
The Kernel Kit –1

8 The Kernel Kit

Introduction . 3

Threads and Teams . 5
Overview . 5

Spawning a Thread . 5
Telling a Thread to Run 6
The Entry Function . 6

The Entry Function’s Argument 7
Using a C++ Entry Function 7
Entry Function Return Values 9

Thread Names. . 9
Thread Priority .10
Synchronizing Threads 10
Controlling a Thread .11

Death and the Main Thread. 11
Passing Data to a Thread 12

Blocking when Sending and Receiving 13
Functions .14

Ports . .23
Overview .23

Creating a Port .23
The Message Queue: Reading and Writing Port Messages 24
Port Messages . .24

Function Descriptions . .25

Semaphores .31
Overview .31

How Semaphores Work31
The Thread Queue .32
The Thread Count . .32
Using a Semaphore as a Lock. 33
Deleting a Semaphore. 35
Using Semaphores to Impose an Execution Order 35
Broadcasting Semaphores. 38

Functions .38

2 – The Kernel Kit

Areas .45
Overview .45

Identifying an Area .45
Sharing Areas . .46
Locking an Area. .46
Using an Area . .47
Deleting an Area .47

Functions .48

Images .55
Overview .55

Loading an App Image 55
Creating a Shared Library. 57
 Creating and Using an Add-on Image 57

Loading an Add-on Image 58
Symbols. .58
Function Symbol Encoding. 59

Functions .60

Miscellaneous Functions, Constants, and Defined Types65
Miscellaneous Functions .65
Constants .66
Defined Types .72

The Kernel Kit –3

The Kernel Kit

The Kernel Kit is a collection of C functions that let you define and control the contexts in
which your application operates. There are five main topics in the Kit:

• Threads and Teams. A thread is a synchronous computer process. By creating
multiple threads, you can make your application perform different tasks at
(virtually) the same time. A team is the collection of threads that your application
creates.

• Ports. A port can be thought of as a mailbox for threads: A thread can write a
message to a port, and some other thread (or, less usefully, the same thread) can then
retrieve the message.

• Semaphores. A semaphore is a system-wide counting variable that can be used as a
lock that protects a piece of code. Before a thread is allowed to execute the code, it
must acquire the semaphore that guards it. Semaphores can also be used to
synchronize the execution of two or more threads.

• Areas. The area functions let you allocate large chunks of virtual memory. The two
primary features of areas are: They can be locked into the CPU’s on-chip memory,
and the data they hold can be shared between applications.

• Images. An image is compiled code that can be dynamically linked into a running
application. By loading and unloading images you can make run-time decisions
about the resources that your application has access to. Images are of particular
interest to driver designers.

The rest of this chapter describes these topics in detail. The final section, “Miscellaneous
Functions, Constants, and Defined Types”, describes the associated API that support the
Kit functions.

8

4 – The Kernel Kit

The Kernel Kit –5

Threads and Teams

Declared in: <kernel/OS.h>

Overview

A thread is a synchronous computer process that executes a series of program instructions.
Every application has at least one thread: When you launch an application, an initial
thread—themain thread—is automatically created (orspawned) and told to run. The
main thread executes the ubiquitousmain() function, winds through the functions that are
called frommain(), and is automatically deleted (orkilled) whenmain() exits.

The Be operating system ismulti-threaded: From the main thread you can spawn and run
additional threads; from each of these threads you can spawn and run more threads, and so
on. All the threads in all applications run concurrently and asynchronously with each
other. Furthermore, threads are independent of each other; most notably, a given thread
doesn’t own the other threads it has spawned. For example, if thread A spawns thread B,
and thread A dies (for whatever reason), thread B will continue to run. (But before you get
carried away with the idea of leap-frogging threads, you should take note of the caveat in
the section “Death and the Main Thread” on page 11,)

Although threads are independent, they do fall into groups calledteams. A team consists
of a main thread and all other threads that “descend” from it (that are spawned by the main
thread directly, or by any thread that was spawned by the main thread, and so on). Viewed
from a higher level, a team is the group of threads that are created by a single application.
You can’t “transfer” threads from one team to another. The team is set when the thread is
spawned; it remains the same throughout the thread’s life.

All the threads in a particular team share the same address space: Global variables that are
declared by one thread will be visible to all other threads in that team.

The following sections describe how to spawn, control, and examine threads and teams.

Spawning a Thread

You spawn a thread by calling thespawn_thread() function. The function assigns and
returns a system-widethread_id number that you use to identify the new thread in
subsequent function calls. Validthread_id numbers are positive integers; you can check
the success of a spawn thus:

Overview Threads and Teams

6 – The Kernel Kit

thread_id my_thread = spawn_thread(...);

if ((my_thread) < B_NO_ERROR)
/* failure */

else
/* success */

The arguments tospawn_thread(), which are examined throughout this description,
supply information such as what the thread is supposed to do, the urgency of its operation,
and so on.

Note: A conceptual neighbor of spawning a thread is the act of loading an executable (or
loading anapp image). This is performed by calling theload_executable() function.
Loading an executable causes a separate program, identified as a file, to be launched by the
system. For more information on the load_executable() function, see “Images”
beginning on page 55.

Telling a Thread to Run

Spawning a thread isn’t enough to make it run. To tell a thread to start running, you must
pass itsthread_id number to either theresume_thread() or wait_for_thread() function:

• resume_thread() starts the new thread running and immediately returns. The new
thread runs concurrently and asynchronously with the thread in which
resume_thread() was called.

• wait_for_thread() starts the thread running but doesn’t return until the thread has
finished. (You can also callwait_for_thread() on a thread that’s already running.)

Of these two functions,resume_thread() is the more common means for starting a thread
that was created through spawn_thread(). wait_for_thread(), on the other hand, is often
used to start a thread that was created throughload_executable().

The Entry Function

When you callspawn_thread(), you must identify the new thread’sentry function. This is
a global C function (or a static C++ member function) that the new thread will execute
when it’s told to run. When the entry function exits, the thread is automatically killed by
the operating system.

A thread’s entry function assumes the following protocol:

long thread_entry(void *data);

The protocol signifies that the function can return a value (to whom the value is returned is
a topic that will be explored later), and that it accepts a pointer to a buffer of arbitrarily-
typed data. (The function’s name isn’t prescribed by the protocol; in other words, an entry
function doesn’thave to be named “thread_entry”.)

Threads and Teams Overview

The Kernel Kit –7

You specify a thread’s entry function by passing a pointer to the function as the first
argument tospawn_thread(); the last argument to spawn_thread() is forwarded as the
entry function’sdata argument. Sincedata is delivered as avoid *, you have to cast the
value to the appropriate type within your implementation of the entry function. For
example, let’s say you define an entry function calledlister() that takes a pointer to a BList
object as an argument:

long lister(void *data)
{

/* Cast the argument. */
BList *listObj = (BList *)data;
...

}

To create and run a thread that would execute thelister() function, you call
spawn_thread() andresume_thread() thus (excluding error checks):

BList *listObj = new BList();
thread_id my_thread;

my_thread = spawn_thread(lister, ..., (void *)listObj);
resume_thread(my_thread);

The Entry Function’s Argument

The spawn_thread() functiondoesn’tcopy the data thatdata points to. It simply passes
the pointer through literally. Because of this, you should never pass a pointer that’s
allocated locally (on the stack).

The reason for this restriction is that there’s no guarantee that the entry function will
receiveany CPU attention before the stack frame from whichspawn_thread() was called
is destroyed. Thus, the entry function won’t necessarily have a chance to copy the
pointed-to data before the pointer vanishes. There are ways around this restriction—for
example, you could use a semaphore to ensure that the entry function has copied the data
before the calling frame exits. A better solution is to use thesend_data() function (which
does copy its data). See “Passing Data to a Thread” on page 12.

Using a C++ Entry Function

If you’re up in C++ territory, you’ll probably want to define a class member function that
you can use as a thread’s entry function. Unfortunately, you can’t pass a normal (non-
static) member function directly as the entry function argument tospawn_thread()—the
system won’t know which object it’s supposed to invoke the function on (it won’t have a
this pointer). To get from here to there, you have to declare two member functions:

• a static member function that is, literally, the entry function,

• and a non-static member function that the static function can invoke. This non-
static function will perform the intended work of the entry function.

Overview Threads and Teams

8 – The Kernel Kit

To “connect” the two functions, you pass an object of the appropriate class (through the
data argument) to the static function, and then allow the static function to invoke the non-
static function upon that object. An example is called for: Here we define a class that
contains a static function calledentry_func(), and a non-static function called
entryFunc(). By convention, these two are private. In addition, the class declares a public
Go() function, and a privatethread_id variable:

class MyClass : public BObject {
public:

long Go(void);

private:
static long entry_func(void *arg);
long entryFunc(void);
thread_id my_thread;

};

entry_func() is the literal entry function. It doesn’t really do anything—it simply casts its
argument as a MyClass object, and then invokesentryFunc() on the object:

long MyClass::entry_func(void *arg)
{

MyClass *obj = MyClass *arg;
return (obj->entryFunc());

}

entryFunc() performs the actual work:

long MyClass::entryFunc(void)
{

/* do something here */
...
return (whatever);

}

TheGo() function contains thespawn_thread() call that starts the whole thing going:

long MyClass::Go(void)
{

my_thread = spawn_thread(entry_func, ..., this);
return (resume_thread(my_thread));

}

If you aren’t familiar with static member functions, you should consult a qualified C++
textbook. Briefly, the only thing you need to know for the purposes of the technique
shown here, is that a static function’s implementation can’t call (non-static) member
functions nor can it refer to member data. Maintain the form demonstrated above and
you’ll be rewarded in heaven.

Threads and Teams Overview

The Kernel Kit –9

Entry Function Return Values

The entry function’s protocol declares that the function should return along value when it
exits. This value can be captured by sitting in await_for_thread() call until the entry
function exits. wait_for_thread() takes two arguments: Thethread_id of the thread that
you’re waiting for, and a pointer to along into which the value returned by that thread’s
entry function will be placed. For example:

thread_id other_thread;
long result;

other_thread = spawn_thread(...);
resume_thread(other_thread);

...
wait_for_thread(other_thread, &result);

If the target thread is already dead,wait_for_thread() returns immediately (with an error
code as described in the function’s full description), and the second argument will be set to
an invalid value. If you’re late for the train, you’ll miss the boat.

Warning: You must pass a valid pointer as the second argument towait_for_thread(); you
mustn’t passNULL even if you’re not interested in the return value.

Thread Names

A thread can be given a name which you assign through the second argument to
spawn_thread(). The name can be 32 characters long (as represented by the
B_OS_NAME_LENGTH constant) and needn’t be unique—more than one thread can have the
same name.

You can look for a thread based on its name by passing the name to thefind_thread()
function; the function returns thethread_id of the so-named thread. If two or more
threads bear the same name, thefind_thread() function returns the first of these threads
that it finds.

You can retrieve thethread_id of the calling thread by passingNULL to find_thread():

thread_id this_thread = find_thread(NULL);

To retrieve a thread’s name, you must look in the thread’sthread_info structure. This
structure is described in theget_thread_info() function description.

Dissatisfied with a thread’s name? Use therename_thread() function to change it. Fool
your friends.

Overview Threads and Teams

10 – The Kernel Kit

Thread Priority

In a multi-threaded environment, the CPUs must divide their attention between the
candidate threads, executing a few instructions from this thread, then a few from that
thread, and so on. But the division of attention isn’t always equal: You can assign a
higher or lowerpriority to a thread and so declare it to be more or less important than other
threads.

You assign a thread’s priority (an integer) as the third argument tospawn_thread(). There
are two categories of priorities:

• “Time-sharing” priorities (priority values from 1 to 99).
• “Real-time” priorities (100 and greater).

A time-sharing thread (a thread with a time-sharing priority value) is executed only if
there are no real-time threads in the ready queue. In the absence of real-time threads, a
time-sharing thread is elected to run once every “scheduler quantum” (currently, every
three milliseconds). The higher the time-sharing thread’s priority value, the greater the
chance that it will be the next thread to run.

A real-time thread is executed as soon as it’s ready. If more than one real-time thread is
ready at the same time, the thread with the highest priority is executed first. The thread
is allowed to run without being preempted (except by a real-time thread with a higher
priority) until it blocks, snoozes, is suspended, or otherwise gives up its plea for
attention.

The Kernel Kit defines seven priority constants. Although you can use other, “in-
between” value as the priority argument tospawn_thread(), it’s strongly suggested that
you stick with these:

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

Synchronizing Threads

There are times when you may want a particular thread to pause at a designated point until
some other (known) thread finishes some task. Here are three ways to effect this sort of
synchronization:

Threads and Teams Overview

The Kernel Kit –11

• The most general means for synchronizing threads is to use a semaphore. The
semaphore mechanism is described in great detail in the major section
“Semaphores” beginning on page 31.

• Synchronization is sometimes a side-effect of sending data between threads. This is
explained in “Passing Data to a Thread” on page 12, and in the major section
“Ports” beginning on page 23

• Finally, you can tell a thread to wait for some other thread to die by calling
wait_for_thread(), as described earlier.

Controlling a Thread

There are three ways to control a thread while it’s running:

• You can put a thread to sleep for some number of microseconds through the
snooze() function. After the thread has been asleep for the requested time, it
automatically resumes execution with its next instruction.snooze() only works on
the calling thread: The function doesn’t let you identify an arbitrary thread as the
subject of its operation. In other words, whichever thread callssnooze() is the
thread that’s put to sleep.

• You can suspend the execution of any thread through thesuspend_thread()
function. The function takes a singlethread_id argument that identifies the thread
you wish to suspend. The thread remains suspended until you “unsuspend” it
through a call toresume_thread() or wait_for_thread().

• You can kill the calling thread throughexit_thread(). The function takes a single
(long) argument that’s used as the thread’s exit status (to makewait_for_thread()
happy). More generally, you can kill any thread by passing itsthread_id to the
kill_thread() function. kill_thread() doesn’t let you set the exit status.

Feeling all tense and irritated? Try killing an entire team of threads: The kill_team()
function is more than a system call. It’s therapy.

Death and the Main Thread

As mentioned earlier, the control that’s imposed upon a particular thread isn’t visited upon
the “children” that have been spawned from that thread. (Recall the “thread A spawns
thread B then dies” business near the beginning of this overview.) However, the death of
an application’s main thread can affect the other threads:

When a main thread dies, it takes the team’s heap, its statically allocated objects,
and other team-wide resources—such as access to standard IO—with it. This
may seriously cripple any threads that linger beyond the death of the main thread.

It’s certainly possible to create an application in which the main thread sets up one or more
other threads, gets them running, and then dies. But such applications should be rare. In

Overview Threads and Teams

12 – The Kernel Kit

general, you should try to keep your main thread around until all other threads in the team
are dead.

Passing Data to a Thread

There are three ways to pass data to a thread:

• Through the argument to the entry function, as described in “The Entry Function’s
Argument” on page 7.

• By using a port or, at a higher level, by sending a BMessage. Ports are described in
the next major section (“Ports”); BMessages are part of the Application Kit.

• By sending data to the thread’s message cache through thesend_data() and
receive_data() functions, as described below.

Thesend_data() function sends data from one thread to another. With eachsend_data()
call, you can send two packets of information:

• a single four-byte value (this is called thecode),
• and an arbitrarily long buffer of arbitrarily-typed data.

The function’s four arguments identify, in order,

• the thread that you want to send the data to,
• the four-byte code,
• a pointer to the buffer of data (avoid *),
• and the size of the buffer of data, in bytes.

In the following example, the main thread spawns a thread, sends it some data, and then
tells the thread to run:

main(int argc, char *argv[])
{

thread_id other_thread;
long code = 63;
char *buf = "Hello";

other_thread = spawn_thread(entry_func, ...);
send_data(other_thread, code, (void *)buf, strlen(buf));
resume_thread(other_thread);
...

}

Thesend_data() call copies the code and the buffer (the second and third arguments) into
the target thread’s message cache and then (usually) returns immediately. In some cases,
the four-byte code is all you need to send; in such cases, the buffer pointer can beNULL and
the buffer size set to 0.

To retrieve the data that’s been sent to it, the target thread (having been told to run) calls
receive_data(). This function returns the four-byte code directly, and copies the data

Threads and Teams Overview

The Kernel Kit –13

from the message cache into its second argument. It also returns, by reference in its first
argument, the thread_id of the thread that sent the data:

long entry_func(void *data)
{

thread_id sender;
long code;
char buf[512];

code = receive_data(&sender, (void *)buf, sizeof(buf));
...

}

Keep in mind that the message data iscopied into the second argument; you must allocate
adequate storage for the data, and pass, as the final argument toreceive_data(), the size of
the buffer that you allocated. A slightly annoying aspect of this mechanism is that there
isn’t any way for the data-receiving thread to determine how much data is in the message
cache, so it can’t know, before it receives the data, what an “adequate” size for its buffer
is. If the buffer isn’t big enough to accommodate all the data, the left-over portion is
simply thrown away. (But at least you don’t get a segmentation fault.)

As shown in the example,send_data() is called before the target thread is running. This
feature of the system is essential in situations where you want the target thread to receive
some data as its first act (as demonstrated above). However,send_data() isn’t limited to
this use—you can also send data to a thread that’s already running.

Blocking when Sending and Receiving

A thread’s message cache isn’t a queue; it can only hold one message at a time. If you call
send_data() twice with the same target thread, the second call will block until the target
reads the first transmission through a call toreceive_data(). Analogously,
receive_data() will block if there isn’t (yet) any data to receive.

If you want to make sure that you won’t block when receiving data, you should call
has_data() before calling receive_data(). has_data() takes athread_id argument, and
returnsTRUE if that thread has a message waiting to be read:

if (has_data(find_thread(NULL)))
code = receive_data(...);

You can also use has_data() to query the target thread before sending it data. This, you
hope, will ensure that the send_data() call won’t block:

if (!has_data(target_thread))
send_data(target_thread, ...);

This usually works, but be aware that there’s a race condition between thehas_data() and
send_data() calls. If yet another thread sends a message to the same target in that time
interval, yoursend_data() (might) block.

Functions Threads and Teams

14 – The Kernel Kit

Functions

exit_thread(), kill_thread(), kill_team()
void exit_thread(long return_value)

long kill_thread(thread_idthread)

long kill_team(team_idteam)

These functions command one or more threads to halt execution:

• exit_thread() tells the calling thread to exit with a return value as given by the
argument. Declaring the return value is only useful if some other thread is sitting in
a wait_for_thread() call on this thread.

• kill_thread() kills the thread given by the argument. The value that the thread will
return towait_for_thread() is undefined and can’t be relied upon.

• kill_team() kills all the threads within the given team. Again, the threads’ return
values are random.

Exiting a thread is a fairly safe thing to do—since a thread can only exit itself, it’s assumed
that the thread knows what it’s doing. Killing some other thread or an entire team is a bit
more drastic since the death certificate(s) will be delivered at an indeterminate time.
Nonetheless, in every case (exiting or killing) the system reclaims the resources that the
thread (or team) had claimed. So executing a thread shouldn’t cause a memory leak.

Keep in mind that threads die automatically (and their resources are reclaimed) if allowed
to exit naturally from their entry functions. You should only need to kill a thread if
something has gone screwy.

The kill functions returnB_BAD_THREAD_ID or B_BAD_TEAM_ID if the argument is invalid.
Otherwise, they returnB_NO_ERROR.

find_thread()
thread_idfind_thread(const char *name)

Finds and returns the thread with the given name. Aname argument ofNULL returns the
calling thread. Ifname doesn’t identify a thread,B_NAME_NOT_FOUND is returned.

A thread’s name is assigned when the thread is spawned. The name can be changed
thereafter through therename_thread() function. Keep in mind that thread names needn’t
be unique: If two (or more) threads boast the same name, afind_thread() call on that
name returns the first so-named thread that it finds.

Threads and Teams Functions

The Kernel Kit –15

get_team_info(), get_nth_team_info()
long get_team_info(team_idteam, team_info *info)
long get_nth_team_info(longn, team_info *info)

These functions copy, into theinfo argument, theteam_info structure for a particular team:

• Theget_team_info() function retrieves information for the team identified byteam.

• Theget_nth_team_info() function retrieves team information for then’th team
(zero-based) of all teams currently running on your computer. By calling this
function with a monotonically increasingn value, you can retrieve information for
all teams. When, in this scheme, the function no longer returnsB_NO_ERROR, all
teams will have been visited.

The team_info structure is defined as:

typedef struct {
team_idteam;
long thread_count;
long image_count;
long area_count;
thread_iddebugger_nub_thread;
port_iddebugger_nub_port;
long argc;
charargs[64];

} team_info

The first field is obvious; the next three reasonably so: They give the number of threads
that have been spawned, images that have been loaded, and areas that have been created or
cloned within this team.

The debugger fields are used by the, uhm, the...debugger?

Theargc field is the number of command line arguments that were used to launch the
team;args is a copy of the first 64 characters from the command line invocation. If this
team is an application that was launched through the user interface (by double-clicking, or
by accepting a dropped icon), thenargc is 1 andargs is the name of the application’s
executable file.

Both functions returnB_NO_ERROR upon success. If the designated team isn’t found—
becauseteam in get_team_info() isn’t valid, orn in get_nth_team_info() is out-of-
bounds—the functions returnBAD_TEAM_ID.

Functions Threads and Teams

16 – The Kernel Kit

get_thread_info(), get_nth_thread_info()
long get_thread_info(thread_idthread, thread_info *info)
long get_nth_thread_info(team_idteam, longn, thread_info *info)

These functions copy, into theinfo argument, thethread_info structure for a particular
thread:

• Theget_thread_info() function gets this information for the thread identified by
thread.

• Theget_nth_thread_info() function retrieves thread information for then’th thread
(zero-based) within the team identified byteam. If team is 0 (zero), all teams are
considered. You use this function to retrieve the info structures of all the threads in
a team (or in all teams) by repeatedly calling the function with a monotonically
increasing value ofn—the actual value ofn has no other significance. When, in this
scheme, the function no longer returnsB_NO_ERROR, all candidate threads will have
been visited.

The thread_info structure is defined as:

typedef struct {
thread_idthread;
team_idteam;
char name[B_OS_NAME_LENGTH];
thread_statestate;
long priority;
sem_idsem;
doubleuser_time;
doublekernel_time;
void *stack_base;
void *stack_end;

} thread_info

The fields in the structure are:

• thread. Thethread_id number of the thread.
• team. The team_id of the thread’s team.
• name. The name assigned to the thread.
• state. What the thread is currently doing (see the thread state constants, below).
• priority. The level of attention the thread gets (see the priority constants, below).
• sem. If the thread is waiting to acquire a semaphore, this is that semaphore.
• user_time. The time, in microseconds, the thread has spent executing user code.
• kernel_time. The amount of time the kernel has run on the thread’s behalf.
• stack_base. A pointer to the first byte in the thread’s execution stack.
• stack_end. A pointer to the last byte in the thread’s execution stack.

The last two fields are only meaningful if you understand the execution stack format.
Keep in mind that the stack grows down, from higher to lower addresses. Thus,
stack_base will always be greater than stack_end.

Threads and Teams Functions

The Kernel Kit –17

The value of thestate field is one of followingthread_state constants:

Constant Meaning

B_THREAD_RUNNING The thread is currently receiving attention from a CPU.

B_THREAD_READY The thread is waiting for its turn to receive attention.

B_THREAD_SUSPENDED The thread has been suspended or is freshly-spawned and
is waiting to start.

B_THREAD_WAITING The thread is waiting to acquire a semaphore. (Note that
when a thread is sitting in await_for_thread() call, or is
waiting to read from or write to a port, it’s actually
waiting to acquire a semaphore.) When in this state, the
sem field of thethread_info structure is set to thesem_id
number of the semaphore the thread is attempting to
acquire.

B_THREAD_RECEIVING The thread is sitting in areceive_data() function call.

B_THREAD_ASLEEP The thread is sitting in asnooze() call.

The value of the priority field takes one of the followinglong constants (the difference
between “time-sharing” priorities and “real-time” priorities is explained in “Thread
Priority” on page 10):

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

Thread info is provided primarily as a debugging aid. None of the values that you find in
a thread_info structure are guaranteed to be valid—the thread’s state, for example, will
almost certainly have changed by the timeget_thread_info() returns.

Both functions returnB_NO_ERROR upon success. If the designated thread isn’t found—
becausethread in get_thread_info() isn’t valid, orn in get_nth_thread_info() is out of
range—the functions returnB_BAD_THREAD_ID. If its team argument is invalid,
get_nth_thread_info() return B_BAD_TEAM_ID.

See also: get_team_info()

Functions Threads and Teams

18 – The Kernel Kit

has_data()
bool has_data(thread_idthread)

ReturnsTRUE if the given thread has an unread message in its message cache, otherwise
returnsFALSE. Messages are sent to a thread’s message cache through thesend_data()
call. To retrieve a message, you callreceive_data().

See also: send_data(), receive_data()

kill_team() see exit_thread()

kill_thread() see exit_thread()

receive_data()
long receive_data(thread_id*sender,

void *buffer,
longbuffer_size)

Retrieves a message from the thread’s message cache. The message will have been placed
there through a previoussend_data() function call. If the cache is empty,receive_data()
blocks until one shows up—it never returns empty-handed.

The thread_id of the thread that calledsend_data() is returned by reference in thesender
argument. Note that there’s no guarantee that the sender will still be alive by the time you
get its ID. Also, the value ofsender going into the function is ignored—you can’t ask for
a message from a particular sender.

Thesend_data() function copies two pieces of data into a thread’s message cache: A
single four-byte code, and a arbitrarily long data buffer. The four-byte code is delivered,
here, asreceive_data()’s return value. The contents of the buffer part of the cache is
copied intoreceive_data()’s bufferargument (you must allocate and freebuffer yourself).
Thebuffer_size argument tells the function how many bytes of data to copy. If you don’t
need the data buffer—if the code value returned directly by the function is sufficient—you
setbuffer to NULL andbuffer_size to 0.

Unfortunately, there’s no way to tell how much data is in the cache before you call
receive_data(). If there’s more data thanbuffer can accommodate, the unaccommodated
portion is discarded—a secondreceive_data() call will not read the rest of the message.
Conversely, ifreceive_data() asks for more data than was sent, the function returns with
the excess portion ofbuffer unmodified—receive_data() doesn’t wait for another
send_data() call to provide more data with which to fill up the buffer.

Each receive_data() corresponds to exactly onesend_data(). Lacking a previous
invocation of its mate,receive_data() will block until send_data() is called. If you don’t

Threads and Teams Functions

The Kernel Kit –19

want to block, you should callhas_data() before callingreceive_data() (and proceed to
receive_data() only if has_data() returnsTRUE).

See also: send_data(), has_data()

rename_thread()
long rename_thread(thread_idthread, const char *name)

Changes the name of the given thread toname. Keep in mind that the maximum length of
a thread name isB_OS_NAME_LENGTH (32 characters).

If the thread argument isn’t a validthread_id number,B_BAD_THREAD_ID is returned.
Otherwise, the function returnsB_NO_ERROR.

resume_thread()
 long resume_thread(thread_idthread)

Tells a new or suspended thread to begin executing instructions. If the thread has just been
spawned, its execution begins with the entry-point function (keep in mind that a freshly
spawned thread doesn’t run until told to do so through this function). If the thread was
previously suspended (throughsuspend_thread()), it continues from where it was
suspended.

This function only works on threads that have a status ofB_THREAD_SUSPENDED (newly
spawned threads are born with this state). You can’t use this function to wake up a
sleeping thread (B_THREAD_ASLEEP), or to unblock a thread that’s waiting to acquire a
semaphore (B_THREAD_WAITING) or waiting in a receive_data() call
(B_THREAD_RECEIVING).

If the thread argument isn’t a validthread_id number,B_BAD_THREAD_ID is returned. If
the thread exists but isn’t suspended,B_BAD_THREAD_STATE is returned (the target thread is
unaffected in this case). Otherwise, the function returnsB_NO_ERROR.

See also: wait_for_thread()

send_data()
long send_data(thread_idthread,

longcode,
void *buffer,
longbuffer_size)

Copies data intothread’s message cache. The target thread can then retrieve the data from
the cache by callingreceive_data(). There are two parts to the data that you send:

• A single four-byte “code” given by thecode argument.

Functions Threads and Teams

20 – The Kernel Kit

• An arbitrarily long buffer of data that’s pointed to bybuffer. The length of the
buffer, in bytes, is given bybuffer_size.

If you only need to send the code, you should setbuffer to NULL andbuffer_size to 0.
After send_data() returns you can free thebuffer argument

Normally,send_data() returns immediately—it doesn’t wait for the target to call
receive_data(). However, send_data() will block if the target has an unread message
from a previoussend_data()—keep in mind that a thread’s message cache is only one
message deep. A thread that’s blocked insend_data() assumesB_THREAD_WAITING
status.

If the target thread couldn’t allocate enough memory for its copy ofbuffer, this function
fails and returnsB_NO_MEMORY. If thread doesn’t identify a valid thread,
BAD_THREAD_ID is returned. Otherwise, the function succeeds and returnsB_NO_ERROR.

See also: receive_data(), has_data()

set_thread_priority()
 longset_thread_priority(thread_idthread, longnew_priority)

Resets the given thread’s priority tonew_priority. The priority level constants that are
defined by the Kernel Kit are:

The value of the priority field takes one of the followinglong constants (the difference
between “time-sharing” priorities and “real-time” priorities is explained in “Thread
Priority” on page 10):

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

The difference between “time-sharing” priorities and “real-time” priorities is explained in
“Thread Priority” on page 10.

If thread is invalid,B_BAD_THREAD_ID is returned. Otherwise, the priority to which the
thread was set is returned.

Threads and Teams Functions

The Kernel Kit –21

snooze()
 longsnooze(doublemicroseconds)

Pauses the calling thread for the given number of microseconds. The thread’s state is set
to B_THREAD_ASLEEP while it’s snoozing and restored to its previous state when it awakes.

The function returnsB_ERROR if microseconds is less than 0.0, otherwise it returns
B_NO_ERROR. Note that it isn’t illegal to put a thread to sleep for 0.0 microseconds, but
neither is it effectual; a call ofsnooze(0.0) is, essentially, ignored.

spawn_thread()
thread_idspawn_thread(thread_entryfunc,

const char *name,
longpriority,
void *data)

Creates a new thread and returns itsthread_id identifier (a positive integer). The
arguments are:

• func is a pointer to the thread’s entry function. This is the function that the thread
will execute when it’s told to run.

• name is the name that you wish to give the thread. It can be, at most,
B_OS_NAME_LENGTH (32) characters long.

• priority is the CPU priority level of the thread. It takes one of the following
constant values (listed here from lowest to highest):

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

For a complete explanation of these constants, see “Thread Priority” on page 10.

• data is forwarded as the argument to the thread’s entry function.

A newly spawned thread is in a suspended state (B_THREAD_SUSPENDED). To tell the
thread to run, you pass itsthread_id to theresume_thread() function. The thread will
continue to run until the entry-point function exits, or until the thread is explicitly killed
(through a call toexit_thread(), kill_thread(), or kill_team()).

Functions Threads and Teams

22 – The Kernel Kit

If all thread_id numbers are currently in use,spawn_thread() returns
B_NO_MORE_THREADS; if the operating system lacks the memory needed to create the
thread (which should be rare),B_NO_MEMORY is returned.

suspend_thread()
long suspend_thread(thread_idthread)

Halts the execution of the given thread, but doesn’t kill the thread entirely. The thread
remains suspended until it is told to run through theresume_thread() function. Nothing
prevents you from suspending your own thread, i.e.:

suspend_thread(find_thread(NULL));

Of course, this is only smart if you have some other thread that will resume you later.

This function only works on threads that have a status ofB_THREAD_RUNNING or
B_THREAD_READY. In other words, you can’t suspend a thread that’s sleeping, waiting to
acquire a semaphore, waiting to receive data, or that’s already suspended.

If the thread argument isn’t a validthread_id number,B_BAD_THREAD_ID is returned. If
the thread exists, but is neither running nor ready to run,B_BAD_THREAD_STATE is returned.
Otherwise, the function returnsB_NO_ERROR.

wait_for_thread()
long wait_for_thread(thread_idthread, long*exit_value)

This function causes the calling thread to wait untilthread (the “target thread”) has died.
If thread is suspended, thewait_for_thread() call will cause it to resume. Thus, you can
usewait_for_thread() to tell a newly-spawned thread to start running.

When the target thread is dead, the value that was returned by its entry function (or that’s
imposed byexit_thread(), if such was called) is returned by reference inexit_value. If the
target thread was killed (bykill_thread() or kill_team()), or if the entry function doesn’t
return a value, the value returned inexit_value will be unreliable.

If the target thread has already exited or is otherwise invalid, this function returns
B_BAD_THREAD_ID, otherwise it returnsB_NO_ERROR. Note that if the thread is killed
while you’re waiting for it, the function returnsB_NO_ERROR.

See also: resume_thread()

Ports Overview

The Kernel Kit –23

Ports

Declared in: <kernel/OS.h>

Overview

A port is a system-wide message repository into which a thread can copy a buffer of data,
and from which some other thread can then retrieve the buffer. This repository is
implemented as a first-in/first-out message queue: A port stores its messages in the order
in which they’re received, and it relinquishes them in the order in which they’re stored.
Each port has its own message queue.

There are other ways to send data between threads. Most notably, the data-sending and -
receiving mechanism provided by the send_data() and receive_data() functions can also
transmit data between threads. But note these differences between using a port and using
the send_data()/receive_data() functions:

• A port can hold more than one message at a time. A thread can only hold one at a
time. Because of this, the function that writes data to a port (write_port()) rarely
blocks. Sending data to a thread will block if the thread has a previous, unread
message.

• The messages that are transmitted through a port aren’t directed at a specific
recipient—they’re not addressed to a specific thread. A message that’s been written
to a port can be read by any thread.send_data(), by definition, has a specific thread
as its target.

Creating a Port

A port is represented by a unique, system-wideport_id number (a positive integer). The
create_port() function creates a new port and assigns it aport_id number. Although ports
are accessible to all threads, theport_id numbers aren’t disseminated by the operating
system; if you create a port and want some other thread to be able to write to or read from
it, you have to broadcast theport_id number to that thread. Typically, ports are used
within a single team. The easiest way to broadcast aport_id number to the threads in a
team is to declare it as a global variable.

A port is owned by the team in which it was created. When a team dies (when all its
threads are killed, by whatever hand), the ports that belong to the team are deleted. A
team can bestow ownership of its ports to some other team (through theset_port_owner()
function).

Overview Ports

24 – The Kernel Kit

If you want explicitly get rid of a port, you can calldelete_port(). You can delete any
port, not just those that are owned by the team of the calling thread.

The Message Queue: Reading and Writing Port Messages

The length of a port’s message queue—the number of messages that it can hold at a time—
is set when the port is created. TheB_MAX_PORT_COUNT constant provides a reasonable
queue length.

The functionswrite_port() andread_port() manipulate a port’s message queue:
write_port() places a message at the tail of the port’s message queue;read_port() removes
the message at the head of the queue and returns it the caller. write_port() blocks if the
queue is full; it returns when room is made in the queue by an invocation ofread_port().
Similarly, if the queue is empty,read_port() blocks untilwrite_port() is called. When a
thread is waiting in awrite_port() or read_port() call, its state isB_THREAD_SEM_WAIT (it’s
waiting to acquire a system-defined, port-specific semaphore).

You can provide a timeout for your port-writing and port-reading operations by using the
“full-blown” functions write_port_etc() andread_port_etc(). By supplying a timeout, you
can ensure that your port operations won’t block forever.

Although each port has its own message queue, all ports share a global “queue slot”
pool—there are only so many message queue slots that can be used by all ports taken
cumulatively. If too many port queues are allowed to fill up, the slot pool will drain,
which will causewrite_port() calls on less-than-full ports to block. To avoid this situation,
you should make sure that yourwrite_port() andread_port() calls are reasonably balanced.

Thewrite_port() and read_port() functions are the only way to traverse a port’s message
queue. There’s no notion of “peeking” at the queue’s unread messages, or of erasing
messages that are in the queue.

Port Messages

A port message—the data that’s sent through a port—consists of a “message code” and a
“message buffer.” Either of these elements can be used however you like, but they’re
intended to fit these purposes:

• The message code (a single four-byte value) should be a mask, flag, or other
predictable value that gives a general representation of the flavor or import of the
message. For this to work, the sender and receiver of the message must agree on the
meanings of the values that the code can take.

• The data in the message buffer can elaborate upon the code, identify the sender of
the message, or otherwise supply additional information. The length of the buffer
isn’t restricted. To get the length of the message buffer that’s at the head of a port’s
queue, you call theport_buffer_size() function.

Ports Function Descriptions

The Kernel Kit –25

The message that you pass towrite_port() is copied into the port. Afterwrite_port()
returns, you may free the message data without affecting the copy that the port holds.

When you read a port, you have to supply a buffer into which the port mechanism can
copy the message. If the buffer that you supply isn’t large enough to accommodate the
message, the unread portion will be lost—the next call toread_port() won’t finish reading
the message.

You typically allocate the buffer that you pass to read_port() by first calling
port_buffer_size(), as shown below:

char *buf;
long size;
long code;

/* We'll assume that my_port is valid.
 * port_buffer_size() will block until a message shows up.
 */
if ((size = port_buffer_size(my_port) < B_NO_ERROR)

/* Handle the error */

if (size > 0)
buf = (char *)malloc(size * sizeof(char));

else
buf = 0;

/* Now we can read the buffer. */
if (read_port(my_port, &code, (void *)buf, size) < B_NO_ERROR)

/* Handle the error */

Obviously, there’s a race condition (in the example) betweenport_buffer_size() and the
subsequentread_port() call—some other thread could read the port in the interim. If
you’re going to use port_buffer_size() as shown in the example, you shouldn’t have more
than one thread reading the port.

As stated in the example,port_buffer_size() blocks until a message shows up. If you don’t
want to (potentially) block forever, you should use theport_buffer_size_etc() version of
the function. As with the other...etc() functions,port_buffer_size_etc() provides a
timeout option.

Function Descriptions

create_port()
port_id create_port(longqueue_length, const char *name)

Creates a new port and returns itsport_id number. The port’s name is set toname and the
length of its message queue is set toqueue_length. Neither the name nor the queue length

Function Descriptions Ports

26 – The Kernel Kit

can be changed once they’re set. The name shouldn’t exceedB_OS_NAME_LENGTH (32)
characters.

In setting the length of a port’s message queue, you’re telling it how many messages it can
hold at a time. When the queue is filled—when it’s holdingqueue_length messages—
subsequent invocations ofwrite_port() (on that port) block until room is made in the queue
(through calls toread_port()) for the additional messages. As a convenience, you can use
theB_MAX_PORT_COUNT constant as thequeue_length value; this constant represents the
(ostensible) maximum port queue length. Once the queue length is set (here), it can’t be
changed.

This function also sets the owner of the port to be the team of the calling thread.
Ownership can subsequently be transferred through theset_port_owner() function. When
a port’s owner dies (when all the threads in the team are dead), the port is automatically
deleted. If you want to delete a port prior to its owner’s death, use thedelete_port()
function.

The function returnsB_BAD_VALUE if queue_length is out of bounds (less than one or
greater than the maximum capacity). It returns B_NO_MORE_PORTS if all port_id numbers
are currently being used.

See also: delete_port(), set_port_owner()

delete_port()
long delete_port(port_idport)

Deletes the given port. The port’s message queue doesn’t have to be empty—you can
delete a port that’s holding unread messages. Threads that are blocked inread_port() or
write_port() calls on the port are automatically unblocked (and returnB_BAD_SEM_ID).

The thread that callsdelete_port() doesn’t have to be a member of the team that owns the
port; any thread can delete any port.

The function returnsB_BAD_PORT_ID if port isn’t a valid port; otherwise it returns
B_NO_ERROR.

See also: create_port()

find_port()
port_idfind_port(const char *port_name)

Returns theport_id of the named port. If the argument doesn’t name an existing port,
B_NAME_NOT_FOUND is returned.

See also: create_port()

Ports Function Descriptions

The Kernel Kit –27

get_port_info(), get_nth_port_info()
long get_port_info(port_idport, port_info*info)
long get_nth_port_info(team_idteam, longn, port_info*info)

These functions copy, into theinfo argument, theport_info structure for a particular port:

• Theget_port_info() function gets this information for the port identified byport.

• Theget_nth_port_info() function retrieves port information for then’th port (zero-
based) that’s owned by the team identified byteam. If team is 0 (zero), all teams are
considered. You use this function to retrieve the info structures of all the ports in a
team (or in all teams) by repeatedly calling the function with a monotonically
increasing value ofn—the actual value ofn has no other significance. When, in this
scheme, the function no longer returnsB_NO_ERROR, all candidate ports will have
been visited.

Theport_info structure is defined as:

typedef struct port_info {
port_idport;
team_idteam;
charname[B_OS_NAME_LENGTH];
long capacity;
long queue_count;
long total_count;

} port_info

The structure’s fields are:

• port. Theport_id number of the port.
• team. The team_id of the port’s team.
• name. The name assigned to the port.
• capacity. The length of the port’s message queue.
• queue_count. The number of messages currently in the queue.
• total_count. The total number of message that have been read from the port.

Note that thetotal_count number doesn’t include the messages that are currently in the
queue.

The information in theport_info structure is guaranteed to be internally consistent, but the
structure as a whole should be consider to be out-of-date as soon as you receive it. It
provides a picture of a port as it exists just before the info-retrieving function returns.

The functions returnB_NO_ERROR if the designated port is successfully found. Otherwise,
they returnB_BAD_PORT_ID, B_BAD_TEAM_ID, or B_BAD_INDEX.

Function Descriptions Ports

28 – The Kernel Kit

port_buffer_size(), port_buffer_size_etc()
long port_buffer_size(port_idport)

long port_buffer_size_etc(port_idport, longflags, doubletimeout)

These functions return the length (in bytes) of the message buffer that’s at the head of
port’s message queue. You call this function in order to allocate a sufficiently large buffer
in which to retrieve the message data.

Theport_buffer_size() function blocks if the port is currently empty. It unblocks when a
write_port() call gives this function a buffer to measure (even if the buffer is 0 bytes long),
or when the port is deleted.

Theport_buffer_size_etc() function lets you set a limit on the amount of time the function
will wait for a message to show up. To set the limit, you passB_TIMEOUT as the flags
argument, and settimeout to the amount of time, in microseconds, that you’re willing to
wait.

If port doesn’t identify an existing port (or if the port is deleted while the function is
blocked), B_BAD_PORT_ID is returned. If thetimeout limit is exceeded,B_TIMED_OUT is
returned. If thetimeout limit is 0.0 (andB_TIMEOUT is set), and there are no messages in
the queue, the function immediately returnsB_WOULD_BLOCK.

See also: read_port()

port_count()
long port_count(port_idport)

Returns the number of messages that are currently inport’s message queue. This is the
number of messages that have been written to the port through calls towrite_port() but that
haven’t yet been picked up through correspondingread_port() calls. This function is
provided mostly as a convenience and a semi-accurate debugging tool. The value that it
returns is inherently undependable (there’s no guarantee that additionalread_port() or
write_port() calls won’t change the count as this function is returning).

If port isn’t a valid port identifier,B_BAD_PORT_ID is returned.

See also: get_port_info()

Ports Function Descriptions

The Kernel Kit –29

read_port(), read_port_etc()
long read_port(port_idport,

long *msg_code,
void *msg_buffer,
longbuffer_size)

long read_port_etc(port_idport,
long *msg_code,
void *msg_buffer,
longbuffer_size,
longflags,
doubletimeout)

These functions remove the message at the head ofport’s message queue and copy the
messages’s contents into themsg_code andmsg_buffer arguments. The size of the
msg_buffer buffer, in bytes, is given bybuffer_size. It’s up to the caller to ensure that the
message buffer is large enough to accommodate the message that’s being read. If you
want a hint about the message’s size, you should callport_buffer_size() before calling this
function.

If port’s message queue is empty when you call read_port(), the function will block. It
returns when some other thread writes a message to the port throughwrite_port(). A
blocked read is also unblocked if the port is deleted.

Theread_port_etc() function lets you set a limit on the amount of time the function will
wait for a message to show up. To set the limit, you passB_TIMEOUT as the flags argument,
and settimeout to the amount of time, in microseconds, that you’re willing to wait.

The functions returnsB_BAD_PORT_ID if port isn’t valid (this includes the case where the
port is deleted during a blocked read_port() call). If thetimeout value is exceeded,
B_TIMED_OUT is returned. If thetimeout limit is 0.0 (withB_TIMEOUT set), and there are no
messages in the queue, the function immediately returnsB_WOULD_BLOCK.

A successful call returns the number of bytes that were written into themsg_buffer
argument.

See also: write_port(), port_buffer_size()

set_port_owner()
long set_port_owner(port_idport, team_idteam)

Transfers ownership of the designated port toteam. A port can only be owned by one
team at a time; by setting a port’s owner, you remove it from its current owner.

There are no restrictions on who can own a port, or on who can transfer ownership. In
other words, the thread that callsset_port_owner() needn’t be part of the team that
currently owns the port, nor must you only assign ports to the team that owns the calling
thread (although these two are the most likely scenarios).

Function Descriptions Ports

30 – The Kernel Kit

Port ownership is meaningful for one reason: When a team dies (when all its threads are
dead), the ports that are owned by that team are deleted. Ownership, otherwise, has no
significance—it carries no special privileges or obligations.

To discover a port’s owner, use theget_port_info() function.

set_port_owner() fails and returnsB_BAD_PORT_ID or B_BAD_TEAM_ID if one or the other
argument is invalid. Otherwise it returnsB_NO_ERROR.

See also: get_port_info()

write_port(), write_port_etc()
long write_port(port_idport,

longmsg_code,
void *msg_buffer,
longbuffer_size)

long write_port_etc(port_idport,
longmsg_code,
void *msg_buffer,
longbuffer_size,
longflags,
doubletimeout)

These functions place a message at the tail ofport’s message queue. The message consists
of msg_code andmsg_buffer:

• msg_code holds the message code. This is a mask, flag, or other predictable value
that gives a general representation of the message.

• msg_buffer is a pointer to a buffer that can be used to supply additional information.
You pass the length of the buffer, in bytes, as the value of the buffer_size argument.
The buffer can be arbitrarily long.

If the port’s queue is full when you callwrite_port(), the function will block. It returns
when aread_port() call frees a slot in the queue for the new message. A blocked
write_port() will also return if the target port is deleted.

Thewrite_port_etc() function lets you set a limit on the amount of time the function will
wait for a free queue slot. To set the limit, you passB_TIMEOUT as the flags argument, and
settimeout to the amount of time, in microseconds, that you’re willing to wait.

If port isn’t valid B_BAD_PORT_ID is returned (this includes the case where the port is
deleted during a blocked read_port() call). If thetimeout value is exceeded,B_TIMED_OUT
is returned. If thetimeout limit is 0.0 (withB_TIMEOUT set), and the target port’s queue is
full, the function immediately returnsB_WOULD_BLOCK. A successful call returns
B_NO_ERROR.

See also: read_port()

The Kernel Kit –31

Semaphores

Declared in: <kernel/OS.h>

Overview

A semaphore is a token that’s used in a multi-threaded operating system to coordinate
access, by competing threads, to “protected” resources or operations. This coordination
usually takes one of these tacks:

• The most common use of semaphores is to limit the number of threads that can
execute a piece of code at the same time. The typical limit is one—in other words,
semaphores are most often used to create mutually exclusive locks.

• Semaphores can also be used to impose the order in which a series of interdependent
operations are performed.

Examples of these uses are given in sections below.

How Semaphores Work

A semaphore acts as a key that a thread must acquire in order to continue execution. Any
thread that can identify a particular semaphore can attempt to acquire it by passing its
sem_id identifier—a system-wide number that’s assigned when the semaphore is
created—to theacquire_sem() function. The function doesn’t return until the semaphore
is actually acquired. (An alternate function,acquire_sem_etc() lets you specify a limit, in
microseconds, on the amount of time you’re willing to wait for the semaphore to be
acquired. Unless otherwise noted, characteristics ascribed toacquire_sem() apply to
acquire_sem_etc() as well.)

When a thread acquires a semaphore, that semaphore (typically) becomes unavailable for
acquisition by other threads (in the rarer case, more than one thread is allowed to acquire
the semaphore at a time; the precise determination of availability is explained in “The
Thread Count” on page 32). The semaphore remains unavailable until it’s passed in a call
to therelease_sem() function.

The code that a semaphore “protects” lies between the calls toacquire_sem() and
release_sem(). The disposition of these functions in your code usually follows this
pattern:

acquire_sem(my_semaphore);
/* Protected code goes here. */
release_sem(my_semaphore);

Overview Semaphores

32 – The Kernel Kit

Keep in mind that these function calls needn’t be so explicitly balanced. A semaphore can
be acquired within one function and released in another. Acquisition and release of the
same semaphore can even be performed by two different threads; an example of this is
given in “Using Semaphores to Impose an Execution Order” on page 35.

The Thread Queue

Every semaphore has its ownthread queue: This is a list that identifies the threads that are
waiting to acquire the semaphore. A thread that attempts to acquire an unavailable
semaphore is placed at the tail of the semaphore’s thread queue; from the programmer’s
point of view, a thread that’s been placed in the queue will be blocked in the
acquire_sem() call. Each call torelease_sem() “releases” the thread at the head of that
semaphore’s queue (if there are any waiting threads), thus allowing the thread to return
from its call toacquire_sem().

Semaphores don’t discriminate between acquisitive threads—they don’t prioritize or
otherwise reorder the threads in their queues—the oldest waiting thread is always the next
to acquire the semaphore.

The Thread Count

To assess availability, a semaphore looks at itsthread count. This is a counting variable
that’s initialized when the semaphore is created. The ostensible (although, as we shall see,
not entirely accurate) meaning of a thread count’s initial value, which is passed as the first
argument tocreate_sem(), is the number of threads that can acquire the semaphore at a
time. For example, a semaphore that’s used as a mutually exclusive lock takes an initial
thread count of 1—in other words, only one thread can acquire the semaphore at a time.

Calls toacquire_sem() andrelease_sem() alter the semaphore’s thread count:
acquire_sem() decrements the count, andrelease_sem() increments it. When you call
acquire_sem(), the function looks at the thread count (before decrementing it) to
determine if the semaphore is available:

• If the count is greater than zero, the semaphore is available for acquisition, so the
function returns immediately.

• If the count is zero or less, the semaphore is unavailable, and so the thread is placed
in the semaphore’s thread queue.

The initial thread count isn’t an inviolable limit on the number of threads that can acquire
a given semaphore—it’s simply the initial value for the sempahore’s thread count variable.
For example, if you create a semaphore with an initial thread count of 1 and then
immediately callrelease_sem() five times, the semaphore’s thread count will increase to
6. Furthermore, although you can’t initialize the thread count to less-than-zero, an initial
value of zero itself is common—it’s an integral part of using semaphores to impose an
execution order (as demonstrated later).

Semaphores Overview

The Kernel Kit –33

Summarizing the description above, there are three significant thread count value ranges:

• A positive thread count (n) means that there are no threads in the semaphore’s
queue, and the nextn acquire_sem() calls will return without blocking.

• If the count is 0, there are no queued threads, but the nextacquire_sem() call will
block.

• A negative count (-n) means there aren threads in the semaphore’s thread queue,
and the next call toacquire_sem() will block.

Although it’s possible to retrieve the value of a semaphore’s thread count (by looking at a
field in the semaphore’ssem_info structure, as described later), you should only do so for
amusement—while you’re debugging, for example. You should never predicate your code
on the basis of a semaphore’s thread count.

Using a Semaphore as a Lock

As mentioned above, the most common use of semaphores is to ensure that only one
thread is executing a certain piece of code at a time. The following example demonstrates
this use.

Consider an application that manages a one-job-at-a-time device such as a printer. When
the application wants to start a new print job (upon a request from some other application,
no doubt) it spawns and runs a thread to perform the actual data transmission. Given the
nature of the device, each spawned thread must be allowed to complete its transmission
before the next thread takes over. However, your application wants to accept print
requests (and so spawn threads) as they arrive.

To ensure that the spawned threads don’t interrupt each other, you can define a semaphore
that’s acquired and released—that, in essence, is “locked” and “unlocked”—as a thread
begins and ends its transmission, as shown below. The thread functions that are used in
the example are described in “Threads and Teams” on page 5.

/* Include the semaphore API declarations. */
#include <OS.h>

/* The semaphore is declared globally so the spawned threads
 * will be able to get to it (there are other ways of
 * broadcasting the sem_id, but this is the easiest).
 */
sem_id print_sem;

/* print_something() is the data-transmission function.
 * The data itself would probably be passed as an argument
 * (which isn't shown in this example).
 */
long print_something(void *data);

Overview Semaphores

34 – The Kernel Kit

main()
{

/* Create the semaphore with an initial thread count of 1.
 * If the semaphore can't be created (error conditions
 * are listed later), we exit. The second argument to
 * create_sem(), as explained in the function
 * descriptions is a handy string name for the semaphore.
 */
if ((print_sem = create_sem(1, "print sem")) < B_NO_ERROR)

exit -1;

while (1)
{

/* Wait-for-a-request code and break conditions
 * go here.
 */
...

/* Spawn a thread that calls print_something(). */
if (resume_thread(spawn_thread(print_something ...))

< B_NO_ERROR)
break;

}

/* Acquire the semaphore and delete it (as explained
 * later)
 */
acquire_sem(print_sem);
delete_sem(print_sem);
exit 0;

}

long print_something(void *data)
{

/* Acquire the semaphore; an error means the semaphore
 * is no longer valid. And we'll just die if it's no good.
 */
if (acquire_sem(print_sem) < B_NO_ERROR)

return 0;

/* The code that sends data to the printer goes here. */

/* Release the semaphore. */
release_sem(print_sem);

return 0;
}

Theacquire_sem() andrelease_sem() calls embedded in theprint_something() function
“protect” the data-transmission code. Although any number of threads may concurrently
executeprint_something(), only one at a time is allowed to proceed past the
acquire_sem() call.

Semaphores Overview

The Kernel Kit –35

Deleting a Semaphore

Notice that the example explicitly deletes theprint_sem semaphore before it exits. This
isn’t wholly necessary: Every semaphore is owned by a team (the team of the thread that
called create_sem()). When the last thread in a team dies, it takes the team’s semaphores
with it.

Prior to the death of a team, you can explicitly delete a semaphore through the
delete_sem() call. Note, however, thatdelete_sem() must be called from a thread that’s a
member of the team that owns the semaphore—you can’t delete another team’s
semaphores.

You’re allowed to delete a semaphore even if it still has threads in its queue. However,
you usually want to avoid this, so deleting a semaphore may require some thought. In the
example, the main thread (the thread that executes themain() function) makes sure all
print threads have finished by acquiring the semaphore before deleting it. When the main
thread is allowed to continue (when theacquire_sem() call returns) the queue is sure to be
empty and all print jobs will have completed.

When you delete a semaphore (or when it dies naturally), all its queued threads are
immediately allowed to continue—they all return from acquire_sem() at once. You can
distinguish between a “normal” acquisition and a “semaphore deleted” acquisition by the
value that’s returned byacquire_sem() (the specific return values are listed in the function
descriptions, below).

Using Semaphores to Impose an Execution Order

Semaphores can also be used to coordinate threads that are performing separate
operations, but that need to perform these operations in a particular order. In the following
example, an application repeatedly spawns, in no particular order, threads that either write
to or read from a global buffer. Each writing thread must complete before the next reading
thread starts, and each written message must be fully read exactly once. Thus, the two
operations must alternate (with a writing thread going first). Two semaphores are used to
coordinate the threads that perform these operations:

/* Here's the global buffer. */
char buf[1024];

/* The ok_to_read and ok_to_write semaphores inform the
 * appropriate threads that they can proceed.
 */
sem_id ok_to_write, ok_to_read;

/* These are the writing and reading functions. */
long write_it(void *data);
long read_it(void *data);

Overview Semaphores

36 – The Kernel Kit

main()
{

/* These will be used when we delete the semaphores. */
long write_count, read_count;

/* Create the semaphores. ok_to_write is created with a
 * thread count of 1; ok_to_read's count is set to 0.
 * This is explained below.
 */
if ((ok_to_write = create_sem(1, "write sem"))<B_NO_ERROR)

return (B_ERROR);

if ((ok_to_read = create_sem(0, "read sem")) < B_NO_ERROR)
{

delete_sem(ok_to_write);
return (B_ERROR);

}

bzero(buf,1024);

/* Spawn some reading and writing threads. */
while(1)
{

if (...) /* spawn-a-writer condition */
resume_thread(spawn_thread(write_it, ...));

if (...) /* spawn-a-reader condition */
resume_thread(spawn_thread(read_it, ...);

if (...) /* break condition */
break;

}

/* It's time to delete the semaphores. First, get the
 * semaphores' thread counts.
 */
if (get_sem_count(ok_to_write, &write_count) < B_NO_ERROR)
{

delete_sem(ok_to_read);
return (B_ERROR);

}

if (get_sem_count(ok_to_read, &read_count) < B_NO_ERROR)
{

delete_sem(ok_to_write);
return (B_ERROR);

}

/* Place this thread at the end of whichever queue is
 * shortest (or the writing queue if they're equal).
 * Remember: thread count is decremented as threads
 * are placed in the queue, so the shorter queue is
 * the one with the greater thread count.
 */
if (write_count >= read_count)

acquire_sem(ok_to_write);

Semaphores Overview

The Kernel Kit –37

else
acquire_sem(ok_to_read);

/* Delete the semaphores and exit. */
delete_sem(ok_to_write);
delete_sem(ok_to_read);
return (B_NO_ERROR);

}

long write_it(void *data)
{

/* Acquire the writing semaphore. */
if (acquire_sem(ok_to_write) < B_NO_ERROR)

return (B_ERROR);

/* Write to the buffer. */
strncpy(buf, (char *)data, 1023);

/* Release the reading semaphore. */
return (release_sem(ok_to_read));

}

long read_it(void *data)
{

/* Acquire the reading semaphore. */
if (acquire_sem(ok_to_read) < B_NO_ERROR)

return (B_ERROR);

/* Read the message and do something with it. */
...

/* Release the writing semaphore. */
return (release_sem(ok_to_write));

}

Notice the distribution of theacquire_sem() and release_sem() calls for the respective
semaphores: The writing function acquires the writing semaphore (ok_to_write) and then
releases the reading semaphore (ok_to_read). The reading function does the opposite.
Thus, after the buffer has been written to, no other thread can write to it until it has been
read (and vice versa).

By settingok_to_write’s initial thread count to 1 andok_to_read’s initial thread count to 0,
you ensure that a writing operation will be performed first. If a reading thread is spawned
first, it will block until a writing thread releases theok_to_read semaphore.

When it’s semaphore-deletion time in the example, the main thread acquires one of the
semaphores. Specifically, it acquires the semaphore that has the fewer threads in its
queue. This allows the remaining (balanced) pairs of reading and writing threads to
complete before the semaphores are deleted, and throws away any unpaired reading or
writing threads. (Actually, the unpaired threads aren’t “thrown away” as the semaphore
upon which they’re waiting is deleted, but by the error check in the first line of the reading
or writing function. As mentioned earlier, deleting the semaphore releases its queued
threads, allowing them, in this instance, to rush to their deaths.)

Functions Semaphores

38 – The Kernel Kit

Broadcasting Semaphores

Thesem_id number that identifies a semaphore is a system-wide token—thesem_id
values that you create in your application will identify your semaphores in all other
applications as well. It’s possible, therefore, to broadcast the sem_id numbers of the
semaphores that you create and so allow other applications to acquire and release them—
but it’s not a very good idea. A semaphore is best controlled if it’s created, acquired,
released, and deleted within the same team. If you want to provide a protected service or
resource to other applications, you should follow the model used by the examples: Your
application should accept messages from other applications and then spawn threads that
acquire and release the appropriate semaphores.

Functions

acquire_sem(), acquire_sem_etc()
long acquire_sem(sem_idsem)
long acquire_sem_etc(sem_idsem, longcount, longflags, doubletimeout)

These functions attempt to acquire the semaphore identified by thesem argument. Except
in the case of an error,acquire_sem() doesn’t return until the semaphore has actually been
acquired.

acquire_sem_etc() is the full-blown acquisition version: It’s essentially the same as
acquire_sem(), but, in addition, it lets you acquire a semaphore more than once, and also
provides a timeout facility:

• Thecount argument lets you specify that you want the semaphore to be acquired
count times. This means that the semaphore’s thread count is decremented by the
specified amount. It’s illegal to specify a count that’s less than 1.

• To enable the timeout, you passB_TIMEOUT as theflags argument, and settimeout to
the amount of time, in microseconds, that you’re willing to wait for the semaphore
to be acquired. If the semaphore hasn’t been acquired withintimeout microseconds,
the function gives up and returns the valueB_TIMED_OUT. If you specify atimeout of
0.0 and the semaphore isn’t immediately available, the function returns
B_WOULD_BLOCK.

In addition to B_TIMEOUT, the Kernel Kit defines two other semaphore-acquisition flag
constants (B_CAN_INTERRUPT andB_CHECK_PERMISSION). These additional flags are used
by device drivers—adding these flags into a “normal” (or “user-level”) acquisition has no
effect. However, you should be aware that theB_CHECK_PERMISSION flag is always added
in to user-level semaphore acquisition in order to protect system-defined semaphores.

Other than the timeout and the acquisition count, there’s no difference between the two
acquisition functions. Specifically, any semaphore can be acquired through either of these

Semaphores Functions

The Kernel Kit –39

functions; you always release a semaphore through release_sem() (or release_sem_etc())
regardless of which function you used to acquire it.

To determine if the semaphore is available, the function looks at the semaphore’s thread
count (before decrementing it):

• If the thread count is positive, the semaphore is available and the current acquisition
succeeds. Theacquire_sem() or acquire_sem_timeout() function returns
immediately upon acquisition.

• If the thread count is zero or less, the calling thread is placed in the semaphore’s
thread queue where it waits for a correspondingrelease_sem() call to de-queue it
(or for the timeout to expire).

If the sem argument doesn’t identify a valid semaphore,B_BAD_SEM_ID is returned. It’s
possible for a semaphore to become invalid while an acquisitive thread is waiting in the
semaphore’s queue. For example, if your thread callsacquire_sem() on a valid (but
unavailable) semaphore, and then some other thread deletes the semaphore, your thread
will return B_BAD_SEM_ID from its call toacquire_sem().

If you pass an illegalcount value (less than 1) toacquire_sem_etc(), the function returns
B_BAD_VALUE. If the acquisition time surpasses the designated timeout limit (with
B_TIMEOUT set), theacquire_sem_etc() function returnsB_TIMED_OUT; if the timeout
value is 0.0 and the semaphore isn’t immediately available, the function returns
B_WOULD_BLOCK.

If the semaphore is successfully acquired, the functions returnB_NO_ERROR.

See also: release_sem()

create_sem()
sem_idcreate_sem(long thread_count, const char *name)

Creates a new semaphore and returns a system-widesem_id number that identifies it. The
arguments are:

• thread_count initializes the semaphore’s thread count, the counting variable that’s
decremented and incremented as the semaphore is acquired and released
(respectively). You can pass any non-negative number as the count, but you
typically pass either 1 or 0, as demonstrated in the examples above.

• name is an optional string name that you can assign to the semaphore. The name is
meant to be used only for debugging. A semaphore’s name needn’t be unique—any
number of semaphores can have the same name.

Valid sem_id numbers are positive integers. You should always check the validity of a
new semaphore through a construction such as

if ((my_sem = create_sem(1,"My Semaphore")) < B_NO_ERROR)

Functions Semaphores

40 – The Kernel Kit

/* If it's less than B_NO_ERROR, my_sem is invalid. */

create_sem() sets the new semaphore’s owner to the team of the calling thread.
Ownership may be re-assigned through theset_sem_owner() function. When the owner
dies (when all the threads in the team are dead), the semaphore is automatically deleted.
The owner is also signficant in a delete_sem() call: Only those threads that belong to a
semaphore’s owner are allowed to delete that semaphore.

The function returns one of the following codes if the semaphore couldn’t be created:

Return Code Meaning

B_BAD_ARG_VALUE Invalid thread_count value (less than zero).
B_NO_MEMORY Not enough memory to allocate the semaphore’s name.
B_NO_MORE_SEMS All valid sem_id numbers are being used.

See also: delete_sem()

delete_sem()
long delete_sem(sem_idsem)

Deletes the semaphore identified by the argument. If there are any threads waiting in the
semaphore’s thread queue, they’re immediately de-queued and allowed to continue
execution.

This function may only be called from a thread that belongs to the target semaphore’s
owner; if the calling thread belongs to a different team, or ifsem is invalid, the function
returnsB_BAD_SEM_ID. Otherwise, it returnsB_NO_ERROR.

See also: acquire_sem()

get_sem_count()
long get_sem_count(sem_idsem, long *thread_count)

Returns, by reference inthread_count, the value of the semaphore’s thread count variable:

• A positive thread count (n) means that there are no threads in the semaphore’s
queue, and the nextn acquire_sem() calls will return without blocking.

• If the count is zero, there are no queued threads, but the nextacquire_sem() call
will block.

• A negative count (-n) means there aren threads in the semaphore’s thread queue and
the next call toacquire_sem() will block.

By the time this function returns and you get a chance to look at thethread_count value,
the semaphore’s thread count may have changed. Although watching the thread count

Semaphores Functions

The Kernel Kit –41

might help you while you’re debugging your program, this function shouldn’t be an
integral part of the design of your application.

If sem is a valid semaphore identifier, the function returnsB_NO_ERROR; otherwise,
B_BAD_SEM_ID is returned (and the value of thethread_count argument that you pass in
isn’t changed).

See also: get_sem_info()

get_sem_info(), get_nth_sem_info()
long get_sem_info(sem_idsem, sem_info*info)
long get_nth_sem_info(team_idteam, longn, sem_info*info)

These functions copy, into theinfo argument, thesem_info structure for a particular
semaphore:

• Theget_sem_info() function gets this information for the semaphore identified by
sem.

• Theget_nth_sem_info() function retrieves semaphore information for then’th
semaphore (zero-based) that’s owned by the team identified byteam. If team is 0
(zero), all teams are considered. You use this function to retrieve the info structures
of all the semaphores in a team (or in all teams) by repeatedly calling the function
with a monotonically increasing value ofn—the actual value ofn has no other
significance. When, in this scheme, the function no longer returnsB_NO_ERROR, all
candidate semaphores will have been visited.

Thesem_info structure is defined as:

typedef struct sem_info {
sem_idsem;
team_idteam;
charname[B_OS_NAME_LENGTH];
long count;
thread_idlatest_holder;

} sem_info

The structure’s fields are:

• sem. Thesem_id number of the semaphore.
• team. The team_id of the semaphore’s owner.
• name. The name assigned to the semaphore.
• count. The semaphore’s thread count.
• latest_holder. The thread that most recently acquired the semaphore.

Note that the thread that’s identified in thelastest_holder field may no longer be holding
the semaphore—it may have since released the semaphore. The latest holder is simply the
last thread to have calledacquire_sem() (of whatever flavor) on this semaphore.

Functions Semaphores

42 – The Kernel Kit

The information in thesem_info structure is guaranteed to be internally consistent, but the
structure as a whole should be consider to be out-of-date as soon as you receive it. It
provides a picture of a semaphore as it exists just before the info-retrieving function
returns.

The functions returnB_NO_ERROR if the designated semaphore is successfully found.
Otherwise, they returnB_BAD_SEM_ID, B_BAD_TEAM_ID, or B_BAD_INDEX.

release_sem(), release_sem_etc()
long release_sem(sem_idsem)
long release_sem_etc(sem_idsem, longcount, longflags)

Therelease_sem() function de-queues the thread that’s waiting at the head of the
semaphore’s thread queue (if any), and increments the semaphore’s thread count.
release_sem_etc() does the same, but forcount threads.

Normally, releasing a semaphore automatically invokes the kernel’s scheduler. In other
words, when your thread callsrelease_sem() (or the sequel), you’re pretty much
guaranteed that some other thread will be switched in immediately afterwards, even if
your thread hasn’t gotten its fair share of CPU time. If you want to subvert this
automatism, callrelease_sem_etc() with aflags value ofB_DO_NOT_RESCHEDULE.
Preventing the automatic rescheduling is particularly useful if you’re releasing a number
of different semaphores all in a row: By avoiding the rescheduling you can prevent some
unnecessary context switching.

If sem is a valid semaphore identifier, these functions return B_NO_ERROR; if it’s invalid,
they returnB_BAD_SEM_ID. Note that if a released thread deletes the semaphore (before
the releasing function returns), these functions will still returnB_NO_ERROR.

Thecount argument torelease_sem_count() must be greater than zero; the function
returnsB_BAD_VALUE otherwise.

See also: acquire_sem()

set_sem_owner()
long set_sem_owner(sem_idsem, team_idteam)

Transfers ownership of the designated semaphore toteam. A semaphore can only be
owned by one team at a time; by setting a semaphore’s owner, you remove it from its
current owner.

There are no restrictions on who can own a semaphore, or on who can transfer ownership.
In practice, however, the only reason you should ever transfer ownership is if you’re
writing a device driver and you need to bequeath a semaphore to the kernel (the team of
which is known, for this purpose, asB_SYSTEM_TEAM).

Semaphores Functions

The Kernel Kit –43

Semaphore ownership is meaningful for two reason: When a team dies (when all its
threads are dead), the semaphores that are owned by that team are deleted. Also, only a
thread that belongs to a semaphore’s owner is allowed to delete that semaphore.

To discover a semaphore’s owner, use theget_sem_info() function.

set_sem_owner() fails and returnsB_BAD_SEM_ID or B_BAD_TEAM_ID if one or the other
argument is invalid. Otherwise it returnsB_HOKEY_POKEY.

See also: get_sem_info()

Functions Semaphores

44 – The Kernel Kit

The Kernel Kit –45

Areas

Declared in: <kernel/OS.h>

Overview

An area is a chunk of virtual memory. As such, it has all the expected properties of virtual
memory: It has a starting address, a size, the addresses it comprises are contiguous, and it
maps to (possibly non-contiguous) physical memory. The primary differences between an
area and “standard” virtual memory (memory that you allocate throughmalloc(), for
example) are these:

• Different areas can refer to the same physical memory. Put another way, different
virtual memory addresses can map to the same physical locations. Furthermore, the
different areas needn’t belong to the same application. By creating and “cloning”
areas, applications can easily share the same data.

• You can specify that the area’s physical memory be locked into RAM when it’s
created, locked on a page-by-page basis as pages are swapped in, or that it be
swapped in and out as needed.

• Areas always start on a page boundary, and are allocated in integer multiples of the
size of a page. (A page is 4096 bytes, as represented by theB_PAGE_SIZE constant.)

• You can specify the starting address of the area’s virtual memory. The specification
can require that the area start precisely at a certain address, anywhere above a
certain address, or anywhere at all.

• An area can be read- and write-protected.

Because areas are large—4096 bytes minimum—you don’t create them arbitrarily. The
two most compelling reasons to create an area are the two first points listed above: To
share data among different applications, and to lock memory into RAM.

Identifying an Area

An area is uniquely identified (system-wide) by itsarea_id number. Thearea_id is
assigned automatically bycreate_area(), a function that does what it says. Most of the
other area functions require an area_id argument.

When you create an area, you get to name it. Area names are not unique—any number of
areas can be assigned the same name.

Overview Areas

46 – The Kernel Kit

Sharing Areas

If you want to share an area with another application, you can broadcast the area’sarea_id
number, but it’s recommended that, instead, you publish the area’s name. Given an area
name, a “remote” application can retrieve the area’s ID number by callingfind_area().

To use an area that was created by another application, the first thing you do, having
acquired the area’sarea_id throughfind_area(), is “clone” the area. You do this by
calling theclone_area() function. The function returns a newarea_id number that
identifies your clone of the original area. All further references to the area (in the cloning
application) must be based on the ID of the clone.

The physical memory that lies beneath a cloned area is never implicitly copied—for
example, the area mechanism doesn’t perform a “copy-on-write.” If two areas (more
specifically, twoarea_id numbers) refer to the same memory because of cloning, a data
modification that’s affected through one area will be seen by the other area.

Note: Because names aren’t unique, multiple calls tofind_area() with the same name
won’t all necessarily return the samearea_id—consider the case where more than one
instantiation of the same area-creating application is running on your computer.

Locking an Area

When you’re working with moderately large amounts of data, it’s often the case that you
would prefer that the data remain in RAM, even if the rest of your application needs to be
swapped out. An argument tocreate_area() lets you declare, through the use of one of
the following constants, the locking scheme that you wish to apply to your area:

• B_FULL_LOCK means the area’s memory is locked into RAM when the area is
created, and won’t be swapped out.

• B_LAZY_LOCK allows individual pages of memory to be brought into RAM through
the natural order of things andthen locks them.

• B_NO_LOCK means pages are never locked, they’re swapped in and out as needed.

Keep in mind that locking an area essentially reduces the amount of RAM that can be used
by other applications, and so increases the likelihood of swapping. So you shouldn’t lock
simply because you’re greedy. But if the area that you’re locking is going to be shared
among some number of other applications, or if you’re writing a real-time application that
processes large chunks of data, then locking can be a benefit.

The locking scheme is set by thecreate_area() function and is thereafter immutable. You
can’t re-declare the lock when you clone an area.

Areas Overview

The Kernel Kit –47

Using an Area

Ultimately, you use an area for the virtual memory that it represents: You create an area
because you want some memory to which you can write and from which you can read
data. These acts are performed in the usual manner, through references to specific
addresses. Setting a pointer to a location within the area, and checking that you haven’t
exceeded the area’s memory bounds as you increment the pointer (while reading or
writing) are your own responsibility. To do this properly, you need to know the area’s
starting address and its extent:

• An area’s starting address is maintained as theaddress field in itsarea_info
structure; you retrieve thearea_info for a particular area through the
get_area_info() function.

• The size of the area (in bytes) is given as thesize field of itsarea_info structure.

An important point, with regard toarea_info, is that theaddress field is only valid for the
application that created or cloned the area (in other words, the application that created the
area_id that was passed toget_area_info()). Although the memory that underlies an area
is global, the address that you get from anarea_info structure refers to a specific address
space.

If there’s any question about whether a particulararea_id is “local” or “foreign,” you can
compare thearea_info.team field to your thread’s team.

Deleting an Area

When your application quits, the areas (thearea_id numbers) that it created through
create_area() or clone_area() are automatically rendered invalid. The memory
underlying these areas, however, isn’t necessarily freed. An area’s memory is freed only
when (and as soon as) there are no more areas that refer to it.

You can force the invalidation of anarea_id by passing it to thedelete_area() function.
Again, the underlying memory is only freed if yours is the last area to refer to the memory.

Deleting an area, whether explicitly throughdelete_area(), or because your application
quit, never affects the status of other areas that were cloned from it.

Functions Areas

48 – The Kernel Kit

Functions

area_for()
area_idarea_for(void *addr)

Returns thearea_id of the area that contains the given address within your own team’s
address space. The argument needn’t be the starting address of an area, nor must it start on
a page boundary: If the address lies anywhere within one of your application’s areas, the
ID of that area is returned.

Since the address is taken to be in the local address space, the area that’s returned will also
be local—it will have been created or cloned by your application.

If the address doesn’t lie within an area,B_ERROR is returned.

See also: find_area()

clone_area()
long clone_area(const char *clone_name,

void **clone_addr,
ulongclone_addr_spec,
ulongclone_protection,
area_idsource_area)

Creates a new area (theclone area) that maps to the same physical memory as an existing
area (thesource area). The arguments are:

• clone_name is the name that you wish to assign to the clone area. Area names are,
at most,B_OS_NAME_LENGTH (32) characters long.

• clone_addrpoints to a value that gives the address at which you want the clone area
to start; the pointed-to value must be a multiple ofB_PAGE_SIZE (4096). The
function sets the value pointed to byclone_addr to the area’s actual starting
address—it may be different from the one you requested. The constancy of
*clone_addr depends on the value ofclone_addr_spec, as explained next.

• clone_addr_spec is one of four constants that describes howclone_addr is to be
interpreted. The first three constants, B_EXACT_ADDRESS, B_BASE_ADDRESS, and
B_ANY_ADDRESS, have meanings as explained undercreate_area().

The fourth constant,B_CLONE_ADDRESS, specifies that the address of the cloned
area should be the same as the address of the source area. Cloning the address is
convenient if you have two (or more) applications that want to pass pointers to each
other—by using cloned addresses, the applications won’t have to offset the pointers
that they receive. For both theB_ANY_ADDRESS andB_CLONE_ADDRESS
specifications, the value that’s pointed to by theclone_addr argument is ignored.

Areas Functions

The Kernel Kit –49

• clone_protection is one or both ofB_READ_AREA andB_WRITE_AREA. These have
the same meaning as increate_area(); keep in mind, as described there, that a
cloned area can have a protection that’s different from that of its source.

• source_area is thearea_id of the area that you wish to clone. You usually supply
this value by passing an area name to thefind_area() function.

The cloned area inherits the source area’s locking scheme (B_FULL_LOCK, B_LAZY_LOCK,
or B_NO_LOCK).

Usually, the source area and clone area are in two different applications. It’s possible to
clone an area from a source that’s in the same application, but there’s not much reason to
do so unless you want the areas to have different protections.

If area_clone() clone is successful, the clone’sarea_id is returned. Otherwise, the
function returns one of the following error constants:

Constant Meaning

B_BAD_VALUE Bad argument value; you passed an unrecognized
constant foraddr_spec or lock, theaddr value isn’t a
multiple ofB_PAGE_SIZE, you setaddr_spec to
B_EXACT_ADDRESS or B_CLONE_ADDRESS but the
address request couldn’t be fulfilled, or source_area
doesn’t identify an existing area.

B_NO_MEMORY Not enough memory to allocate the system structures that
support this area.

B_ERROR Some other system error prevented the area from being
created.

See also: create_area(), delete_area()

create_area()
area_idcreate_area(const char *name,

void **addr,
ulongaddr_spec,
ulongsize,
ulong lock,
ulongprotection)

Creates a new area and returns itsarea_id. The arguments are:

• name is the name that you wish to assign to the area. It needn’t be unique. Area
names are, at most,B_OS_NAME_LENGTH (32) characters long.

• addr points to the address at which you want the area to start. The value of*addr
must signify a page boundary; in other words, it must be an integer multiple of
B_PAGE_SIZE (4096). Note that this is a pointer to a pointer: *addr—notaddr—

Functions Areas

50 – The Kernel Kit

should be set to the desired address; you then pass the address ofaddr as the
argument, as shown below:

/* Set the address to a page boundary. */
char *addr = (char *)(4096 * 100);

/* Pass the address of addr as the second argument. */
create_area("my area", &addr, ...);

The function sets the value of*addr to the area’s actual starting address—it may be
different from the one you requested. The constancy of *addr depends on the value
of addr_spec, as explained next.

• addr_specis a constant that tells the function how the*addr value should be
applied. There are three address specification constants:

B_EXACT_ADDRESS means you want the value of *addr to be taken literally and
strictly. If the area can’t be allocated at that location, the function fails.

B_BASE_ADDRESS means the area can start at a location equal to or greater than
*addr.

B_ANY_ADDRESS means the starting address is determined by the system. In this
case, the value that’s pointed to byaddr is ignored (going into the function).

(A fourth specification,B_CLONE_ADDRESS, is only used by the clone_area()
function.)

• size is the size, in bytes, of the area. The size must be an integer multiple of
B_PAGE_SIZE (4096). The upper limit ofsize depends on the available swap space
(or RAM, if the area is to be locked).

• lock describes how the physical memory should be treated with regard to swapping.
There are three locking constants:

B_FULL_LOCK means the area’s memory is immediately locked into RAM and won’t
be swapped out.

B_LAZY_LOCK allows individual pages of memory to be brought into RAM through
the natural order of things andthen locks them.

B_NO_LOCK means pages are never locked, they’re swapped in and out as needed.

• protection is a mask that describes whether the memory can be written and read.
You form the mask by adding the constantsB_READ_AREA (the area can be read) and
B_WRITE_AREA (it can be written). The protection you describe applies only to this
area. If your area is cloned, the clone can specify a different protection.

If create_area() is successful, the new area_id number is returned. If it’s unsuccessful,
one of the following error constants is returned:

Areas Functions

The Kernel Kit –51

Constant Meaning

B_BAD_VALUE Bad argument value. You passed an unrecognized
constant foraddr_spec or lock, theaddr or size value
isn’t a multiple ofB_PAGE_SIZE, or you setaddr_spec to
B_EXACT_ADDRESS but the address request couldn’t be
fulfilled.

B_NO_MEMORY Not enough memory to allocate the necessary system
structures that support this area. Note that this error code
doesn’t mean that you asked for too much physical
memory.

B_ERROR Some other system error prevented the area from being
created. Most notably,B_ERROR is returned ifsize is too
large.

See also: clone_area(), delete_area()

delete_area()
long delete_area(area_idarea)

Deletes the designated area. If no one other area maps to the physical memory that this
area represents, the memory is freed.

Note: Currently, anybody can delete any area—the act isn’t denied if, for example, the
area_id argument was created by another application. This freedom will be rescinded in a
later release. Until then, try to avoid deleting other application’s areas.

If area doesn’t designate an actual area, this function returnsB_ERROR; otherwise it returns
B_NO_ERROR.

See also: create_area(), clone_area()

find_area()
area_idfind_area(const char *name)

Returns an area that has a name that matches the argument. Area names needn’t be
unique—successive calls to this function with the same argument value may not return the
samearea_id.

What you do with the area you’ve found depends on where it came from:

• If you’re finding an area that your own application created or cloned, you can use
the returned ID directly.

• If the area was created or cloned by some other application, you should immediately
clone the area (unless you’re doing something truly innocuous, such as simply
examining the area’s info structure).

Functions Areas

52 – The Kernel Kit

If the argument doesn’t identify an existing area, theB_NAME_NOT_FOUND error code is
returned.

See also: area_for()

get_area_info(), get_nth_area_info()
long get_area_info(area_idarea, area_info*info)
long get_nth_area_info(team_idteam, longn, area_info*info)

Copies information about a particular area into thearea_info structure designated by info.
The first version of the function designates the area directly, byarea_id. The second
version designates then’th area within the given team. If theteam argument is 0, all teams
are considered.

Thearea_info structure is defined as:

typedef structarea_info {
area_idarea;
char name[B_OS_NAME_LENGTH];
void *address;
ulong size;
ulong lock;
ulong protection;
team_id team;
ulong ram_size;
ulong copy_count;
ulong in_count;
ulong out_count;

} area_info;

The fields are:

• area is thearea_id that identifies the area. This will be the same as the function’s
area argument.

• name is the name that was assigned to the area when it was created or cloned.

• address is a pointer to the area’s starting address. Keep in mind that this address is
only meaningful to the application that created (or cloned) the area.

• size is the size of the area, in bytes.

• lock is a constant that represents the area’s locking scheme. This will be one of
B_FULL_LOCK, B_LAZY_LOCK, or B_NO_LOCK.

• protection specifies whether the area’s memory can be read or written. It’s a
combination ofB_READ_AREA andB_WRITE_AREA.

• team is theteam_id of the thread that created or cloned this area.

Areas Functions

The Kernel Kit –53

The final four fields give information about the area that’s useful in diagnosing system use.
The fields are particularly valuable if you’re hunting for memory leaks:

• ram_size gives the amount of the area, in bytes, that’s currently swapped in.

• copy_count is a “copy-on-write” count that can be ignored—it doesn’t apply to the
areas that you create. The system can create copy-on-write areas (it does so when it
loads the data section of an executable, for example), but you can’t.

• in_count is a count of the total number of times any of the pages in the area have
been swapped in.

• out_count is a count of the total number of times any of the pages in the area have
been swapped out.

If the area argument doesn’t identify an existing area, the function returnsB_BAD_VALUE;
otherwise it returns B_NO_ERROR.

resize_area()
long resize_area(area_idarea, ulong new_size)

Sets the size of the designated area tonew_size, measured in bytes. Thenew_size
argument must be a multiple ofB_PAGE_SIZE (4096).

Size modifications affect the end of the area’s existing memory allocation: If you’re
increasing the size of the area, the new memory is added to the end of area; if you’re
shrinking the area, end pages are released and freed. In neither case does the area’s
starting address change, nor is existing data modified (expect, of course, for data that’s lost
due to shrinkage).

If the function is successful,B_NO_ERROR is returned. Otherwise one of the following
error codes is returned:

Constant Meaning

B_BAD_VALUE Eitherarea doesn’t signify a valid area, ornew_size isn’t
a multiple ofB_PAGE_SIZE.

B_NO_MEMORY Not enough memory to allocate the system structures that
support the new portion of the area. This should only
happen if you’re increasing the size of the area. Note that
this error codedoesn’t mean that you asked for too much
physical memory.

B_ERROR Some other system error prevented the area from being
created. Most notably,B_ERROR is returned ifnew_size is
too large.

See also: create_area()

54 – The Kernel Kit

set_area_protection()
long set_area_protection(area_id area, ulongnew_protection)

Sets the given area’s read and write protection. Thenew_protection argument is a mask
that specifies one or both of the valuesB_READ_AREA andB_WRITE_AREA. The former
means that the area can be read; the latter, that it can be written to. An area’s protection
only applies to access to the underlying memory through that specific area. Different area
clones that refer to the same memory may have different protections.

The function fails (the old protection isn’t changed) and returnsB_BAD_VALUE if area
doesn’t identify a valid area; otherwise it returnsB_NO_ERROR.

See also: create_area()

The Kernel Kit –55

Images

Declared in: <kernel/image.h>

Overview

An image is compiled code; put another way, an image is what the compiler produces.
There are three types of images:

• An app image is an application. Every application has a single app image.

• A library image is a dynamically linked library (a “shared library”). Most
applications link against the system library (libbe.so) that Be provides.

• An add-on imageis an image that you load into your application as it’s running.
Symbols from the add-on image are linked and references are resolved when the
image is loaded. Thus, an add-on image provides a sort of “heightened dynamic
linking” beyond that of a DLL.

The following sections explain how to load and run an app image, how to create a shared
library, and how to create and load an add-on image.

Loading an App Image

Loading an app image is like running a “sub-program.” The image that you load is
launched in much the same way as had you double-clicked it in the Browser, or launched it
from the command line. It runs in its own team—it doesn’t share the address space of the
application from which it was launched—and, generally, leads its own life.

Any application can be loaded as an app image; you don’t need to issue special compile
instructions or otherwise manipulate the binary. The one requirement of an app image is
that it must have amain() function; hardly a restrictive request.

To load an app image, you call theload_executable() function, the protocol for which is:

thread_idload_executable(BFile *file,
int argc,
const char **argv,
const char **env)

The function takes, as its first argument, a BFile object that represents the image file.
Having located the file, the function creates a new team, spawns a main thread in that
team, and then returns thethread_id of that thread to you. The thread that’s returned is the

Overview Images

56 – The Kernel Kit

executable’s main thread. It won’t be running: To make it run you pass thethread_id to
resume_thread() or wait_for_thread() (as explained in the major section “Threads and
Teams”).

In addition to the BFile argument,load_executable() takes anargc/argv argument pair
(which are copied and forwarded to the new thread’smain() function), as well as a pointer
to an array of environment variables (strings):

• Theargc/argv arguments must be set up properly—you can’t just pass 0 andNULL.
To properly instantiate the arguments, the first string in theargv array must be the
name of the image file (in other words, the name of the program that you’re going to
launch). You then install any other arguments you want in the array, and terminate
the array with aNULL entry. argc is set to the number of entries in theargv array (not
counting the terminatingNULL). It’s the caller’s responsibility to free theargv array
after load_executable() returns.

• envp is an array of environment variables that are also passed tomain(). Typically,
you use the globalenviron pointer (which you must declare as anextern—see the
example, below). You can, of course, create your environment variable array: As
with theargv array, theenvp array should be terminated with aNULL entry, and you
must free the array when load_executable() returns (that is, if you allocated it
yourself—don’t try to freeenviron).

The following example demonstrates a typical use ofload_executable(). First, we
include the appropriate files and declare the necessary variables:

#include <image.h> /* load_executable() */
#include <OS.h> /* wait_for_thread() */
#include <stdlib.h> /* malloc() */

/* Here's how you declare the environment variable array. */
extern char **environ;

BFile exec_file;
record_ref exec_ref;
char **arg_v; /* choose a name that doesn't collide with argv */
long arg_c; /* same here vis a vis arg_c */
thread_id exec_thread;
long return_value;

Next, we set our BFile’s ref so the object refers to the executable file, which we’re calling
adder. For this example, we useget_ref_for_path() to set the ref’s value (see the Storage
Kit chapter for more information on these manipulations):

get_ref_for_path("/hd/my_apps/adder", &exec_ref);
exec_file.SetRef(exec_ref);

Install, in thearg_v array, the “command line” arguments that we’re sending toadder.
Let’s pretend theadder program takes two integers, adds them together, and returns the
result asmain()'s exit code. Thus, there are three arguments: The name of the program
(“adder”), and the values of the two addends converted to strings. Since there are three

Images Overview

The Kernel Kit –57

arguments, we allocatearg_v to hold four pointers (to accommodate the finalNULL). Then
we allocate and copy the arguments.

arg_c = 3;
arg_v = (char **)malloc(sizeof(char *) * (agc + 1));

arg_v[0] = strdup("adder");
arg_v[1] = strdup("5");
arg_v[2] = strdup("3");
arg_v[3] = NULL;

Now that everything is properly set up, we callload_executable(). After the function
returns, it’s safe to free the allocatedarg_v array:

exec_thread=load_executable(&exec_file, arg_c, arg_v, environ);
free(arg_v);

At this point,exec_thread is suspended (the natural state of a newly-spawned thread). In
order to retrieve its return value, we use wait_for_thread() to tell the thread to run:

wait_for_thread(exec_thread, &return_value);

After wait_for_thread() returns, the value ofreturn_value should be 8 (i.e. 5 + 3).

Creating a Shared Library

The primary documentation for creating a shared library is provided by MetroWerks in
their CodeWarrior manual. Beyond the information that you find there, you should be
aware of the following amendments and caveats.

• You mustn’t export your library’s symbols through the-export all compiler flag.
Instead, you should either use-export pragma or -@export filename (which is the
same as -f filename). See the MetroWerks manual for details on how to use these
flags.

• The libraries that you create must be placed in/system/lib so the loader can find
them when an application (that’s uses your libraries) is launched.

 Creating and Using an Add-on Image

An add-on image is indistinguishable from a shared library image. Creating an add-on is,
therefore, exactly like creating a shared library, a topic that we breezed through
immediately above. The one exception to the rules given above is in where the add-on
must live: You can keep your add-ons anywhere in the file system. When you load an
add-on (through theload_add_on() function), you have to refer to the add-on file directly
through the use of a BFile—the system doesn’t search for the file for you.

Overview Images

58 – The Kernel Kit

Loading an Add-on Image

To load an add-on into your application, you call theload_add_on() function. The
function takes a pointer to a BFile object that refers to the add-on file, and returns an
image_id number that uniquely identifies the image across the entire system.

For example, let’s say you’ve created an add-on image that’s stored in the file
/hd/addons/adder (the add-on will perform the same adding operation that was
demonstrated in theload_executable() example). The code that loads the add-on would
look like this:

/* For brevity, we won't check errors. */
BFile addon_file;
record_ref addon_ref;
image_id addon_image;

/* Establish the file's ref. */
get_ref_for_path("/hd/addons/adder", &addon_ref);
addon_file.SetRef(addon_ref);

/* Load the add-on. */
addon_image = load_add_on(&addon_file);

Unlike loading an executable, loading an add-on doesn’t create a separate team (nor does
it spawn another thread). The whole point of loading an add-on is to bring the image into
your application’s address space so you can call the functions and fiddle with the variables
that the add-on defines.

Symbols

After you’ve loaded an add-on into your application, you’ll want to examine the symbols
(variables and functions) that it has brought with it. To get information about a symbol,
you call theget_image_symbol() function:

long get_image_symbol(image_idimage,
char *symbol_name,
longsymbol_type,
void ** location)

 The function’s first three arguments identify the symbol that you want to get:

• The first argument is the image_id of the add-on that owns the symbol.

• The second argument is the symbol’s name. This assumes, of course, that you know
the name. In general, using an add-on implies just this sort of cooperation.

• The third is a constant that gives the symbol’ssymbol type. The only types you
should care about areB_SYMBOL_TYPE_DATA which you use for variables, and
B_SYMBOL_TYPE_TEXT which you use for functions.

Images Overview

The Kernel Kit –59

The function returns, by reference in its final argument, a pointer to the symbol’s address.
For example, let’s say theadder add-on code looks like this:

long addend1 = 0;
long addend2 = 0;

long adder(void)
{

return (addend1 + addend2);
}

To examine the variables (addend1 andaddend2), you would callget_image_symbol()
thus:

long *var_a1, *var_a2;

/* addon_image is the image_id that was returned by the
 * load_add_on() call in the previous example.
 */
get_image_symbol(addon_image, "addend1", 1, &var_a1);
get_image_symbol(addon_image, "addend2", 1, &var_a2);

To get the symbol for theadder() function is a bit more complicated. The compiler
renames a function’s symbol to encode the data types of the function’s arguments. The
encoding scheme is explained in the next section; to continue with the example, we’ll
simply accept that theadder() function’s symbol is

adder__Fv

And so...

long (*func_add)();
get_image_symbol(addon_image, "adder__Fv", 2, &func_add);

Now that we’ve retrieved all the symbols, we can set the values of the two addends and
call the function:

*var_a1 = 5;
*var_a2 = 3;
long return_value = (*func_add)();

Function Symbol Encoding

The compiler encodes function symbols according to this format:

functionName__F<arg1Type><arg2Type><arg3Type>....

where the argument type codes are

Code Type

i int
l long

Functions Images

60 – The Kernel Kit

f float
d double
c char
v void

In addition, if the argument is declared as unsigned, the type code character is preceded by
“U”. If it’s a pointer, the type code (and, potentially, the “U”) is preceded by “P”; a
pointer to a pointer is preceded by “PP”. For example, a function that’s declared as

void Func(long, unsigned char **, float *, double);

would have the following symbol name:

Func__FlUPPcPfd

Note thattypedef’s are translated to their natural types. So, for example, this:

void dump_thread(thread_id, bool);

becomes

dump_thread__FlUc

Functions

get_image_info(), get_nth_image_info()
long get_image_info(image_idimage, image_info *info)

long get_nth_image_info(team_idteam,
longn,
image_info *info)

These functions return information about a particular image. The first version identifies
the image by its first argument; the second version locates then’th image that’s loaded into
team. The information is returned in theinfo argument. Theimage_info structure is
defined as:

typedef struct {
long volume;
long directory;
char name[B_FILE_NAME_LENGTH];
image_idid;
void *text;
long text_size;
void *data;
long data_size;
image_typetype;

} image_info

Images Functions

The Kernel Kit –61

The volume and directory fields are, practically speaking, private. The other fields are:

• name. The name of the file whence sprang the image.
• id. The image’simage_id number.
• text andtext_size. The address and the size (in bytes) of the image’s text segment.
• data anddata_size. The address and size of the image’s data segment.
• type. A constant that tells whether this is an app, library, or add-on image.

The self-explanatoryimage_type constants are:

• B_APP_IMAGE
• B_LIBRARY_IMAGE
• B_ADD_ON_IMAGE

The functions returnB_BAD_IMAGE_ID or B_BAD_INDEX if the designated image doesn’t
exist. Otherwise, they returnB_NO_ERROR.

get_image_symbol(), get_nth_image_symbol()
long get_image_symbol(image_idimage,

char *symbol_name,
longsymbol_type,
void ** location)

long get_nth_image_symbol(image_idimage,
longn,
char *name,
int *name_length,
int *symbol_type,
void ** location)

get_image_symbol() returns, inlocation, a pointer to the address of the symbol that’s
identified by theimage, symbol_name, andsymbol_type arguments. An example
demonstrating the use of this function is given in “Symbols” on page 58.

get_nth_image_symbol() returns information about then’th symbol in the given image.
The information is returned in the arguments:

• name is the name of the symbol. You have to allocate thename buffer before you
pass it in—the function copies the name into the buffer.

• You pointname_length to an integer that gives the length of thename buffer that
you’re passing in. The function uses this value to truncate the string that it copies
into name. The function then resetsname_length to the full (untruncated) length of
the symbol’s name (plus one byte to accommodate a terminatingNULL). To ensure
that you’ve gotten the symbol’s full name, you should compare the in-going value of
name_length with the value that the function sets it to. If the in-going value is less
than the full length, you can then re-invokeget_nth_image_symbol() with an
adequately lengthenedname buffer, and an increased name_lengthvalue.

Functions Images

62 – The Kernel Kit

Important: Keep in mind thatname_length is reset each time you call
get_nth_image_symbol(). If you’re calling the function iteratively (to retrieve all
the symbols in an image), you need to reset thename_length value between calls.

• The function setssymbol_typeto B_SYMBOL_TYPE_DATA if the symbol is a variable,
or B_SYMBOL_TYPE_TEXT if the symbol is a function. The argument’s value going
into the function is of no consequence.

• The function setslocation to point to the symbol’s address.

To retrieveimage_id numbers on which these functions can act, use the
get_nth_image_info() function. Such numbers are also returned directly when you load
an add-on image through theload_add_on() function.

The functions returnB_BAD_IMAGE_ID or B_BAD_INDEX if the designated image doesn’t
exist. Otherwise, they returnB_NO_ERROR.

load_add_on(), unload_add_on()
image_idload_add_on(BFile *file)
long unload_add_on(image_idimage)

load_add_on() loads an add-on image, identified byfile, into your application’s address
space. The function returns animage_id (a positive integer) that represents the loaded
image. An example that demonstrates the use of load_add_on() is given in “Loading an
Add-on Image” on page 58.

You can load the same add-on image twice; each time you load the add-on a new, unique
image_id is created and returned. If the requested file couldn’t be loaded as an add-on (for
whatever reason), the function returnsB_ERROR.

unload_add_on() removes the add-on image identified by the argument. The image’s
symbols are removed, and the memory that they represent is freed. If the argument
doesn’t identify a valid image, the function returnsB_ERROR. Otherwise, it returns
B_NO_ERROR.

load_executable()
thread_idload_executable(BFile *file,

int argc,
const char **argv,
const char **env)

Loads an app image into the system (itdoesn’t load the image into the caller’s address
space), creates a separate team for the new application, and spawns and returns the ID of
the team’s main thread. The image is identified by thefile argument;file must have its ref
set before this function is called. It’s of no consequence whether the object is open or
closed when you call this function.

Images Functions

The Kernel Kit –63

The other arguments are passed to the image’smain() function (they show up there as the
function’s similarly named arguments):

• argc gives the number of entries that are in theargv array.

• The first string in theargv array must be the name of the image file (in other words,
the name of the program that you’re going to launch). You then install any other
arguments you want in the array, and terminate the array with aNULL entry. Note
that the value ofargc shouldn’t countargv’s terminatingNULL.

• envp is an array of environment variables that are also passed tomain(). Typically,
you use the globalenviron pointer:

extern char **environ;

load_executable(..., environ);

Theargv andenvp arrays are copied into the new thread’s address space. If you allocated
either of these arrays, it’s safe to free them immediately afterload_executable() returns.

The thread that’s returned by load_executable() is in a suspended state. To start the
thread running, you pass thethread_id to resume_thread() or wait_for_thread().

An example that demonstrates the use ofload_executable() is given in “Loading an App
Image” on page 55.

If the function returnsB_ERROR upon failure.

Functions Images

64 – The Kernel Kit

The Kernel Kit –65

Miscellaneous Functions,
Constants, and Defined Types

Miscellaneous Functions

debugger()
void debugger(const char *string)

Throws the calling thread into the debugger. Thestring argument becomes the
debugger’s first utterance.

get_system_info()
long get_system_info(system_info *info)

Returns information about the computer. The information is returned ininfo, a
system_info structure.

is_computer_on()
long is_computer_on(void)

Returns 1 if the computer is on. If the computer isn’t on, the value returned by this
function is undefined.

system_time()
double system_time(void)

Returns the number of microseconds that have elapsed since the computer was booted.

Constants Miscellaneous Functions, Constants, and Defined Types

66 – The Kernel Kit

Constants

Area Location Constants
<kernel/OS.h>

Constant Meaning

B_ANY_ADDRESS Put the area anywhere
B_EXACT_ADDRESS The area must start exactly at a given address
B_BASE_ADDRESS The area can start anywhere above a given address
B_CLONE_ADDRESS The clone must start at the same address as the original

These constants represent the different locations at which an area can be placed when
it’s created. They’re used as values for the address arguments increate_area() and
clone_area(). B_CLONE_ADDRESS can be passed toclone_area() only; the other three
can be passed to either function.

See also: “Areas” on page 45

Area Lock Constants
<kernel/OS.h>

Constant Meaning

B_NO_LOCK Never lock the area’s pages
B_LAZY_LOCK Lock pages as they’re swapped in
B_FULL_LOCK Lock all pages now

These constants represent an area’s “locking scheme,” the circumstances in which the
area’s underlying memory is locked into RAM. You set the locking scheme for an area
by passing one of these constants tocreate_area()’s lock argument; the scheme can’t be
changed thereafter.

To query an area’s locking scheme, retrieve itsarea_info structure (through
get_area_info()) and look at thelock field.

See also: “Areas” on page 45

Area Protection Constants
<kernel/OS.h>

Constant Meaning

B_READ_AREA The area can be read from
B_WRITE_AREA The area can be written into

These constants represent the read and write protection that’s enforced for an area. The
constants are flags that can be added together and passed as the protection argument to

Miscellaneous Functions, Constants, and Defined Types Constants

The Kernel Kit –67

create_area() andclone_area(). You can change an area’s protection through the
set_area_protection() function.

To query an area’s protection, retrieve itsarea_info structure (throughget_area_info())
and look at theprotection field.

See also: “Areas” on page 45

CPU Count
<kernel/OS.h>

Constant Value

B_MAX_CPU_NUM 8

This constant gives the maximum number of CPUs that a single system can support.
Thecpu_count field of thesystem_info structure gives the number of CPUs that are
actually on a given system. To retrieve this structure, call theget_system_info()
function.

See also: get_system_info()

CPU Type Constant
<kernel/OS.h>

Constant

B_CPU_PPC_601
B_CPU_PPC_603
B_CPU_PPC_603e
B_CPU_PPC_604
B_CPU_PPC_604e
B_CPU_PPC_686

These constants represent the different CPU chips that the BeBox has used/is
using/might use. To discover which chip the local machine is using, looking in the
cpu_type field of thesystem_info structure. To retrieve this structure, call the
get_system_info() function.

See also: get_system_info()

Constants Miscellaneous Functions, Constants, and Defined Types

68 – The Kernel Kit

File Name Length
<kernel/OS.h>

Constant Value

B_FILE_NAME_LENGTH 64

This constant gives the maximum length of the name of a file or directory.

Image Type Constants
<kernel/image.h>

Constant Meaning

B_APP_IMAGE Application image
B_LIBRARY_IMAGE Shared library image
B_ADD_ON_IMAGE Add-on image
B_SYSTEM_IMAGE System-defined image

The image type constants (typeimage_type) enumerate the differentimages, or loadable
compiled code, that you can create or otherwise find on the system. Of the four image
types, you can’t createB_SYSTEM_IMAGES; however, it’s possible to run across a system-
defined image if you retrieve all the image info structures for all teams (through the
get_nth_image_info() function).

See also: “Images” on page 55

Image Symbol Type Constants
<kernel/OS.h>

Constant Meaning

B_SYMBOL_TYPE_DATA The symbol is a variable
B_SYMBOL_TYPE_TEXT The symbol is a function

The image symbol type constants describe the nature of a particular image symbol. You
retrieve symbol information from an image through theget_image_symbol().

See also: “Images” on page 55

Miscellaneous Functions, Constants, and Defined Types Constants

The Kernel Kit –69

Operating System Doodad Name Length
<kernel/OS.h>

Constant Value

B_OS_NAME_LENGTH 32

This constant gives the maximum length of the name of a thread, semaphore, port, area,
or other operating system bauble.

Page Size
<kernel/OS.h>

Constant Value

B_PAGE_SIZE 4096

TheB_PAGE_SIZE constant gives the size, in bytes, of a page of RAM.

Port Message Count
<kernel/OS.h>

Constant Value

B_MAX_PORT_COUNT 128

This constant gives the maximum number of messages that a port can hold at a time.
This value isn’t applied automatically—you declare a port’s message capacity when you
create it.

To query a port’s message capacity, retrieve itsport_info structure (through the
get_port_info() function) and look at thecapacity field.

See also: “Ports” on page 23

Constants Miscellaneous Functions, Constants, and Defined Types

70 – The Kernel Kit

Semaphore Control Flags
<kernel/OS.h>

Acquire Flag Meaning

B_TIMEOUT Honoracquire_sem_etc()’s timeout argument.
B_CAN_INTERRUPT The semaphore can be interrupted by a signal.
B_CHECK_PERMISSION Make sure this isn’t a system semaphore.

Release Flag Meaning

B_DO_NOT_RESCHEDULE Don’t reschedule after the semaphore is released.

These are the flag values that can be passed to theacquire_sem_etc() and
release_sem_etc() functions.

The timeout flag (B_TIMEOUT) applies to all semaphore acquisitions: If, having set the
B_TIMEOUT flag, youracquire_sem_etc() call blocks, the acquisition attempt will give
up after some number of microseconds (as given in the function’stimeout argument). If
B_TIMEOUT isn’t set, the acquisition can, potentially, block forever. The other two
acquisition flags are used by device driver writers only. The meanings of these flags is
given in the Device Kit chapter.

TheB_DO_NOT_RESCHEDULE flag applies to therelease_sem_etc() function. Normally,
when a semaphore is released, the kernel immediately finds another thread to run, even
if the releasing thread hasn’t used up a full “schedule quantum” worth of CPU attention.
By setting theB_DO_NOT_RESCHEDULE flag, you tell the scheduler to let the releasing
thread run for its normally alloted amount of time.

Thread Priority Constants
<kernel/OS.h>

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

These constants represent the thread priority levels. The higher a thread’s priority value,
the more attention it gets from the CPUs; the constants are listed here from lowest to
highest priority.

Miscellaneous Functions, Constants, and Defined Types Constants

The Kernel Kit –71

There are two priority categories:

• Time-sharing priorities (priority values from 1 to 99).
• Real-time priorities (100 and greater).

A time-sharing thread (a thread with a time-sharing priority value) is executed only if
there are no real-time threads in the ready queue. In the absence of real-time threads, a
time-sharing thread is elected to run once every “scheduler quantum” (currently, every
three milliseconds). The higher the time-sharing thread’s priority value, the greater the
chance that it will be the next thread to run.

A real-time thread is executed as soon as it’s ready. If more than one real-time thread is
ready at the same time, the thread with the highet priority is executed first. The thread is
allowed to run without being preempted (except by a real-time thread with a higher
priority) until it blocks, snoozes, is suspended, or otherwise gives up its plea for
attention.

You set a thread’s priority when you spawn it (spawn_thread()); it can be changed
thereafter through theset_thread_priority() function. Although you can set a thread
priority to values other than those defined by the constants shown here, it’s strongly
suggested that you stick with the constants.

To query a thread’s priority, look at thepriority field of the thread’sthread_info structure
(which you can retrieve through get_thread_info()).

See also: “Threads and Teams” on page 5

Thread State Constants
<kernel/OS.h>

Constant Meaning

B_THREAD_RUNNING The thread is currently receiving attention from a CPU.
B_THREAD_READY The thread is waiting for its turn to run.
B_THREAD_RECEIVING The thread is sitting in areceive_data() call.
B_THREAD_ASLEEP The thread is sitting in asnooze() call.
B_THREAD_SUSPENDED The thread has been suspended or is freshly-spawned.
B_THREAD_WAITING The thread is waiting to acquire a semaphore.

These constants (typethread_state) represent the various states that a thread can be in.
You can’t set a thread’s state directly; the state changes as the result of the thread’s
sequence of operations.

You can query a thread’s state by looking at thestate field of itsthread_info structure.
To retrieve the structure, callget_thread_info(). Be aware, however, that a thread’s state
is extremely ephemeral; by the time you retrieve it, it may have changed.

See also: “Threads and Teams” on page 5

Defined Types Miscellaneous Functions, Constants, and Defined Types

72 – The Kernel Kit

System Team ID
<kernel/OS.h>

Constant Meaning

B_SYSTEM_TEAM The team_id of the kernel’s team

TheB_SYSTEM_TEAM constant identifies the kernel’s team. You should only need to use
this constant if you’re bequeathing ownership of a port or semaphore to the kernel, an
activity that’s typically the province of driver writers.

Defined Types

area_id
<kernel/OS.h>

typedef long area_id

Thearea_id type uniquely identifies area.

See also: “Areas” on page 45

area_info
<kernel/OS.h>

typedef struct {
area_idarea;
charname[B_OS_NAME_LENGTH];
void *address;
ulongsize;
ulong lock;
ulongprotection;
team_idteam;
ulong ram_size;
ulong copy_count;
ulong in_count;
ulong out_count;

} area_info

Thearea_info structure holds information about a particular area.area_info structures
are retrieved through the get_area_info() function. The structure’s fields are:

• area is thearea_id that identifies the area.

• name is the name that was assigned to the area when it was created or cloned.

Miscellaneous Functions, Constants, and Defined Types Defined Types

The Kernel Kit –73

• address is a pointer to the area’s starting address. Keep in mind that this address is
only meaningful to the application that created (or cloned) the area.

• size is the size of the area, in bytes.

• lock is a constant that represents the area’s locking scheme. This will be one of
B_FULL_LOCK, B_LAZY_LOCK, or B_NO_LOCK.

• protection specifies whether the area’s memory can be read or written. It’s a
combination ofB_READ_AREA andB_WRITE_AREA.

• team is theteam_id of the thread that created or cloned this area.

Three of the final four fields (you can ignore thecopy_count field) give information about
the area that’s useful in diagnosing system use:

• ram_size gives the amount of the area, in bytes, that’s currently swapped in.
• in_count is the number of times the system has swapped in a page from the area.
• out_count is the number of times pages have been swapped out.

See also: “Areas” on page 45

cpu_info
<kernel/OS.h>

typedef struct {
double active_time;

} cpu_info

Thecpu_info structure describes facets of a particular CPU. Currently, the structure
contains only one field,active_time, that measures the amount of time, in microseconds,
that the CPU has actively been working since the machine was last booted. One
structure for each CPU is created and maintained by the system. An array of all such
structures can be found in thecpu_infos field of thesystem_info structure. To retrieve a
system_info structure, you call theget_system_info() function.

See also: system_info

Defined Types Miscellaneous Functions, Constants, and Defined Types

74 – The Kernel Kit

image_info
<kernel/image.h>

typedef struct {
long volume;
long directory;
char name[B_FILE_NAME_LENGTH];
image_idid;
void *text;
long text_size;
void *data;
long data_size;
image_typetype;

} image_info

The image_info structure contains information about a specific image. The fields are:

• Thevolume anddirectory fields are, practically speaking, private.
• name. The name of the file whence sprang the image.
• id. The image’simage_id number.
• text andtext_size. The address and the size (in bytes) of the image’s text segment.
• data anddata_size. The address and size of the image’s data segment.
• type. A constant that tells whether this is an app, library, or add-on image.

The self-explanatoryimage_type constants are:

• B_APP_IMAGE
• B_LIBRARY_IMAGE
• B_ADD_ON_IMAGE

image_type
<kernel/image.h>

typedef enum { ... }image_type

The image_type type defines the different image types.

See also: Image Type Constants

Miscellaneous Functions, Constants, and Defined Types Defined Types

The Kernel Kit –75

machine_id
<kernel/OS.h>

typedef longmachine_id[2]

Themachine_id type encodes a 64-bit number that uniquely identifies a particular
BeBox. To discover the machine id of the local machine, look in theid field of the
system_info structure. To retrieve this structure, call theget_system_info() function.

See also: get_system_info()

port_id
<kernel/OS.h>

typedef longport_id

Theport_id type uniquely identifies ports.

See also: “Ports” on page 23

port_info
<kernel/OS.h>

typedef struct port_info {
port_idport;
team_idteam;
charname[B_OS_NAME_LENGTH];
long capacity;
long queue_count;
long total_count;

} port_info

Theport_info structure holds information about a particular port. It’s fields are:

• port. Theport_id number of the port.
• team. The team_id of the port’s team.
• name. The name assigned to the port.
• capacity. The length of the port’s message queue.
• queue_count. The number of messages currently in the queue.
• total_count. The total number of message that have been read from the port.

Note that thetotal_count number doesn’t include the messages that are currently in the
queue.

You retrieve aport_info structure through theget_port_info() function.

See also: “Ports” on page 23

Defined Types Miscellaneous Functions, Constants, and Defined Types

76 – The Kernel Kit

sem_id
<kernel/OS.h>

typedef longsem_id

Thesem_id type uniquely identifies semaphores.

See also: “Semaphores” on page 31

sem_info
<kernel/OS.h>

typedef struct sem_info {
sem_idsem;
team_idteam;
charname[B_OS_NAME_LENGTH];
long count;
thread_idlatest_holder;

} sem_info

Thesem_info structure holds information about a given semaphore. The structure’s fields
are:

• sem. Thesem_id number of the semaphore.
• team. The team_id of the semaphore’s owner.
• name. The name assigned to the semaphore.
• count. The semaphore’s thread count.
• latest_holder. The thread that most recently acquired the semaphore.

Note that the thread that’s identified in thelastest_holder field may no longer be holding
the semaphore—it may have since released the semaphore. The latest holder is simply the
last thread to have calledacquire_sem() (of whatever flavor) on this semaphore.

You retrieve a sem_info structure through theget_sem_info() function.

See also: “Semaphores” on page 31

Miscellaneous Functions, Constants, and Defined Types Defined Types

The Kernel Kit –77

system_info
<kernel/OS.h>

typedef struct {
machine_id id;
doubleboot_time;
long cpu_count;
long cpu_type;
long cpu_revision;
cpu_infocpu_infos[B_MAX_CPU_NUM];
doublecpu_clock_speed;
doublebus_clock_speed;
long max_pages;
long used_pages;
long page_faults;
long max_sems;
long used_sems;
long max_ports;
long used_ports;
long max_threads;
long used_threads;
long max_teams;
long used_teams;
long volume;
long directory;
charname [B_FILE_NAME_LENGTH];

} system_info

Thesystem_info structure holds information about the machine and the state of the kernel.
The structure’s fields are:

• id. The 64-bit number (encoded as twolongs) that uniquely identifies this
machine.

• boot_time. The time at which the computer was last booted, measured in
microseconds since January 1st, 1970.

• cpu_count. The number of CPUs.
• cpu_type andcpu_revision. The type constant and revision number of the CPUs.
• cpu_infos. An array ofcpu_info structures, one for each CPU.
• cpu_clock_speed. The speed (in Hz) at which the CPUs operate.
• bus_clock_speed. The speed (in Hz) at which the bus operates.

• max_resources andused_resources. The five pairs ofmax/used fields give the
total number of RAM pages, semaphores, and so on, that the system can create,
and the number that are currently in use.

• page_faults. The number of times the system a read a page of memory into RAM
due to a page fault.

Defined Types Miscellaneous Functions, Constants, and Defined Types

78 – The Kernel Kit

• volume. The volume (listed by its ID) that contains the kernel.
• directory. The directory (listed by its ID) that contains the kernel.
• name. The file name of the kernel.

Thedirectory field is unusable: Directory ID numbers aren’t visible through the present
(public) means of file system access. But you can save the directory IDs that you collect
now and trade them in for a higher draft pick next season.

You retrieve asystem_info structure through theget_system_info() function.

See also: get_system_info()

team_id
<kernel/OS.h>

typedef longteam_id

The team_id type uniquely identifies teams.

See also: “Threads and Teams” on page 5

team_info
<kernel/OS.h>

typedef struct {
team_idteam;
long thread_count;
long image_count;
long area_count;
thread_iddebugger_nub_thread;
port_iddebugger_nub_port;
long argc;
charargs[64];

} team_info

The team_info structure holds information about a team. It’s returned by the
get_team_info() function. It’s fields are:

• team is the team’s ID number.

• thread_count, image_count, andarea_count give the number of threads that
have been spawned, images that have been loaded, and areas that have been
created or cloned within this team.

• debugger_nub_thread anddebugger_nub_port are used to communicate with
the debugger. Unless you’re designing your own debugger, you can ignore these
fields.

Miscellaneous Functions, Constants, and Defined Types Defined Types

The Kernel Kit –79

• Theargc field is the number of command line arguments that were used to launch
the team;args is a copy of the first 64 characters from the command line
invocation. If this team is an application that was launched through the user
interface (by double-clicking, or by accepting a dropped icon), thenargc is 1 and
args is the name of the application’s executable file.

See also: “Threads and Teams” on page 5

thread_entry
<kernel/OS.h>

typedef long (*thread_entry)(void *)

The thread_entry type is a function protocol for functions that are used as the entry
points for new threads. You assign an entry function to a thread when you all
spawn_thread(); the function takes athread_entry function as its first argument.

See also: “Threads and Teams” on page 5

thread_id
<kernel/OS.h>

typedef longthread_id

The thread_id type uniquely identifies threads.

See also: “Threads and Teams” on page 5

thread_info
<kernel/OS.h>

typedef struct {
thread_idthread;
team_idteam;
charname[B_OS_NAME_LENGTH];
thread_statestate;
long priority;
sem_idsem;
doubletime;
void *stack_base;
void *stack_end;

} thread_info

This structure holds information about a thread. It’s returned by functions such as
get_thread_info(). The fields are:

Defined Types Miscellaneous Functions, Constants, and Defined Types

80 – The Kernel Kit

• thread. Thethread_id number of the thread.

• team. The team_id of the thread’s team.

• name. The name assigned to the thread.

• state. A constant that describes what the thread is currently doing.

• priority. A constant that represents the level of attention the thread gets.

• sem. If the thread is waiting to acquire a semaphore, this is thesem_id number of
that semaphore. Thesem field is only valid if the thread’s state is
B_THREAD_WAITING.

• time. The amount of active attention the thread has received from the CPUs,
measured in microseconds.

• stack_base. A pointer to the first byte of memory in the thread’s execution stack.

• stack_end. A pointer to the last byte of memory in the thread’s execution stack.

See also: “Threads and Teams” on page 5

thread_state
<kernel/OS.h>

typedef enum { ... }thread_state

The thread_state type represents values that describe the various states that a thread can
be in.

See also: Thread State Constants

