
The Support Kit –1

12 The Support Kit

Introduction . 3

Class Information . 5
Information . 5
Safe Casting . 6

Debugging Tools . 9
TheDEBUG Compiler Variable 9
The Debug Flag . 9
Macros . .10

BList .13
Overview .13
Constructor and Destructor .13
Member Functions. .14
Operators .18

BLocker . .19
Overview .19
Constructor and Destructor .20
Member Functions. .21

BObject . .23
Overview .23
Constructor and Destructor .23

BStopWatch. .25
Overview .25
Constructor and Destructor .26

Functions, Constants, and Defined Types 27
Functions and Macros . .27
Constants .29
Defined Types .30

2 – The Support Kit

Error Codes . .33
General Error Codes . .33
Application Kit Error Codes. 34
Debugger Error Codes . .34
Kernel Kit Error Codes .34
Media Kit Error Codes .35

The Support Kit –3

12 The Support Kit

The Support Kit contains classes and utilities that any application can take advantage of—
regardless of what kind of application it is or what it does. Among other things, it
includes:

• The root BObject class
• The BList class
• A system for getting class information at run time
• Debugging tools including the BStopWatch class
• Common defined types, macros, and error codes

4 – The Support Kit

The Support Kit –5

Class Information

Declared in: <support/ClassInfo.h>

The class-information system is a set of macros that you use to discover information about
an object’s class, and cast an object to pose as an instance of some other class.

Information

An object can supply three kinds of information about itself:

• What the name of its class is,
• Whether it’s an instance of a particular class, and
• Whether its class derives from some other class (or perhapsis the other class).

These three capabilities are embodied in the following macros,

const char *class_name(object)

bool is_instance_of(object, class)

bool is_kind_of(object, class)

whereobject is a pointer to any type of object andclass is a class designator—it’snot a
string name (for example, you would useBView, not “BView”).

Theclass_name() macro returns the name of the object’s class.is_instance_of() returns
TRUE if object is an instance ofclass, andFALSE otherwise.is_kind_of() returnsTRUE if
object is an instance of a class that inherits fromclass or an instance ofclass itself, and
FALSE if not.

For example, given this slice of the inheritance hierarchy from the Interface Kit,

and code like this that creates an instance of the BButton class,

BButton *anObject = new BButton(...);

these three macros would work as follows:

BView

BControl BButton

BMenu

Safe Casting Class Information

6 – The Support Kit

• Theclass_name() macro would return the string “BButton”:

const char *s = class_name(anObject);

• The is_instance_of() macro would returnTRUE only if theclass passed to it is
BButton. In the following example, it would returnFALSE, and the message would
not be printed. Even though BButton inherits from BView, the object is an instance
of the BButton class, not BView:

if (is_instance_of(anObject, BView))
 printf("The object is an instance of BView.\n");

• The is_kind_of() macro would returnTRUE if class is BButton or any class that
BButton inherits from. In the following example, it would returnTRUE and the
message would be printed. A BButton is a kind of BView:

if (is_kind_of(anObject, BView))
 printf("The object is a kind of BView.\n");

Note that class names are not passed as strings.

Safe Casting

An object whose class participates in the class-information system will permit itself to be
cast to that class or to any class that it inherits from. The agent for this kind of “safe
casting” is the following macro,

class *cast_as(object, class)

whereobject is an object pointer andclass is a class designator.

cast_as() returns a pointer toobject cast as a pointer to an object ofclass, provided that
object is a kind ofclass—that is, provided that it’s an instance of a class that inherits from
class or is an instance ofclass itself. If not,object cannot be safely cast as pointer toclass,
socast_as() returnsNULL.

This macro is most useful when you have a pointer to a generic object and you want to
treat it as a pointer to a more specific class.

Suppose, for example, that you retrieve a BWindow from a BView:

BWindow *window = myView->Window();

Class Information Safe Casting

The Support Kit –7

Furthermore, let’s say that you suspect that the object that was returned is really an
instance of a BWindow-derived class called MyWindow. If it is, you want to cast the
object to be a MyWindow pointer. Thecast_as() macro accomplishes this in one step:

MyWindow *mine;

if (mine = cast_as(window, MyWindow))
 /* mine is cast as a MyWindow object. */
else
 /* mine is set to NULL. */

Safe Casting Class Information

8 – The Support Kit

The Support Kit –9

Debugging Tools

Declared in: <support/Debug.h>

The Support Kit provides a set of macros that help you debug your application. These
tools let you print information to standard output or to the serial port, and conditionally
enter the debugger.

To enable the Support Kit’s debugging tools you have to do two things:

• Compile your code with theDEBUG compiler variable defined
• Turn on the debug flag in your code through theSET_DEBUG_ENABLED() macro

These two acts represent, respectively, a compile time and a run time decision about the
effectiveness of the debugging tools. The compile time decision overrides the run time
decision: Turning on the debug flag (SET_DEBUG_ENABLED(TRUE)) has no affect if the
DEBUG variable isn’t defined.

The DEBUG Compiler Variable

Defining theDEBUG compiler variable can be done by adding the following line to your
makefile:

USER_DEBUG_C_FLAGS := -DDEBUG

(The MetroWerks IDE will undoubtedly supply a means for setting theDEBUG variable
through its interface. Check your local papers.)

When you’re through debugging your application, simply remove theDEBUG definition
and all of the debugging macros will be compiled away—you don’t have to actually go
into the code and remove the macros or comment them out.

The Debug Flag

TheSET_DEBUG_ENABLED() macro turns on (or off) the debug flag. When you call a
debugging tool, the state of the debugger flag is checked; if it’s turned on, the tool does
what it’s designed to do (and, in with some tools, you could end up in the debugger). If the
flag is off, the tool is ignored.

Macros Debugging Tools

10 – The Support Kit

Note: The debug flag is on by default. If you want to (initially, at least) turn it off, you
should callSET_DEBUG_ENABLED(FALSE) as one of your first acts inmain().

The run time aspect of the debug flag is particularly convenient if your application is large
and you want to concentrate on certain sections of the code. Note, however, that the scope
of the flag is application-wide. You can’t, for example, disable the debugging tools across
an object’s member functions by simply calling SET_DEBUG_ENABLED(FALSE) in the
object’s constructor.

Macros

DEBUGGER(), ASSERT()
 DEBUGGER(var_args)
ASSERT(condition)

These macros cause your program to enter the debugger: DEBUGGER() always enters the
debugger,ASSERT() enters ifcondition (which can be any normal C or C++ expression)
evaluates toFALSE.

DEBUGGER() takes aprintf()-style variable-length argument that must be wrapped inside a
second set of parentheses; for example:

DEBUGGER(("What time is it? %f\n", system_time()));

The argument is evaluated and printed in the debugger’s shell.

If ASSERT() enters the debugger, the following message is printed:

Assert failed: File: filename , Line: number . condition

Note thatASSERT()’s argument needn’t be wrapped in a second set of parentheses.

HEAP_STATS()
HEAP_STATS()

Prints, to standard out, a message that gives statistics about your application’s memory
heap. The message appears in this format:

Heap Size: size bytes
Used blocks: count (size bytes)
Free blocks: count (size bytes)

Debugging Tools Macros

The Support Kit –11

PRINT(), SERIAL_PRINT()
PRINT(var_args)
SERIAL_PRINT(var_args)

These macros print the message given byvar_args. The argument takes the variable
argument form of aprintf() call and must be wrapped inside a second set of parenthesis; for
example:

PRINT(("The time is %f\n", system_time()));

PRINT() sends the message to standard out;SERIAL_PRINT() to serial port 4 (the bottom-most
serial port on the back of the computer).

PRINT_OBJECT()
PRINT_OBJECT(object)

Prints information about the argumentobject (which must be a pointer to a C++ object) by
calling the object’sPrintToStream() function. The macro doesn’t check to make sure that
object actually implements the function, so you should use this macro with care.

Object information is always printed to standard out (there isn’t a serial port version of the
call).

SET_DEBUG_ENABLED(), IS_DEBUG_ENABLED()
SET_DEBUG_ENABLED(flag)
IS_DEBUG_ENABLED(void)

TheSET_DEBUG_ENABLED() macro sets the state of the run time debug flag: ATRUE
argument turns it on,FALSE turns it off. The utility of the other debugging macros depends
on the state of the debug flag: When the flag is on, the macros work; when it’s off, they’re
ignored. The debug flag is set toTRUE by default.

The debug flag is only meaningful if your code was compiled with theDEBUG compiler
variable defined. Without the variable definition, the flag is alwaysFALSE.

 IS_DEBUG_ENABLED() returns the current state of the debug flag.

TRACE(), SERIAL_TRACE()
TRACE(void)
SERIAL_TRACE(void)

These macros print the name of the source code file that contains the currently executing
code (in other words, the file that contains theTRACE() call itself), the line number of the
code, and thethread_id of the calling thread. The information is printed in this form:

Macros Debugging Tools

12 – The Support Kit

 File: filename , Line: number , Thread: id

TRACE() sends the message to standard out;SERIAL_TRACE() to serial port 4 (the bottom-
most serial port on the back of the computer).

The Support Kit –13

BList

Derived from: public BObject

Declared in: <support/List.h>

Overview

A BList object is a compact, ordered list of data pointers. BList objects can contain
pointers to any type of data, including—and especially—objects.

Items in a BList are identified by their ordinal position, or index, starting with index 0.
Indices are neither arbitrary nor permanent. If, for example, you insert an item into the
middle of a list, the indices of the items at the tail of the list are incremented (by one).
Similarly, removing an item decrements the indices of the following items.

A BList stores its items as typevoid *, so it’s necessary to cast an item to the correct type
when you retrieve it. For example, items retrieved from a list of BBitmap objects must be
cast as BBitmap pointers:

BBitmap *theImage = (BBitmap *)myList->ItemAt(anIndex);

Note: There’s nothing to prevent you from adding aNULL pointer to a BList. However,
functions that retrieve items from the list (such asItemAt()) returnNULL when the
requested item can’t be found. Thus, you can’t distinguish between a validNULL item and
an invalid attempt to access an item that isn’t there.

Constructor and Destructor

BList()
BList(longblockSize = 20)
BList(const BList&anotherList)

Initializes the BList by allocating enough memory to holdblockSize items. As the list
grows and shrinks, additional memory is allocated and freed in blocks of the same size.

The copy constructor creates an independent list of data pointers, but it doesn’t copy the
pointed-to data. For example:

BList *newList = new BList(oldList);

Member Functions BList

14 – The Support Kit

Here, the contents ofoldList andnewList—the actual data pointers—are separate and
independent. Adding, removing, or reordering items inoldList won’t affect the number or
order of items innewList. But if you modify the data that an item inoldList points to, the
modification will be seen through the analogous item innewList.

The block size of a BList that’s created through the copy constructor is the same as that of
the original BList.

~BList()
virtual ~BList(void)

Frees the list of data pointers, but doesn’t free the data that they point to. To destroy the
data, you need to free each item in an appropriate manner. For example, objects that were
allocated with thenew operator should be freed withdelete:

void *anItem;
for (long i = 0; anItem = myList->ItemAt(i); i++)
 delete anItem;
delete myList;

See also: MakeEmpty()

Member Functions

AddItem()
bool AddItem(void *item, long index)
inline boolAddItem(void *item)

Adds an item to the BList atindex—or, if no index is supplied, at the end of the list. If
necessary, additional memory is allocated to accommodate the new item.

Adding an item never removes an item already in the list. If the item is added at an index
that’s already occupied, items currently in the list are bumped down one slot to make
room.

If index is out-of-range (greater than the current item count, or less than zero), the function
fails and returnsFALSE. Otherwise it returnsTRUE.

BList Member Functions

The Support Kit –15

AddList()
bool AddList(BList * list, long index)
bool AddList(BList * list)

Adds the contents of another BList to this BList. The items from the other BList are
inserted atindex—or, if no index is given, they’re appended to the end of the list. If the
index is out-of-range, the function fails and returnsFALSE. If successful, it returnsTRUE.

See also: AddItem()

CountItems()
inline longCountItems(void) const

Returns the number of items currently in the list.

DoForEach()
void DoForEach(bool (*func)(void *))
void DoForEach(bool (*func)(void *, void *), void *arg2)

Calls thefunc function once for each item in the BList. Items are visited in order,
beginning with the first one in the list (index 0) and ending with the last. If a call tofunc
returnsTRUE, the iteration is stopped, even if some items have not yet been visited.

func must be a function that takes one or two arguments. The first argument is the
currently-considered item from the list; the second argument, iffunc requires one, is
passed toDoForEach() asarg2.

FirstItem()
inline void *FirstItem(void) const

Returns the first item in the list, orNULL if the list is empty. This function doesn’t remove
the item from the list.

See also: LastItem(), ItemAt()

HasItem()
inline boolHasItem(void *item) const

ReturnsTRUE if item is in the list, andFALSE if not.

Member Functions BList

16 – The Support Kit

IndexOf()
long IndexOf(void *item) const

Returns the ordinal position ofitem in the list, orB_ERROR if item isn’t in the list. If the
item is in the list more than once, the index returned will be the position of its first
occurrence.

IsEmpty()
inline boolIsEmpty(void) const

ReturnsTRUE if the list is empty (if it contains no items), andFALSE otherwise.

See also: MakeEmpty()

ItemAt()
inline void *ItemAt(long index) const

Returns the item atindex, or NULL if the index is out-of-range. This function doesn’t
remove the item from the list.

See also: Items(), FirstItem(), LastItem()

Items()
inline void *Items(void) const

Returns a pointer to the BList’s list. You can index directly into the list if you’re certain
that the index is in-range:

myType item = (myType)Items()[index];

Although the practice is discouraged, you can also step through the list of items by
incrementing the list pointer that’s returned byItems(). Be aware that the list isn’t null-
terminated—you have to detect the end of the list by some other means. The simplest
method is to count items:

void *ptr = myList->Items();

for (long i = myList->ItemCount(); i > 0; i--)
{
 . . .
 *ptr++;
}

You shouldnever use the list pointer to change the number of items in the list.

See also: DoForEach(), SortItems()

BList Member Functions

The Support Kit –17

LastItem()
inline void *LastItem(void) const

Returns the last item in the list without removing it. If the list is empty, this function
returnsNULL.

See also: RemoveLastItem(), FirstItem()

MakeEmpty()
void MakeEmpty(void)

Empties the BList of all its items, without freeing the data that they point to.

See also: IsEmpty(), RemoveItem()

RemoveItem()
bool RemoveItem(void *item)
void *RemoveItem(long index)

Removes an item from the list. If passed anitem, the function looks for the item in the list,
removes it, and returnsTRUE. If it can’t find the item, it returnsFALSE. If the item is in the
list more than once, this function removes only its first occurrence.

If passed anindex, the function removes the item at that index and returns it. If there’s no
item at the index, it returnsNULL.

The list is compacted after an item is removed. Because of this, you mustn’t try to empty
a list (or a range within a list) by removing items at monotonically increasing indices. You
should either start with the highest index and move towards the head of the list, or remove
at the same index (the lowest in the range) some number of times. As an example of the
latter, the following code removes the first five items in the list:

for (long i = 0; i <= 4; i++)
myList->RemoveItem(0);

See also: MakeEmpty()

SortItems()
void *SortItems(int (*compareFunc)(const void *, const void *))

Rearranges the items in the list. The items are sorted using thecompareFunc comparison
function passed as an argument. This function should take two items as arguments. It
should return a negative number if the first item should be ordered before the second, a

Operators BList

18 – The Support Kit

positive number if the second should be ordered before the first, and 0 if the two items
should be ordered equivalently.

See also: Items()

Operators

= (assignment)
BList& operator =(const BList&)

Copies the contents of one BList object into another:

BList newList = oldList;

After the assignment, each object has its own independent copy of list data; destroying one
of the objects won’t affect the other.

Only the items in the list are copied, not the data they point to.

The Support Kit –19

BLocker

Derived from: public BObject

Declared in: <support/Locker.h>

Overview

The BLocker class provides a locking mechanism that protects a section of code. The
code that you want to protect should be placed between BLocker’sLock() andUnlock()
calls:

BLocker *aLock = new BLocker();

...
aLock->Lock();
/* Protected code goes here. */
aLock->Unlock();

This disposition of calls guarantees that only one thread at a time will pass through the
lock. After a thread has locked the BLocker object, subsequent attempts to lock by other
threads are blocked until the first thread callsUnlock().

BLocker keeps track of its lock’s “owner”—the thread that’s currently betweenLock() and
Unlock() calls. It lets the lock owner make nested calls to Lock() without blocking.
Because of this, you can wrap a BLocker’s lock around a series of functions that might,
themselves, lock the same BLocker object.

For example, let’s say you have a class called BadDog that’s declared thus:

class MyObject : public BObject
{
public:

void DoThis();
void DoThat();
void DoThisAndThat();

private:
 BLocker lock;
};

And let’s implement the member functions as shown below:

void BadDog::DoThis()
{

lock.Lock();

Constructor and Destructor BLocker

20 – The Support Kit

/* Do this here. */
lock.Unlock();

}

void BadDog::DoThat()
{

lock.Lock();
/* Do that here. */
lock.Unlock();

}

void BadDog::DoThisAndThat()
{

lock.Lock();
DoThis();
DoThat();
lock.Unlock();

}

Notice thatDoThisAndThat() wraps the lock around its calls toDoThis() andDoThat(), both
of which contain locks as well. A thread that gets past theLock() call in DoThisAndThat()
will be consider the lock’s owner, and so it won’t block when it calls the nestedLock()
calls that it runs into in DoThis() andDoThat().

Keep in mind that nestedLock() calls must be balanced by equally-nestedUnlock() calls.

Constructor and Destructor

BLocker()
BLocker(void)

BLocker(const char *name)

Sets up the object. The optional name is purely for diagnostics and debugging.

~BLocker()
virtual ~BLocker(void)

Deletes the object. If there are any threads blocked waiting to lock the object, they’re
immediately unblocked.

BLocker Member Functions

The Support Kit –21

Member Functions

IsLocked()
inline boolIsLocked(void) const

Checks to see whether the calling thread is the thread that currently owns the lock. If it is,
IsLocked() returnsTRUE. If it’s not, IsLocked() returnsFALSE

Lock(), Unlock()
void Lock(void)

void Unlock(void)

These functions lock and unlock the BLocker.

Lock() attempts to lock the BLocker and set the lock’s owner to the calling thread. The
function doesn’t return until it has succeeded. While the BLocker is locked, non-owner
calls toLock() will block. The owner, on the other hand, can make additional, nested calls
to Lock() without blocking.

Unlock() releases one level of nested locks and returns immediately. When the BLocker
is completely unlocked—when all nestedLock() calls have been matched by calls to
Unlock()—the lock’s owner is “unset”, allowing some other thread to lock the BLocker. If
there are threads blocked inLock() calls when the lock is released, the thread that’s been
waiting the longest acquires the lock.

Although you’re not prevented from doing so, it’s not good form to callUnlock() from a
thread that doesn’t own the lock. For debugging purposes, you can callIsLocked() before
calling Unlock() to make sure this doesn’t happen in your code.

See also: LockOwner()

LockOwner()
inline thread_idLockOwner(void) const

Returns the thread that currently owns the lock, or –1 if the BLocker isn’t currently
locked.

See also: Lock()

Member Functions BLocker

22 – The Support Kit

The Support Kit –23

BObject

Derived from: none

Declared in: <support/Object.h>

Overview

BObject is the root class of the inheritance hierarchy. All Be classes (with just a handful
of significant exceptions) are derived from it.

The primary reason for a single, shared base class is to provide common functionality to
all objects. Currently, the BObject class is empty (except for its constructor and
destructor), so there’s no significant functionality to report. Subsequent releases will
probably introduce new functions to the class; in anticipation of this, it’s suggested that the
classes you design derive from BObject (if no other Be class is a fit base).

In addition, when all objects are derived from BObject, the class can provide a generic
type classification (BObject *) that simply means “an object.” This can be a useful
substitute for typevoid *.

Constructor and Destructor

BObject()
BObject(void)

Does nothing. Because the BObject class has no data members to initialize, the BObject
constructor is empty.

~BObject()
virtual ~BObject(void)

Does nothing. Because the BObject class doesn’t declare any data members, the BObject
destructor has nothing to free.

Constructor and Destructor BObject

24 – The Support Kit

The Support Kit –25

BStopWatch

Derived from: public BObject

Declared in: <support/StopWatch.h>

Overview

The BStopWatch class is a debugging tool that you can use to time the execution of
portions of your code. The class has no member functions or (public) member data.
When a BStopWatch object is constructed, it starts its internal timer. When it’s deleted it
stops the timer and prints the elapsed time to standard out in this format:

StopWatch “name”: f usecs.

Wherename is the name that you gave to the object when you constructed it, andf is the
elapsed time in microseconds reckoned to one decimal place.

For example ...

#include <StopWatch.h>
...
BStopWatch *myWatch = new BStopWatch("Timer 0");
/* The code you want to time goes here. */
delete myWatch;
...

... would produce, on standard out, a message that goes something like this:

StopWatch "Timer 0": 492416.3 usecs.

This would indicate that the timed code took about half a second to execute—remember,
you’re looking at microseconds.

BStopWatch objects are handy little critters. They’re particularly useful if you want to get
a general idea of where your cycles are going. But you shouldn’t rely on them for
painfully accurate measurements.

Important: Unlike the other debugging tools defined by the Support Kit, there’s no run-
time toggle to control a BStopWatch. Make sure you remove your BStopWatch objects
after you’re done debugging your code.

Constructor and Destructor BStopWatch

26 – The Support Kit

Constructor and Destructor

BStopWatch()
BStopWatch(const char *name)

Creates a BStopWatch object, names it name, and starts its internal timer.

~BStopWatch()
virtual ~BStopWatch(void)

Stops the object’s timer, spits out a timing message to standard out, and then destroys the
object and everything it believes in.

The Support Kit –27

Functions, Constants, and
Defined Types

This section lists the Support Kit’s general-purpose functions (including function-like
macros), constants, and defined types. These elements are used throughout the Be
application-programming interface.

Not listed here are constants that are used as error codes. These are listed in “Error
Codes” on page 33.

Functions and Macros

atomic_add(), atomic_and(), atomic_or()
long atomic_add(long *atomic_variable, longadd_value)
long atomic_and(long *atomic_variable, longand_value)
long atomic_or(long *atomic_variable, longor_value)

These functions perform the named operations (addition, bitwise AND, or bitwise OR) on
the value found inatomic_variable, thus:

*atomic_variable += add_value
*atomic_variable &= and_value
*atomic_variable |= or_value

The functions return the previous value of*atomic_variable (in other words, they return
the value thatatomic_variable pointed to before the operation was performed).

The significance of these functions is that they’re guaranteed to beatomic: If two threads
attempt to access the same atomic variable at the same time (through these functions), one
of the two threads will be made to wait until the other thread has completed the operation
and updated theatomic_variable value.

Functions and Macros Functions, Constants, and Defined Types

28 – The Support Kit

class_name(), is_instance_of(), is_kind_of(), cast_as()
class_name(object)
is_instance_of(object, class)
is_kind_of(object, class)
cast_as(object, class)

These macros are part of the class information mechanism. In all cases,object is a pointer
to an object, and class is a class designator (such as, literally,BView or BFile) andnot a
string (not “BView” or “BFile”).

class_name() returns a pointer to the name ofobject’s class.

is_instance_of() returnsTRUE if object is a direct instance of class.

is_kind_of() returnsTRUE if object is an instance of class, or if it inherits from class.

cast_as() if object is a kind of class (in theis_kind_of() sense), then cast_as() returns a
pointer to object cast as an instance of class. Otherwise it returnsNULL.

min(), max()
<support/SupportDefs.h>

min(a, b)
max(a, b)

These macros compare two integers or floating-point numbers.min() returns the lesser of
the two (orb if they’re equal);max() returns the greater of the two (ora if they’re equal).

read_16_swap(), read_32_swap(), write_16_swap(), write_32_swap()
shortread_16_swap(short *address)
long read_32_swap(long *address)

void write_16_swap(short *address, shortvalue)
void write_32_swap(long *address, longvalue)

Theread... functions read a 16- or 32-bit value fromaddress, reverse the order of the
bytes in the value, and return the swapped value directly.

Thewrite... functions swap the bytes invalue and write the swapped value toaddress.

Functions, Constants, and Defined Types Constants

The Support Kit –29

real_time_clock(), set_real_time_clock(), time_zone(),
set_time_zone()

long real_time_clock(void)
void set_real_time_clock(longseconds)

long time_zone(void)
void set_time_zone(longseconds)

These functions measure and set time in seconds:

• real_time_clock() returns a measure of the number of seconds that have elapsed
since the beginning of January 1st, 1970.time_zone() is a time-zone based offset,
in seconds, that you can add to the value returned byreal_time_clock() to get a
notion of the actual (current) time of day.

• set_real_time_clock() andset_time_zone() set the values for the system’s clock and
time zone variables.

Warning: Thetime_zone() andset_time_zone() functions are currently unimplemented.
If you call them, you will crash.

These functions aren’t intended for scrupulously accurate measurement.

See also: system_time() in the Kernel Kit

write_16_swap() see read_16_swap()

write_32_swap() see read_16_swap()

Constants

Boolean Constants
<support/SupportDefs.h>

Defined constant Value

FALSE 0
TRUE 1

These constants are used as values forbool variables (thebool type is listed in the next
section).

Defined Types Functions, Constants, and Defined Types

30 – The Support Kit

Empty String
<support/SupportDefs.h>

const char *B_EMPTY_STRING

This constant provides a global pointer to an empty string (“”).

NULL and NIL
<support/SupportDefs.h>

Defined constant Value

NIL 0
NULL 0

These constants represent “empty” values. They’re synonyms that can be used
interchangeably.

Defined Types

bool
<support/SupportDefs.h>

typedef unsigned charbool

This is the Be version of the basic boolean type. TheTRUE andFALSE constants (listed
above) are defined as boolean values.

Fumction Pointers
<support/SupportDefs.h>

typedef int (*B_PFI)()
typedef long (*B_PFL)()
typedef void (*B_PFV)()

These types are pointers to functions that returnint, long, andvoid values respectively.

Unsigned Integers
<support/SupportDefs.h>

typedef unsigned charuchar
typedef unsigned intuint

Functions, Constants, and Defined Types Defined Types

The Support Kit –31

typedef unsigned longulong
typedef unsigned shortushort

These type names are defined as convenient shorthands for the standard unsigned types.

Volatile Integers
<support/SupportDefs.h>

typedef volatile charvchar
typedef volatile intvint
typedef volatile longvlong
typedef volatile shortvshort

These type names are defined as shorthands for declaring volatile data.

Volatile and Unsigned Integers
<support/SupportDefs.h>

typedef volatile unsigned charvuchar
typedef volatile unsigned intvuint
typedef volatile unsigned longvulong
typedef volatile unsigned shortvushort

These type names are defined as shorthands for specifying an integral data type to be both
unsigned and volatile.

Defined Types Functions, Constants, and Defined Types

32 – The Support Kit

The Support Kit –33

Error Codes

Error codes are returned by various functions to indicate the success or to describe the
failure of a requested operation. All Be error constants except forB_NO_ERROR are
negative integers; any function that returns an error code can thus be generally tested for
success or failure by the following:

if (funcCall() < B_NO_ERROR)
/* failure */

else
/* success */

Furthermore, all constants (exceptB_NO_ERROR andB_ERROR) are less than or equal to the
value of theB_ERRORS_END constant. If you want to define your own negative-valued
error codes, you should begin with the value (B_ERRORS_END + 1) and work your way
toward 0.

General Error Codes

<support/Errors.h>

Error Code Meaning

B_NO_MEMORY There’s not enough memory for the operation.
B_IO_ERROR A general input/output error occurred.
B_PERMISSION_DENIED The operation isn’t allowed.

B_FILE_ERROR A file error occurred.
B_FILE_NOT_FOUND The specified file doesn’t exist.

B_BAD_INDEX The index is out of range.
B_BAD_VALUE An illegal value was passed to the function.
B_MISMATCHED_VALUES Conflicting values were passed to the function.
B_BAD_TYPE An illegal argument type was named or passed.

B_NAME_NOT_FOUND There’s no match for the specified name.
B_NAME_IN_USE The requested (unique) name is already used.

B_TIMED_OUT Time expired before the operation was finished.
B_INTERRUPTED A signal interrupted the operation.

B_ERROR = –1 This is a convenient catchall for general errors.
B_NO_ERROR = 0 Everything’s OK.

B_ERRORS_END Marks the end of all Be-defined error codes.

Application Kit Error Codes Error Codes

34 – The Support Kit

Application Kit Error Codes

<support/Errors.h>

Error Code Meaning

B_DUPLICATE_REPLY A previous reply message has already been sent.
B_BAD_REPLY The reply message is inappropriate and can’t be sent
B_BAD_HANDLER The designated message handler isn’t valid.

B_MESSAGE_TO_SELF A thread is trying to send a message to itself.
B_ALREADY_RUNNING The application can’t be launched again.
B_LAUNCH_FAILED The attempt to launch the application failed.

These constants are defined for the messaging classes of the Application Kit. The
messaging system also makes use of some of the general errors and kernel errors described
above.

See also: BMessage::Error() andBMessenger::Error()

Debugger Error Codes

<support/Errors.h>

Error Code

B_DEBUGGER_ALREADY_INSTALLED

This constant signals that the debugger has already been installed for a particular team and
can’t be installed again.

Kernel Kit Error Codes

<support/Errors.h>

Error Code Meaning

B_BAD_THREAD_ID Specified thread identifier (thread_id) is invalid.
B_BAD_THREAD_STATE The thread is in the wrong state for the operation.
B_NO_MORE_THREADS All thread identifiers are currently taken.

B_BAD_TEAM_ID Specified team identifier (team_id) is invalid.
B_NO_MORE_TEAMS All team identifiers are currently taken.

B_BAD_PORT_ID Specified port identifier (port_id) is invalid.
B_NO_MORE_PORTS All port identifiers have been taken.

B_BAD_SEM_ID Semaphore identifier (sem_id) is invalid.
B_NO_MORE_SEMS All semaphores are currently taken.

Error Codes Media Kit Error Codes

The Support Kit –35

B_BAD_IMAGE_ID Specified image identifier (image_id)is inavlid.

These error codes are returned by functions in the Kernel Kit, and occasionally by
functions defined in higher level kits.

Media Kit Error Codes

<support/Errors.h>

Error Code Meaning

B_STREAM_NOT_FOUND The attempt to locate the stream failed.
B_SERVER_NOT_FOUND The attempt to locate the server failed.
B_RESOURCE_NOT_FOUND The attempt to locate the resource failed.
B_RESOURCE_UNAVAILABLE Permission to access the resource was denied.
B_BAD_SUBSCRIBER The BSubscriber is invalid.
B_SUBSCRIBER_NOT_ENTERED The BSubscriber hasn’t entered the stream.
B_BUFFER_NOT_AVAILABLE The attempt to acquire the buffer failed.

These error codes are defined for the Media Kit. See the classes and functions in that kit
for an explanation of how they’re used.

Media Kit Error Codes Error Codes

36 – The Support Kit

