSize()

MoveTo() see MoveBy()

NextSibling() see Parent()

BView Member Functions

The Interface Kit –269

Parent(), NextSibling(), PreviousSibling(), ChildAt(), CountChildren()
BView *Parent(void) const

BView *NextSibling(void) const

BView *PreviousSibling(void) const

BView *ChildAt(long index) const

long CountChildren(void) const

These functions provide various ways of navigating the view hierarchy.Parent() returns
the BView’s parent view, unless the parent is the top view of the window, in which case it
returnsNULL. It also returnsNULL if the BView doesn’t belong to a view hierarchy and has
no parent.

All the children of the same parent are arranged in a linked list.NextSibling() returns the
next sibling of the BView in the list, orNULL if the BView is the last child of its parent.
PreviousSibling() returns the previous sibling of the BView, orNULL if the BView is the
first child of its parent.

ChildAt() returns the view atindex in the list of the BView’s children, orNULL if the BView
has no such child. Indices begin at 0 and there are no gaps in the list.CountChildren()
returns the number of children the BView has. If the BView has no children,
CountChildren() returnsNULL, as willChildAt() for all indices, including 0.

To scan the list of a BView’s children, you can increment the index passed toChildAt()
until it returnsNULL. However, it’s more efficient to ask for the first child and then use
NextSibling() to walk down the sibling list. For example:

BView *child;
if (child = myView->ChildAt(0)) {
 while (child) {
 . . .
 child = child->NextSibling();
 }
}

See also: AddChild()

PenLocation() see MovePenBy()

PenSize() see SetPenSize()

PreviousSibling() see Parent()

Member Functions BView

270 – The Interface Kit

Pulse()
virtual voidPulse(void)

Implemented by derived classes to do something at regular intervals. Pulses are regularly
timed events, like the tick of a clock or the beat of a steady pulse. A BView receives
Pulse() notifications when no other messages are pending, but only if it asks for them with
theB_PULSE_NEEDED flag.

The interval betweenPulse() calls can be set with BWindow’sSetPulseRate() function.
The default interval is around 500 milliseconds. The pulse rate is the same for all views
within a window, but can vary between windows.

Derived classes can implement aPulse() function to do something that must be repeated
continuously. However, for time-critical actions, you should implement your own timing
mechanism.

The BView version of this function is empty.

See also: SetFlags(), the BView constructor,BWindow::SetPulseRate()

RemoveChild()
virtual boolRemoveChild(BView *childView)

Severs the link between the BView andchildView, so thatchildView is no longer a child of
the BView. ThechildView retains all its own children and descendants, but they become
an isolated fragment of a view hierarchy, unattached to a window.

If it succeeds in removingchildView, this function returnsTRUE. If it fails, it returnsFALSE.
It will fail if childView is not, in fact, a child of the BView.

Removing a BView from a window’s view hierarchy also removes it from the BWindow’s
flat list of BHandler objects; the BView will no longer be eligible to handle messages
dispatched by the BWindow.

See also: AddChild(), RemoveSelf(), DetachedFromWindow()

RemoveSelf()
bool RemoveSelf(void)

Removes the BView from its parent and returnsTRUE, or returnsFALSE if the BView
doesn’t have a parent or for some reason can’t be removed from the view hierarchy.

This function acts just likeRemoveChild(), except that it removes the BView itself rather
than one of its children.

See also: AddChild(), RemoveChild()

BView Member Functions

The Interface Kit –271

ResizeBy(), ResizeTo()
void ResizeBy(floathorizontal, floatvertical)

void ResizeTo(floatwidth, floatheight)

These functions resize the view, without moving its left and top sides.ResizeBy() adds
horizontal coordinate units to the width of the view andvertical units to the height.
ResizeTo() makes the viewwidth units wide andheight units high. Both functions adjust
the right and bottom components of the frame rectangle accordingly.

Since a BView’s frame rectangle must be aligned on screen pixels, only integral values
should be passed to these functions. Values with fractional components will be rounded to
the nearest whole integer.

If the BView is attached to a window, these functions cause its parent view to be updated,
so the BView is immediately displayed in its new size. If it doesn’t have a parent or isn’t
attached to a window, these functions merely alter its frame and bounds rectangles.

See also: FrameResized(), MoveBy(), BRect::Width(), Frame()

ResizingMode() see SetResizingMode()

ScrollBar()
BScrollBar *ScrollBar(orientationposture) const

Returns a BScrollBar object that scrolls the BView (that has the BView as its target). The
requested scroll bar has theposture orientation—B_VERTICAL or B_HORIZONTAL. If the
BView isn’t the target of a scroll bar with the specified orientation, this function returns
NULL.

See also: ScrollBar::SetTarget()

ScrollBy(), ScrollTo()
void ScrollBy(floathorizontal, floatvertical)

void ScrollTo(BPointpoint)
void ScrollTo(floatx, floaty)

These functions scroll the contents of the view.

ScrollBy() addshorizontal to the left and right components of the BView’s bounds
rectangle, andvertical to the top and bottom components. This serves to shift the display
horizontal coordinate units to the left andvertical units upward. Ifhorizontal andvertical
are negative, the display shifts in the opposite direction.

Member Functions BView

272 – The Interface Kit

ScrollTo() shifts the contents of the view as much as necessary to putpoint—or (x, y)—at
the upper left corner of its bounds rectangle. The point is specified in the BView’s
coordinate system.

Anything in the view that was visible before scrolling and also visible afterwards is
automatically redisplayed at its new location. The remainder of the view is invalidated, so
the BView’sDraw() function will be called to fill in those parts of the display that were
previously invisible. The update rectangle passed toDraw() will be the smallest rectangle
that encloses just these new areas. If the view is scrolled in only one direction, the update
rectangle will be exactly the area that needs to be drawn.

These function don’t work on BViews that aren’t attached to a window.

See also: GetClippingRegion()

SetDrawingMode(), DrawingMode()
virtual voidSetDrawingMode(drawing_modemode)

drawing_modeDrawingMode(void) const

These functions set and return the BView’s drawing mode, which can be any of the
following nine constants:

B_OP_COPY B_OP_MIN B_OP_ADD
B_OP_OVER B_OP_MAX B_OP_SUBTRACT
B_OP_ERASE B_OP_INVERT B_OP_BLEND

The drawing mode is one element of the BView’s graphics environment, which the
Application Server maintains. If the BView isn’t attached to a window,
SetDrawingMode() caches themode. When the BView is placed in a window and
becomes known to the Server, the cached value is automatically set as the current mode.
If the BView belongs to a window,SetDrawingMode() changes the current drawing mode,
but doesn’t alter any value that may have been previously cached.DrawingMode() returns
the current mode if the view is in a window, and the cached value if not.

The default drawing mode isB_OP_COPY. It and the other modes are explained under
“Drawing Modes” on page 27 of the introduction to this chapter.

See also: “Drawing Modes” in the chapter introduction

BView Member Functions

The Interface Kit –273

SetFlags(), Flags()
virtual voidSetFlags(ulongmask)

inline ulongFlags(void) const

These functions set and return the flags that inform the Application Server about the kinds
of notifications the BView should receive. Themask set bySetFlags() and the return value
of Flags() is formed from combinations of the following constants:

B_WILL_DRAW,
B_FULL_UPDATE_ON_RESIZE,
B_FRAME_EVENTS, and
B_PULSE_NEEDED

The flags are first set when the BView is constructed; they’re explained in the description
of the BView constructor.

To set just one of the flags, combine it with the current setting:

myView->SetFlags(Flags() | B_FRAME_EVENTS);

Themask passed toSetFlags() and the value returned byFlags() can be 0.

See also: the BView constructor,SetResizingMode()

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear()
virtual voidSetFontName(const char *name)

virtual voidSetFontSize(floatpoints)

virtual voidSetFontRotation(floatdegrees)

virtual voidSetFontShear(floatangle)

These functions set characteristics of the font in which the BView draws text. The font is
part of the BView’s graphics state. It’s used byDrawString() andDrawChar() and assumed
by StringWidth(), GetFontInfo(), andGetCharEdges().

SetFontName() sets the precise name of the font, including the designation of whether it’s
bold, italic, oblique, black, narrow, or some other style. The name passed to this function
must be the same as the name assigned to the font by the vendor. For example, this code

SetFontName("Futura II Italic ATT");

sets the BView’s font to the TrueType™ italic Futura II font.

ForSetFontName() to be successful, the name it’s passed must select a font that’s installed
on the user’s machine. The globalget_font_name() function can provide the names of all
fonts that are currently installed. (Users can see the names listed in the Keyboard
application’s “Font” menu.)

Member Functions BView

274 – The Interface Kit

A handful of fonts are provided with the release, including Arial MT, Baskerville MT,
Courier New, Times New Roman, and their stylistic variations. < Additional fonts can be
installed by placing them in the proper subdirectory of/system/fonts and rebooting the
machine. > The names of the bitmap fonts that come with the system are:

Emily
Erich
Kate

At present, they’re available in only one size each—12.0 points for Emily and 9.0 points
for Erich and Kate. Kate is the default font; it’s built into the system. If you ask for a font
that isn’t available, you’ll get Kate instead.

< Currently, you must specifically ask for a bitmap font. In the future, bitmap equivalents
to the outline fonts will be automatically provided for on-screen display. >

SetFontSize() sets the size of the font. Valid sizes range from 4 points through 999 points.
< Currently, fractional font sizes are not supported. >

SetFontRotation() sets the rotation of the baseline. The baseline rotates counterclockwise
from an axis on the left side of the character. The default (horizontal) baseline is at 0°.
For example, this code

SetFontRotation(45.0);
DrawString("to the northeast");

would draw a string that extended upwards and to the right. < Currently, fractional angles
of rotation are not supported. >

SetFontShear() sets the angle at which characters are drawn relative to the baseline. The
default (perpendicular) shear for all font styles, including oblique and italic ones, is 90.0°.
The shear is measured counterclockwise and can be adjusted within the range 45.0°
(slanted to the right) through 135.0° (slanted to the left). < Currently, fractional shear
angles are not supported. >

The font name, size, rotation, and shear are all elements of the BView’s graphics
environment, which the Application Server maintains. If the BView isn’t attached to a
window, these functions cache the values they’re passed so that later, when the BView is
placed in a window and becomes known to the Server, the cached values can
automatically be established as the current font parameters for the BView. If the BView
belongs to a window, these functions alter the current parameters, but don’t change any
values that may have been previously cached.

< TheSetFontSize(), SetFontRotation(), andSetFontShear() functions don’t work for
bitmap fonts. >

Derived classes can override these functions to take any collateral measures required by
the font change. For example, BTextView and BListView override them to redisplay the
text in the new font.

See also: GetFontInfo(), AttachedToWindow(), get_font_name()

BView Member Functions

The Interface Kit –275

SetHighColor(), HighColor(), SetLowColor(), LowColor()
virtual voidSetHighColor(rgb_colorcolor)
void SetHighColor(ucharred, uchargreen, ucharblue, ucharalpha = 0)

rgb_colorHighColor(void) const

virtual voidSetLowColor(rgb_colorcolor)
void SetLowColor(ucharred, uchargreen, ucharblue, ucharalpha = 0)

rgb_colorLowColor(void) const

These functions set and return the current high and low colors of the BView. These colors
combine to form a pattern that’s passed as an argument to theStroke...() andFill...()
drawing functions. TheB_SOLID_HIGH pattern is the high color alone, andB_SOLID_LOW
is the low color alone.

The default high color is black—red, green, andblue values all equal to 0. The default
low color is white—red, green, andblue values all equal to 255. < Thealpha component
of the color is currently ignored. >

The versions ofSetHighColor() andSetLowColor() that take separate arguments for the
red, blue, andgreen color components work by creating anrgb_color data structure and
passing it to the corresponding function that’s declaredvirtual. Therefore, if you want to
override either of these functions, you should override the virtual version. (However, due
to the peculiarities of C++, overriding any version of an overloaded function hides all
versions of the function. For continued access to the nonvirtual version without explicitly
specifying the “BView::” prefix, you’ll need to reimplement it also.)

The high and low colors are parameters of the BView’s graphics environment, which is
kept in the BView’s shadow counterpart in the Application Server. If the BView isn’t
attached to a window,SetHighColor() andSetLowColor() cache thecolor value so that
later, when the BView is placed in a window and becomes known to the Server, the cached
value can automatically be established as the current high or low color for the BView. If
the BView belongs to a window, they alter the current parameters, but don’t change any
values that may have previously been cached.HighColor() andLowColor() return the
current parameters if the BView is in a window, and the cached values if not.

See also: “Patterns” on page 26 of the chapter introduction,SetViewColor()

SetPenSize(), PenSize()
virtual voidSetPenSize(floatsize)

float PenSize(void) const

SetPenSize() sets the size of the BView’s pen—the graphics parameter that determines the
thickness of stroked lines—andPenSize() returns the current pen size. The pen size is
stated in coordinate units, but is translated to a device-specific number of pixels for each
output device.

Member Functions BView

276 – The Interface Kit

The pen tip can be thought of as a brush that’s centered on the line path and held
perpendicular to it. If the brush is broader than one pixel, it paints roughly the same
number of pixels on both sides of the path.

The default pen size is 1.0 coordinate unit. It can be set to any non-negative value,
including 0.0. If set to 0.0, the size is translated to 1 pixel for all devices. This guarantees
that it will always draw the thinnest possible line no matter what the resolution of the
device.

Thus, lines drawn with pen sizes of 1.0 and 0.0 will look alike on the screen (one pixel
thick), but the line drawn with a pen size of 1.0 will be 1/72 of an inch thick when printed,
however many printer pixels that takes, while the line drawn with a 0.0 pen size will be
just one pixel thick.

The pen size is a parameter of the BView’s graphics environment maintained by the
Application Server. If the BView isn’t attached to a window,SetPenSize() caches thesize
so that later, when the BView is added to a window and becomes known to the Server, the
cached value can automatically be established as the initial pen size for the BView. If the
BView belongs to a window, this function changes the current pen size, but doesn’t alter
any value that may have previously been cached.PenSize() returns the current pen size if
the BView is in a window, and the cached value if not.

See also: “The Pen” on page 24 and “Picking Pixels to Stroke and Fill” on page 34 of the
chapter introduction,StrokeArc() and the otherStroke...() functions,MovePenBy()

SetResizingMode(), ResizingMode()
virtual voidSetResizingMode(ulongmode)

inline ulongResizingMode(void) const

These functions set and return the BView’s automatic resizing mode. The resizing mode
is first set when the BView is constructed. The various possible modes are explained
where the constructor is described.

See also: the BView constructor,SetFlags()

SetSymbolSet()
virtual voidSetSymbolSet(const char *name)

Determines the set of characters that the BView can display. A symbol set maps graphic
symbols (glyphs) to character values (ASCII codes). Sets differ mainly in which symbols
they associate with character values beyond the traditional ASCII range (above 0x7f),
though they sometimes also differ within the traditional range as well.

BView Member Functions

The Interface Kit –277

The default symbol set is “Macintosh”. However, there are many other possibilities to
choose from, including:

“ISO 8859/9 Latin 5”,
“Legal”,
“PC-850 Multilingual”, and
“Windows 3.1 Latin 2”.

Theget_symbol_set_name() global function can provide a list of all currently available
symbol sets.

Except for the bitmap fonts, every font implements every symbol set. However, some
fonts may not provide all the characters in every set.

Derived classes can override this function to take any collateral measures required by the
change in symbol set. For example, BTextView and BListView override it to recalculate
how displayed text is laid out.

The symbol set is part of the BView’s graphics environment, which is to say that the
Application Server maintains it. If the BView isn’t attached to a window,SetSymbolSet()
copies and caches thename so that later, when the BView is added to a window and
becomes known to the Server, it can automatically be established as the BView’s current
symbol set. If the BView belongs to a window, this function changes the current symbol
set, but doesn’t alter any string that may have previously been cached.

See also: SetFontName(), get_symbol_set_name()

SetViewColor(), ViewColor()
virtual voidSetViewColor(rgb_colorcolor)
void SetViewColor(ucharred, uchargreen, ucharblue, ucharalpha= 0)

rgb_colorViewColor(void) const

These functions set and return the background color that’s shown in all areas of the view
rectangle that the BView doesn’t cover with its own drawing. When the clipping region is
erased prior to an update, it’s erased to the view color. When a view is resized to expose
new areas, the new areas are first displayed in the view color. The default view color is
white, which matches the background color of the window’s content area.

If you know that a BView will cover every pixel in the clipping region when it draws, you
may want to avoid having the region erased to a color that will immediately be obliterated.
If you set the view color toTRANSPARENT_32_BIT, the Application Server will not draw its
background color before updates nor fill new areas with the background color. (Note that,
despite the name, this doesn’t make the view transparent—you can’t see through it to what
the view behind it would draw in that region.)

If the view color is anything but white, theB_WILL_DRAW flag needs to be set, even if the
BView does no other drawing except provide a background color. The flag informs the

Member Functions BView

278 – The Interface Kit

Application Server that there are specific drawing operations (in this case, a specific
background color) associated with the view.

The version ofSetViewColor() that takes separate arguments for thered, blue, andgreen
color components works by creating anrgb_color data structure and passing it to the
corresponding function that’s declaredvirtual. Therefore, you need override only the
rgb_color version to augment both functions. (However, due to the peculiarities of C++,
overriding any version of an overloaded function hides all versions of the function. For
continued access to the nonvirtual version without explicitly specifying the “BView::”
prefix, you’ll need to reimplement it also.)

< Thealpha color component is currently ignored. >

It’s best to set the view color before the window is shown on-screen.

The view color is a parameter of the BView’s graphics environment, which the
Application Server maintains. If the BView doesn’t belong to a window,SetViewColor()
caches thecolor it’s passed so that later, when the BView is attached to a window, it can
automatically be handed to the Server. If the BView belongs to a window,SetViewColor()
alters the Server parameter, but doesn’t change any value that may have previously been
cached.ViewColor() returns the current parameter if the BView is attached, and the
cached value if not.

See also: “The View Color” on page 22 of the introduction to the chapter,SetHighColor()

Show() see Hide()

StringWidth()
float StringWidth(const char *string) const
float StringWidth(const char *string, long length) const

Returns how much room is required to drawlength characters ofstring in the BView’s
current font. If no length is specified, the entire string is measured, up to the null
character, ‘\0’, which terminates it. The return value totals the width of all the characters.
It measures, in coordinate units, the length of the baseline required to draw the string.

This function works only for BViews that are attached to a window (since only attached
views have a current font).

See also: GetFontInfo(), GetCharEscapements()

BView Member Functions

The Interface Kit –279

StrokeArc(), FillArc()
void StrokeArc(BRectrect, floatangle, floatspan,

patternaPattern= B_SOLID_HIGH)
void StrokeArc(BPointcenter, floatxRadius, floatyRadius, floatangle, floatspan,

patternaPattern= B_SOLID_HIGH)

void FillArc(BRectrect, floatangle, floatspan,
patternaPattern= B_SOLID_HIGH)

void FillArc(BPointcenter, floatxRadius, floatyRadius, floatangle, floatspan,
patternaPattern= B_SOLID_HIGH)

These functions draw an arc, a portion of an ellipse.StrokeArc() strokes a line along the
path of the arc.FillArc() fills the wedge defined by straight lines stretching from the center
of the ellipse of which the arc is a part to the end points of the arc itself. For example:

The arc is a section of the ellipse inscribed inrect—or the ellipse located atcenter, where
the horizontal distance from the center to the edge of the ellipse is measured byxRadius
and the vertical distance from the center to the edge is measured byyRadius.

The arc starts atangle and stretches along the ellipse forspan degrees, where angular
coordinates are measured counterclockwise with 0° on the right, as shown below:

For example, ifangle is 180.0° andspan is 90.0°, the arc would be the lower left quarter of
the ellipse. The same arc would be drawn ifangle were 270.0° andspan were –90.0°.
< Currently,angle andspan measurements in fractions of a degree are not supported. >

The width of the line drawn byStrokeArc() is determined by the current pen size. Both
functions draw usingaPattern—or, if no pattern is specified, using the current high color.
Neither function alters the current pen position.

See also: StrokeEllipse()

0.0°

45.0°
90.0°

135.0°

180.0°

225.0°
270.0°

315.0°

Member Functions BView

280 – The Interface Kit

StrokeEllipse(), FillEllipse()
void StrokeEllipse(BRectrect, patternaPattern = B_SOLID_HIGH)
void StrokeEllipse(BPointcenter, floatxRadius, floatyRadius,

patternaPattern= B_SOLID_HIGH)

void FillEllipse(BRectrect, patternaPattern= B_SOLID_HIGH)
void FillEllipse(BPointcenter, floatxRadius, floatyRadius,

patternaPattern= B_SOLID_HIGH)

These functions draw an ellipse.StrokeEllipse() strokes a line around the perimeter of the
ellipse andFillEllipse() fills the area the ellipse encloses.

The ellipse has its center atcenter. The horizontal distance from the center to the edge of
the ellipse is measured byxRadius and the vertical distance from the center to the edge is
measured byyRadius. If xRadius andyRadius are the same, the ellipse will be a circle.

Alternatively, the ellipse can be described as one that’s inscribed inrect. If the rectangle is
a square, the ellipse will be a circle.

The width of the line drawn byStrokeEllipse() is determined by the current pen size. Both
functions draw usingaPattern—or, if no pattern is specified, using the current high color.
Neither function alters the current pen position.

See also: SetPenSize()

StrokeLine()
void StrokeLine(BPointstart, BPointend, patternaPattern= B_SOLID_HIGH)
void StrokeLine(BPointend, patternaPattern= B_SOLID_HIGH)

Draws a straight line between thestart andend points—or, if no starting point is given,
between the current pen position andend point—and leaves the pen at the end point.

This function draws the line using the current pen size and the specified pattern. If no
pattern is specified, the line is drawn in the current high color. The points are specified in
the BView’s coordinate system.

See also: SetPenSize(), BeginLineArray()

BView Member Functions

The Interface Kit –281

StrokePolygon(), FillPolygon()
void StrokePolygon(BPolygon *polygon,

bool isClosed= TRUE, patternaPattern= B_SOLID_HIGH)
void StrokePolygon(BPoint *pointList, longnumPoints,

bool isClosed= TRUE, patternaPattern= B_SOLID_HIGH)
void StrokePolygon(BPoint *pointList, longnumPoints, BRectrect,

bool isClosed= TRUE, patternaPattern= B_SOLID_HIGH)

void FillPolygon(BPolygon *aPolygon,
patternaPattern= B_SOLID_HIGH)

void FillPolygon(BPoint *pointList, longnumPoints,
patternaPattern= B_SOLID_HIGH)

void FillPolygon(BPoint *pointList, longnumPoints, BRectrect,
patternaPattern= B_SOLID_HIGH)

These functions draw a polygon with an arbitrary number of sides.StrokePolygon()
strokes a line around the edge of the polygon using the current pen size. If apointList is
specified rather than a BPolygon object, this function strokes a line from point to point,
connecting the first and last points if they aren’t identical. However, if theisClosed flag is
FALSE, StrokePolygon() won’t stroke the line connecting the first and last points that define
the BPolygon (or the first and last points in thepointList). This leaves the polygon open—
making it not appear to be a polygon at all, but rather a series of straight lines connected at
their end points. IfisClosed is TRUE, as it is by default, the polygon will appear to be a
polygon, a closed figure.

FillPolygon() is a simpler function; it fills in the entire area enclosed by the polygon.

Both functions must calculate the frame rectangle of a polygon constructed from a point
list—that is, the smallest rectangle that contains all the points in the polygon. If you know
what this rectangle is, you can make the function somewhat more efficient by passing it as
therect parameter.

Both functions draw using the specified pattern—or, if no pattern is specified, in the
current high color. Neither function alters the current pen position.

See also: SetPenSize(), the BPolygon class

StrokeRect(), FillRect()
void StrokeRect(BRectrect, patternaPattern= B_SOLID_HIGH)

void FillRect(BRectrect, patternaPattern= B_SOLID_HIGH)

These functions draw a rectangle.StrokeRect() strokes a line around the edge of the
rectangle; the width of the line is determined by the current pen size.FillRect() fills in the
entire rectangle.

Member Functions BView

282 – The Interface Kit

Both functions draw using the pattern specified byaPattern—or, if no pattern is specified,
in the current high color. Neither function alters the current pen position.

See also: SetPenSize(), StrokeRoundRect()

StrokeRoundRect(), FillRoundRect()
void StrokeRoundRect(BRectrect, floatxRadius, floatyRadius,

patternaPattern= B_SOLID_HIGH)

void FillRoundRect(BRectrect, floatxRadius, floatyRadius,
patternaPattern= B_SOLID_HIGH)

These functions draw a rectangle with rounded corners. The corner arc is one-quarter of
an ellipse, where the ellipse would have a horizontal radius equal toxRadius and a vertical
radius equal toyRadius.

Except for the rounded corners of the rectangle, these functions work exactly like
StrokeRect() andFillRect().

Both functions draw using the pattern specified byaPattern—or, if no pattern is specified,
in the current high color. Neither function alters the current pen position.

See also: StrokeRect(), StrokeEllipse()

StrokeTriangle(), FillTriangle()
void StrokeTriangle(BPointfirstPoint, BPointsecondPoint, BPointthirdPoint,

patternaPattern= B_SOLID_HIGH)
void StrokeTriangle(BPointfirstPoint, BPointsecondPoint, BPointthirdPoint,

BRectrect, patternaPattern= B_SOLID_HIGH)

void FillTriangle(BPointfirstPoint, BPointsecondPoint, BPointthirdPoint,
patternaPattern= B_SOLID_HIGH)

void FillTriangle(BPointfirstPoint, BPointsecondPoint, BPointthirdPoint,
BRectrect, patternaPattern= B_SOLID_HIGH)

These functions draw a triangle, a three-sided polygon.StrokeTriangle() strokes a line the
width of the current pen size from the first point to the second, from the second point to the
third, then back to the first point.FillTriangle() fills in the area that the three points enclose.

Each function must calculate the smallest rectangle that contains the triangle. If you know
what this rectangle is, you can make the function marginally more efficient by passing it as
therect parameter.

Both functions do their drawing using the pattern specified byaPattern—or, if no pattern
is specified, in the current high color. Neither function alters the current pen position.

See also: SetPenSize()

BView Member Functions

The Interface Kit –283

Sync() see Flush()

Window()
BWindow *Window(void) const

Returns the BWindow to which the BView belongs, orNULL if the BView isn’t attached to
a window. This function returns the same object thatLooper() (inherited from the
BHandler class) does—except thatWindow() returns it more specifically as a pointer to a
BWindow andLooper() returns it more generally as a pointer to a BLooper.

See also: BHandler::Looper() in the Application Kit,AddChild(), BWindow::AddChild(),
AttachedToWindow()

WindowActivated()
virtual voidWindowActivated(boolactive)

Implemented by derived classes to take whatever steps are necessary when the BView’s
window becomes the active window, or when the window gives up that status. Ifactive is
TRUE, the window has become active. Ifactive is FALSE, it no longer is the active window.

All objects in the view hierarchy receiveWindowActivated() notifications when the status
of the window changes.

BView’s version of this function is empty.

See also: BWindow::WindowActivated()

Member Functions BView

284 – The Interface Kit

The Interface Kit –285

BWindow

Derived from: public BLooper

Declared in: <interface/Window.h>

Overview

The BWindow class defines an application interface to windows. Each BWindow object
corresponds to one window in the user interface.

At the most basic level, it’s the Application Server’s responsibility to provide an
application with the windows it needs. The Server allocates the memory each window
requires, renders images in the window on instructions from the application, and manages
the user interface. It equips windows with all the accouterments that let users activate,
move, resize, reorder, hide, and close them. These user actions are not mediated by the
application; they’re handled within the Application Server alone. However, the Server
sends the application messages notifying it of user actions that affect the window. A class
derived from BWindow can implement virtual functions such asFrameResized(),
QuitRequested(), andWindowActivated() to respond to these messages.

BWindow objects are the application’s interface to the Server’s windows:

• Creating a BWindow object instructs the Application Server to produce a window
that can be displayed to the user. The BWindow constructor determines what kind
of window it will be and how it will behave. The window is initially hidden; the
Show() function makes it visible on-screen.

• BWindow functions give the application the ability to manipulate the window
programmatically—to activate, move, resize, reorder, hide, and close it just as a user
might.

• Classes derived from BWindow can implement functions that respond to interface
messages affecting the window.

BWindow objects communicate directly with the Server. However, before this
communication can take place, the constructor for the BApplication object must establish
an initial connection to the Server. You must construct the BApplication object before the
first BWindow.

Overview BWindow

286 – The Interface Kit

View Hierarchy

A window can display images, but it can’t produce them. To draw within a window, an
application needs a collection of various BView objects. For example, a window might
have several check boxes or radio buttons, a list of names, some scroll bars, and a
scrollable display of pictures or text—all provided by objects that inherit from the BView
class.

These BViews are created by the application and are associated with the BWindow by
arranging them in a hierarchy under atop view, a view that fills the entire content area of
the window. Views are added to the hierarchy by making them children of views already
in the hierarchy, which at the outset means children of the top view.

A BWindow doesn’t reveal the identity of its top view, but it does have functions that act
on the top view’s behalf. For example, BWindow’sAddChild() function adds a view to
the hierarchy as a child of the top view. ItsFindView() function searches the view
hierarchy beginning with the top view.

Window Threads

Each window runs in its own thread—both in the Application Server and in the
application. When it’s constructed, a BWindow object spawns awindow thread for the
application and begins running a message loop where it receives reports of user actions
associated with the window. You don’t have to callRun() to get the message loop going,
as you do for other BLoopers;Run() is called for you at construction time.

Actions initiated from a BWindow’s message loop are executed in the window’s thread.
This, of course, includes all actions that are spun off from the original message. For
example, if the user clicks a button in a window and this initiates a series of calculations
involving a variety of objects, those calculations will be executed in the thread of the
window where the button is located (unless the calculation explicitly spawns other threads
or posts messages to other BLoopers).

Quitting

To “close” a window is to remove the window from the screen, quit the message loop, kill
the window thread, and delete the BWindow object. As is the case for other BLoopers,
this process is initiated by a request to quit—aB_QUIT_REQUESTED message.

For a BWindow, a request to quit is an event that might be reported from the Application
Server (as when the user clicks a window’s close button) or from within the application (as
when the user clicks a “Close” menu item).

To respond to quit-requested messages, classes derived from BWindow implement
QuitRequested() functions. QuitRequested() can prevent the window from closing, or
take whatever action is appropriate before the window is destroyed. It typically interacts
with the user, asking, for example, whether recent changes to a document should be saved.

BWindow Hook Functions

The Interface Kit –287

QuitRequested() is a hook function declared in the BLooper class; it’s not documented
here. See the BLooper class in the Application Kit for information on the function and on
how classes derived from BWindow might implement it.

Hook Functions

FrameMoved() Can be implemented to take note of the fact that the
window has moved.

FrameResized() Can be implemented to take note of the fact that the
window has been resized.

MenusWillShow() Can be implemented to make sure menu data structures are
up-to-date before the menus are displayed to the user.

Minimize() Removes the window from the screen and replaces it with
its minimized representation, or restores the window if it
was previously minimized; can be reimplemented to
provide a different representation for a minimized window.

SavePanelClosed() Can be implemented to take note when the window’s save
panel closes.

SaveRequested() Can be implemented to save the document displayed in the
window when the user requests it in the save panel.

ScreenChanged() Makes sure the window stays visible on-screen when the
size of the pixel grid changes; can be implemented to make
other adjustments when the screen changes its depth or
dimensions.

WindowActivated() Can be implemented to take whatever action is necessary
when the window becomes the active window, or when it
loses that status.

WorkspaceActivated() Can be implemented to take remedial steps when the
workspace where the window lives becomes the active
workspace, or when it loses that status.

WorkspacesChanged() Can be implemented to respond when the set of workspaces
where the window can be displayed changes.

Zoom() Zooms the window to a larger size, or from the larger size
to its previous state; can be reimplemented to modify the
target window size or make other adjustments.

Constructor and Destructor BWindow

288 – The Interface Kit

Constructor and Destructor

BWindow()
BWindow(BRectframe, const char *title, window_typetype, ulongflags,

ulongworkspaces= B_CURRENT_WORKSPACE)

Produces a new window with theframe content area, spawns a new thread of execution for
the window, and begins running a message loop in that thread.

The first argument,frame, measures only the content area of the window; it excludes the
border and the title tab at the top. The window’s top view will be exactly the same size
and shape as its frame rectangle—though the top view is located in the window’s
coordinate system and the window’s frame rectangle is specified in the screen coordinate
system.

For the window to become visible on-screen, the frame rectangle you assign it must lie
within the frame rectangle of the screen. You can find the current dimensions of the screen
by callingget_screen_info(). In addition, both the width and height offrame must be
greater than 0.

Since a window is always aligned on screen pixels, the sides of its frame rectangle must
have integral coordinate values. Any fractional coordinates that are passed inframe will
be rounded to the nearest whole number.

The second argument,title, does two things: It sets the title the window will display if it
has a tab, and it determines the name of the window thread. The thread name is a string
that prefixes “w>” to the title in the following format:

"w> title "

If the title is long, only as many characters will be used as will fit within the limited length
of a thread name. (Only the thread name is limited, not the window title.) The title (and
thread name) can be changed with theSetTitle() function.

Thetitle can beNULL or an empty string.

Thetype of window is set by one of the following constants:

B_MODAL_WINDOW A modal window, one that disables other activity
in the application until the user dismisses it. It
has a border but no tab to display a title.

B_BORDERED_WINDOW An ordinary (nonmodal) window with a border
but no title tab.

B_TITLED_WINDOW A window with a tab that displays its title and a
narrow border that’s the same on all sides.

B_DOCUMENT_WINDOW A window with a title tab and a border. The
border on the right and bottom sides is a thin line

BWindow Constructor and Destructor

The Interface Kit –289

that’s designed to look good with vertical and
horizontal scroll bars.

The tab and border are drawn around the window’s frame rectangle.

The fourth argument,flags, is a mask that determines the behavior of the window. It’s
formed by combining constants from the following set:

B_NOT_MOVABLE Prevents the user from being able to move the
window. By default, a window with a tab at the
top is movable.

B_NOT_H_RESIZABLE Prevents the user from resizing the window
horizontally. A window is horizontally resizable
by default.

B_NOT_V_RESIZABLE Prevents the user from resizing the window
vertically. A window is vertically resizable by
default.

B_NOT_RESIZABLE Prevents the user from resizing the window in
any direction. This constant is a shorthand that
you can substitute for the combination of
B_NOT_H_RESIZABLE andB_NOT_V_RESIZABLE. A
window is resizable by default.

B_NOT_CLOSABLE Prevents the user from closing the window
(eliminates the close button from its tab).
Windows with title tabs have a close button by
default.

B_NOT_ZOOMABLE Prevents the user from zooming the window
larger or smaller (eliminates the zoom button
from the window tab). Windows with tabs are
zoomable by default.

B_NOT_MINIMIZABLE Prevents the user from collapsing the window to
its minimized form. Windows can be minimized
by default.

B_WILL_ACCEPT_FIRST_CLICK Enables the BWindow to receive mouse-down
and mouse-up messages even when it isn’t the
active window. By default, a click in a window
that isn’t the active window brings the window to
the front and makes it active, but doesn’t get
reported to the application. If a BWindow
accepts the first click, the event gets reported to
the application, but it doesn’t make the window
active. The BView that responds to the mouse-

Constructor and Destructor BWindow

290 – The Interface Kit

down message must take responsibility for
activating the window.

B_WILL_FLOAT Causes the window to float in front of other
windows.

If flags is 0, the window will be one the user can move, resize, close, and zoom. It won’t
float or accept the first click.

The final argument,workspaces, associates the window with a set of one or more
workspaces. Each workspace is identified by a specific bit in along integer; the
workspaces mask can name up to 32 workspaces. The mask can even name workspaces
that don’t yet exist. The window will live in those workspaces when and if the user
creates them.

Two special values can be passed as theworkspaces parameter:

B_CURRENT_WORKSPACE Associates the window with the workspace that’s
currently displayed on-screen (the active
workspace), whatever workspace that happens to
be. This is the default choice.

B_ALL_WORKSPACES Associates the window with all workspaces. The
window will show up in all workspaces the user
has created and in all future workspaces that will
be created.

The window’s message loop reads messages delivered to the window and dispatches them
by calling a virtual function of the responsible object. The responsible object is usually
one of the BViews in the window’s view hierarchy. Views are notified of system messages
throughMouseDown(), KeyDown(), MouseMoved() and other virtual function calls.
However, sometimes the responsible object is the BWindow itself. It handles
FrameMoved(), QuitRequested(), WindowActivated() and other notifications.

The message loop begins to run when the BWindow is constructed and continues until the
window is told to quit and the BWindow object is deleted. Everything the window thread
does is initiated by a message of some kind.

See also: SetFlags(), SetTitle()

~BWindow()
virtual ~BWindow(void)

Frees all memory that the BWindow allocated for itself.

Call theQuit() function to destroy the BWindow object; don’t use thedelete operator.
Quit() does everything that’s necessary to shut down the window—such as remove its

BWindow Member Functions

The Interface Kit –291

connection to the Application Server and get rid of its views—and invokesdelete at the
appropriate time.

See also: Quit()

Member Functions

Activate()
void Activate(boolflag = TRUE)

Makes the BWindow the active window (ifflag is TRUE), or causes it to relinquish that
status (ifflag is FALSE). When this function activates a window, it reorders the window to
the front <of its tier>, highlights its tab, and makes it the window responsible for handling
subsequent keyboard events. When it deactivates a window, it undoes all these things. It
reorders the window to the back <of its tier> and removes the highlighting from its tab.
Another window (the new active window) becomes the target for keyboard events.

When a BWindow is activated or deactivated (whether programmatically through this
function or by the user), it and all the BViews in its view hierarchy receive
WindowActivated() notifications.

This function will not activate a window that’s hidden.

See also: WindowActivated(), BView::WindowActivated()

AddChild()
virtual voidAddChild(BView *aView)

AddsaView to the hierarchy of views associated with the window, making it a child of the
window’s top view. However, ifaView already has a parent, it won’t be forcibly removed
from that family and adopted into this one. A view can live with but one parent at a time.

This function callsaView’s AttachedToWindow() function to inform it that it now belongs
to the BWindow. Every view that descends fromaView also becomes attached to the
window and receives its ownAttachedToWindow() notification.

When a BView is attached to a window, it also is added to the BWindow’s list of BHandler
objects, making it eligible to receive messages the BWindow dispatches. In addition, this
function assigns the BWindow asaView’s next handler.

See also: BView::AddChild(), BView::AttachedToWindow(), RemoveChild(),
BHandler::SetNextHandler()

Member Functions BWindow

292 – The Interface Kit

AddShortcut(), RemoveShortcut()
void AddShortcut(ulongaChar, ulongmodifiers, BMessage *message)
void AddShortcut(ulongaChar, ulongmodifiers, BMessage *message,

BHandler *target)

void RemoveShortcut(ulongaChar, ulongmodifiers)

These functions set up, and tear down, keyboard shortcuts for the window. A shortcut is a
character (aChar) that the user can type, in combination with the Command key and
possibly one or more othermodifiers to issue an instruction to the application. For
example, Command-r might rotate what’s displayed within a particular view. The
instruction is issued by posting a BMessage to the window thread.

Keyboard shortcuts are commonly associated with menu items. However,do not use
these functions to set up shortcuts for menus; use the BMenuItem constructor instead.
These BWindow functions are for shortcuts that aren’t associated with a menu.

AddShortcut() registers a new window-specific keyboard shortcut. The first two
arguments,aChar andmodifiers, specify the character and the modifier states that together
will issue the instruction.modifiers is a mask that combines any of the usual modifier
constants (see themodifiers() function for the full list). Typically, it’s one or more of these
four (or it’s 0):

B_SHIFT_KEY
B_CONTROL_KEY
B_OPTION_KEY
B_COMMAND_KEY

B_COMMAND_KEY is assumed; it doesn’t have to be specified. The character value that’s
passed as an argument should reflect the modifier keys that are required. For example, if
the shortcut is Command-Shift-C, aChar should be ‘C’, not ‘c’.

The instruction that the shortcut issues is embodied in a modelmessage that the BWindow
will copy and post whenever it’s notified of a key-down event matching theaChar and
modifiers combination (includingB_COMMAND_KEY).

Before posting the message, it adds one data entry to the copy:

Data name Type code Description

“when” B_DOUBLE_TYPE When the key-down event occurred, as
measured in microseconds from the time
the machine was last booted.

The modelmessage shouldn’t contain an entry of the same name.

The message is posted to the BWindow. If atarget BHandler object is specified, it will be
designated to respond to the message. If atarget isn’t specified, the current focus view
will be designated to handle it. If there is no focus view, the BWindow will act as the
handler.

BWindow Member Functions

The Interface Kit –293

The message is dispatched by calling the handler’sMessageReceived() function. If you
add a keyboard shortcut to a window, you must implement aMessageReceived() function
that can respond to the message the shortcut generates.

(Note, however, that if themessage hasB_QUIT_REQUESTED or the constant for another
interface message as itswhat data member, thetarget will be ignored and it will be
dispatched by calling a specific function, likeQuitRequested(), notMessageReceived().)

RemoveShortcut() unregisters a keyboard shortcut that was previously added.

See also: MessageReceived(), FilterKeyDown(), the BMenuItem constructor

Bounds()
BRectBounds(void) const

Returns the current bounds rectangle of the window. The bounds rectangle encloses the
content area of the window and is stated in the window’s coordinate system. It’s exactly
the same size as the frame rectangle, but its left and top sides are always 0.0.

See also: Frame()

ChildAt(), CountChildren()
BView *ChildAt(long index) const

long CountChildren(void) const

These first of these functions returns the child BView atindex, or NULL if there’s no such
child of the BWindow’s top view. Indices begin at 0 and there are no gaps in the list. The
second function returns the number of children the top view has.

See also: BView::Parent()

Close() see Quit()

CloseSavePanel() see RunSavePanel()

Member Functions BWindow

294 – The Interface Kit

ConvertToScreen(), ConvertFromScreen()
BPointConvertToScreen(BPointwindowPoint) const
void ConvertToScreen(BPoint *windowPoint) const

BRectConvertToScreen(BRectwindowRect) const
void ConvertToScreen(BRect *windowRect) const

BPointConvertFromScreen(BPointscreenPoint) const
void ConvertFromScreen(BPoint *screenPoint) const

BRectConvertFromScreen(BRectscreenRect) const
void ConvertFromScreen(BRect *screenRect) const

These functions convert points and rectangles to and from the global screen coordinate
system.ConvertToScreen() convertswindowPoint or windowRect from the window
coordinate system to the screen coordinate system.ConvertFromScreen() makes the
opposite conversion; it convertsscreenPoint or screenRect from the screen coordinate
system to the window coordinate system.

If the point or rectangle is passed by value, the function returns the converted value. If a
pointer is passed, the conversion is done in place.

The window coordinate system has its origin, (0.0, 0.0), at the left top corner of the
window’s content area. The origin of the screen coordinate system is at the left top corner
of the main screen.

See also: BView::ConvertToScreen()

CurrentFocus(), PreferredHandler()
BView *CurrentFocus(void) const

virtual BHandler *PreferredHandler(void) const

Both these functions return the current focus view for the BWindow, orNULL if no view is
currently in focus.CurrentFocus() returns the object as a BView, andPreferredHandler()
overrides the BLooper function to return it as a BHandler.

The focus view is the BView that’s responsible for showing the current selection and
handling keyboard messages when the window is the active window.

Various other objects in the Interface Kit, such as BButtons and BMenuItems, call
PreferredHandler() to discover where they should target messages posted to the BWindow
when a specific target hasn’t been designated. This mechanism permits these objects to
name the current focus view. Thus, a menu item or a control device can be set up to
always act on whatever BView happens to be displaying the current selection.

See also: BView::MakeFocus(), BControl::SetTarget(), BMenuItem::SetTarget(),
BLooper::PreferredHandler()

BWindow Member Functions

The Interface Kit –295

DefaultButton() see SetDefaultButton()

DisableUpdates(), EnableUpdates()
void DisableUpdates(void)

void EnableUpdates(void)

These function disable automatic updating within the window, and re-enable it again.
Updating is enabled by default, so every user action that changes a view and every
program action that invalidates a view’s contents causes the view to be automatically
redrawn.

This may be inefficient when there are a number of changes to a view, or to a group of
views within a window. In this case, you can temporarily disable the updating mechanism
by callingDisableUpdates(), make the changes, then callEnableUpdates() to re-enable
updating and have all the changes displayed at once.

See also: BView::Invalidate(), UpdateIfNeeded()

DispatchMessage()
virtual voidDispatchMessage(BMessage *message, BHandler *handler)

Overrides the BLooper function to dispatch messages as they’re received by the window
thread. This function is called for you each time the BWindow takes a message from its
queue. It dispatches the message by calling the virtual function that’s designated to begin
the application’s response.

• It dispatches system messages by calling a message-specific virtual function
implemented for the BWindow or the responsible BView. See “Hook Functions for
Interface Messages” on page 44 in the introduction to this chapter for a list of these
functions.

• It defers to the BLooper version of this function to dispatchB_QUIT_REQUESTED and
B_HANDLERS_REQUESTED messages.

• It dispatches other messages by calling the targetedhandler’s MessageReceived()
function.

Whenever it’s called,DispatchMessage() locks the BWindow. The lock remains in place
until the window thread’s response to the message is complete.

Member Functions BWindow

296 – The Interface Kit

Derived classes can override this function to make it dispatch specific kinds of messages
in other ways. For example:

void MyWindow::DispatchMessage(BMessage *message)
{
 Lock();
 if (message->what == MAKE_PREDICTIONS)
 predictor->GuessAbout(message);
 else
 BWindow::DispatchMessage(message);
 Unlock();
}

The message loop deletes every message it receives when the function that
DispatchMessage() calls, andDispatchMessage() itself, return. The message should not
be deleted in application code (unlessDetachCurrentMessage() is first called to detach it
from the message loop).

See also: the BMessage class,BLooper::DispatchMessage(), BLooper::CurrentMessage()

EnableUpdates() see DisableUpdates()

FindView()
BView *FindView(BPointpoint) const
BView *FindView(const char *name) const

Returns the view located atpoint within the window, or the view tagged withname. The
point is specified in the window’s coordinate system (the coordinate system of its top
view), which has the origin at the upper left corner of the window’s content area.

If no view is located at the point given, or no view within the window has the name given,
this function returnsNULL.

See also: BView::FindView()

Flush()
void Flush(void) const

Flushes the window’s connection to the Application Server, sending whatever happens to
be in the out-going buffer to the Server. The buffer is automatically flushed on every
update and after each message.

This function has the same effect as theFlush() function defined for the BView class.

See also: BView::Flush

BWindow Member Functions

The Interface Kit –297

Frame()
BRectFrame(void) const

Asks the Application Server for the current frame rectangle for the window and returns it.
The frame rectangle encloses the content area of the window and is stated in the screen
coordinate system. It’s first set by the BWindow constructor, and is modified as the
window is resized and moved.

See also: MoveBy(), ResizeBy(), the BWindow constructor

FrameMoved()
virtual voidFrameMoved(BPointscreenPoint)

Implemented by derived classes to respond to a notification that the window has moved.
The move—which placed the left top corner of the window’s content area atscreenPoint
in the screen coordinate system—could be the result of the user dragging the window or of
the program callingMoveBy() or MoveTo(). If the user drags the window,FrameMoved()
is called repeatedly as the window moves. If the program moves the window, it’s called
just once to report the new location.

The default version of this function does nothing.

See also: MoveBy(), “B_WINDOW_MOVED” on page 16 in theMessage Protocols
appendix

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Implemented by derived classes to respond to a notification that the window’s content area
has been resized to a newwidth andheight. The resizing could be the result of the
program callingResizeTo(), ResizeBy(), or Zoom()—in which caseFrameResized() is
called just once to report the window’s new size—or of a user action—in which case it’s
called repeatedly as the user drags a corner of the window to resize it.

The default version of this function does nothing.

See also: ResizeBy(), “B_WINDOW_RESIZED” on page 16 in theMessage Protocols
appendix

GetSizeLimits() see SetSizeLimits()

Member Functions BWindow

298 – The Interface Kit

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Responds to a request for information identifying the BHandlers associated with the
BWindow. This function sends aB_HANDLERS_INFO reply to theB_HANDLERS_REQUESTED
message it’s passed as an argument. The reply has an entry named “handlers” with
BMessenger objects corresponding to the requested BHandlers, or one named “error” with
an error code.

If theB_HANDLERS_REQUESTED message has an entry called “class” and that entry contains
the string “BView”, this function interprets the request as one that concerns the BView
objects that are the children of its top view. It limits its search for BHandlers accordingly.
Otherwise, the scope of the request is not limited and encompasses all BHandlers that
have been added to the window, including all BViews (except the top view).

If the message asks for a particular BView with an entry named “index”, the BWindow
puts a BMessenger in the reply message for the child BView (or the associated BHandler)
at the requested index. If not, and if themessage asks for a particular BView with an entry
labeled “name” and the string in the entry matches the name of one of the top view’s
children (or one of the window’s BHandlers), it puts a BMessenger for that object in the
reply message.

However, if themessage doesn’t specify a particular object, it supplies BMessengers for
all the top view’s children (or all the BWindow’s BHandlers).

If this function can’t supply BMessengers for the specified BHandlers, it doesn’t add any
BMessengers to theB_HANDLERS_INFO message, but places an appropriate error code—
B_BAD_INDEX, B_NAME_NOT_FOUND, or B_ERROR—in the message under the name
“error”.

You can override this function to respond to different protocols for requesting handlers, or
to prevent the BWindow’s BViews (and BHandlers) from being revealed.

See also: BView::HandlersRequested(), BApplication::HandlersRequested()

Hide(), Show()
virtual voidHide(void)

virtual voidShow(void)

These functions hide the window so it won’t be visible on-screen, and show it again.

Hide() removes the window from the screen. If it happens to be the active window,Hide()
also deactivates it. Hiding a window hides all the views attached to the window. While
the window is hidden, its BViews respondTRUE to IsHidden() queries.

Show() puts the window back on-screen. It places the window in front of other windows
and makes it the active window.

BWindow Member Functions

The Interface Kit –299

Calls toHide() andShow() can be nested; ifHide() is called more than once, you’ll need to
call Show() an equal number of times for the window to become visible again.

A window begins life hidden (as ifHide() had been called once); it takes an initial call to
Show() to display it on-screen.

See also: IsHidden()

IsActive()
bool IsActive(void) const

ReturnsTRUE if the window is currently the active window, andFALSE if it’s not.

See also: Activate()

IsFront()
bool IsFront(void) const

ReturnsTRUE if the window is currently the frontmost window on-screen, andFALSE if it’s
not.

IsHidden()
bool IsHidden(void) const

ReturnsTRUE if the window is currently hidden, andFALSE if it isn’t.

Windows are hidden at the outset. TheShow() function puts them on-screen, andHide()
can be called to hide them again.

If Show() has been called to unhide the window, but the window is totally obscured by
other windows or occupies coordinates that don’t intersect with the physical screen,
IsHidden() will nevertheless returnFALSE, even though the window isn’t visible.

See also: Hide()

IsSavePanelRunning() see RunSavePanel()

KeyMenuBar() see SetKeyMenuBar()

Member Functions BWindow

300 – The Interface Kit

MenusWillShow()
virtual voidMenusWillShow(void)

Implemented by derived classes to make sure menus are up-to-date before they’re placed
on-screen. This function is called just before menus belonging to the window are about to
be shown to the user. It gives the BWindow a chance to make any required alterations—
for example, disabling or enabling particular items—so that the menus are in synch with
the current state of the window.

See also: the BMenu and BMenuItem classes

MessageReceived()
virtual boolMessageReceived(BMessage *message)

Augments the BHandler version ofMessageReceived() to ensure thatB_KEY_DOWN
messages that find their way to the BWindow object (in the absence of a focus view, for
example), are not lost and can contribute to keyboard navigation.

See also: BHandler::MessageReceived()

Minimize()
virtual voidMinimize(boolminimize)

Removes the window from the screen and replaces it with a token representation, if the
minimize flag isTRUE—or restores the window to the screen and removes the token, if
minimize is FALSE.

This function can be called to minimize or unminimize the window. It’s also called by the
BWindow to respond toB_MINIMIZE messages, which are posted automatically when the
user double-clicks the window tab to minimize the window, and when the user double-
clicks the token to restore the window. It can be reimplemented to provide a different
minimal representation for the window.

See also: “B_MINIMIZE” on page 9 in theMessage Protocols appendix,Zoom()

MoveBy(), MoveTo()
void MoveBy(floathorizontal, floatvertical)

void MoveTo(BPointpoint)
void MoveTo(floatx, floaty)

These functions move the window without resizing it.MoveBy() addshorizontal
coordinate units to the left and right components of the window’s frame rectangle and
vertical units to the frame’s top and bottom. Ifhorizontal andvertical are negative, the
window moves upward and to the left. If they’re positive, it moves downward and to the

BWindow Member Functions

The Interface Kit –301

right. MoveTo() moves the left top corner of the window’s content area topoint—or
(x, y)—in the screen coordinate system; it adjusts all coordinates in the frame rectangle
accordingly.

None of the values passed to these functions should specify fractional coordinates; a
window must be aligned on screen pixels. Fractional values will be rounded to the closest
whole number.

Neither function alters the BWindow’s coordinate system or bounds rectangle.

When these functions move a window, a window-moved event is reported to the window.
This results in the BWindow’sFrameMoved() function being called.

See also: FrameMoved()

NeedsUpdate()
bool NeedsUpdate(void) const

ReturnsTRUE if any of the views within the window need to be updated, andFALSE if
they’re all up-to-date.

See also: UpdateIfNeeded()

PreferredHandler() see CurrentFocus()

PulseRate() see SetPulseRate()

Quit(), Close()
virtual voidQuit(void)

inline voidClose(void)

Quit() gets rid of the window and all its views. This function removes the window from
the screen, deletes all the BViews in its view hierarchy, destroys the window thread,
removes the window’s connection to the Application Server, and, finally, deletes the
BWindow object.

Use this function, rather than thedelete operator, to destroy a window.Quit() applies the
operator after it empties the BWindow of views and severs its connection to the
application and Server. It’s dangerous to applydelete while these connections remain
intact.

BWindow’s Quit() works much like the BLooper function it overrides. When called from
the BWindow’s thread, it doesn’t return. When called from another thread, it returns after
all previously posted messages have been responded to and the BWindow and its thread
have been destroyed.

Member Functions BWindow

302 – The Interface Kit

Close() is a synonym ofQuit(). It simply callsQuit() so if you overrideQuit(), you’ll
affect how both functions work.

See also: BLooper::QuitRequested(), BLooper::Quit(), BApplication::QuitRequested()

RemoveChild()
virtual boolRemoveChild(BView *aView)

RemovesaView from the BWindow’s view hierarchy, but only ifaView was added to the
hierarchy as a child of the window’s top view (by calling BWindow’s version of the
AddChild() function).

If aView is successfully removed,RemoveChild() returnsTRUE. If not, it returnsFALSE.

See also: AddChild()

RemoveShortcut() see AddShortcut()

ResizeBy(), ResizeTo()
void ResizeBy(floathorizontal, floatvertical)

void ResizeTo(floatwidth, floatheight)

These functions resize the window, without moving its left and top sides.ResizeBy() adds
horizontal coordinate units to the width of the window andvertical units to its height.
ResizeTo() makes the content area of the windowwidth units wide andheight units high.
Both functions adjust the right and bottom components of the frame rectangle accordingly.

Since a BWindow’s frame rectangle must line up with screen pixels, only integral values
should be passed to these functions. Values with fractional components will be rounded to
the nearest whole number.

When a window is resized, either programmatically by these functions or by the user, the
BWindow’s FrameResized() virtual function is called to notify it of the change.

See also: FrameResized()

BWindow Member Functions

The Interface Kit –303

RunSavePanel(), CloseSavePanel(), IsSavePanelRunning()
long RunSavePanel(const char *tentativeName= NULL,

const char *windowTitle= NULL,
const char *saveButtonLabel= NULL,
const char *cancelButtonLabel= NULL,
BMessage *message= NULL)

void CloseSavePanel(void)

bool IsSavePanelRunning(void)

RunSavePanel() requests the Browser to display a panel where the user can choose how to
save the document displayed in the window. The panel permits the user to navigate the
file system and type in file and directory names.

The arguments to this function are all optional. They’re used to configure the panel:

• If passed atentativeName for the document displayed in the window, the save panel
will place it in a text field where the user can type a name for the file. The name
might designate an existing file, or it might simply be a placeholder name like
“UNNAMED” or “UNTITLED–3”. If a tentativeName isn’t passed, the text field
will be empty.

• If anotherwindowTitle is not specified, the title of the window will include the
tentative file name. It will be “SavetentativeName As...” preceded by the name of
the application. The file name is enclosed in quotes. For example:

WishMaker : Save “UNTITLED-3” As...

If a tentativeName isn’t passed, the quotes will be empty.

• If a saveButtonLabel isn’t provided, the principal button in the panel (the default
button) will be labeled “Save”.

• If a cancelButtonLabel isn’t provided, the other button in the panel (to the left of the
principal button) will be labeled “Cancel”.

• If a message is passed, it can contain entries that further configure the panel. It also
serves as a model for the message that reports the directory and file name the user
selected. If amessage isn’t provided, this information will be reported in a standard
B_SAVE_REQUESTED message.

Member Functions BWindow

304 – The Interface Kit

If the message has one or both of the following entries, they will be used to help configure
the panel:

Data name Type code Description

“directory” B_REF_TYPE Therecord_ref for the directory that the
panel should display when it first comes
on-screen. If this entry is absent, the panel
will initially display the current directory
of the current volume.

“frame” B_RECT_TYPE A BRect that sets the size and position of
the panel in screen coordinates. If this
entry is absent, the Browser will choose an
appropriate frame rectangle for the panel.

When the user finishes choosing where to save the file and operates the “Save” (or
saveButtonLabel) button, the file panel sends a message to the BWindow (through the
BApplication object). If a customizedmessage is provided, it’s used as the model for the
message that’s sent. If amessage isn’t provided, a standardB_SAVE_REQUESTED message
is sent instead. In either case, it has two data entries:

Data name Type code Description

“name” B_STRING_TYPE The name of the file in which the
document should be saved.

“directory” B_REF_TYPE A record_ref reference to the directory
where the file should reside.

A B_SAVE_REQUESTED message is dispatched by calling theSaveRequested() hook
function; the “name” and “directory” are passed as arguments toSaveRequested(). This
function should be implemented to create the file, if necessary, and save the document.
RunSavePanel() doesn’t do this work; it simply delivers a BMessage object with the
information you need to do the job.

A customizedmessage works much like the model messages assigned to BControl objects
and BMenuItems. The save panel makes a copy of the model, adds the “name” and
“directory” entries (as described above) to the copy, and delivers the copy to the
BWindow. Other entries in the message remain unchanged.

Themessage can have any command constant you choose. If it’sB_SAVE_REQUESTED, the
“name” and “directory” will be extracted from the message and passed to
SaveRequested(). Otherwise, nothing is extracted and the message is dispatched by
calling MessageReceived().

The save panel disappears when the user operates the “Save” (orsaveButtonLabel)
button—provided that the message hasB_SAVE_REQUESTED as the command constant. If it
has a customized constant, it remains open untilCloseSavePanel() is called (or until the
application quits). You can choose to leave the panel on-screen if the user hasn’t chosen a
valid file name.IsSavePanelRunning() will report whether the save panel is currently
displayed on-screen. A BWindow can run only one save panel at a time.

BWindow Member Functions

The Interface Kit –305

The save panel is automatically closed when user operates the “Cancel” (or
cancelButtonLabel) button. Whenever it’s closed, by the user or the application, a
B_PANEL_CLOSED message is sent to the application and theSavePanelClosed() hook
function is called.

RunSavePanel() returnsB_NO_ERROR if it succeeds in getting the Browser to put the panel
on-screen. If the Browser isn’t running or the save panel already is, it returnsB_ERROR. If
the Browser is running but the application can’t communicate with it, it returns an error
code that indicates what went wrong; these codes are the same as those documented for
the BMessenger class in the Application Kit.

See also: SaveRequested(), SavePanelClosed()

SavePanelClosed()
virtual voidSavePanelClosed(BMessage *message)

Implemented by derived classes to take note when the save panel is closed. Themessage
argument contains information about how the panel was closed and its state at the time it
was closed. It has entries under the names “frame” (the panel’s frame rectangle),
“directory” (the directory the panel displayed), and “canceled” (whether the user closed
the panel). Some of this information can be retained to configure the panel the next time it
runs.

See also: “B_PANEL_CLOSED” on page 12 in theMessage Protocols appendix,
RunSavePanel()

SaveRequested()
virtual voidSaveRequested(record_refdirectory, const char *filename)

Implemented by derived classes to save the document displayed in the window. This
function is called when the BWindow receives aB_SAVE_REQUESTED message from the
save panel. It reports that the user has asked for the file to be saved in thedirectory
indicated and assigned the specifiedfilename. The file may already exist, or the
application may need to create it to carry out the request.

There’s no guarantee that thedirectory andfilename are valid.

If the file can be saved as requested, you may want this function to callCloseSavePanel()
to remove the panel from the screen. If the file can’t be saved,SaveRequested() should
notify the user. In some cases, you may want to leave the panel on-screen so the user can
try again with a different directory or file name.

See also: RunSavePanel()

Member Functions BWindow

306 – The Interface Kit

ScreenChanged()
virtual voidScreenChanged(BRectframe, color_spacemode)

Implemented by derived classes to respond to a notification that the screen configuration
has changed. This function is called for all affected windows when:

• The number of pixels the screen displays (the size of the pixel grid) is altered,
• < The screen changes its location in the screen coordinate system >, or
• The color mode of the screen changes.

frame is the new frame rectangle of the screen, andmode is its new color space.

< Currently, there can be only one monitor per machine, so the screen can’t change where
it’s located in the screen coordinate system. >

See also: set_screen_size(), “B_SCREEN_CHANGED” on page 14 in theMessage Protocols
appendix

SetDefaultButton(), DefaultButton()
void SetDefaultButton(BButton *button)

BButton *DefaultButton(void) const

SetDefaultButton() makesbutton the default button for the window—the button that the
user can operate by pressing the Enter key even if another BView is the focus view.
DefaultButton() returns the button that currently has that status, orNULL if there is no
default button.

At any given time, only one button in the window can be the default.SetDefaultButton()
may, therefore, affect two buttons: the one that’s forced to give up its status as the default
button, and the one that acquires that status. Both buttons are redisplayed, so that the user
can see which one is currently the default, and both are notified of their change in status
throughMakeDefault() virtual function calls.

If the argument passed toSetDefaultButton() is NULL, there will be no default button for the
window. The current default button loses its status and is appropriately notified with a
MakeDefault() function call.

The Enter key can operate the default button only while the window is the active window.
However, the BButton doesn’t have to be the focus view. Normally, the focus view is
notified of key-down messages the window receives. But if the character reported is
B_ENTER, the default button is notified instead (provided there is a default button).

See also: BButton::MakeDefault()

BWindow Member Functions

The Interface Kit –307

SetDiscipline()
void SetDiscipline(boolflag)

Sets aflag that determines how much programming discipline the system will enforce.
Whenflag is TRUE, as it is by default, Kit functions will check to be sure various rules are
adhered to. For example, most BView functions will require the caller to first lock the
window. < Currently, this is the only rule that comes under the discipline flag. > When
flag is FALSE, these rules are not enforced.

The disciplineflag should be set toTRUE while an application is being developed.
However, once it has matured, and it’s clear that none of the rules are being disobeyed, the
flag can be set toFALSE. This will eliminate various checking operations and improve
performance.

See also: “Locking the Window” in the BView class overview

SetKeyMenuBar(), KeyMenuBar()
void SetKeyMenuBar(BMenuBar *menuBar)

BMenuBar *KeyMenuBar(void) const

SetKeyMenuBar() makes the specified BMenuBar object the “key” menu bar for the
window—the object that’s at the root of the menu hierarchy that users can navigate using
the keyboard.KeyMenuBar() returns the object with key status, orNULL if the window
doesn’t have a BMenuBar object in its view hierarchy.

If a window contains only one BMenuBar view, it’s automatically designated the key
menu bar. If there’s more than one BMenuBar in the window, the last one added to the
window’s view hierarchy is considered to be the key one.

If there’s a “true” menu bar displayed along the top of the window, its menu hierarchy is
the one that users should be able to navigate with the keyboard.SetKeyMenuBar() can be
called to make sure that the BMenuBar object at the root of that hierarchy is the “key”
menu bar.

See also: the BMenuBar class

SetPulseRate(), PulseRate()
void SetPulseRate(doublemicroseconds)

doublePulseRate(void)

These functions set and return how oftenPulse() is called for the BWindow’s views (how
oftenB_PULSE messages are posted to the window). All BViews attached to the same
window share the same pulse rate.

Member Functions BWindow

308 – The Interface Kit

By turning on theB_PULSE_NEEDED flag, a BView can request periodicPulse()
notifications. By default,B_PULSE messages are posted every 500,000.0 microseconds, as
long as no other messages are pending. Each message causesPulse() to be called once for
every BView that requested the notification. There are no pulses if no BViews request
them.

SetPulseRate() permits you to set a different interval. The interval set should not be less
than 100,000.0 microseconds; differences less than 50,000.0 microseconds may not be
noticeable. A finer granularity can’t be guaranteed.

Setting the pulse rate to 0.0 disables pulsing for all views in the window.

See also: BView::Pulse(), the BView constructor

SetSizeLimits(), GetSizeLimits(), SetZoomLimits()
void SetSizeLimits(floatminWidth, floatmaxWidth,

floatminHeight, floatmaxHeight)

void GetSizeLimits(float *minWidth, float *maxWidth,
float *minHeight, float *maxHeight)

void SetZoomLimits(floatmaxWidth, floatmaxHeight)

These functions set and report limits on the size of the window. The user won’t be able to
resize the window beyond the limits set bySetSizeLimits()—to make it have a width less
thanminWidth or greater thanmaxWidth, nor a height less thanminHeight or greater than
maxHeight. By default, the minimums are sufficiently small and the maximums
sufficiently large to accommodate any window within reason.

SetSizeLimits() constrains the user, not the programmer. It’s legal for an application to set a
window size that falls outside the permitted range. The limits are imposed only when the
user attempts to resize the window; at that time, the window will jump to a size that’s
within range.

GetSizeLimits() writes the current limits to the variables provided.

SetZoomLimits() sets the maximum size that the window will zoom to (when theZoom()
function is called). The maximums set bySetSizeLimits() also apply to zooming; the
window will zoom to the screen size or to the smaller of the maximums set by these two
functions.

Since the sides of a window must line up on screen pixels, the values passed to both
SetSizeLimits() andSetZoomLimits() should be whole numbers.

See also: the BWindow constructor,Zoom()

BWindow Member Functions

The Interface Kit –309

SetTitle(), Title()
void SetTitle(const char *newTitle)

const char *Title(void) const

These functions set and return the window’s title.SetTitle() replaces the current title with
newTitle. It also renames the window thread in the following format:

"w>newTitle "

where as many characters of thenewTitle are included in the thread name as will fit.

Title() returns a pointer to the current title. The returned string is null-terminated. It
belongs to the BWindow object, which may alter the string or free the memory where it
resides without notice. Applications should ask for the title each time it’s needed and
make a copy for their own purposes.

A window’s title and thread name are originally set by an argument passed to the
BWindow constructor.

See also: the BWindow constructor

SetWorkspaces(), Workspaces()
void SetWorkspaces(ulongworkspaces)

ulongWorkspaces(void) const

These functions set and return the set of workspaces where the window can be displayed.
Theworkspaces argument passed toSetWorkspaces() and the value returned by
Workspaces() is a bitfield with one bit set for each workspace in which the window can
appear. Usually a window appears in just one workspace.

SetWorkspaces() can associate a window with workspaces that don’t exist yet. The
window will appear in those workspaces if and when the user creates them.

You can passB_CURRENT_WORKSPACE as theworkspaces argument to place the window
in the workspace that’s currently displayed (the active workspace) and remove it from all
others, orB_ALL_WORKSPACES to make sure the window shows up in all workspaces,
including any new ones that the user might create.Workspaces() may return
B_ALL_WORKSPACES, but will identify the current workspace rather than return
B_CURRENT_WORKSPACE.

Changing a BWindow’s set of workspaces causes it to be notified with a
WorkspacesChanged() function call.

See also: the BWindow constructor,WorkspacesChanged()

SetZoomLimits() see SetSizeLimits()

Member Functions BWindow

310 – The Interface Kit

Show() see Hide()

Title() see SetTitle()

UpdateIfNeeded()
void UpdateIfNeeded(void)

Causes theDraw() virtual function to be called immediately for each BView object that
needs updating. If no views in the window’s hierarchy need to be updated, this function
does nothing.

BView’s Invalidate() function generates an update message that the BWindow receives
just as it receives other messages. Although update messages take precedence over other
kinds of messages the BWindow receives, the window thread can respond to only one
message at a time. It will update the invalidated view as soon as possible, but it must
finish responding to the current message before it can get the update message.

This may not be soon enough for a BView that’s engaged in a time-consuming response to
the current message.UpdateIfNeeded() forces an immediate update, without waiting to
return the BWindow’s message loop. However, it works only if called from within the
BWindow’s thread.

(Because the message loop expedites the handling of update messages, they’re never
considered the current message and are never returned by BLooper’sCurrentMessage()
function.)

See also: BView::Draw(), BView::Invalidate(), NeedsUpdate()

WindowActivated()
virtual voidWindowActivated(boolactive)

Implemented by derived classes to make any changes necessary when the window
becomes the active window, or when it ceases being the active window. Ifactive is TRUE,
the window has just become the new active window, and ifactive is FALSE, it’s about to
give up that status to another window.

The BWindow receives aWindowActivated() notification whenever its status as the active
window changes. Each of its BViews is also notified.

See also: BView::WindowActivated()

BWindow Member Functions

The Interface Kit –311

WindowType()
inline window_typeWindowType(void) const

Returns what type of window it is. The type is set at construction as one of the following
constants:

B_MODAL_WINDOW
B_BORDERED_WINDOW
B_TITLED_WINDOW
B_DOCUMENT_WINDOW

See also: the BWindow constructor

Workspaces() see SetWorkspaces()

WorkspaceActivated()
virtual voidWorkspaceActivated(longworkspace, boolactive)

Implemented by derived classes to respond to a notification that the workspace displayed
on the screen has changed. All windows in the newly activated workspace as well as those
in the one that was just deactivated get this notification.

Theworkspace argument identifies the workspace in question and theactive flag conveys
its current status. Ifactive is TRUE, the workspace has just become the active workspace.
If active is FALSE, it has just stopped being the active workspace.

The default (BWindow) version of this function is empty.

See also: “B_WORKSPACE_ACTIVATED” on page 16 in theMessage Protocols appendix

WorkspacesChanged()
virtual voidWorkspacesChanged(ulongoldWorkspaces, ulongnewWorkspaces)

Implemented by derived classes to respond to a notification the the window has just
changed the set of workspaces in which it can be displayed fromoldWorkspaces to
newWorkspaces. This typically happens when the user moves a window from one
workspace to another, but it may also happen when a programmatic change is made to the
set of permitted workspaces.

The default (BWindow) version of this function is empty.

See also: “B_WORKSPACES_CHANGED” on page 17 in theMessage Protocols appendix,
SetWorkspaces()

Member Functions BWindow

312 – The Interface Kit

Zoom()
void Zoom(void)
virtual voidZoom(BPoint leftTop, floatwidth, floatheight)

Zooms the window to a larger size—or, if already zoomed larger, restores it to its previous
size.

The simple version of this function can be called to simulate the user operating the zoom
button in the window tab. It resizes the window to the full size of the screen, or to the size
previously set bySetSizeLimits() andSetZoomLimits(). However, if the width and height of
the window are both within five coordinate units of the fully zoomed size, it restores the
window to the size it had before being zoomed.

To actually change the window’s size, the simple version ofZoom() calls the virtual
version. The virtual version is also called by the system in response to aB_ZOOM system
message. The system generates this message when the user clicks the zoom button in the
window’s title tab.

The arguments to the virtual version propose awidth andheight for the window and a
location for the left top corner of its content area in the screen coordinate system. It can be
overridden to change these dimensions or to resize the window differently.

Zoom() may both move and resize the window, resulting inFrameMoved() and
FrameResized() notifications.

See also: SetSizeLimits(), ResizeBy()

The Interface Kit –313

Global Functions

This section describes the global (nonmember) functions defined in the Interface Kit. All
these functions deal with aspects of the system-wide environment for the user interface—
the keyboard and mouse, the screen, workspaces, installed fonts and symbol sets, the list
of possible colors, and various user preferences.

The Application Server maintains this environment (with just a few exceptions).
Therefore, for a global Interface Kit function to work, your application must be connected
to the Server. The connection these functions depend on is the one that’s established when
the BApplication object is constructed. Consequently, none of them should be called
before a BApplication object is present in your application.

activate_app()
<interface/InterfaceDefs.h>

void activate_app(team_idapp)

Activates theapp application < by bringing one of its windows to the front and making it
the active window >. This function works only if the target application has a window on-
screen. The newly activated application is notified with aB_APP_ACTIVATED message.

< This function is an alternative to sending the application aB_ACTIVATE message. It
accomplishes the same thing, except that it communicates directly with the Application
Server to do its work. >

See also: BApplication::Activate() in the Application Kit

activate_workspace(), current_workspace()
<interface/InterfaceDefs.h>

void activate_workspace(longworkspace)

long current_workspace(void)

These functions set and return the active workspace, the one that’s currently displayed on-
screen. Each workspace is represented by a bit in along integer.

See also: BWindow::WorkspaceActivated()

adjust_crt() see get_screen_info()

Global Functions

314 – The Interface Kit

count_fonts() see get_font_name()

count_screens() see get_screen_info()

count_symbol_sets() see get_symbol_set_name()

count_workspaces() see set_workspace_count()

current_workspace() see activate_workspace()

desktop_color() see set_desktop_color()

get_click_speed() see set_click_speed()

get_dock_width()
<interface/InterfaceDefs.h>

long get_dock_width(float *width)

Writes the current width of the dock into the variable referred to bywidth. Since the dock
floats on top of other windows, this function can help determine how much usable screen
space is actually available. It returnsB_NO_ERROR if successful andB_ERROR if not.

See also: get_screen_info()

get_font_name(), count_fonts()
<interface/InterfaceDefs.h>

void get_font_name(long index, font_name *name)

long count_fonts(void)

These two functions are used in combination to get the names of all installed fonts. For
example:

long numFonts = count_fonts();
font_name buf;

for (long i = 0; i < numFonts; i++) {
 get_font_name(i, &buf);
 . . .
}

The names of all installed fonts are kept in an alphabetically ordered list.
get_font_name() reads one of the names from the list, the name atindex, and copies it into
thename buffer. Font names can be up to 64 characters long, plus a null terminator.
Indices begin at 0.

Global Functions

The Interface Kit –315

count_fonts() returns the number of fonts currently installed, the number of names in the
list.

See also: BView::GetFontInfo(), BView::SetFontName()

get_key_repeat_delay() see set_key_repeat_rate()

get_key_repeat_rate() see set_key_repeat_rate()

get_keyboard_id()
<interface/InterfaceDefs.h>

long get_keyboard_id(ushort *theId)

Obtains the keyboard identifier from the Application Server and writes it into the variable
referred to bytheId. This number reveals what kind of keyboard is currently attached to
the computer.

The identifier for the standard 101-key keyboard—and for keyboards with a similar set of
keys—is 0x83ab. < Currently, this is the only value this function can provide. > See “Key
Codes” on page 48 for illustrations showing the keys found on a standard keyboard.

If unsuccessful for any reason,get_keyboard_id() returnsB_ERROR. If successful, it
returnsB_NO_ERROR.

get_menu_info() see set_menu_info()

get_mouse_map() see set_mouse_map()

get_mouse_speed() see set_mouse_map()

get_mouse_type() see set_mouse_map()

Global Functions

316 – The Interface Kit

get_screen_info(), count_screens()
<interface/InterfaceDefs.h>

void get_screen_info(screen_info *theInfo)
void get_screen_info(long index, screen_info *theInfo)

long count_screens(void)

long set_screen_space(long index, ulongspace, boolmakeDefault= TRUE)

long set_screen_refresh_rate(long index, floatrate, boolmakeDefault= TRUE)

long adjust_crt(long index, ucharhPosition, ucharvPosition,
ucharhSize, ucharvSize, boolmakeDefault= TRUE)

These functions provide information about the screens (monitors) that are currently
hooked up to the BeBox, and alter screen parameters.

Each screen that’s attached to the machine is identified by an index into a system-wide
screen list. The screen at index 0 is the one that has the origin of the screen coordinate
system at its left top corner. Other screens in the list are unordered; they’re located
elsewhere in the coordinate system that the first screen defines. < Currently, multiple
screens are not supported, so the screen at index 0 is the only one in the list. Therefore, the
index passed to these functions should always be 0. >

count_screens() returns the number of screens (monitors) that are attached to the
computer. < Since no more than one screen can be attached, this function currently always
returns 1. >

get_screen_info() writes information about the screen atindex into thescreen_info
structure referred to bytheInfo. If no index is mentioned, it assumes the screen at index 0.
Thescreen_info structure contains the following fields:

color_spacemode The depth and color interpretation of pixel data in
the screen’s frame buffer; currently, the mode will
be eitherB_COLOR_8_BIT or B_RGB_32_BIT. (See
“Colors” on page 25 of the chapter introduction for
an explanation of the variouscolor_space modes.)

BRectframe The frame rectangle of the screen—the rectangle
that defines the size and location of the screen in
the screen coordinate system.

ulongspaces A mask that enumerates all the possible
configurations of the screen space. The consonant
values that can contribute to the mask are listed
below.

float min_refresh_rate The maximum possible refresh rate in cycles per
second.

float max_refresh_rate The minimum possible refresh rate (which may be
the same as the maximum).

Global Functions

The Interface Kit –317

float refresh_rate The current refresh rate.

ucharh_position The current horizontal position of the CRT display
on the monitor, a value between 0 (as far to the left
as possible) and 100 (as far to the right as possible)
with 50 as the default.

ucharv_position The current vertical position of the CRT display on
the monitor, a value between 0 (as close to the top
as possible) and 100 (as close to the bottom as
possible) with 50 as the default.

ucharh_size The current horizontal size of the CRT display on
the monitor, a value between 0 (as narrow as
possible) and 100 (as wide as possible) with 50 as
the default.

ucharv_size The current vertical size of the CRT display on the
monitor, a value between 0 (as short as possible)
and 100 (as tall as possible) with 50 as the default.

If the color spacemode is B_COLOR_8_BIT, each pixel value in the frame buffer for the
screen is an 8-bit color index. InB_RGB_32_BIT mode, each value is a set of four 8-bit
color components (red, green, blue, and alpha). The components will be arranged in the
most natural order for the display device—typically blue, green, red, and alpha. You can
access the frame buffer only through the BWindowScreen class in the Game Kit.

Thespaces field is a mask that enumerates all the possible configurations of the screen
space (its depth and dimensions). It’s formed from the following constants:

B_8_BIT_640x400
B_8_BIT_640x480 B_16_BIT_640x480 B_32_BIT_640x480
B_8_BIT_800x600 B_16_BIT_800x600 B_32_BIT_800x600
B_8_BIT_1024x768 B_16_BIT_1024x768 B_32_BIT_1024x768
B_8_BIT_1152x900 B_16_BIT_1152x900 B_32_BIT_1152x900
B_8_BIT_1280x1024 B_16_BIT_1280x1024 B_32_BIT_1280x1024
B_8_BIT_1600x1200 B_16_BIT_1600x1200 B_32_BIT_1600x1200

For example, if the mask includesB_32_BIT_1280x1024, the frame buffer can be 32 bits
deep (theB_RGB_32_BIT color space) while the screen grid is 1,280 pixels wide and 1,024
pixels high. Not all configurations are possible for all graphics cards. < The operating
system currently doesn’t support depths of 16 bits. >

The current screen configuration can be read from themode andframe fields. To change
the configuration, you can pass one of thespaces constants toset_screen_space(). When
the configuration of the screen changes, every affected BWindow object is notified with a
ScreenChanged() function call. < Since there’s currently only one screen, all windows
are affected and all, whether on-screen or hidden, receiveScreenChanged()
notifications. >

Global Functions

318 – The Interface Kit

The refresh rate for the screen can be changed by passing a newrate to
set_screen_refresh_rate(). The rate should lie between the minimum and maximum
reported byget_screen_info(). The requested change is made to the best of the ability of
the graphics card driver; exact compliance is not promised.

Theh_position, v_position, h_size, andv_size fields of thescreen_info structure record the
placement of the CRT display on the physical monitor, as set by software controls—not
the hardware controls on the monitor itself. If the monitor and the driver for the graphics
card permit CRT adjustments through software,adjust_crt() can be called to change any
setting. ItshPosition, vPosition, hSize, andvSize arguments have the same meaning as the
corresponding fields ofscreen_info.

The three functions that alter screen parameters—adjust_crt(), set_screen_space(), and
set_screen_refresh_rate()—all make changes that take effect immediately. If the
makeDefault flag isTRUE, the new setting also becomes the default and will be used the
next time the machine is turned on. IfmakeDefault is FALSE, the setting is in effect for the
current session only. Each function returnsB_NO_ERROR if successful, andB_ERROR if
not.

These three functions are designed for preferences applications—like the Screen
application—that permit users to make system-wide choices. Other applications should
respect those choices and refrain from modifying them.

get_screen_info() reports on the screen as it is known to the Application Server. If you
bypass the Server with the Game Kit, it may not provide accurate information.

See also: BWindow::ScreenChanged(), The Game Kit chapter

get_scroll_bar_info() see set_scroll_bar_info()

get_symbol_set_name(), count_symbol_sets()
<interface/InterfaceDefs.h>

void get_symbol_set_name(long index, symbol_set_name *name)

long count_symbol_sets(void)

These functions are used to get the names of all available symbol sets. They work much
like the parallel font functionsget_font_name() andcount_fonts().

A symbol set associates character symbols (glyphs) with character codes (ASCII values).
They differ mainly in how they extend the standard ASCII set—how they assign
characters to codes above 0x7f.

get_symbol_set_name() gets one name from the list of symbol sets, the name atindex,
and copies it into thename buffer. count_symbol_sets() returns the total number of
symbol sets (the number of names in the list).

Global Functions

The Interface Kit –319

Unlike font names, the names of symbol sets are not arranged alphabetically.

Every font implements every symbol set. However, some fonts implement particular sets
more fully than others—that is, some characters in a symbol set may not be available in
some fonts. But the position of each character in the set (its character code) remains the
same across all fonts.

See also: BView::SetSymbolSet(), get_font_name()

idle_time()
doubleidle_time(void) const

Returns the number of microseconds since the user last manipulated the mouse or
keyboard. This information isn’t specific to a particular application;idle_time() tells you
when the user last directed an action atany application, not just yours.

index_for_color()
<interface/InterfaceDefs.h>

ucharindex_for_color(rgb_coloraColor)
ucharindex_for_color(ucharred, uchargreen, ucharblue, ucharalpha = 0)

Returns an index into the list of 256 colors that comprise theB_COLOR_8_BIT color space.
The value returned picks out the listed color that most closely matches a full 32-bit
color—specified either as anrgb_color value,aColor, or by itsred, green, andblue
components. < (Thealpha component is currently ignored.) >

The returned index identifies a color in theB_COLOR_8_BIT color space. It can, for
example, be passed to BBitmap’sSetBits() function.

To find the fully specified color that an index picks out, you have to get the color list from
the system color map. For example, if you first obtain the index for the “best fit” color that
most closely matches an arbitrary color,

uchar index = index_for_color(134, 210, 6);

you can then use the index to locate that color in the color list:

rgb_color bestFit = system_colors()->color_list[index];

See also: system_colors(), the BBitmap class

Global Functions

320 – The Interface Kit

modifiers()
<interface/InterfaceDefs.h>

ulongmodifiers(void)

Returns a mask that has a bit set for each modifier key the user is holding down and for
each keyboard lock that’s set. The mask can be tested against these constants:

B_SHIFT_KEY B_COMMAND_KEY B_CAPS_LOCK
B_CONTROL_KEY B_MENU_KEY B_SCROLL_LOCK
B_OPTION_KEY B_NUM_LOCK

No bits are set (the mask is 0) if no locks are on and none of the modifiers keys are down.

If it’s important to know which physical key the user is holding down, the one on the right
or the one on the left, the mask can be further tested against these constants:

B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

By default, on a 101-key keyboard, the keys labeled “Alt(ernate)” function as the
Command modifiers, the key on the right labeled “Control” functions as the right Option
key, and only the left “Control” key is available to function as a Control modifier.
However, users can change this configuration with the Keymap application.

See also: “Modifier Keys” on page 51 of the introduction to the chapter,
system_key_map(), BView::GetKeys()

restore_key_map() see system_key_map()

set_click_speed(), get_click_speed()
<interface/InterfaceDefs.h>

long set_click_speed(doubleinterval)

long get_click_speed(double *interval)

These functions set and report the timing for multiple-clicks. For successive mouse-down
events to count as a multiple-click, they must occur within theinterval set by
set_click_speed() and provided byget_click_speed(). The interval is measured in
microseconds; it’s usually set by the user in the Mouse preferences application. The
smallest possible interval is 100,000 microseconds (0.1 second).

If successful, these functions returnB_NO_ERROR; if unsuccessful, they return an error
code, which may be justB_ERROR.

See also: set_mouse_map()

Global Functions

The Interface Kit –321

set_desktop_color(), desktop_color()
<interface/InterfaceDefs.h>

void set_desktop_color(rgb_colorcolor, boolmakeDefault= TRUE)

rgb_colordesktop_color(void)

These functions set and return the color of the so-called “desktop”—the bare backdrop
against which windows are displayed. The color is the same for all screens attached to the
same machine (however, the Workspaces application can arrange for each workspace to
have a different background color).set_desktop_color() makes an immediate change in
the desktop color displayed on-screen;desktop_color() returns the color currently
displayed.

If the makeDefault flag isTRUE, thecolor that’s set becomes the default color for the
desktop; it’s the color that will be shown the next time the machine is booted. If the flag is
FALSE, the color is set only for the current session.

Users can change the default color with the Screen application found in/preferences.

set_key_repeat_rate(), get_key_repeat_rate(),
set_key_repeat_delay(), get_key_repeat_delay()

<interface/InterfaceDefs.h>

long set_key_repeat_rate(int rate)

long get_key_repeat_rate(int *rate)

long set_key_repeat_delay(doubledelay)

long get_key_repeat_delay(double *delay)

These functions set and report the timing of repeating keys. When the user presses a
character key on the keyboard, it produces an immediateB_KEY_DOWN message. If the
user continues to hold the key down, it will, after an initial delay, continue to produce
messages at regularly spaced intervals—until the user releases the key or presses another
key. The delay and the spacing between messages are both preferences the user can set
with the Keyboard application.

set_key_repeat_rate() sets the number of messages repeating keys produce per second.
For a standard PC keyboard, therate can be as low as 2 and as high as 30;
get_key_repeat_rate() writes the current setting into the integer thatrate refers to.

set_key_repeat_delay() sets the length of the initial delay before the key begins
repeating. Acceptable values are 250,000.0, 500,000.0, 750,000.0 and 1,000,000.0
microseconds (.25, .5, .75, and 1.0 second);get_key_repeat_delay() writes the current
setting into the variable thatdelay points to.

All four functions returnB_NO_ERROR if they successfully communicate with the
Application Server, andB_ERROR if not. It’s possible for theset...() functions to

Global Functions

322 – The Interface Kit

communicate with the Server but not succeed in setting therate or delay (for example, if
thedelay isn’t one of the listed four values).

set_keyboard_locks()
<interface/InterfaceDefs.h>

void set_keyboard_locks(ulongmodifiers)

Turns the keyboard locks—Caps Lock, Num Lock, and Scroll Lock—on and off. The
keyboard locks that are listed in themodifiers mask passed as an argument are turned on;
those not listed are turned off. The mask can be 0 (to turn off all locks) or it can contain
any combination of the following constants:

B_CAPS_LOCK
B_NUM_LOCK
B_SCROLL_LOCK

See also: system_key_map(), modifiers()

set_menu_info(), get_menu_info()
<interface/Menu.h>

void set_menu_info(menu_info *info)

void get_menu_info(menu_info *info)

These functions set and get the user’s preferences for how menus should look and work.
User’s express their preferences with the Menu application, which callsset_menu_info().
get_menu_info() writes the current preferences into themenu_info structure that into
refers to. This structure contains the following fields:

float font_size The size of the font that will be used to display
menu items.

font_namefont The name of the font that’s used to display menu
items.

rgb_colorbackground_color The background color of the menu.

long separator The style of horizontal line that separates groups of
items in a menu. The value is an index ranging
from 0 through 2; there are three possible
separators.

bool click_to_open Whether it’s possible to open a menu by clicking in
the item that controls it. The default value isTRUE.

bool triggers_always_shown Whether trigger characters are always marked in
menus and menu bars, regardless of whether the

Global Functions

The Interface Kit –323

menu hierarchy is the target for keyboard actions.
The default value isFALSE.

< At present, both functions always returnB_NO_ERROR. >

See also: the BMenu class

set_modifier_key()
<interface/InterfaceDefs.h>

void set_modifier_key(ulongmodifier, ulongkey)

Maps amodifier role to a particularkey on the keyboard, wherekey is a key identifier and
modifier is one of the these constants:

B_CAPS_LOCK B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_NUM_LOCK B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_SCROLL_LOCK B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_MENU_KEY B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

Thekey in question serves as the named modifier key, unmapping any key that previously
played that role. The change remains in effect until the default key map is restored. In
general, the user’s preferences for modifier keys—expressed in the Keymap application—
should be respected.

Modifier keys can also be mapped by callingsystem_key_map() and altering the
key_map structure directly. This function is merely a convenient alternative for
accomplishing the same thing.

See also: system_key_map()

set_mouse_map(), get_mouse_map(), set_mouse_type(),
get_mouse_type(), set_mouse_speed(), get_mouse_speed()

<interface/InterfaceDefs.h>

long set_mouse_map(mouse_map *map)

long get_mouse_map(mouse_map *map)

long set_mouse_type(longnumButtons)

long get_mouse_type(long *numButtons)

long set_mouse_speed(longacceleration)

long get_mouse_speed(long *acceleration)

These functions configure the mouse and supply information about the current
configuration. The configuration should usually be left to the user and the Mouse
preferences application.

Global Functions

324 – The Interface Kit

set_mouse_map() maps the buttons of the mouse to their roles in the user interface, and
get_mouse_map() writes the current map into the variable referred to bymap. The
mouse_map structure has a field for each button on a three-button mouse:

ulong left The button on the left of the mouse
ulongright The button on the right of the mouse
ulongmiddle The button in the middle, between the other two buttons

Each field is set to one of the following constants:

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

The same role can be assigned to more than one physical button. If all three buttons are
set toB_PRIMARY_MOUSE_BUTTON, they all function as the primary button; if two of them
are set toB_SECONDARY_MOUSE_BUTTON, they both function as the secondary button; and
so on.

set_mouse_type() informs the system of how many buttons the mouse actually has. If it
has two buttons, only theleft andright fields of themouse_map are operative. If it has
just one button, only theleft field is operative.set_mouse_type() writes the current
number of buttons into the variable referred to bynumButtons.

set_mouse_speed() sets the speed of the mouse—the acceleration of the cursor image on-
screen relative to the actual speed at which the user moves the mouse on its pad. An
acceleration value of 0 means no acceleration. The maximum acceleration is 20, though
even 10 is too fast for most users.set_mouse_speed() writes the current acceleration into
the variable referred to byacceleration.

All six functions returnB_NO_ERROR if successful, and an error code, typicallyB_ERROR,
if not.

set_screen_refresh_rate() see get_screen_info()

set_screen_space() see get_screen_info()

set_scroll_bar_info(), get_scroll_bar_info()
long set_scroll_bar_info(scroll_bar_info *info)

long get_scroll_bar_info(scroll_bar_info *info)

These functions set and report preferences that the BScrollBar class uses when it creates a
new scroll bar.set_scroll_bar_info() reads the values contained in thescroll_bar_info
structure thatinfo refers to and sets the system-wide preferences accordingly;
get_scroll_bar_info() writes the current preferences into the structure provided.

Global Functions

The Interface Kit –325

Thescroll_bar_info structure contains the following fields:

bool proportional TRUE if scroll bars should have a knob that grows
and shrinks to show what proportion of the
document is currently visible on-screen, andFALSE
if not. Scroll knobs are proportional by default.

bool double_arrows TRUE if a set of double arrows (for scrolling in both
directions) should appear at each end of the scroll
bar, orFALSE if only single arrows (for scrolling in
one direction only) should be used. Double arrows
are the default.

long knob An index that picks the pattern for the knob. Only
values of 0, 1, and 2 are currently valid. The
patterns can be seen in the ScrollBar preferences
application. The pattern at index 1 is the default.

long min_knob_size The length of the scroll knob, in pixels. This is the
minimum size for a proportional knob and the fixed
size for one that’s not proportional. The default
is 15.

The user can set these preferences with the ScrollBar application. Applications can call
get_scroll_bar_info() to find out what choices the user made, but should refrain from
calling set_scroll_bar_info(). That function is desigined for utilities, like the ScrollBar
application, that enable users to set preferences that are respected system-wide.

If successful, these functions returnB_NO_ERROR; if not, they returnB_ERROR.

See also: the BScrollBar class

set_workspace_count(), count_workspaces()
<interface/InterfaceDefs.h>

void set_workspace_count(longnumWorkspaces)

long count_workspaces(void)

These functions set and return the number of workspaces the user has available. There can
be as many as 32 workspaces and as few as 1. The choice of how many there should be is
usually left to the user and the Workspaces application.

See also: activate_workspace()

Global Functions

326 – The Interface Kit

system_colors()
<interface/InterfaceDefs.h>

color_map *system_colors(void)

Returns a pointer to the system’scolor map. The color map defines the set of 256 colors
that can be displayed in theB_COLOR_8_BIT color space. A single set of colors is shared
by all applications connected to the Application Server.

Thecolor_map structure is defined ininterface/InterfaceDefs.h and contains the
following fields:

long id An identifier that the Server uses to distinguish one
color map from another.

rgb_color color_list[256] A list of the 256 colors, expressed asrgb_color
structures. Indices into the list can be used to
specify colors in theB_COLOR_8_BIT color space.
See theindex_for_color() function above.

ucharinversion_map[256] A mapping of each color in thecolor_list to its
opposite color. Indices are mapped to indices. An
example of how this map might be used is given
below.

ucharindex_map[32768] An array that maps RGB colors—specified using
five bits per component—to their nearest
counterparts in the color list. An example of how
to use this map is also given below.

The inversion_map is a list of indices into thecolor_list where each index locates the
“inversion” of the original color. The inversion of then’th color in color_list would be
found as follows:

uchar inversionIndex = system_colors()->inversion_map[n];
rgb_color inversionColor =
 system_colors()->color_list[inversionIndex];

Inverting an inverted index returns the original index, so this code

uchar color = system_colors()->inversion_map[inversionIndex];

would returnn. < Inverted colors are used, primarily, for highlighting. Given a color, its
highlight complement is its inversion. >

The index_map maps every RGB combination that can be expressed in 15 bits (five bits
per component) to a singlecolor_list index that best approximates the original RGB data.

Global Functions

The Interface Kit –327

The following example demonstrates how to squeeze 24-bit RGB data into a 15-bit
number that can be used as an index into theindex_map:

long rgb15 = (((red & 0xf8) << 7) |
 ((green & 0xf8) << 2) |
 ((blue & 0xf8) >> 3));

Most applications won’t need to use the index map directly; theindex_for_color() function
performs the same conversion with less fuss (no masking and shifting required).
However, applications that implement repetitive graphic operations, such as dithering,
may want to access the index map themselves, and thus avoid the overhead of an
additional function call.

You should never modify or free thecolor_map structure returned by this function.

See also: index_for_color()

system_key_map(), restore_key_map()
<interface/InterfaceDefs.h>

key_map *system_key_map(void)

void restore_key_map(void)

The first of these functions returns a pointer to the system key map—the structure that
describes the role of each key on the keyboard. The second function restores the default
map, in case any of its fields have been changed.

The system key map is shared by all applications. An application can alter values in the
structure thatsystem_key_map() returns—and thus alter the roles that the keys play—but
it should make sure that those changes are local to itself and don’t affect other,
unsuspecting applications. In particular, it should:

• Modify the key map only when one of its windows becomes the active window, and

• Restore the default key map when it no longer has the active window.

Through the Keymap preferences application, users can configure the keyboard to their
liking. The user’s preferences affect all applications; they’re captured in the default key
map and stored in a file (/system/settings/Key_map).

When the machine reboots or whenrestore_key_map() is called, the key map is read from
this file. If the file doesn’t exist, the original map encoded in the Application Server is
used.

Global Functions

328 – The Interface Kit

Thekey_map structure contains a large number of fields, but it can be broken down into
these six parts:

• A version number.

• A series of fields that determine which keys will function as modifier keys—such as
Shift, Control, or Num Lock.

• A field that sets the initial state of the keyboard locks in the default key map.

• A series of ordered tables that assign character values to keys. Keys assigned a
value other than –1 produce key-down events when pressed. This includes almost
all the keys on the keyboard (all except for a handful of modifier keys).

• A series of tables that locate the dead keys for diacritical marks and determine how
a combination of a dead key plus another key is mapped to a particular character.

• A set of masks that determine which modifier keys are required for a key to be
considered dead.

The following sections describe each part of thekey_map structure in turn.

Version. The first field of the key map is a version number:

ulongversion An internal identifier for the key map.

The version number doesn’t change when the user configures the keyboard, and shouldn’t
be changed programmatically either. You can ignore it.

Modifiers. Modifier keys set states that affect other user actions on the keyboard and
mouse. Eight modifier states are defined—Shift, Control, Option, Command, Menu, Caps
Lock, Num Lock, and Scroll Lock. These states are discussed under “Modifier Keys” on
page 51 of the introduction. They overlap, but don’t exactly match the key caps found on
a standard keyboard—which generally has a set of Alt(ernate) keys, rarely Option keys,
and only sometimes Command and Menu keys. Because of these differences, the
mapping of keys to modifiers is the area of the key map most open to the user’s personal
judgement and taste, and consequently to changes in the default configuration.
Applications are urged to respect the user’s preferences.

Since two keys, one on the left and one on the right, can be mapped to the Shift, Control,
Option, and Command modifiers, the keyboard can have as many as twelve modifier keys.
Thekey_map structure has one field for each key:

ulongcaps_key The key that functions as the Caps Lock key—by
default, this is the key labeled “Caps Lock,” key
0x3b.

Global Functions

The Interface Kit –329

ulongscroll_key The key that functions as the Scroll Lock key—by
default, this is the key labeled “Scroll Lock,” key
0x0f.

ulongnum_key The key that functions as the Num Lock key—by
default, this is the key labeled “Num Lock,” key
0x22.

ulong left_shift_key A key that functions as a Shift key—by default,
this is the key on the left labeled “Shift,” key 0x4b.

ulongright_shift_key Another key that functions as a Shift key—by
default, this is the key on the right labeled “Shift,”
key 0x56.

ulong left_command_key A key that functions as a Command key—by
default, this is the left “Alt” key, key 0x5d.

ulongright_command_key Another key that functions as a Command key—by
default, this is the right “Alt” key, key 0x5f.

ulong left_control_key A key that functions as a Control key—by default,
this is the key labeled “Control” on the left, key
0x5c.

ulongright_control_key Another key that functions as a Control key—by
default, this key is not mapped. (The value of the
field is set to 0.)

ulong left_option_key A key that functions as an Option key—by default,
this is the key that’s labeled “Command” (or that
has a command symbol) on the left of some
keyboards, key 0x66. This key doesn’t exist on,
and therefore isn’t mapped for, a standard 101-key
keyboard.

ulongright_option_key A key that functions as an Option key—by default,
this is the key labeled “Control” on the right, key
0x60.

ulongmenu_key A key that initiates keyboard navigation of the
menu hierarchy—by default, this is the key labeled
“Menu,” key 0x68. This key doesn’t exist on, and
therefore isn’t mapped for, a standard 101-key
keyboard.

Each field names the key that functions as that modifier. For example, when the user holds
down the key whose code is set in theright_option_key field, theB_OPTION_KEY and
B_RIGHT_OPTION_KEY bits are turned on in the modifiers mask that themodifiers()
function returns. When the user then strikes a character key, theB_OPTION_KEY state
influences the character that’s generated.

Global Functions

330 – The Interface Kit

If a modifier field is set to a value that doesn’t correspond to an actual key on the keyboard
(including 0), that field is not mapped. No key fills that particular modifier role.

Keyboard locks. One field of the key map sets initial modifier states:

ulong lock_settings A mask that determines which keyboard locks are
turned on when the machine reboots or when the
default key map is restored.

The mask can be 0 or may contain any combination of these three constants:

B_CAPS_LOCK
B_SCROLL_LOCK
B_NUM_LOCK

It’s 0 by default; there are no initial locks.

Altering thelock_settings field has no effect unless the altered key map is made the
default (by writing it to a file that replaces/system/settings/Key_map).

Character maps. The principal job of the key map is to assign character values to keys.
This is done in a series of nine tables:

ulongcontrol_map[128] The characters that are produced when a Control
key is down but both Command keys are up.

ulongoption_caps_shift_map[128]
The characters that are produced when Caps Lock
is on and both a Shift key and an Option key are
down.

ulongoption_caps_map[128]
The characters that are produced when Caps Lock
is on and an Option key is down.

ulongoption_shift_map[128] The characters that are produced when both a Shift
key and an Option key are down.

ulongoption_map[128] The characters that are produced when an Option
key is down.

ulongcaps_shift_map[128] The characters that are produced when Caps Lock
is on and a Shift key is down.

ulongcaps_map[128] The characters that are produced when Caps Lock
is on.

ulongshift_map[128] The characters that are produced when a Shift key
is down.

Global Functions

The Interface Kit –331

ulongnormal_map[128] The characters that are produced when none of the
other tables apply.

Each of these tables is an array of 128 characters (declared asulongs). Key codes are used
as indices into the arrays. The value stored at any particular index is the character
associated with that key. For example, the code assigned to theM key is 0x52; the
characters to which theM key is mapped are recorded at index 0x52 in the various arrays.

The tables are ordered. Character values from the first applicable array are used, even if
another array might also seem to apply. For example, if Caps Lock is on and a Control key
is down (and both Command keys are up), thecontrol_map array is used, notcaps_map.
If a Shift key is down and Caps Lock is on, thecaps_shift_map is used, notshift_map or
caps_map.

Notice that the last eight tables (all exceptcontrol_map) are paired, with a table that
names the Shift key (..._shift_map) preceding an equivalent table without Shift:

• option_caps_shift_map is paired withoption_caps_map,
• option_shift_map with option_map,
• caps_shift_map with caps_map, and
• shift_map with normal_map.

These pairings are important for a special rule that applies to keys on the numerical
keypad when Num Lock is on:

• If the Shift key is down, the non-Shift table is used.
• However, if the Shift key isnot down, the Shift table is used.

In other words, Num Lock inverts the Shift and non-Shift tables for keys on the numerical
keypad.

Not every key needs to be mapped to a character. If the value recorded in a table is –1, the
key corresponding to that index is not mapped to a character given the particular modifier
states the table represents. Generally, modifier keys are not mapped to characters, but all
other keys are, at least for some tables. Key-down events are not generated for –1
character values.

Dead keys. Next are the tables that map combinations of keys to single characters. The
first key in the combination is “dead”—it doesn’t produce a key-down event until the user
strikes another character key. When the user hits the second key, one of two things will
happen: If the second key is one that can be used in combination with the dead key, a
single key-down event reports the combination character. If the second key doesn’t
combine with the dead key, two key-down events occur, one reporting the dead-key
character and one reporting the second character.

Global Functions

332 – The Interface Kit

There are five dead-key tables:

ulongacute_dead_key[32] The table for combining an acute accent (´) with
other characters.

ulonggrave_dead_key[32] The table for combining a grave accent (`) with
other characters.

ulongcircumflex_dead_key[32]
The table for combining a circumflex (ˆ) with other
characters.

ulongdieresis_dead_key[32]
The table for combining a dieresis (¨) with other
characters.

ulong tilde_dead_key[32] The table for combining a tilde (˜) with other
characters

The tables are named after diacritical marks that can be placed on more than one character.
However, the name is just a mnemonic; it means nothing. The contents of the table
determine what the dead key is and how it combines with other characters. It would be
possible, for example, to remap thetilde_dead_key table so that it had nothing to do with
a tilde.

Each table consists of a series of up to 16 character pairs, where each character is declared
as aulong. The first character in the pair is the one that must be typed immediately after
the dead key. The second character is the resulting character, the character that’s produced
by the combination of the dead key plus the first character in the pair. For example, if the
first character is ‘o’, the second might be ‘ô’—meaning that the combination of a dead key
plus the character ‘o’ produces a circumflexed ‘ô’.

The character pairs in the defaultgrave_dead_key array look something like this:

' ', '‘',
'A', 'À',
'E', 'È',
'I', 'Ì',
'O', 'Ò',
'U', 'Ù',
'a', 'à',
'e', 'è',
'i', 'ì',
'o', 'ò',
'u', 'ù',
. . .

By convention, the first pair in each array is a space followed by the dead-key character
itself. This pair does double duty: It states that the dead key plus a space yields the dead-
key character, and it also names the dead key. The system understands what the dead key
is from the second character in the array.

Global Functions

The Interface Kit –333

Character tables for dead keys. As mentioned above, for a key to be dead, it must be
mapped to the second character in a dead-key array. However, it’s not typical for every
key that’s mapped to the character to be dead. Usually, there’s a requirement that the user
must hold down certain modifier keys (often the Option key). In other words, a key is
dead only if selected character-map tables map it to the requisite character.

Five additional fields of thekey_map structure specify what those character-map tables
are—which modifiers are required for each of the dead keys:

ulongacute_tables The character tables that cause a key to be dead
when they map it to the second character in the
acute_dead_key array.

ulonggrave_tables The character tables that cause a key to be dead
when they map it to the second character in the
grave_dead_key array.

ulongcircumflex_tables The character tables that cause a key to be dead
when they map it to the second character in the
circumflex_dead_key array.

ulongdieresis_tables The character tables that cause a key to be dead
when they map it to the second character in the
dieresis_dead_key array.

ulong tilde_tables The character tables that cause a key to be dead
when they map it to the second character in the
tilde_dead_key array.

Each of these fields contains a mask formed from the following constants:

B_CONTROL_TABLE
B_OPTION_CAPS_SHIFT_TABLE
B_OPTION_CAPS_TABLE
B_OPTION_SHIFT_TABLE
B_OPTION_TABLE
B_CAPS_SHIFT_TABLE
B_CAPS_TABLE
B_SHIFT_TABLE
B_NORMAL_TABLE

The mask designates the character-map tables that permit a key to be dead. For example,
if the mask for thegrave_tables field is,

B_OPTION_TABLE | B_OPTION_CAPS_SHIFT_TABLE

Global Functions

334 – The Interface Kit

a key would be dead whenever either of those tables mapped the key to the second
character in thegrave_dead_key array (‘`’ in the example above). A key mapped to the
same character by another table would not be dead.

See also: BView::GetKeys(), modifiers(), “Keyboard Information” in the chapter
introduction,set_modifier_key()

The Interface Kit –335

Constants and Defined Types

This section lists the various constants and types that the Interface Kit defines to support
the work done by its principal classes. The Kit is a framework of cooperating classes;
almost all of its programming interface can be found in the class descriptions presented in
previous sections of this chapter. Most of the constants and types listed here have already
been explained in the descriptions of class member functions and global nonmember
functions. Only one or two have not yet been mentioned in full detail. All of them are
noted here and briefly described. If a more lengthy discussion is to be found under a class
or a function, you’ll be referred to that location.

Constants are listed first, followed by defined types. Constants that are defined as part of
an enumeration type are presented with the other constants, rather than with the type.
They’re listed in the “Constants” section under the type name.

Constants

alert_type Constants
<interface/Alert.h>

Enumerated constant

B_EMPTY_ALERT
B_INFO_ALERT
B_IDEA_ALERT
B_WARNING_ALERT
B_STOP_ALERT

These constants designate the various types of alert panels that are recognized by the
system. The type corresponds to an icon that’s displayed in the alert window.

See also: the BAlert constructor

Constants Constants and Defined Types

336 – The Interface Kit

alignment Constants
<interface/InterfaceDefs.h>

Enumerated constant

B_ALIGN_LEFT
B_ALIGN_RIGHT
B_ALIGN_CENTER

These constants define thealignment data type. They determine how lines of text are
aligned by BTextView and BStringView objects.

See also: BTextView::SetAlignment()

button_width Constants
<interface/Alert.h>

Enumerated constant

B_WIDTH_AS_USUAL
B_WIDTH_FROM_LABEL
B_WIDTH_FROM_WIDEST

These constants define thebutton_width type. They determine how the width of the
buttons in an alert panel will be set—whether they’re set to an standard (minimal) width, a
width just sufficient to accommodate the button’s own label, or a width sufficient to
accommodate the widest label of all the buttons.

See also: the BAlert constructor

Character Constants
<interface/InterfaceDefs.h>

Enumerated constant Character value

B_BACKSPACE 0x08 (same as ‘\b’)
B_ENTER 0x0a (same as ‘\n’)
B_RETURN 0x0a (synonym forB_ENTER)
B_SPACE 0x20 (same as ‘ ’)
B_TAB 0x09 (same as ‘\t’)
B_ESCAPE 0x1b

B_LEFT_ARROW 0x1c
B_RIGHT_ARROW 0x1d
B_UP_ARROW 0x1e
B_DOWN_ARROW 0x1f

B_INSERT 0x05
B_DELETE 0x7f

Constants and Defined Types Constants

The Interface Kit –337

B_HOME 0x01
B_END 0x04
B_PAGE_UP 0x0b
B_PAGE_DOWN 0x0c

B_FUNCTION_KEY 0x10

These constants stand for the ASCII characters they name. Constants are defined only for
characters that normally don’t have visible symbols.

See also: “Function Key Constants” below

color_space Constants
<interface/InterfaceDefs.h>

Enumerated constant Meaning

B_MONOCHROME_1_BIT One bit per pixel, where 1 is black and 0 is white.
B_GRAYSCALE_8_BIT 256 gray values, where 255 is black and 0 is white.
B_COLOR_8_BIT Colors specified as 8-bit indices into the color map.
B_RGB_16_BIT < undefined for the current release >
B_RGB_32_BIT Colors as 8-bit red, green, and blue components.

These constants define thecolor_space data type. A color space describes two properties
of bitmap images:

• How many bits of information there are per pixel (the depth of the image), and

• How those bits are to be interpreted (whether as colors or on a grayscale, what the
color components are, and so on).

See the “Colors” section in the chapter introduction for a fuller explanation of the color
spaces currently defined for this type, particularlyB_RGB_32_BIT.

See also: “Colors” on page 25, the BBitmap class

Control Values
<interface/Control.h>

Enumerated constant Value

B_CONTROL_ON 1
B_CONTROL_OFF 0

These constants define the bipolar states of a typical control device.

See also: BControl::SetValue()

Constants Constants and Defined Types

338 – The Interface Kit

Cursor Transit Constants
<interface/View.h>

Enumerated constant Meaning

B_ENTERED_VIEW The cursor has just entered a view.
B_INSIDE_VIEW The cursor has moved within the view.
B_EXITED_VIEW The cursor has left the view

These constants describe the cursor’s transit through a view. EachMouseMoved()
notification includes one of these constants as an argument, to inform the BView whether
the cursor has entered the view, moved while inside the view, or exited the view.

See also: BView::MouseMoved()

Dead-Key Mapping
<interface/InterfaceDefs.h>

Enumerated constants

B_CONTROL_TABLE
B_OPTION_CAPS_SHIFT_TABLE
B_OPTION_CAPS_TABLE
B_OPTION_SHIFT_TABLE
B_OPTION_TABLE
B_CAPS_SHIFT_TABLE
B_CAPS_TABLE
B_SHIFT_TABLE
B_NORMAL_TABLE

These constants determine which combinations of modifiers can cause a key to be the
“dead” member of a two-key combination.

See also: system_key_map()

drawing_mode Constants
<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_OP_COPY B_OP_ADD
B_OP_OVER B_OP_SUBTRACT
B_OP_ERASE B_OP_MIN
B_OP_INVERT B_OP_MAX
B_OP_BLEND

These constants define thedrawing_mode data type. The drawing mode is a BView
graphics parameter that determines how the image being drawn interacts with the image

Constants and Defined Types Constants

The Interface Kit –339

already in place in the area where it’s drawn. The various modes are explained under
“Drawing Modes” in the chapter introduction.

See also: “Drawing Modes” on page 27,BView::SetDrawingMode()

Font Name Length
<interface/InterfaceDefs.h>

Defined constant Value

B_FONT_NAME_LENGTH 64

This constant defines the maximum length of a font name. It’s used in the definition of the
font_name type.

See also: font_name under “Defined Types” below

Function Key Constants
<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_F1_KEY B_F9_KEY
B_F2_KEY B_F10_KEY
B_F3_KEY B_F11_KEY
B_F4_KEY B_F12_KEY
B_F5_KEY B_PRINT_KEY (the “Print Screen” key)
B_F6_KEY B_SCROLL_KEY (the “Scroll Lock” key)
B_F7_KEY B_PAUSE_KEY
B_F8_KEY

These constants stand for the various keys that are mapped to theB_FUNCTION_KEY
character. When theB_FUNCTION_KEY character is reported in a key-down event, the
application can determine which key produced the character by testing the key code
against these constants. (Control-p also produces theB_FUNCTION_KEY character.)

See also: “Character Mapping” on page 53 of the introduction to this chapter

Constants Constants and Defined Types

340 – The Interface Kit

Interface Messages
<app/AppDefs.h>

Enumerated constant Enumerated constant

B_ZOOM B_KEY_DOWN
B_MINIMIZE B_KEY_UP
B_WINDOW_RESIZED B_MOUSE_DOWN
B_WINDOW_MOVED B_MOUSE_UP
B_WINDOW_ACTIVATED B_MOUSE_MOVED
B_QUIT_REQUESTED B_VIEW_RESIZED
B_SCREEN_CHANGED B_VIEW_MOVED
B_WORKSPACE_ACTIVATED B_VALUE_CHANGED
B_WORKSPACES_CHANGED B_PULSE
B_SAVE_REQUESTED B_PANEL_CLOSED

These constants identify interface messages—system messages that are delivered to
BWindow objects. Each constant conveys an instruction to do something in particular
(B_ZOOM) or names a type of event (B_KEY_DOWN).

See also: “Interface Messages” on page 41 in the introduction to this chapter

menu_bar_border Constants
<interface/MenuBar.h>

Enumerated constant Meaning

B_BORDER_FRAME Put a border around the entire frame rectangle.
B_BORDER_CONTENTS Put a border around the group of items only.
B_BORDER_EACH_ITEM Put a border around each item.

These constants can be passed as an argument to BMenuBar’sSetBorder() function.

See also: BMenuBar::SetBorder()

menu_layout Constants
<interface/Menu.h>

Enumerated constant Meaning

B_ITEMS_IN_ROW Menu items are arranged horizontally, in a row.
B_ITEMS_IN_COLUMN Menu items are arranged vertically, in a column.
B_ITEMS_IN_MATRIX Menu items are arranged in a custom fashion.

These constants define themenu_layout data type. They distinguish the ways that items
can be arranged in a menu or menu bar—they can be laid out from end to end in a row like

Constants and Defined Types Constants

The Interface Kit –341

a typical menu bar, stacked from top to bottom in a column like a typical menu, or
arranged in some custom fashion like a matrix.

See also: the BMenu and BMenuBar constructors

Modifier States
<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_SHIFT_KEY B_OPTION_KEY
B_LEFT_SHIFT_KEY B_LEFT_OPTION_KEY
B_RIGHT_SHIFT_KEY B_RIGHT_OPTION_KEY

B_CONTROL_KEY B_COMMAND_KEY
B_LEFT_CONTROL_KEY B_LEFT_COMMAND_KEY
B_RIGHT_CONTROL_KEY B_RIGHT_COMMAND_KEY

B_CAPS_LOCK B_MENU_KEY
B_SCROLL_LOCK
B_NUM_LOCK

These constants designate the Shift, Option, Control, Command, and Menu modifier keys
and the lock states set by the Caps Lock, Scroll Lock, and Num Lock keys. They’re
typically used to form a mask that describes the current, or required, modifier states.

For each variety of modifier key, there are constants that distinguish between the keys that
appear at the left and right of the keyboard, as well as one that lumps both together. For
example, if the user is holding the left Control key down, bothB_CONTROL_KEY and
B_LEFT_CONTROL_KEY will be set in the mask.

See also: modifiers(), BWindow::AddShortcut(), the BMenu constructor

Mouse Buttons
<interface/View.h>

Enumerated constant

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

These constants name the mouse buttons. Buttons are identified, not by their physical
positions on the mouse, but by their roles in the user interface.

See also: BView::GetMouse(), set_mouse_map()

Constants Constants and Defined Types

342 – The Interface Kit

orientation Constants
<interface/InterfaceDefs.h>

Enumerated constant

B_HORIZONTAL
B_VERTICAL

These constants define theorientation data type that distinguishes between the vertical and
horizontal orientation of graphic objects. It’s currently used only to differentiate scroll
bars.

See also: the BScrollBar and BScrollView classes

Pattern Constants
<interface/InterfaceDefs.h>

const patternB_SOLID_HIGH = { 0xff, 0xff, 0xff, 0xff, 0xff,0xff, 0xff, 0xff }

const patternB_SOLID_LOW = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }

const patternB_MIXED_COLORS
= { 0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55 }

These constants name the three standard patterns defined in the Interface Kit.

B_SOLID_HIGH is a pattern that consists of the high color only. It’s the default pattern for
all BView drawing functions that stroke lines and fill shapes.

B_SOLID_LOW is a pattern with only the low color. It’s used mainly to erase images
(to replace them with the background color).

B_MIXED_COLORS alternates pixels between the high and low colors in a checkerboard
pattern. The result is a halftone midway between the two colors. This pattern can produce
fine gradations of color, especially when the high and low colors are set to two colors that
are already quite similar.

See also: “Patterns” on page 26 of the chapter introduction, thepattern defined type
below

Constants and Defined Types Constants

The Interface Kit –343

Resizing Modes
<interface/View.h>

Defined constants

B_FOLLOW_LEFT
B_FOLLOW_RIGHT
B_FOLLOW_LEFT_RIGHT
B_FOLLOW_H_CENTER

B_FOLLOW_TOP
B_FOLLOW_BOTTOM
B_FOLLOW_TOP_BOTTOM
B_FOLLOW_V_CENTER

B_FOLLOW_ALL
B_FOLLOW_NONE

These constants are used to set the behavior of a view when its parent is resized. They’re
explained under the BView constructor.

See also: the BView constructor,BView::SetResizingMode()

Screen Spaces
<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_8_BIT_640x480 B_32_BIT_640x480
B_8_BIT_800x600 B_32_BIT_800x600
B_8_BIT_1024x768 B_32_BIT_1024x768
B_8_BIT_1152x900 B_32_BIT_1152x900
B_8_BIT_1280x1024 B_32_BIT_1280x1024
B_8_BIT_1600x1200 B_32_BIT_1600x1200

B_16_BIT_640x480 B_8_BIT_640x400
B_16_BIT_800x600
B_16_BIT_1024x768
B_16_BIT_1152x900
B_16_BIT_1280x1024
B_16_BIT_1600x1200

These constants are used to configure the screen—to set its depth and the size of the pixel
grid it displays—as well as to report which configurations are possible. < 16-bit depths
are not currently supported. >

See also: set_screen_space(), get_screen_info()

Constants Constants and Defined Types

344 – The Interface Kit

Scroll Bar Constants
<interface/ScrollBar.h>

Defined constant

B_H_SCROLL_BAR_HEIGHT
B_V_SCROLL_BAR_WIDTH

These constants record the recommended thickness of scroll bars. They should be used to
help define the frame rectangles passed to the BScrollBar constructor.

See also: the BScrollBar class

Tracking Constants
<interface/View.h>

Enumerated constant Meaning

B_TRACK_WHOLE_RECT Drag the whole rectangle around.
B_TRACK_RECT_CORNER Drag only the left bottom corner of the rectangle.

These constants determines how BView’sBeginRectTracking() function permits the user
to drag (or drag out) a rectangle.

See also: BView::BeginRectTracking()

Transparency Constants
<interface/InterfaceDefs.h>

const ucharB_TRANSPARENT_8_BIT
const rgb_colorB_TRANSPARENT_32_BIT

These constants set transparent pixel values in a bitmap image.B_TRANSPARENT_8_BIT
designates a transparent pixel in theB_COLOR_8_BIT color space, and
B_TRANSPARENT_32_BIT designates a transparent pixel in theB_RGB_32_BIT color space.

Transparency is explained the “Drawing Modes” section of the chapter introduction.
Drawing modes other thanB_OP_COPY preserve the destination image where a source
bitmap is transparent.

See also: “Drawing Modes” on page 27, the BBitmap class,BView::SetViewColor()

Constants and Defined Types Constants

The Interface Kit –345

View Flags
<interface/View.h>

Enumerated constant Meaning

B_FULL_UPDATE_ON_RESIZE Include the entire view in the clipping region.
B_WILL_DRAW Allow the BView to draw.
B_PULSE_NEEDED Report pulse events to the BView.
B_FRAME_EVENTS Report view-resized and view-moved events.

These constants can be combined to form a mask that sets the behavior of a BView object.
They’re explained in more detail under the class constructor. The mask is passed to the
constructor, or to theSetFlags() function.

See also: the BView constructor,BView::SetFlags()

Window Areas
<interface/Window.h>

Enumerated constant

B_UNKNOWN_AREA
B_TITLE_AREA
B_CONTENT_AREA
B_RESIZE_AREA
B_CLOSE_AREA
B_ZOOM_AREA

These constants name the various parts of a window. They’re used to designate the area
where the cursor is located in messages that report the cursor’s movement over a window.

See also: “B_MOUSE_MOVED” on page 10 in theMessage Protocols appendix

Window Flags
<interface/Window.h>

Enumerated constant Enumerated constant

B_NOT_MOVABLE B_NOT_CLOSABLE
B_NOT_H_RESIZABLE B_NOT_ZOOMABLE
B_NOT_V_RESIZABLE B_NOT_MINIMIZABLE
B_NOT_RESIZABLE B_WILL_FLOAT
B_WILL_ACCEPT_FIRST_CLICK

These constants set the behavior of a window. They can be combined to form a mask
that’s passed to the BWindow constructor.

See also: the BWindow constructor

Defined Types Constants and Defined Types

346 – The Interface Kit

window_type Constants
<interface/Window.h>

Enumerated constant Meaning

B_MODAL_WINDOW The window is a modal window.
B_BORDERED_WINDOW The window has a border but no title tab.
B_TITLED_WINDOW The window has a border and a title tab.
B_DOCUMENT_WINDOW The window has a tab and borders fit for scroll bars.

These constants describe the various kinds of windows that can be requested from the
Application Server.

See also: the BWindow constructor

Workspace Constants
<interface/Window.h>

Defined constant

B_CURRENT_WORKSPACE
B_ALL_WORKSPACES

These constants are used—along with designations of specific workspaces—to associate a
set of one or more workspaces with a BWindow.

See also: the BWindow constructor,BWindow::SetWorkspaces()

Defined Types

alert_type
<interface/Alert.h>

typedef enum {. . .}alert_type

These constants name the various types of alert panel.

See also: “alert_type Constants” on page 335 above, the BAlert constructor

Constants and Defined Types Defined Types

The Interface Kit –347

alignment
<interface/InterfaceDefs.h>

typedef enum {. . .}alignment

Alignment constants determine where lines of text are placed in a view.

See also: “alignment Constants” on page 336 above,BTextView::SetAlignment()

button_width
<interface/Alert.h>

typedef enum {. . .}button_width

These constants name the methods that can be used to determine how wide to make the
buttons in an alert panel.

See also: “button_width Constants” on page 336 above, the BAlert constructor

color_map
<interface/InterfaceDefs.h>

typedef struct {
long id;
rgb_colorcolor_list[256];
ucharinversion_map[256];
ucharindex_map[32768];

} color_map

This structure contains information about the color context provided by the Application
Server. There’s one and only one color map for all applications connected to the Server.
Applications can obtain a pointer to the color map by calling the globalsystem_colors()
function. See that function for information on the various fields.

See also: system_colors()

color_space
<interface/InterfaceDefs.h>

typedef enum {. . .}color_space

Color space constants determine the depth and interpretation of bitmap images. They’re
described under “Colors” in the introduction.

See also: “color_space Constants” on page 337 above, “Colors” on page 25, the
BBitmap class

Defined Types Constants and Defined Types

348 – The Interface Kit

drawing_mode
<interface/InterfaceDefs.h>

typedef enum {. . .}drawing_mode

The drawing mode determines how source and destination images interact. The various
modes are explained in the chapter introduction under “Drawing Modes”.

See also: “Drawing Modes” on page 27, “drawing_mode Constants” on page 338 above

edge_info
<interface/View.h>

typedef struct {
float left;
float right;

} edge_info

This structure records information about the location of a character outline within the
horizontal space allotted to the character. Edges separate one character from adjacent
characters on the left and right. They’re explained under theGetCharEdges() function in
the BView class.

See also: BView::GetCharEscapements(), BView::GetFontInfo()

font_info
<interface/View.h>

typedef struct {
font_namename;
float size;
float shear;
float rotation;
float ascent;
float descent;
float leading;

} font_info

This structure holds information about a BView’s current font. Its fields are explained
under theGetFontInfo() function in the BView class.

See also: BView::GetFontInfo(), BView::SetFontName()

Constants and Defined Types Defined Types

The Interface Kit –349

font_name
<interface/InterfaceDefs.h>

typedef charfont_name[FONT_NAME_LENGTH + 1]

This type defines a string long enough to hold the name of a font—64 characters plus the
null terminator.

See also: BView::SetFontName(), get_font_name()

key_info
<interface/View.h>

typedef struct {
ulongchar_code;
ulongkey_code;
ulongmodifiers;
ucharkey_states[16];

} key_info

This structure is used by BView’sGetKeys() function to return all known information
about what the user is currently doing on the keyboard.

See also: BView::GetKeys(), “Keyboard Information” on page 47 in the introduction to
this chapter

Defined Types Constants and Defined Types

350 – The Interface Kit

key_map
<interface/InterfaceDefs.h>

typedef struct {
ulongversion;
ulongcaps_key;
ulongscroll_key;
ulongnum_key;
ulong left_shift_key;
ulongright_shift_key;
ulong left_command_key;
ulongright_command_key;
ulong left_control_key;
ulongright_control_key;
ulong left_option_key;
ulongright_option_key;
ulongmenu_key;
ulong lock_settings;
ulongcontrol_map[128];
ulongoption_caps_shift_map[128];
ulongoption_caps_map[128];
ulongoption_shift_map[128];
ulongoption_map[128];
ulongcaps_shift_map[128];
ulongcaps_map[128];
ulongshift_map[128];
ulongnormal_map[128];
ulongacute_dead_key[32];
ulonggrave_dead_key[32];
ulongcircumflex_dead_key[32];
ulongdieresis_dead_key[32];
ulong tilde_dead_key[32];
ulongacute_tables;
ulonggrave_tables;
ulongcircumflex_tables;
ulongdieresis_tables;
ulong tilde_tables;

} key_map

This structure maps the physical keys on the keyboard to their functions in the user
interface. It holds the tables that assign characters to key codes, set up dead keys, and
determine which keys function as modifiers. There’s just one key map shared by all
applications running on the same machine. It’s returned by thesystem_key_map()
function.

See also: system_key_map()

Constants and Defined Types Defined Types

The Interface Kit –351

menu_bar_border
<interface/MenuBar.h>

typedef enum {. . .}menu_bar_border

This type enumerates the ways that a menu bar can be bordered.

See also: BMenuBar::SetBorder(), “menu_bar_border Constants” above

menu_info
<interface/Menu.h>

typedef struct {
float font_size;
font_namefont;
rgb_colorbackground_color;
long separator;
bool click_to_open;
bool triggers_always_shown;

} menu_info

This structure records the user’s menu preferences.

See also: set_menu_info() , the BMenu class

menu_layout
<interface/Menu.h>

typedef enum {. . .}menu_layout

This type distinguishes the various ways that items can arranged in a menu or menu bar.

See also: the BMenu class, “menu_layout Constants” above

mouse_map
<interface/InterfaceDefs.h>

typedef struct {
ulong left;
ulongright;
ulongmiddle;

} mouse_map

This structure maps mouse buttons to their roles as theB_PRIMARY_MOUSE_BUTTON,
B_SECONDARY_MOUSE_BUTTON, or B_TERTIARY_MOUSE_BUTTON.

See also: set_mouse_map()

Defined Types Constants and Defined Types

352 – The Interface Kit

orientation
<interface/InterfaceDefs.h>

typedef enum {. . .}orientation

This type distinguishes between theB_VERTICAL andB_HORIZONTAL orientation of scroll
bars.

See also: the BScrollBar and BScrollView classes

pattern
<interface/InterfaceDefs.h>

typedef struct {
uchardata[8];

} pattern

A pattern is a arrangement of two colors—the high color and the low color—in an 8-pixel
by 8-pixel square. Pixels are specified in rows, with one byte per row and one bit per
pixel. Bits marked 1 designate the high color; those marked 0 designate the low color. An
example and an illustration are given under “Patterns” on page 26 of the introduction to
this chapter.

See also: “Pattern Constants” above, “Patterns” in the chapter introduction

print_file_header
<interface/PrintJob.h>

typedef struct {
long version;
long page_count;
long _reserved_1_;
long _reserved_2_;
long _reserved_3_;
long _reserved_4_;
long _reserved_5_;

} print_file_header

This structure defines the header information for a print job. < Although declared
publicly, it currently is used only internally by the BPrintJob class. >

Constants and Defined Types Defined Types

The Interface Kit –353

rgb_color
<interface/InterfaceDefs.h>

typedef struct {
ucharred;
uchargreen;
ucharblue;
ucharalpha;

} rgb_color

This type specifies a full 32-bit color. Each component can have a value ranging from a
minimum of 0 to a maximum of 255.

< Thealpha component, which is designed to specify the coverage of the color (how
transparent or opaque it is), is currently ignored. However, anrgb_color can be made
completely transparent by assigning it the special value,B_TRANSPARENT_32_BIT. >

See also: BView::SetHighColor()

screen_info
<interface/InterfaceDefs.h>

typedef struct {
color_spacemode;
BRectframe;
ulongspaces;
float min_refresh_rate;
float max_refresh_rate;
float refresh_rate;
ucharh_position;
ucharv_position;
ucharh_size;
ucharv_size;

} screen_info

This structure holds information about a screen. Its fields are explained under the
get_screen_info() global function.

See also: get_screen_info()

Defined Types Constants and Defined Types

354 – The Interface Kit

scroll_bar_info
<interface/InterfaceDefs.h>

typedef struct {
bool proportional;
bool double_arrows;
long knob;
long min_knob_size;

} scroll_bar_info

This structure captures the user’s preferences for how scroll bars should behave and
appear.

See also: set_scroll_bar_info(), the BScrollBar class

symbol_set_name
<interface/InterfaceDefs.h>

typedef font_namesymbol_set_name

This type defines a string long enough to hold the name of a symbol set—64 characters
plus the null terminator. The names of symbol sets are subject to the same length
constraint as the names of fonts, which is why this type is a redefinition offont_name.

See also: get_symbol_set_name()

window_type
<interface/Window.h>

typedef enum {. . .}window_type

This type describes the various kinds of windows that can be requested from the
Application Server.

See also: the BWindow constructor, “window_type Constants” on page 346 above

