
The Media Kit –1

5 The Media Kit

Introduction . 3

BAudioSubscriber . 5
Overview . 5

Sound Hardware . 5
Inputs . 7
Converters . 7
Streams . 8
Outputs . 8

Controlling the Hardware 8
Volume and Mute. 9
The MUX and the Mic10

Sound Data .10
Receiving and Broadcasting Sound Data 11

Constructor and Destructor .12
Member Functions. .12

BSoundFile .17
Overview .17

Sound File Formats . .17
Sound Data Parameters18
Playing a Sound File .18

An Example .19
Constructor and Destructor .22
Member Functions. .23

BSubscriber . .27
Overview .27

Identifying a Server . .28
Subscribing .28

The Stream . .28
The Clique .28
Waiting for Access 30

Entering the Stream . .30
Positioning your BSubscriber 31
Receiving and Processing Buffers 31

2 – The Media Kit

Exiting the Stream 32
Processing Data in a Member Function. 33

Constructor and Destructor .35
Member Functions. .35

Global Functions, Constants, and Defined Types43
Global Functions. .43
Constants .44
Defined Types .46

Media Kit Inheritance Hierarchy

BMessenger
(Application Kit)

BAudioSubscriberBSubscriber

BSoundFile
BFile

(Storage Kit)

The Media Kit –3

The Media Kit

The Media Kit gives you tools that let you generate, examine, manipulate, and realize (or
render) medium-specific data in real-time. It also lets you synchronize the transmission of
data to different media devices, allowing you to build applications that can easily
incorporate and coordinate audio and video (for example).

There are three layers in the Media Kit:

• Through the classes provided by themodule layer, you create data-generating and -
manipulating modules that can be plugged into each other to create an ever-
narrowing data-processing tree. The tree terminates at a global scheduling object.
Every application can have its own processing tree, or it can share branches or even
individual modules with other applications. Synchronization between data from
different media is handled by the scheduler: All you have to do is define and hook
up the data-processing modules.

• At thesubscriber layer are classes that let you talk directly to the media servers that
are provided by the Kit. For each distinct medium there’s a distinct server—but
there’s only one server per medium per computer. Corresponding to each server is a
BSubscriber-derived class. Through instances of these classes you can receive and
send data to the server.

• Thestream layer lets you access the “data-streaming” facilities of the Kit. A data
stream (as used by the Kit) is a sequence of programming entities that each get
access to a set of data buffers. There are no servers or other media-specific
constraints at this layer; you can actually use the classes in the stream layer to
design a streamlined, intra-computer, data-transmission application (currently,
streams can’t broadcast over a network).

These three layers are interconnected: The module layer is built on top of the subscriber
layer, which is built on top of the stream layer. Most high-level media applications will
want to use the module layer exclusively. If you need more control or greater efficiency,
head for the subscriber layer. The stream layer is the least useful to media applications,
but, as mentioned above, it may find a home in applications—media-specific or not—that
want to set up an efficient, real-time data pipeline.

Currently, only the subscriber and stream layers of the Media Kit are implemented, and, in
this release, only the subscriber layer is documented.

At the subscriber layer, the Kit provides two classes:

5

4 – The Media Kit

• BSubscriber defines the basic rules to which all subscribers must adhere. If you
want to use the subscriber layer, this is where you start to learn about it.

• BAudioSubscriber provides additional functionality that speaks directly to the
Audio Server. The Audio Server is a background application that manages sound
data that arrives through the microphone or line-in jacks, and that sends sound data
to the internal speaker and line-out jacks. All subscribers that you create, for now,
will be instances of BAudioSubscriber.

The Kit also provides a BSoundFile class that lets you read the data in a sound file, and
global functions that let you play sound files.

The Media Kit –5

BAudioSubscriber

Derived from: public BSubscriber

Declared in: <media/AudioSubscriber.h>

Overview

BAudioSubscriber objects perform two functions:

• They let your application receive, process, and broadcast sound data.
• They let you control certain parameters—such as volume and muting—of the sound

hardware.

Ultimately, the first point is the more interesting of the two: Recording, generating, and
manipulating sound data is a bit more amusing than simply setting the volume levels of the
hardware devices. But to understand how and what data is received by your
BAudioSubscriber objects, and what happens when you broadcast data through an object,
you should first understand how the hardware is configured. The next section examines
the sound hardware; following that is a description of the sound data that appears in your
application.

Sound Hardware

The sound hardware consists of a number of physical devices (jacks, converters, and the
like), a signal path that routes audio data between these devices, and “control points”
along the signal path that let you adjust the format and flow of the audio data. These
elements are depicted in the following illustration.

Overview BAudioSubscriber

6 – The Media Kit

• The four large boxes (“inputs,” “converters,” “streams,” and “outputs”) divide the
signal path into manageable territories; each territory is examined in separate
sections, below.

• The smaller boxes (“MIC,” “CD,” and so on) are actual or virtual sound devices.

• The long arrowed lines show how the devices are connected. A single line indicates
a single channel, a double line means stereo. The arrowhead at the end of each line
indicates the direction of the signal.

• The circled arrows show where the software can exhibit gain control over a device.
Each control point is labelled as it’s known to the Media Kit. Every control point
has a volume control and a mute.

boost

inputs

INPUT MUX (SINGLE INPUT)

MIC

ADC STREAM

ADC

DAC STREAM

DAC

CD

LINE_IN

LINE-OUT

SPEAKER

converters

streams

outputs

D
A

C
_O

U
T

M
IC

_I
N

CD_THROUGH

LINE_IN_THROUGH

LOOPBACK

SPEAKER_OUT

M
A

S
T

E
R

_O
U

T

OUTPUT
MIX

HEADPHONES
and

BAudioSubscriber Overview

The Media Kit –7

Inputs

There are three analog audio input devices:

• The microphone. The microphone jack at the back of the computer accepts a stereo
mini-phone (1/8”) plug. The analog microphone signal has its own volume control
and mute, and also allows a 20 dB boost. The microphone signal then feeds into the
input MUX.

• Line-in. The stereo line-in jacks at the back of the computer bring a line-level
analog signal into the computer. This signal can be routed directly to the audio
output devices, and fed to the MUX. The direct-to-output, or “through,” path has its
own volume control and mute; this control point is calledB_LINE_IN_THROUGH by
the Kit.

• CD input. The CD (analog) input has the same features as line-in: The CD signal
can be sent through to the output (B_CD_THROUGH), and it can be fed to the MUX.

Note that the microphone signal doesn’thave a through path.

To bring an analog signal into your application (so you can record it, for example), the
signal must pass through the input MUX:

• The MUX is a “mutually exclusive” device that lets you choose a single (analog)
input from among the three sources listed above. In other words, you can bring in
the microphone signalor the line-in signalor the CD signal, but you can’t bring in
any two or all of them at the same time. The MUX passes the input signal to its
output without conversion to digital representation or other modification.

Converters

There are two sound data converters, the analog-to-digital converter (ADC) and the
digital-to-analog converter (DAC):

• The ADC takes the analog signal that it reads from the MUX and converts it to
digital representation. It does this by producing a series ofsamples, or
instantaneous measurements of the signal’s amplitude. The ADC control point is
calledB_ADC_IN.

• The DAC converts digital sound data into a continuous analog signal. The DAC
control point is calledB_DAC_OUT.

Acting as a sort of “short-circuit” between these two devices is the loopback:

• The loopback path takes the digital signal straight out of the ADC and sends it to the
DAC. This path is intended, primarily, to simulate a “through” path for the
microphone signal. There’s little reason to send the line-in or CD signal down the
loopback path since they have actual through paths built in.

Overview BAudioSubscriber

8 – The Media Kit

Streams

The ADC stream and DAC stream are the centerpieces of the BAudioSubscriber class. By
subscribing to the ADC stream you can receive the samples that are emitted by the ADC;
and by subscribing to the DAC stream, you can send buffers of digital sound data to the
DAC.

To enter the ADC stream you must create a BAudioSubscriber, subscribe to the stream (by
passingB_ADC_STREAM as the first argument toSubscribe()), and then callEnterStream().
At that point, your object will begin receiving buffers of ADC-converted data from the
Audio Server. The buffers show up as arguments to the object’s stream function.

Similarly, the DAC stream universe is broached by subscribing to and entering the
B_DAC_STREAM.

If you’re unfamiliar with the concepts of subscription, entering a stream, and the stream
function, take a break and read the BSubscriber specification.

Outputs

The output devices take analog signals and broadcast them to hardware that can turn the
signals into sound.

• The output mixer mixes the signal from the DAC with the signals from the line-in
and CD through paths. You can control the output of this mix at theB_MASTER_OUT
control point.

• The mixed signal is presented at the stereo line-out jacks at the back of the
computer. This is the same signal that’s presented at the headphone jack.

• The stereo signal is mixed to mono (and attenuated by 6 dB) and sent to the abysmal
internal speaker. The speaker has its own volume and mute control
(B_SPEAKER_OUT).

Controlling the Hardware

The BAudioSubscriber class defines a number of functions that control the sound
hardware and that query the state of the hardware. Note that you can call these functions
without first subscribing to one or the other of the audio streams.

BAudioSubscriber Overview

The Media Kit –9

Volume and Mute

To set the volume level of a particular sound device, you use BAudioSubscriber’s
SetVolume() function. The function takes three arguments:

• A constant that represents the device you want to control.
• A float that sets the volume level of the left channel of the device.
• A float that does the same for the right channel.

The device constants are listed below; they correspond to the named control points shown
in the hardware diagram:

• B_CD_THROUGH
• B_LINE_IN_THROUGH
• B_ADC_IN
• B_LOOPBACK
• B_DAC_OUT
• B_MASTER_OUT
• B_SPEAKER_OUT

All volume levels are floating-point numbers in the range [0.0, 1.0], where 0.0 is
inaudible, and 1.0 is maximum volume. If you’re setting a single-channel device (the
speaker), the left channel level is used—the value you pass as the right channel level is
ignored. If you want to set one channel of a stereo device but leave the other at its present
level, pass theB_NO_CHANGE constant for the no-change channel.

In the example below, a BAudioSubscriber is used to set the volume of the CD-through
signal:

BAudioSubscriber *setter = BAudioSubscriber("setter");

/* Set the right channel of the CD through signal
 * to half the maximum volume, and leave the left channel
 * alone.
 */
setter->SetVolume(B_CD_THROUGH, B_NO_CHANGE, 0.5);

To mute a device, you disable it; or, more precisely, you set it to be not enabled. This is
done through theEnableDevice() function. As withSetVolume(), the function’s first
argument is the constant that represents the device you want to control. The second
argument is a boolean that states whether you want to enable (TRUE) or disable (FALSE) the
device. For example:

/* Mute the internal speaker. */
setter->EnableDevice(B_SPEAKER_OUT, FALSE);

TheGetVolume() andIsDeviceEnabled() functions retrieve the current volume and
enabled state of a given device. (As a convenience,GetVolume() returns volumeand
enabled status; see the function description for details.)

Overview BAudioSubscriber

10 – The Media Kit

The MUX and the Mic

To select the analog device that will feed into the MUX, you use the SetADCInput()
function (the signal into the MUX goes to the ADC, hence the name of the function). The
input devices are represented by these constants:

• B_MIC_IN
• B_CD_IN
• B_LINE_IN

TheADCInput() function returns the current input device.

The microphone’s 20 dB boost is toggled through theBoostMic() function. The state of
the boost is retrieved byIsMicBoosted().

Sound Data

Sounds are propagated by the continuous fluctuation of air pressure. This fluctuation is
called a sound wave. The digital representation of a sound wave consists of a series of
discrete measurements of the instantaneous pressure (or amplitude) of the wave at precise,
(typically) equally-spaced points in time. Each measurement is called asample. There are
five attributes that characterize a digital sound sample:

• The size of a single sound sample (the Media Kit expresses this measurement in
bytes-per-sample).

• The order of bytes in a multiple-byte sample.

• The number of samples in a “frame” of sound, where each sample in the frame is
meant to be played at the same time. For example, a stereo sound would have two
samples-per-frame. Samples-per-frame is commonly called thechannel count.

• The number of frames that should be played in a second. This is commonly called
thesampling rate.

• The mapping from the value of a digital sample to a specific sound wave amplitude.
The Media Kit calls this thesample format. Usually, the mapping is linear: When
you double the value of a sample, you double the amplitude to which it corresponds.

The Be sound hardware (both the ADC and the DAC) allows the following sound attribute
settings:

• Sample size can be one or two bytes-per-sample.

• Byte-ordering is either most-significant-byte first (B_BIG_ENDIAN), or least-
significant-byte first (B_LITTLE_ENDIAN).

• The channel count can be one (mono) or two (stereo).

BAudioSubscriber Overview

The Media Kit –11

• The sampling rates, expressed as frames-per-second, that are supported by the
hardware are: 5510, 6620, 8000, 9600, 11025, 16000, 18900, 22050, 27420, 32000,
33075, 37800, 44100, 48000.

• There are two sample formats: The linear format, represented by the constant
B_LINEAR_SAMPLES, can be used with either one- or two-byte samples. The “mu-
law” format (B_MULAW_SAMPLES) can only be used with one-byte samples. Mu-law
is a quasi-exponential mapping that attempts to minimize quantization noise by
dedicating more bits, proportionally, to low amplitude values than to high amplitude
values.

The ADC and DAC use the same sampling rate. You can set the sampling rate through
BAudioSubscriber’sSetSamplingRate() function, but you can’t specify which device you
intend the setting to apply to: It always applies to both.

As for the other sound data parameters (sample size, byte order, channel count, and sample
format), the ADC and the DAC maintain independent settings. For example, you can set
the DAC to expect two-byte linear samples while the ADC produces one-byte mu-law
samples. The functions that set these sound format attributes areSetDACSampleInfo() and
SetADCSampleInfo(). Your BAudioSubscriber needn’t subscribe before setting the DAC
or ADC parameters.

Receiving and Broadcasting Sound Data

A BAudioSubscriber object receives buffers of sound data from one of the Audio Server’s
two buffer streams:

• The buffers that flow through the ADC stream are filled with sound data that’s been
brought into the computer, passed through the MUX, and converted by the ADC.
Data buffers that are received by your objects will already be filled with this data.
Although it’s not forbidden, you usually don’t modify the data in the ADC stream’s
buffers. BAudioSubscribers that enter the ADC stream do so, typically, to record or
examine the data that they find there.

• The buffers that flow through the DAC stream are ultimately dumped into the DAC.
The DAC stream’s buffers are zeroed at the start of their journey; if a
BAudioSubscriber wants to broadcast a sound, it enters the DAC stream and adds its
sound data into the buffers as they flow past.

The ADC stream isn’t automatically connected to the DAC stream. If you want to grab
data from the ADC and send it to the DAC, you have to subscribe to both streams through
two separate BAudioSubscriber objects, and then coordinate the hand off of data from the
ADC subscriber to the DAC subscriber.

Constructor and Destructor BAudioSubscriber

12 – The Media Kit

Constructor and Destructor

BAudioSubscriber()
BAudioSubscriber(const char *name)

Creates and returns a new BAudioSubscriber object. The object is given the name that
you pass asname; the name is provided as a convenience and needn’t be unique.

After creating a BAudioSubscriber, you typically do the following (in this order):

• Subscribe the object to one of the Audio Server’s streams (eitherB_ADC_STREAM or
B_DAC_STREAM) by callingSubscribe().

• Allow the object to begin receiving buffers by callingEnterStream().

See also: BSubscriber::Subscribe(), BSubscriber::EnterStream()

~BAudioSubscriber()
virtual ~BAudioSubscriber(void)

Destroys the BAudioSubscriber.

Member Functions

ADCInput(), SetADCInput
long ADCInput(void)
long SetADCInput(longdevice)

These functions get and set the device that feeds into the MUX (and so to the ADC, hence
the name). Validdevice constants are:

• B_MIC_IN
• B_CD_IN
• B_LINE_IN

You don’t need to be subscribed to the ADC stream in order to call these functions.

BoostMic(), IsMicBoosted()
long BoostMic(boolboost)
bool IsMicBoosted(void)

BoostMic() enables or disables the 20 dB boost on the microphone signal.IsMicBoosted()
returns the state of the boost.

BAudioSubscriber Member Functions

The Media Kit –13

GetADCSampleInfo(), GetDACSampleInfo(), SamplingRate()
long GetADCSampleInfo(long *bytesPerSample,

long *channelCount,
long *byteOrder,
long *sampleFormat)

long GetDACSampleInfo(long *bytesPerSample,
long *channelCount,
long *byteOrder,
long *sampleFormat)

long SamplingRate(void)

These functions return the values of the various sound data parameters.GetADC... returns
(by reference) the sound parameters that are used in the ADC stream. GetDAC... does the
same for the DAC stream. SamplingRate() returns the sampling rate directly; the
sampling rate is held in common by the two streams.

See the description ofSetADCSampleInfo() for a list of parameter values that you can
expect to see.

See also: SetADCSampleInfo()

GetDACSampleInfo() see GetADCSampleInfo()

SetADCSampleInfo(), SetDACSampleInfo(), SetSamplingRate()
long SetADCSampleInfo(longbytesPerSample,

longchannelCount,
longbyteOrder,
longsampleFormat)

long SetDACSampleInfo(longbytesPerSample,
longchannelCount,
longbyteOrder,
longsampleFormat)

long SetSamplingRate(longsamplingRate)

These functions set the values of the sound data attributes used by (respectively) the ADC
stream (SetADC...), DAC stream (SetDAC...), and both streams (SetSamplingRate()). The
arguments to theSetADC... andSetDAC... functions are:

• bytesPerSample is the size of a single sound sample measured in bytes. Acceptable
values are 1 and 2.

• channelCount is the number of samples in a “frame” of sound. Acceptable values
are 1(mono) and 2 (stereo).

Member Functions BAudioSubscriber

14 – The Media Kit

• byteOrder is the order of bytes in a multiple-byte sample. The ordering is either
B_BIG_ENDIAN or B_LITTLE_ENDIAN.

• sampleFormat is the data format of a single sample. Linear format
(B_LINEAR_SAMPLES) can be used for one- or two-byte samples; mu-law format
(B_MULAW_SAMPLES) can be used for 1-byte samples.

TheSetSamplingRate() function sets the sampling rate for both the ADC stream and the
DAC stream:

• The following sampling rates are supported by the sound hardware: 5510, 6620,
8000, 9600, 11025, 16000, 18900, 22050, 27420, 32000, 33075, 37800, 44100,
48000.

These functions don’t flinch at wildly inappropriate parameter settings. The values of the
arguments that you pass in are always rounded to the nearest acceptable value for the
particular parameter.

See also: GetADCSampleInfo()

SetDACSampleInfo() see SetADCSampleInfo()

SetVolume(), GetVolume(), EnableDevice(), IsDeviceEnabled()
long SetVolume(longdevice,

float leftVolume,
float rightVolume)

long GetVolume(longdevice,
float *leftVolume,
float *rightVolume,
bool isEnabled)

long EnableDevice(longdevice, boolenable)
bool IsDeviceEnabled(longdevice)

These functions set and return (by reference) the left and right volume levels, and the
enabled status of the device that’s identified by the first argument. Valid device constants
are:

• B_ADC_IN
• B_CD_THROUGH
• B_LINE_IN_THROUGH
• B_LOOPBACK
• B_DAC_OUT
• B_MASTER_OUT
• B_SPEAKER_OUT

BAudioSubscriber Member Functions

The Media Kit –15

Volume values are floating-point numbers that are clipped within the range [0.0, 1.0].
Across this range, the amplitude of a sound waveform is increased logarithmically; this
results, perceptually, in a linear increase in volume.

Note that the speaker is monophonic; when you set or retrieve the volume of the
B_SPEAKER_OUT device, only theleftVolume argument is used.

You needn’t be subscribed to call these functions.

Member Functions BAudioSubscriber

16 – The Media Kit

The Media Kit –17

BSoundFile

Derived from: public BFile

Declared in: <media/SoundFile.h>

Overview

BSoundFile objects give you access to files that contain sound data. The BSoundFile
functions let you examine the format of the data in the sound file, read the data, and
position a “frame pointer” in the file. Notably absent from the list of a BSoundFile’s
talents is the ability to play itself and to record into itself. Youcan play a BSoundFile’s
data, but this requires the assistance of a BAudioSubscriber (as explained later).
Currently, you can’t record into a BSoundFile.

To use a BSoundFile, you set its ref (using the methods that are described in the BFile
class), and then you open the file through a call toOpen(). Since you can’t record into a
BSoundFile, you almost always open such files inB_READ_ONLY mode. None of the
BSoundFile-defined functions work on an unopened file.

Sound File Formats

The BSoundFile class understands AIFF, WAVE, and “standard” UNIX sound files (.snd
and.au). When you tell a BSoundFile object to open its file, the object figures out the
format of the file—you can’t force it to assume a particular format. If it encounters a file
that’s in a format that it doesn’t understand (“unknown” format), it assumes that the file
contains 44.1 kHz, 16-bit stereo data, and that the file doesn’t have a header (it assumes
that the entire file is sound data). The admission of the unknown format means thatany
file can act as sound data. BSoundFile doesn’t know the meaning of “inappropriate data.”

The file formats are represented by the constantsB_AIFF_FILE, B_WAVE_FILE, B_UNIX_FILE,
andB_UNKNOWN_FILE. You can retrieve the file format from an open BSoundFile through
theFileFormat() function.

Note: 8-bit WAVE data is, by definition, unsigned. However, when you read such data
(through theReadFrames() function, which will be discussed later), it’s automatically
shifted so that itis signed. This automatic conversion allows an 8-bit WAVE file to be
mixed with other sound sources.

Overview BSoundFile

18 – The Media Kit

Sound Data Parameters

After opening your BSoundFile, you can ask for the parameters of its data by calling the
various parameter-retrieving functions (SamplingRate(), ChannelCount(), SampleSize(),
and so on). There’s also a set of parameter-setting functions (SetSamplingRate(),
SetChannelCount(), SetSampleSize(), ...), but note that these functions don’t actually
modify the data in the file (or in the BSoundFile object); they simply set the object’s
impression of the sort of data that it contains so other objects that act on your BSoundFile
will interpret the data correctly. This should only be necessary if the file format is
unknown.

For example, let’s say you have your own sound file format. Your format defines a header
that lists the usual information—the size of the samples, where the data starts, and so on.
BSoundFile won’t recognize your format, of course, but through a combination of the
Read() function (so you can read the header yourself) and the sample parameter-setting
functions defined by BSoundFile, you can tell the object what sort of data it contains.

If you’re creating your own BSoundFile-derived class to encapsulate your own sound file
format, you would put the header-reading code in your implementation of theOpen()
function. For example:

long MySoundFile::Open(long mode)
{

long result;

if ((result = BSoundFile::Open(mode)) < B_NO_ERROR)
return result;

/* ReadHeader() is assumed to be implemented
 * by MySoundFile--it isn’t a BSoundFile function.
 */
if (FileFormat() == B_UNKNOWN_FILE)

result = ReadHeader());
return result;

}

By invoking the BSoundFile version ofOpen(), you allow your object to represent the
standard file formats in addition to your own. (Keep in mind that BSoundFile sets the file
format in itsOpen() implementation.)

Playing a Sound File

There are two methods for playing a sound file:

• The easy way is to call theplay_sound() function. The function takes arecord_ref
argument (in addition to others), and plays the data that it finds in the referred to
file—you don’t need to create a BSoundFile object in order to callplay_sound().
(The complete documentation forplay_sound() and related functions can be found
in the final section of this chapter.)

BSoundFile Overview

The Media Kit –19

• A much more amusing approach is to create a BSoundFile object, open it, read the
data contained within, and add the data into the DAC stream. Obviously, this is a bit
more involved than the simpleplay_sound() (which a dead dog would have no
trouble using), but it gives you more control over the sound: Since you’re reading
the sound data yourself, the BSoundFile approach lets you manipulate the sound as
you’re throwing it into the stream.

 A demonstration of the second approach is given below. To understand the example, you
must be familiar with the subscription and stream-entering mechanisms described in the
BSubscriber class.

An Example

In this example, we show how to read data from a BSoundFile and add it to the DAC
stream for playback. In addition, we’ll allow dynamic amplitude control of the sound.
For the sake of brevity, we’ll restrict the example to 16-bit data.

First, we define an object called SoundPlayer that will be used to coordinate the Media Kit
objects. Notice that SoundPlayer needn’t derive from a Kit class:

class SoundPlayer : public BObject
{

public:
long SetSoundFile(record_ref ref);
void Play(void);
void SetAmpScale(double value);

private:
static bool _play_back(void *arg, char *sound,

long size);
bool Playback(short *sound, long sample_count);

BAudioSubscriber *a_sub;
BSoundFile s_file;
char transfer_buf[B_PAGE_SIZE];
double amp_scale;

};

There are three public functions:SetSoundFile() let’s you set the soundfile that you want
to play,Play() plays it, andSetAmpScale() will control the amplitude. In this
implementation, the file is always allowed to play to completion—aborting the playback is
left as an exercise for the reader.

The private_play_back() function will be the BAudioSubscriber’s literal stream function.
Playback() will be called from within_play_back(); it will do the actual stream work.
The privatetransfer_buf will be used to transfer data between the file and the audio stream
(a page at a time), andamp_scale will hold the amplitude scaling value.

Overview BSoundFile

20 – The Media Kit

Opening the File and Subscribing

In the implementation ofSetSoundFile(), we set the BSoundFile’s ref and open the file...

long SoundPlayer::SetSoundFile(record_ref ref)
{

/* Set the BSoundFile's ref and open the object. */
s_file.SetRef(ref);
s_file.Open(B_READ_ONLY);
if (s_file.Error() < B_NO_ERROR)

return B_ERROR;

/* Check for 16-bit data (given in bytes). */
if (s_file.SampleSize() != 2)

return B_ERROR;

...and then we create the BAudioSubscriber and subscribe it to the DAC stream and set the
stream’s sample parameters to match the data that’s in the file:

a_sub = new BAudioSubscriber("SoundFile Player");
if(!a_sub->Subscribe(B_DAC_STREAM, B_SHARED_SUBSCRIBER_ID,

FALSE) < B_NO_ERROR)
return B_ERROR;

a_sub->SetSamplingRate(s_file.SamplingRate());
a_sub->SetDACSampleInfo(s_file.SampleSize(),

s_file.CountChannels(),
s_file.ByteOrder(),
s_file.SampleFormat());

Next, we set the size of the stream’s buffers to match that of our transfer buffer. The
arguments toSetStreamBuffers() are buffer size, buffer count. The buffer count we use
here (8, the same as the Audio Server default) is unimportant in this example:

a_sub->SetStreamBuffers(B_PAGE_SIZE, 8);

Finally, we initialize the amp scaler and return:

amp_scale = 1.0;
return B_NO_ERROR;

}

By setting the DAC stream’s sample info and buffer size as shown in here, we make the
stream function’s job quite a bit easier—it won’t have to convert the samples as it reads
them from the file, or keep track of how many samples it has read. However, you should
be aware that some other BAudioSubscriber could come along and reset the DAC stream
at any time, thus screwing up the playback. For now, we’ll live with the danger.

Entering the Stream

ThePlay() function enters the BAudioSubscriber into the DAC stream. This causes
buffers to be sent to the stream function, which we’ll implement in the next section.

BSoundFile Overview

The Media Kit –21

void SoundPlayer::Play(void)
{

a_sub->EnterStream(NULL, /* no neighbor */
TRUE, /* head of the stream */
this, /* arg for the stream function */
_play_back, /* the stream function */
NULL, /* no completion function */
TRUE); /* run in the background */

}

While we’re at it, we’ll implement theSetAmpScale() function:

void SoundPlayer::SetAmpScale(double scale)
{

amp_scale = min(1.0, max(0.0, scale));
}

Reading and Playing the File

Now comes the fun part. First we implement the literal stream function,_play_back():

bool SoundPlayer::_play_back(void *arg, char *sound, long size)
{

return (((SoundPlayer *)arg)->Playback((short *)sound,
size/2));

}

As _play_back() receives buffers from the DAC stream, it forwards them (cast as 16-bit
data) to the guts of the operation,Playback(). At each invocation,Playback() reads the
correct number of frames from the sound file, scales their amplitudes, and adds the
samples into the DAC stream buffer. First, we set up some variables:

bool SoundPlayer::Playback(short *sound, long sample_count)
{

long frames_read, counter;
long channel_count = s_file.CountChannels();
long frame_count = sample_count / channel_count;
short *tb_ptr = (short *)transfer_buf;

Now we readframe_count sample frames from the file and place them in the transfer
buffer. (We should check to make sure that the transfer buffer can accommodate the
number of frames read—but, for this example, we’ll assume that the stream’s buffer size
hasn’t changed since we set it to be the same size as the transfer buffer.) IfReadFrames()
returns less than the number of frames that we asked for, we’re at the end of the file.
ReadFrames() returns the number of frames that it actually read, or an error code (as
usual, a negative number) if something went wrong:

frames_read = s_file.ReadFrames(transfer_buf, frame_count);

if (frames_read <= 0)
return FALSE;

Constructor and Destructor BSoundFile

22 – The Media Kit

Finally, we get to write into the sound buffer. We loop over the samples in the transfer
buffer, scale each by theamp_scale value, and then write the scaled value into the sound
buffer:

for (counter = 0; counter < frames_read; counter++) {
*sound++ += *tb_ptr++ * amp_scale; /* left or mono */
if (channel_count == 2)

*sound++ += *tb_ptr++ * amp_scale; /* right */
}

Once again we examine theframes_read count. If it’s less than what we expected to have
read, we’ve reached the end of the file, and so returnFALSE. Otherwise we returnTRUE:

if (frames_read < frame_count)
return FALSE;

else
return TRUE;

}

Obviously, this example is neither robust nor efficient. In particular, the file-reading
mechanism should probably read more than one page at a time—if you were to play more
than a couple files simultaneously with this code, the constant file seeking could cause
your hard disk to burn a hole right through to Australia. Or to California, if you live in
Perth. The point of this exercise was to demonstrate the basic procedures of playing a
sound file.

Constructor and Destructor

BSoundFile()
BSoundFile(void)
BSoundFile(record_refref)

Creates and returns a new BSoundFile object. The first version of the constructor must be
followed by a call toSetRef().

~BSoundFile()
virtual ~BSoundFile(void)

Closes the BSoundFile’s sound file and destroys the object. The data in the sound file isn’t
affected.

BSoundFile Member Functions

The Media Kit –23

Member Functions

CountFrames()
long CountFrames(void)

Returns the number of frames of sound that are in the object’s file. If the object’s file isn’t
open, this returnsB_ERROR.

FileFormat()
long FileFormat(void)

Returns a constant that identifies the type of sound file that this object is associated with.
Currently, three types of sound files are recognized:B_AIFF_FILE, B_WAVE_FILE,
B_UNIX_FILE andB_UNKNOWN_FILE. AIFF is the Apple-defined sound format, WAVE is a
popular PC format, theB_UNIX_FILE constant represents the sound file format that’s used
on many UNIX-based computers.B_UNKNOWN_FILE is returned for all other formats.

B_UNKNOWN_FILE isn’t as useless as it sounds: Any file that is so identified is considered
to contain “raw” sound data. You can accept the default values of the data format
parameters (seeSamplingRate() for a list of these values), or you can shape the data into a
recognizable format by setting the data format parameters directly, through calls to
SetSamplingRate(), SetChannelCount(), and so on. In this case, you’ll need to position
the frame pointer to the first frame—in other words, you have to read past the file’s header,
if any—yourself. Thus primed, subsequent calls toReadFrames() will read the proper
sequences of samples.

If the BSoundFile isn’t open, this returnsB_ERROR.

FrameIndex() see SeekToFrame()

FramesRemaining()
long FramesRemaining(void)

Returns the number of unread frames in the file, orB_ERROR if the object isn’t open.

ReadFrames()
virtual longReadFrames(char *buffer, long frameCount)

Reads (as many as)frameCount frames of data intobuffer. The function returns the
number of frames that were actually read and increments the frame pointer by that
amount. When you hit the end of the file, the function returns 0.

Member Functions BSoundFile

24 – The Media Kit

Note thatbuffer shouldn’t be the sound buffer that’s passed to you in a stream function. If
you read directly into a stream function’s sound buffer, you’ll be clobbering the data that’s
already there. If you’re callingReadFrames() from within a stream function, you must
first read into a “transfer buffer”, and then add the contents of this buffer into the sound
buffer.

If the BSoundFile object isn’t open, this returnsB_ERROR.

SamplingRate(), CountChannels(), SampleSize(), FrameSize(),
ByteOrder(), SampleFormat()

long SamplingRate(void)
long CountChannels(void)
long SampleSize(void)
long FrameSize(void)
long ByteOrder(void)
long SampleFormat(void)

These functions return information about the format of the data that’s found in the object’s
sound file:

• SamplingRate() returns the sampling rate.

• CountChannels() returns the number of channels of sound.

• SampleSize() returns the size, in bytes, of a single sample.

• FrameSize() is a convenience function that give the number of bytes in a single
frame of sound (it’s the same asCountChannels() * SampleSize()).

• ByteOrder() returns a constant that represents the order of samples within a frame.
It’s eitherB_BIG_ENDIAN or B_LITTLE_ENDIAN.

• SampleFormat() returns a constant that represents the data format of a single
sample. It’s one of:B_LINEAR_SAMPLES, B_MULAW_SAMPLES, B_FLOAT_SAMPLES,
or B_UNDEFINED_SAMPLES.

These functions returns default values if the object isn’t associated with a file. The
defaults are:

• 44100 frames per second
• 2 channels
• 2 bytes per sample (16-bit samples)
• 4 bytes per frame
• Bytes are ordered MSB first (B_BIG_ENDIAN)
• The sample format isB_LINEAR_SAMPLES

If the BSoundFile object isn’t open, these functions returnB_ERROR.

BSoundFile Member Functions

The Media Kit –25

SeekToFrame(), FrameIndex()
virtual longSeekToFrame(ulong index)
long FrameIndex(void)

Theses function set and return the location of the “frame pointer.” The frame pointer
points to the next frame that will be read from the file. The first frame in a file is frame 0.

If you try to set the frame pointer to a location that’s outside the bounds of the data, the
pointer is set to the frame at the nearest extreme.

If the BSoundFile object isn’t open, this returnsB_ERROR.

SetSamplingRate(),SetChannelCount(), SetSampleSize()
SetByteOrder(), SetSampleFormat()

virtual longSetSamplingRate(longsamplingRate)
virtual longSetChannelCount(longchannelCount)
virtual longSetSampleSize(longbytesPerSample)
virtual long SetByteOrder(longbyteOrder)
virtual longSetSampleFormat(longsampleFormat)

If the file format of your BSoundFile isB_UNKNOWN_FILE, you can use these functions to
tell the object how to interpret the format of its data. These functions don’t change the
actual data—neither as it’s represented within the object, nor as it resides in the file—they
simply prime the object for subsequent reads of the data.

The candidate values for the functions are:

• samplingRate can be any number, but will be rounded to the nearest hardware-
supported sampling rate when the data is played. The sampling rates that the
hardware supports are: 5510, 6620, 8000, 9600, 11025, 16000, 18900, 22050,
27420, 32000, 33075, 37800, 44100, 48000.

• channelCount is usually 1 (mono) or 2 (stereo). You can set the data to a higher
count but the hardware can play no more than 2 channels at a time.

• sampleSize is usually 2 (16 bit samples). But it can also be 1 (the usual setting for
mu-law encoding) or 4 (floating-point data).

• byteOrder is eitherB_BIG_ENDIAN or B_LITTLE_ENDIAN

• sampleFormat is one ofB_LINEAR_SAMPLES, B_MULAW_SAMPLES,
B_FLOAT_SAMPLES, or B_UNDEFINED_SAMPLES.

Each function returns the value that was actually implanted. If the BSoundFile object isn’t
open, they returnB_ERROR.

Member Functions BSoundFile

26 – The Media Kit

The Media Kit –27

BSubscriber

Derived from: public BObject

Declared in: <media/Subscriber.h>

Overview

BSubscriber objects receive and process buffers of media-specific data. These buffers are
allocated and sent (to the BSubscriber) by a media server; for example, buffers of audio
data are sent by theAudio Server. Each server can control more than onebuffer stream
(the Audio Server has a sound-in stream and a sound-out stream). A BSubscriber can
receive buffers from only one stream.

More than one BSubscriber can “subscribe” to the same stream. The collection of same-
stream BSubscribers stand shoulder-to-shoulder and pass buffers down the stream, in the
style of a bucket brigade. When a BSubscriber receives a buffer it does something to it—
typically, it examines, adds to, or filters the data it finds there—and then passes it to the
next BSubscriber (or, more accurately, lets the server pass it to the next BSubscriber).

The media servers take care of managing the data buffers in their streams—they allocate
new buffers, pass them between BSubscribers, clear existing buffers for re-use, and so on.
A BSubscriber’s primary tasks are these (and in this order):

• Identifying the media server that it wants to get buffers from.

• Applying for aceptance into one of the server’s streams (this is called
“subscribing”).

• Entering the stream. At the moment a BSubscriber enters a stream, the object
begins receiving data buffers from the server.

• Processing the data that it finds in the buffers that it receives.

The BSubscribers that subscribe to the same stream needn’t belong to the same
application. This means that your BSubscriber may be examining, adding to, or filtering
data that was generated in another application.

Most buffer streams need to “flow” quickly and uninterruptedly (this is especially true of
the Audio Server’s streams). The processing that a single BSubscriber performs when it
receives a buffer from the server should be as brief and efficient as possible.

Overview BSubscriber

28 – The Media Kit

Identifying a Server

BSubscriber is an abstract class—you never construct instances of BSubscriber directly.
Instead, you construct instances of one of its derived classes. Each BSubscriber-derived
class provided by the Media Kit corresponds to a particular media server. Identifying a
server, therefore, is implied by the act of choosing a BSubscriber-derived class with which
you instantiate an object.

Currently, the only BSubscriber-derived class that’s supplied by the Media Kit is
BAudioSubscriber. Instances of this class receive buffers from, obviously enough, the
Audio Server.

Subscribing

The first thing you do with your BSubscriber object, once you’ve constructed it, is to ask
its server’s permission to be sent buffers of data. This is performed through the
Subscribe() function. Subscription doesn’t cause buffers to actually be sent, but it does
get the BSubscriber into the ballpark. The act by which a BSubscriber receives buffers
(theEnterStream() function) depends on a successful subscription.

As part of a BSubscriber’s subscription, it must tell the server which stream it wants to
enter, which other BSubscribers it’s willing to share the buffer stream with, and whether
it’s willing to wait for “undesirable” brethren to get out of the stream before it gets in. The
object’s opinions on these topics are registered through arguments to theSubscribe()
function:

long Subscribe(longstream, subscriber_idclique, boolwillWait)

The arguments are discussed in the following sections.

The Stream

A server can shepherd more than one stream. For example, the Audio Server controls
access to two streams: The sound-out stream terminates at the DAC, the sound-in stream
begins at the ADC. You identify the stream you want by using one of the stream constants
defined by the server. The Audio Server defines the constantsB_DAC_STREAM for sound-
out andB_ADC_STREAM for sound-in.

A BSubscriber may only subscribe to one stream at a time.

The Clique

Note: The clique concept is being reconsidered. You can still set a clique value, but the
mechanism may be removed in a subsequent release, or moved into a different level of the
Kit’s software. For now, it’s recommended that youalways set the clique to
B_SHARED_SUBSCRIBER_ID.

BSubscriber Overview

The Media Kit –29

A BSubscriber’s clique (passed as theclique argument toSubscribe()) identifies the cabal
of BSubscribers that the calling object is willing to share the server’s buffer stream with.
The value ofclique acts as a “key” to the stream: To gain access to the stream, you have to
have the proper key.

Here’s how it works: The first BSubscriber that callsSubscribe() passes some value as the
clique argument. This value becomes the key to the buffer stream; any other BSubscriber
that wants to subscribe to that stream must pass the same clique value (unless you want to
be an “invisible” subscriber, as described in the next section). The actual value that’s used
to represent the clique is irrelevant; matching is the only concern. A given clique is
enforced until all subscribed objects haveunsubscribed(through theUnsubscribe()
function) at which point the next object that subscribes will establish a new clique value.

Note: Theclique argument is type cast as asubscriber_id. Such values are tokens that
uniquely identify BSubscriber objects among all extant BSubscribers of the same class
(across all applications). That the clique is represented as asubscriber_id is primarily a
convenience: Just as the actual clique value has no significance, neither does its type
imply any special properties about the clique.

Choosing a Clique Value

With regard to cliques, there are four types of BSubscribers: Those that want utterly
exclusive access to the buffer stream, those that are willing to share access with certain
(but not all) other BSubscribers, those that will share with any other BSubscriber, and
those that want to crash the party. The clique value that you choose depends on which of
these characterizations describes your BSubscriber:

• Exclusive access. If a BSubscriber wants to have exclusive access to the stream—if
it doesn’t want any other BSubscriber to be able to enter the stream while it’s
subscribed—then the object passes some value as theclique argument, but keeps the
value a secret. Typically, the object’s ownsubscriber_id value is used as the
argument; theID() function supplies this value:

/* FirstSub is assumed to be a valid BSubscriber
 * object (currently, it must be an instance of
 * BAudioSubscriber).
 */
subscriber_id firstID = FirstSub->ID();
FirstSub->Subscribe(..., firstID, ...);

• Selective sharing.If the first subscriber wants to share the stream with subsequent
subscribers, the initial clique value must be used in those subsequent subscriptions:

/* First... */
subscriber_id firstID = FirstSub->ID();
FirstSub->Subscribe(..., firstID, ...);
...

/* Notice that the second subscriber passes the
 * first subscriber's ID value as the clique argument.

Overview BSubscriber

30 – The Media Kit

 */
SecondSub->Subscribe(..., firstID, ...);

To share the stream with BSubscribers in other applications, the first subscriber’s
application would have to broadcast the first subscriber’s ID value (through a
BMessage, for example).

• Indiscriminate sharing. To share the stream between all BSubscribers in all
applications is easy: You pass theB_SHARED_SUBSCRIBER_ID constant as the value
for clique:

FirstSub->Subscribe(..., B_SHARED_SUBSCRIBER_ID, ...);

Note, however, that theB_SHARED_SUBSCRIBER_ID clique doesn’tguarantee that
every BSubscriber will be allowed in the stream. If an unsharing BSubscriber has
already set the clique to some other value, a BSubscriber that passes
B_SHARED_SUBSCRIBER_ID will be turned down. Conversely, if the clique is set to
B_SHARED_SUBSCRIBER_ID and a BSubscriber comes along that tries to subscribe
with a less generous clique value, it’s subscription will be denied.

• Gate crashing. If you just don’t care who’s in the stream or whether they like you or
not, use the constantB_INVISIBLE_SUBSCRIBER_ID as theclique value. This will get
you in regardless of—and without changing—the current clique setting. If you’re
the first subscriber, the next subscriber will be allowed in regardless of his clique
specification (and the stream’s clique will be set to this subsequent value).

Waiting for Access

If a BSubscriber is denied access to a server because it didn’t pass the clique test, it can
either give up immediately, or wait for the current clique members to unsubscribe. This is
expressed inSubscribe()’s final argument, the booleanwillWait:

• If willWait is FALSE, Subscribe() returns immediately, regardless of its success in
gaining access to the server. (The measure of its success is given by the function’s
return value.)

• If it’s TRUE, the function doesn’t return until the BSubscriber has successfully
subscribed. There’s no time-out provision, so the wait is indefinite. (Yes, there is a
SetTimeout() function; no, it doesn’t apply to subscription.)

Entering the Stream

Having successfully subscribed to a server’s stream, the BSubscriber’s next task is to enter
the stream. By this, the object will begin receiving buffers of data. You do this through
theEnterStream() function:

BSubscriber Overview

The Media Kit –31

virtual longEnterStream(subscriber_idneighbor,
boolbefore,
void *arg,
enter_stream_hookenterHook,
exit_stream_hookexitHook,
boolbackground)

The function’s operations and arguments are described in the following sections.

Positioning your BSubscriber

The first twoEnterStream() arguments position the BSubscriber with respect to the other
BSubscriber objects that are already in the stream (if any):

EnterStream(subscriber_idneighbor, boolbefore, ...)

Theneighbor argument identifies the BSubscriber (by its ID number, as returned by the
ID() function) that you want the entering BSubscriber to stand next to;before places the
entering object before (TRUE) or after (FALSE) the neighbor. The neighbor needn’t belong
to the same application as the entering object, but it must already have entered the stream.

If you want to place the BSubscriber at one or the other end of the stream (or to add the
first BSubscriber to the stream), you passNULL as the neighbor. A before value ofTRUE
thus places the BSubscriber at the “front” of the stream (the object will be the first to
receive each buffer that flows through the stream), and a value ofFALSE places it at the
“back” (it’s the last to receive buffers before they’re realized or recycled).

A BSubscriber’s position in the stream can’t be locked. If, for example, you place your
BSubscriber to stand at the back of the stream, some other BSubscriber—from some other
application, possibly—can come along later and also claim the back. Your object will be
bumped forward (towards the front of the stream) in deference to the newcomer.

Receiving and Processing Buffers

After your BSubscriber has entered the buffer stream, it will begin receiving buffers of
data. The third, fourth, and last arguments toEnterStream() pertain to the means by which
your object receives these buffers:

EnterStream(..., void *arg, enter_stream_hookentryHook, ..., boolbackground)

The arguments, taken out of order, are:

• entryHook is a pointer to a boolean function (the complete protocol is given below)
that will be invoked once for each buffer that’s received.

• arg is a pointer-sized value that will be passed as an argument toentryrHook.

Overview BSubscriber

32 – The Media Kit

• The value ofbackground is used to determine whetherentryHook will be executed
in a separate thread (TRUE) or in the same thread (FALSE) as that in which
EnterStream() was called. If you run in the background,EnterStream() returns
immediately; if not, the function doesn’t return until the object has exited the
stream.

Of initial interest, here, is the “entry hook” that you must supply: This is global C
function or static C++ member function that’s invoked once for each buffer that the
BSubscriber receives. The protocol for the function (which istypedef’d as
enter_stream_hook) is:

bool stream_function(void *arg, char *buffer, longcount)

• arg is the same as thearg argument that you passed toEnterStream().
• buffer is a pointer to the buffer that has just arrived.
• count is the number of bytes of data in the buffer.

You have to implement the entry hook yourself; the Media Kit doesn’t supply any entry
hook candidates. From within your implementation of the function, you’re expected to
process the data inbuffer as fits your intentions. As mentioned earlier, your processing
should be designed with efficiency in mind. The only rule by which you should abide is
this:

Don’t Clear the Buffer

If you’re generating data, you shouldadd it into the data that you find in the buffer.
Thank-you.

When you’re done with your processing, you simply return from the entry hook. You
don’t have to do anything to send the buffer to the next BSubscriber in the stream; the
Media Kit takes care of that for you. The value that the stream function returns is
important: If it returnsTRUE, the BSubscriber continues receiving buffers; if it returns
FALSE, the object is removed from the stream.

Exiting the Stream

There are two ways to remove a BSubscriber from a stream. The first was mentioned
above: ReturnFALSE from the stream function. The second method is to callExitStream()
directly. TheExitStream() function is particularly useful if you’re running the stream
function in the background and you want to pull the trigger from another thread.

Whichever method is used, the BSubscriber’s “exit hook” is invoked upon exiting the
stream. This is an optional call-back function, similar to the stream function in its
application, that you supply as the fifth argument toEnterStream():

EnterStream(..., exit_stream_hookexitHook, ...)

The protocol for the completion function is:

BSubscriber Overview

The Media Kit –33

long completion_function(void *arg, longerror)

• Thearg value is, again, taken from theEnterStream() call.
• error is a code that explains why the BSubscriber is exiting the stream.

Normally,error is B_NO_ERROR. This means that the BSubscriber is exiting naturally:
Either because the stream function returnedFALSE or becauseExitStream() was called. If
error isB_TIMED_OUT, then the BSubscriber is exiting because of a delay in receiving the
next buffer. (You set the time-out limit through BSubscriber’sSetTimeout() function,
specifying the limit in microseconds; by default the object will wait forever.) Any other
error code will have been generated by a lower-level entity and can be lumped into the
general category of “something went wrong.”

The completion function is executed in the same thread as the stream function. If this isn’t
a background thread, the value returned by the completion function is then returned by
EnterStream(). If youare using a background thread, the return value is lost.

You can perform whatever clean-up is necessary in your implementation of the completion
function. The only thing that you mustn’t do in the completion function is delete the
BSubscriber itself.

Processing Data in a Member Function

Typically, the stream functions is implemented as a “dummy” static member function of
some class. In this case, EnterStream()’s arg argument is a pointer to an instance of that
class. In the implemention of the static function, the “real” stream function is invoked on
thearg pointer that the function receives. The class that implements the functions derive
from BSubscriber.

For example, in the (fictitious) SoundDuller class, a static function called_dull_sound()
and a non-static functionDullSound() are defined. Both of these functions are private. In
addition, it defines publicStart() and Stop() functions that will run the show, and some
private variables—including a BAudioSubscriber object—that it requires to perform:

class SoundDuller : public BObject
{

public:
void Start(void);
void Stop(void);

private:
static bool _dull_sound(void *arg,

char *buf,
long count);

bool DullSound(char *buf, long count);

BAudioSubscriber a_sub;
short previous;

}

Overview BSubscriber

34 – The Media Kit

The implementation of_dull_sound() casts the arg pointer and then invokesDullSound():

bool SoundDuller::_dull_sound(void *arg, char *buf, long count)
{

return (((SoundDuller *)arg)->DullSound(buf,count));
}

DullSound() performs the actual stream data processing. The function shown here
implements a simple low-pass filter (the “HelloWorld” of signal processing). The function
assumes that the stream data is one channel of 16-bit sound:

bool SoundDuller::DullSound(char *buf, long count)
{

long short_count = count/2;
short *s_buf = (short *)buf;

while (short_count-- > 0) {
*s_buf += previous;
previous = *s_buf++;

}
}

TheStart() function initializes the BAudioSubscriber and theprevious variable, and then
callsEnterStream():

void SoundDuller::Start(void)
{

if (a_sub.Subscribe(B_DAC_STREAM, B_SHARED_SUBSCRIBER_ID,
FALSE) < B_NO_ERROR)

return;
previous = 0;

/* Enter at the stream's tail; run in the background. */
a_sub.EnterStream(NULL, FALSE,

this, _make_dull, NULL, TRUE);
}

Stop() removes the subscriber from the stream by callingExitStream(). The function’s
argument says whether we want to wait until the object isreally out of the stream; it’s
always a good idea to re-synchronize if the subscriber is running in the background:

void SoundDuller::Stop(void)
{

a_sub.ExitStream(TRUE);
a_sub.Unsubscribe();

}

Sound details used in this example, such as the meaning of theB_DAC_STREAM constant,
are explained in the BAudioSubscriber class. For another example of a stream function
implementation, see the BSoundFile class.

BSubscriber Constructor and Destructor

The Media Kit –35

Constructor and Destructor

BSubscriber()
BSubscriber(const char *name= NULL)

Creates and returns a new BSubscriber object. The object can be given a name; the name
needn’t be unique.

After creating a BSubscriber, you typically do the following (in this order):

• Subscribe the object to a buffer stream by callingSubscribe().
• Allow the object to begin receiving buffers by callingEnterStream().

The construction of a BSubscriber never fails. This function doesn’t set the object’sError()
value.

See also: Subscribe(), EnterStream()

~BSubscriber()
virtual ~BSubscriber(void)

Destroys the BSubscriber. You should never delete a BSubscriber from within an
implementation of the object’s stream function or completion function.

It isn’t necessary to tell the object to exit the buffer stream or to unsubscribe it before
deleting. These actions will happen automatically.

Member Functions

Clique()
subscriber_idClique(void)

Returns the clique (asubscriber_id value) that this BSubscriber used in its most recent
attempt to subscribe. The attempt need not have been successful, nor is there any
guarantee that the object hasn’t since unsubscribed. If the object hasn’t attempted to
subscribe, this returnsB_NO_SUBSCRIBER_ID.

See also: Subscribe()

Member Functions BSubscriber

36 – The Media Kit

EnterStream()
virtual longEnterStream(subscriber_idneighbor,

boolbefore,
void *arg,
enter_stream_hookstreamFunction,
exit_stream_hookcompletionFunction,
boolbackground)

Causes the BSubscriber to begin receiving buffers of data from its stream. The object
must have successfully subscribed (through a call toSubscribe()) for this function to
succeed.

The arguments to this function (and the function in general) is the topic of most of the
overview to this class; look there for the whole story. Briefly, the arguments are:

• neighbor identifies the BSubscriber that this object will stand next to in the buffer
stream. If neighbor isNULL, this BSubscriber will be positioned at the front or the
back of the stream (depending on the value of the next argument).

• before, if TRUE, places this BSubscriber immediately before neighbor in the stream.
If it’s FALSE, this object is placed after neighbor. If neighbor wasNULL, this object is
placed at the front or back of the stream asbefore is TRUE or FALSE.

• arg is a pointer-sized value that’s forwarded as an argument to the stream and
completion functions (specified in the next two arguments toEnterStream()).

• streamFunction is a global function that’s called once for every buffer that’s sent to
the BSubscriber. The protocol for the function is:

bool stream_function(void *arg, char *buffer, longcount)

Thearg argument, here, is taken literally as thearg value passed toEnterStream().
A pointer to the buffer itself is passed asbuffer; count is the number of bytes of data
in the buffer. If the stream function returnsTRUE, the object continues to receive
buffers; if it returnsFALSE, it exits the stream.

• completionFunction is a global function that’s called after the BSubscriber has
finished processing its last buffer. Its protocol is:

long completion_function(void *arg, longerror)

arg, again, is taken from the argument toEnterStream(). error is a code that
describes why the object is leaving the stream:B_NO_ERROR means that the object
has received anExitStream() call, or that the stream function returnedFALSE; an error
of B_TIMED_OUT means the time limit between buffer receptions (as set through
SetTimeout()) has expired. If the function isn’t running in the background (as
described in the next argument), the value returned by the completion function
becomes the value that’s returned byEnterStream().

The completion function is optional. A value ofNULL is accepted.

BSubscriber Member Functions

The Media Kit –37

• background, if TRUE, causes the stream and completion functions to be executed in a
separate thread (the Kit spawns the thread for you). In this case,EnterStream()
returns immediately. If it’sFALSE, the functions are executed synchronously within
theEnterStream() call.

If the designated neighbor isn’t in the buffer stream,EnterStream() returns
B_SUBSCRIBER_NOT_FOUND. If the BSubscriber is already in the stream,
B_BAD_SUBSCRIBER is returned.

If background is TRUE, EnterStream() immediately returnsB_NO_ERROR; if it’s FALSE,
EnterStream() returns the value returned by the completion function. If a completion
function isn’t supplied,EnterStream() returns a value that indicates the success of the
communication with the server; unless something’s gone wrong, it should return
B_NO_ERROR. In all cases, theError() value is set to the value returned here.

See also: ExitStream()

Error()
long Error(void)

Returns an error code that reflects the success of the function that was most recently
invoked upon this object. The error codes that a particular function uses are listed in that
function’s description.

ExitStream()
virtual longExitStream(boolandWait= FALSE)

Causes the BSubscriber to leave the buffer stream after it completes the processing of its
current buffer. IfandWait is TRUE, the function doesn’t return until the object has
completed processing this final buffer and has actually left the stream. If a completion
function was supplied in theEnterStream() invocation, it will run to completion before
ExitStream() returns. IfandWait is FALSE (the default),ExitStream() returns immediately.

If the object isn’t in the stream, theB_SUBSCRIBER_NOT_FOUND is returned. Otherwise the
function returnsB_NO_ERROR.

Note: In release 1.1d7,ExitStream() doesn’t return a reliable value—but it does set the
error code properly.

See also: EnterStream()

Member Functions BSubscriber

38 – The Media Kit

ID()
subscriber_idID(void)

Returns thesubscriber_id value that uniquely identifies this BSubscriber. A subscriber ID
is issued when the object subscribes to a stream; it’s withdrawn when the object
unsubscribes. ID values are used, primarily, to position a BSubscriber with respect to
some other BSubscriber within a buffer stream.

If the BSubscriber isn’t currently subscribed to a stream,B_NO_SUBSCRIBER_ID is
returned.

IsInStream()
bool IsInStream(void)

ReturnsTRUE if the object is currently in a stream; otherwise it returnsFALSE.

Name()
const char *Name(void)

Returns a pointer to the name of the BSubscriber. The name is set through an argument to
the BSubscriber constructor.

SetTimeout(), Timeout()
void SetTimeout(doublemicroseconds)
doubleTimeout(void)

These functions set and return the amount of time, measured in microseconds, that a
BSubscriber that has entered the buffer stream is willing to wait from the time that it
finishes processing one buffer till the time that it gets the next. If the time limit expires
before the next buffer arrives, the BSubscriber exits the stream and the completion
function is called with itserror argument set toB_TIMED_OUT.

A time limit of 0 (the default) means no time limit—the BSubscriber will wait forever for
its next buffer.

See also: EnterStream()

BSubscriber Member Functions

The Media Kit –39

StreamParameters()
long StreamParameters(long *bufferSize,

long *bufferCount,
bool *isRunning,
long *subscriberCount,
subscriber_id *clique)

Returns information about the stream to which the BSubscriber is currently subscribed:

• bufferSize is the size, in bytes, of the buffers that the object will receive.

• bufferCount is the number of buffers that are used in the stream.

• isRunning is TRUE if the stream is currently running, andFALSE if it isn’t.

• subscriberCount is the number of BSubscriber objects that are currently subscribed
to the stream (whether or not they’ve actually entered).

• clique is the currently enforced clique value for the stream.

You can set the buffer size and buffer count parameters (and so fine-tune the latency of the
stream) through theSetStreamBuffers() function. isRunning can be toggled through calls
to StartStreaming() and StopStreaming(). The other two parameters (subscriberCount and
clique) vary as subscribers come and go.

You must have successfully subscribed to the stream to call this function. If you haven’t,
B_BAD_SUBSCRIBER is returned. Otherwise, the function returnsB_NO_ERROR.

SetStreamBuffers()
long SetStreamBuffers(longbufferSize, longbufferCount)

Sets the size (in bytes) and number of buffers that are used to transport data through the
stream. Although it’s up to the server to provide reasonable default values, you can fine-
tune the performance of the stream by fiddling with this function:

• By decreasing the size and/or number of buffers, you can decrease the maximum
latency of the stream (the time it takes for a buffer to get from one end of the stream
to the other). However, if you go too far in this direction, you run the risk of falling
out of real time.

• By increasing the buffer size and count, you help ensure the real-time integrity of
the stream, but you increase its maximum latency.

You must have successfully subscribed to the stream to call this function. If you haven’t,
B_RESOURCE_UNAVAILABLE is returned. Otherwise, the function returnsB_NO_ERROR.

The Audio Server initializes its streams to use eight buffers (per stream), where each
buffer is a single page (4096 bytes). Currently, there’s no way to automatically restore
these default values after you’ve mangled one of the audio streams.

Member Functions BSubscriber

40 – The Media Kit

StartStreaming(), StopStreaming()
long StartStreaming(void)
long StopStreaming(void)

Starts and stops the passing of buffers through the stream to which the BSubscriber is
subscribed. By default, the stream begins running when the first BSubscriber enters it, and
it stops when the final remaining BSubscriber exits. You should only need to call
StartStreaming() or StopStreaming() if you want to interrupt this automation.

You must have successfully subscribed to the stream to call this function. If you haven’t,
B_RESOURCE_UNAVAILABLE is returned. Otherwise, the function returnsB_NO_ERROR.

Subscribe()
virtual longSubscribe(longstream, subscriber_idclique, boolwillWait)

Asks for admission into the server’s list of BSubscribers to which it (the server) will send
buffers of data. Subscribing doesn’t cause the BSubscriber to begin receiving buffers, it
simply gives the object theright to do so. (To receive buffers, you must invoke
EnterStream() on a BSubscriber that has successfully subscribed.)

The arguments are described fully in the overview to this class. Briefly, they are:

• stream is a constant that identifies the specific stream within the server that you wish
to subscribe to. The Audio Server provides two stream constants:B_DAC_STREAM
(sound-out), andB_ADC_STREAM (sound-in).

Theclique argument is used as a “key” to the server. If there are no other currently-
subscribed objects, any clique value is accepted and the BSubscriber is admitted.
Subsequent subscriptions (by other BSubscribers) are then denied if they don’t
match this clique value. Conversely, if some other object has successfully
subscribed (and hasn’t since unsubscribed) this object must pass the clique value by
which the currently-subscribed object gained admittance. The special
B_INVISIBLE_SUBSCRIBER_ID value, when used as the clique, will let you invade any
stream, any time.

Note: As mentioned in the overview to this class, its recommended that you set the
clique argument toB_SHARED_SUBSCRIBER_ID. The clique concept will either be
removed or transferred to some other class in a subsequent release.

• ThewillWait argument tells the server whether this BSubscriber will wait for the
coast to clear if the immediate attempt to subscribe is denied.

A successful subscription returnsB_NO_ERROR. If the subscription is denied (because
stream doesn’t identify a valid stream, or theclique value isn’t acceptable) and the
BSubscriber isn’t waiting,Subscribe() returnsRESOURCE_NOT_AVAILABLE. TheError()
value is set to the value returned directly here.

BSubscriber Member Functions

The Media Kit –41

Note: The timeout value that you can set through theSetTimeout() function doesn’t apply
to subscription (it only applies to the inter-buffer lacuna). A BSubscriber that’s willing to
wait for admission might be waiting a long time.

See also: Unsubscribe()

Timeout() see SetTimeout()

Unsubscribe()
virtual longUnsubscribe(void)

Revokes the BSubscriber’s access to its media server and sets its subscriber ID to
B_NO_SUBSCRIBER_ID. If the object is currently in a stream, it automatically exits the
stream and the object’s completion function is called.

When you delete a BSubscriber, it’s automatically unsubscribed.

If the object isn’t currently subscribed, the function returnsB_BAD_SUBSCRIBER.
Otherwise, it returnsB_NO_ERROR.

See also: Subscribe()

Member Functions BSubscriber

42 – The Media Kit

The Media Kit –43

Global Functions, Constants, and
Defined Types

This section lists parts of the Media Kit that aren’t contained in classes.

Global Functions

beep()
<media/Beep.h>

sound_handlebeep(void)

beep() plays the system beep. The sound is played in a background thread and beep()
returns immediately. If you want to re-synchronize with the sound playback, pass the
sound_handle token (returned by this function) as the argument towait_for_sound().
This will cause your thread to wait until the sound has finished playing.

beep() will mix other sounds, but it never waits if the immediate attempt to play is
thwarted.

play_sound()
<media/Beep.h>

sound_handleplay_sound(record_refsoundRef,
boolwillMix ,
boolwillWait,
boolbackground)

Plays the sound file identified bysoundRef. ThewillMix andwillWait arguments are
used to determine how the function behaves with regard to other sounds:

• If you want your sound to play all by itself, setwillMix to FALSE. If you don’t care
if it’s mixed with other sounds, set it toTRUE.

• If you want your sound to play immediately (whether or not you’re willing to
mix), setwillWait to FALSE. If you’re willing to wait for the sound playback
resources to become available, setwillWait to TRUE.

Note that settingwillMix to TRUE doesn’t ensure that your sound will play immediately.
If the sound playback resources are claimed for exclusive access by some other process,
you’ll be blocked, even if you’re willing to mix.

Constants Global Functions, Constants, and Defined Types

44 – The Media Kit

The background argument, ifTRUE, tells the function to spawn a thread in which to play
the sound. The function, in this case, returns immediately. If background isFALSE, the
sound is played synchronously and play_sound() won’t return until the sound has
finished.

Thesound_handle value that’s returned is a token that represents the sound playback.
This token is only valid if you’re playing in the background; you would use it in a
subsequent call tostop_sound() or wait_for_sound(). If the ref doesn’t represent a file,
or if the sound couldn’t be played, for whatever reason, play_sound() returns a negative
integer.

stop_sound()
<media/Beep.h>

long stop_sound(sound_handlehandle)

Stops the playback of the sound identified byhandle, a value that was returned by a
previous call tobeep() or play_sound(). The return value can be ignored.

wait_for_sound()
<media/Beep.h>

long wait_for_sound(sound_handlehandle)

Causes the calling thread to block until the sound identified byhandle has finished
playing. Thehandle value should have been returned by a previous call tobeep() or
play_sound(). Currently,wait_for_sound() always returnsB_NO_ERROR.

Constants

Byte Order Constants
<media/MediaDefs.h>

Constant Meaning

B_BIG_ENDIAN MSB first
B_LITTLE_ENDIAN LSB first

These constants are used by BAudioSubscriber and BSoundFile objects to describe the
order of bytes within a sound sample.

Global Functions, Constants, and Defined Types Constants

The Media Kit –45

Sound File Formats
<media/SoundFile.h>

Constant Meaning

B_UNKNOWN_FILE The file contains “raw” data
B_AIFF_FILE AIFF format
B_WAVE_FILE WAVE format
B_UNIX_FILE Sun/NeXT/SGI etc. format

These constants represent the sound file formats that are recognized by the BSoundFile
class.

Media Thread Priority
<media/MediaDefs.h>

Constant Value

B_MEDIA_LEVEL Same asB_REAL_TIME_PRIORITY

All threads that are spawned by the Media Kit are given a priority ofB_MEDIA_LEVEL;
this is the same asB_REAL_TIME_PRIORITY, the highest priority defined by the Kernel Kit.

No-Change Constant
<media/MediaDefs.h>

Constant Meaning

B_NO_CHANGE Don’t change the value of this parameter

TheB_NO_CHANGE constant is used in multiple-parameter-setting functions (such as
BAudioSubscriber’sSetSampleParameters() to indicate that you don’t want a particular
parameter to change its current setting (while changing the values of other parameters).

Sample Format Constants
<media/MediaDefs.h>

Constant Meaning

B_LINEAR_SAMPLES Linear quantization
B_FLOAT_SAMPLES Floating-point samples
B_MULAW_SAMPLES Mu-law encoding
B_UNDEFINED_SAMPLES Anything else

These constants represent the sample formats that are recognized by the sound
hardware.

Defined Types Global Functions, Constants, and Defined Types

46 – The Media Kit

Subscriber IDs
<media/MediaDefs.h>

Constant Meaning

B_SHARED_SUBSCRIBER_ID Share the stream with other subscribers.
B_INVISIBLE_SUBSCRIBER_ID Subscribe to the stream regardless of the clique.
B_NO_SUBSCRIBER_ID The BSubscriber object isn’t subscribed.

The first two subscriber ID constants are most commonly used as “clique” values,
passed to theEnterStream() function. The final ID,B_NO_SUBSCRIBER_ID, is the default,
subscriber-isn’t-subscribed subscriber ID value.

The subscriber ID constants are type assubscriber_id values.

Defined Types

sound_handle
<media/Beep.h>

typedef sem_idsound_handle

Thesound_handle type is a token that represents sounds that are currently being played
through calls tobeep() or play_sound().

subscriber_id
<media/MediaDefs.h>

typedef sem_idsubscriber_id

Thesubscriber_id type is a token that uniquely identifies—system-wide—a BSubscriber
object for a particular server.

