
acrobat/00_Cover.pdf

The

Book
The Software Development Environment for the BeBox
Developer Release 8

™

acrobat/00_Front.pdf

The Be Book: The Software Development Environment for the BeBox
reference documentation for the Be operating system, Developer Release 8
revised August 1996
Copyright 1996 by Be, Inc. All rights reserved.

Developer Release 8 of the Be operating system
Copyright 1990–1996 by Be, Inc. All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted—in any form or by any means, electronic, mechanical, photocopying,
recording, or otherwise—without the prior written permission of Be, Inc.

The contents of this book are furnished for informational use only; they are subject
to change without notice and should not be construed as a commitment by Be, Inc.
Be has tried to make the information in this book as accurate and reliable as possible,
but assumes no liability for errors or omissions.

Be, Inc. will from time to time revise the software described in this book and reserves
the right to make such changes without notification. The software is furnished under
license and may be used or copied only in accordance with the terms of the license.

Be, the Be logo, BeBox, BeOS, BeWare, and GeekPort are trademarks of Be, Inc.
Metrowerks is a registered trademark and CodeWarrior is a trademark of Metrowerks,
Inc. Agfa and the Agfa Rhombus are registered trademarks of Agfa Division, Bayer
Corporation. TrueType is a trademark of Apple Computer. Intellifont is a registered
trademark of Miles, Inc. Arial, Times New Roman, Monotype, and Monotype
Baskerville are trademarks of Monotype Typography Ltd. registered in the U.S.
Patent and Trademark Offices. All other trademarks mentioned belong to their
respective owners.

This product contains the UFST and Type Software Technology under license from
Agfa Division, Bayer Corporation. The Type I processor resident in the UFST is
licensed from Pipeline Associates, Ltd.

For developer support, email:devsupport@be.com

Be, Inc.
800 El Camino Real
Suite 300
Menlo Park, CA 94025
http://www.be.com

acrobat/01_Intro.pdf

Introduction – 1

1 Introduction

Software Overview . 3
Servers . 4
Kits . 5

Contents . 8
Class Descriptions . 9
Programming Conventions .10

Responsibility for Allocated Memory 10
Object Allocation . .11
Virtual Functions .11
Multiple Threads .13

Protecting Data13
Avoiding Deadlocks 15

Naming Conventions .16

2 – Introduction

Introduction – 3

1 Introduction

The BeBox™ is an integrated package of hardware and software. The hardware supports
the innovative design of the software, and the software exploits the extraordinary
capabilities of the hardware. Among other things, the BeBox offers:

• Parallel processing on two high-performance CPUs.

• An operating system designed for efficient multithreading. It automatically splits
assignments between the CPUs and will give priority to threads that need
uninterrupted service.

• An architecture that supports the real-time processing of data for audio and video
applications.

• An interface that lets applications and users view everything that’s stored on-disk as
if it were in a relational database.

• Dynamically loaded device drivers, built-in networking, interapplication messaging,
shared libraries, protected and shared address spaces, an application framework that
implicitly assigns a separate thread of execution to each window, and many other
features.

Be system software is designed to make the features of the BeBox readily and efficiently
available to all applications. The application programming interface (API) is written in
the C++ language and takes advantage of the opportunities C++ offers for object-oriented
programming. It includes numerous class definitions from which you can take much of
the framework for your application.

Software Overview

System software on the BeBox lies in three “layers”:

• A microkernel that works directly with the hardware and device drivers.

• Several servers that can attend to the needs of any number of running applications.
The servers take over much of the low-level work that would normally have to be
done by each application.

Software Overview

4 – Introduction

• Dynamically linked libraries that provide an interface to the servers and encapsulate
facilities for building Be applications.

Applications are built on top of these layers, as illustrated below:

The API for all system software is organized into several “kits.” Each software kit has a
distinct domain—there’s a kit that contains the basic software you’ll need to run an
application on the BeBox, a kit for putting together a user interface, one for organizing
data stored on-disk, another for networking, and so on.

With the exception of the Kernel Kit and much of the Network Kit, which have ANSI C
interfaces, all the kits are written in the C++ language and make extensive use of class
definitions. Each kit defines an integrated set of classes that work together to structure a
framework for applications within its domain.

By incorporating kit classes in your application—directly creating instances of them,
deriving your own classes from them, and inventing your own classes to work with
them—you’ll be able to make use of all the facilities built into the BeBox. And you’ll find
that a good deal of the work of programming a Be application has already been done for
you by the engineers at Be.

Servers

Standing behind many of the software kits are servers—separate processes that run in the
background and carry out basic tasks for client applications. Servers serve Be
applications, not users; they have a programming interface (through the various kits) but
no user interface. They typically can serve any number of running applications at the
same time. A server can be viewed either as an extension of the kernel or as an adjunct to
an application. It’s really a little of both.

If you look inside the/system directory on the BeBox, you’ll see a number of servers
listed. The main ones that you should know about are the Storage Server and the
Application Server.

• TheStorage Server coordinates access to “persistent data”—data that lives on long-
term storage media, such as a hard disk or floppy diskette. The Server keeps track
of data by enumerating its qualities (its type, size, where it’s located, and so on) in

MICROKERNEL

SERVERS

SOFTWARE KITS
(LIBRARIES)

APPLICATIONS

Software Overview

Introduction – 5

an entry called arecord. In some cases, the record can hold the data itself; it can be
a way of retaining data, not just of recording information about it. Adatabase
contains a collection of records; each medium (each hard or floppy disk) has its own
database.

The Storage Server also manages the file system. A file, like any other distinct piece
of persistent data, is represented by a record in a database. Although you gain
access to files by referring to the records that represent them, Be software is
designed to make file access as “database-free” as possible.

An application can create new records, add them to a database, query a database and
access records, open files to read and write, traverse directories, and carry out other
storage and retrieval tasks through the classes defined in the Storage Kit. The Kit is
the programming interface to the Server.

• TheApplication Server handles most of the low-level user interface work. It
provides applications with windows, manages the interactions among windows,
renders images in windows on instructions from the application, and monitors what
the user does on the keyboard and mouse. It’s the application’s conduit for both
drawing output and event input. In addition to being a “window provider,” the
Server also maintains the global environment shared by all applications.

An application connects itself to the Server when it constructs a BApplication object
(as defined in the Application Kit). This should be one of the first things that every
application does. Every BWindow object (defined in the Interface Kit) also makes a
connection to the Server when it’s constructed. Each window runs independently of
other windows—in its own thread and with its own connection to the Server.

In addition, thePrint Server manages the printer and printing tasks much as the
Application Server manages rendering on the screen. Various media servers take care of
the distribution of data to and from media devices. For example, theAudio Server
manages sound data that arrives through the microphone and line-in jacks, and sends
sound data to the speaker and line-out jacks. These servers will turn up in later chapters as
they discuss the architecture of system software. Most other servers will remain in the
background.

Kits

Some of the software kits will be used by all applications, others only by applications that
are concerned with the specific kinds of problems the kit addresses. Most applications
will need to open files and put windows on-screen, for example; fewer will want to
process audio data.

Software Overview

6 – Introduction

The kits currently available are summarized below:

• TheApplication Kit is a small amount of software that is nevertheless essential for
all applications. It gives an application the ability to communicate with other
applications, to become known to the Browser, and to use software in the other kits.
It defines a messaging service that the system uses to report events to applications,
and that an application can use to organize activity among its threads.

The Kit’s principal class is BApplication; every application must have one (and only
one) BApplication object to act as its global representative. Begin with this kit
before programming with any of the others.

• TheStorage Kit is an interface for storing data on-disk, retrieving it, and keeping
abreast of changes that are made to it. It’s the client interface to the Storage Server.
Information can be stored with various attached properties, so that it can be
retrieved, accessed, and organized according to those properties, not just according
to a file designation in a hierarchical directory structure.

The Storage kit has two parts: One set of classes (BDatabase, BTable, BRecord, and
BQuery) provides typical database access to stored information. Another set
(BVolume, BDirectory, and BFile) provides an interface to the file system. The file-
system classes are built on top of the database classes—files and directories have
records in the database—but can be used with a minimum of “database” overhead.
In the easiest (and most typical) case, an application doesn’t need to know anything
about database techniques to read and write files.

• TheInterface Kit is used to build and run a graphical and interactive user interface.
It structures the twin tasks of drawing in windows and handling the messages that
report user actions (like clicks and keystrokes) directed at what was drawn. Its
BWindow class encapsulates an interface to windows. Its BView class embodies a
complete graphics environment for drawing.

Each window on (and off) the screen is represented by a separate BWindow object
and is served by a separate thread. A BWindow has a hierarchy of associated
BView objects; each BView draws one portion of what’s displayed in the window
and responds to user actions prompted by the display. The Interface Kit defines a
number of specific BViews, such as BListView, BButton, BScrollBar, and
BTextView—as well as various supporting classes, such as BRegion, BBitmap, and
BPicture.

Every application that puts a window on-screen will need to make use of this kit.

• TheMedia Kit defines an architecture for the real-time processing of data—
especially audio and video data. It gives applications the ability to generate,
examine, manipulate, and realize (or “render”) medium-specific data in real time.
Applications can, for example, synchronize the transmission of data to different
media devices, so they can easily incorporate and coordinate audio and video
output.

Software Overview

Introduction – 7

• TheMidi Kit is designed specifically for processing music data in MIDI (Musical
Instrument Digital Interface) format.

• The3D Kit brings an object-oriented implementation of 3D concepts into the Be
software environment. Its goal is to make fairly sophisticated three-dimensional
representations available to ordinary applications—and to do so simply and
efficiently. With this Kit, an application can define three-dimensional objects (or
“models”), place the models in a three-dimensional setting, animate them in the
setting, and have the user interact them. < In addition to the 3D Kit, a future release
will provide an optimized implementation of the OpenGL library and tools for
developers who require a high-end 3D engine. >

• TheKernel Kit is the one kit that’s not object-oriented. It defines an interface for
creating threads (the basic units of scheduling and execution on the CPUs) and the
attendant facilities that regulate threads and coordinate their interaction (such as
ports, priorities, and semaphores). It also defines a system of memory management,
including reserved and shared areas of memory. Applications that rely on the
higher-level kits won’t need to use much of the kernel interface.

• TheDevice Kit has two parts. One part provides programming interfaces for the
various connectors on the BeBox; it currently consists of classes that represent the
serial ports, the joystick ports, and the GeekPort™. The other part of the Kit is the
API for creating loadable device drivers. Drivers for graphics cards run as
extensions of the Application Server; printer drivers run in the Print Server. All
other drivers are loaded by the kernel.

• TheGame Kit is a collection of software that’s especially useful for developing
games, though it can be used by any application. It currently consists of just one
class—BWindowScreen—which gives an application direct access to the graphics
card driver for the screen. With that access, the application can set up a game-
specific graphics environment on the card, take direct charge of the frame buffer,
and call driver functions for accelerated drawing.

• TheNetwork Kit contains global C functions that let you identify remote machines
that are connected to the network, and communicate with those machines through
the TCP and UDP message protocols. The Kit also contains API (including the
BMailMessage class) that enables applications to talk to the Be mail daemon, and
send and receives SMTP and POP mail messages.

• TheSupport Kit is a collection of various defined types, error codes, and other
facilities that support Be application development and the work of the other kits. It
includes basic type definitions, the BList class for organizing ordered collections of
data, and a system for having objects retain class information that they can reveal at
run time. You can pick and choose the parts of this kit that you want to adopt for
your application.

Contents

8 – Introduction

Contents

This manual documents system software for which a public API is currently available.
The present version covers the eleven kits summarized above. Later releases will
document more software as the API is codified.

After the introductory chapter you’re now reading, there’s a chapter for each kit, followed
by two appendices. The table of contents is:

1 Introduction

2 The Application Kit

3 The Storage Kit

4 The Interface Kit

5 The Media Kit

6 The Midi Kit

7 The 3D Kit

8 The Kernel Kit

9 The Device Kit

10 The Game Kit

11 The Network Kit

12 The Support Kit

A Message Protocols

B Application APIs

We may, from time to time, issue updated versions of one chapter or another, as well as
add new chapters for new kits. So that page numbers won’t become totally confusing as
new documentation arrives, each chapter numbers its pages independently of the others.
Each chapter begins on page 1 and has its own table of contents.

Where it can, the documentation tries to let you know what might be changing. It encloses
temporary comments in angle brackets, <such as this>. Bracketed information is
sometimes speculative, anticipating planned changes to the software that have yet to be
implemented. Angle brackets sometimes also enclose information that’s true about the
present release, but is scheduled to change. Hopefully, language and context are enough
to distinguish the two cases.

Just as the software tries to simplify the work of programming an application for the
BeBox, this documentation tries to make it easy for you to understand the software. Your
comments on it, as on the software, are appreciated. Suggestions, bug reports, and notes
on what you found helpful or unhelpful, clear or unclear, are all welcome.

Class Descriptions

Introduction – 9

Class Descriptions

Since most Be software is organized into classes, much of the documentation you’ll be
reading in this manual will be about classes and their member functions. Each class
description is divided into the following sections:

Overview An introductory description of the class. The
overview is usually brief, but for the main
architectural classes, it can be lengthy. Start here
to learn about the class.

Data Members A list of the public and protected data members
declared by the class, if there are any. If this
section is missing, the class declares only private
data members, or doesn’t declare any data
members at all. Most data members are private, so
this section is usually absent.

Hook Functions A list of the virtual functions that you’re invited to
override (re-implement) in a derived class. Hook
functions are called by the kit at critical junctures;
they “hook” application-specific code into the
generic workings of the kit. Looking through the
list will give you an idea of how to adapt the kit
class to the needs of your application.

Constructor and Destructor The class constructor and destructor. Only
documented constructors produce valid members
of a class. Don’t rely on the default constructors
promised by the C++ compiler.

Member Functions A full description of all public and protected
member functions, including hook functions.

Operators A description of any operators that are overloaded
to handle the class type.

If a section isn’t relevant for a particular class—if the class doesn’t define any hook
functions or overload any operators, for example—that section is omitted.

Rely only on the documented API. You may occasionally find a public function declared
in a header file but not documented in the class description. The reason it’s not
documented is probably because it’s not supported and not safe; don’t use it.

Programming Conventions

10 – Introduction

Programming Conventions

The software kits were designed with some conventions in mind. Knowing a few of these
conventions will help you write efficient code and avoid unexpected pitfalls. The
conventions for memory allocation, object creation, and virtual functions are described
below.

Responsibility for Allocated Memory

The general rule is that whoever allocates memory is responsible for freeing it:

• If your application allocates memory, it should free it.

• If a kit allocates memory and passes your application a pointer to it, the kit retains
responsibility for freeing it.

For example, aText() function like this one,

char *text = someObject->Text();

would return a pointer to a string of characters residing in memory that belongs to the
object that allocated it. The object will free the string; you shouldn’t free it.

You should also not expect the string pointer to be valid for long. It will stay valid as long
as you hold a lock that prevents others from changing the string or deleting the object. But
once you release the lock that protects the data, something may happen to modify it,
change its location in memory, or free it at any time. If your application needs continued
access to the string, it should make a copy for itself or callText() each time the string is
needed.

In contrast, aGetText() function would copy the string into memory that your application
provides:

char *text = (char *)malloc(someObject->TextLength() + 1);
someObject->GetText(text);

Your application is responsible for the copy.

In some cases, you’re asked to allocate an object that kit functions fill in with data:

BPicture *picture = new BPicture;
someViewObject->BeginPicture(picture);
. . .
someViewObject->EndPicture();

Because your application allocated the object, it’s responsible for freeing it.

Be system software tries always to keep allocation and deallocation paired in the same
body of code—if you allocated the memory, free it; if you didn’t, don’t.

Programming Conventions

Introduction – 11

This general rule is followed wherever possible, but there are some exceptions to it.
BMessage objects (in the Application Kit) are a prominent exception. Messages are like
packages you put together and then mail to someone else. Although you create the
package, once you mail it, it no longer belongs to you.

Another exception isFindResource() in the BResourceFile class of the Storage Kit. This
function allocates memory on the caller’s behalf and copies resource data to it; it then
passes responsibility for the memory to the caller:

long numBytes;
void *res = someFile.FindResource(B_RAW_TYPE, "name", &numBytes);

The BResourceFile object allocates the memory in this case because it knows better than
the caller how much resource data there is and, therefore, how much memory to allocate.

Exceptions like this are rare and are clearly stated in the documentation.

Object Allocation

All objects can be dynamically allocated (using thenew operator). Some, but not all, can
also be statically allocated (put on the stack). Static allocation is appropriate for certain
kinds of objects, especially those that serve as temporary containers for transient data.

However, many objects may not work correctly unless they’re allocated in dynamic
memory. The general rule is this:

If you assign one object to another (as, for example, a child BView in the Interface
Kit is assigned to its parent BView or a BMessage is assigned to a BMessenger), you
should dynamically allocate the assigned object.

This is because there may be circumstances which would cause the other object to get rid
of the object you assigned it. For example, a parent BView deletes its children when it is
itself deleted. In the Be software kits, all such deletions are done with thedelete operator.
Therefore, the original allocation should always be done withnew.

Virtual Functions

The software kits declare functions virtual for a variety of reasons. Most of the reasons
simply boil down to this: Declaring a function virtual lets you reuse its name in a derived
class. You can, for example, implement a special version of a function for one kind of
object and give it the same name as the version defined in the kit for other objects. Or, if
you always take certain steps when you call a particular kit function, you can reimplement
the function to include those steps. You don’t have to package your additions under a
different name.

However, there’s another, more important reason why some functions are declared virtual.
These functions reverse the usual pattern for library functions: Instead of being
implemented in the kit and called by the application, they’re called by the kit and

Programming Conventions

12 – Introduction

implemented in the application. They’re “hooks” where you can hang your own code and
introduce it into the on-going operations of the kit.

Hook functions are called at critical junctures as the application runs. They serve to notify
the application that something has happened, or is about to happen, and they give the
application a chance to respond.

For example, the BApplication class (in the Application Kit) declares aReadyToRun()
function that’s called as the application is getting ready to run after being launched. It can
be implemented to finish configuring the application before it starts responding to the user.
The BWindow class (in the Interface Kit) declares aWindowActivated() function that can
be implemented to make any necessary changes when the window becomes the active
window. By implementing these functions, you fit application-specific code into the
generic framework of the kit.

It’s possible to divide hook functions into three groups:

• Most hook functions are empty. As implemented by the declaring class, they don’t
do anything. It’s up to derived classes to give them substance. Like
WindowActivated() andReadyToRun(), these functions are named for what they
announce—for what led to the function call—rather than for what they might be
implemented to do. They can be implemented to do almost anything you want.

• Some hook functions are given default implementations to cover the general case.
Like the functions in the first group, these functions are also named for the
occurrence that prompts the function call—for example,ScreenChanged() and
QuitRequested(). If you decide to implement your own version of the function, you
can choose either toreplace the kit’s default version or toaugment it, as discussed
below.

• A few hook functions are implemented to perform a particular task. You can call
these functions just as you would any ordinary nonhook function, but they’re also
called at pivotal points within the framework of the kits. They therefore do double
duty: They serve both as functions that you might call and as hooks that are called
for you. These functions are generally named for what they do—likeMakeFocus()
or SetValue(). If you override any of them, you should always augment the original
version, never replace it.

If you override a hook function that has been implemented—either by the class that
declares it or by a derived class—it’s generally best to preserve what the function already
does by incorporating the old version in the new. For example:

void MyWindow::ScreenChanged(BRect grid, color_space mode)
{
 . . .
 BWindow::ScreenChanged(grid, mode);
 . . .
}

In this way, the new function augments the inherited version, rather than replaces it. It
builds on what has already been implemented. In some cases, each class in a branch of the

Programming Conventions

Introduction – 13

inheritance hierarchy will contribute a bit of code to a function. Because each version
incorporates the inherited version, the function has its implementation spread vertically
throughout the inheritance hierarchy.

Multiple Threads

A Be application is inherently multithreaded; it runs as ateam of separately scheduled
threads of execution that share a common address space. In addition to themain thread in
which the application starts up and in which itsmain() function executes, each window is
provided with its own thread. An application becomes multithreaded simply by creating a
window.

Applications might explicitly create other threads for a variety of reasons—a thread might
monitor a data channel, for example, or some less important processes might be put in a
thread with a low priority to keep the user interface responsive. In addition, some kits
(such as the Media Kit) have architectures that invite you to use multiple threads, and
some spawn threads that work behind the scenes (like the thread that keeps live queries
alive).

Each thread runs independently of the others, but the main thread has a special status. It’s
the first thread in the team, and it should also be the last. All other threads should be killed
before the main thread and the application team are laid to rest.

The following sections discuss some considerations that come up when programming in a
multithreaded environment. You may want to defer reading them until you see how the Be
operating system defines and makes use of threads.

Protecting Data

Because all threads in a team live in the same address space, more than one of them might
try to access the same data at the same time. If a data structure is static, unchanging, and
certain to remain in place until the application quits, this won’t be much of a problem. But
that’s generally not the case. If it’s possible for one thread to alter some shared data, or
delete it, while another thread is reading it (or worse, while the other thread is also altering
the data, but in a different way), obvious problems result. Data could be left in an
internally inconsistent state, pointers could be invalid, and so on.

There are various ways to avoid these problems—to keep critical data “multithread-safe”.
One maneuver is to put a single thread in charge of a data structure (or object). From the
point of view of the data, the application isn’t multithreaded; only one thread can read,
alter, or delete it. Functions that deal with the data could simply return an error if the
calling thread lacks authorized access.

Programming Conventions

14 – Introduction

The Be operating system provides two additional mechanisms that you can use to keep
data multithread-safe:

• You can institute a locking procedure for the data. Locks are based on semaphores,
which the Kernel Kit provides. Threads, in effect, wait in line to acquire a
semaphore that gives them permission to access the data. When one thread releases
the semaphore, the next thread can acquire it.

Classes in some kits defineLock() andUnlock() functions that utilize semaphores,
so it makes sense to talk about “locking” and “unlocking” an object—a window, for
example.

As long as all parties abide by the rules, semaphores and locks guarantee that only
one thread at a time will be admitted to the data. Without this mechanism, one
thread could not safely access data controlled by another thread.

• You can use the high-level messaging system, which the Application Kit defines.
Messages asynchronously transfer control from one thread to another. They can
make sure that a particular thread deals with particular data. For example, instead of
locking an object and directly modifying its state, you can post a message to the
thread that’s associated with the object, and have that thread make the modification.
If window A posts a message that concerns windowB, windowB will receive and
respond to the message in its own thread.

Using messages to communicate between threads ensures that each thread operates
on just its “own” data. For example, a window thread might accept messages that
affect the window data structure (really a BWindow object) and other objects
associated with the window. As long as other threads post messages rather than try
for direct access, these objects will be accessed only from one thread.

In the Be operating system, locks and messages are bound together in one important
respect: When a thread receives a message, it automatically locks the object associated
with the thread. For example, when a window thread gets a message, it locks the window
data structure (the BWindow object). The lock remains in place until the thread is finished
responding to the message.

This makes it possible for locks and messages to be used in combination in a
multithreaded world. The choice of which to use depends on the situation and the design
of your application.

The locking and messaging mechanisms are themselves multithread-safe on the BeBox.
The system handles all the tricky cases—such as a destination thread disappearing while a
message is being posted to it or a data structure being deleted while it’s being locked. The
functions that acquire a semaphore or a lock and those that post messages are designed to
fail gracefully and return an error if the objects of their attention have been destroyed.

Programming Conventions

Introduction – 15

Avoiding Deadlocks

A deadlock occurs when one thread tries to acquire a lock that another thread holds, while
the other thread tries to acquire a lock that the first thread holds. This is diagrammed
below:

Each thread blocks waiting to acquire the lock that the other thread holds. Neither will
succeed because neither will release the lock it holds while it waits for the other thread to
release its lock. They both wait forever—a deadlock. (Deadlocks can also involve a
combination of three or more threads, but two are sufficient. The essential ingredient is
that each thread holds a lock while it waits for another lock.)

As the diagram above indicates, there are two necessary conditions for a deadlock to
occur. A deadlock can’t happen unless:

• A thread that holds a lock tries for another one. If threads hold only one lock at a
time, deadlocks can’t occur.

• Two or more threads must try to acquire the same locks, but in a different sequence.
In the illustration, thread one acquires lockA first, then tries forB, while thread two
works in the opposite order. It acquiresB first, then tries forA. If all threads always
acquire locks in the same order, deadlocks can’t occur.

If you structure your code to avoid either or both of these conditions, you won’t
experience deadlocks.

As mentioned earlier, when a thread receives a message it locks the object that owns the
thread. Therefore, as a thread responds to a message it implicitly holds one lock. If it tries
for another one, it will meet the first condition for a deadlock stated above.

At times this may be unavoidable. When it is, it’s important to structure the code so that
all threads try for the locks in the same order. For example, if windowX and windowY
need to share data, and windowX can lock windowY and windowY can lock windowX,
there’s a distinct possibility that a deadlock will sometime occur. If the information that
each window needs from the other is moved to some third object under the supervision of
another lock, a deadlock could be avoided. If more than one additional object is needed
and more than one lock, both windows could acquire the external locks in the same order,
avoiding a deadlock.

thread
two

A B

thread
one

ho
ld

s

wants

ho
ld

s

wants

Naming Conventions

16 – Introduction

Sometimes the solution to a deadlock is to avoid locking and rely on messages instead.
The two windows in the example above might send each other messages rather than use
locks to access the data directly.

Naming Conventions

As Be continues to develop system software and the API grows, there’s a chance that the
names of some new classes, constants, types, or functions added in future releases will
clash with names you’re already using in the code you’ve written.

To minimize the possibility of such clashes, we’ve adopted some strict naming
conventions that will guide all future additions to the Be API. By stating these
conventions here, we hope to give you a way of avoiding namespace conflicts in the
future.

Most Be data structures and functions are defined as members of C++ classes, so class
names will be quite prominent in application code. All our class names begin with the
prefix “B”; the prefix marks the class as one that Be provides. The rest of the name is in
mixed case—the body of the name is lowercase, but an uppercase letter marks the
beginning of each separate word that’s joined to form the name. For example:

BTextView BFile
BRecord BMessageQueue
BScrollBar BList
BAudioSubscriber BDatabase

The simplest thing you can do to prevent namespace clashes is to refrain from putting the
“B” prefix on names you invent. Choose another prefix for your own classes, or use no
prefix at all.

Other names associated with a class—the names of data members and member
functions—are also in mixed case. (The names of member functions begin with an
uppercase letter—for example,AddResource() andUpdateIfNeeded(). The names of
data members begin with a lowercase letter—what andbottom, for example.) Member
names are in a protected namespace and won’t clash with the names you assign in your
own code; they therefore don’t have—or need—a “B” prefix.

All other names in the Be API are single case—either all uppercase or all lowercase—and
use underbars to mark where separate words are joined into a single name.

The names of constants are all uppercase and begin with the prefix “B_”. For example:

B_NAME_NOT_FOUND B_BACKSPACE
B_OP_OVER B_LONG_TYPE
B_BAD_THREAD_ID B_FOLLOW_TOP_BOTTOM
B_REAL_TIME_PRIORITY B_PULSE

Naming Conventions

Introduction – 17

It doesn’t matter whether the constant is defined by a preprocessor directive (#define), in
an enumeration (enum), or with theconst qualifier. They’re all uniformly uppercase, and
all have a prefix. The only exceptions are common constants not specific to the Be
operating system. For example, these four don’t have a “B_” prefix:

TRUE NIL
FALSE NULL

Other names of whatever stripe—global variables, macros, nonmember functions,
members of structures, and defined types—are all lowercase. Global variables generally
begin with “be_”,

be_app
be_roster
be_clipboard

but other names lack a prefix. They’re distinguished only by being lowercase. For
example:

rgb_color pattern
system_time() acquire_sem()
does_ref_conform() bytes_per_row
app_info get_screen_size()

There are few such names in the API. The software will grow mainly by adding classes
and member functions, and the necessary constants to support those functions.

To briefly summarize:

Category Prefix Spelling

Class names B Mixed case
Member functions none Mixed case, beginning with an uppercase letter
Data members none Mixed case, beginning with a lowercase letter

Constants B_ All uppercase

Global variables be_ All lowercase
Everything else none All lowercase

If you adopt other conventions for your own code—perhaps mixed-case names, or
possibly a prefix other than “B”—your names shouldn’t conflict with any new ones we
add in the future.

In addition, you can rely on our continuing to follow the lexical conventions established in
the current API. For example, we never abbreviate “point” or “message,” but always
abbreviate “rectangle” as “rect” and “information” as “info.” We use “begin” and “end,”
never “start” or “finish,” in function names, and so on.

Occasionally, private names are visible in public header files. These names are marked
with both pre- and postfixed underbars—for example,_entry_ and_remove_volume_().
Don’t rely on these names in the code you write. They’re neither documented nor
supported, and may change or disappear without comment in the next release.

Naming Conventions

18 – Introduction

Pre- and postfixed underbars are also used for kit-internal names that may intrude on an
application’s namespace, even though they don’t show up in a header file. For example,
the kits use some behind-the-scenes threads and give them names like “_pulse_task_” and
they may put kit-internal data in public messages under names like “_button_”. If you
were to assign the same names to your threads and data entries, they might conflict with
kit code. Since you can’t anticipate every name used internally by the kits, it’s best to
avoid all names that begin and end in underbars.

acrobat/02_AppKit.pdf

The Application Kit –1

2 The Application Kit

Introduction . 5
Messaging . 6

Messages . 6
Message Protocols 7
Message Ownership 7

Message Loops . 7
System Messages . 8

Specialized BLoopers 9
Message-Specific Dispatching 9
Picking a Handler and a Hook Function10

Application-Defined Messages11
Posting Messages11
Sending Messages 11
Dropping a Message 12
Two-Way Communication 13
Specifying the Target14
Preferred Handlers 14
Message Filters14

System Messages in the Application Kit 15
System Management Messages15
Application Messages. 16

Setting Up an Application . .17
Icons. .18
Application Information 18

Signatures. .18
Launch Information 19
Other Information 20

BApplication . .21
Overview .21

Derived Classes . .21
Constructing the Object and Running the Message Loop .22

be_app . .22
main(). .23
Configuration Messages Received on Launch23

2 – The Application Kit

Quitting . .24
Aborted Run .24

Locking .25
Hook Functions .25
Constructor and Destructor .26
Member Functions. .27

BClipboard . .43
Overview .43

Using the Clipboard. .43
Example 1: Adding Data to the Clipboard. 44
Example 2: Retrieving Data from the Clipboard . .44

Member Functions. .45

BHandler .49
Overview .49
Hook Functions .50
Constructor and Destructor .50
Member Functions. .50

BLooper . .55
Overview .55

Running the Loop . .55
Receiving and Dispatching Messages. 55
Acting as the Handler56
Eligible Handlers .56

Hook Functions .57
Constructor and Destructor .57
Member Functions. .58

BMessage .69
Overview .69

Message Contents . .69
Message Constants .70
Type Codes .71
Publishing Message Protocols 72
Error Reporting . .73

Data Members . .73
Constructor and Destructor .73
Member Functions. .74
Operators .87

BMessageFilter . .89
Overview .89
Hook Functions .89
Constructor and Destructor .90
Member Functions. .91

The Application Kit –3

BMessageQueue .93
Class Description .93
Constructor and Destructor .93
Member Functions. .94

BMessenger .97
Overview .97
Constructor and Destructor .97
Member Functions. .99
Operators . 102

BRoster . 103
Overview . 103
Constructor and Destructor 104
Member Functions. . 104

Global Variables, Constants, and Defined Types 109
Global Variables . 109
Constants . 110
Defined Types . 114

4 – The Application Kit

Application Kit Inheritance Hierarchy

BObject
(Support Kit)

BHandler

BWindow
(Interface Kit)

BLooper

BMessage

BApplication

BMessageQueue

BMessenger

BClipboard

BRoster

BMessageFilter

The Application Kit –5

2 The Application Kit

The Application Kit is the starting point for all applications. Its classes establish an
application as an identifiable entity—one that can cooperate and communicate with other
applications (including the Browser). It lays a foundation for the other kits. Before
designing and building your application, you should secure a breathing familiarity with
this basic Kit.

There are four parts to the Application Kit:

• Messaging. The Kit sets up a mechanism through which an application can easily
make itself multithreaded, and a messaging service that permits the threads to talk to
each other. This same service also delivers messages from one application to
another—it’s used for both inter- and intra-application communication.

The messaging mechanism is implemented by a set of collaborating classes:
BMessage objects bundle information so that it can be posted to a thread within the
same application or sent to a thread in another application. BLooper objects run
message loops in threads, getting messages as they arrive and dispatching them to
BHandler objects. The BHandler’s job is to respond to the message.

The system employs the messaging mechanism to carry basic input to
applications—from the keyboard and mouse, from the Browser, and from other
external sources; system messages drive what most applications do. Every
application will be on the receiving end of at least some of these messages and must
have handlers ready to respond to them.

Applications can also use the mechanism to create threads with a messaging
interface, arrange communication among the threads, or exchange information with
and issue commands to other applications.

• The BApplication class. Every application must have a single instance of the
BApplication class—or of a class derived from BApplication. This object provides
a number of essential services. Foremost among them is that it establishes a
connection to the Application Server. The Server is a background process that takes
over many of the fundamental tasks common to all applications. It renders images
in windows, controls the cursor, reports what the user is doing on the keyboard and
mouse, and, in general, keeps track of system resources.

The BApplication object also runs the application’s main message loop, where it
receives messages that concern the application as a whole. Externally, this object

Messaging

6 – The Application Kit

represents the application to other applications; internally, it’s the center where
application-wide services and global information can be found. Because of it’s
pivotal role, it’s assigned to a global variable,be_app, to make it easily accessible.

Other kits—the Interface Kit in particular—won’t work until a BApplication object
has been constructed.

• The BRoster class. The BRoster object keeps track of all running applications. It
can identify applications, launch them, and provide the information needed to set up
communications with them.

• The BClipboard class. The BClipboard object provides an interface to the clipboard
where cut and copied data can be stored, and from which it can be pasted.

The messaging framework and the fundamentals of setting up a Be application are
described in the following sections of this introduction. The BApplication class is
documented beginning on page 21. The other classes follow in alphabetical order.

Messaging

At minimum, a messaging service must provide the means for:

• Putting together a parcel of information that can be delivered to a destination. In the
Be model, these parcels are BMessage objects.

• Delivering messages to a destination. This is the job of a BMessenger object—
although local messages can be “posted” directly, without the aid of a messenger.
BMessengers mainly represent remote destinations.

• Processing messages as they arrive. This task is entrusted to BLooper objects.

• Letting applications define their own message-handling code. A BLooper
dispatches an arriving message by calling a “hook” function of a BHandler object.
Each application can implement these functions as it sees fit.

Messages

BMessage objects are parcels of information that can be transferred between threads. The
message source constructs a BMessage object, adds whatever information it wants to it,
and then passes the parcel to a function that delivers it to a destination.

A BMessage can hold structured data of any type or amount. When you add data to a
message, you assign it a name and a type code. If more than one item of data is added
with the same name and type, the BMessage creates an array of data for that name. The
name and an index into the array are used to retrieve the data from the message.

Messaging

The Application Kit –7

The object also contains acommand constant that says what the message is about. It’s
stored as a public data member (calledwhat). The constant may:

• Convey a request of some kind (such asB_ZOOM or BEGIN_ANIMATION),
• Announce an event (such asRECEIPT_ACKNOWLEDGED or B_WINDOW_RESIZED), or
• Label the information that’s being passed (such asPATIENT_INFO or NEW_COLOR).

Not all messages have data entries, but all should have a command constant. Sometimes
the constant is sufficient to convey the entire message.

Message Protocols

Both the source and the destination of a message must agree upon its format—the
command constant and the names and types of data entries. They must also agree on
details of the exchange—when the message can be sent, whether it requires a response,
what the format of the reply should be, what it means if an expected data item is omitted,
and so on.

None of this is a problem for messages that are used only within an application; the
application developer can keep track of the details. However, protocols must be published
for messages that communicate between applications. You’re urged to publish the
specifications for all messages your application is willing to accept from outside sources
and for all those that it can package for delivery to other applications. The more that
message protocols are shared, the easier it is for applications to cooperate with each other
and take advantage of each other’s special features.

The software kits define protocols for a number of messages. They’re discussed in the
Message Protocols appendix.

Message Ownership

Typically, when an application creates an object, it retains responsibility for it; it’s up to
the application to free the objects it allocates when they’re no longer needed. However,
BMessage objects are an exception to this rule. Whenever a BMessage is passed to the
messaging mechanism, ownership is passed with it. It’s a little like mailing a letter—once
you drop it at the post office, it no longer belongs to you.

The system takes responsibility for a delivered BMessage object and will eventually delete
it—after the receiver is finished responding to it. A message receiver can assert
responsibility for a message—essentially replacing the system as its owner—by detaching
it from the messaging mechanism (with BLooper’sDetachCurrentMessage() function).

Message Loops

In the Be model, messages are delivered to threads runningmessage loops. Arriving
messages are placed in a queue, and are then taken from the queue one at a time. After
getting a message from the queue, the thread decides how it should be handled and

Messaging

8 – The Application Kit

dispatches it to an object that can respond. When the response is finished, the thread
deletes the message and takes the next one from the queue—or, if the queue is empty,
waits until another message arrives.

The message loop therefore dominates the thread. The thread does nothing but get
messages and respond to them; it’s driven by message input.

BLooper objects set up these message loops. A BLooper spawns a thread and sets the
loop in motion. Posting a message to the BLooper delivers it to the thread (places it in the
queue). The BLooper removes messages from the queue and dispatches them to BHandler
objects. BHandlers are the objects ultimately responsible for received messages.
Everything that the thread does begins with a BHandler’s response to a message.

Two hook functions come into play in this process—one defined in the BLooper class and
one declared by BHandler:

• BLooper’sDispatchMessage() function is called to pass responsibility for a
message to a BHandler object. It’s fully implemented by BLooper (and kit classes
derived from BLooper) and is only rarely overridden by applications.

• MessageReceived() is the BHandler function thatDispatchMessage() calls by
default. It’s up to applications to implementMessageReceived() functions to
handle expected messages.

There’s a close relationship between the BLooper role of running a message loop and the
BHandler role of responding to messages. The BLooper class inherits from BHandler, so
the same object can fill both roles. The BLooper is the default handler for the messages it
receives.

To be notified of an arriving message, a BHandler must “belong” to the BLooper; it must
have been added to the BLooper’s list of eligible handlers. The list can contain any
number of objects, but at any given time a BHandler can belong to only one BLooper.

While a thread is responding to a message, it keeps the BLooper that dispatched the
message locked. The thread locks the BLooper before callingDispatchMessage() and
unlocks it afterDispatchMessage() returns.

System Messages

Special dispatching is provided for a subset of messages defined the system. Thesesystem
messages are dispatched not by callingMessageReceived(), but by calling a BHandler
hook function specific to the message.

System messages generally originate from within the Be operating system (from servers,
the kits, or the Browser). They notify applications of external events, usually something
the user has done—moved the mouse, pressed a key, resized a window, selected a
document to open, or some other action of a similar sort. The command constant of the
message names the event—for example,B_KEY_DOWN, B_SCREEN_CHANGED, or

Messaging

The Application Kit –9

B_REFS_RECEIVED—and the message may carry data describing the event. The receiver is
free to respond to the message (or to not respond) in any way that’s appropriate.

A few system messages name an action the receiver is expected to take, such asB_ZOOM
or B_ACTIVATE. The message tells the receiver what must be done. Even these messages
are prompted by an event of some kind—such as the user clicking the zoom button in a
window tab or picking an application to activate from the list of running applications.

System messages have a defined format. The command constant and the names and types
of data entries are fixed for each kind of message. For example, the system message that
reports a user keystroke on the keyboard—a “key-down” event—hasB_KEY_DOWN as the
command constant, a “when” entry for the time of the event, a “key” entry for the key that
was hit, a “modifiers” entry for the modifier keys that were down at the time, and so on.

Although the set of system-defined messages is small, they’re the most frequent messages
for most applications. For example, when the user types a sentence, the application
receives a series ofB_KEY_DOWN messages, one for each keystroke.

Specialized BLoopers

System messages aren’t delivered to just any BLooper object. The software kits derive a
few specialized classes from BLooper to give significant entities in the application their
own message loops. These are the objects that receive system messages and define how
they’re dispatched. Each message is matched to the specific kind of BLooper that’s
concerned with the particular event it reports or the particular instruction it delivers. Each
type of message is delivered to a specific class of object.

In particular, both the BApplication class in this kit and the BWindow class in the
Interface Kit derive from BLooper. The BApplication object runs a message loop in the
main thread and receives messages that concern the application as a whole—such as
requests to quit the application or to open a document. Each BWindow object runs in its
own thread and receives messages that report activity in the user interface—including
notifications that the user typed a particular character on the keyboard, moved the cursor
on-screen, or pressed a mouse button. Every window that the user sees is represented by a
separate BWindow object.

Each of these classes is concerned with only a subset of system messages—BApplication
with application messages (discussed on page 16 below) and BWindow objects with
interface messages (discussed in the chapter on the Interface Kit). In addition, the generic
BLooper class defines how a small number ofsystem management messages are
dispatched; these messages have to do with the messaging system itself (and are discussed
on page 15 of this chapter). Each class arranges for special handling of the system
messages it’s concerned with.

Message-Specific Dispatching

Every system message is dispatched by calling a specific virtual “hook” function, one
that’s matched to the message. For example, when the Application Server sends a

Messaging

10 – The Application Kit

B_KEY_DOWN message to the window where the user is typing, the BWindow determines
which object is responsible for displaying typed characters and calls that object’s
KeyDown() virtual function. Similarly, a message that reports a user decision to shut down
the application—a “quit-requested” event—is dispatched by calling the BApplication
object’sQuitRequested() function. Messages that report the movement of the cursor are
dispatched by callingMouseMoved(), those that report a change in the screen
configuration by callingScreenChanged(), and so on.

These hook functions are declared in classes derived from BHandler and are often
recognizable by their names. In the introductory chapter, it was explained that hook
functions fall into three groups:

• Those that are left to the application to implement. These functions are named for
what they announce—for what led to the function call rather than for what the
function might be implemented to do.KeyDown() is an example.

• Those that have a default implementation to cover the common case. Like those in
the first group, these functions also are named for the occurrence that prompted the
function call. ScreenChanged() is an example.

• Those that are fully implemented to perform a particular task. These are functions
that you can call, but they’re also hooks that are called for you. Like most ordinary
functions, they’re named for what they do—likeActivate()—not for what led to the
function call.

The hook functions that are matched to system messages can fall into any of these three
categories. Since most system messages report events, they mostly fall into the first two
categories. The function is named for the message, and the message for the event it
reports.

However, if a system message delivers an instruction for the application to do something
in particular, its hook function falls into the third group. The function is fully
implemented in system software, but can be overridden by the application. The function is
named for what it does, and the message is named for the function.

Picking a Handler and a Hook Function

A BLooper picks a BHandler for a system message based on what the message is. For
example, a BWindow calls upon the object that displays the current selection to handle a
B_KEY_DOWN message. It asks the object in charge of the area where the user clicked to
handle aB_MOUSE_DOWN message. And it handles messages that affect the window as a
whole—such as,B_WINDOW_RESIZED—itself.

The BLooper identifies system messages by their command constants alone (theirwhat
data members). If a message is received and its command constant matches the constant
for a system message, the BLooper will dispatch it by calling the message-specific hook
function—regardless what data entries the message may have.

Messaging

The Application Kit –11

If the constant doesn’t match a system message that the BLooper knows about, the
message is dispatched by callingMessageReceived(). MessageReceived() is, therefore,
reserved for application-defined messages. It’s typically implemented to distribute the
responsibility for received messages to other functions. That’s something that’s already
taken care of for system messages, since each of them is mapped to its own function.

Application-Defined Messages

Although the system creates and delivers most messages, an application can create
messages of its own and have them delivered to a chosen destination. There are three
ways to initiate a message:

• Messages can beposted to a thread of the same application,
• They can besent to a thread anywhere, generally one in a remote application, and
• They can be dragged anddropped.

Posting Messages

Messages are posted by calling a BLooper’sPostMessage() function. PostMessage()
inserts the message into the BLooper’s queue so that it will be handled in sequence along
with other messages the thread receives. Posting depends on the message source knowing
the address of the destination BLooper; it therefore works only for application-internal
messages.

Posting is how one thread of execution transfers control to another thread in the same
application. Suppose, for example, that the main thread of an application (the
BApplication object) receives a message requesting it to show something on-screen—
begin displaying a video, say. It can create a window for this purpose, then post a message
to the BWindow object telling it what to do. The BWindow receives the message and acts
on it within the window’s thread. After posting the message, the main thread is free to
receive and respond to other messages while the window thread is busy with the video.

A thread might also post messages to itself, and thereby take advantage of the messaging
mechanism to arrange its activity. This is what menu items and control devices do when
they’re invoked; they translate a message that reports a click or a keystroke into another,
more specific message—one they could post anywhere, but typically deliver to the same
thread.

Sending Messages

Messages can be posted only within an application—where the thread that calls
PostMessage() and the thread that responds to the message are in the same address space
(are part of the same “team”) and may even be the same thread.

Messaging

12 – The Application Kit

To send a message to another address space, it’s necessary to first set up a BMessenger
object as a local representative of the remote destination. BMessengers can be constructed
in two ways:

• By naming a particular instance of a running application. The BRoster object can
provide signatures and team identifiers for all running applications.

• By naming a particular BHandler object in your own application.

The first method constructs a BMessenger that can send messages to the main thread of the
remote application, where they’ll be received and handled by its BApplication object.

The second method constructs a BMessenger that’s tied to a BHandler in your own
application. However, you can place the BMessenger in a message and send it to a remote
application. That application can then employ the BMessenger to target messages to your
BHandler. The messages are delivered to whatever BLooper the BHandler belongs to; the
BLooper dispatches the message to the BHandler.

Thus, a BMessenger can be seen as a local identifier for a remote BLooper/BHandler pair.
Calling the object’sSendMessage() function delivers the message to the remote
destination.

(BMessengers can send messages to local destinations as well as to a remote ones.
However, it’s more efficient to post a local message than to send it.)

Dropping a Message

Through a service of the Interface Kit, users can drag messages from a source location and
drop them on a chosen destination, perhaps in another application. The source application
puts the message together and hands it over to the Application Server, which tracks where
the user drags it.

When the user drops the message inside a window somewhere, the Server delivers it to the
BWindow object and targets it to the BView (a kind of BHandler) that’s in charge of the
portion of the window where the message was dropped. The message is placed in the
BWindow’s queue and is dispatched like all other messages. In contrast to messages that
are posted or sent in application code, only the user determines the destination of a
dragged message.

A message receiver can discover whether and where a message was dropped by calling the
BMessage object’sWasDropped() andDropPoint() functions.

See “Drag and Drop” on page 235 inThe Interface Kit chapter for details on how to
initiate a drag-and-drop session.

Messaging

The Application Kit –13

Two-Way Communication

A delivered BMessage carries a return address with it < with the current exception of
messages that are posted >. The message receiver can reply to the message by calling the
BMessage’sSendReply() function. Replies can be synchronous or asynchronous:

• A message sender can ask for a synchronous reply when calling the sending
function. For example:

BMessage *reply;
myMessenger->SendMessage(message, &reply);
if (reply->what != B_NO_REPLY) {
 . . .
}

In this case,SendMessage() waits for the reply; it doesn’t return until one is
received. (In case the message receiver refuses to cooperate, a default reply is sent
when the original message is deleted.)

A message receiver can discover whether the sender is waiting for a synchronous
reply by calling the BMessage’sIsSourceWaiting() function.

• A message sender can provide for an asynchronous reply by designating a BHandler
object for the return message. For example:

myMessenger->SendMessage(message, someHandler);

In this case, the sending function doesn’t wait for the reply; the reply message will
be directed to the named BHandler. An asynchronous reply is always possible. If a
BHandler isn’t designated for it, the BApplication object will act as the default
handler.

BMessage’sSendReply() function has the same syntax asSendMessage(), so it’s possible
to ask for a synchronous reply to a message that is itself a reply,

BMessage *reply;
theMessage->SendReply(message, &reply);
if (reply->what != B_NO_REPLY) {
 . . .
}

or to designate a BHandler for an asynchronous reply to the reply:

theMessage->SendReply(message, someHandler);

In this way, two applications can maintain an ongoing exchange of messages.

You can also name a target BHandler for an asynchronous reply to a dragged message.
< There is currently no provision for replying to a posted message. >

Messaging

14 – The Application Kit

Specifying the Target

All messages have target BHandlers, whether explicitly or implicitly expressed.

• When posting a message to a BLooper, you can name a target BHandler for it. The
BLooper is the default target.

• Sending a message targets it to the remote BApplication object or to the particular
BHandler that was used to construct the BMessenger.

• Dropped messages are targeted to the object (a BView) that owns the piece of
window real estate where the cursor was located when the message was dropped.

The target is respected when the message is dispatched; the dispatcher always calls a hook
function belonging to the designated BHandler. If the message matches one that the
system defines and the target BHandler is the kind of object that’s expected to handle that
type of message, the dispatcher will call the target’s message-specific hook function.
However, if the designated target isn’t the handler of design for the message, the BLooper
will call its MessageReceived() function.

For example, if aB_KEY_DOWN message is posted to a BWindow object and a BView is
named as the target, the BWindow will dispatch the message by calling the BView’s
KeyDown() function. However, if the BWindow itself is named as the target, it will
dispatch the message by calling its ownMessageReceived() function. BView objects are
expected to handle keyboard messages; BWindows are not.

Preferred Handlers

By implementing aPreferredHandler() function, a BLooper can name the BHandler it
prefers to be the target of the messages it receives. You can follow this recommendation
when posting a message < but currently not when sending a message >, or you can ignore
it. The preferred handler typically changes from time to time. Choosing the preferred
handler is therefore a way of determining the message target at run time. For example, a
BWindow’s preferred handler is the object in charge of the current selection; it changes as
the user changes the selection.

Message Filters

Incoming messages can be filtered before they’re dispatched to a BHandler. You can
arrange to have a filtering function examine the message before the BHandler’s hook
function is called.

The filtering function is contained in a BMessageFilter object, which also holds the
criteria for when the filter should apply. The function, calledFilter(), is defined in classes
derived from BMessageFilter.

If a BMessageFilter is attached to a BHandler, it filters only messages destined for that
BHandler. It it’s attached as a common filter to a BLooper object, it can filter any message
that the BLooper dispatches, no matter what the handler. (In addition to the list of

System Messages in the Application Kit

The Application Kit –15

common filters, a BLooper can, like other BHandlers, maintain a list of filters specific to
its role as a target handler.)

System Messages in the Application Kit

Although the Application Kit implements the messaging mechanism and defines all the
system messages, it handles only a few of them itself. Each system message has a
particular import and falls within the scope of a particular kind of BLooper object. Most
are associated with BWindow objects in the Interface Kit. But there are two BLooper
classes in the Application Kit; each handles its own subset of system messages:

• The generic BLooper class handlessystem management messages that help run the
messaging mechanism. There are just two such messages.

• The BApplication class handlesapplication messages that are not the province any
particular window, but concern the application as a whole. The system defines nine
different application messages.

System Management Messages

The BLooper class takes care of just two system messages; both are concerned with
running the messaging mechanism:

• A B_QUIT_REQUESTED message asks the BLooper to quit the message loop and
destroy itself. Classes derived from BLooper reinterpret this message in their own
way. For the BApplication object, it’s a request to quit the application. For a
BWindow, it’s a request to close the window. However, generically, it’s simply a
request to get rid of a BLooper object.

• A B_HANDLERS_REQUESTED message asks a target BHandler to supply BMessenger
objects for other BHandlers. The correct response is to send aB_HANDLERS_INFO
message in reply—with the BMessengers installed in a “handlers” array or with an
error code in an “error” entry. The BMessengers can be used to target particular
objects within the responding application.

The BLooper object dispatches these messages by calling a hook function matched to the
message. The following table lists the hook functions that are called to initiate a response
to system management messages and the base classes where those functions are declared:

Message type Virtual function Class

B_QUIT_REQUESTED QuitRequested() BLooper
B_HANDLERS_REQUESTED HandlersRequested() BHandler

Although it defines how these messages are treated, nothing in the Be operating system
produces the message itself. It’s up to applications to create the messages and arrange for
their delivery.

System Messages in the Application Kit

16 – The Application Kit

See “System Management Messages” in theMessage Protocols appendix for information
on the content of system management messages, particularlyB_HANDLERS_REQUESTED.

Application Messages

The nine application messages are an assortment of various reports and requests. One
message delivers an instruction:

• A B_ACTIVATE instruction tells the application to activate itself—to become the
active application. This message permits one application (usually the Browser) to
activate another.

All the other application messages report events. Two of them notify the application of a
change in its status:

• A B_READY_TO_RUN message reports that the application has finished launching and
configuring itself and its main thread is ready to respond to messages.

• A B_APP_ACTIVATED message is delivered when the application becomes the active
application—the one that the user is currently engaged with—or when it
relinquishes that status to another application.

Two of the messages are requests that the application typically makes of itself:

• A B_QUIT_REQUESTED message is taken by the BApplication object to be a request to
shut the entire application down, not just one thread. An application that has a user
interface usually interprets some user action (such as clicking a “Quit” menu item)
as a request to quit and, in response, posts aB_QUIT_REQUESTED message to the
BApplication object. An application that is the servant of other applications may
get the request from a remote source.

• A B_ABOUT_REQUESTED message requests information about the application, usually
through an “About . . .” item in the application’s main menu. The application
should set up this item to post aB_ABOUT_REQUESTED message to the BApplication
object. In response, the BApplication object should display a window with general
information about the application.

Other application messages report information from remote sources:

• A B_ARGV_RECEIVED message is delivered either on-launch or after-launch when
the application receives strings of characters the user typed on the command line, or
when the application is launched by another application and is passed a similar array
of character strings.

• A B_REFS_RECEIVED message passes the application one or more references to
database records. Typically, this means the user has chosen some files from the file
panel, double-clicked a document icon in the Browser, or dragged the icon and
dropped in on the application icon.

Setting Up an Application

The Application Kit –17

• A B_PANEL_CLOSED message is sent by the file panel when the panel is removed
from the screen.

The system is the source of one repeated message:

• PeriodicB_PULSE messages are posted at regularly spaced intervals. They can be
used to arrange repeated actions when precise timing is not critical.

All application messages are received by the BApplication object in the main thread. The
BApplication object dispatches them all to itself; it doesn’t delegate them to any other
handler. The following chart lists the hook functions that are called to initiate the
application’s response to system messages and the base class where each function is
declared:

Message type Virtual function Class

B_ACTIVATE Activate() BApplication

B_READY_TO_RUN ReadyToRun() BApplication
B_APP_ACTIVATED AppActivated() BApplication

B_QUIT_REQUESTED QuitRequested() BLooper
B_ABOUT_REQUESTED AboutRequested() BApplication

B_ARGV_RECEIVED ArgvReceived() BApplication
B_REFS_RECEIVED RefsReceived() BApplication
B_PANEL_CLOSED FilePanelClosed() BApplication

B_PULSE Pulse() BApplication

QuitRequested() is first declared in the BLooper class. BApplication reinterprets it—and
reimplements it—to mean a request to quit the whole application, not just one of its
threads.

Only four application messages—B_APP_ACTIVATED, B_ARGV_RECEIVED,
B_REFS_RECEIVED, andB_PANEL_CLOSED—contain any data; the rest are empty. See
“Application Messages” in theMessage Protocols appendix for details on the content of
these messages.

Setting Up an Application

There are just a couple of things that an application must do if it’s to take its place as a
well-known and cooperative resident on the BeBox:

• Internally, it needs a BApplication object, and
• Externally, it needs to publicize information about itself.

Setting Up an Application

18 – The Application Kit

The BApplication object is essential; every application must have one to handle messages
from other applications, particularly the Browser. However, it’s not sufficient by itself. In
addition, the application must provide:

• Icons that represent the application, and represent documents and other files
associated with the application.

• An identifying signature for the application.

• Information about the application’s behavior, including a strategy for how it can be
launched.

The icons, signature, and behavioral information are all stored in the same resources file as
the executable binary. By locating them in resources, they become available even when
the application isn’t running.

Although these bits of information don’t strictly belong to the Application Kit, they’re
relevant to how parts of the Kit work and, possibly, to how you design your application.
They’re therefore discussed here.

Use the Icon World application to set up application resources, as described inThe Be
User’s Guide, published separately.

Icons

Every application needs an icon to represent it (in a Browser window, for example). It
should provide a large (32 pixel× 32 pixel) version of the icon and a smaller
(16 pixel× 16 pixel) version. This can be done by creating the icons in Icon World or by
importing icons created elsewhere. Either way, Icon World will construct highlighted
versions of both the small and large icons and install them all in resources of type ‘ICON’
(for the large version) and ‘MICN’ (for the “mini-icon”).

If an application opens documents or has other associated files, it should provide large and
small icons for them as well.

Application Information

An application-information resource (named “app info” and typed ‘APPI’) holds other
information that needs to be available—especially to the Browser—whether or not the
application is running. This resource advertises the application’s signature and its launch
behavior, and possibly other behavioral idiosyncrasies as well. You can create it in Icon
World’s App Info menu.

Signatures

A signature is simply along integer that identifies an application. No two applications
should have the same signature.

Setting Up an Application

The Application Kit –19

To make sure that the signature for your application is unique, you should register it
with—or obtain it from—Be’s Developer Support services (devsupport@be.com or, in a
pinch, 1 (415) 462-4103). We’ll try to make sure that no one else adopts the same
signature.

Use Icon World’s App Info menu to install the signature in the resource.

Launch Information

There are three possible launch behaviors that you can choose for your application. Each
possibility is represented by a constant:

B_MULTIPLE_LAUNCH Several instances of the application can be running at
once. It can be launched any number of times from the
same executable file.

This is the normal behavior for most utilities, such as
the compiler,tar, or Heap Watch. It’s also appropriate
for an application that can deal with only one document
at a time, and therefore must be launched anew each
time it’s asked to handle another file.

B_SINGLE_LAUNCH Normally, only one instance of the application can be
running. However, if the user copies the executable file
for the application, it can be launched once from each
copy.

This is the normal behavior for most applications,
including applications that can deal with more than one
document at a time.

B_EXCLUSIVE_LAUNCH When the application is running, no other instance of
the same application can be launched from any source.

This is appropriate for applications that require
exclusive ownership of a system resource, like the
telephone line.

In other words,B_EXCLUSIVE_LAUNCH applications are restricted by signature—only one
instance of an application with that particular signature can be running at any given time.
B_SINGLE_LAUNCH applications are restricted by executable file—there can be only one
instance of an application launched from that particular executable.B_MULTIPLE_LAUNCH
applications are unrestricted.

These categories affect how the Browser launches applications and communicates with
them. In the Browser, a user can launch an application by picking the application itself or
by picking one of its documents. Double-clicking an application icon picks the
application, and double-clicking a document icon picks the document. Dragging a
document icon and dropping it on the application icon picks both.

Setting Up an Application

20 – The Application Kit

Whenever the user picks aB_MULTIPLE_LAUNCH application or picks one of its documents,
the Browser always launches it anew. It doesn’t matter whether another instance of the
application is already running or not.

However, when the user picks aB_SINGLE_LAUNCH application, the Browser launches it
only if an application launched from the same executable file isn’t already running.
Otherwise, it activates the running application. Similarly, when the user picks a document
for aB_SINGLE_LAUNCH application, the Browser matches the document to an executable
file and launches it only if a running application hasn’t been launched from the same file.
If one has been launched from the file, the Browser merely activates it and sends it a
message identifying the document.

B_EXCLUSIVE_LAUNCH is even more restrictive thanB_SINGLE_LAUNCH. When the user
picks aB_EXCLUSIVE_LAUNCH application, or the document for aB_EXCLUSIVE_LAUNCH
application, the Browser launches it only if an application with the same signature isn’t
already running.

Most applications don’t need the extreme restrictiveness ofB_EXCLUSIVE_LAUNCH and
should choose betweenB_SINGLE_LAUNCH andB_MULTIPLE_LAUNCH. The choice should
be informed by whether the application can have more than one file open at a time,
whether multiple instances of the same application would make sense to the user, whether
windows belonging to one instance might be confused for windows belonging to another
instance, and similar considerations.

The best place to choose a launch behavior for your application is in IconWorld’s App Info
menu. If a choice isn’t made, IconWorld picksB_SINGLE_LAUNCH by default. If an
application doesn’t have an application information resource, it’s treated as being
B_MULTIPLE_LAUNCH by default.

Other Information

Resources can also publicize two other behaviors, similarly designated by constants:

B_ARGV_ONLY The application doesn’t participate in the messaging
system. Therefore, the only information it can receive
are command-line arguments,argc andargv, passed to
themain() function.

B_ARGV_ONLY is assumed if the application doesn’t
have a BApplication object.

B_BACKGROUND_APP The application doesn’t have a user interface and
therefore shouldn’t appear in the Browser’s application
list.

The Application Kit –21

BApplication

Derived from: public BLooper

Declared in: <app/Application.h>

Overview

The BApplication class defines an object that represents and serves the entire application.
Every Be application must have one (and only one) BApplication object. It’s usually the
first object the application constructs and the last one it deletes.

The BApplication object has these primary responsibilities:

• It makes a connection to the Application Server. Any application that puts a window
on-screen or relies on other system services needs this connection. It’s made
automatically when the BApplication object is constructed.

• It runs the application’s main message loop. The BApplication object is a kind of
BLooper, but instead of spawning an independent thread, it runs a message loop in
the application’s main thread (the thread that themain() function executes in). This
loop receives and processes messages that affect the entire application, including the
initial messages received from remote applications. It gets several messages from
the Browser (such as reports of what documents to open). Any application that’s
known to the Browser or that cooperates with other applications needs a main
message loop.

• It’s the home for application-wide elements of the user interface. For example, it
sets up the application’s main menu and runs the file panel, which permits users to
navigate the file system and pick files to open. It also lets you set, hide, and show
the application’s cursor. The ability to define the look of the cursor is provided by
BApplication’s SetCursor() function.

The user interface mainly centers on windows and is defined in the Interface Kit.
The BApplication object merely contains the elements that are common to all
windows and specific to the application.

Derived Classes

BApplication typically serves as the base class for a derived class that specializes it and
extends it in ways that are appropriate for a particular application. It declares (and inherits

Overview BApplication

22 – The Application Kit

declarations for) a number of hook functions that you can implement in a derived class to
augment and fine-tune what it does.

For example, your application might implement aRefsReceived() function to open a
document and display it in a window, or aReadyToRun() function to finish initializing the
application after it has been launched and has started to receive messages. These two
functions, like a handful of others, are called in response to system messages that have
application-wide import. Hook functions for application messages were discussed in the
introduction on page 17.

If you expect your application to get messages from remote sources, or its main thread to
get messages from other threads in the application, you should also implement a
MessageReceived() function to sort through them as they arrive.

A derived class is also a good place to record the global properties of your application and
to define functions that give other objects access to those properties.

Constructing the Object and Running the Message Loop

The BApplication object must be constructed before the application can begin running or
put a user interface on-screen. Other objects in other kits depend on the BApplication
object and its connection to the Application Server. In particular, you can’t construct
BWindow objects in the Interface Kit until the BApplication object is in place.

Simply constructing the BApplication object forms the connection to the Server. The
connection is severed when you quit the application and delete the object.

be_app

The BApplication constructor assigns the new object to a global variable,be_app. This
assignment is made automatically—you don’t have to create the variable or set its value
yourself. be_app is declared inapp/Application.h and can be used throughout the
code you write (or, more accurately, all code that directly or indirectly includes
Application.h).

Thebe_app variable is typed as a pointer to an instance of the BApplication class. If you
use a derived class instead—as most applications do—you have to cast thebe_app
variable when you call a function that’s implemented by the derived class.

((MyApplication *)be_app)->DoSomethingSpecial();

Casting isn’t required to call functions defined in the BApplication class (or in the
BHandler and BLooper classes it inherits from), nor is it required for virtual functions
defined in a derived class but declared by BApplication (or by the classes it inherits from).

BApplication Overview

The Application Kit –23

main()

Because of its pivotal role, the BApplication object is one of the first objects, if not the
very first object, the application creates. It’s typically created in themain() function.
The job ofmain() is to set up the application and turn over its operation to the various
message loops run by particular objects, including the main message loop run by the
BApplication object.

After constructing the BApplication object (and the other objects that your application
initially needs), you tell it to begin running the message loop by calling itsRun() function.
Like theRun() function defined in the BLooper class, BApplication’sRun() initiates a
message loop and begins processing messages. However, unlike the BLooper function, it
doesn’t spawn a thread; rather, it takes over the main application thread. Because it runs
the loop in the same thread in which it was called,Run() doesn’t return until the
application is told to quit.

At its simplest, themain() function of a Be application would look something like this:

#include <app/Application.h>

main()
{
 . . .
 new BApplication('abcd');
 . . .
 be_app->Run();
 delete be_app;
}

The number passed to the constructor (‘abcd’) sets the application’s signature. This is just
a precautionary measure. It’s more common (and much better) to set the signature at
compile time in a resource. If there is a resource, that signature is used and the one passed
to the constructor is ignored.

Themain() function shown above doesn’t allow for the usual command-line arguments,
argc andargv. It would be possible to havemain() parse theargv array, but these
arguments are also packaged in aB_ARGV_RECEIVED message that the application gets
immediately afterRun() is called. Instead of handling them withinmain(), applications
generally implement anArgvReceived() function to do the job. This function can also
handle command-line arguments that are passed to the application after it has been
launched; it can be called at any time while the application is running.

Configuration Messages Received on Launch

When an application is launched, it may be passed messages that affect how it
configures itself. These are the first messages that the BApplication object receives after
Run() is called.

For example, when the user double-clicks a document icon to launch an application, the
Browser passes the application aB_REFS_RECEIVED message with information about the

Overview BApplication

24 – The Application Kit

document. When launched from the command line, the application gets a
B_ARGV_RECEIVED message listing the command-line arguments. When launched by the
BRoster object, it might receive an arbitrary set of configuration messages.

After all the messages passed on-launch have been received and responded to, the
application gets aB_READY_TO_RUN message and itsReadyToRun() hook function is
called. This is the appropriate place to finish initializing the application before it begins
running in earnest. It’s the application’s last chance to present the user with its initial user
interface. For example, if a document has not already been opened in response to an on-
launchB_REFS_RECEIVED message,ReadyToRun() could be implemented to place a
window with an empty document on-screen.

ReadyToRun() is always called to mark the transition from the initial period when the
application is being launched to the period when it’s up and running—even if it’s launched
without any configuration messages. TheIsLaunching() function can let you know which
period the application is in.

Quitting

The main message loop terminates andRun() returns whenQuit() is called. Because
Run() doesn’t spawn a thread,Quit() merely breaks the loop; it doesn’t kill the thread or
destroy the object (unlike BLooper’s version of the function).

Quit() is usually called indirectly, as a byproduct of aB_QUIT_REQUESTED message posted
to the BApplication object. The application is notified of the message through a
QuitRequested() function call; it callsQuit() if QuitRequested() returnsTRUE.

WhenRun() returns, the application is well down the path of terminating itself.main()
simply deletesbe_app, cleans up anything else that might need attention, and exits.

Aborted Run

Applications with restricted launch behavior (B_EXCLUSIVE_LAUNCH and
B_SINGLE_LAUNCH) may be launched anyway in violation of those restrictions. When
this happens, theRun() function returns abruptly without processing any messages and
the application quits as it normally does whenRun() returns. Messages that carried on-
launch information for the aborted application are redirected to the instance of the
application that’s already running.

Applications should be prepared for theirmain() functions to be executed in this abortive
manner and guard against any undesired consequences.

BApplication Hook Functions

The Application Kit –25

Locking

You sometimes have to coordinate access to the BApplication object, since a single object
serves the entire application and different parts of the application (windows, in particular)
will be running in other threads. Locking ensures that one thread won’t change the state of
the application while another thread is changing the same aspect (or even just trying to
examine it).

The BApplication object is locked automatically while the main thread is responding to a
message, but it may have to be explicitly locked at other times.

This class inherits the locking mechanism—theLock(), Unlock(), andLockOwner()
functions—from BLooper. See that class for details.

Hook Functions

AboutRequested() Can be implemented to present the user with a window
containing information about the application.

Activate() Activates the application by making one of its windows the
active window; can be reimplemented to activate the
application in some other way.

AppActivated() Can be implemented to do whatever is necessary when the
application becomes the active application, or when it loses
that status.

ArgvReceived() Can be implemented to parse the array of command-line
arguments (or a similar array of argument strings).

FilePanelClosed() Can be implemented to take note when the file panel is
closed.

MenusWillShow() Can be implemented to update the menus in the
application’s main menu hierarchy, just before they’re
shown on-screen.

Pulse() Can be implemented to do something over and over again.
Pulse() is called repeatedly at roughly regular intervals in
the absence of any other activity in the main thread.

ReadyToRun() Can be implemented to set up the application’s running
environment. This function is called after all messages the
application receives on-launch have been responded to.

RefsReceived() Can be implemented to respond to a message that contains
references to database records. Typically, the records are
for documents that the application is being asked to open.

Constructor and Destructor BApplication

26 – The Application Kit

VolumeMounted() Can be implemented to take note when a new volume (a
floppy disk, for example) is mounted.

VolumeUnmounted() Can be implemented to take whatever action is necessary
just before a volume is unmounted.

Constructor and Destructor

BApplication()
BApplication(ulongsignature)

Establishes a connection to the Application Server, assignssignature as the application
identifier if one hasn’t already been set, and initializes the application-wide variable
be_app to point to the new object.

Thesignature that’s passed becomes the application identifier only if a signature hasn’t
been set in a resource file. It’s preferable to assign the signature in a resource at compile
time, since that enables the system to associate the signature with the application even
when it’s not running.

Every application must have one and only one BApplication object, typically an instance
of a derived class. It’s usually the first object that the application creates.

~BApplication()
virtual ~BApplication(void)

Closes the application’s windows, if it has any, without giving them a chance to disagree,
kills the window threads, frees the BWindow objects and the BViews they contain, and
severs the application’s connection to the Application Server.

You can delete the BApplication object only afterRun() has exited the main message loop.
In the normal course of events, all the application’s windows will already have been
closed and freed by then.

See also: the BWindow class in the Interface Kit,QuitRequested()

BApplication Member Functions

The Application Kit –27

Member Functions

AboutRequested()
virtual voidAboutRequested(void)

Implemented by derived classes to put a window on-screen that provides the user with
information about the application. The window typically displays copyright data, the
version number, license restrictions, the names of the application’s authors, a simple
description of what the application is for, and similar information.

This function is called when the user operates the “About . . .” item in the main menu and
a B_ABOUT_REQUESTED message is posted to the application as a result.

To set up the menu item, assign it a model message withB_ABOUT_REQUESTED as the
command constant and the BApplication object as the target, as illustrated in the
SetMainMenu() description on page 38. The default main menu includes such an item.

See also: SetMainMenu(), the BMenu class in the Interface Kit

Activate()
virtual voidActivate(void)

Makes the application the active application by arbitrarily picking one of its windows and
making it the active window. If the application doesn’t have any windows, or if the
chosen window happens to be hidden, the attempted activation will fail. < A surer method
of activation will be provided in a future release. >

This function is called when the main thread receives aB_ACTIVATE message, which any
application can send to any other application. The Browser uses this method to activate a
running application when, for example, the user double-clicks its icon or selects it from
the application menu.

However,Activate() is not called when the application is first launched or when the user
makes one of its windows the active window. Therefore don’t rely on it as a way of being
notified that the application has become active. Rely onAppActivated() instead.

See also: activate_app() andBWindow::Activate() in the Interface Kit,AppActivated()

AppActivated()
virtual voidAppActivated(bool isActive)

Implemented by derived classes to take note when the application becomes—or ceases to
be—the active application. The application has just attained that status if theisActive flag
is TRUE, and just lost it if the flag isFALSE. The active application is the one that owns the
current active window and whose main menu is accessible through the icon displayed at
the left top corner of the screen.

Member Functions BApplication

28 – The Application Kit

< Currently, this function is called only when the change in active application is a
consequence of a window being activated. It can be called while an application is being
launched, provided that the application puts a window on-screen. However, it’s always
called afterReadyToRun(), not before. >

See also: BWindow::WindowActivated() in the Interface Kit, “B_APP_ACTIVATED” on
page 5 in theMessage Protocols appendix

ArgvReceived()
virtual voidArgvReceived(int argc, char **argv)

Implemented by derived classes to respond to aB_ARGV_RECEIVED message that passes
the application an array of argument strings, typically arguments typed on the command
line. argv is a pointer to the strings andargc is the number of strings in the array. These
parameters are identical to those traditionally associated with themain() function.

When an application is launched from the command line, the command-line arguments are
both passed tomain() and packaged in aB_ARGV_RECEIVED message that’s sent to the
application on-launch (beforeReadyToRun() is called). When BRoster’sLaunch()
function is passedargc andargv parameters, they’re similarly bundled in an on-launch
message.

An application might also getB_ARGV_RECEIVED messages after it’s launched. For
example, imagine a graphics program called “Splotch” that can handle multiple
documents and is therefore restricted so that it can’t be launched more than once (it’s a
B_SINGLE_LAUNCH or aB_EXCLUSIVE_LAUNCH application). If the user types

Splotch myArtwork

in a shell, it launches the application and passes it an on-launchB_ARGV_RECEIVED
message with the strings “Splotch” and “myArtwork”. Then, if the user types

Splotch yourArtwork

the running application is again informed with aB_ARGV_RECEIVED message. In both
cases, the BApplication object dispatches the message by calling this function.

To open either of the artwork files, the Splotch application will need to translate the
document pathname into a database reference. It can do this most easily by calling
get_ref_for_path(), defined in the Storage Kit.

See also: RefsReceived(), “B_ARGV_RECEIVED” on page 5 in theMessage Protocols
appendix

CloseFilePanel() see RunFilePanel()

BApplication Member Functions

The Application Kit –29

CountWindows()
long CountWindows(void) const

Returns the number of windows belonging to the application. The count includes only
windows that the application explicitly created. It omits, for example, the private
windows used by BBitmap objects.

See also: the BWindow class in the Interface Kit

DispatchMessage()
virtual voidDispatchMessage(BMessage *message, BHandler *target)

Augments the BLooper function to dispatch system messages by calling a specific hook
function. The set of system messages that the BApplication object receives and the hook
functions that it calls to respond to them are listed under “Application Messages” on
page 16 of the chapter introduction.

Other messages—those defined by the application rather than the Application Kit—are
forwarded to thetarget BHandler’sMessageReceived() function. Note that thetarget is
ignored for most system messages.

DispatchMessage() locks the BApplication object and keeps it locked until the main
thread has finished responding to the message.

You can override this function to dispatch your own messages differently.

See also: BLooper::DispatchMessage(), BHandler::MessageReceived()

FilePanelClosed()
virtual voidFilePanelClosed(BMessage *message)

Implemented by derived classes to take note when the file panel is closed. Themessage
argument contains information about how the panel was closed and its state at the time. It
hasB_PANEL_CLOSED as itswhat data member and may include entries under the names
“frame” (the last frame rectangle of the panel), “directory” (the last directory it displayed),
“marked” (the item that was marked in its list of filters), and “canceled” (whether the user
closed the panel). Some of this information can be retained to configure the panel the next
time it runs.

See also: “B_PANEL_CLOSED” on page 5 in theMessage Protocols appendix,
RunFilePanel()

Member Functions BApplication

30 – The Application Kit

GetAppInfo()
long GetAppInfo(app_info *theInfo) const

Writes information about the application into theapp_info structure referred to bytheInfo.
The structure contains the application signature, the identifier for its main thread, a
reference to its executable file in the database, and other information.

This function is the equivalent to the identically-named BRoster function—or, more
accurately, to BRoster’sGetRunningAppInfo()—except that it only provides information
about the current application. The following code

app_info info;
if (be_app->GetAppInfo(&info) == B_NO_ERROR)
 . . .

is simply a shorthand for:

app_info info;
if (be_roster->GetRunningAppInfo(be_app->Team(),
 &info) == B_NO_ERROR)
 . . .

GetAppInfo() returnsB_NO_ERROR if successful, and an error code if not.

See the BRoster function for the error codes and for a description of the information
contained in anapp_info structure.

See also: BRoster::GetAppInfo()

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Responds to aB_HANDLERS_REQUESTED message by sending aB_HANDLERS_INFO reply.
The reply supplies a BMessenger object for each requested BHandler that’s associated
with the BApplication object. The BMessengers are placed in the reply message under the
name “handlers”.

This version ofHandlersRequested() interprets the request for handlers as a request for
BLoopers belonging to the application. If the requestmessage has an entry named “class”
containing the string “BWindow”, it limits the search for BLoopers to BWindow objects
belonging to the application. If the BWindow class isn’t specified, the search
encompasses all BLoopers belonging to the BApplication, including BWindow objects.

If the message has an entry named “index”, this function supplies a BMessenger for the
BLooper at that index in the list of the application’s BLoopers (or the BWindow at that
index in the application’s window list). If there’s no “index” entry, but there is one labeled
“name”, it supplies a BMessenger for the BLooper (or BWindow) with the specified name.

BApplication Member Functions

The Application Kit –31

If it can’t find a BLooper (or BWindow) at the specified “index” or with the requested
“name”, this function doesn’t supply any BMessengers, but rather puts theB_BAD_INDEX
or B_NAME_NOT_FOUND error constant in the reply message in an entry named “error”.

If neither an “index” nor a “name” is specified, it places BMessengers for all the
application’s BLoopers (or BWindows) in the “handlers” array. Failing that, it places
B_ERROR in an “error” entry.

You can override this function to use a different protocol for requesting handlers, or to
prevent the BApplication object from revealing information about any or all of its
BLoopers.

See also: BLooper::HandlersRequested()

HideCursor(), ShowCursor(), ObscureCursor()
void HideCursor(void)

void ShowCursor(void)

void ObscureCursor(void)

HideCursor() removes the cursor from the screen.ShowCursor() restores it.
ObscureCursor() hides it temporarily, until the user moves the mouse.

See also: SetCursor(), IsCursorHidden()

IsCursorHidden()
bool IsCursorHidden(void) const

ReturnsTRUE if the cursor is hidden (but not obscured), andFALSE if not.

See also: HideCursor()

IsFilePanelRunning() see RunFilePanel()

Member Functions BApplication

32 – The Application Kit

IsLaunching()
bool IsLaunching(void) const

ReturnsTRUE if the application is in the process of launching—of getting itself ready to
run—andFALSE once theReadyToRun() function has been called.

IsLaunching() can be called while responding to a message to find out whether the
message was received on-launch (to help the application configure itself) or after-launch
as an ordinary message.

See also: ReadyToRun()

MainMenu() see SetMainMenu()

MenusWillShow()
virtual voidMenusWillShow(void) const

Implemented by derived classes to make any necessary changes to the menus in the
hierarchy controlled by the application’s main menu before any of them is shown to the
user. MenusWillShow() is called each time the main menu is placed on-screen, just before
it’s made visible.

See also: BWindow::MenusWillShow() in the Interface Kit,SetMainMenu()

ObscureCursor() see HideCursor()

Pulse()
virtual voidPulse(void)

Implemented by derived classes to do something at regular intervals.Pulse() is called
regularly as the result ofB_PULSE messages, as long as no other messages are pending. By
default, pulsing is disabled—the pulse rate is set to 0.0—but you can enable it by calling
theSetPulseRate() function to set an actual rate.

You can implementPulse() to do whatever you want. However, pulse events aren’t
accurate enough for actions that require precise timing.

The default version of this function is empty.

See also: BWindow::Pulse() in the Interface Kit,SetPulseRate()

BApplication Member Functions

The Application Kit –33

Quit()
virtual voidQuit(void)

Kills the application by terminating the message loop and causing Run() to return. You
rarely call this function directly; it’s called for you when the application receives a
B_QUIT_REQUESTED message andQuitRequested() returnsTRUE to allow the application to
shut down.

BApplication’sQuit() differs from the BLooper function it overrides in four important
respects:

• It doesn’t kill the thread. It merely causes the message loop to exit after it finishes
with the current message.

• It therefore always returns, even when called from within the main thread.

• It returns immediately. It doesn’t wait for the message loop to exit.

• It doesn’t delete the object. It’s up to you to delete it afterRun() returns. (However,
for some reason,Quit() does delete the BApplication object if it’s called when no
message loop is running.)

Before shutting down, the BApplication object responds to every message it received prior
to theQuit() call.

See also: BLooper::Quit(), QuitRequested()

QuitRequested()
virtual boolQuitRequested(void)

Overrides the BLooper function to decide whether the application should really quit when
requested to do so.

BApplication’s implementation of this function tries to get the permission of the
application’s windows before agreeing to quit. It works its way through the list of
BWindow objects that belong to the application and forwards theQuitRequested() call to
each one. If a BWindow agrees to quit (itsQuitRequested() function returnsTRUE), the
BWindow version ofQuit() is called to destroy the window. If the window refuses to quit
(its QuitRequested() function returnsFALSE), the attempt to destroy the window fails and
no other windows are asked to quit.

If it’s successful in terminating all the application’s windows (or if the application didn’t
have any windows to begin with), this function returnsTRUE to indicate that the application
may quit; if not, it returnsFALSE.

An application can replace this window-by-window test of whether the application should
quit, or augment it by adding a more global test. It might, for example, put a modal
window on-screen that gives the user the opportunity to save documents, terminate on-
going operations, or cancel the quit request.

Member Functions BApplication

34 – The Application Kit

This hook function is called for you when the main thread receives aB_QUIT_REQUESTED
message; you never call it yourself. However, youdo have to post theB_QUIT_REQUESTED
message. Typically, the application’s main menu has an item labeled “Quit.” When the
user invokes the item, it should post aB_QUIT_REQUESTED message directly to the
BApplication object.

See also: BLooper::QuitRequested(), Quit(), SetMainMenu()

ReadyToRun()
virtual voidReadyToRun(void)

Implemented by derived classes to complete the initialization of the application. This is a
hook function that’s called after all messages that the application receives on-launch have
been handled. It’s called in response to aB_READY_TO_RUN message that’s posted
immediately after the last on-launch message. If the application isn’t launched with any
messages,B_READY_TO_RUN is the first message it receives.

This function is the application’s last opportunity to put its initial user interface on-screen.
If the application hasn’t yet displayed a window to the user (for example, if it hasn’t
opened a document in response to an on-launchB_REFS_RECEIVED or B_ARGV_RECEIVED
message), it should do so inReadyToRun().

The default version ofReadyToRun() is empty.

See also: Run(), IsLaunching()

RefsReceived()
virtual voidRefsReceived(BMessage *message)

Implemented by derived classes to do something with one or more database records that
have been referred to the application in amessage. The message hasB_REFS_RECEIVED as
its what data member and a single data entry named “refs” that contains one or more
record_ref (B_REF_TYPE) items.

Typically, the records are for documents that the application is requested to open. For
example, unless an alternative message is specified, the user’s selections in the file panel
are reported to the application in aB_REFS_RECEIVED message. Similarly, when the user
double-clicks a document icon in a Browser window, the Browser sends a
B_REFS_RECEIVED message to the application that owns the document. In each case, the
BApplication object dispatches the message by passing it to this function.

BApplication Member Functions

The Application Kit –35

You can use the Storage Kit’sdoes_ref_conform() function to discover what kind of
record each item in the “refs” entry refers to. For example:

void MyApplication::RefsReceived(BMessage *message)
{
 ulong type;
 long count;
 . . .
 message->GetInfo("refs", &type, &count);
 for (long i = --count; i >= 0; i--) {
 record_ref item = message->FindRef("refs", i);
 if (item.database >= 0 && item.record >= 0) {
 if (does_ref_conform(item, "File")) {
 BFile file;
 file.SetRef(item);
 if (file.Open() == B_NO_ERROR)
 . . .
 }
 else {
 BRecord *record = new BRecord(item);
 . . .
 }
 }
 }
 . . .
}

REFS_RECEIVED messages can be received both on-launch (while the application is
configuring itself) or after-launch (as ordinary messages received while the application is
running).

See also: does_ref_conform() in the Storage Kit,ArgvReceived(), ReadyToRun(),
IsLaunching(), “B_REFS_RECEIVED” on page 6 in theMessage Protocols appendix

Run()
virtual thread_idRun(void)

Runs a message loop in the application’s main thread. This function must be called from
main() to start the application running. The loop is terminated andRun() returns when
Quit() is called, or (potentially) when aQUIT_REQUESTED message is received. It returns
the identifier for the main thread (not that it’s of much use once the application has stopped
running).

This function overrides BLooper’sRun() function. Unlike that function, it doesn’t spawn
a thread for the message loop or return immediately.

See also: the “Overview” to this class above,BLooper::Run(), ReadyToRun(),
QuitRequested()

Member Functions BApplication

36 – The Application Kit

RunFilePanel(), CloseFilePanel(), IsFilePanelRunning()
long RunFilePanel(const char *windowTitle = NULL,

const char *openButtonLabel= NULL,
const char *cancelButtonLabel= NULL,
booldirectoriesOnly= FALSE,
BMessage *message= NULL)

void CloseFilePanel(void)

bool IsFilePanelRunning(void)

RunFilePanel() requests the Browser to display a window that lets the user navigate the file
system to find desired files and directories. Its arguments are all optional and are used to
configure the panel:

• If anotherwindowTitle is not specified, the title of the window will be “Open”
preceded by the name of the application. For example:

WishMaker : Open

This title reflects the fact that the panel is typically used to find files the application
should open and display to the user.

• If an openButtonLabel isn’t provided, the principal button in the panel (the default
button) will be labeled “Open”.

• If a cancelButtonLabel isn’t provided, the other button in the panel will be labeled
“Cancel”.

• If thedirectoriesOnly flag isTRUE, the user will be able to select only directories, not
files. If the flag isFALSE, as it is by default, the user won’t be able to select
directories. Instead, their contents will be displayed in the panel as the user
navigates the file system.

• If a message is passed, it can contain entries that further configure the panel. It also
serves as a model for the message the file panel will send to the application to report
which files and directories the user selected. If amessage isn’t provided, this
information will be reported in a standardB_REFS_RECEIVED message.

If the message has any of the following entries, they will be used to help set up the panel:

Data name Type code Description

“directory” B_REF_TYPE Therecord_ref for the directory that the
panel should display when it first comes
on-screen. If this entry is absent, the panel
will initially display the current directory
of the current volume.

“frame” B_RECT_TYPE A BRect that sets the size and position of
the panel in screen coordinates. If this

BApplication Member Functions

The Application Kit –37

entry is absent, the Browser will choose an
appropriate frame rectangle for the panel.

“filter” B_STRING_TYPE An array of labels for items that should be
displayed in a Filters pop-up menu. The
items will be listed in the menu in the same
order that they’re added to the array. If
this item is absent, the file panel won’t
display a Filters list.

“marked” B_STRING_TYPE The label that should be marked in the
Filters menu. If this item is absent, the first
item in the list will be marked.

If the panel is to have a Filters menu, themessage should have one additional entry for
each label in the “filter” array. This entry should list the file types associated with the label
and have the label as its name. For example:

BMessage *model = new BMessage(OPEN_THESE);

model->AddString("filter", "All files");
model->AddString("filter", "Picture files only");
model->AddString("filter", "Text files only");
model->AddString("filter", "Picture & text files");

model->AddLong("All files", 0);

model->AddLong("Picture files only", MY_IMAGE_A_FILE_TYPE);
model->AddLong("Picture files only", MY_IMAGE_B_FILE_TYPE);

model->AddLong("Text files only", MY_TEXT_FILE_TYPE);

model->AddLong("Picture & text files", MY_IMAGE_A_FILE_TYPE);
model->AddLong("Picture & text files", MY_IMAGE_B_FILE_TYPE);
model->AddLong("Picture & text files", MY_TEXT_FILE_TYPE);

be_app->RunFilePanel(NULL, NULL, FALSE, model);

When the user selects a particular filter item, the file panel eliminates files of other types
from the display. It shows only files with types associated with the selected item (and
directories).

If an item is associated with a file type of 0—as is “All files” in the example above—it
won’t restrict the display. When the item is selected, the file panel shows every file in the
directory. Generally, “All files” should be the first item in the menu and the one that’s
initially marked.

When the user operates the “Open” (oropenButtonLabel) button, the file panel sends a
message to the BApplication object. If a customizedmessage is provided, it’s used as the

Member Functions BApplication

38 – The Application Kit

model for the message that’s sent. If amessage isn’t provided, a standard
B_REFS_RECEIVED message is sent instead. It has one data entry:

Data name Type code Description

“refs” B_REF_TYPE References to the database records for the
files or directories selected by the user.

If the user selects more than one file or directory, there will be more than onerecord_ref
item in the “refs” array.

A customizedmessage works much like the model messages assigned to BControl objects
and BMenuItems in the Interface Kit. The file panel makes a copy of the model, adds a
“refs” entry (as described above) to the copy, and delivers the copy to the BApplication
object. All other entries, including those used to configure the panel, remain unchanged.
The message can have any command constant you choose, includingB_REFS_RECEIVED.

The file panel automatically disappears when the user operates the “Open” (or
openButtonLabel) button—provided that the message hasB_REFS_RECEIVED as the
command constant. If it has a customized constant, it remains on-screen until
CloseFilePanel() is called (or until the application quits). You can choose to close the
panel if the user makes a valid selection, or you can leave it on-screen so the user can
continue making selections.IsFilePanelRunning() will report whether the file panel is
currently displayed on-screen.

The user can close the file panel by operating the “Cancel” (orcancelButtonLabel) button.
Whenever the panel is closed, by the user or the application, aB_PANEL_CLOSED message
is sent to the application and theFilePanelClosed() hook function is called.

RunFilePanel() returnsB_NO_ERROR if it succeeds in getting the Browser to put the file
panel on-screen. If the Browser isn’t running or the file panel is already on-screen, it
returnsB_ERROR. If the Browser is running but the application can’t communicate with it,
it returns an error code that indicates what went wrong; these codes are the same as those
documented for BMessenger’sError() function.

See also: RefsReceived(), FilePanelClosed()

SetMainMenu(), MainMenu()
void SetMainMenu(BPopUpMenu *menu)

BPopUpMenu *MainMenu(void)

These functions set and return the application’s main menu, the menu that’s accessible
through the icon that the Browser displays at the left top corner of the screen while the
application is the current active application. Because it isn’t under the control of a
BMenuBar, this menu must be a kind of BPopUpMenu (but one that doesn’t operate in
radio mode or mark the selected item).

The main menu contains items that affect the application as a whole, rather than ones that
affect operations within a particular window. The first item in the menu should be labeled

BApplication Member Functions

The Application Kit –39

“About” plus the name of the application and the three dots of an ellipsis. The last item
should be “Quit”. A default main menu with just these two items is provided for every
application. You can set up your own menu in the following manner:

BMenuItem *item;
BPopUpMenu *menu = new BPopUpMenu("", FALSE, FALSE);

item = new BMenuItem("About <application name> ...",
 new BMessage(B_ABOUT_REQUESTED));
item->SetTarget(be_app);
menu->AddItem(item);

item = new BMenuItem("Preferences",
 new BMessage(SET_PREFERENCES));
item->SetTarget(be_app);
menu->AddItem(item);

item = new BMenuItem("Open", new BMessage(SHOW_FILE_PANEL));
item->SetTarget(be_app);
menu->AddItem(item);

item = new BMenuItem("Quit", new BMessage(B_QUIT_REQUESTED));
item->SetTarget(be_app);
menu->AddItem(item);

be_app->SetMainMenu(menu);

B_ABOUT_REQUESTED andB_QUIT_REQUESTED are system messages that are dispatched by
calling theAboutRequested() andQuitRequested() hook functions. The other messages
in this example would be dispatched by callingMessageReceived().

See also: AboutRequested(), QuitRequested()

SetCursor()
void SetCursor(const void *cursor)

Sets the cursor image to the bitmap specified incursor. Each application has control over
its own cursor, and can set and reset it as often as necessary. The cursor on-screen will
have the shape specified incursor as long as the application remains the active
application. If it loses that status and then regains it again, its current cursor is
automatically restored.

The first four bytes ofcursor data is a preamble that gives information about the image, as
follows:

• The first byte sets the size of the cursor image. The cursor bitmap is a square and
this byte states the number of pixels on one side. Currently, only 16-pixel-by-16-
pixel images are acceptable.

• The second byte specifies the depth of the cursor image, in bits per pixel. Currently,
only monochrome one-bit-per-pixel images are acceptable.

Member Functions BApplication

40 – The Application Kit

• The third and fourth bytes set thehot spot, the pixel within the cursor image that’s
used to report the cursor’s location. For example, if the cursor is located over a
button on-screen so that the hot spot is within the button rectangle, the cursor is said
to point to the button. However, if the hot spot lies outside the button rectangle,
even if most of the cursor image is within the rectangle, the cursor doesn't point to
the button.

To locate the hot spot, assume that the pixel in the upper left corner of the cursor
image is at (0, 0). Identify the verticaly coordinate first, then the horizontal
x coordinate. For example, a hot spot 5 pixels to the right of the upper left corner
and 8 pixels down—at (5, 8)—would be specified as “8, 5.”

Image data follows these four bytes. Pixel values are specified from left to right in rows
starting at the top of the image and working downward. First comes data specifying the
color value of each pixel in the image. In a one-bit-per-pixel image, 1 means black and 0
means white.

Following the color data is a mask that indicates which pixels in the image square are
transparent and which are opaque. Transparent pixels are marked 0; they let whatever is
underneath that part of the cursor bitmap show through. Opaque pixels are marked 1.

The Application Kit defines two standard cursor images. Each is represented by a
constant that you can pass toSetCursor():

B_HAND_CURSOR The hand image that’s seen when the computer is first
turned on. This is the default cursor.

B_I_BEAM_CURSOR The standard I-beam image for selecting text.

See also: HideCursor()

SetPulseRate()
void SetPulseRate(doublemicroseconds)

Sets how oftenPulse() is called (how oftenB_PULSE messages are posted). The interval set
should be a multiple of 100,000.0 microseconds (0.1 second); differences less than
100,000.0 microseconds will not be noticeable. A finer granularity can’t be guaranteed.

The default pulse rate is 0.0, which disables the pulsing mechanism. Setting a different
rate enables it.

See also: Pulse()

ShowCursor() see HideCursor()

BApplication Member Functions

The Application Kit –41

VolumeMounted(), VolumeUnmounted()
virtual voidVolumeMounted(longvolume)

virtual voidVolumeUnmounted(longvolume)

Implemented by derived classes to take action when avolume (typically a floppy disk) is
mounted or unmounted. The volume is mounted just beforeVolumeMounted() is called
and unmounted just afterVolumeUnmounted() returns.

Thevolume identifier can be passed to the BVolume constructor to get an object
corresponding to the volume.

Currently, there’s no way to prevent a volume from being mounted or unmounted.

See also: the BVolume class in the Storage Kit

WindowAt()
BWindow *WindowAt(long index) const

Returns the BWindow object recorded in the list of the application’s windows atindex, or
NULL if index is out-of-range. Indices begin at 0, and there are no gaps in the list.
Windows aren’t listed in any particular order (such as the order they appear on-screen), so
the value ofindex has no ulterior meaning. The window list excludes the private windows
used by BBitmaps and other objects, but it doesn’t distinguish main windows that display
documents from palettes, panels, and other supporting windows.

This function can be used to iterate through the window list:

BWindow *window;
long i = 0;

while (window = be_app->WindowAt(i++)) {
 if (window->Lock()) {
 . . .
 window->Unlock();
 }
}

This works as long as windows aren’t being created or deleted while the listindex is being
incremented. Locking the BApplication object doesn’t lock the window list.

It’s best for an application to maintain its own window list, one that arranges windows in a
logical order, keeps track of any contingencies among them, and can be locked while it’s
being read.

See also: CountWindows()

Member Functions BApplication

42 – The Application Kit

The Application Kit –43

BClipboard

Derived from: none

Declared in: <app/Clipboard.h>

Overview

The clipboard is a single, system-wide, temporary repository of data. In its normal use,
the clipboard is a vehicle for transferring data between applications, or between different
parts of the same application. An application adds some amount of data to the clipboard,
then some other application (or the same application) retrieves (or “finds”) that data. This
mechanism permits, most notably, the ability to cut, copy, and paste data items. For
example, the BTextView object, in the Interface Kit, uses the clipboard to perform just
such operations on text.

The BClipboard class represents the clipboard. As there is but a single clipboard per
system, the BClipboard class allows only one BClipboard object. You don’t create this
object directly in your application; it’s created automatically when you boot the machine
(so there’s no public constructor or destructor for the class). Each application knows this
object asbe_clipboard. Thebe_clipboard variable in your application points
(ultimately) to the same object as does every otherbe_clipboard in all other applications.

Using the Clipboard

The central BClipboard functions are these:

• AddData() lets you add a new item of data to the clipboard. The data that’s added is
copied from an argument passed to the function. Each clipboard item is identified
(primarily) by its data type (which is represented by one of the standard type
constants, such asB_ASCII_TYPE or B_REF_TYPE, that are defined inapp/AppDefs.h).

• FindData() retrieves data from the clipboard by providing the caller with a pointer to
a specific item. This pointer points to data that resides on the clipboard—the
function doesn’t copy the data.

You must bracket calls to AddData() andFindData() with calls toLock() andUnlock().
This prevents other applications from accessing the clipboard while your application is
using it. Conversely, if some other application (or if another thread in your application)
holds the lock to the clipboard when you callLock(), your application (or thread) will hang
until the current lock holder callsUnlock()—in other words,Lock() will always succeed,
even if it has to wait forever to do so. Currently, unfortunately, there’s no way to tell if the

Overview BClipboard

44 – The Application Kit

clipboard is already locked, nor can you specify a time limit beyond which you won’t wait
for the lock.

AddData() calls should also be bracketed by calls toClear() andCommit() (see the
example below for the calling sequence). Clearing the clipboard removes all data that it
currently holds. This may seem harsh, but somebody has to keep the clipboard tidy. The
Commit() function tells the clipboard that you’re serious about the item-additions that you
requested in the previousAddData() calls. If you don’t commit your additions, they’ll be
lost.

TheLock()/Unlock() andClear()/Commit() calls can bracket groups ofAddData() and
FindData() calls. The following code fragments demonstrate the expected sequences of
function calls with regard to adding and retrieving clipboard data (the arguments to
FindData() andAddData() aren’t fully shown in the examples; see the function
descriptions, below, for argument details).

Example 1: Adding Data to the Clipboard

/* Lock the clipboard. */
be_clipboard->Lock();

/* Clear the clipboard. */
be_clipboard->Clear();

/* Add some items. */
be_clipboard->AddData(B_DOUBLE_TYPE, . . .);
be_clipboard->AddData(B_FLOAT_TYPE, . . .);

/* Commit the additions and unlock the clipboard. */
be_clipboard->Commit();
be_clipboard->Unlock();

Example 2: Retrieving Data from the Clipboard

/* Lock the clipboard. */
be_clipboard->Lock();

/* Find a bool. */
bool *bp = (bool *)be_clipboard->FindData(B_BOOL_TYPE, . . .);

/* Copy the bool value (for reasons that are explained in the
 * FindData() description).
 */
bool yesOrNo = *bp;

/* Unlock the clipboard */
be_clipboard->Unlock();

It’s possible to mixAddData() andFindData() calls within the same “session,” but such a
pursuit doesn’t correspond to traditional manipulations on selected data.

BClipboard Member Functions

The Application Kit –45

Member Functions

AddData(), AddText()
void AddData(ulongtype, const void *data, longnumBytes)

void AddText(const char *string)

These functions add a buffer of data to the clipboard. TheAddData() function copies
numBytes bytes of data starting atdata. The clipboard thinks this data is of the type given
by thetype argument (one of the data type constants—B_BOOL_TYPE, B_DOUBLE_TYPE,
B_FLOAT_TYPE, and so on—declared inAppDefs.h).

AddText() is a convenience function that adds a copy ofstring to the clipboard. Text items
are declared to beB_ASCII_TYPE.

You must call Lock() before callingAddData() or AddText(). If you don’t, your
application will visit the debugger. Furthermore, you must callUnlock() after you’ve
added your items. Multiple invocations ofAddData() or AddText() (or both) can be
performed within the sameLock()/Unlock() pair. You can add any number of items of the
same or different types while you have the clipboard locked.

By convention, you should callClear() immediately before callingAddData() or
AddText() (but after callingLock()). This will remove all items that the clipboard is
currently holding.

After you’ve added your items to the clipboard (but before you callUnlock()), you must
commit the additions by callingCommit(). If you don’t commit before you unlock, your
additions won’t be recorded.

TheFindData() andFindText() functions retrieve data that’s been added through
AddData() andAddText() calls.

Clear()
void Clear(void)

Erases all items that are currently on the clipboard. Normally, you callClear() just before
you add new data to the clipboard (through invocations ofAddData() andAddText()).
You must callLock() before calling Clear(); if you don’t, the debugger will tap you on the
shoulder.

Member Functions BClipboard

46 – The Application Kit

Commit()
void Commit(void)

Forces the clipboard to notice the items you added. All calls (or sequence of calls) to
AddData() or AddText() must be followed by a call toCommit(), or you’ll lose the
additions. The call toCommit() must precede the call toUnlock() that balances the call to
Lock() that preceded the call toClear() that worried the cat that killed the rat that ate the
malt . . .

CountEntries()
long CountEntries(ulongtype)

Returns the number of items on the clipboard that are of the specified type. Thetype
argument must be one of the data type constants defined inapp/AppDefs.h. If type is
B_ANY_TYPE, the function returns the total number of current clipboard items.

You must callLock() before invoking this function; if you don’t, it returnsNULL.

DataOwner()
BMessengerDataOwner(void)

Returns a BMessenger object for the application that last committed data to the clipboard.
The BMessenger targets that application’s BApplication object.

FindData(), FindText()
void *FindData(ulongtype, long *numBytes)
void *FindData(ulongtype, long index, long *numBytes)

const char *FindText(long *numBytes)

These functions return a pointer to a particular item on the clipboard.

FindData() returns an item of the requestedtype, which can be any of the data type
constants defined in AppDefs.h or an application-defined type code. If anindex is
provided, it returns the item at that index; indices begin at 0 and count only items of the
specified type. If an index isn’t supplied,FindData() finds the first item on the clipboard
matching the requested type.

FindText() always searches for the first item of typeB_ASCII_TYPE.

If the item is found, a pointer to it is returned directly by the function, and the number of
bytes of data that comprise the item is returned by reference innumBytes. Keep in mind
that this pointer points to data that lies on the clipboard; if you want a permanent copy of
the data, you must copy the data that the pointer points to before you unlock the clipboard
(as shown in the example in the section “Using the Clipboard” on page 43).

BClipboard Member Functions

The Application Kit –47

An individual call or sequence of calls toFindData() andFindText() must be bracketed by
invocations ofLock() andUnlock().

If the function can’t find the specified item—for example, if the clipboard doesn’t have
data of the requestedtype or theindex passed to FindData() is out-of-range—it returns a
NULL pointer and, perhaps more telling, setsnumBytes to 0. If you don’t lock the clipboard
before invoking eitherFindData() or FindText(), you’ll find the debugger.

Lock(), Unlock()
bool Lock(void)

void Unlock(void)

These functions lock and unlock the clipboard. Locking the clipboard gives your
application exclusive permission to invoke the other BClipboard functions. (More
accurately, the permission extends only to the very thread in whichLock() is called.) If
some other thread already has the clipboard locked when your thread callsLock(), your
thread will wait until the lock-holding thread callsUnlock(). Your thread should also
invokeUnlock() when you’re done manipulating the clipboard.

Lock() should invariably be successful and returnTRUE.

See also: BLooper::Lock()

Member Functions BClipboard

48 – The Application Kit

The Application Kit –49

BHandler

Derived from: public BObject

Declared in: <app/Handler.h>

Overview

BHandlers are the objects that respond to messages received in message loops. The class
declares a hook function—MessageReceived()—that derived classes must implement to
handle expected messages. BLooper’sDispatchMessage() function calls
MessageReceived() to pass incoming messages from the BLooper to the BHandler.

All messages are passed to BHandler objects—even system messages, which are passed
by calling a message-specific function, notMessageReceived(). These specific functions
are declared in classes derived from BHandler—especially BWindow and BView in the
Interface Kit and BLooper and BApplication in this Kit. For example, the BApplication
class declares aReadyToRun() function to respond toB_READY_TO_RUN messages, and the
BView class declares aKeyDown() function to respond toB_KEY_DOWN messages.
(BHandler itself declares the function that responds toB_HANDLERS_REQUESTED system
messages,HandlersRequested().)

All messages that aren’t matched to a specific hook function—messages defined by
applications rather than the kits—are dispatched by callingMessageReceived().

BHandlers can be chained together in a linked list. The default behavior for
MessageReceived() is simply to pass the message to the next handler in the chain.
However, system messages are not passed from handler to handler.

To be eligible to get messages from a BLooper, a BHandler must be in the BLooper’s
circle of handlers. At any given time, a BHandler can belong to only one BLooper.

A target BHandler can be designated for a message when calling BLooper’s
PostMessage() function to post it. Messages that a BMessenger object sends are targeted
to the BHandler that was named when constructing the BMessenger. Messages that a user
drags and drops are targeted to the object (a BView) that controls the part of the window
where the message was dropped. The messaging mechanism eventually passes the target
BHandler toDispatchMessage(), so that the message can be delivered to its designated
destination.

Hook Functions BHandler

50 – The Application Kit

Hook Functions

HandlersRequested() Can be implemented to supply BMessengers for other
BHandler objects associated with this BHandler.

MessageReceived() Implemented to handle received messages.

Constructor and Destructor

BHandler()
BHandler(const char *name = NULL)

Initializes the BHandler by assigning it aname and registering it with the messaging
system.

~BHandler()
virtual ~BHandler(void)

Removes the BHandler’s registration and frees the memory allocated for its name.

Member Functions

AddFilter() see SetFilterList()

FilterList() see SetFilterList()

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Implemented by derived classes to send aB_HANDLERS_INFO message in reply to the
receivedB_HANDLERS_REQUESTED message passed as an argument. The request is for
BMessenger objects corresponding to BHandler objects in the application; the
BMessengers will permit the requester to direct messages to those BHandlers. This
function should place the BMessengers in a “handlers” entry in the reply message—or,
failing that, to place an error code in an entry named “error”.

Since, by default, BHandlers are not associated with other BHandlers, this base version of
the function doesn’t supply any BMessengers; it simply puts theB_ERROR constant in an
“error” entry and sends the reply.

BHandler Member Functions

The Application Kit –51

For more information on the protocols that the kits currently use forB_HANDLERS_INFO
andB_HANDLERS_REQUESTED messages, see the versions of this function defined in
derived classes.

See also: BLooper::HandlersRequested(), BApplication::HandlersRequested(),
BWindow::HandlersRequested(), BView::HandlersRequested(),
“B_HANDLERS_REQUESTED” on page 4 in theMessage Protocols appendix

Looper()
virtual BLooper *Looper(void) const

Returns the BLooper object that the BHandler is associated with, orNULL if it’s not
associated with any BLooper. A BHandler must be associated with a BLooper before the
BLooper can call upon it to handle any messages it dispatches. (However, strictly
speaking, this restriction is imposed when the message is posted or when the BMessenger
that will send it is constructed, rather than when it’s dispatched.)

BLooper objects are automatically associated with themselves; they can act as handlers
only for messages that they receive in their own message loops. All other BHandlers must
be explicitly tied to a particular BLooper by calling that BLooper’sAddHandler()
function. A BHandler can be associated with only one BLooper at a time.

In the Interface Kit, when a BView is added to a window’s view hierarchy, it’s also added
as a BHandler to the BWindow object.

See also: BLooper::AddHandler(), BLooper::PostMessage(), the BMessenger constructor

MessageReceived()
virtual voidMessageReceived(BMessage *message)

Implemented by derived classes to respond to messages that are dispatched to the
BHandler. The default (BHandler) implementation of this function doesn’t respond to any
messages; it simply calls the next handler’s version ofMessageReceived() to pass it the
message.

You must implementMessageReceived() to handle the variety of messages that might be
dispatched to the BHandler. It can distinguish between messages by the value recorded in
thewhat data member of the BMessage object. For example:

void MyHandler::MessageReceived(BMessage *message)
{
 switch (message->what) {
 case COMMAND_ONE:
 . . .
 break;
 case COMMAND_TWO:
 . . .
 break;

Member Functions BHandler

52 – The Application Kit

 case COMMAND_THREE:
 . . .
 break;
 default:
 inherited::MessageReceived(message);
 break;
 . . .
 }
}

When defining a version ofMessageReceived(), it’s always a good idea to incorporate
the inherited version as well, as shown in the example above. This ensures, first, that any
messages handled by base versions of the function are not overlooked and, second, that the
message is passed to the BHandler’s next handler if even the inherited functions don’t
recognize it.

If the message comes to the end of the line—if it’s not recognized and there is no next
handler—the BHandler version of this function sends aB_MESSAGE_NOT_UNDERSTOOD
reply to notify the message source.

See also: SetNextHandler(), BLooper::PostMessage(), BLooper::DispatchMessage()

NextHandler() see SetNextHandler()

SetFilterList(), FilterList(), AddFilter(), RemoveFilter()
virtual voidSetFilterList(BList * list)

BList *FilterList(void) const

virtual voidAddFilter(BMessageFilter *filter)

virtual boolRemoveFilter(BMessageFilter *filter)

These functions manage a list of BMessageFilter objects associated with the BHandler.

SetFilterList() assigns the BHandler a newlist, replacing any list previously assigned. The
list must contain pointers to instances of the BMessageFilter class or, more usefully, to
instances of classes that derive from BMessageFilter. Iflist is NULL, the current list is
removed.FilterList() returns the current list of filters.

AddFilter() adds afilter to the end of the BHandler’s list of filters. It creates the BList
object if it doesn’t already exist. By default, BHandlers don’t maintain a BList of filters
until one is assigned or the first BMessageFilter is added.RemoveFilter() removes afilter
from the list. It returnsTRUE if successful, andFALSE if it can’t find the specified filter in
the list (or the list doesn’t exist). It leaves the BList in place even after removing the last
filter.

BHandler Member Functions

The Application Kit –53

ForSetFilterList(), AddFilter(), andRemoveFilter() to work, the BHandler must be assigned
to a BLooper object and the BLooper must be locked.

See also: BLooper::SetCommonFilterList(), BLooper::Lock(), the BMessageFilter class

SetName(), Name()
void SetName(const char *string)

const char *Name(void) const

These functions set and return the name that identifies the BHandler. The name is
originally set by the constructor.SetName() assigns the BHandler a new name, and
Name() returns the current name. The string returned byName() belongs to the BHandler
object; it shouldn’t be altered or freed.

See also: the BHandler constructor,BView::FindView() in the Interface Kit

SetNextHandler(), NextHandler()
void SetNextHandler(BHandler *handler)

BHandler *NextHandler(void) const

These functions set and return the BHandler object that’s linked to this BHandler. By
default, theMessageReceived() function passes any messages that a BHandler can’t
understand to its next handler.

When a BHandler object is added to a BLooper, the BLooper becomes its next handler by
default. The default next handler for a BLooper is the BApplication object; the next
handler for the BApplication object isNULL. The handler chain for an ordinary BHandler
object is therefore BHandler to BLooper to BApplication object.

However, when a BView object is added to a window, the Interface Kit assigns the
BView’s parent as its next handler (unless the parent is the window’s top view, in which
case the BWindow object is assigned as the next handler). The handler chain for BViews
is therefore BView to BView, up the view hierarchy, to the BWindow to the BApplication
object.

SetNextHandler() can alter any of these default assignments. For it to work, the BHandler
must be assigned to a BLooper object and the BLooper must be locked.

See also: MessageReceived()

Member Functions BHandler

54 – The Application Kit

The Application Kit –55

BLooper

Derived from: public BHandler

Declared in: <app/Looper.h>

Overview

A BLooper object runs a message loop in a thread that it spawns for that purpose. It offers
applications a simple way of creating a thread with a message interface.

Various classes in the Be software kits derive from BLooper in order to associate threads
with significant entities in the application and to set up message loops with special
handling for system messages. In the Application Kit, the BApplication object runs a
message loop in the application’s main thread. (Unlike other BLoopers, the BApplication
object doesn’t spawn a separate thread, but takes over the thread in which the application
was launched.) In the Interface Kit, each BWindow object runs a loop to handle messages
that report activity in the user interface.

Running the Loop

Constructing a BLooper object gets it ready to work, but doesn’t actually begin the
message loop. ItsRun() function must be called to spawn the thread and initiate the loop.
Some derived classes may choose to callRun() within the class constructor,

MyLooper::MyLooper(const char *name, long priority)
 : BLooper(name, priority)
{
 . . .
 Run();
}

so that simply constructing the object yields a fully functioning message loop. Other
classes may need to keep object initialization separate from loop initiation. (The
BWindow class in the Interface Kit is an example of the former approach, BApplication of
the latter.)

Receiving and Dispatching Messages

Messages are posted to the BLooper’s thread by calling itsPostMessage() function. This
simply puts the message in a queue. Messages can also be delivered to the BLooper’s

Overview BLooper

56 – The Application Kit

queue—somewhat more indirectly—by a BMessenger object or by theSendReply()
function of a BMessage object.

No matter how they get there, the thread takes messages from the queue one at a time, in
the order that they arrive, and callsDispatchMessage() for each one.DispatchMessage()
hands the message to a BHandler object; the BHandler kicks off the thread’s specific
response to the message.

Posting or sending a message to a thread initiates activity within that thread, beginning
with theDispatchMessage() function. SinceDispatchMessage() immediately transfers
responsibility for incoming messages to BHandler objects, BHandlers determine what
happens in the BLooper’s thread. Everything that the thread does, it does through
BHandlers responding to messages. The BLooper merely runs the posting and
dispatching mechanism.

The BLooper object is locked whenDispatchMessage() is called; it stays locked until the
thread has finished responding to the message.

Acting as the Handler

When a message is posted to a thread, a target BHandler can be named for it. Messages
that aren’t posted to a specific target are handled by the BLooper itself—in other words,
the BLooper acts as the default handler. (The BLooper class derives from BHandler for
just this reason.)

Thus, a BLooper object can play both roles—the BLooper role of running the message
loop and the BHandler role of responding to messages. For it to act as a handler, you must
derive a class from BLooper and define aMessageReceived() function that can respond
to the messages dispatched to it.

However, the BLooper class can also be used without change, as it’s defined in the Kit—as
long as all messages are targeted to a another handler.

Eligible Handlers

A BLooper keeps a list of the BHandler objects that are eligible for the messages it
dispatches.AddHandler() places a BHandler in the list, andRemoveHandler() removes
it. A BHandler can be associated with only one BLooper at a time. (The BLooper is an
automatic member of the list; it cannot be removed and associated with another BLooper.)

A BHandler’sLooper() function will reveal which BLooper it currently belongs to. The
BLooper itself doesn’t reveal the membership of its list.

A BHandler can’t get messages dispatched by any BLooper except the one it’s associated
with. However, this eligibility constraint is imposed not byDispatchMessage(), but by
the BMessenger constructor when a target BHandler is proposed for the messages it will

BLooper Hook Functions

The Application Kit –57

send and byPostMessage() when a BHandler is named as the target of a message posted
to the BLooper.

Hook Functions

DispatchMessage() Passes incoming messages to a BHandler; can be
overridden to change the way certain messages or classes
of messages are dispatched.

QuitRequested() Can be implemented to decide whether a request to
terminate the message loop and destroy the BLooper
should be honored or not.

Constructor and Destructor

BLooper()
BLooper(const char *name = NULL, longpriority = B_NORMAL_PRIORITY)

Assigns the BLooper object aname and sets up its message queue, but doesn’t spawn a
thread or begin the message loop. CallRun() to spawn the thread that the BLooper will
oversee. Run() creates the thread at the specifiedpriority level and initiates its message
loop.

Thepriority determines how much attention the thread will receive from the scheduler,
and consequently how much CPU time it will get relative to other threads. You must
choose one of the discrete priority levels defined inkernel/OS.h; intermediate priorities
are not possible. The defined priorities, from lowest to highest, are:

B_LOW_PRIORITY For threads running in the background that
shouldn’t interrupt other threads.

B_NORMAL_PRIORITY For all ordinary threads, including the main
thread.

B_DISPLAY_PRIORITY For threads associated with objects in the
user interface, including window threads.

B_URGENT_DISPLAY_PRIORITY For interface threads that deserve more
attention than ordinary windows.

B_REAL_TIME_DISPLAY_PRIORITY For threads that animate the on-screen
display.

Member Functions BLooper

58 – The Application Kit

B_URGENT_PRIORITY For threads performing time-critical
computations.

B_REAL_TIME_PRIORITY For threads that control real-time processes
that need unfettered access to the CPUs.

Some derived classes may want to callRun() in the constructor, so that the object is set in
motion at the time it’s created. This is what the BWindow class in the Interface Kit does.
Other derived classes might want to keep a separation between constructing the object and
running it. The BApplication class maintains this distinction.

BLooper objects should always be dynamically allocated (withnew), never statically
allocated on the stack.

See also: Run(), BHandler::SetName()

~BLooper()
virtual ~BLooper(void)

Frees the message queue and all pending messages, stops the message loop, and destroys
the thread in which it ran. BHandlers that have been added to the BLooper are not deleted.

With the exception of the BApplication object, BLoopers should be destroyed by calling
theQuit() function (orQuitRequested()), not by using thedelete operator.

See also: Quit()

Member Functions

AddCommonFilter() see SetCommonFilterList()

AddHandler(), RemoveHandler()
virtual voidAddHandler(BHandler *handler)

virtual boolRemoveHandler(BHandler *handler)

AddHandler() addshandler to the BLooper’s list of BHandler objects, and
RemoveHandler() removes it. Only BHandlers that have been added to the list are
eligible to respond to the messages the BLooper dispatches. (However, this constraint is
imposed not byDispatchMessage(), but byPostMessage() and the BMessenger
constructor.) A BHandler can belong to no more than one BLooper, but can change its
affiliation from time to time.

BLooper Member Functions

The Application Kit –59

AddHandler() also calls thehandler’s SetNextHandler() function to assign it the BLooper
as its default next handler.RemoveHandler() calls the same function to set thehandler’s
next handler toNULL.

AddHandler() fails if thehandler already belongs to a BLooper.RemoveHandler()
returnsTRUE if it succeeds in removing the BHandler from the BLooper, andFALSE if not or
if thehandler doesn’t belong to the BLooper in the first place. For either function to work,
the BLooper must be locked.

See also: BHandler::Looper(), BHandler::SetNextHandler(), PostMessage(), the
BMessenger class

CommonFilterList() see SetCommonFilterList()

CurrentMessage(), DetachCurrentMessage()
BMessage *CurrentMessage(void) const

BMessage *DetachCurrentMessage(void)

Both these functions return a pointer to the message that the BLooper’s thread is currently
processing, orNULL if it’s currently between messages. That’s all thatCurrentMessage()
does. DetachCurrentMessage() also detaches the message from the message loop, so
that:

• It will no longer be the current message. The current message will beNULL until the
thread gets another message from the queue.

• The thread won’t automatically delete the message when the message cycle ends
and it’s ready to get the next message. It becomes the caller’s responsibility to
delete the message later (or to post it once more so that it will again be subject to
automatic deletion).

Since the message won’t be deleted automatically, you have time to reply to it later.
However, if the thread that initiated the message is waiting for a reply, you should send
one (or get rid of the BMessage) without much delay. If a reply hasn’t already been sent
by the time the message is deleted, the BMessage destructor sends back a default
B_NO_REPLY message to indicate that a real reply won’t be forthcoming. But if the
message isn’t deleted and a reply isn’t sent, the initiating thread will continue to wait.
(BMessage’sIsSourceWaiting() function will let you know whether the message source is
waiting for a reply.)

Detaching a message is useful only when you want to stretch out the response to it beyond
the end of the message cycle, perhaps passing responsibility for it to another thread while
the BLooper’s thread continues to get and respond to other messages.

Member Functions BLooper

60 – The Application Kit

Since the current message is passed as an argument to BLooper’sDispatchMessage() and
BHandler’sMessageReceived() hook functions, you may never need to call
CurrentMessage() to get hold of it.

However, classes derived from BLooper (BApplication and BWindow, in particular)
dispatch system messages by calling a message-specific function, not
MessageReceived(). Typically, these functions are passed only part of the information
contained in the BMessage. In such a case, you will have to callCurrentMessage() to get
complete information about the instruction or event the BMessage object reports.

For example, in the Interface Kit, aKeyDown() function might check whether the Control
key was pressed at the time of the key-down event as follows:

void MyView::KeyDown(ulong key)
{
 BMessage *message = Window()->CurrentMessage();
 if (message->FindLong("modifiers") & B_CONTROL_KEY) {
 . . .
 }
 . . .
}

See also: BHandler::MessageReceived(), BMessage::WasSent()

DispatchMessage()
virtual voidDispatchMessage(BMessage *message, BHandler *target)

Dispatches messages as they’re received by the BLooper’s thread. Precisely how they’re
dispatched depends on themessage and the designatedtarget BHandler. The BWindow
and BApplication classes that derive from BLooper implement their own versions of this
function to provide for special dispatching for system messages. Each class defines its
own set of such messages.

Thetarget may be the BHandler object that was named when themessage was posted, the
BHandler that was passed when the BMessenger was constructed, the handler that was
designated as the target for a reply message, or (for a BWindow) the BView where the
message was dropped. Or it might be the BLooper itself, acting in its capacity as the
default handler. For system messages it may beNULL; if so, the dispatcher must figure out
a target for the message based on the contents of the BMessage object.

DispatchMessage() is the first stop in the message-handling mechanism. The BLooper’s
thread calls it automatically as it reads messages from the queue—you never call it
yourself.

BLooper’s version ofDispatchMessage() dispatchesB_QUIT_REQUESTED messages that
are targeted to the BLooper itself by calling its ownQuitRequested() function. It
dispatchesB_HANDLERS_REQUESTED messages by calling thetarget’s
HandlersRequested() function. All other messages are forwarded to thetarget’s
MessageReceived() function.

BLooper Member Functions

The Application Kit –61

You can override this function to dispatch the messages that your own application defines
or recognizes. Of course, you can also just wait for these messages to fall through to
MessageReceived()—the choice is yours. If you do overrideDispatchMessage(), you
should:

• Call the base class version of the functionafter you’ve handled your own messages,
• Exclude all messages that you’ve handled yourself from the base version call, and
• Lock the BLooper while the message is being handled.

For example:

void MyLooper::DispatchMessage(BMessage *msg, BHandler *target)
{
 switch (msg->what) {
 case MY_MESSAGE1:
 . . .
 break;
 case MY_MESSAGE2:
 . . .
 break;
 default:
 inherited::DispatchMessage(msg, target);
 break;
 }
}

Don’t delete the messages you handle when you’re through with them; they’re deleted for
you.

The system locks the BLooper before callingDispatchMessage() and keeps it locked for
the duration of the thread’s response to the message (untilDispatchMessage() returns).

See also: the BMessage class,BHandler::MessageReceived(), QuitRequested()

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Responds to aB_HANDLERS_REQUESTED message by sending aB_HANDLERS_INFO
message in reply. The request is for BMessenger objects that can deliver messages
targeted to BHandlers that have been added to the BLooper.

The incomingmessage may ask for a particular BHandler associated with the BLooper, or
it may ask for all of them. If it has an entry named “index”, the BLooper looks for the
BHandler at that index in its list of eligible handlers. Otherwise, if the message has an
entry labeled “name”, the BLooper looks for the associated BHandler with that name. If it
finds a BHandler object at the requested index or with the requested name, it places a
BMessenger for that object in theB_HANDLERS_INFO reply under the name “handlers”.
However, if it can’t find the requested object, it adds theB_BAD_INDEX or
B_NAME_NOT_FOUND error constant to the reply message under the name “error”.

Member Functions BLooper

62 – The Application Kit

If the incomingB_HANDLERS_REQUESTED message doesn’t request a particular BHandler
by index or name, the BLooper adds BMessengers for all eligible BHandlers to the
“handlers” array of the reply. The array should contain at least one BMessenger, the one
corresponding to the BLooper itself.

See also: BHandler::HandlersRequested()

IsLocked() see LockOwner()

Lock(), Unlock()
bool Lock(void)

void Unlock(void)

These functions provide a mechanism for locking data associated with the BLooper, so
that one thread can’t alter the data while another thread is in the middle of doing
something that depends on it. Only one thread can have the BLooper locked at any given
time. Lock() waits until it can lock the object, then returnsTRUE. It returnsFALSE only if
the BLooper can’t be locked at all—for example, if it was destroyed by another thread.

Calls toLock() andUnlock() can be nested. IfLock() is called more than once from the
same thread, it will take an equal number ofUnlock() calls from that thread to unlock the
BLooper. (IfLock() is called from another thread, it waits until the thread that owns the
lock unlocks the BLooper. It then obtains the lock and returnsTRUE.)

Locking is the basic mechanism for operating safely in a multithreaded environment. It’s
especially important for the kit classes derived from BLooper—BApplication and
BWindow.

However, it’s generally not necessary to lock a BLooper when calling functions defined in
the class itself or in a derived class. For example, BApplication and BWindow functions
are implemented to callLock() andUnlock() when necessary. Moreover, the BLooper is
locked for you whenever it dispatches a message. It remains locked until the response to
the message is complete.

Functions you define in classes derived from BLooper (or from BApplication and
BWindow) should also callLock() andUnlock(). In addition, you should employ the
locking mechanism when calling functions of a class that’s closely associated with a
BLooper—for example, when calling functions of a BView that’s attached to a BWindow.

Although locking is important and useful, you shouldn’t be too blithe about it. While
you hold a BLooper’s lock, no other thread can acquire it. If another thread calls a
function that tries to lock, the thread will hang until you unlock. Each thread should
hold the lock as briefly as possible.

See also: LockOwner()

BLooper Member Functions

The Application Kit –63

LockOwner(), IsLocked()
inline thread_idLockOwner(void) const

inline boolIsLocked(void) const

LockOwner() returns the thread that currently has the BLooper locked, or –1 if the
BLooper isn’t locked.

IsLocked() returnsTRUE if the calling thread has the BLooper locked (if it’s the lock
owner) andFALSE if not (if some other thread is the owner or the BLooper isn’t locked).

See also: Lock()

Looper()
virtual BLooper *Looper(void) const

Overrides the BHandler version of this function to return the BLooper object itself. This
prevents the BLooper from acting as a handler for messages posted to any other thread. A
BLooper can take on the role of BHandler only for messages delivered to its own thread.

See also: BHandler::Looper(), PostMessage()

MessageQueue()
BMessageQueue *MessageQueue(void) const

Returns the queue that holds messages posted or sent to the BLooper’s thread. You rarely
need to examine the message queue directly; it’s made available so you can cheat fate by
looking ahead.

See also: the BMessageQueue class

PostMessage()
long PostMessage(BMessage *message, BHandler *target = NULL)
long PostMessage(ulongcommand, BHandler *target = NULL)

Places amessage in the BLooper’s message queue and arranges for it to be dispatched to
thetarget BHandler. If atarget isn’t mentioned, the message will be dispatched to the
BLooper. The BLooper acts as the default handler for all messages not specifically
targeted to another object.

However, if the namedtarget is associated with a different BLooper (if thetarget’s
Looper() function returnsNULL or some other BLooper object), the posting fails and the
message is deleted. (A BHandler must be associated with a particular BLooper before it
can be the target for messages posted to that object. It can’t get messages from any other

Member Functions BLooper

64 – The Application Kit

BLooper except the one it belongs to. For example, BViews in the Interface Kit are
restricted to receiving messages posted to the BWindows to which they’re attached.)

Once posted, the BMessage object belongs to the BLooper’s thread, so you should not
modify it, post it again, assign it to some other object, or delete it. It will be deleted
automatically after it has been received and responded to.

If a command is passed rather than a message,PostMessage() creates a BMessage object,
initializes itswhat data member tocommand, and posts it. This simply saves you the step
of constructing a BMessage when it won’t contain any data. For example, this code

myWindow->PostMessage(command, target);

is equivalent to:

myWindow->PostMessage(new BMessage(command), target);

To post the message, thecommand version of this function calls the version that takes a
full BMessage argument. Thus, if you override just themessage version, you’ll affect how
both operate.

This function returnsB_NO_ERROR if successful,B_MISMATCHED_VALUES if the posting
fails because the proposed handler is invalid, andB_ERROR if it fails because the BLooper
itself is invalid.

See also: BHandler::Looper(), DispatchMessage()

PreferredHandler()
virtual BHandler *PreferredHandler(void) const

Implemented by derived classes to return a preferred BHandler for messages posted to the
BLooper. This function simply informs those who are about to post messages to the
BLooper who they might name as the message handler. For example:

myLooper->PostMessage(msg, myLooper->PreferredHandler());

The BLooper class itself doesn’t do anything with the preferred handler; it’s not a default
value for any BLooper operation.

In the Interface Kit, BWindow objects name the current focus view as the preferred
handler. This makes it possible for other objects—such as BMenuItems and BButtons—to
target messages to the BView that’s currently in focus, whatever view that may happen to
be at the time. For example, by posting its messages to the window’s preferred handler, a
“Cut” menu item can make sure that it always acts on whatever view contains the current
selection. See the chapter on the Interface Kit for information on windows, views, and the
role of the focus view.

The BLooper version of this function simply returnsNULL, to indicate that generic
BLoopers don’t have a preferred handler. Note, however, that when aNULL handler is
passed toPostMessage(), that function designates the BLooper itself as the target. For

BLooper Member Functions

The Application Kit –65

example, ifPreferredHandler() returnedNULL in the line of code shown above, the
message would be dispatched tomyLooper by default. Thus, in effect, a generic BLooper
is its own preferred handler, even thoughPreferredHandler() returnsNULL.

See also: BControl::SetTarget() andBMenuItem::SetTarget() in the Interface Kit,
PostMessage()

Quit()
virtual voidQuit(void)

Exits the message loop, frees the message queue, kills the thread, and deletes the BLooper
object.

When called from the BLooper’s thread, all this happens immediately. Any pending
messages are ignored and destroyed. Because the thread dies,Quit() doesn’t return.

However, when called from another thread,Quit() waits until all previously posted
messages (all messages already in the queue) work their way through the message loop
and are handled. It then destroys the BLooper and returns only after the loop, queue,
thread, and object no longer exist.

Quit() therefore terminates the BLooper synchronously; when it returns, you know that
everything has been destroyed. To quit the BLooper asynchronously, you can post a
B_QUIT_REQUESTED message to the thread (that is, a BMessage withB_QUIT_REQUESTED as
its what data member).PostMessage() places the message in the queue and returns
immediately.

When it gets aB_QUIT_REQUESTED message, the BLooper calls theQuitRequested() virtual
function. IfQuitRequested() returnsTRUE, as it does by default, it then callsQuit().

See also: QuitRequested()

QuitRequested()
virtual boolQuitRequested(void)

Implemented by derived classes to determine whether the BLooper should quit when
requested to do so. The BLooper calls this function to respond toB_QUIT_REQUESTED
messages. If it returnsTRUE, the BLooper callsQuit() to exit the message loop, kill the
thread, and delete itself. If it returnsFALSE, the request is denied and no further action is
taken.

BLooper’s default implementation ofQuitRequested() always returnsTRUE.

A request to quit that’s delivered to the BApplication object is, in fact, a request to quit the
entire application, not just one thread. BApplication therefore overridesQuitRequested()
to pass the request on to each window thread before shutting down.

Member Functions BLooper

66 – The Application Kit

For BWindow objects in the Interface Kit, a request to quit might come from the user
clicking the window’s close button (a quit-requested event for the window), from the
user’s decision to quit the application (a quit-requested event for the application), from a
“Close” menu item, or from some other occurrence that forces the window to close.

Classes derived from BWindow typically implementQuitRequested() to give the user a
chance to save documents before the window is destroyed, or to cancel the request.

If an application can be launched more than once (B_MULTIPLE_LAUNCH) and its entire
interface is essentially contained in one window, quitting the window might be tantamount
to quitting the application. In this case, the window’sQuitRequested() function should
pass the request along to the BApplication object. For example:

bool MyWindow::QuitRequested()
{
 . . .
 be_app->PostMessage(B_QUIT_REQUESTED);
 return TRUE;
}

After asking the application to quit,QuitRequested() returnsTRUE to immediately dispose
of the window. If it returnsFALSE, BApplication’s version of the function will again
request the window to quit.

If you call QuitRequested() from your own code, be sure to also provide the code that
callsQuit():

if (myLooper->QuitRequested())
 myLooper->Quit();

See also: BApplication::QuitRequested(), Quit()

RemoveCommonFilter() see SetCommonFilterList()

Run()
virtual thread_idRun(void)

Spawns a thread at the priority level that was specified when the BLooper was constructed
and begins running a message loop in that thread. If successful, this function returns the
thread identifier. If unsuccessful, it returnsB_NO_MORE_THREADS or B_NO_MEMORY to
indicate why.

A BLooper can be run only once. If called a second time,Run() returnsB_ERROR, but
doesn’t disrupt the message loop already running. < Currently, it drops into the debugger
so you can correct the error. >

BLooper Member Functions

The Application Kit –67

The message loop is terminated whenQuit() is called, or (potentially) when a
B_QUIT_REQUESTED message is received. This also kills the thread and deletes the
BLooper object.

See also: the BLooper constructor, the BApplication class,Quit()

SetCommonFilterList(), CommonFilterList(), AddCommonFilter(),
RemoveCommonFilter()

virtual voidSetCommonFilterList(BList * list)

BList *CommonFilterList(void) const

virtual voidAddCommonFilter(BMessageFilter *filter)

virtual voidRemoveCommonFilter(BMessageFilter *filter)

These functions manage a list of filters that can apply to any message the BLooper
receives, regardless of its target BHandler. They complement a similar set of functions
defined in the BHandler class. When a filter is associated with a BHandler, it applies only
to messages targeted to that BHandler. When it’s associated with a BLooper as a common
filter, it applies to all messages that the BLooper dispatches, regardless of the target.

In addition to the list of common filters, a BLooper can maintain a filter list in its role as a
BHandler. As for other BHandlers, these filters apply only if the BLooper is the target of
the message.

SetCommonFilterList() assigns the BLooper a newlist of common filters, replacing any list
previously assigned. The list must contain pointers to instances of the BMessageFilter
class or, more usefully, instances of classes that derive from BMessageFilter. Iflist is
NULL, the current list is removed without a replacement.CommonFilterList() returns the
current list of common filters.

AddCommonFilter() adds afilter to the end of the list of common filters. It creates the
BList object if it doesn’t already exist. By default, BLoopers don’t keep a BList of
common filters until one is assigned orAddCommonFilter() is called for the first time.
RemoveCommonFilter() removes afilter from the list. It returnsTRUE if successful, and
FALSE if it can’t find the specified filter in the list (or the list doesn’t exist). It leaves the
BList in place even after removing the last filter.

For SetCommonFilterList(), AddCommonFilter(), andRemoveCommonFilter() to work,
the BLooper must be locked.

See also: BHandler::SetFilterList(), Lock(), the BMessageFilter class

Member Functions BLooper

68 – The Application Kit

Thread(), Team()
thread_idThread(void) const

team_idTeam(void) const

These functions identify the thread that runs the message loop and the team to which it
belongs.Thread() returnsB_ERROR if Run() hasn’t yet been called to spawn the thread and
begin the loop.Team() should always return the application’steam_id.

Unlock() see Lock()

The Application Kit –69

BMessage

Derived from: public BObject

Declared in: <app/Message.h>

Overview

A BMessage bundles information so that it can be conveyed from one application to
another, one thread of execution to another, or even one object to another. Servers use
BMessage objects to notify applications about events. An application can use them to
communicate with other applications or to initiate activity in a different thread of the same
application. In the Interface Kit, BMessages package information that the user can drag
from one location on-screen and drop on another. They also hold data that’s copied to the
clipboard. Behind the scenes in the Storage Kit, they convey queries and hand back
requested information.

A BMessage is simply a container. The class defines functions that let you put
information into a message, determine what kinds of information are present in a message
that’s been delivered to you, and get the information out. It also has a function that let’s
you reply to a message once it’s received. But it doesn’t have functions that can make the
initial delivery. For that it depends on the help of other classes in the Application Kit,
particularly BLooper and BMessenger. See “Messaging” on page 6 of the chapter
introduction for an overview of the messaging mechanism and how BMessage objects
work with these other classes.

Message Contents

When information is added to a BMessage, it’s copied into dynamically allocated memory
and stored under a name. If more than one piece of information is added under the same
name, the BMessage sets up an array of data for that name. The name (along with an
optional index into the array) is then used to retrieve the data.

For example, this code adds a floating-point number to a BMessage under the name “pi”,

BMessage *msg = new BMessage;
msg->AddFloat("pi", 3.1416);

and this code locates it:

float pi = msg->FindFloat("pi");

Overview BMessage

70 – The Application Kit

Names can be arbitrarily assigned. There’s no limit on the number of named entries a
message can contain or on the size of an entry. However, since the search is linear,
combing through a very long list of names to find a particular piece of data may be
inefficient. Also, because of the amount of data that must be moved, an extremely large
message (over 100,000 bytes, say) can slow the delivery mechanism. It’s sometimes
better to put some of the information in a file and just refer to the file in the message.

Message Constants

In addition to named data, a BMessage carries a coded constant that indicates what kind of
message it is. The constant is stored in the object’s one public data member, calledwhat.
For example, a message that notifies an application that the user pressed a key on the
keyboard hasB_KEY_DOWN as thewhat data member (and information about the event
stored under names like “key”, “char”, and “modifiers”). An application-defined message
that delivers a command to do something might have a constant such asSORT_ITEMS,
CORRECT_SPELLING, or SCROLL_TO_BOTTOM in thewhat field. Simple messages can
consist of just a constant and no data. A constant likeRECEIPT_ACKNOWLEDGED or
CANCEL may be enough to convey a complete message.

By convention, the constant alone is sufficient to identify a message. It’s assumed that all
messages with the same constant are used for the same purpose and contain the same kinds
of data.

Thewhat constant must be defined in a protocol known to both sender and receiver. The
constants for system messages are defined inapp/AppDefs.h. Each constant names a
kind of event—such asB_KEY_DOWN, B_REFS_RECEIVED, B_PULSE, B_QUIT_REQUESTED,
andB_VALUE_CHANGED—or it carries an instruction to do something (such asB_ZOOM
andB_ACTIVATE).

It’s important that the constants you define for your own messages not be confused with
the constants that identify system messages. For this reason, we’ve adopted a strict
convention for assigning values to all Be-defined message constants. The value assigned
will always be formed by combining four characters into a multicharacter constant; the
characters are limited to uppercase letters and the underbar. For example,B_KEY_DOWN
andB_VALUE_CHANGED are defined as follows:

enum {
 . . .
 B_KEY_DOWN = '_KYD',
 B_VALUE_CHANGED = '_VCH',
 . . .
};

Use a different convention to define your own message constants (or you’ll risk having
your message misinterpreted as a report of, say, a mouse-moved event). Include some
lowercase letters, numerals, or symbols (other than the underbar) in your multicharacter
constants, or assign numeric values that can’t be confused with the value of four
concatenated characters.

BMessage Overview

The Application Kit –71

Type Codes

Data added to a BMessage is associated with a name and stored with two relevant pieces
of information:

• The number of bytes in the data, and
• A type code indicating what kind of data it is.

Type codes are defined inapp/AppDefs.h for the common data types listed below:

B_CHAR_TYPE A single character
B_SHORT_TYPE A short integer
B_LONG_TYPE A long integer
B_UCHAR_TYPE An unsigned char (theuchar defined type)
B_USHORT_TYPE An unsigned short (theushort defined type)
B_ULONG_TYPE An unsigned long (theulong defined type)
B_BOOL_TYPE A boolean value (thebool defined type)
B_FLOAT_TYPE A float
B_DOUBLE_TYPE A double
B_POINTER_TYPE A pointer of some type (includingvoid *)
B_OBJECT_TYPE An object pointer (such as BMessage *)
B_MESSENGER_TYPE A BMessenger object
B_POINT_TYPE A BPoint object
B_RECT_TYPE A BRect object
B_RGB_COLOR_TYPE An rgb_color structure
B_PATTERN_TYPE A pattern structure
B_ASCII_TYPE Text in ASCII format
B_RTF_TYPE Text in Rich Text Format
B_STRING_TYPE A null-terminated character string
B_MONOCHROME_1_BIT_TYPE Raw data for a monochrome bitmap (1 bit/pixel)
B_GRAYSCALE_8_BIT_TYPE Raw data for a grayscale bitmap (8 bits per pixel)
B_COLOR_8_BIT_TYPE Raw bitmap data in theB_COLOR_8_BIT color space
B_RGB_24_BIT_TYPE Raw bitmap data in theB_RGB_32_BIT color space
B_TIFF_TYPE Bitmap data in the Tag Image File Format
B_REF_TYPE A record_ref
B_RECORD_TYPE A record_id
B_TIME_TYPE A representation of a date
B_MONEY_TYPE A monetary amount
B_RAW_TYPE Raw, untyped data—a stream of bytes

You can add data to a message even if its type isn’t on this list. A BMessage will accept
any kind of data; you must simply invent your own codes for unlisted types.

To prevent confusion, the values you assign to the type codes you invent shouldn’t match
any values assigned to the standard type codes listed above—nor should they match any
codes that might be added to the list in the future. The value assigned to all Be-defined
type codes is a multicharacter constant, with the characters restricted to uppercase letters

Overview BMessage

72 – The Application Kit

and the underbar. For example,B_DOUBLE_TYPE andB_POINTER_TYPE are defined as
follows:

enum {
 . . .
 B_DOUBLE_TYPE = 'DBLE',
 B_POINTER_TYPE = 'PNTR',
 . . .
};

This is the same convention used for message constants. Be reserves all such
combinations of uppercase letters and underbars for its own use.

Assign values to your constants that can’t be mistaken for values that might be assigned in
system software. If you assign multicharacter values, make sure at least one of the
characters is a lowercase letter, a numeral, or some kind of symbol (other than an
underbar). If you assign numeric values, make sure they don’t fall in the range
0x41414141 through 0x5f5f5f5f. For example, you might safely define constants like
these:

#define PRIVATE_TYPE 0x1f3d
#define OWN_TYPE 'Rcrd'

Publishing Message Protocols

The messaging system is most interesting—and most useful—when data types are shared
by a variety of applications. Shared types open avenues for applications to cooperate with
each other. You are therefore encouraged to publish the data types that your application
defines and can accept in a BMessage, along with their assigned type codes.

Contact Be (devsupport@be.com) to register any types you intend to publish, so that you
can be sure to choose a code that hasn’t already been adopted by another developer, and
we’ll endeavor to make sure that no one else usurps the code you’ve chosen.

If your application can respond to certain kinds of remote messages, you should publish
the message protocol—the constant that should initialize thewhat data member of the
BMessage, the names of expected data entries, the types of data they contain, the number
of data items allowed in each entry, and so on. If your application sends replies to these
messages, you should publish the reply protocols as well.

By making the specifications for your messages public, you encourage other applications
to make use of the services your application offers, and you contribute to an integrated set
of applications on the BeBox.

BMessage Data Members

The Application Kit –73

Error Reporting

BMessage functions that add, find, replace, or get information about message data set a
descriptive error code for the object, which theError() function returns. The code is set to
B_NO_ERROR if all is well; otherwise it indicates what went wrong during the last function
call. Some functions also return the error code directly, but some do not.

Before proceeding with the next operation, it’s a good idea to callError() to be sure there
was no error on the last one.

Data Members

ulongwhat A coded constant that captures what the message is about.
For example, a message that's delivered as the result of a
mouse-down event will haveB_MOUSE_DOWN as itswhat
data member. An application that requests information
from another application might put aTRANSMIT_DATA or
SEND_INFO command in thewhat field. A message that’s
posted as the result of the user clicking a Cancel button
might simply haveCANCEL as thewhat data member and
include no other information.

Constructor and Destructor

BMessage()
BMessage(ulongcommand)
BMessage(BMessage *message)
BMessage(void)

Assignscommand as the BMessage’swhat data member, and ensures that the object
otherwise starts out empty. Given the definition of a message constant such as,

#define RECEIPT_ACKNOWLEDGED 0x80

a complete message can be created as simply as this:

BMessage *msg = new BMessage(RECEIPT_ACKNOWLEDGED);

As a public data member,what can also be set explicitly. The following two lines of code
are equivalent to the one above:

BMessage *msg = new BMessage;
msg->what = RECEIPT_ACKNOWLEDGED;

Member Functions BMessage

74 – The Application Kit

Other information can be added to the message by callingAddData() or a kindred
function.

A BMessage can also be constructed as a copy of anothermessage. It’s necessary to copy
any messages you receive that you want to keep, since the thread that receives the message
automatically deletes it before getting the next message. (More typically, you’d copy any
data you want to save from the message, but not the BMessage itself.)

As an alternative to copying a received message, you can sometimes detach it from the
message loop so that it won’t be deleted (seeDetachCurrentMessage() in the BLooper
class).

Messages should be dynamically allocated with thenew operator, as shown in the
examples above, rather than statically allocated on the stack (since they must live on after
the functions that send them return).

See also: BLooper::DetachCurrentMessage()

~BMessage()
virtual ~BMessage(void)

Frees all memory allocated to hold message data. If the message sender is expecting a
reply but hasn’t received one, a default reply (withB_NO_REPLY as thewhat data member)
is sent before the message is destroyed.

Don’t delete the messages that you post to a thread, send to another application, or assign
to another object. Like letters or parcels sent through the mail, BMessage objects become
the property of the receiver. Each message loop routinely deletes the BMessages it
receives after the application is finished responding to them.

Member Functions

AddData(), AddBool(), AddLong(), AddFloat(), AddDouble(),
AddRef(), AddMessenger(), AddPoint(), AddRect(), AddObject(),
AddString()

long AddData(const char *name, ulongtype, const void *data, longnumBytes)

long AddBool(const char *name, boolaBool)

long AddLong(const char *name, longaLong)

long AddFloat(const char *name, floataFloat)

long AddDouble(const char *name, doubleaDouble)

BMessage Member Functions

The Application Kit –75

long AddRef(const char *name, record_refaRef)

long AddMessenger(const char *name, BMessengeraRef)

long AddPoint(const char *name, BPointaPoint)

long AddRect(const char *name, BRectaRect)

long AddObject(const char *name, BObject *anObject)

long AddString(const char *name, const char *aString)

These functions put data in the BMessage.AddData() copiesnumBytes of data into the
object, and assigns the data aname and atype code. Thetype must be a specific data type;
it should not beB_ANY_TYPE.

AddData() copies whatever thedata pointer points to. For example, if you want to add a
string of characters to the message,data should be the string pointer (char *). If you want
to add only the string pointer, not the characters themselves,data should be a pointer to
the pointer (char **).

The other functions—AddBool(), AddLong(), AddFloat(), and so on—are simplified
versions ofAddData(). They each add a particular type of data to the message and
register it under the appropriate type code, as shown below:

Function Adds type Assigns type code

AddBool() a bool B_BOOL_TYPE
AddLong() a long or ulong B_LONG_TYPE
AddFloat() a float B_FLOAT_TYPE
AddDouble() a double B_DOUBLE_TYPE
AddRef() a record_ref B_REF_TYPE
AddMessenger() a BMessenger object B_MESSENGER_TYPE
AddPoint() a BPoint object B_POINT_TYPE
AddRect() a BRect object B_RECT_TYPE
AddObject() a pointer to an object B_OBJECT_TYPE
AddString() a character string B_STRING_TYPE

Each of these ten type-specific functions calculates the number of bytes in the data they
add. AddString(), like AddData(), takes a pointer to the data it adds. The string must be
null-terminated; the null character is counted and copied into the message. The other
functions are simply passed the data directly. For example,AddLong() takes along and
AddRef() a record_ref, whereasAddData() would be passed a pointer to along and a
pointer to arecord_ref. AddObject() adds the object pointer it’s passed to the message,
not the object data structure;AddData() would take a pointer to the pointer.

If more than one item of data is added under the same name, the BMessage creates an
array of data for that name. Each successive call appends another data element to the end

Member Functions BMessage

76 – The Application Kit

of the array. For example, the following code creates an array named “primes” with 37
stored at index 0, 223 stored at index 1, and 1,049 stored at index 2.

BMessage *msg = new BMessage(NUMBERS);
long x = 37;
long y = 223;
long z = 1049;

msg->AddLong("primes", x);
msg->AddFloat("pi", 3.1416);
msg->AddLong("primes", y);
msg->AddData("primes", B_LONG_TYPE, &z, sizeof(long));

Note that entering other data between some of the elements of an array—in this case,
“pi”—doesn’t increment the array index.

All elements in a named array must be of the same type; it’s an error to try to mix types
under the same name.

These functions returnB_ERROR if the data is too massive to be added to the message,
B_BAD_TYPE if the data can’t be added to an existing array because it’s the wrong type, or
B_NO_ERROR if the operation was successful.

See also: FindData(), GetInfo()

CountNames()
long CountNames(ulongtype)

Returns the number of named entries in the BMessage that store data of the specifiedtype.
An array of information held under a single name counts as one entry; each name is
counted only once, no matter how many data items are stored under that name.

If type is B_ANY_TYPE, this function counts all named entries. Iftype is a specific type, it
counts only entries that store data registered as that type.

See also: GetInfo()

BMessage Member Functions

The Application Kit –77

Error()
long Error(void)

Returns an error code that specifies what went wrong with the last BMessage operation, or
B_NO_ERROR if there wasn’t an error. It's important to check for an error before
continuing with any code that depends on the result of a BMessage function. For
example:

float pi = msg->FindFloat("pi");
if (msg->Error() == B_NO_ERROR) {
 float circumference = pi * diameter;
 . . .
}

The error code is reset each time a BMessage function is called that adds, finds, alters, or
provides information about message data. It’s also reset toB_NO_ERROR wheneverError()
itself is called. Cache the return value if you write code that needs to check the current
error code more than once.

Possible error returns include the following:

Error code Is set when

B_NAME_NOT_FOUND Trying to find, or get information about, data stored
under an invalid name

B_BAD_INDEX Trying to find, or get information about, data stored at
an index that’s out-of-range

B_BAD_TYPE Attempting to add data of the wrong type to an existing
array, or asking about named data of a given type when
the name and type don’t match

B_BAD_REPLY Trying to send a reply to a message that hasn’t itself
been sent.

B_DUPLICATE_REPLY Trying to send a reply when one has already been sent
and received

< B_MESSAGE_TO_SELF Attempting to send a reply when the source and
destination threads are the same >

B_BAD_THREAD_ID Attempting to send a reply to a thread that no longer
exists

B_ERROR Attempting to add too much data to a message

See also: AddData(), FindData(), HasData(), GetInfo()

Member Functions BMessage

78 – The Application Kit

FindData(), FindBool(), FindLong(), FindFloat(), FindDouble(),
FindRef(), FindMessenger(), FindPoint(), FindRect(), FindObject(),
FindString()

void *FindData(const char *name, ulongtype, long *numBytes)
void *FindData(const char *name, ulongtype, long index, long *numBytes)

bool FindBool(const char *name, long index = 0)

long FindLong(const char *name, long index = 0)

float FindFloat(const char *name, long index = 0)

doubleFindDouble(const char *name, long index = 0)

record_refFindRef(const char *name, long index = 0)

BMessengerFindMessengerconst char *name, long index = 0)

BPointFindPoint(const char *name, long index = 0)

BRectFindRect(const char *name, long index = 0)

BObject *FindObject(const char *name, long index = 0)

const char *FindString(const char *name, long index = 0)

These functions retrieve data from the BMessage. Each looks for data stored under the
specifiedname. If more than one data item has the same name, anindex can be provided
to tell the function which item in thename array it should find. Indices begin at 0. If an
index isn’t provided, the function will find the first, or only, item in the array.

FindData() returns a pointer to the requested data item and records the size of the item (the
number of bytes it takes up) in the variable referred to bynumBytes. It asks for data of a
specifiedtype. If thetype is B_ANY_TYPE, it returns a pointer to the data no matter what
type it actually is. But iftype is a specific data type, it returns the data only if thename
entry holds data of that particular type.

It’s important to keep in mind thatFindData() always returns a pointer to the data, never
the data itself. If the datais a pointer—for example, a pointer to an object—it returns a
pointer to the pointer. The variable that’s assigned the returned pointer must be doubly
indirect. For example:

MyClass **object;
long numBytes;
object = (MyClass **)message->FindData("name",
 B_OBJECT_TYPE, &numBytes);
if (message->Error() == B_NO_ERROR) {
 (*object)->GetSomeInformation();
 . . .
}

BMessage Member Functions

The Application Kit –79

The other functions similarly return the requested item—but do so as a specifically
declared data type. They match the correspondingAdd...() functions and search for
named data of the declared type, as described below:

Function Finds data Registered as type

FindBool() a bool B_BOOL_TYPE
FindLong() a long or ulong B_LONG_TYPE
FindFloat() a float B_FLOAT_TYPE
FindDouble) a double B_DOUBLE_TYPE
FindRef() a record_ref B_REF_TYPE
FindMessenger() a BMessenger object B_MESSENGER_TYPE
FindPoint() a BPoint object B_POINT_TYPE
FindRect() a BRect object B_RECT_TYPE
FindObject() a pointer to an object B_OBJECT_TYPE
FindString() a character string B_STRING_TYPE

FindString() returns a pointer to a null-terminated string of characters (as would
FindData()); it expects the null-terminator to have been copied into the message. The rest
of the functions return the data directly, not through a pointer. For example,FindLong()
returns along, whereasFindData() would return a pointer to along. FindObject() returns
a pointer to an object, whereasFindData(), as illustrated above, would return a pointer to
the pointer to the object.

If you want to keep the data returned byFindData() andFindString(), you must copy it; it
will be destroyed when the BMessage is deleted.

If these functions can’t find any data associated withname, or if they can’t find data in the
name array atindex, or if they can’t findname data of the requestedtype (or the type the
function returns), they register an error. You can rely on the values they return only if
Error() reportsB_NO_ERROR and the data was correctly recorded when it was added to the
message.

When they fail,FindData(), FindString(), andFindObject() returnNULL pointers.
FindRect() returns an invalid rectangle andFindRef() returns an invalidrecord_ref with
both data members set to –1. The other functions return values set to 0, which may be
indistinguishable from valid values.

Finding a data item doesn’t remove it from the BMessage.

See also: GetInfo(), AddData()

Flatten(), Unflatten()
void Flatten(char **stream, long *numBytes)

void Unflatten(const char *stream)

These functions write the data stored in a BMessage to a “flat” (untyped) stream of bytes,
and reconstruct a BMessage object from such a stream.

Member Functions BMessage

80 – The Application Kit

Flatten() allocates enough memory to hold all the information stored in the BMessage
object, then copies the information to that memory. It places a pointer to the allocated
memory in the variable referred to by thestream argument, and writes the number of bytes
that were allocated to the variable referred to bynumBytes. It’s the responsibility of the
caller to free the memory thatFlatten() allocates when it’s no longer needed. (Since the
stream is allocated bymalloc(), call free() to get rid of it.)

Unflatten() empties the BMessage of any information it may happen to contain, then
initializes the object from information stored instream. The pointer passed toUnflatten()
must be to the start of astream thatFlatten() allocated and initialized. Neither function
frees the stream.

GetInfo()
bool GetInfo(const char *name, ulong *typeFound, long *countFound = NULL)
bool GetInfo(ulongtype, long index,

char **nameFound,
ulong *typeFound,
long *countFound = NULL)

Provides information about the data entries stored in the BMessage.

When passed aname that matches a name within the BMessage,GetInfo() places the type
code for data stored under that name in the variable referred to bytypeFound and writes
the number of data items with that name into the variable referred to bycountFound. It
then returnsTRUE. If it can’t find aname entry within the BMessage, it registers an error,
sets thecountFound variable to 0, and returnsFALSE (without modifying thetypeFound
variable).

When passed atype and anindex, GetInfo() looks only at entries that store data of the
requested type and provides information about the entry at the requested index. Indices
begin at 0 and are type specific. For example, if the requestedtype is B_LONG_TYPE and
the BMessage contains a total of three named entries that storelong data, the first entry
would be atindex 0, the second at 1, and the third at 2—no matter what other types of data
actually separate them in the BMessage, and no matter how many data items each entry
contains. (Note that the index in this case ranges over entries, each with a different name,
not over the data items within a particular named entry.) If the requested type is
B_ANY_TYPE, this function looks at all entries and gets information about the one atindex
whatever its type.

If successful in finding data of thetype requested atindex, GetInfo() returnsTRUE. It
provides information about the entry through the last three arguments:

• It places a pointer to the name of the data entry in the variable referred to by
nameFound.

• It puts the code for the type of data the entry contains in the variable referred to by
typeFound. This will be the same as thetype requested, unless the requested type is
B_ANY_TYPE, in which casetypeFound will be the actual type stored under the name.

BMessage Member Functions

The Application Kit –81

• It records the number of data items stored within the entry in the variable referred to
by countFound.

If GetInfo() can’t find data of the requestedtype at index, it registers an error, sets the
countFound variable to 0, and returnsFALSE.

This version ofGetInfo() can be used to iterate through all the BMessage’s data. For
example:

char *name;
ulong type;
long count;

for (long i = 0;
 msg->GetInfo(B_ANY_TYPE, i, &name, &type, &count);
 i++) {
 . . .
}

If the index is incremented from 0 in this way, all data of the requested type will have been
read whenGetInfo() returnsFALSE. If the requested type isB_ANY_TYPE, as shown above,
it will reveal the name and type of every entry in the BMessage.

See also: HasData(), AddData(), FindData()

HasData(), HasBool(), HasLong(), HasFloat(), HasDouble(), HasRef(),
HasMessenger(), HasPoint(), HasRect(), HasObject(), HasString()

bool HasData(const char *name, ulongtype, long index = 0)

bool HasBool(const char *name, long index = 0)

bool HasLong(const char *name, long index = 0)

bool HasFloat(const char *name, long index = 0)

bool HasDouble(const char *name, long index = 0)

bool HasRef(const char *name, long index = 0)

bool HasMessengerconst char *name, long index = 0)

bool HasPoint(const char *name, long index = 0)

bool HasRect(const char *name, long index = 0)

bool HasObject(const char *name, long index = 0)

bool HasString(const char *name, long index = 0)

These functions test whether the BMessage contains data of a given name and type.

If type is B_ANY_TYPE and noindex is provided,HasData() returnsTRUE if the BMessage
stores any data at all under the specifiedname, regardless of its type, andFALSE if the name
passed doesn’t match any within the object.

Member Functions BMessage

82 – The Application Kit

If type is a particular type code,HasData() returnsTRUE only if the BMessage has aname
entry that stores data of that type. If thetype andname don’t match, it returnsFALSE.

If an index is supplied,HasData() returnsTRUE only if the BMessage has aname entry that
stores a data item of the specifiedtype at that particularindex. If the index is out of range,
it returnsFALSE.

The other functions—HasBool(), HasFloat(), HasPoint(), and so on—are specialized
versions ofHasData(). They test for a particular type of data stored under the specified
name.

An error code is set (whichError() will return) whenever any of these functions returns
FALSE.

See also: GetInfo()

IsEmpty() see MakeEmpty()

IsReply() see WasSent()

IsSourceRemote() see WasSent()

IsSourceWaiting() see WasSent()

IsSystem()
bool IsSystem(void)

ReturnsTRUE if the what data member of the BMessage object identifies it as a system-
defined message, andFALSE if not.

Unlike theGetInfo() andHasData() functions, a return ofFALSE does not indicate an error.
IsSystem() resets the error code thatError() returns toB_NO_ERROR whether the BMessage
is a system message or not.

MakeEmpty(), IsEmpty()
long MakeEmpty(void)

bool IsEmpty(void)

MakeEmpty() removes and frees all data that has been added to the BMessage, without
altering thewhat constant. It returnsB_NO_ERROR.

IsEmpty() returnsTRUE if the BMessage has no data (whether or not it was emptied by
MakeEmpty()), andFALSE if it has some.

BMessage Member Functions

The Application Kit –83

Both functions reset the error code toB_NO_ERROR in all cases.

See also: RemoveName()

Previous() see WasSent()

PrintToStream()
void PrintToStream(void) const

Prints information about the BMessage to the standard output stream (stdout). Each entry
of named data is reported in the following format,

#entry name, type = type , count = count

wherename is the name that the data is registered under,type is the constant that indicates
what type of data it is, andcount is the number of data items in the named array.

RemoveName()
bool RemoveName(const char *name)

Removes all data entered in the BMessage undername, frees the memory that was
allocated to hold the data, and returnsTRUE. If there is no data entered undername, this
function registers an error (B_NAME_NOT_FOUND) and returnsFALSE.

See also: MakeEmpty()

ReplaceData(), ReplaceBool(), ReplaceLong(), ReplaceFloat(),
ReplaceDouble(), ReplaceRef(), ReplaceMessenger(),
ReplacePoint(), ReplaceRect(), ReplaceObject(), ReplaceString()

long ReplaceData(const char *name, ulongtype,
const void *data, longnumBytes)

long ReplaceData(const char *name, ulongtype, long index,
const void *data, longnumBytes)

long ReplaceBool(const char *name, boolaBool)
long ReplaceBool(const char *name, long index, boolaBool)

long ReplaceLong(const char *name, longaLong)
long ReplaceLong(const char *name, long index, longaLong)

long ReplaceFloat(const char *name, floataFloat)
long ReplaceFloat(const char *name, long index, floataFloat)

long ReplaceDouble(const char *name, doubleaDouble)
long ReplaceDouble(const char *name, long index, doubleaDouble)

Member Functions BMessage

84 – The Application Kit

long ReplaceRef(const char *name, record_refaRef)
long ReplaceRef(const char *name, long index, record_refaRef)

long ReplaceMessenger(const char *name, BMessengeraMessenger)
longReplaceMessenger(const char *name, longindex, BMessengeraMessenger)

long ReplacePoint(const char *name, BPointaPoint)
long ReplacePoint(const char *name, long index, BPointaPoint)

long ReplaceRect(const char *name, BRectaRect)
long ReplaceRect(const char *name, long index, BRectaRect)

long ReplaceObject(const char *name, BObject *anObject)
long ReplaceObject(const char *name, long index, BObject *anObject)

long ReplaceString(const char *name, const char *aString)
long ReplaceString(const char *name, long index, const char *aString)

These functions replace a data item in thename entry with another item passed as an
argument. If anindex is provided, they replace the item in thename array at that index; if
an index isn’t mentioned, they replace the first (or only) item stored undername. If an
index is provided but it’s out-of-range, the replacement fails.

ReplaceData() replaces an item in thename entry withnumBytes of data, but only if the
type code that’s specified for the data matches the type of data that’s already stored in the
entry. Thetype must be specific; it can’t beB_ANY_TYPE.

The other functions are simplified versions ofReplaceData(). They each handle the
specific type of data declared for their last arguments. They succeed if this type matches
the type of data already in thename entry, and fail if it does not.

If successful, all these functions returnB_NO_ERROR. If unsuccessful, they register and
return an error code—B_BAD_INDEX if the index is out-of-range,B_NAME_NOT_FOUND if
thename entry doesn’t exist, orB_BAD_TYPE if the entry doesn’t contain data of the
specified type.

See also: AddData()

ReturnAddress() see WasSent()

BMessage Member Functions

The Application Kit –85

SendReply()
long SendReply(BMessage *message, BMessage **reply)
long SendReply(ulongcommand, BMessage **reply)
long SendReply(BMessage *message, BHandler *replyTarget= NULL)
long SendReply(ulongcommand, BHandler *replyTarget= NULL)

Sends a replymessage back to the sender of the BMessage (in the case of a synchronous
reply) or to a target BHandler (in the case of an asynchronous reply). Whether the reply is
synchronous or asynchronous depends on how the message it replies to was sent:

• The reply is delivered synchronously if the message sender is waiting for it to arrive.
The function that sent the BMessage doesn’t return until it receives the reply. If an
expected reply has not been sent by the time the BMessage object is deleted, a
defaultB_NO_REPLY message is returned to the sender.

• The reply is delivered asynchronously if the message sender isn’t waiting for a
reply. In this case, the sending function designates a target BHandler (and, through
the BHandler, a target BLooper) for any replies that might be sent, then returns
immediately after putting the BMessage in the pipeline. The default target for a
reply is the sender’s BApplication object.

SendReply() works only for BMessage objects that have been processed through a
message loop and delivered to you. However, it doesn’t work for messages that were
posted to the loop, only for those that were sent or dragged. If it’s called when a reply isn’t
allowed, themessage is deleted and an error is recorded.

Themessage that’s passed toSendReply() should not be modified, passed to another
messaging function, used as a model message, or deleted. It becomes the responsibility of
the messaging service and the eventual receiver.

If a command is passed rather than amessage, SendReply() constructs the reply
BMessage, initializes itswhat data member with thecommand constant, and sends it just
like any other reply.

If you want to delay sending a reply and keep the BMessage object beyond the time it’s
scheduled to be deleted, you may be able to detach it from the message loop. See
DetachCurrentMessage() in the BLooper class.

SendReply() sends a message—a reply message, to be sure, but a message nonetheless. It
therefore is just another message-sending function. It behaves exactly like the other
message-sending function, BMessenger’sSendMessage():

• By passing it areply argument, you can ask for a synchronous reply to the reply
message it sends. It won’t return until it receives the reply.

• By supplying atargetHandler argument, you can arrange for an expected
asynchronous reply. If a specific target isn’t specified, the BApplication object will
handle the reply if one is sent.

Member Functions BMessage

86 – The Application Kit

This function returnsB_NO_ERROR if the reply is successfully sent. If not, it returns one of
the error codes explained under theError() function.

See also: BMessenger::SendMessage(), BLooper::DetachCurrentMessage(), WasSent(),
Error()

Unflatten() see Flatten()

WasDropped(), DropPoint()
bool WasDropped(void)

BPointDropPoint(BPoint *offset = NULL)

WasDropped() returnsTRUE if the user delivered the BMessage by dragging and dropping
it, andFALSE if the message was posted or sent in application code or if it hasn’t yet been
delivered at all.

DropPoint() reports the point where the cursor was located when the message was dropped
(when the user released the mouse button). It directly returns the point in the screen
coordinate system and, if anoffset argument is provided, returns it by reference in
coordinates based on the image or rectangle the user dragged. Theoffset assumes a
coordinate system with (0.0, 0.0) at the left top corner of the dragged rectangle or image.

Since any value can be a valid coordinate,DropPoint() produces reliable results only if
WasDropped() returnsTRUE.

See also: BView::DragMessage()

WasSent(), IsSourceRemote(), IsSourceWaiting(), IsReply(),
Previous(), ReturnAddress()

bool WasSent(void)

bool IsSourceRemote(void)

bool IsSourceWaiting(void)

bool IsReply(void)

BMessage *Previous(void)

BMessengerReturnAddress(void)

These functions can help if you’re engaged in an exchange of messages or managing an
ongoing communication.

WasSent() indicates whether it’s possible to send a reply to a message. It returnsTRUE for
a BMessage that was sent or dropped, andFALSE for a message that was posted or has not
yet been delivered by any means. (When, in a future release, it’s possible to reply to a

BMessage Operators

The Application Kit –87

posted message, this function would be more clearly namedWasDelivered().) Regardless
of the return value,WasSent() sets the current error code toB_NO_ERROR.

IsSourceRemote() returnsTRUE if the message had its source in another application, and
FALSE if the source is local or the message hasn’t been delivered yet. It resets the error
code toB_NO_ERROR in both cases.

IsSourceWaiting() returnsTRUE if the message sender is waiting for a synchronous reply,
andFALSE if not. The sender can request and wait for a reply when calling either
BMessenger’sSendMessage() or BMessage’sSendReply() function.

IsReply() returnsTRUE if the BMessage is a reply to a previous message (if it was sent by
theSendReply() function), andFALSE if not. It resets the error code toB_NO_ERROR in
either case.

Previous() returns the previous message, orNULL if the BMessage isn’t a reply.

ReturnAddress() returns a BMessenger that can be used to reply to the BMessage. Calling
the BMessenger’sSendMessage() function is equivalent to callingSendReply(), except
that the return message won’t be marked as a reply. If a reply isn’t allowed (if the
BMessage wasn’t sent or dropped), aB_BAD_VALUE error is registered to indicate that the
returned BMessenger is invalid. CallError() to check. If the BMessenger is valid,Error()
will return B_NO_ERROR.

If you want to use theReturnAddress() BMessenger to send a synchronous reply, you must
do so before the BMessage is deleted and default reply is sent.

See also: BMessenger::SendMessage(), SendReply()

Operators

new
void *operator new(size_tnumBytes)

Allocates memory for a BMessage object, or takes the memory from a previously
allocated cache. The caching mechanism is an efficient way of managing memory for
objects that are created frequently and used for short periods of time, as BMessages
typically are.

delete
void operator delete(void *memory, size_tnumBytes)

Frees memory allocated by the BMessage version ofnew, which may mean restoring the
memory to the cache.

Operators BMessage

88 – The Application Kit

The Application Kit –89

BMessageFilter

Derived from: public BObject

Declared in: <app/MessageFilter.h>

Overview

A BMessageFilter is an object that holds a hook function,Filter(), that can look at
incoming messages before they’re dispatched to their designated handlers. The object
also keeps the conditions that must be met for the function to be called. Applications
implement theFilter() function in classes derived from BMessageFilter.

A BMessageFilter can be attached to a message loop in one of two ways:

• If assigned to a BHandler object, the filter will be applied only to messages targeted
to the BHandler.

• If assigned to a BLooper object as a common filter, it can be applied to any message
regardless of the designated target. (A BLooper can also be assigned specific filters
in its role as a BHandler.)

All applicable filters in both categories are applied to a message before it’s dispatched to
the target BHandler. Common filters are applied before handler-specific filters.

The same BMessageFilter object can be assigned to more than one BHandler or BLooper
object; it will not be destroyed when the BHandler or BLooper is deleted.

See also: BHandler::SetFilterList(), BLooper::SetCommonFilterList()

Hook Functions

Filter() Implemented by derived classes to respond to a incoming
message before the message is dispatched to a target
BHandler.

Constructor and Destructor BMessageFilter

90 – The Application Kit

Constructor and Destructor

BMessageFilter()
BMessageFilter(message_deliverydelivery, message_sourcesource)
BMessageFilter(message_deliverydelivery, message_sourcesource,

ulongcommand)

Initializes the BMessageFilter object so that itsFilter() function will be called for every
incoming message that meets the specifieddelivery, source, andcommand criteria. The
first argument,delivery, is a constant that specifies how the message must arrive:

B_DROPPED_DELIVERY Only messages that were dragged and dropped
should be filtered.

B_PROGRAMMED_DELIVERY Only messages that were posted or sent in
application code (by callingPostMessage() or
a Send...() function) should be filtered.

B_ANY_DELIVERY All messages, no matter how they were
delivered, should be filtered.

The second argument,source, specifies where the message must originate:

B_LOCAL_SOURCE Only messages that originate locally, from
within the application, should be filtered.

B_REMOTE_SOURCE Only messages that are delivered from a
remote source should be filtered.

B_ANY_SOURCE All messages, no matter what their source,
should be filtered.

Filtering can also be limited to a particular type of message. If acommand constant is
specified, only messages that havewhat data members matching the constant will be
filtered. If acommand isn’t specified, the command constant won’t be a criterion in
selecting which messages to filter; any message that meets the other criteria will be
filtered, no matter what itswhat data member may be.

The filtering criteria are conjunctive; an arriving message must meet all the criteria
specified forFilter() to be called.

See also: Filter()

~BMessageFilter()
virtual ~BMessageFilter(void)

Does nothing.

BMessageFilter Member Functions

The Application Kit –91

Member Functions

Command(), FiltersAnyCommand()
inline ulongCommand(void)

inline boolFiltersAnyCommand(void)

Command() returns the command constant (what data member) that an arriving message
must match for the filter to apply.FiltersAnyCommand() returnsTRUE if the filter applies
to messages regardless of theirwhat data members, andFALSE if it’s limited to a certain
type of message.

Because all command constants are valid, including negative numbers and 0,Command()
returns a reliable result only ifFiltersAnyCommand() returnsFALSE.

See also: the BMessageFilter constructor, the BMessage class

Filter()
virtual filter_resultFilter(BMessage *message, BHandler **target)

Implemented by derived classes to examine an arriving message just before it’s
dispatched. Themessage is passed as the first argument; the second argument indirectly
points to thetarget BHandler object that’s slated to respond to the message.

You can implement this function to do anything you please with themessage, including
replace the designatedtarget with another BHandler object. For example:

filter_result MyFilter::Filter(BMessage *msg, BHandler **target)
{
 . . .
 if (*target->IsIndisposed())
 *target = *target->FindReplacement();
 . . .
 return B_DISPATCH_MESSAGE;
}

The replacement target must be associated with the same BLooper as the original target. If
the new target has filters that apply to themessage, those filtering functions will be called
before the message is dispatched.

This function should return a constant that instructs the BLooper whether or not to
dispatch the message as planned:

B_DISPATCH_MESSAGE Dispatch the message.

B_SKIP_MESSAGE Don’t dispatch the message and don’t filter it
any further; this function took care of handling
it.

Member Functions BMessageFilter

92 – The Application Kit

The default (BMessageFilter) version of this function does nothing but return
B_DISPATCH_MESSAGE.

See also: the BMessageFilter constructor

FiltersAnyCommand() see Command()

MessageDelivery()
inline message_deliveryMessageDelivery(void)

Returns the constant, set when the BMessageFilter object was constructed, that describes
the category of messages that can be filtered, based on how they were delivered.

See also: the BMessageFilter constructor

MessageSource()
inline message_sourceMessageSource(void)

Returns the constant, set when the BMessageFilter object was constructed, that describes
the category of messages that can be filtered, based on the source of the message.

See also: the BMessageFilter constructor

The Application Kit –93

BMessageQueue

Derived from: public BObject

Declared in: <app/MessageQueue.h>

Class Description

A BMessageQueue maintains a queue where messages (BMessage objects) are
temporarily stored as they wait to be received in a message loop. Every BLooper object
uses a BMessageQueue to manage the flow of incoming messages; all messages delivered
to the BLooper’s thread are placed in the queue. The BLooper removes the oldest
message from the queue, passes it to a BHandler, waits for the thread to finish its response,
deletes the message, then returns to the queue to get the next message.

For the most part, applications can ignore the queue—that is, they can treat it as an
implementation detail. Messages are posted to a thread (placed in the queue) by calling
BLooper’sPostMessage() function. Or they can be sent to the main thread of another
application by constructing a BMessenger object and callingSendMessage().

A BLooper calls upon a BHandler’sMessageReceived() function—and other, message-
specific hook functions—to handle the messages it takes from the queue. Applications
can simply implement the functions that are called to respond to received messages and
not bother about the mechanics of the message loop and queue.

However, if necessary, you can manipulate the queue directly, or perhaps just look ahead
to see what messages are coming. The BLooper has aMessageQueue() function that
returns its BMessageQueue object.

See also: the BMessage class,BLooper::MessageQueue()

Constructor and Destructor

BMessageQueue()
BMessageQueue(void)

Ensures that the queue starts out empty. Messages are placed in the queue by calling
AddMessage() and are removed by callingNextMessage().

Member Functions BMessageQueue

94 – The Application Kit

BMessageQueues are constructed by BLooper objects.

See also: AddMessage(), NextMessage()

~BMessageQueue()
virtual ~BMessageQueue(void)

Deletes all the objects in the queue and all the data structures used to manage the queue.

Member Functions

AddMessage()
void AddMessage(BMessage *message)

Addsmessage to the queue.

See also: NextMessage()

CountMessages()
long CountMessages(void) const

Returns the number of messages currently in the queue.

FindMessage()
BMessage *FindMessage(ulongwhat, long index= 0) const
BMessage *FindMessage(long index) const

Returns a pointer to the BMessage that’s positioned in the queue atindex, where indices
begin at 0 and count only those messages that havewhat data members matching thewhat
value passed as an argument. If awhat argument is omitted, indices count all messages in
the queue. If anindex is omitted, the first message that matches thewhat constant is
found. The lower the index, the longer the message has been in the queue.

If no message matches the specifiedwhat andindex criteria, this function returnsNULL.

The returned message is not removed from the queue.

See also: NextMessage()

BMessageQueue Member Functions

The Application Kit –95

IsEmpty()
bool IsEmpty(void) const

ReturnsTRUE if the BMessageQueue contains no messages, andFALSE if it has at least one.

See also: CountMessages()

Lock(), Unlock()
bool Lock(void)

void Unlock(void)

These functions lock and unlock the BMessageQueue, so that another thread won’t alter
the contents of the queue while it’s being read.Lock() doesn’t return until it has the queue
locked; it always returnsTRUE. Unlock() releases the lock so that someone else can lock
it. Calls to these functions can be nested.

See also: BLooper::Lock()

NextMessage()
BMessage *NextMessage(void)

Returns the next message—the message that has been in the queue the longest—and
removes it from the queue. If the queue is empty, this function returnsNULL.

RemoveMessage()
void RemoveMessage(BMessage *message)

Removes a particularmessage from the queue and deletes it.

See also: FindMessage()

Unlock() see Lock()

Member Functions BMessageQueue

96 – The Application Kit

The Application Kit –97

BMessenger

Derived from: public BObject

Declared in: <app/Messenger.h>

Overview

A BMessenger object is an agent for sending messages to a particular destination. Each
BMessenger knows about a BLooper object and a specific BHandler for that BLooper.
The messages it sends are delivered to the BLooper and—provided they’re not system
messages—dispatched by the BLooper to the BHandler. The destination objects can
belong to the same application as the message sender, but typically are in a remote
application. It’s more efficient to post a message within the same application than to ask a
BMessenger to send it.

BMessenger objects can be transported across application boundaries. You can create one
for a particular BLooper/BHandler combination in your application, then pass it by value
to a remote application. That application can then use the BMessenger to target the
BHandler in your application. This is, in fact, the only way for an application to get a
BMessenger that can target a remote object other than a BApplication object.

Constructor and Destructor

BMessenger()
BMessenger(ulongsignature, team_idteam = –1)
BMessenger(const BHandler *target)
BMessenger(const BMessenger &messenger)
BMessenger(void)

Initializes the BMessenger so that it can send messages to an application identified by its
signature or by itsteam. The application must be running when the BMessenger is
constructed.

If the signature passed isNULL, the application is identified by its team only. If theteam
specified is –1, as it is by default, the application is identified by its signature only. If both
a realsignature and a validteam identifier are passed, they must match—theteam must be
for the application that thesignature identifies. If more than one instance of thesignature
application happens to be running, theteam picks out a particular instance as the

Constructor and Destructor BMessenger

98 – The Application Kit

BMessenger’s target. Without a validteam argument, the constructor arbitrarily picks
one of the instances.

BMessengers constructed in this way send messages to the main thread of the remote
application, where they’re received and handled by that application’s BApplication object.
This type of messenger is needed to initiate communication with another application.

A BMessenger can also be an agent for atarget BHandler object. It sends messages to the
BLooper associated with the BHandler, and the BLooper dispatches them to the BHandler.

Thetarget BHandler object must be able to tell the BMessenger (through itsLooper()
function) which BLooper object it’s associated with. The BMessenger asks for this
information at the time of construction. Therefore, thetarget must either be a BLooper
itself or have been added to a BLooper’s list of eligible handlers. < For the BMessenger to
remain valid, thetarget BHandler must retain its affiliation with the same BLooper. >

The purpose of constructing a BMessenger for a local target is to give a remote application
access to that object. You can add the BMessenger to a message and send the message to
the remote application. That application can then use the BMessenger to target the
BHandler in your application.

A BMessenger can also be constructed as a copy of another BMessenger,

BMessenger newOne(anotherMessenger);

or be assigned from another object:

BMessenger newOne = anotherMessenger;

If the constructor can’t make a connection to thesignature application—possibly because
no such application is running—it registers aB_BAD_VALUE error, which theError()
function will return. If passed an invalidteam identifier, it registers aB_BAD_TEAM_ID
error. If theteam and thesignature don’t match, it registers aB_MISMATCHED_VALUES
error. If it can’t discover a BLooper from thetarget BHandler, it registers a
B_BAD_HANDLER error.

It’s a good idea to check for an error before asking the new BMessenger to send a
message. For example:

BMessenger *outlet = new BMessenger(some_signature);
if (outlet->Error() == B_NO_ERROR) {
 BMessage *msg = new BMessage(CHANGE_NAME);
 msg->AddString("old", formerName);
 msg->AddString("new", currentName);
 outlet->SendMessage(msg);
 if (outlet->Error() == B_NO_ERROR)
 . . .
}

A BMessenger can send messages to only one destination. Once constructed, you can
cache it and reuse it repeatedly to communicate with that object. It should be freed after
it’s no longer needed (or if there’s a long delay between messages and it’s possible that the

BMessenger Member Functions

The Application Kit –99

user might have quit the destination application and restarted it again, or that the
application may have destroyed the target BHandler).

The BRoster object can provide signature and team information about possible
destinations.

See also: the BRoster and BMessage classes,Error()

~BMessenger()
~BMessenger(void)

Frees all memory allocated by the BMessenger, if any was allocated at all.

Member Functions

Error()
long Error(void)

Returns an error code that describes what went wrong with the attempt to construct the
BMessenger or to have it send a message, orB_NO_ERROR if nothing went wrong.
Possible errors include:

B_BAD_VALUE The constructor can’t connect the BMessenger to the
remote application, most likely because an
application with the specified signature isn’t running.

B_MISMATCHED_VALUES The constructor failed because the specified signature
and team arguments designated two different
applications.

B_BAD_TEAM_ID The constructor can’t establish a connection to the
specified team, most likely because there is no such
team.

B_BAD_HANDLER The BHandler passed to the constructor was not
associated with a BLooper.

B_BAD_PORT_ID SendMessage() can’t deliver the message, most
likely because the destination application has been
killed.

Calling this function resets the error code toB_NO_ERROR, so you must cache the value
returned if you need to check the current error more than once.

Member Functions BMessenger

100 – The Application Kit

FindHandler(), FindAllHandlers()
BMessengerFindHandler(BMessage *message)
BMessengerFindHandler(long index, const char *class= NULL)
BMessengerFindHandler(const char *name, const char *class= NULL)

BMessage *FindAllHandlers(const char *class= NULL)

These functions send aB_HANDLERS_REQUESTED message and wait for a
B_HANDLERS_INFO reply.

Themessage is passed toFindHandler() should haveB_HANDLERS_REQUESTED as thewhat
data member and should ask for a BMessenger for just one BHandler. If anindex or a
name is passed instead of amessage, FindHandler() creates the message and adds that
information in an entry named “index” or “name”. If the index or name is restricted to a
class, it adds the class name in an entry labeled “class”.

When it gets the reply,FindHandler() returns the requested BMessenger. It may register a
B_ERROR, B_NAMED_NOT_FOUND, or B_BAD_INDEX error taken from the reply, or a
B_BAD_PORT_ID error if there’s a problem sending the message. In the case of any error,
the BMessenger is not to be trusted.

FindAllHandlers() requests BMessengers for a group of BHandlers, which may be
restricted to a particularclass. It returns theB_HANDLERS_INFO reply, orNULL if there’s an
error in sending a message.

See the variousHandlersRequested() functions for information on the protocols that the
software kits currently expect theB_HANDLERS_REQUESTED andB_HANDLERS_INFO
messages to follow.

See also: BHandler::HandlersRequested()

IsValid()
bool IsValid(void)

ReturnsTRUE if the destination BLooper object to which the BMessenger sends messages
remains valid, andFALSE if not (if, for example, it has been deleted).

This function doesn’t check whether the target BHandler is still valid; it reports only on
the status of the destination BLooper.

BMessenger Member Functions

The Application Kit –101

SendMessage()
long SendMessage(BMessage *message, BMessage **reply)
long SendMessage(ulongcommand, BMessage **reply)
long SendMessage(BMessage *message, BHandler *replyTarget= NULL)
long SendMessage(ulongcommand, BHandler *replyTarget= NULL)

Sends amessage. The BMessage object becomes the responsibility of the BMessenger.
You shouldn’t try to modify it, post it, send it again, use it as a model message, or free it; it
will be freed automatically when it’s no longer needed.

If a command is passed instead of a fullmessage, this function constructs a BMessage
object withcommand as itswhat data member and sends it just like any other message.
This is simply a convenience for sending messages that contain no data. The following
two lines of code are roughly equivalent:

myMessenger->SendMessage(NEVERMORE);
myMessenger->SendMessage(new BMessage(NEVERMORE));

This function can ask for a synchronous reply to the message or designate a BHandler for
an asynchronous reply:

• Supplying areply argument requests a message back from the destination. Before
returning,SendMessage() waits for the reply and places a pointer to the BMessage
it receives in the variable thatreply refers to.

The caller is responsible for deleting thereply message. If the destination doesn’t
send a reply, the system sends one withB_NO_REPLY as thewhat data member.
Check the reply message before proceeding. If there’s an error in sending the
message, the variable thatreply refers to is set toNULL.

• If a reply isn’t requested,SendMessage() returns immediately; any reply to the
message will be received asynchronously. If areplyTarget is specified, the reply
will be directed to that BHandler object. If one isn’t specified, it will be directed to
the BApplication object.

ThereplyTarget is subject to the same restriction as a target BHandler passed to the
BMessenger constructor: It must be associated with a BLooper object (or be a
BLooper itself) < and it must retain that association until the reply arrives >.

If all goes well,SendMessage() returnsB_NO_ERROR. If not, it returns an error code,
typically B_BAD_PORT_ID. The return value is also registered with theError() function; see
that function for more information.

(It’s an error for a thread to send a message to itself and expect a synchronous reply. The
thread can’t respond to the message and wait for a reply at the same time.)

See also: BMessage::SendReply()

Operators BMessenger

102 – The Application Kit

Team()
inline team_idTeam(void)

Returns the identifier for the team that receives the messages the BMessenger sends.

Operators

= (assignment)
BMessenger &operator =(const BMessenger &messenger)

Assigns one BMessenger to another. After the assignment the two objects are identical
and independent copies of each other, with no shared data.

new
void *operator new(size_tnumBytes)

Prevents confusion with a private version of thenew operator used internally by the
Application Kit. This version ofnew is no different from the operator used with other
classes.

The Application Kit –103

BRoster

Derived from: none

Declared in: <app/Roster.h>

Overview

The BRoster object keeps a roster of all applications currently running on the BeBox. It
can provide information about any of those applications, add another application to the
roster by launching it, or get information about an application to help you decide whether
to launch it.

There’s just one roster and it’s shared by all applications. When an application starts up, a
global variable,be_roster, is initialized to point to the shared object. You always access
the roster through this variable; you never directly instantiate a BRoster in application
code.

The BRoster identifies applications in three ways:

• By record_ref references to the executable files where they reside.

• By their signatures. The signature is a unique identifier for the application assigned
in a resource at compile time or by the BApplication constructor at run time. You
can obtain signatures for the applications you develop by contacting Be’s developer
support staff. They can also tell you what the signatures of other applications are.
(See the introduction to this chapter for more on signatures.)

• At run time, by theirteam_ids. A team is a group of threads sharing an address
space; every application is a team.

If an application is launched more than once, the roster will include one entry for each
instance of the application that’s running. These instances will have the same signature,
but different team identifiers.

Constructor and Destructor BRoster

104 – The Application Kit

Constructor and Destructor

The BRoster class doesn’t have a public constructor or destructor. This is because an
application doesn’t need to construct or destroy a BRoster of its own. The system
constructs one BRoster object for all applications and assigns it to thebe_roster global
variable. A BRoster is therefore readily available from the time the application is
launched until the time it quits.

Member Functions

GetAppInfo(), GetRunningAppInfo(), GetActiveAppInfo()
long GetAppInfo(ulongsignature, app_info *appInfo) const
long GetAppInfo(record_refexecutable, app_info *appInfo) const

long GetRunningAppInfo(team_idteam, app_info *appInfo) const

long GetActiveAppInfo(app_info *appInfo) const

These functions provide information about the application identified by itssignature, by a
database reference to itsexecutable file, by itsteam, or simply by its status as the current
active application. They place the information in the structure referred to byappInfo.

GetRunningAppInfo() reports on a particular instance of a running application, the one
that was assigned theteam identifier at launch.GetActiveAppInfo() similarly reports on a
running application, the one that happens to be the current active application.

If it can,GetAppInfo() also tries to get information about an application that’s running. If
a running application has thesignature identifier or was launched from theexecutable file,
GetAppInfo() queries it for the information. If more than one instance of thesignature
application is running, or if more than one instance was launched from the same
executable file, it arbitrarily picks one of the instances to report on.

Even if the application isn’t running—if none of the applications currently in the roster are
identified bysignature or were launched from theexecutable file—GetAppInfo() can still
provide some information about it, perhaps enough information for you to callLaunch() to
get it started.

If they’re able to fill in theapp_info structure with meaningful values, these functions
returnB_NO_ERROR. However,GetActiveAppInfo() returnsB_ERROR if there’s no active
application.GetRunningAppInfo() returnsB_BAD_TEAM_ID if team isn’t, on the face of it,
a valid team identifier for a running application.GetAppInfo() returnsB_BAD_VALUE if the
signature doesn’t correspond to an application on-disk, and simplyB_ERROR if the
executable doesn’t refer to a valid record in the database or doesn’t refer to a record for an
executable file.

BRoster Member Functions

The Application Kit –105

Theapp_info structure contains the following fields:

ulongsignature The signature of the application. (This will be the
same as thesignature passed toGetAppInfo().)

thread_idthread The identifier for the application’s main thread of
execution, or –1 if the application isn’t running.
(The main thread is the thread in which the
application is launched and in which itsmain()
function runs.)

team_idteam The identifier for the application’s team, or –1 if
the application isn’t running. (This will be the
same as theteam passed toGetRunningAppInfo().)

port_idport The port where the application’s main thread
receives messages, or –1 if the application isn’t
running.

record_refref A reference to the file that was, or could be,
executed to run the application. (This will be the
same as theexecutable passed toGetAppInfo().)

ulongflags A mask that contains information about the
behavior of the application.

Theflags mask can be tested (with the bitwise& operator) against these two constants:

B_BACKGROUND_APP The application won’t appear in the Browser’s
application menu (because it doesn’t have a user
interface).

B_ARGV_ONLY The application can’t receive messages.
Information can be passed to it at launch only, in an
array of argument strings (as on the command
line).

Theflags mask also contains a value that explains the application’s launch behavior. This
value must be filtered out offlags by combiningflags with theB_LAUNCH_MASK constant.
For example:

ulong behavior = theInfo.flags & B_LAUNCH_MASK;

The result will match one of these three constants:

B_EXCLUSIVE_LAUNCH The application can be launched only if an
application with the same signature isn’t already
running.

B_SINGLE_LAUNCH The application can be launched only once from
the same executable file. However, an application

Member Functions BRoster

106 – The Application Kit

with the same signature might be launched from a
different executable. For example, if the user
copies an executable file to another directory, a
separate instance of the application can be
launched from each copy.

B_MULTIPLE_LAUNCH There are no restrictions. The application can be
launched any number of times from the same
executable file.

These flags affect BRoster’sLaunch() function. Launch() can always start up a
B_MULTIPLE_LAUNCH application. However, it can’t launch aB_SINGLE_LAUNCH
application if a running application was already launched from the same executable file. It
can’t launch aB_EXCLUSIVE_LAUNCH application if an application with the same signature
is already running.

See also: “Launch Information” on page 19 of the chapter introduction,Launch(),
BApplication::GetAppInfo()

GetAppList()
void GetAppList(BList *teams) const
void GetAppList(ulongsignature, BList *teams) const

Fills in theteams BList with team identifiers for applications in the roster. Each item in
the list will be of typeteam_id. It must be cast to that type when retrieving it from the list,
as follows:

team_id who = (team_id)teams->ItemAt(someIndex);

The list will contain one item for each instance of an application that’s running. For
example, if the same application has been launched three times, the list will include the
team_ids for all three running instances of that application.

If a signature is passed, the list identifies only applications running under that signature. If
asignature isn’t specified, the list identifies all running applications.

See also: TeamFor(), the BMessenger constructor

IsRunning() see TeamFor()

BRoster Member Functions

The Application Kit –107

Launch()
long Launch(ulongsignature, BMessage *message= NULL,

team_id *team= NULL)
long Launch(ulongsignature, BList *messages,

team_id *team= NULL)
long Launch(ulongsignature, longargc, char **argv,

team_id *team= NULL)

long Launch(record_refexecutable, BMessage *message= NULL,
team_id *team= NULL)

long Launch(record_refexecutable, BList *messages,
team_id *team= NULL)

long Launch(record_refexecutable, longargc, char **argv,
team_id *team= NULL)

Launches the application identified by itssignature or by a reference to itsexecutable file
in the database.

If a message is specified, it will be sent to the application on-launch where it will be
received and responded to before the application is notified that it’s ready to run.
Similarly, if a list ofmessages is specified, each one will be delivered on-launch. The
BMessage objects (and the container BList) will be deleted for you.

Sending an on-launch message is appropriate only if it helps the launched application
configure itself before it starts getting other messages. To launch an application and send
it an ordinary message, callLaunch() to get it running, then set up a BMessenger object
for the application and call BMessenger’sSendMessage() function.

Instead of messages, you can launch an application with an array of argument strings that
will be passed to itsmain() function. argv contains the array andargc counts the number
of strings. If the application accepts messages, this information will also be packaged in a
B_ARGV_RECEIVED message that the application will receive on-launch.

If successful,Launch() places the identifier for the newly launched application in the
variable referred to byteam and returnsB_NO_ERROR. If unsuccessful, it sets theteam
variable to –1, destroys all the messages it was passed (and the BList that contained them),
and returns one of the following error codes:

B_BAD_VALUE Thesignature passed is not valid or it doesn’t
designate an available application.

This return value may also signify that an attempt
is being made to send an on-launch message to an
application that doesn’t accept messages (that is, to
a B_ARGV_ONLY application).

B_ERROR Theexecutable file can’t be found.

Member Functions BRoster

108 – The Application Kit

B_ALREADY_RUNNING The application is already running and can’t be
launched again (it’s aB_SINGLE_LAUNCH or
B_EXCLUSIVE_LAUNCH application).

B_LAUNCH_FAILED The attempt to launch the application failed for
some other reason, such as insufficient memory.

See also: the BMessenger class,GetAppInfo()

RemoveApp()
void RemoveApp(team_idteam)

Removes the application identified byteam from the roster of running applications.

TeamFor(), IsRunning()
team_idTeamFor(ulongsignature) const
team_idTeamFor(record_refexecutable) const

bool IsRunning(ulongsignature) const
bool IsRunning(record_refexecutable) const

Both these functions query whether the application identified by itssignature, or by a
reference to itsexecutable file in the database, is running.TeamFor() returns its team
identifier if it is, andB_ERROR if it’s not. IsRunning() returnsTRUE if it is, andFALSE if it’s
not.

If the application is running, you probably will want its team identifier (to set up a
BMessenger, for example). Therefore, it’s most economical to simply callTeamFor() and
foregoIsRunning().

If more than one instance of thesignature application is running, or if more than one
instance was launched from the sameexecutable file, TeamFor() arbitrarily picks one of
the instances and returns itsteam_id.

See also: GetAppList()

The Application Kit –109

Global Variables,
Constants, and Defined Types

This section lists the global variables, constants, and defined types that are defined by the
Application Kit. There’s just a few defined types, three global variables—be_app,
be_roster, andbe_clipboard—and a handful of constants. Error codes are documented in
the chapter on the Support Kit.

Although the Application Kit defines the constants for all system messages (such as
B_REFS_RECEIVED, B_ACTIVATE, andB_KEY_DOWN), only those that mark system
management and application messages are listed here. Those that designate interface
messages are documented in the chapter on the Interface Kit.

Global Variables

be_app
<app/Application.h>

BApplication *be_app

This variable provides global access to your application’s BApplication object. It’s
initialized by the BApplication constructor.

See also: the BApplication class

be_clipboard
<app/Clipboard.h>

BClipboard *be_clipboard

This variable gives applications access to the shared repository of data for cut, copy, and
paste operations. It’s initialized at startup; an application has just one BClipboard object.

See also: the BClipboard class

Constants Global Variables, Constants, and Defined Types

110 – The Application Kit

be_roster
<app/Roster.h>

BRoster *be_roster

This variable points to the global BRoster object that’s shared by all applications. The
BRoster keeps a roster of all running applications and can add applications to the roster by
launching them.

See also: the BRoster class

Constants

Application Flags
<app/Roster.h>

Defined constant

B_BACKGROUND_APP
B_ARGV_ONLY
B_LAUNCH_MASK

These constants are used to get information from theflags field of anapp_info structure.

See also: BRoster::GetAppInfo(), “Launch Constants” below

Application Messages
<app/AppDefs.h>

Enumerated constant Enumerated constant

B_ACTIVATE B_ARGV_RECEIVED
B_READY_TO_RUN B_REFS_RECEIVED
B_APP_ACTIVATED B_PANEL_CLOSED
B_ABOUT_REQUESTED B_PULSE
B_QUIT_REQUESTED

These constants represent the system messages that are received and recognized by the
BApplication class. Application messages concern the application as a whole, rather than
any particular window thread. See the introduction to this chapter and the BApplication
class for details.

See also: “Application Messages” on page 16 of the chapter introduction, “System
Management Messages” on page 113 below

Global Variables, Constants, and Defined Types Constants

The Application Kit –111

Cursor Constants
<app/AppDefs.h>

const unsigned charB_HAND_CURSOR[]
const unsigned charB_I_BEAM_CURSOR[]

These constants contain all the data needed to set the cursor to the default hand image or to
the standard I-beam image for text selection.

See also: BApplication::SetCursor()

Data Type Codes
<app/AppDefs.h>

Enumerated constant Enumerated constant

B_BOOL_TYPE B_ASCII_TYPE
B_CHAR_TYPE B_STRING_TYPE
B_UCHAR_TYPE B_RTF_TYPE
B_SHORT_TYPE B_PATTERN_TYPE
B_USHORT_TYPE B_RGB_COLOR_TYPE
B_LONG_TYPE B_RECORD_TYPE
B_ULONG_TYPE B_TIME_TYPE
B_FLOAT_TYPE B_MONEY_TYPE
B_DOUBLE_TYPE B_RAW_TYPE
B_POINTER_TYPE B_MONOCHROME_1_BIT_TYPE
B_OBJECT_TYPE B_GRAYSCALE_8_BIT_TYPE
B_POINT_TYPE B_COLOR_8_BIT_TYPE
B_RECT_TYPE B_RGB_24_BIT_TYPE [sic]
B_MESSENGER_TYPE B_TIFF_TYPE
B_REF_TYPE B_ANY_TYPE

These constants are used in a BMessage object to describe the types of data the message
holds. B_ANY_TYPE refers to all types; the others refer only to a particular type. See the
BMessage class for more information on what they mean.

See also: “Type Codes” on page 71 of the BMessage class overview

Constants Global Variables, Constants, and Defined Types

112 – The Application Kit

filter_result Constants
<app/MessageFilter.h>

Enumerated constant

B_SKIP_MESSAGE
B_DISPATCH_MESSAGE

These constants list the possible return values of a filter function.

See also: BMessageFilter::Filter()

Launch Constants
<app/Roster.h>

Defined constant

B_MULTIPLE_LAUNCH
B_SINGLE_LAUNCH
B_EXCLUSIVE_LAUNCH

These constants explain whether an application can be launched any number of times,
only once from a particular executable file, or only once for a particular application
signature. This information is part of theflags field of anapp_info structure and can be
extracted using theB_LAUNCH_MASK constant.

See also: BRoster::GetAppInfo(), “Application Flags” above

Message Constants
<app/AppDefs.h>

Enumerated constant

B_NO_REPLY
B_MESSAGE_NOT_UNDERSTOOD

B_HANDLERS_INFO

B_SIMPLE_DATA

B_CUT
B_COPY
B_PASTE

These constants mark messages that the system sometimes puts together, but that aren’t
dispatched like system messages. See “Standard Messages” in theMessage Protocols
appendix for details.

See also: BMessage::SendReply(), the BTextView class in the Interface Kit,
BHandler::HandlersRequested()

Global Variables, Constants, and Defined Types Constants

The Application Kit –113

message_delivery Constants
<app/MessageFilter.h>

Enumerated constant

B_ANY_DELIVERY
B_DROPPED_DELIVERY
B_PROGRAMMED_DELIVERY

These constants distinguish the delivery criterion for the application of a BMessageFilter.

See also: the BMessageFilter constructor

message_source Constants
<app/MessageFilter.h>

Enumerated constant

B_ANY_SOURCE
B_REMOTE_SOURCE
B_LOCAL_SOURCE

These constants list the possible constraints on the message source for the application of a
BMessageFilters.

See also: the BMessageFilter constructor

System Management Messages
<app/AppDefs.h>

Enumerated constant

B_QUIT_REQUESTED
B_HANDLERS_REQUESTED

These constants represent system messages that are used to help run the messaging
system. They’re received and recognized by generic BLooper objects.

See also: “System Management Messages” on page 15 of the introduction, “Application
Messages” on page 110 above

Defined Types Global Variables, Constants, and Defined Types

114 – The Application Kit

Defined Types

app_info
<app/Roster.h>

typedef struct {
ulongsignature;
thread_idthread;
team_idteam;
port_idport;
record_refref;
ulongflags;

} app_info

This structure is used by BRoster’sGetAppInfo(), GetRunningAppInfo(), and
GetActiveAppInfo() functions to report information about an application. See those
functions for a description of its various fields.

See also: BRoster::GetAppInfo()

filter_result
<app/MessageFilter.h>

typedef enum { . . . }filter_result

This type distinguishes between theB_SKIP_MESSAGE andB_DISPATCH_MESSAGE return
values for a filter function.

See also: BMessageFilter::Filter()

message_delivery
<app/MessageFilter.h>

typedef enum { . . . }message_delivery

This type enumerates the delivery criteria for filtering a message.

See also: the BMessageFilter constructor

Global Variables, Constants, and Defined Types Defined Types

The Application Kit –115

message_source
<app/MessageFilter.h>

typedef enum { . . . }message_source

This type enumerates the source criteria for filtering a message.

See also: the BMessageFilter constructor

Defined Types Global Variables, Constants, and Defined Types

116 – The Application Kit

acrobat/03_StorageKit.pdf

The Storage Kit –1

3 The Storage Kit

Introduction . 5

BDatabase . 7
Overview . 7

Finding a BDatabase . 7
BDatabase as a Key to the Storage Server 8

The Database Side: BTable, BRecord, and BQuery . 8
The File System Side: BVolume and BStore 9

Finding and Creating Tables 9
Constructor and Destructor . 9
Member Functions. .10

BDirectory .15
Overview .15

Browsing the File System. 15
Descending the Hierarchy 15
Getting Many Files at a Time. 16
Path Names and File Names 18

Modifying the File System 18
Constructor and Destructor .19
Member Functions. .19

BFile . .25
Overview .25

BFile Data. .25
Locating and Creating Files. 26
Opening and Closing Files 27
Reading and Writing Files 27

Hook Functions .28
Constructor and Destructor .28
Member Functions. .28

BQuery .37
Overview .37

Defining a Query .37
The Table List .38

2 – The Storage Kit

The Predicate . .38
Complex Predicates 39

Fetching . .39
Live Queries. .40

Preparing your Application for a Live Query 40
Hook Functions .42
Constructor and Destructor .42
Member Functions. .42

BRecord. .49
Overview .49

Creating a New Record49
Setting Data in the BRecord 50
Committing a BRecord51

Record ID Numbers. .51
Record ID Fields 51

The Record Ref Structure52
Comparing Refs 52

Retrieving an Existing Record 53
Data Examination. 53
Updating a BRecord 53
Data Modification 53

Extra Fields . .54
Constructor and Destructor .55
Member Functions. .56

BResourceFile .63
Overview .63

Creating a Resource File 63
Accessing Resource Data63

Identifying a Resource within a Resource File64
Data Format .64
Data Ownership 64

Constructor and Destructor .65
Member Functions. .66

BStore . .71
Overview .71

Files, Records, and BStores71
How to Set a Ref 72
Altering the File System 72
Passing Files to Other Threads73

Custom Files .73
Adding Data to a File Record 74
File Record Caveats 75

The Store Creation Hook 75

The Storage Kit –3

Other Hook Providers 76
Hook Data .76
Hook Function Rules77

Constructor and Destructor .77
Member Functions. .77
Operators .81

BTable. .83
Overview .83

Creating a Table . .84
Adding Fields to a Table 84

Field Keys .85
Field Flags .86

Table Inheritance .86
Type and App . .87
Using a BTable .87

BTables and BRecords87
BTable and BQuery. 88

Constructor and Destructor .88
Member Functions. .89

BVolume .93
Overview .93

Retrieving a BVolume. 93
Mounting and Unmounting94
The File System . .95

Volumes in Path Names 95
The Database .96

Constructor and Destructor .96
Member Functions. .97
Global Functions. .99

Global Functions, Constants, and Defined Types 101
Global Functions. . 101
Constants . 103
Defined Types . 105

System Tables and Resources. 107
System Tables . 107
System Resources . 111

4 – The Storage Kit

Storage Kit Inheritance Hierarchy

BObject
(Support Kit)

BStore

BVolume

BDirectory

BTable

BDatabase

BFile

BRecord

BQuery

BResourceFile

The Storage Kit –5

3 The Storage Kit

The Storage Kit lets your application store and retrievepersistent data. Persistent data
doesn’t disappear with your application; it’s stored on a long-term storage device, such as
a hard disk, floppy disk, CD-ROM, and so on, so you can return to it later.

The classes provided by the Kit fall into three categories:

• The database classes (BDatabase, BTable, BRecord, and BQuery) let you store data
as “structured entries” orrecords. The content of a record—the number of
individual datums it contains, and the type of values each datum can assume—
depends on the record’s structure. The description of this structure is given by the
table to which the record conforms. Because records ares structured, you can easilyr
and quickly locate a specific record based on the values that are stored in the record.

• The file system classes (BStore, BDirectory, BFile, and BResourceFile) provide a
means for storing data in files. The data in a file can be unstructured (instances of
BFile) or structured (BResourceFile).

• Instances of the BVolume class represent the actual storage devices themselves.
BVolumes objects are used in both database and file-system applications.

It’s suggested that you explore the Storage Kit with by visiting the BVolume class
description, and then proceed to the database or file system classes in the orders given
above.

6 – The Storage Kit

The Storage Kit –7

BDatabase

Derived from: public BObject

Declared in: <storage/Database.h>

Overview

A BDatabase object represents a collection of structured, persistent data called adatabase.
Each BDatabase object that you introduce to your application corresponds to an actual
database and gives you access to it. Databases are contained withinvolumes, where a
volume is a storage medium such as a hard disk, floppy disk, or CD-ROM. The
relationship between databases and volumes is one-to-one: Each volume contains exactly
one database. Part of the system’s disk-formatting routine includes the creation of a
database for the volume on the disk.

Finding a BDatabase

You never construct BDatabase objects yourself; instead, you ask the system to construct
them and return them to you. There are two ways to do this:

• You can ask a BVolume object for its BDatabase.The BVolumeDatabase()
function returns the BDatabase object that represents the volume’s database. Of
course, this methodology merely shifts the burden to finding BVolume objects: You
can walk down your application’s “volume list” through repeated calls to the global
volume_at() function. You can then pluck the BDatabase from each BVolume, as
demonstrated below:

void DatabasePlucker(BList *dList)
{

BVolume this_vol;
BDatabase *this_db;
long index;

for (index = 0; this_vol = volume_at(index); index++)
{

this_db = this_vol.Database();
dList->AddItem(this_db);

}
}

• You can retrieve a BDatabase based on a database ID. Every database is identified
by a unique integer of typedatabase_id. By passing a valid database ID to the

Overview BDatabase

8 – The Storage Kit

globaldatabase_for() function, you can retrieve the BDatabase object that
represents the identified database.

An important feature of Database ID numbers is that they’re persistent: If you cache
a database_id value and reboot your machine, the cached valued will refer to the
same database when your machine comes back up. You can retrieve a BDatabase’s
ID number (thedatabase_id value of the underlying database) through theID()
function.

Just as you never construct BDatabase objects, so do you not destroy them. These tasks
are performed automatically by the Storage Kit.

After you’ve retrieved a BDatabase object, you may wonder what you should do with it.
A BDatabase has essentially two purposes: It acts as a key to the Storage Server, and it
lets you find and create tables (BTable objects). These activities are described below.

BDatabase as a Key to the Storage Server

Every transaction with the Storage Server requires a database ID—every time you retrieve
a record or search for a file (as two examples), you need to tell the Storage Server which
database to look in. Curiously, however, BDatabase objects don’t appear in your
application very often. This is because almost every Storage Kit object is created (or
“validated” for whatever that means to the object) in reference to a paticular BDatabase
which it (the newly created object) remembers for future use. In other words, BDatabase
objects show up when you’re creating other objects, but you can pretty much ignore them
beyond that.

To give you a better idea of how this works, the following sections examine the
relationships between BDatabase objects and instances of the other Storage Kit classes.

The Database Side: BTable, BRecord, and BQuery

These three classes, along with BDatabase itself, comprise the “database” side of the
Storage Kit. BTable objects are created for you—each BDatabase object contains a list of
BTable objects (as described in the next section). This proprietary relationship (between a
BTable and the BDatabase that “owns” it) means that a BTable always knows how to get
to a database.

BRecord objects are born knowing about the facts of lfe: Each of the four versions of the
BRecord constructor takes an argument that, directly or indirectly, identifies a database.

Unlike the others, a BQuery object can be constructed without reference to a database.
But but such an object is essentially useless until you tell it which database it should
operate on.

BDatabase Constructor and Destructor

The Storage Kit –9

The File System Side: BVolume and BStore

BVolume and BStore along with BStore’s derivations, BDirectory, BFile, and
BResourceFile, are the Storage Kit’s file system classes. The relationship between
databases and volumes was described earlier: A BVolume object always knows its
database.

The BStore class is similar to BQuery in that you can create an instance of (a class derived
from) BStore without reference to a database, but the object will be useless until its
database is set. You do this by setting the object’srecord_ref structure. The structure
uniquely identifies a record in a database by listing (as structure fields) the database ID and
the record ID (record ID numbers are unique within a database). record_ref structures (or
refs) are the primary means for identifying a file; they’re visited again in the BStore class
description.

Finding and Creating Tables

As mentioned earlier, BTable objects live within BDatabase objects: When you “open” a
database (by asking for the BDatabase that represents it), the tables that are stored within
are automatically represented in your BDatabase object as BTable objects. To get a
BTable from a BDatabase, you can ask for it by name, through theFindTable() function, or
you can step through the BDatabase’s “table list” by usingCountTables() andTableAt().

To create a table, you call theCreateTable() function. The function tells the Storage
Server to manufacture a table in the database, and then constructs a BTable object to
represent it, adds it to the BDatabase’s table list, and returns the new object.

A BDatabase’s table list can fall out of step with the database. Specifically, your object’s
table list isn’t automatically updated when another application adds a new table to the
database. To update your object’s table list, you call BDatabase’sSync() function.

Constructor and Destructor

The BDatabase constructor and destructor are private. You never construct BDatabase
objects directly; instead, you retrieve them from the system through the global
database_for() function, or through BVolume’sDatabase() function.

Member Functions BDatabase

10 – The Storage Kit

Member Functions

CountTables()
long CountTables(void)

Returns the number of BTables in the BDatabase’s table list.

See also: TableAt(), FindTable(), Sync()

CreateTable()
BTable *CreateTable(char *tableName)
BTable *CreateTable(char *tableName, char *parentName)
BTable *CreateTable(char *tableName, BTable *parentTable)

Creates a table in the database, names ittableName, and constructs (and returns) a BTable
object to represent it. The table that’s created by the first version of this function will be
empty—it won’t contain any fields. In the other two versions, the new table will “inherit”
the fields of the parent table (there’s no functional difference between these two
versions—they simply give you two ways to designate the parent table).

The BDatabase doesn’t check to make sure that the name of the new table is unique: You
can create a table with a given name even if that name identifies an existing table. If you
want to make sure that your table’s name won’t collide with that of an existing table, you
should callFindTable() first—and if you really want to be scrupulous, you should call
Sync() just before that:

/* Create a uniquely-named table called "Phylum". */
a_db->Sync();
if (a_db->FindTable("Phylum") == NULL)

a_table = a_db->CreateTable("Phylum");

Furthermore, if you designate a parent but the parent isn’t found, the new table is created
without a parent. Again, you can check to make sure that the parent exists:

/* Create a uniquely-named table that inherits from the
 * existing table called "Kingdom".
 */
a_db->Sync();
if (a_db->FindTable("Phylum") == NULL &&

a_db->FindTable("Kingdom") != NULL)
a_table = a_db->CreateTable("Phylum", "Kingdom");

If CreateTable() can’t create the table—this should only happen if the Storage Server can
no longer communicate with the database—it returnsNULL.

You never explicitly delete a BTable object. Constructing and deleting BTable objects is
the BDatabase’s responsibility.

See also: FindTable()

BDatabase Member Functions

The Storage Kit –11

FindTable()
BTable *FindTable(char *table_name)

Looks in the BDatabase’s table list for the BTable that represents the named table.
Returns the BTable if it’s there;NULL if not. The table list includes all tables that live in
the database—it isn’t just a compilation of tables that were created by this particular
object.

If you want to make sure that the list is up-to-date before looking for a table, you should
first call BDatabase’sSync() function.

See also: TableAt(), Sync()

ID()
database_idID(void)

Returns an identifier that uniquely and persistently identifies the BDatabase’s database.
The value is meaningful system-wide—you can send it to other applications so they can
find the same database, for example. The persistence of the value is eternal: The database
that’s identified by a particulardatabase_id number today will still be identified by that
number long after you’ve forgotten everything you ever knew.

Database ID numbers appear most commonly as thedatabase fields ofrecord_ref
structures. Arecord_ref structure uniquely identifies a record among all records in all
databases.

See also: BStore::SetRef()

IsValid()
bool IsValid(void)

ReturnsTRUE if the BDatabase’s database is (still) available; otherwise, it returnsFALSE.
The object will become invalid if the volume on which the database lives is unmounted.

Warning: Currently, this function always returnsTRUE.

PrintToStream()
void PrintToStream(void)

Displays, to standard output, information about the BTables that are contained in the
BDatabase’s table list. The information is displayed in this format:

| index -table < name>, id #
| fieldName1
| fieldName2

Member Functions BDatabase

12 – The Storage Kit

| fieldName3
...

For example, if the first BTable in the list is named “Shirts” and contains fields named
“color,” “texture,” and “buttonCount,” the display will look like this:

| 0-table <Shirts>, id 0
| | color
| | texture
| | buttonCount

A BTable that inherits from another BTable is indented beneath its parent, and repeats the
inherited fields:

| 0-table <Shirts>, id 0
| | color
| | texture
| | buttonCount
| | 1-table <TackyShirts>, id 1
| | | color
| | | texture
| | | buttonCount
| | | hasStripes
| | | isHawaiian

PrintToStream() is meant to be used as a debugging tool and party game.

Sync()
void Sync(void)

Synchronizes the BDatabase object with the database that it represents by doing the
following:

• Updates the BDatabase’s table list so its contents match that of the database’s list.

• Makes sure that all “committed” record data (in the sense of the word as defined by
the BRecord class) has been flushed to the underlying storage media (in other
words, it writes your changes to the disk).

Calling Sync() is the only way to update the BDatabase’s table list, whereas it isn’t
necessary toSync() in order write committed data. Such data will (eventually) be written
to the disk as a matter of routine (within seconds, typically);Sync(), in this regard, is a sop
for the anxious.

See also: BRecord::Commit()

BDatabase Member Functions

The Storage Kit –13

TableAt()
BTable *TableAt(long index)

Returns the index’th BTable object in the BDatabase’s table list (zero-based).

If you want to make sure that the list is up-to-date before looking for a table, you should
first call BDatabase’sSync() function.

See also: CountTables(), Sync()

VolumeID()
long VolumeID(void)

Returns the ID of the volume that contains the database that’s represented by this
BDatabase object.

Member Functions BDatabase

14 – The Storage Kit

The Storage Kit –15

BDirectory

Derived from: public BStore

Declared in: <storage/Directory.h>

Overview

The BDirectory class defines objects that represent directories in a file system. A
directory can contain files and other directories, and is itself contained within a directory
(its “parent”). As with all BStore objects, a BDirectory is useless until its ref is set.

You use BDirectory objects to browse the file system, and to create and remove files (and
directories). These topics are examined in the following sections. After that it’s nap time.

Browsing the File System

Directories are the essence of a hierarchical file system. By placing directories inside
other directories, you increase the depth of the hierarchy (currently, the nesting can be 64
levels deep). Some of the rules that govern the Be file system hierarchy are:

• Every file system has exactly one “root” directory. The root directory stands at the
base of the hierarchy: If you ask any file for its parent, and then ask the parent for
its parent, and so on, the directory you arrive at, when you run out of parents, is the
root directory.

• Except for the root directory, every file system entity (every file and directory) has
exactly one parent (every file is contained in exactly one directory).

• As a corollary to this, the hierarchy’s nesting is directed and acyclic: If you follow a
path of directories, you won’t find yourself re-tracing your steps. (Note that the Be
file system doesn’t currently support symbolic links; such links can cause cyclic
recursion)

Descending the Hierarchy

If we wanted to browse an entire file system, we get a root directory, and recursively ask
for its contents and the contents of the directories it contains.

First, we get a root directory from a volume by calling BVolume’sGetRootDirectory()
function; in the example here, we get the root directory of the boot volume:

Overview BDirectory

16 – The Storage Kit

/* We'll get the root directory of the boot volume. */
BVolume boot_vol = boot_volume();
BDirectory root_dir;

boot_vol.GetRootDirectory(&root_dir);

Since the Be file system is acyclic, we can implement the hierarchy descent in a single
recursive function. In this simple implementation we ask the argument directory for its
contents (first its files, then its directories), print the name of each entry, and then re-call
the function for each of its directories. Thelevel argument is used to indent the names to
make the nesting clear:

void descend(BDirectory *dir, long nest_level)
{

long index = 0, nester;
BFile a_file;
BDirectory a_dir;
char name_buf[B_FILE_NAME_LENGTH];

First we print the name of this directory (followed by a distinguishing slash):

dir->GetName(name_buf);
for (nester = 0; nester < nest_level; nester++)

printf(" ");
printf("%s/\n", name_buf);

Now we get the files;GetFile() returnsB_ERROR when the index argument is out-of-
bounds:

while (dir->GetFile(index++, &a_file) == B_NO_ERROR) {
a_file.GetName(name_buf);
for (nester = 0; nester < nest_level + 1; nester++)

printf(" ");
printf("%s\n", name_buf);

}

Finally, we calldescend() for each sub-directory:

index = 0;
while (dir->GetDirectory(index++, &a_dir) == B_NO_ERROR)

descend(&a_dir, nest_level + 1);
}

The example demonstrates the use ofGetFile() andGetDirectory(). There are two
versions of each of these functions: The version of each shown here gets the index’th item
in the calling directory. The other version finds an item by name (see theGetFile()
description for details).

Getting Many Files at a Time

GetFile() andGetDirectory() are reasonably efficient—but they’re not as fast asGetFiles()
andGetDirectories(). As their names imply, the latter functions retrieve more than one

BDirectory Overview

The Storage Kit –17

item at a time; each set of files that’s retrieved requires fewer messages to the Storage
Server, thus the retrieval is much faster than getting each file individually.

TheGetFiles() function doesn’t retrieve files as BFile objects; instead, it writes their
record_refs into a vector that you pass (as arecord_ref pointer) to the function. You then
use therecord_ref values to refer BFile objects to the underlying files. (This is also true,
modulo store type, forGetDirectories().)

Here, we modify thedescend() function to useGetFiles() andGetDirectories():

void descend(BDirectory *dir, long nest_level)
{

long index, nester;
BFile a_file;
BDirectory a_dir;
long file_count, dir_count;
record_ref *ref_vector;
char name_buf[B_FILE_NAME_LENGTH];

dir->GetName(name_buf);
for (nester = 0; nester < nest_level; nester++)

printf(" ");
printf("%s/\n", name_buf);

We have to allocate the ref vector; rather than do it twice (once for files, once for
directories), we grab enough to accommodate the larger of the two sets. TheCountFiles()
andCountDirectories() functions, used below, do pretty much what we expect:

file_count = dir->CountFiles();
dir_count = dir->CountDirectories();
ref_vector = (record_ref *)malloc(sizeof(record_ref) *

 max(dir_count, file_count));

GetFiles() gets the refs for the files. The first two arguments are 1) an offset into the
directory’s list of files, and 2) the number of refs we want to retrieve.

dir->GetFiles(0, file_count, ref_vector);

for (index = 0; index < file_count; index++) {
if (a_file.SetRef(ref_vector[index]) < B_NO_ERROR)

continue;
a_file.GetName(name_buf);
for (nester = 0; nester < nest_level+1; nester++)

printf(" ");
printf("%s\n", name_buf);

}

Overview BDirectory

18 – The Storage Kit

Now do the same for directories:

dir->GetDirectories(0, dir_count, ref_vector);

for (index = 0; index < dir_count; index++) {
if (a_dir.SetRef(ref_vector[index]) < B_NO_ERROR)

continue;
descend(&a_dir, nest_level + 1);

}
/* Don't forget to free the vector. */
free(ref_vector);

}

Path Names and File Names

Although record_refs are the common currency for finding and accessing files in the file
system, it’s also possible to get around using path names and file names. The BDirectory
class provides a number of functions that operate on names:

• GetFile() and GetDirectory(), as mentioned above, come in flavors that take names
rather than indices. The functions look for a file or directory, within the invoked-
upon BDirectory, that goes by the name given in the first argument.

• GetRefForPath() takes a path name as its first argument and returns, by reference in
its second argument, therecord_ref that identifies the named file or directory.

• Contains() is a convenient boolean function that takes a name as it’s only argument
and returnsTRUE if the invoked-upon BDirectory contains an item of that name.

Modifying the File System

The BDirectory class provides functions that let you create new files and add them to the
files system, and remove existing files.

• To create a new file, you call theCreate() function.
• To remove an existing file, you callRemove().

While BDirectory’sRemove() is theonly way to programatically remove an item from the
file system, files can be created as copies of other files through BFile’s CopyTo() function.
You can’t copy a directory.

BDirectory Constructor and Destructor

The Storage Kit –19

Constructor and Destructor

BDirectory()
BDirectory(record_refref)
BDirectory(void)

The two BDirectory constructors create and return pointers to newly created BDirectory
objects. The version that takes a record_ref argument attempts to refer the new object to
the argument; the no-argument version creates an unreferenced object. In the latter case,
you must set the BDirectory’s ref in a subsequent manipulation. This you can do thus:

• By invoking the object’sSetRef() function (the function is inherited from the BStore
class).

• By passing the object as an argument to the BDirectory functionsCreate() or
GetDirectory().

• By passing it as an argument to BVolume’sGetRootDirectory() function.

~BDirectory()
virtual ~BDirectory(void)

Destroys the BDirectory object; thisdoesn’tremove the directory that the object
corresponds to. (To remove a directory, use BDirectory’sRemove() function; note that
you can’t remove a volume’s root directory.)

Member Functions

Contains()
bool Contains(const char *name)

Looks in the BDirectory for a file or directory namedname. If the item is found, the
function returnsTRUE, otherwise it returnsFALSE. If you need to know whether the item is
a file or a directory, you should follow this call (if it returnsTRUE) with a call to
IsDirectory(), passing the same name:

if (aDir->Contains("Something"))
if (aDir->IsDirectory("Something"))

/* It's a directory. */
else

/* It's a file. */

See also: IsDirectory(), GetFile(), GetDirectory()

Member Functions BDirectory

20 – The Storage Kit

CountDirectories() see CountFiles()

CountFiles(), CountDirectories(), CountStores()
long CountFiles(void)
long CountDirectories(void)
long CountStores(void)

Returns a count of the number of files, directories, or both that are contained in this
BDirectory.

See also: GetFile(), GetFiles()

CountStores() see CountFiles()

Create()
long Create(const char *newName,

BStore *newItem,
const char *tableName= NULL,
store_creation_hook*hookFunc= NULL,
void *hookData = NULL)

Creates a new file system item, names itname, and adds it to the directory represented by
this BDirectory. The ref of thenewItem argument is set to represent the added item.
newItem must either be a BFile or BDirectory object—the object’s class dictates whether
the function will create a file or a directory.

The other three arguments (tableName, hookFunc, andhookData) are infrequently used—
you should only need them if you want your file system records to conform to a custom
tables. See “The Store Creation Hook” on page 73 (in the BStore class) for more
information.

The function returnsB_NO_ERROR if the item was successfully created.

GetDirectory() see GetFile()

BDirectory Member Functions

The Storage Kit –21

GetFile(), GetDirectory()
long GetFile(const char *name, BFile *file)
long GetFile(long index, BFile *file)
long GetDirectory(const char *name, BDirectory *dir)
long GetDirectory(long *index, BDirectory *dir)

Looks for the designated file or directory (contained in this BDirectory) and, if it’s found,
sets the second argument’s ref to represent it. The second argument must point to an
allocated object—these functions won’t allocate it for you.

Thename versions of the functions search for the appropriate item with the given name.
For example, the call

BFile *aFile = new BFile();
if (aDir->GetFile("something", aFile) < B_NO_ERROR)

/* Not found. */

looks for a file named “something”. It ignores directories. Similarly, theGetDirectory()
function looks for a named directory and ignores files. As implied by the example, the
function returnsB_NO_ERROR if the named item was found.

The index versions return theindex’th file or directory. For example, this

if (aDir->GetFile(0, aFile) < B_NO_ERROR)
...

gets the first file, while this

BDirectory *aSubDir = new BDirectory();
if (aDir->GetDirectory(0, aSubDir) < B_NO_ERROR)

...

gets the first directory.

The index versions return a less-than-B_NO_ERROR value if the index is out-of-bounds.

See also: Contains(), IsDirectory(), GetFiles()

GetFiles(), GetDirectories(), GetStores()
long GetFiles(long index, longcount, record_ref *refVector)
long GetDirectories(long index, longcount, record_ref *refVector)
long GetStores(long index, longcount, record_ref *refVector)

These functions retrieve a vector of refs that identify some number of files, directories, or
both within the this BDirectory. Theindex andcount arguments tell the functions where,
within a list of items, to start plucking refs and how many refs to pluck; the plucked refs
are placed inrefVector. For example,GetFiles() makes a list of all the file refs in this
BDirectory; it then places, inrefVector, theindex’th through the (index+count)’th refs.

Member Functions BDirectory

22 – The Storage Kit

If you setindex andcount such that all or part of the desired range is out-of-bounds, these
functions don’t complain: They retrieve as many refs as are in-bounds and return those to
you. Thus, the number of refs that are passed back to you may be less than the number
you asked for.

You must allocaterefVector before you pass it into these functions. It’s the caller’s
responsibility to free the vector.

The functions returnB_ERROR if the BDirectory’s ref hasn’t been set. Otherwise, they
returnB_NO_ERROR.

See “Getting Many Files at a Time” on page 16 for an example of the use ofGetFiles() and
GetDirectories().

See also: GetFile()

GetRefForPath()
long GetRefForPath(const char *pathName, record_ref *ref)

Searches for the files that’s named by the given path name. If the file is found, it’s ref is
placed inref (which must be allocated before it’s passed in).

If the path is relative, the search starts at this BDirectory (the path name is appended to the
path that leads to this object). If it’s absolute, the search starts at the root directory. In the
absolute case, the receiving BDirectory doesn’t figure into the search: An absolute path
name search invoked on any BDirectory object yields the same result.

Path names are constructed by concatenating directory and file names separated by slashes
(“/”). Absolute path names have an initial slash; relative path names don’t. Keep in mind
that an absolute path name must include the root directory name.

Warning: This function fails if the path name ends in a slash, even if it otherwise
identifies a legitimate directory.

The function returnsB_NO_ERROR if a ref was successfully found; otherwise, it returns
B_ERROR. Note that the BDirectory’s ref must be set for this function to succeed, even if
the path name is absolute.

IsDirectory()
bool IsDirectory(const char *name)

ReturnsTRUE if the BDirectory contains a directory namedname; if the object doesn’t
contain an item with that name, if the item is a file, or if other impediments obtain, the
function returnsFALSE.

See also: Contains()

BDirectory Member Functions

The Storage Kit –23

Remove()
long Remove(BStore *anItem)

Removes the given item from the object’s directory, removes the item’s record from the
database, and frees the (disk) space that it was using. IfanItem is a BFile, the object is
closed before it’s removed. The item must be a member of the target BDirectory.

You can’t remove a volume’s root directory (it doesn’t have a parent, so there’s no way to
try). Also, you can’t remove a directory that isn’t empty.

The function returnsB_NO_ERROR if the item was successfully removed; otherwise, it
returnsB_ERROR.

Member Functions BDirectory

24 – The Storage Kit

The Storage Kit –25

BFile

Derived from: public BStore

Declared in: <storage/File.h>

Overview

The BFile class defines objects that represent files in the file system. Files are containers
of data that live in directories. A file can live in only one directory at a time.

BFile inherits from BStore; the basic concepts of how file system objects work are
explained in the BStore description. The most important points, applied to BFiles, are
these:

• Every item in the file system has a database record associated with it. The record
contains information about the item, such as its name and where it’s located.

• A record is uniquely identified across all databases by itsrecord_ref structure.
Posing as a value, arecord_ref is called a “ref”.

• A BFile object is associated with an actual file by referring to the ref of the file’s
record. This association can be performed through the BFile constructor, through
theBStore::SetRef() function, as well as through a number of other BStore-related
functions.

• More than one BFile object can be associated with (or can “refer to”) the same
underlying file. This is simply a matter of setting the refs of the various BFile
objects to the same value.

• Conversely, the same BFile object can be re-used to refer to any number of different
files (although only one file at a time).

BFile Data

BFiles contain “flat” or unstructured data. They’re commonly used to store ASCII
documents, for example. If you want to associate structured header information with a file
(if you want a complementary “resource fork”), you can do one (or more) of the
following:

• Use an instance of BResourceFile. The BResourceFile class inherits from BFile.
The data in a BResourceFile is completely structured; the structure can be defined
dynamically. Each “slot” in the structure of a BResourceFile is called aresource.

Overview BFile

26 – The Storage Kit

To use a BResourceFile so that it emulates a data/resource fork pair, you would
install the flat data as one of the file’s resources. An important drawback to using a
BResourceFile is that the structureis the file, thus the file may not be portable to
other computers. Note that executable files are automatically created as resource
files.

• You can create your own BFile-derived class. What you do in your class to
“specialize” your files is up to you. To help in the effort, BFile provides a
FileCreated() hook function that’s automatically invoked when you create a new file
as an instance of your class (specifically, it’s invoked as part of BDirectory’s
Create() and BFile’sCopyTo() functions).

• You can create your own table to which your BFiles’ records conform. The function
that creates wholly new files (BDirectory’sCreate()) lets you set the name the table
that’s used to create the file’s record. You would then supply a “store creation hook”
that modifies the fields that you’ve defined as new files are created. The store
creation hook, which was explained in the BStore class, is a call-back function (it
isn’t a class hook function) that you pass as an argument to BDirectory’sCreate(),
BStore’sMoveTo(), and BFile’sCopyTo() functions.

• You can add “extra” entries to the BFile’s record. This is performed through
BRecord’sSetExtra() function. The advantage of an extra entry is that it doesn’t
have to be part of the definition of the table to which the record conforms—in other
words, extra entries can be added (and removed) dynamically without re-defining
the record’s table. A single record can hold any number of extra entries.

• Use theSetTypeAndApp() function. If all you want to do is be able to identify the
“type” or “creator” of a file, you can use BFile’sSetTypeAndApp() and
GetTypeAndApp() functions (where the “App” in the function name means the
same as the traditional “creator”). The advantage of this approach is that you can
avoid everything described heretofore: You don’t need to force the file’s data into a
non-portable structure, and you don’t have fuss with the file’s record.

Locating and Creating Files

Most of the functions that locate, create, and otherwise “externally” manipulate files are
defined by the BStore and BDirectory classes. The most important of these are:

Defined in BStore:

• SetRef() is the fundamental function that establishes a “link” between a file and a
BFile object. BFile augments this function (and so it’s listed among the “Member
Functions” section, below), but the primary documentation for it is in the BStore
class.

• MoveTo() moves a file from one directory to another.

BFile Overview

The Storage Kit –27

Defined in BDirectory

• GetFile() locates a file by name or index (into a directory) and refers a BFile to it.
• Create() creates a new file in the file system, and refers a BFile to it.
• Remove() removes a file from the file system.

The BFile class itself adds two whole-cloth file manipulation functions:

• CopyTo() creates a new file as a copy of the receiving BFile.

• SwitchWith() takes two files (the receiving BFile and a BFile that you pass as an
argument) and switches their contents. This function is provided as an efficient way
for an application to make back-up copies of the files that it’s writing.

Opening and Closing Files

Before examining or manipulating a file, you have to open the BFile that refers to it by
calling theOpen() function. The object remains open until theClose() function is called.

TheOpen() function takes a single argument that you use to specify the file’s “open
mode”. The constants that represent these modes are:

• B_READ_ONLY. In this mode, your BFile can read the file’s contents, but it can’t
write into the file. Other BFile objects are allowed to open the file while your BFile
has it open in read-only mode.

• B_READ_WRITE lets your object read and write the file. Again, other objects can also
open the file.

• B_EXCLUSIVE gives you exclusive access (for reading and writing) to the file. No
other BFile can open the file while your object has it open in this mode.

Reading and Writing Files

BFile’s Read() andWrite() functions are the means by which you examine and modify the
data that lies in a file. They operate much as you would expect: For example, the BFile
must be open in the appropriate mode, they read or write some number of bytes of data,
and successiveRead() or Write() calls read or write contiguous sections of the file.

An important point with regard toRead() andWrite() is that they’re not virtual. If you
create a BFile-derived class because, for example, you want to read in units oflongs rather
than bytes, you have to create your own reading function (which might invokeRead())
and give it a different name. (This is what the Media Kit’s BSoundFile class does: It
reads “frames” of sound through theReadFrames() function).

Hook Functions BFile

28 – The Storage Kit

Hook Functions

FileCreated() Invoked when a new file is created. You implement this
function in a BFile-derived class to perform class-specific
initialization. This initialization can include modification
of the new file’s BRecord.

Constructor and Destructor

BFile()
BFile(void)

The BFile constructor creates a new, unreferenced object, and returns a pointer to it. The
object won’t correspond to an actual file until its record ref is set. You can set the ref
directly by calling theSetRef() function, or you can allow the ref to be set as a side effect
by passing your BFile object as an argument to any of these functions:

• BFile::CopyTo()
• BDirectory::Create()
• BDirectory::GetFile()

~BFile()
virtual ~BFile(void)

Destroys the BFile object; thisdoesn’tremove the file that the object corresponds to (to
remove a file, use BDirectory’sRemove() function). The object is automatically closed
(through a call toClose()) before the object is destroyed.

See also: Close()

Member Functions

Close()
virtual longClose(void)

Closes the BFile. The object’s BRecord is automatically committed to the database when
you call this function.

You should be aware thatClose() is called automatically by the BFile destructor, and by
BDirectory’sRemove() function.

BFile Member Functions

The Storage Kit –29

The BFile must previously have been opened through anOpen() call. If the object isn’t
open (or, more broadly, if the BFile’s ref hasn’t been set),Close() returnsB_ERROR;
otherwise,B_NO_ERROR is returned.

See also: Open()

CopyTo()
long CopyTo(BDirectory*toDir,

const char *newName,
BFile *newFile,
store_creation_hook *createHook = NULL,
void *createData= NULL,
copy_status_hook *copyHook = NULL)

Makes a copy of the BFile’s file, moves the copy into the directory given bytoDir, names
it newName, and returns a new BFile object (by reference innewFile) that refers to the
new file.

ThenewName argumentmust be supplied—if you want to copy the file but retain the same
name as the original file, passthis_object->Name() as the argument’s value. You can also
copy a file into the same directory (by passingthis_object->Parent() as thetoDir
argument); in this case, however, you must supply a different name for the copied file.

The BRecord that’s created for the new BFile will conform to the same table as the
BRecord of the original BFile (by default, this is the Kit-defined “File” table).
Furthermore, the values in the new BRecord are copied from the original file’s BRecord
(with some obvious changes, such as the file’s name, its parent, and so on). The new
BRecord is committed just beforeCopyTo() returns. TheCopyTo() function automatically
commits the original object’s BRecord as well.

If the new BRecord conforms to a custom table, you may want to modify the new
BRecord before it’s committed. The two “create” arguments provide this ability:

• createHook is a pointer to a “store creation hook” function. The function is called
after the new BFile has been created and its BRecord’s values set, but before the
BRecord is committed. The new BFile is passed as the first argument to
createHook. The value returned bycreateHook is significant: If it returnsB_ERROR,
the copy operation is aborted;B_NO_ERROR lets it continue.

• createDatais a buffer of data that’s passed as the second (and final) argument to the
store creation hook function.

For more information on the use of the store creation hook mechanism, see “The Store
Creation Hook” on page 73.

The final argument,copyHook is a “copy status hook” function. This function, if supplied,
is invoked periodically as the copy operation progresses. The protocol for the hook is

long copy_status_hook_name(record_refref, int size_delta, void *no_op)

Member Functions BFile

30 – The Storage Kit

Theref argument is the ref of the file that’s being copied from;size_delta is the amount of
data that’s been copied from the source file into the destination file since the last time the
hook function was called; the final argument is currently unused. If the hook function
returns a value other thanB_NO_ERROR, the copy operation is halted, but the data that’s
already been copied isn’t erased.

The rules governing the ability to copy a file into a specific directory are the same as those
that apply to creating a file in that directory. Again, see theBDirectory::Create() function
for more information.

The target BFile must be closed for theCopyTo() function to work. If the BFile couldn’t
be copied (for whatever reason)B_ERROR is returned; otherwise,B_NO_ERROR is returned.

See also: SwitchWith(), BDirectory::Create(), BStore::MoveTo()

FileCreated()
virtual longFileCreated(void)

This is a hook function that’s automatically invoked when a new file is created.
Specifically, it’s invoked by BDirectory’sCreate() function and BFile’sCopyTo()
function. You can implement this function in a derived class to perform file-initialization
operations. The file that’s being created, in the context of the implementation, is referred
to by thethis pointer. The store creation hook that was passed toCreate() or CopyTo()
will already have been called and the file’s record will have been committed by the time
this function is invoked.

There are no restrictions on the operations that this function may perform; for example,
you can implement FileCreated() to open and write the file, or modify and commit the
file’s record. Keep in mind, however, that the file’s record will already have been
committed for the first time just before this function is invoked.

You can stop the file from being created by implementing the function to return a value
other thanB_NO_ERROR.

GetTypeAndApp() see SetTypeAndApp()

Open(), OpenMode(), IsOpen()
virtual longOpen(longmode)
long OpenMode(void)
bool IsOpen(void)

TheOpen() function opens the BFile so its file’s data can be read or written (or both). The
file remains open untilClose() is called.

The operations you can perform on an open file depend on themode argument:

BFile Member Functions

The Storage Kit –31

• If mode is B_READ_ONLY, you’ll be able to read the file, but not write it.

• If it’s B_READ_WRITE, you can read and write the file.

• If it’s B_EXCLUSIVE, you can read and write the fileand no other BFile object will be
able to open the file until you callClose(). (The other two modes don’t prevent the
file from being opened by other objects.)

Note that theB_EXCLUSIVE mode doesn’t prevent changes to the file that can be performed
while the file is closed. For example, some other actor can delete the file (through the
command line, Browser, or BDirectory’sRemove() function) while your BFile holds the
file open in exclusive mode.

If the BFile’s ref hasn’t been set, if some other BFile has the file open inB_EXCLUSIVE
mode, if the mode argument isn’t one of the values listed here, or if, for any other reason,
the file couldn’t be opened,Open() returnsB_ERROR. Upon success, it returns
B_NO_ERROR.

OpenMode() returns the mode that the file was opened with. In addition to the three
modes listed above, the function can also returnB_FILE_NOT_OPEN if the BFile isn’t open.

IsOpen() returnsTRUE if the BFile is open, andFALSE if not.

See also: Close(), Read(), Write(), Seek()

Read()
long Read(void *data, longdataLength)

Copies (at most)dataLength bytes of data from the file into thedata buffer. The function
returns the actual number of bytes that were read—this may be less than the amount
requested if, for example, you asked for more data than the file actually holds.

The BFile’s data pointer is moved forward by the amount that was read such that a
subsequentRead() would begin at the following “unread” byte. Freshly opened, the
pointer is set to the first byte in the file; you can reposition the pointer prior to aRead()
call through theSeek() function. Keep in mind that the same data pointer is used for
readingand writing data.

For this function to work, the BFile must already be open. If the object isn’t open, or if,
for any other reason, the file couldn’t be read, the function returnsB_ERROR.

See also: Open(), Seek(), Write()

Member Functions BFile

32 – The Storage Kit

Seek
long Seek(longbyteOffset, longrelativeTo)

Relocates the BFile’s data pointer. The location that you want the pointer to assume is
given as a certain number of bytes (byteOffset) relative to one of three positions in the
data. These three positions are represented by the following constants (which you pass as
the value ofrelativeTo):

• B_SEEK_TOP represents the beginning of the file.
• B_SEEK_MIDDLE represents the pointer’s current location.
• B_SEEK_BOTTOM represents the end of the file.

For example, the following moves the pointer five bytes forward from its present position:

aFile->Seek(5, B_SEEK_MIDDLE)

If byteOffset is negative, the pointer moves backwards. Here, the pointer is set to five
bytes from the end of the file:

aFile->Seek(-5, B_SEEK_BOTTOM)

If you seek to a position beyond the end of a file, the file is padded with uninitialized data
to make up the difference. For example, the following code doubles the size ofaFile:

aFile->Seek(aFile->Size() * 2, B_SEEK_TOP)

Keep in mind that the padding is uninitialized; if you want to pad the file with NULLs (for
example), you have to write them yourself.

The function returns the pointer’s new location, in bytes, reckoned from the beginning of
the file. You can use this fact to get the pointer’s current position in the file:

/* The inquisitive, no-op seek. */
long currentPosition = aFile->Seek(0, B_SEEK_MIDDLE);

Seek() is normally followed by aRead() or Write() call. Note that both of these functions
move the pointer by the amount that was read or written.

For the function to succeed, the BFile must already be open;B_ERROR is returned if the
object isn’t open.

Warning: Currently, seeking before the beginning of a fileisn’t illegal. Doing so doesn’t
affect the size or content of the file, but it does move the pointer to the requested
(negative) location. TheSeek() function will return this location as a negative number. A
subsequent read or write on that location will cause trouble.

See also: Open(), Read(), Write()

BFile Member Functions

The Storage Kit –33

SetRef()
virtual longSetRef(record_refref)
virtual longSetRef(BVolume *volume, record_idrecID)

Sets the BFile’s ref. The BStore class defines the basic operations of these functions.
These versions add a BFile-specific wrinkle: They close the object before setting the ref.

See also: BStore::SetRef()

SetTypeAndApp(), GetTypeAndApp()
long SetTypeAndApp(ulongtype, ulongapp)
long GetTypeAndApp(ulong *type, ulong *app)

These functions set and return, respectively, constants that represent the file’s contents (its
“type”), and the application that created the file. The Browser uses these constants to
display an icon for the file, and to launch the appropriate application when the file is
opened.

If the application that you’re designing creates new files, you should set the type and app
for these files throughSetTypeAndApp() (this information isn’t set automatically). The
app value must be an application signature. You can retrieve your application’s signature
throughBApplication::GetAppInfo().

When the Browser tells an application to open a file, the app can useGetTypeAndApp() to
look at the file’s type constant to determine how the file should be opened. You can use
one of the data type values declared inapp/AppDefs.h as thetype value, but understand
thattype needn’t be globally declared (as constrasted withapp): The type that you set can
be privately meaningful to the application.

If you want to set a file’s type so the Browser will take it to be an application, use the value
‘BAPP’. Theapp argument, in this case, is ignored (by the Browser, at least).

With regard to icons: The Icon World application lets you create the correspondence
between an application and its icon, as well as between the file types that the application
recognizes and the icon that’s displayed for each type. See “Notes on Developing a Be
Application” for more information on Icon World.

Note: In contrast to most of BFile’s other functions,SetTypeAndApp() and
GetTypeAndApp() operate properly if the BFile is closed. Moreover, the functions are
actually more reliable if the objectis closed.

Both functions returnB_ERROR if they fail, B_NO_ERROR otherwise. Note that theapp
value (forSetTypeAndApp()) isn’t checked to make sure that it identifies a recognized
application.

Member Functions BFile

34 – The Storage Kit

Size()
long Size(void)
long SetSize(longnewSize)

Size() returns the size of the file’s data, in bytes. The BFile needn’t be open.

SetSize() sets the size of the file, in bytes. The BFile must be open and writable.

The functions returnB_ERROR if the BFile’s ref hasn’t been set, or if the BFile’s record has
disappeared. In addition,SetSize() returnsB_ERROR if the file isn’t open in the proper
mode; otherwise it returnsB_NO_ERROR.

SwitchWith()
long SwitchWith(BFile *otherFile)

Causes the receiving BFile and the argument object to trade data. The files’ records are
not switched. Both objects must be closed.

SwitchWith() is provided as an efficient way to create a back-up file for files that your
application is writing. Here’s how you’re supposed to use it:

Let’s say you’ve written an application that can open, read, and write files. The user uses
your app to open a file called “MyText”. You application creates and opens a BFile
(MyTextFile) that refers to the file. It then allocates a buffer to hold the file’s data, and
copies the file’s data (or as much as it thinks it will need) into the buffer. It also creates a
second BFile (tmpFile) as a copy of the original (throughCopyTo()) called “tmp”. As the
user works, your application occasionally writes the current state of the buffer to the
tmpFile. When the user tells the application to save, the app closes both files and invokes
SwitchWith():

MyTextFile->SwitchWith(tmpFile)

Your app then re-openstmpFile (which now holds the previously saved version that it just
got fromMyTextFile) and brings it back up to date.

You could get the same result by callingCopyTo() (copying from the “tmp” file to the
original file) every time the user saves, but theSwitchWith() function is much faster.

See also: CopyTo()

Write()
 longWrite(const void *data, long length)

Copieslength bytes from thedata buffer into the object’s file. The data is copied starting
at the data pointer’s current position; the existing data at that position (and extending for
length bytes) is overwritten. The size of the file is increased, if necessary, to accommodate

BFile Member Functions

The Storage Kit –35

the new data. When this function returns, the data pointer will point to the first byte that
follows the newly copied data.

The function returns the number of bytes that were actually written; except in extremely
unusual situations, the returned value shouldn’t vary from the value you passed aslength.

The object must already be open for this function to succeed. If it isn’t open, or if, for any
other reason, the data couldn’t be written,B_ERROR is returned.

See also: Open(), Seek(), Read()

Member Functions BFile

36 – The Storage Kit

The Storage Kit –37

BQuery

Derived from: public BObject

Declared in: <storage/Query.h>

Overview

The BQuery class defines functions that let you search for records that satisfy certain
criteria. Querying is the primary means for retrieving, or “fetching,” records from a
database.

Defining a Query

To define a query, you construct a BQuery object and supply it with the criteria upon
which its record search will be based. This criteria consists of tables and a predicate:

• The set of tables that you specify restricts the range of candidate records: Only
those records that conform to one of the specified tables are considered in the
search. TheAddTable() andAddTree() functions tell a BQuery which tables to
consider.

• The predicate is a logical test that (typically) compares the value of a particular field
(in a record) to a constant value. You can also compare one field’s value to another
field’s value. A predicate is constructed by “pushing” fields, constants, and
operators on the BQuery’s “predicate stack” (using “reverse Polish notation,” as
explained in a later section). The predicate is optional.

Let’s say you want to find all records in the “People” table that have “age” values greater
than 12. The BQuery definition would look like this:

/* We'll assume that myDb is a valid BDatabase object. */
BQuery *teenOrMore = new BQuery();
BTable *people = myDb->FindTable("People");

/* Add the table to the BQuery. */
teenOrMore->AddTable(people);

/* Create the predicate. */
teenOrMore->PushField("age");
teenOrMore->PushLong(12);
teenOrMore->PushOp(B_GT);

Overview BQuery

38 – The Storage Kit

The Table List

A single BQuery, during a single fetch, can search in more than one table. When you call
AddTable(), the previously added table (if any) isn’t bumped out of the table list; instead,
the tables accumulate to widen the range of candidate records. However, all BTables that
you pass as arguments toAddTable() (for a single BQuery) must belong to the same
BDatabase object.

Another way to add multiple tables to a query is to use theAddTree() function. AddTree()
adds the table represented by the argument and all tables that inherit from it. Table
inheritance is explained in the BTable class specification.

You can’t selectively remove tables from a BQuery’s table list. If you feel the need to
remove tables, you have two choices: You can removeall tables (and the predicate)
through the Clear() function, or you can throw the BQuery object away and start from
scratch with a new one.

The Predicate

As mentioned earlier, the BQuery predicate is constructed using “reverse Polish
notation” (or “RPN”). In this construction, operators are “post-fixed”; in other words,
the operands to an operation are pushed first, followed by the operator that acts upon
them. That’s why the predicate used in the example, “age > 12”, was created by pushing
the elements in the order shown:

/* Predicate construction for "age > 12" */
teenOrMore->PushField("age");
teenOrMore->PushLong(12);
teenOrMore->PushOp(B_GT);

The query operators that you can use are represented by the following constants:

Constant Meaning

B_EQ equal
B_NE not equal
B_GT greater than
B_GE greater than or equal to
B_LT less than
B_LE less than or equal to
B_AND logical AND
B_OR logical OR
B_NOT negation
B_ALL wildcard (matches all records)

Except forB_ALL, the query operators expect to operate on two previously pushed
operands.B_ALL, which is used to retrieve all the records in the target tables, should be
pushed all by itself (throughPushOp()).

BQuery Overview

The Storage Kit –39

Complex Predicates

You can create complex predicates by using the conjunction operatorsB_AND andB_OR.
As with comparison operators, a conjunction operator is pushed after its operands; but
with the conjunctions, the two operands are the results of the two previous comparisons
(or previous complex predicates).

For example, let’s say you want to find the records for people that are between 12 and 36
years old. The programmatic representation of this notion, and its reverse Polish notation,
looks like this:

Programmatic expression: (“age” > 12) && (“age” < 36)

Reverse Polish Notation: “age” 12 B_ GT “age” 36 B_LT B_AND

The RPN version prescribes the order of the BQuery function calls:

/* Predicate construction for "(age > 12) and (age < 36)" */
teenOrMore->PushField("age");
teenOrMore->PushLong(12);
teenOrMore->PushOp(B_GT);

teenOrMore->PushField("age");
teenOrMore->PushLong(36);
teenOrMore->PushOp(B_LT);

teenOrMore->PushOp(B_AND);

Predicates can be arbitrarily deep; the complex predicate shown above can be conjoined
with other predicates (simple or complex), and so on.

Fetching

Once you’ve defined your BQuery, you tell it to perform its search by calling theFetch()
function:

if (teenOrMore->Fetch() != B_NO_ERROR)
/* the fetch failed */

When it’s told to fetch, a BQuery object sends the table and predicate information to the
Storage Server and asks it to find the satisfactory records. The winning records (identified
by their record IDs) are returned to the BQuery and placed in the BQuery’s record ID list,
which you can then step through usingCountRecordIDs() andRecordIDAt():

long num_recs = teenOrMore->CountRecordIDs();
record_id this_rec;

for (int i = 0; i < num_recs; i++)
this_rec = teenOrMore->RecordIDAt(i);

To turn the BQuery’s record IDs into BRecord objects, you pass the IDs to the BRecord
constructor:

Overview BQuery

40 – The Storage Kit

BList *teens = new BList();
long num_recs = teenOrMore->CountRecordIDs();
record_id this_rec;
BRecord *teen_rec;

for (int i = 0; i < num_recs; i++)
{

this_rec = teenOrMore->RecordIDAt(i);
teen_rec = BRecord new(people->Database(), this_rec);
teens->AddItem(teen_rec);

}

Live Queries

By default, a BQuery performs a “one-shot” fetch: EachFetch() call retrieves record IDs,
sets them in the BQuery’s record ID list, and that’s the end of it. Alternatively, you can
declare a BQuery to keep working—you can declare it to be “live”—by passingTRUE as
the argument to the constructor:

BQuery *live_q = new BQuery(TRUE);

When you tell a live BQuery to fetch, it searches for and retrieves record ID values, just as
in the default version, but then the Storage Server continues to monitor the database for
you, noting changes to records that would affect your BQuery’s results. If the data in a
record is modified such that the record now passes the predicate whereas before it didn’t,
or now doesn’t pass but used to, the Server automatically sends messages that will,
ultimately, update your BQuery’s record list to reflect the change. In short, a live
BQuery’s record list is always synchronized with the state of the database. But you have
to do some work first.

Preparing your Application for a Live Query

It was mentioned above that the Storage Server sends messages to update a live BQuery.
The receiver of these messages (BMessage objects) is your application object. In order to
get the update messages from your application over to your BQuery, you have to subclass
BApplication’sMessageReceived() function to recognize the Server’s messages. Below
are listed the messages (as they’re identified by the BMessagewhat field) that the function
needs to recognize:

what Value Meaning

B_RECORD_ADDED A record ID needs to be added to the record list.
B_RECORD_REMOVED An ID needs to be removed from the list.
B_RECORD_MODIFIED Data has changed in a record currently in the list.

The only thing yourMessageReceived() function needs to do to properly respond to a
Storage Server message is pass the message along in a call to the Storage Kit’s global
update_query() function, as shown below:

BQuery Overview

The Storage Kit –41

#include <Query.h>

void MyApp::MessageReceived(BMessage *a_message)
{

switch(a_message->what) {
case B_RECORD_ADDED :
case B_RECORD_REMOVED :
case B_RECORD_MODIFIED :

update_query(a_message);
break;

/* Other app-defined messages go here */
...
default:

BApplication::MessageReceived(a_message);
break;

}
}

update_query() finds the appropriate BQuery object and calls itsMessageReceived()
function. The default BQueryMessageReceived() implementation handles the
B_RECORD_ADDED andB_RECORD_REMOVED messages by manipulating the record list
appropriately. In the case of aB_RECORD_MODIFIED message, the BQuery does nothing.

If you want to handle modified records in your application, you can create your own
BQuery-derived class and re-implementMessageReceived(). To get the identity of the
record, you retrieve, from the BMessage, thelong data named “rec_id”. The following
code demonstrates the general look of such a function:

/* Re-implementation of MessageReceived() for MyQuery,
 * a BQuery-derived class
 */
void MyQuery::MessageReceived(BMessage *a_message)
{

record_id rec;

rec = a_message->FindLong("rec_id");

switch(a_message->what) {
case B_RECORD_MODIFIED :

/* do something with the record */
break;

case B_RECORD_ADDED:
case B_RECORD_REMOVED:

/* Pass the other two message types to BQuery. */
BQuery::MessageReceived(a_message);
break;

}
...

Keep in mind that you don’t have to derive your own class to take advantage of the live
query mechanism. Simply getting to theupdate_query() step is enough to keep the your
BQuery’s record list up-to-date.

Hook Functions BQuery

42 – The Storage Kit

Hook Functions

MessageReceived() Can be overridden to handle live BQuery notifications.

Constructor and Destructor

BQuery()
BQuery(bool live = FALSE)

Creates a new BQuery object and returns it to you. Iflive is TRUE, the BQuery’s record list
is kept in sync with the state of the database (after the object performs its first fetch). If it’s
FALSE, the database isn’t monitored.

See the class description for more information on live BQuery objects.

~BRecord()
~BRecord(void)

Frees the memory allocated for the object’s record list. If this is a live BQuery, the Storage
Server is informed of the object’s imminent destruction (so it won’t send back any more
database-changed notifications).

Member Functions

AddRecordID()
void AddRecordID(record_idid)

Tells the BQuery to consider the argument record to be a winner, whether it passes the
predicate or not. You call this functionbefore you fetch; after the fetch, you’ll find thatid
has been added to the record list (and will be monitored, if this is a live query). You can
call this function any number of times and so add multiple “predicate-exempt” records,
but you can add each specific record only once (duplicate entries are automatically
squished to a single representative).

The set of exempt records isn’t forgotten after the BQuery performs a fetch. For example,
in the following sequence of calls...

query->AddRecordID(MyRecord);
query->Fetch();
query->Fetch();

... you don’t have to “re-prime” the second fetch by re-addingMyRecord.

BQuery Member Functions

The Storage Kit –43

Conversely,AddRecordID() doesn’tinstantly add the record to the BQuery’s record list:
The records that you add throughAddRecordID() aren’t put in the record list until you call
Fetch(). For example, in this sequence:

query->AddRecordID(MyRecord);
query->Fetch();
query->AddRecordID(YourRecord);

... MyRecord is in query’s record list, butYourRecord isn’t.

Although this isn’t the normal way to add records to the list—normally, you define the
BQuery’s predicate and then fetch records—it can be useful if you want to “fine-tune” the
record list. For example, if you want to monitor a particular record through a live query
regardless of whether that record passes the BQuery’s predicate, you can add it through
this function.

Important: Currently, theAddRecordID() function is slightly flawed: The records that
you add through this functionmust conform to one of the BQuery’s tables.

AddTable(), AddTree
void AddTable(BTable *a_table)
void AddTree(BTable *a_table)

Adds one or more BTable objects to the BQuery’s table list. The first version adds just the
BTable identified by the argument. The second adds the argument and all BTables that
inherit from it (where “inheritance” is meant as it’s defined by the BTable class).

You can add as many BTables as you want; invocations of these functions augment the
table list. However, any BTable that you attempt to add must belong to the same
BDatabase object.

There’s no way to remove BTables from the table list. If you tire of a BTable, you throw
the BQuery away and start over.

See also: CountTables(), TableAt()

Clear()
 void Clear(void)

Erases the BQuery’s predicate (the table list and record lists are kept intact). Although this
function can be convenient in some cases, it usually better to create a new BQuery for
each distinct predicate that you want to test.

Member Functions BQuery

44 – The Storage Kit

CountRecordIDs()
long CountRecordIDs(void)

Returns the number of records in the BQuery’s record list. If the object isn’t live, the
value returned by this function will remain constant between fetches; if it’s live, it may
change at any time.

See also: RecordIDAt()

CountTables()
long CountTables(void)

Returns the number of BTables in the BQuery’s table list.

See also: TableAt()

Fetch(), FetchOne()
long Fetch(void)
long FetchOne(void)

Tests the BQuery’s predicate against the records in the designated tables (in the database),
and fills the record list with the record ID numbers of the records that pass the test:

• Fetch() tests all candidate records.

• FetchOne() stops after it finds the first winner. This is a convenient function if all
you want to do is verify that there isany record that fulfills the predicate, or if you
know that there’s only one.

Note: Currently,FetchOne() doesn’t—it simply invokesFetch(). Single record fetching
will be added in a subsequent release.

The object’s record list is cleared before the winning records are added to it.

If the BQuery is live,Fetch() turns on the Storage Server’s database monitoring;
FetchOne() doesn’t.

Fetching is performed in the thread in which theFetch() function is called; the function
doesn’t return until all the necessary records have been tested. The on-going monitoring
requested by a live query is performed in the Storage Server’s thread.

Both functions returnB_NO_ERROR if the fetch was successfully executed (even if no
records were found that pass the predicate); B_ERROR is returned if the fetch couldn’t be
performed.

See also: RunOn()

BQuery Member Functions

The Storage Kit –45

FieldAt()
char *FieldAt(long index)

Returns a pointer to theindex’th field name that you pushed onto the predicate stacked.
The pointed-to string belongs to the query—you shouldn’t modify or free it. The string
itself is a copy of the string that you used to push the field; in other words, the names that
are returned byFieldAt() are the same names that you used as arguments in previous
PushField() calls. If index is out of bounds, the function returns NULL.

Field names are kept in the order that they were pushed.FieldAt(0), for example returns
the first field name that you pushed on the stack.

This function is provided, mainly, as an aid to interface design. It’s not meant as a
diagnostic tool.

FromFlat() see ToFlat()

HasRecordID()
bool HasRecordID(record_idid)

ReturnsTRUE if the argument is present in the object’s record list. Otherwise it returns
FALSE.

See also: RecordIDAt(), CountRecordIDs()

IsLive()
bool IsLive(void)

ReturnsTRUE if the BQuery is live. You declare a BQuery to be live (or not) when you
construct it. You can’t change its persuasion thereafter.

MessageReceived()
virtual voidMessageReceived(BMessage *a_message)

Invoked automatically by the update_query() function, as discussed in “Live Queries” on
page 40. You never call this function directly, but you can override it in a BQuery-derived
class to change its behavior. The messages it can receive (as defined by theirwhat fields)
are these:

what Value Meaning

B_RECORD_ADDED A record ID needs to be added to the record list.
B_RECORD_REMOVED A record ID needs to be removed from the list.
B_RECORD_MODIFIED Data has changed in a record in the list.

Member Functions BQuery

46 – The Storage Kit

The default responses to the first two messages do the right thing with regard to the record
list: The specified record ID is added to or removed from the BQuery’s record list. The
default response to the modified message, however, is to do nothing.

The record that has been added, removed, or modified is identified by its record ID in the
BMessage’s “rec_id” slot:

record_id rec = a_message->FindLong("rec_id");

PrintToStream()
void PrintToStream(void)

Prints the BQuery’s predicate to standard output in the following format:

arg count = count
element_type element_value
element_type element_value
element_type element_value
...

element_type is one of “longarg”, “strarg”, “field”, or “op”.element_value gives the
element’s value as declared when it was pushed. The order in which the elements are
printed is the order in which they were pushed onto the stack.

PushLong(), PushDouble(), PushString(), PushField(), PushOp()
void PushLong(longvalue)
void PushDouble(doublevalue)
void PushString(const char *string)
void PushField(const char *field_name)
void PushOp(query_opoperator)

These functions push elements onto the BQuery’s predicate stack. The first four push
values (or, in the case ofPushField(), potential values), that are operated on by the
operators that are pushed throughPushOp().

The query_op constants are:

Constant Meaning

B_EQ equal
B_NE not equal
B_GT greater than
B_GE greater than or equal to
B_LT less than
B_LE less than or equal to
B_AND logical AND
B_OR logical OR

BQuery Member Functions

The Storage Kit –47

B_NOT negation
B_ALL wildcard (matches all records)

Predicate construction is explained in “The Predicate” on page 38. Briefly, it’s based on
the “reverse Polish notation” convention in which the two operands to an operation are
pushed first, followed by the operator. The result of an operation can be used as one of the
operands in a subsequent operation.

See also: FieldAt()

RecordIDAt()
record_idRecordIDAt(long index)

Returns theindex’th record ID in the object’s record list. The record list is empty until the
object performs a fetch.

See also: CountRecordIDs()

RunOn()
bool RunOn(record_idrecord)

Tests the record identified by the argument against the BQuery’s predicate. If the record
passes, the function returnsTRUE, otherwise it returnsFALSE. The record IDisn’t added to
the record list, even if it passes. You use this function to quickly and platonically test
records—it isn’t as serious as fetching.

See also: Fetch()

SetDatabase()
void SetDatabase(Database *db)

Sets the BQuery’s database to the argument. You use this function after you’ve called
FromFlat() to tell the BQuery which database it should fetch from when next it fetches. As
explained in theFromFlat() description, a flattened query doesn’t remember the identity of
its database.

TableAt()
BTable *TableAt(long index)

Returns theindex’th BTable in the object’s table list.

See also: CountTables()

Member Functions BQuery

48 – The Storage Kit

ToFlat(), FromFlat()
char *ToFlat(long *size)
void FromFlat(char *flatQuery)

These functions “flatten” and “unflatten” a BQuery’s query.ToFlat() flattens the query: It
transforms the BQuery’s table and predicate information into a string. The flattened string
is returned directly byToFlat(); the length of the flattened string is returned by reference in
thesize argument.

FromFlat() sets the object’s query as specified by theflatQuery argument. The argument,
unsurprisingly, should have been created through a previous call toToFlat(). Any query
information that already resides in the calling object is wiped out.

The one piece of information that isn’t translated through a flattened query is the identity
of the database upon which the query is based. For flattening and unflattening to work
properly, the database of the BQuery that callsFromFlat() must match that of the BQuery
that flattened the query. You can use theSetDatabase() function after callingFromFlat()
to set the object’s database.

You use these functions to store your favorite queries, or to transmit query information
between BQuery objects in separate applications.

See also: SetDatabase()

The Storage Kit –47

BRecord

Derived from: public BObject

Declared in: <storage/Record.h>

Overview

A BRecord represents arecord in a database. A record is a collection of values that,
considered together, describe a single, multi-faceted “thing.” The thing that a record
describes depends on thetable to which the record conforms. For example, each record
that conforms to the “File” table would describe different attributes of a specific file: its
name, size, the directory it’s contained in, and so on. A single record can store as much as
32 kilobytes of data (but, to be safe, you should try to keep your records a wee bit smaller
than that).

A BRecord object lets you examine and modify the values that are collected in a record.
But first, you have to associate the BRecord object with the record that you want to inspect
or alter. How you make this association depends on whether you’re creating a new record
that you wish to add to the database, or retrieving an existing record from the database.
These topics are discussed separately in the following sections.

Creating a New Record

You create a new record in reference to a specific table (within a particular database). In
your application, you create this reference by passing a BTable object to the BRecord
constructor. For example, the following code constructs a BRecord object that conforms
to the “Employee” table (the table was created in an example in the BTable class
description):

/* We'll assume the existence of the a_db BDatabase object. */
BTable *employee_table = a_db->FindTable("Employee");
BRecord *employee_record = new BRecord(employee_table);

By conforming to a BTable, a BRecord is given appropriately-sized “slots” that will hold
data for each of thefields defined by the table. For example, the “Employee” table (as
defined in an example in the BTable class description) has three fields:

• Thechar * field “name” names a specific employee.

• The long field “extension” identifies the employee’s telephone extension.

Overview BRecord

48 – The Storage Kit

• Therecord_id field “manager” identifies some other record (possibly in another
table) that contains information about the employee’s manager (this explained at
length later in this class description).

Theemployee_record object, therefore, can accommodate values for these three fields.
In a freshly created BRecord, the value for each field isNULL (cast as appropriate for the
data type of the field).

Important: You must explicitly delete the BRecord objects that you construct in your
application. Some of the operations that a BRecord performs (such as committing or
removing) might lead you to think that you’ve “given” the object to the Storage Server,
and that you’re absolved from the responsibility of destruction. You haven’t; you’re not.

Setting Data in the BRecord

To put data in a BRecord object, you use itsSet...() functions; these functions are named
for the type of data that they implant:

• SetLong() places a long value in the BRecord.
• SetDouble() places a double value.
• SetString() copies a string.
• SetRecordID() places a arecord_id value.
• SetTime() places a double that measures time since January 1, 1970.
• SetRaw() copies an arbitrarily long buffer of “raw” data (typevoid *).

Each of these functions designates, as its first argument, the table field that’s used to refer
to the data. There are two ways to make this designation: by a field’s name, or by its field
key (as defined by the BTable class).

Continuing our employee record example, we begin to put data in the new BRecord by
setting data for the “name” and “extension” fields:

/* We'll designate the "extension" field by the field's name.
*/
employee_record->SetLong("extension", 123);

For variety, we’ll set the “name” field by its field key:

field_key name_key = employee_table->FieldKey("name");
employee_record->SetString(name_key, "Mingo, Lon");

In most cases, there’s no difference between the two methods of designating a field (by
name or field key); you can use which ever is more convenient. The one instance in which
there is a distinction is if you have a table with similarly named fields that are typed
differently, in which case, the fields willonly be distinguishable by field key. For
example, if your table has a long field named “info” and a string field that’s also named
“info”, you would distinguish between the fields by using their keys.

BRecord Overview

The Storage Kit –49

Committing a BRecord

The data that you set in a BRecord isn’t seen by the database (and so can’t be seen by other
applications) until youcommit the data through BRecord’sCommit() function:

record_id mingo_id = employee_record->Commit();

The function sends the object’s data back to the Storage Server, which places it in the
database; the Server creates a new record to hold the data if necessary. Therecord_id
value that the function returns uniquely identifies the record within its database (as
explained in the next section).

Important: Notice that the BRecord in the example was committed with an “empty”
field: The “manager” field hasn’t yet been set. Because this is a new record, the value at
this field is, by default,NULL. Unfortunately, there’s no way to distinguish between a
defaultNULL and a legitimateNULL. For example, if our “Employee” table included along
“vacation days” field, the value (for that field) could legitimately be 0—it would look the
same as NULL. You wouldn’t be able to tell if the value was accurate, or if the field hadn’t
yet been filled in.

Record ID Numbers

A record is identified, within its database, by a record ID number (typerecord_id): Every
record in a given database has a different record ID. A BRecord knows the record ID of
the record it represents (you can get it through theID() function). But keep in mind that a
record ID identifies a record, not a BRecord; thus:

• Before you commit a new BRecord (more accurately, before you commit it for the
first time), the object won’t have a record ID because it doesn’t yet represent a real
record.

• More than one BRecord object can point to the same record: They can have the
same record ID value, even if the objects are in different applications. Because of
this, a record ID number can be passed between applications—in a BMessage,
typically—the number will have the same meaning (it will represent the same
record) in the other application as it does in yours.

Record ID Fields

One of the features of therecord_id type is that it can be used to define a table field. Just
as you can declare a table field to acceptlong or string data, you can declare a field to take
record ID values (through BTable’sAddRecordIDField() function). Through the use of a
record ID field, one record can point to another record. Although the two records must
reside in the same database, the two records needn’t conform to the same table. In fact,
you can’t designate, in the field definition, the table that the pointed-to record conforms to.

Returning to the example, the “manager” field in the “Employee” table is typed as a
record_id field. To set the value for this field in our employee record, we need to find the

Overview BRecord

50 – The Storage Kit

record ID of Lon Mingo’s manager. This is a job for a BQuery object, as explained in that
class.

The Record Ref Structure

Therecord_ref structure is similar to therecord_id number: It identifies a record in a
database. The difference between these two entities is that the record_ref structure
encodes the record IDand the database ID (the ID of the database in which the record
resides); the structure’s definition is

struct record_ref {
record_id record;
database_id database;

}

A record ref (or, simply, “ref”) is, therefore, more exacting in its identification of a record
than is the record ID. So why would you use a record ID if a ref is more precise?

• Generally speaking, refs are meant to be used in applications that want to access the
database but that don’t want to worry about the details of tables, queries, and so on.
More specifically, refs are used to identify and retrieve items from the file system.

• Record ID’s, on the other hand, are the common coin of “real” database
applications. For example, the BTable class defines aSetRecordIDField()—it
doesn’t have a function that sets a field that takes a ref. Similarly, BQuery objects
retrieve record ID numbers—they don’t retrieve refs. If you’re using BTables and
BQueries, you know which database you’re talking to, so you don’t need to encode
its identity in a cumbersome structure.

Comparing Refs

Therecord_ref structure defines the == and != comparison operators. This allows you to
compare two refs as values. For example, the following is legal:

record_ref a = a_record->Ref();
record_ref b = b_record->Ref();

if (a == b)
...

For two refs to be equal, theirdatabase fields must be the same and theirrecord fields
must be the same.

BRecord Overview

The Storage Kit –51

Retrieving an Existing Record

In addition to creating new (potential) records for you, the BRecord constructor can
retrieve an existing record from a database. To do this, you pass a BDatabase object and
record ID to the constructor:

BRecord(BDatabase *a_database, record_idrecord)

Typically, you fetch the record ID numbers that BQuery object and tell it which records to
fetch. The object retrieves record ID numbers which you then use here to actually get
records. (See the BQuery class for information on fetching.)

Data Examination

To examine the data in a BRecord, you ask for the value of a specific field (as defined by
the object’s BTable). This is accomplished by functions that take this form:

FindType(field_keykey)
FindType(char *field_name)

where Type is one of the six data types that a field can take (ergo FindLong(),
FindDouble(), FindRaw(), FindRecordID(), FindString(), andFindTime()). Each function
has two versions so you can designate the field by field key or by name. The functions
return the field’s data directly. The two pointer-returning functions (FindRaw() and
FindString()) return pointers to data that’s owned by the BRecord. You shouldn’t try to
modify BRecord data by writing to these pointers.

Updating a BRecord

Keep in mind that when you examine a BRecord’s data, you’re looking at the object’s
copy of the data that exists in the actual record in the database. If the actual record
changes—if a field’s value is modified, or if the record itself disappears—such changes are
not automatically reflected in the BRecord objects that point to the record. (“Live” queries,
as explained in the BQuery class, help in this regard, as they inform your application when
a change is made.)

If you want to be sure you have the most recent data in your BRecord before you examine
it, you should call theUpdate() function. Update() re-copies the record’s data into your
BRecord object. Note, however, that any uncommitted changes that you’ve made to the
BRecord are lost when you update.

Data Modification

Modifying data in a BRecord is also done in reference to specific fields. The suite of
modification functions mirrors those for examination, but with an additional argument that
specifies the value you want to set:

Overview BRecord

52 – The Storage Kit

SetType(field_keykey, data_type value)
SetType(char *field_name, data_type value)

For example, the functions that setlong data are:

SetLong(field_keykey, long value)
SetLong(char *field_name, long value)

The changes that you make to the object’s data aren’t sent back to the database until you
call Commit(). The one exception to this is if you remove the record altogether (through
theRemove() function). You don’t have to call Commit() after you callRemove().

Extra Fields

In addition to the fields that are defined by its table, a record can contain “extra” fields.
Extra fields are created and removed dynamically (through a BRecord object) without
affecting the record’s table definition. Extra fields are identified by name only, and the
data they contain is always untyped (it’s considered to be raw).

To add an extra field to a BRecord, you use theSetExtra() function. The function takes
three arguments: The name of the field that you’re adding, the data that you want the field
to contain, and the length of the data. For example, here we add two extra fields to the
employee record:

employee_record->SetExtra("motto",
(const void *)"I Am Mingo",
strlen("I Am Mingo"));

long age = 35;
employee_record->SetExtra("age",

(const void *)&age,
sizeof(long));

employee_record->Commit();

To find the data in an extra field, you pass the name of the field toFindExtra(). The
function returns a pointer to the data as it lies in the BRecord object—it doesn’t copy the
data. The function also returns the amount of data (in bytes) that the extra field is storing:

char *m_ptr, *motto;
long *a_ptr, age, size;

if ((m_ptr = (char *)FindExtra("motto", &size)) == NULL)
...

else {
motto = malloc(size+1); /* Add 1 for the NULL */
strncpy(motto, m_ptr, size);
motto[size] = '\0';

}

if ((a_ptr = (long *)FindExtra("age", &size) == NULL)
...

BRecord Constructor and Destructor

The Storage Kit –53

else
age = *a_ptr;

BRecord supplies the functionGetExtraInfo() so you can discover the names and sizes of a
record’s extra fields. The function takes an index (n) as its initial argument and returns a
pointer to then’th extra field’s name and the size of the field in its second and third
arguments. It returnsB_ERROR if the index is out-of-bounds. Here, we use the function to
iterate over all the extra fields in a record:

char *name;
long size;
long i = 0;

while (employee_record->GetExtraInfo(i++, &name, &size)
!= B_ERROR)

printf("Extra Field Name: %s; Size %d\n", name, size);

A single record can contain any number of extra fields; the only restoration is that they all
must have different names. If you callSetExtra() using a name that already exists, the
existing data is removed and the new data is installed. On the other hand, an extra field
can have the same name as a field in the record’s table: The BRecord object keeps the two
sets of fields separate, so it won’t get confused.

Since extra fields aren’t part of a table definition, you can’t declare them to be indexed (as
the term is used in the BTable class), and you can’t use them in a query predicate (see the
BQuery class).

Constructor and Destructor

BRecord()
BRecord(BDatabase *database, record_idid)
BRecord(record_refref)
BRecord(BTable *table)
BRecord(BRecord *record)

Creates a new BRecord object and returns it to you.

The first version of the constructor (the BDatabase andrecord_id version) is used to
acquire the record with the given ID from the specified database. The second version does
the same, but encodes the database and record identities as a single record_ref value.

The second version (BTable) constructs a BRecord that can accommodate values for the
fields that are declared in its BTable argument.

The third version copies the data from the argument BRecord into the new BRecord
(including the ref value).

Member Functions BRecord

54 – The Storage Kit

You should follow a call to the constructor with a call toError() to make sure the specified
record was found or created; the function returnsB_ERROR for failure andB_NO_ERROR for
success.

See also: Error()

~BRecord()
~BRecord(void)

Frees the memory allocated for the object’s copy of the database data. The object isnot
automatically committed by the destructor; if there are uncommitted changes, you must
explicitly commit them or they’ll be lost.

Note that you are responsible for deleting the BRecords that you’ve constructed. When
you commit or remove a record (when you call Commit() or Remove()), you’renot giving
the object to the Server.

Member Functions

Commit()
record_idCommit(void)

Sends the BRecord’s data back to the database. The function returns therecord_ref of the
record that the object represents. It does this as a convenience for new records, which will
be receiving fresh ref numbers; “old” records (records that were previously retrieved from
the database) don’t change ref values when they’re committed.

You should callError() immediately after callingCommit() to see if the operation was
successful (B_NO_ERROR). It will fail (B_ERROR) if the ref isn’t valid, if the record has
been locked by some other object, or if some other obstacle bars the path of ingress.

See also: Lock(), Update()

Database()
BDatabase *Database(void)

Returns the BDatabase object that represents the database that owns the table that defines
the record that killed the cat that ate the rat that’s represented by this BRecord.

BRecord Member Functions

The Storage Kit –55

Error()
long Error(void)

Returns an error code that symbolizes the success of the previous call to certain other
functions. The following functions set the code that’s returned here:

• the BRecord constructor
• Commit()
• Update()
• FindLong(), FindString(), ...
• SetLong(), SetString(), ...
• Remove()

In all cases, a return fromError() of B_NO_ERROR means that the previous call was
successful;B_ERROR means it failed.

After Error() returns the error code is automatically reset toB_NO_ERROR.

FindDouble() FindLong(), FindRaw(), FindRecordID(), FindString(),
FindTime()

double FindDouble(char *field_name)
double FindDouble(field_keykey)

long FindLong(char *field_name)
long FindLong(field_keykey)

void *FindRaw(char *field_name, long *size)
void *FindRaw(field_keykey, long *size)

record_id FindRecordID(char *field_name)
record_id FindRecordID(field_keykey)

const char *FindString(char *field_name)
const char *FindString(field_keykey)

double FindTime(char *field_name)
double FindTime(field_keykey)

These functions return the value of the designated field in the BRecord. None of these
functions check to make sure you’re returning the value in an appropriate data type, nor do
they perform any type conversion.

FindRaw() andFindString() return pointers to data that’s owned by the object. If you want
to manipulate or store the data, you must copy it before deleting the object. TheFindRaw()
functions also return, by reference insize, the amount of data that it points to.

You should always checkError() after calling one of these functions to make sure the call
was successful. The usual culprit, in a failure, is an illegitimate field specification. Asking
for the value of a non-existing field, for example, will fail.

Member Functions BRecord

56 – The Storage Kit

There is a subtle difference between the field name and field key versions of these
functions: If you ask for a value by field name, the data type given by the selected
function is used to locate the correct field. For example, if the “age” field storeslong data
but you ask for its value as a string ...

char *ageString = FindString("age");

... the function won’t be able to find a string-valued “age” field and so will fail (Error() will
returnB_ERROR). The analogous request by field key:

char *ageString = FindString(a_table->FieldKey("age"));

won’t appear to fail (Error() returnsB_NO_ERROR), even though it will return something
awful.

See also: SetDouble()

FindExtra() see SetExtra()

GetExtraInfo() see SetExtra()

IsNew()
bool IsNew(void)

ReturnsTRUE if the object was constructed to represent a new record, and hasn’t yet been
committed.

See also: the BRecord constructor

Ref()
record_refRef(void)

Returns therecord_ref structure of the BRecord’s record. This structure uniquely
identifies the record across all databases. This function always returns arecord_ref value,
even if the BRecord has never been committed (in which case the structure’srecord field
will be -1).

Remove()
void Remove(void)

Removes the BRecord’s record from the database. The success of the removal is reported
in the value returned byError() (B_NO_ERROR if the record was removed,B_ERROR if it
wasn’t).

BRecord Member Functions

The Storage Kit –57

RemoveExtra() see SetExtra()

SetDouble(), SetLong(), SetRaw(), SetRecordID(), SetString(),
SetTime()

void SetDouble(char *field_name, doublevalue)
void SetDouble(field_keykey, doublevalue)

void SetLong(char *field_name, longvalue)
void SetLong(field_keykey, longvalue)

void SetRaw(char *field_name, void *ptr, longsize)
void SetRaw(field_keykey, void *ptr, longsize)

void SetRecordID(char *field_name, record_idvalue)
void SetRecordID(field_keykey, record_idvalue)

void SetString(char *field_name, char *ptr)
void SetString(field_keykey, char *ptr)

void SetTime(char *field_name, doublevalue)
void SetTime(field_keykey, doublevalue)

Sets the value of the designated field to the value given byvalue. These functions don’t
perform type checking or type conversion. (SeeFindDouble() for more information on
fields and types; the rules described there apply here.)

SetRaw() andSetString() copy the data that’s pointed to by theirptr arguments. The
SetString() pointer must point to aNULL-terminated string. You specify amount of data (in
bytes) that you wantSetRaw() to copy through the function’ssize argument. Keep in mind
that you can only store 32 kilobytes of data in a single record (in all its fields combined).

To gauge the success of the modification, check the value returned by Error(). If the field’s
value was successfully set,Error() returnsB_NO_ERROR; otherwise it returnsB_ERROR.

The value-setting functions don’t affect the actual record that the BRecord represents:
When you call aSetType() function, you’re modifying the BRecord’s copy of the data, not
the actual data that lives in the database. This means that you’re able to successfully call
these function if the record is locked, and if the BRecord doesn’t (yet) have a ref
(conditions under which many other functions fail). To write your change to the database,
you call BRecord’sCommit() function.

Keep in mind that a subsequentLock() call will wipe out the (uncommitted) changes that
you’ve made through these functions. This is an important point since many applications
will want to lock before committing. If you plan on locking, you should do sobefore
using these functions. In other words:

/* Lock, modify, commit, unlock. */
a_record->Lock();

a_record->SetLong("age", 9);
a_record->SetString("name", "Emma");

Member Functions BRecord

58 – The Storage Kit

...
a_record->Commit();
a_record->Unlock();

See also: FindLong()

SetExtra(), FindExtra(), RemoveExtra(), GetExtraInfo()
void SetExtra(const char *name, const void *data, longdataLength)

void *FindExtra(const char *name, long *dataLength)

void RemoveExtra(const char *name)

long GetExtraInfo(long index, char **name, long *dataLength)

These functions add, query, and remove the BRecord’s “extra” fields. Extra fields can be
added and removed dynamically; they aren’t part of the definition of the table to which the
record conforms. Extra fields are identified by names and can hold an arbitrary amount of
untyped data. The names of a record’s extra fields must be unique among themselves, but
can be the same as the record’s “normal” (table-defined) fields. For examples of these
functions, see “Extra Fields” on page 52.

SetExtra() creates a new extra field named name, or replaces the existing so-named field.
The data that the field holds is copied fromdata; the amount of data to copy is given by
dataLength. The extra data that you add through this function must be committed
(through theCommit() function) just like “normal” data.

FindExtra() finds the field namedname and returns a pointer to its data (directly). The
length of the data is passed back by reference through thedataLength argument. Keep in
mind that the function gives you a pointer to data that’s owned by the BRecord. You
shouldn’t modify or free the pointer. IfFindExtra() can’t find the named field, it returns
NULL.

RemoveExtra() removes the named field.

GetExtraInfo() retrieves information about theindex’th extra field: A pointer to the field’s
name is returned in*name, and the length of the field’s data is returned in*dataLength.
You shouldn’t allocate*name before passing it in—the pointer that’s passed back points
into the BRecord itself. By the same token you mustn’t free or modify *name. If index is
out of bounds,GetExtraInfo() returnsB_ERROR, and sets *name to point toNULL.
Otherwise, it returnsB_NO_ERROR.

Table()
BTable *Table(void)

Returns the BTable to which the BRecord conforms.

BRecord Member Functions

The Storage Kit –59

Update()
 void Update(void)

Copies the record’s data from the database into the BRecord. Any uncommitted changes
you have made to the data that’s currently held by the BRecord will be lost. The success
of the update is reported by the value returned by the Error() function (B_NO_ERROR means
success; B_ERROR indicates failure).

Member Functions BRecord

60 – The Storage Kit

The Storage Kit –63

BResourceFile

Derived from: public BFile

Declared in: <storage/ResourceFile.h>

Overview

The BResourceFile class defines structured files that contain a collection of data entries, or
resources. A single resource file can hold an unlimited number of resources; a single
resource within a resource file can contain an unlimited amount of data.

Creating a Resource File

A resource file (as it lies on the disk) is tagged with an identifying header that
distinguishes it (the file) from “plain” files. The distinction between a resource file and a
plain file is important: Although you can (inadvertently, one assumes) refer a
BResourceFile object to a plain file, you won’t be able to use the object to open the file.
Simply referring a BResourceFile object to an existing plain file willnot transform the file
into a resource file.

To create a new resource file—to create a file that’s given a resource header—you pass a
pointer to an allocated BResourceFile object to BDirectory’sCreate() function:

BResourceFile rFile;
aDirectory->Create("NewFile", &rFile);

You can also create a new resource file by copying an existing resource file through
BFile’s CopyTo() function.

The only files that are automatically created (by the system) as resource files are
executables: All applications and programs have the capacity to store resources.

Accessing Resource Data

After you’ve created (or otherwise obtained) a resource file, you open the BResourceFile
object that refers to it through theOpen() function (inherited from BFile), and then use the
ManipulateResource() functions (AddResource(), RemoveResource(), and so on) defined
by the BResourceFile class to examine and manipulate the file’s contents. Each of the
resource-affecting functions performs its magic on one resource at a time.

Overview BResourceFile

64 – The Storage Kit

BResourceFile doesn’t disqualify BFile’sRead() andWrite() functions—but you shouldn’t
use them. These functions will read and write the resource file as flat data, as if it were a
plain file. It’s your file, but this probably isn’t what you want. (To be a bit less
prohibitive, reading a resource file is safe and might be slightly informative).

When you’ve had enough of manipulating resources (and notWrite()-ing them), you
should close the resource file, through the inheritedClose() function.

Identifying a Resource within a Resource File

A single resource within a resource file is tagged with a data type, an ID, and a name:

• The data type is one of the Application Kit-defined types (B_LONG_TYPE,
B_STRING_TYPE, and so on) that characterize different types of data. The data type
that you assign to a resource doesn’t restrict the type of data that the resource can
contain, it simply serves as a way to label the type of data that you’re putting into
the resource so you’ll know how to cast it when you retrieve it.

• The ID is an arbitrary integer that you invent yourself. It need only be meaningful
to the application that uses the resource file.

• The name is optional, but can be useful: You can look up a resource by its name, if
it has one.

Taken singly, none of these tags needs to be unique: Any number of resources (within the
same file) can have the same data type, ID, or name. It’s thecombination of the data type
constant and the ID that uniquely identifies a resource within a file. The name, on the
other hand, is more of a convenience; it never needs to be unique when combined with the
data type or with the ID.

Data Format

All resource data is assumed to be “raw”: If you want to store aNULL-terminated string in
a resource, for example, you have to write theNULL as part of the string data, or the
application that reads the resource from the resource must apply theNULL itself. Put more
generally, the data in a resource doesn’t assume any particular structure or format, it’s
simply a vector of bytes.

Data Ownership

The resource-manipulating functions cause data to be read from or written to the
resource file directly and immediately. In other words, the BResourceFile object doesn’t
create its own “resource cache” that acts as an intermediary between your application
and the resource file. This has a couple of implications:

• Resource data that you retrieve from or write to a BResourceFile object belongs to
your application. For example, the data that’s pointed to by theFindResource()

BResourceFile Constructor and Destructor

The Storage Kit –65

function is allocated by the object for you—it’s your responsibility to free the data
when your finished with it. Similarly, the data that you pass toAddResource() (to
be added as a resource in the file) must be freed by your application after the
function returns.

• The individual changes that you make to the resources are visible to other
BResourceFiles (that are open on the same file) immediately as they are made. You
can’t, for example, bundle up a bunch of changes and then “commit” them all at the
same time.

Constructor and Destructor

BResourceFile()
BResourceFile(void)
BResourceFile(record_refref)

The BResourceFile constructor creates a new object and returns a pointer to it. You can
set the object’s ref by passing it as an argument here; without the argument, the object
won’t refer to a file—it will be essentially useless—until the ref is set. The methods by
which you set (or re-set) an unreferenced BResourceFile’s ref are the same as for a BFile:

• BStore::SetRef()
• BFile::CopyTo()
• BDirectory::Create()
• BDirectory::GetFile()

You can refer a BResourceFile object to any file; that is, you’reallowed to do so.
However, only those BResourceFile objects that refer to actual resource files are allowed
to be opened—theOpen() function will fail if the BResourceFile refers to a plain file.

Simply pointing the ref to a random file will not convert the file so that it can hold
resources. Resource files can only be created by passing a BResourceFile object to
BDirectory’s Create() function, or by copying an existing resource file throughCopyTo().

~BResourceFile()
virtual ~BResourceFile(void)

Destroys the BResourceFile object; thisdoesn’tremove the file that the object corresponds
to (to remove a file, use BDirectory’sRemove() function). The object is automatically
closed (through a call toClose()) before the object is destroyed.

Member Functions BResourceFile

66 – The Storage Kit

Member Functions

AddResource()
long AddResource(ulongtype,

long id,
void *data,
longdataLength,
const char *name= NULL)

Adds a new resource to the file. For this function to have an effect, the file must be open
for writing. The arguments are:

• type is one of the data type constants defined by the Application Kit (B_LONG_TYPE,
B_STRING_TYPE, and so on).

• id is the ID number that you want to assign to the resource. The value of the ID has
no meaning other than that which you application imbues it with; the only
restriction on the ID is that the combination of it and the data type constant must be
unique across all resources in this resource file.

• data is a pointer to the data that you want the resource to hold.

• dataLength is the length of thedata buffer, in bytes.

• name is optional, and needn’t be unique. Or even interesting.

Ownership of thedata pointer isn’t assigned to the BResourceFile object by this function;
afterAddResrouce() returns, your application can free or otherwise manipulate the buffer
thatdata points to without affecting the data that was written to the file.

If the combination oftype andid is already being used by a resource in this
BResourceFile, or if, for any other reason, the resource data couldn’t be written to the file,
the function returnsB_ERROR. Otherwise, it returnsB_NO_ERROR.

Warning: Currently,AddResource() will write over an existing resource. In this case,
the function returns a positive integer (specifically, it returns the number of bytes that it
just wrote), but itdoesn’t change the name of the resource. For now, you should call
RemoveResource() just before callingAddResource(), passing the sametype andid
arguments to both functions.

See also: WriteResource()

FileCreated()
virtual longFileCreated(void)

FileCreated() is a hook function, defined by BFile, that’s called when a new file is created.
BResourceFile implementsFileCreated() to put a magic number at the top of the resource
file. If you derive a class from BResourceFile and implement your own version of

BResourceFile Member Functions

The Storage Kit –67

FileCreated(), you should call BResourceFile’s version of the function before performing
your own initializations.

FindResource()
void *FindResource(ulongtype,

long id,
void *dataLength)

void *FindResource(ulongtype,
const char *name,
void *lengthFound)

Finds the resource identified by the first two arguments, and returns a pointer to a copy of
the resource’s data. The size of the data, in bytes, is returned by reference in
*lengthFound.

It’s the caller’s responsibility to free the pointed-to data.

If the first two arguments don’t identify an existing resource,NULL is returned.

See also: ReadResource()

GetResourceInfo()
bool GetResourceInfo(longbyIndex,

ulong *typeFound,
long *idFound,
char **nameFound,
long *lengthFound)

bool GetResourceInfo(ulongbyType,
longandIndex,
long *idFound,
char **nameFound,
long *lengthFound)

bool GetResourceInfo(ulongbyType,
longandId,
char **nameFound,
long *lengthFound)

bool GetResourceInfo(ulongbyType,
char *andName,
long *idFound,
long *lengthFound)

These functions return information about a specific resource, as identified by the first one
or two arguments:

• The first version (byIndex) searches for the n’th resource in the file.

Member Functions BResourceFile

68 – The Storage Kit

• The second (byType plusandIndex) searches for the n’th resource that has the given
type.

• The third (byType plusandId) looks for the resource with the unique combination of
type and ID.

• The third (byType plusandName) looks for the first resource that has the given type
and name.

The other arguments return the other statistics about the resource (if found). The pointer
that’s returned in *foundName belongs to the BResourceFile. Don’t free it.

The functions returnTRUE if a resource was found, andFALSE otherwise.

HasResource()
bool HasResource(ulongtype, long id)

bool HasResource(const char *name, ulongtype)

ReturnsTRUE if the resource file contains a resource as identified by the arguments,
otherwise it returnsNOPE.

Keep in mind that there may be more than one resource in the file with the samename and
type combination. Thetype andid combo, on the other hand, is unique.

ReadResource()
long ReadResource(ulongtype,

long id,
void *data,
longoffset,
longdataLength)

Reads data from an existing resource (identified bytype andid) and places it in thedata
buffer. offset gives the location (measured in bytes from the start of the resource data)
from which the read commences, anddataLength is the number of bytes you want to read.
Thedata buffer must already be allocated and should be at leastdataLength bytes long.

You can ask for more data than the resource contains; in this case, the buffer is filled with
as much resource data as exists (or fromoffset to the end of the resource). However, note
well that the functiondoesn’t tell you how much data it actually read.

The function returnsB_ERROR if the buffer is only partially filled, or if the resource wasn’t
found. Otherwise, it returnsB_NO_ERROR.

See also: FindResource(), WriteResource()

BResourceFile Member Functions

The Storage Kit –69

RemoveResource()
long RemoveResource(ulongtype, long id)

Removes the resource identified by the arguments. The function returnsB_NO_ERROR if
the resource was successfully removed, andB_ERROR otherwise.

WriteResource()
long WriteResource(ulongtype,

long id,
void *data,
longoffset,
longdataLength)

Writes data into an existing resource, possibly overwriting the data that the resource
currently contains. Thetype andid arguments identify the target resource; this resource
must already be present in the file—WriteResource() doesn’t create a new resource if the
type/id combination fails to identify with a winner.

data is a pointer to the new data that you want to place in the resource;dataLength is the
length of the data buffer.offset gives the location at which you want the new data to be
written; the offset is taken as the number of bytes from the beginning of the existing
resource data. If the new data is placed such that it exceeds the size of the current resource
data, the resource grows to accommodate the new data.

You can’t use this function to “shrink” a resource. To remove a portion of data from a
resource, you have to remove the resource and then re-add it.

If type andid don’t identify an existing resource, of if the data couldn’t be written, for
whatever reason, this function returnB_ERROR. Otherwise, it returnsB_NO_ERROR.

See also: AddResource()

Member Functions BResourceFile

70 – The Storage Kit

The Storage Kit –69

BStore

Derived from: public BObject

Declared in: <storage/Store.h>

Overview

BStore is an abstract class that defines common functionality for its two subclasses, BFile
and BDirectory. You never construct direct instances of BStore, nor does the Storage Kit
“deliver” such BStore instances to your application. The BStore objects that you work
with will always be instances of BFile or BDirectory (or from a class derived from these).

Furthermore, you shouldn’t derive your own classes directly from BStore. If you want to
create your own file class, you should derive your class from BFile (or, possibly,
BResourceFile). Y

Note: Throughout this class description, the terms “file” and “item” are used generically
to mean an actual item in a file system. The characteristics ascribed to files (in the
following) apply to directories as well.

Files, Records, and BStores

Every file in the file system has a database record associated with it. The record contains
information about the file, such as its name, when it was created, the directory it lives in,
and so on. All file system activities are performed on the basis of these “file records.”
For example, if you want to locate a file, you have to locate the file’s record; passing the
record (albeit indirectly, as described below) to a BStore causes the object to “refer to” the
file on disk. Until the object is referred to a file, it’s abstract and useless.

A BStore’s record is established through a record ref. A record ref (or, simply,ref) is a
structure of typerecord_ref that uniquely identifies a record across all databases by listing
the record’s ID as well as the ID of its database:

struct record_ref {
record_id record;
database_id database;

}

The nicety of the ref is that it bundles up all the database information that a BStore needs,
allowing your application to ignore the details of database organization.

Overview BStore

70 – The Storage Kit

Note: Record refs aren’t used only to identify records that describe files. A record ref is
simply a means for a identifying a record, regardless of what that record signifies.

How to Set a Ref

BStore’s SetRef() function sets the calling object’s ref directly. This function is often used
in an implementation of BApplication’sRefsReceived() hook function.RefsReceived() is
invoked automatically when a ref is sent to your application in a BMessage. For example,
when the user drops a file icon on your application, your application receives the ref of the
file through aRefsReceived() notification.

In a typical implementation ofRefsReceived(), you would ask the ref if it represents a file
or directory, allocate a BFile or BDirectory accordingly, and then pass the ref to the object
in an invocation ofSetRef(). An example of this is given in the description of the
does_ref_conform() function, in the section “Global Functions, Constants, and Defined
Types” on page 99.

SetRef() isn’t the only way to refer an object to a file. The most important of the other
functions that perform this feat are listed below:

• BDirectory’s GetFile() sets the ref for its BFile argument. The function refers the
object to a file based on the file’s name, or index within the directory.
GetDirectory() performs an analogous reference for a BDirectory argument.

• BStore’sGetParent() sets the argument BDirectory to refer to the calling object’s
“parent” directory. This is the directory that contains the file that the object refers
to.

• BVolume’sGetRootDirectory() refers its BDirectory argument to the BVolume’s
root directory. This is the “starting-point” directory in the volume’s file system.

Using these functions, you can traverse an entire file system: Given a BVolume object,
you can descend the file system by callingGetRootDirectory(), and then iteratively and
recursively callingGetFile() andGetDirectory(). Given a BFile or BDirectory, you can
ascend the hierarchy through recursive calls toGetParent().

An example of file system browsing, and a discussion of the file system hierarchy is given
in the description of the BDirectory class.

Altering the File System

Continuing the list of ref-setting functions, the following group of Storage Kit functions
set refs as side-effects of altering the structure of the file system:

• BDirectory’sCreate() adds a new file to the file system. The BFile (or BDirectory)
that you pass to the function is referred to the new file (or directory).

BStore Overview

The Storage Kit –71

• Remove(), also defined by BDirectory, removes, from the file system, the file
referred to by the argument. This effectively “unsets” the argument object’s ref.

• BStore’sMoveTo() moves the calling object’s file to a new parent directory.

• BFile’s CopyTo() copies the calling object’s file and sets the ref of the argument
BFile to refer to the copy. Note that you can only copy files—you can’t copy
directories.

Passing Files to Other Threads

A file’s ref acts as a system-wide identifier for the file. If you want to “send” a file to some
other application, or to another thread in your own application—in other words, if you
want more than one process to operate asynchronously on the same file—you should
communicate the identity of the file by sending its ref. The thread that receives the ref
would construct its own BStore object and callSetRef(), in the manner of the
RefsReceived() function, described earlier.

You can’t retrieve a BStore’s ref directly from the object. Instead, you retrieve the object’s
record (through theRecord() function) and then retrieve the ref from the record (through
BRecord’sRef() function). The example below demonstrates this as it prepares a
BMessage to hold a ref that’s sent another application:

/* 'zapp' is the signature of the app that we want to send the
 * ref to.
 */
BMessenger *msngr = new BMessenger('zapp');

/* By declaring the BMessage to be a B_REFS_RECEIVED command,
 * the message will automatically show up (when sent) in the
 * other app's RefsReceived() function.
 */
BMessage *msg = new BMessage(B_REFS_RECEIVED);

/* Retrieve the ref from aFile (which is assumed to be
 * an extant BFile object).
 */
record_ref fileRef = aFile->Record()->Ref();

/* Add the ref to the BMessage and send it. */
msg->AddRef("refs", fileRef);
msngr->SendMessage(msg);

Custom Files

It’s possible to “customize” your files by, providing them with “custom” records. To do
this you need to understand a little bit about the database side of the Storage Kit. Before
continuing here, you should be familiar with the BRecord and BTable classes.

Overview BStore

72 – The Storage Kit

When you create a new file, a record that represents the file is automatically created and
added to the database. The table to which this record conforms depends on whether the
file is, literally, a file (as opposed to a directory): If it’s a file, the record conforms to the
“File” table; if it’s a directory, it conforms to “Folder.” (Resource files, as described in the
BResourceFile class, also conform to “File”.)

TheCreate() function, defined by BDirectory, lets you declare (by name) a table of your
own design as the table to which the new file’s record will conform. The only restriction
on the table is that it should inherit (in the table-inheritance sense) from either “File” or
“Folder” as the item that you’re creating is a file or a directory.

By creating and using your own “file tables,” you can augment the amount and type of
information that’s kept in a file’s record. In the example shown below, a “Image File”
table is defined and used to create a new file:

/* The BDatabase object aDB is assumed to exist. */
BTable *ImageTable = aDB->CreateTable("Image Table", "File");

SoundTable->AddLongField("Height");
SoundTable->AddLongField("Width");
SoundTable->AddStringField("Description");

/* Create a new "image file." The BDirectory object aDir
 * is assumed to exist.
 */
BFile myImageFile;
aDir->Create("Bug.image", &myImageFile, "Image Table");

Tables, remember, are defined for specific databases; the ImageTable definition shown
here is defined for theaDB database. Similarly, a directory is part of a specific file system.
If you designate a table when creating a new file, the table’s database and the directory’s
file system must belong to the same volume. Put programmatically, the database and
directory objects used above must be related thus:

aDB->Volume() == aDir->Volume()

Adding Data to a File Record

To add data to a file’s record, you get the record through BStore’sRecord() function, and
then call BRecord’s data-adding functions. For example:

BRecord *myImageRec = myIageFile->Record();

myImageRec->SetLong("Height", 256);
myImageRec->SetLong("Width", 512);
myImageRec->SetString("Description", "Bug squish");
myImageRec->Commit();

The Commit() call at the end of the example is essential: If you change a file’s record
directly, you must commit the changes yourself (but see “The Store Creation Hook” on
page 73 for an exception to this rule).

BStore Overview

The Storage Kit –73

File Record Caveats

If you create and use your own file records, heed the following:

• You may only change those fields that were added through your table. Because of
table-inheritance, your file records will contain a number of fields that were defined
by the “File” or “Folder” tables. Don’t touch these fields. They don’t belong to
you.

• Don’t mix BRecord function calls with BStore function calls. Almost all the BStore
(and BFile and BDirectory) functions update the file’s record (they call BRecord’s
Update()). If you’re in the middle of altering the BRecord and then call a seemingly
innocuous function—GetName(), for example—you’ll lose the BRecord changes
that you’ve made. You must call BRecord’sCommit() after making BRecord
changes and before you make subsequent BStore calls.

The Store Creation Hook

In some cases, you may want to change a new file’s record before the file becomes
“public.” Normally, when you call BDirectory’s Create() function, the system creates a
record for the file, fills in the fields that it knows about (in other words, it fills in the
fields that belong to the “File” or “Folder” table), commits the record, and then returns
the new BFile (or BDirectory) to you. (This would be the natural order of things in the
example shown above.)

The important point here is that the record is committedbefore you get a chance to touch
the fields that you’re interested in. If some application has a live query running (as defined
by the BQuery class), the incompletely filled-in record—which will be a candidate for the
query from the time that it’s committed by the system—may inappropriately pass the
query.

To give you access to the record before it’s committed,Create() lets you pass astore
creation hookfunction as an optional (fourth) argument. Such a function assumes the
following protocol:

long store_creation_hook_name(BStore *item, void *hookData)

Note that this is a global function; the store creation hook can’t be declared as part of a
class. Also, although store_creation_hook is declared (inStore.h) as atypedef, the
declaration is intended to be seen for its protocol only: You can’t declare a function as a
store_creation_hook type.

The store creation hook is called just after the file’s record is created, but before it’s
committed. The first argument is a BStore object that represents the new file. The record
changes shown in the previous example would be performed in a store creation hook thus:

/* Define a store creation hook function. */
long imageFileHook(BStore *item, void *hookData)
{

BRecord *myImageRec = item->Record();

Overview BStore

74 – The Storage Kit

myImageRec->SetLong("Height", 256);
myImageRec->SetLong("Width", 512);
myImageRec->SetString("Description", "Bug squish");
return B_NO_ERROR;

}

Note that youdon’t commit record changes that you make in a store creation hook.
They’ll be committed for you after the function returns. If the hook function returns a
value other than B_NO_ERROR, the store creation is aborted (by theCreate() function).

TheCreate() call with this hook function would look like this:

aDir->Create("Bug.image", &myImageFile, "Image Table",
 imageFileHook);

Other Hook Providers

All Storage Kit functions that create files provide a store creation hook mechanism.
These are:

• BFile::CopyTo()
• BDirectory::Create()
• BStore::MoveTo()

The details of the mechanism as demonstrated by theCreate() examples shown here apply
without modification to the other functions as well.

Hook Data

You can pass additional data to your hook function by supplying a buffer ofvoid * data as
the Create() function’s final argument. This “hook data” is passed as the second argument
to the hook function. Here, we redefine the hook function used above to accept an image
description string as hook data:

/* Define a store creation hook function. */
bool imageFileHook(BStore *item, void *hookData)
{

BRecord *myImageRec = item->Record();

myImageRec->SetLong("Height", 256);
myImageRec->SetLong("Width", 512);
myImageRec->SetString("Description", (char *)hookData);
return TRUE;

}

And here we callCreate(), passing it some hook data:

aDir->Create("Bug.image", &myImageFile, "Image Table",
 iamgeFileHook, (void *)"Bug squish");

BStore Constructor and Destructor

The Storage Kit –75

Hook Function Rules

The rules that govern the use and implementation of a store creation hook are similar to
those you follow when, in general, you modify a BStore’s record.

• The store creation hook mechanism is providedexclusively so you can get to your
own table fields in a new file’s record. You mustn’t use it for any other purpose—
you mustn’t set fields that you didn’t define, or alter the new BStore in any way.

• Within the implementation of a store creation hook function, theonly BStore
function that you can call isRecord().

Constructor and Destructor

BStore()
protected:

BStore(void)

The BStore constructor is protected to prevent you from creating direct instances of the
class.

~BStore()
virtual ~BStore(void)

Although the BStore is public, you can’t actually use it. Since you can’t construct a
BStore object, you’ll never have the opportunity to destroy one.

Member Functions

CreationTime(), ModificationTime(), SetModificationTime()
long CreationTime(void)
long ModificationTime(void)
long SetModificationTime(const longtime)

The first two functions return the time the referred-to item was created and last modified,
measured in seconds since January 1, 1970. To convert the time value to a string, you can
use standard-C functionstrftime() or ctime() (as declared intime.h). If the object doesn’t
refer to a file (or directory), the functions returnB_ERROR.

Member Functions BStore

76 – The Storage Kit

SetModificationTime() lets you set the modification time for the item. The function returns
B_ERROR if the object’s ref isn’t set, if the item lives in a read-only file system, or if the
modification time couldn’t otherwise be set.

And a very special note to all you BFile users: These three functions work regardless of
the open state of the target object.

Error()
int Error(void)

Returns an error code that indicates the success of the previous BStore function call. The
possible codes are:

• B_ERROR; the requested operation couldn’t be performed, typically because the
object isn’t valid.

• B_NAME_IN_USE; this code is returned if, in an immediately preceding SetName()
call, you attempted to set the item’s name to one that identifies an existing item.

• B_NO_ERROR; the previous call succeeded.

TheError() functiondoesn’t record the success of the BStore operators.

GetName()
long GetName(char *name)

Copies the BStore’s name intoname. You must allocate the argument before you pass it
in. File names are never longer than the constantB_FILE_NAME_LENGTH; to be safe,name
should be at least that long. It’s the caller’s responsibility to free thename buffer.

If the BStore doesn’t refer to a file, this returnsNULL and sets theError() code toB_ERROR.

See also: SetName()

GetParent()
long GetParent(BDirectory *parent)

Sets the argument’s ref to the directory that contains this BStore. You must allocate the
argument before you pass it to the function; it’s the caller’s responsibility to delete the
argument object.

If this BStore represents a volume’s root directory (for which there is no parent), or if the
object is invalid, this function returnsB_ERROR; otherwise, it returnsB_NO_ERROR.

BStore Member Functions

The Storage Kit –77

GetPath()
long GetPath(char *buffer, longbufferSize)

Constructs the full path name to this object and copies the name intobuffer. You must
allocate the buffer before you pass it in; you pass the size of the buffer (in bytes) through
thebufferSize argument.

The path name is absolute and includes the volume name as its first element. You could,
for example, cache the name and then use it later as the argument to the global
get_ref_for_path() function. As long as the file system hasn’t changed, the latter function
would return the ref of the original item.

If the object doesn’t refer to a file system item, or if the buffer isn’t long enough to
accommodate the name,B_ERROR is returned and nothing is copied into the buffer.
Otherwise,B_NO_ERROR is returned.

See also: get_ref_for_path(), BDirectory::GetRefForPath()

MoveTo()
long MoveTo(BDirectory *dir,

const char *newName = NULL,
store_creation_hook *hookFunc = NULL,
void *hookData = NULL)

Removes the item from its present directory, and moves it to the directory represented by
dir. You can, optionally, rename the item at the same time by providing a value for the
newNameargument.

ThehookFunc andhookData arguments let you alter the file’s record before it’s
committed. This is exhaustively explained in the section “The Store Creation Hook” on
page 73 of the introduction to this class.

See also: SetName(), BFile::CopyTo(), BDirectory::Create()

Record()
BRecord *Record(void)

Returns a BRecord object that represents the record in the database that holds information
for the file system item that this BStore refers to. You can examine the values in the
BRecord (through functions defined by the BRecord class), but you should only set and
modify those fields that you’ve defined yourself (if any).

Any changes that you make to the BRecord must be explicitly committed by calling
BRecord’sCommit() function. Furthermore, you must commit your changesbefore
calling other BStore functions, even those that are seemingly innocuous.

Member Functions BStore

78 – The Storage Kit

More information on the use and meaning of a BStore’s record is given in the section
“Custom Files” on page 71 of the introduction to this class.

SetName()
long SetName(const char *name)

Sets the name of the item toname. If the item is the root directory for its volume, the
name of the volume is set to the argument as well.

Every item within a directory must have a different name; ifname conflicts with an
existing item in the same directory, the function fails and returnsB_NAME_IN_USE. Also,
you can’t change the name of a file that’s currently open;SetName() will return B_ERROR
in this case.B_ERROR is also returned if, for any other reason, the name couldn’t be
changed. Success is indicated by a return ofB_NO_ERROR.

See also: GetName(), MoveTo()

SetRef()
virtual longSetRef(record_refref)
virtual longSetRef(BVolume *volume, record_idid)

Sets the object’s record ref. By setting an BStore’s ref, you cause the object to refer to a
file in the file system.

The first version of the function sets the ref to the argument that you pass. This version of
the function is typically called in response to a ref being received by your application.

The second version induces the ref from the BVolume (which implies a specific database)
and record ID arguments. This version is useful if you’re finding files through a database
query.

More information on a BStore’s ref is given in the section “Files, Records, and BStores”
on page 69 of the introduction to this class.

VolumeID()
long VolumeID(void)

Returns the ID of the volume in which this item is stored. To turn the ID into a BVolume
object, pass it to BVolume’s SetID() function.

See also: BVolume::SetID()

BStore Operators

The Storage Kit –79

Operators

= (assignment)
inline BStore&operator=(const BStore&)

Sets the ref of the left operand object to be the same as that of the right operand object.

== (equality)
bool operator==(BStore) const

Compares the two objects based on their refs. If the refs are the same, the objects are
judged to be the same.

!= (inequality)
bool operator!=(BStore) const

Compares the two objects based on their refs. If the refs are not the same, the objects are
judged to be not the same.

Operators BStore

80 – The Storage Kit

The Storage Kit –83

BTable

Derived from: public BObject

Declared in: <storage/Table.h>

Overview

The BTable class defines objects that representtables in a database.

A table is a template for arecord, where a record is a collection of data that describes
various aspects of a “thing.” As a template, the table characterizes the individual datums
that a record can contain. Each such characterization, which consists of a name and a data
type, is called afield of the table. To make an analogy, a table is like a class definition, its
fields are like data members, and records are instances of the class.

A table’s definition—the make-up of its fields—is persistent: The definition is stored in a
particular database. Within a database, tables are identified by name; the BDatabase class
provides a function,FindTable(), that lets you retrieve a table based on a name (more
accurately, the function returns a BTable object that represents the table that’s stored in the
database). To create a new table, you use BDatabase’sCreateTable(), passing the name
by which you want the table to be known (an example is given in the next section). The
reliance on BDatabase to find and create tables enforces two important BTable tenets:

• A table can only exist in reference to a particular database. You can’t, for example,
create a table andthen add or otherwise “apply” it to a database. The BDatabase
object that you use as the target of aCreateTable() invocation represents the
database that will own the newly created table.

• The Storage Kit manages the construction and freeing of BTables for you. You
obtain BTable objects—through BDatabase’sFindTable() andCreateTable()
(among others)—rather than construct them yourself.

A subtler point regarding tables is that they don’t actually contain the records that they
describe. For example, every file in the Be file system is represented by a record in the
database. File records contain information such as the file’s name, its size, when it was
created, and so on. These categories of information (in other words, the “name,” “size,”
“creation data,”) are enumerated as fields in the “File” table. But the “File” table doesn’t
contain the records themselves—it’s simply the template that’s used to create file records.

Overview BTable

84 – The Storage Kit

Creating a Table

As mentioned above, you create a new table (and retrieve the BTable that’s constructed to
represent it) through BDatabase’sCreateTable() function. The function takes two
arguments:

• The first argument (achar *) supplies a name for the table. Unfortunately, the
Storage Kit doesn’t force table names to be unique. Before you create a new table,
you should make sure your proposed name won’t collide with an existing table (as
demonstrated in the example below).

• The second argument is optional; it identifies a table—by name or by BTable
object—that will act as the new table’s “parent.” If you designate a parent, the new
table will automatically contain the parent’s field definitions (as well as its
grandparent’s, and so on).

In the following example, a new table named “Employee” is created; the example assumes
the existence and validity of thea_db BDatabase object:

BTable *employee_table;

/* It’s a good idea to synchronize the BDatabase before
 * creating a new table. This refreshes the object's table
 * list.
 */
a_db->Sync();

/* Make sure the database doesn't already have an
 * "Employee" table.
 */
if (a_db->FindTable("Employee") != NULL)

return; /* or whatever */
else

/* Create the table. */
 employee_table = a_db->CreateTable("Employee");

The table name that you choose should, naturally enough, fit the “things” that the table
describes. By convention, table names are singular, not plural.

Adding Fields to a Table

Having created a table, you’ll want to add fields to it by calling BTable’s field-adding
functions. A field has two properties: a name and a data type. You pass the name as an
argument to a field-creating function; the data type is implied by the function name:

• AddStringField() adds a field that represents(char *) data.

• AddLongField() does the same forlong data.

• AddRawField() is for buffers of unspecified data type (void *).

BTable Overview

The Storage Kit –85

• AddTimeField() adds fields that holddouble values. Despite the function’s name,
you use this forany double value, not just time values.

• AddRecordIDField() adds a record ID field. This is one of the trickier BTable
notions, and is fully explained in the BRecord class description. Briefly, the value
that a record ID field represents is an integer that uniquely identifies a specific
record in the database. By adding a record ID field to a BTable, you allow records to
point to each other. (Using database parlance, the field lets you “join” records.)

Typically, you add fields only when you’re creating a new table; however, you’re not
prevented from adding them to existing tables.

Here we add three fields to the “Employee” table; the first field gives the employee’s
name, the second gives the employee’s telephone extension, and the third identifies the
record that represents the employee’s manager (this is further explained in the BRecord
class description):

field_key name_key =
 employee_table->AddStringField("name", B_INDEXED_FIELD);

field_key extension_key =
 employee_table->AddLongField("extension");

field_key manager_key =
 employee_table->AddRecordIDField("manager");

Notice that theAdd...Field() functions don’t return objects. That’s because fields aren’t
represented by objects; instead, they’re identified by name or by field key, as explained in
the next section (a subsequent section explains the meaning of the B_INDEXED_FIELD
argument used in the example).

You can retrieve information about a field through BTable’sGetFieldInfo() functions.

Field Keys

A field key is an integer that identifies a field within its table. Field key values have the
data typefield_key, and are returned by theAdd...Field() functions. (You can also get a
field’s key through theFieldKey() function, passing the field’s name as an argument.)
Field keys are used, primarily, when you add and retrieve BRecord data; this is taken up in
the BRecord class description.

Field keys arenot unique across the entire database—a field key value doesn’t encode the
identity of the field’s table. Furthermore, a field’s key value is computed on the basis of
the field’s name and data type. If you add, to a table, two fields that have the same name
and data type (which you aren’t prevented from doing), the fields will have the same field
key value.

Overview BTable

86 – The Storage Kit

Field Flags

The optional second argument to theAdd...Field() functions is a list of flags that you want
to apply to the field. Currently, there’s only one flag (B_INDEXED_FIELD), so the second
argument is either that or it’s excluded.

The presence of theB_INDEXED_FIELD flag means that the field will be considered when the
database generates its index (which it does automatically). Indexing makes data-retrieval
somewhat faster, but it also makes data-addition somewhat slower; the more fields that are
indexed, the greater the difference on either side. In general, you should only index fields
that you think will be most frequently used when data is retrieved (orfetched).

In the example, the “name” field is indexed; this implies the predication that employee
data will most likely be fetched on the basis of the employee’s name. (See the BQuery
class for examples of how data is fetched.)

Table Inheritance

A table can inherit fields from another table. For example, let’s say you want to create a
“Temp” table that inherits from “Employee”. To the “Temp” table you add fields named
“agency” and “termination” (date):

BTable *temp_table;

a_db->Sync();

/* This time, we perform the name-collision check AND test
 * to ensure that the parent exists.
 */
if (a_db->FindTable("Temp") != NULL ||

a_db->FindTable("Employee") == NULL)
return;

/* Now create the table... */
temp_table = a_db->CreateTable("Temp", "Employee");

/* ... and add the new fields. First we check to make sure
 * we didn't inherit these fields from "Employee". The checks
 * allow similarly named fields with different types, but not
 * fields that are identical in name -and- type. You can
 * tighten the check to disallow fields with identical names
 * by omitting the FieldType() check.
 */
if (temp_table->FieldKey("agency") != B_ERROR)

if (temp_table->FieldType("agency") != B_STRING_TYPE)
field_key agency_key =

 temp_table->AddStringField("agency");

if (temp_table->FieldKey("termination") != B_ERROR)
if (temp_table->FieldType("termination") != B_TIME_TYPE)

BTable Overview

The Storage Kit –87

field_key term_key =
 temp_table->AddTimeField("termination");

The checks that accompany the field additions in the example are, perhaps, a bit overly-
scrupulous, but they can be important in some situations, such as if you’re letting a user
define tables through manipulation of the user interface.

A table hierarchy can be arbitrarily deep. However, all tables within a particular hierarchy
must belong to the same database—table inheritance can’t cross databases. Also, there’s
no “multiple inheritance” for tables.

If you want your tables to show up in a Browser query window, the table must inherit,
however remotely, from “BrowserItem”. Furthermore, only those fields that start with a
capital letter are displayed in the letter. Uncapitalized field names are considered
private.

Note: Table hierarchies have nothing to do with the C++ class hierarchy. You can’t
manufacture a table hierarchy by deriving classes based on BTable, for example.

Type and App

When the user double-clicks an icon that’s displayed by the Browser, the Browser
launches (or otherwise finds) a particular app and then sends the clicked icon’s record to
the app. How does the Browser know which app to launch? If the icon represents a file,
then the Browser can simply ask the file for the app’s signature through the representative
BFile object’sGetTypeAndApp() message.

However, if the icon doesn’t represent a file—if it represents a “pure” database record—
then the Browser asks the record’s table forits app, through BTable’sGetTypeAndApp()
function. When you create a new table, you set the type and app through
SetTypeAndApp(). The “type” information for a table means the same thing as the “type”
of a file: It’s an application-specific identifier that describes the content of some data.

The type and app information for a table doesn’t belong to the Browser. Any application
can set and query this information.

Using a BTable

BTable objects are used in the definitions and operations of BRecord and BQuery objects.
These topics are examined fully in the descriptions of those classes, and are summarized
here.

BTables and BRecords

A table defines a structure for data, but it doesn’t, by itself, supply or contain the actual
data. To add data to a database, you must create and add one or more records. Records
are created in reference to a particular table; specifically, the amount and types of data

Constructor and Destructor BTable

88 – The Storage Kit

that a record can hold is determined by the fields of the table through which it’s created.
The record is said to “conform” to the table.

In your application, you create a record for a particular table by passing the representative
BTable object to the BRecord constructor:

/* Create a record for the "Employee" table. */
BRecord *an_employee = new BRecord(employee_table);

So constructed, thean_employee object will accept data for the fields that are contained
in theemployee_table object. Adding data to a BRecord, and examining the data that it
contains, is performed through BRecord’sSet...() andFind...() functions; the set of these
functions complements BTable’sAdd...Field() set.

BTable and BQuery

A BQuery object represents a request to fetch records from the database. The definition
of a BQuery includes references to one or more BTable objects. To add a BTable
reference to a BQuery, you use the BQueryAddTable() or AddTree() function. The
former adds a single BTable (passed as an argument), the latter includes the argument
BTable and all its descendants.

When the BQuery performs a fetch, it only considers records that conform to its
BTables’ tables. You can further restrict the domain of candidate records as described in
the BQuery class description. Anticipating that description, here’s what you do to fetch
all the records that confrom to a particular table:

/* Fetch all Employee records. */
BQuery *employee_query = new BQuery();

employee_query->AddTable(employee_table);
employee_query->PushOp(B_ALL);
employee_query->Fetch();

To fetch all “Employee” records—including those that conform to “Temp” as well as to
any other table that descends from “Employee”—we add the “Employee” table as a tree:

employee_query->AddTree(employee_table);
employee_query->PushOp(B_ALL);
employee_query->Fetch();

Constructor and Destructor

The BTable class doesn’t declare a constructor or destructor. You never explicitly create
or destroy BTable objects; you use, primarily, a BDatabase object to find such objects for
you. See the BDatabase class description.

BTable Member Functions

The Storage Kit –89

Member Functions

AddLongField(), AddRawField(), AddRecordIDField(),
AddStringField(), AddTimeField()

field_keyAddLongField(char *field_name, longflags = 0)
field_keyAddRawField(char *field_name, longflags= 0)
field_keyAddRecordIDField(char *field_name, longflags= 0)
field_keyAddStringField(char *field_name, longflags = 0)
field_keyAddTimeField(char *field_name, longflags = 0)

Adds a new field to the BTable and returns thefield_key value that identifies it. You
supply a name for the field through thefield_name argument. Theflags argument gives
additional information about the field; currently, the only flag value that the functions
recognize isB_INDEXED_FIELD. See the section “Field Keys” on page 85 for more
information about indexing.

You declare the type of data that the field will hold by selecting the appropriate function:

• AddRawField() declares untyped data (void *).
• AddLongField() declareslong data.
• AddRecordIDField() declaresrecord_id values.
• AddStringField() declares (char *) data.
• AddTimeField() declares double data.

Note: You useAddTimeField() to add any double-bearing field, not just fields that will
hold time values. The names will be fixed in a subsequent release.

Note that the functions don’t force fields names to be unique within a BTable; you can add
any number of fields with the same name. Furthermore (and slightly more concerning),
you aren’t prevented from adding fields that have identical namesand types. Since field
keys are based on a combination of name and type, this means that any number of fields in
a table can have the same field key value.

See also: GetFieldInfo()

ChildAt()
BTable *ChildAt(long index)

Returns the BTable that sits in theindex’th slot of the target BTable’s “child table” list.
Only those BTables that are direct descendants of the target are considered; in other words,
a BTable doesn’t know about its grandchildren. The function returnsNULL if the index is
out-of-bounds.

See also: CountChildren()

Member Functions BTable

90 – The Storage Kit

CountChildren()
 longCountChildren(void)

Returns the number of BTables that directly inherit from this BTable.

See also: ChildAt()

CountFields()
long CountFields(void)

Returns the number of fields in the BTable; the count includes inherited fields.

See also: GetFieldInfo()

Database()
BDatabase *Database(void)

Returns the BDatabase object that represents the database that owns the table that’s
represented by this BTable. This is the object that was the target of theFindTable() or
CreateTable() function that manufactured this BTable object.

See also: BDatabase::FindTable(), BDatabase::CreateTable()

FieldKey()
field_keyFieldKey(char *name)
field_keyFieldKey(char *name, long type)

Returns the field key for the named field. The second version of the function is in case you
have two fields with the same name, but different types (two fields with the same name
and type can’t be distinguished). The type argument must be one of the following
constants:

B_LONG_TYPE
B_RAW_TYPE
B_RECORD_TYPE
B_STRING_TYPE
B_TIME_TYPE

Note: You use theB_TIME_TYPE for all double-field searches.

If the named field isn’t found,B_ERROR is returned.

See also: FieldType(), GetFieldInfo()

BTable Member Functions

The Storage Kit –91

FieldType()
long FieldType(field_keykey)
long FieldType(char *name)

Returns a constant that represents the type of data that the designated field holds. The
possible return values are:

B_RAW_TYPE
B_LONG_TYPE
B_RECORD_TYPE
B_STRING_TYPE
B_TIME_TYPE

Note: TheB_TIME_TYPE is used for alldouble-bearing fields.

If the field isn’t found,B_ERROR is returned.

See also: FieldKey(), GetFieldInfo()

GetFieldInfo()
bool GetFieldInfo(long index,

char *name,
field_key *key,
long *type,
long *flags)

bool GetFieldInfo(char *name,
field_key *key,
long *type,
long *flags)

bool GetFieldInfo(field_keykey,
char *name,
long *type,
long *flags)

Finds the field designated by the first argument and returns, in the other arguments,
information about it. The first version identifies the field by index into the BTable’s list of
fields, the second by its name, and the third by its field key.

The value returned in thetype argument is one of the following constants:

• B_LONG_TYPE
• B_RAW_TYPE
• B_RECORD_TYPE
• B_TRING_TYPE
• B_TIME_TYPE

Note: TheB_TIME_TYPE is used for alldouble-bearing fields.

Member Functions BTable

92 – The Storage Kit

Theflags value will either beB_INDEXED_FIELD or 0. (See “Field Keys” on page 85 for
more information about field flags.)

If the field isn’t found, the functions returnsFALSE; otherwise they returnTRUE.

See also: AddLongField()...

HasAncestor()
bool HasAncestor(BTable *a_table)

ReturnsTRUE if the target BTable inherits (however remotely) froma_table. Otherwise
returnsFALSE.

See also: BDatabase::Parent(), BDatabase::CreateTable()

Name()
char *Name(void)

Returns the table’s name. The name is set when the table is created.

See also: BDatabase::CreateTable()

Parent()
BTable *Parent(void)

Returns the table’s parent, orNULL if none. A table’s parent is designated when the table is
created.

See also: BDatabase::CreateTable()

The Storage Kit –93

BVolume

Derived from: public BObject

Declared in: <storage/Volume.h>

Overview

A BVolume object represents avolume, an entity that contains a single, hierarchical file
system and a single database. The data in a volume (the file system and database) is
persistent: It’s stored on a medium such as a hard disk, floppy disk, CD-ROM, or other
storage device.

When a volume’s existence is made known to the computer—when the volume is
mounted—the system automatically constructs a BVolume (for your application) to
represent it. When the volume is unmounted, the representative object is automatically
destroyed. You can retrieve these BVolume objects directly through global functions, or
construct your own BVolume objects that point to the objects that are created by the Kit.
This is described in the next section.

Through a BVolume object you can retrieve information such as the volume’s name, its
storage capacity, how much of the volume is available, and so on. None of the BVolume
functions manipulate or alter the volume—for example, you can’t unmount a volume by
calling a BVolume function (and rightly so, mounting and unmounting isn’t an activity
that’s expected of an application).

Retrieving a BVolume

There are three ways to retrieve BVolume objects:

• Retrieve the “boot volume” directly. The boot volume contains the executables for
the kernel and servers that are running on your machine. To retrieve the BVolume
that corresponds to the boot volume, call the globalboot_volume() function:

BVolume myBootVol = boot_volume();

• Step through your application’s list of BVolume objects.· You do this through the
globalvolume_at() function. The function takes an index argument (along), and
returns the BVolume object at that position in the list. The first BVolume is at index
0; others (if any) follow at monotonically increasing index numbers. To test the
success of the function, you invokeError() upon the returned object. The following
example demonstrates this:

Overview BVolume

94 – The Storage Kit

/* Print the name of every mounted volume. */
void VolumeNamePrinter()
{

BVolume this_vol;
char vol_name[B_OS_NAME_LENGTH];
long counter = 0;
while((this_vol = volume_at(counter++)))
{

if (this_vol.Error() != B_NO_ERROR)
break;

this_vol.GetName(vol_name);
printf("Volume %s is available\n", vol_name);

}
}

• Construct an object based on a volume ID. A volume is identified globally by a
unique integer (along). By passing a valid volume identifier as the argument to the
BVolume constructor, you can retrieve a BVolume object that corresponds to the
volume. As explained in the next section, volume ID numbers are passed to your
application through BApplication hook functions that are called when volumes are
mounted and unmounted. (Also, see theID() function for more information on
volume ID numbers.)

• Retrieve a BVolume from a BDatabase. As mentioned earlier, every volume
contains a single database. Given a BDatabase object (which represents a specific
database) you can retrieve the corresponding BVolume by passing the BDatabase
object to the globalvolume_for_database() function.

Mounting and Unmounting

As mentioned above, BVolume objects are automatically constructed as volumes are
mounted. Similarly, the system frees the BVolume object for a volume that’s been
unmounted. The system informs your application of these events through BApplication’s
VolumeMounted() andVolumeUnmounted() hook functions. Both functions provide a
BMessage as an argument; in the “volume_id” field of the BMessage you’ll find the
volume ID of the affected volume. To turn the volume ID into a BVolume object, you pass
it as an argument to the BVolume constructor .

In the following example implementation of these functions, information is printed as
volumes are mounted and unmounted:

void MyApp::VolumeMounted(BMessage *msg)
{

BVolume *new_vol;
char vol_name[B_OS_NAME_LENGTH];

/* Get the volume ID and turn it into an object. */
new_vol = new BVolume(msg->FindLong("volume_id"));
new_vol->GetName(vol_name);

/* Print information about the volume. */

BVolume Overview

The Storage Kit –95

printf("Volume %s mounted; %f bytes available.\n",
vol_name, new_vol->FreeBytes());

}

void MyApp::VolumeUnmounted(BMessage *msg)
{

BVolume *old_vol;
char vol_name[B_OS_NAME_LENGTH];

new_vol = new BVolume(msg->FindLong("volume_id"));
new_vol->GetName(vol_name);

/* Print information about the volume. */
printf("Volume %s unmounted.\n", vol_name);

}

As implied by the example,VolumeMounted() is called after the BVolume is constructed;
VolumeUnmounted() is called before the object is destroyed. Thus, within the
implementations of these functions, you can assume that the BVolume object is still valid.

Important: If you want your application’s volume list to be updated as volumes are
mounted and unmounted, youmust have a runningbe_app object. This is so even if you
don’t implementVolumeMounted() andVolumeUnmounted(). Furthermore, your
application mustn’t be an “Argv Only” app.

The File System

Every volume encapsulates the hierarchy of directories and files for a single file system.
The “bridge” between a volume and the file system hierarchy is the volume’sroot
directory. As its name implies, a root directory stands at the root of a file hierarchy such
that all files (and directories) in the hierarchy can be traced back to it.

Every volume has a single root directory; to retrieve a volume’s root directory (in the form
of a BDirectory object), you pass an allocated BDirectory to BVolume’s
GetRootDirectory() function:

/* Get the root directory for the first mounted volume. */
BVolume *first_vol;
BDirectory root_dir;

first_vol = volume_at(0);
new_vol->GetRootDirectory(&root_dir);

TheGetRootDirectory() “fills in” the BDirectory that you pass so that it refers to the root
directory.

Volumes in Path Names

The Storage Kit’s implementation of the file system obviates the need for path names.
Specific files aren’t identified by a concatenation of slash-separated subdirectories, but

Constructor and Destructor BVolume

96 – The Storage Kit

by objects. However, path names are still displayed in terminal windows, and are used
by command-line programs. To identify a volume in a path name, you use this format:

/volumeName/directoryName/directoryName/...

The volume name itselfdoesn’t include the surrounding slashes. In other words, a volume
name might be “fido” but not “/fido/” (nor “/fido” nor “fido/”).

You can’t set a volume’s name directly—BVolume doesn’t have a name-setting function.
A volume takes its name from that of its root directory. To change a volume’s name, you
have to retrieve the root directory and changeits name (by invokingSetName() on the
BDirectory).

The Database

You can retrieve a volume’s database through the BVolumeDatabase() function. The
function returns the BDatabase object that represents the database. As described in the
BDatabase class description, BDatabase objects are created for you in much the same way
as are BVolume objects: As volumes are mounted and unmounted, BDatabase objects that
represent the contained databases are constructed and destroyed.

In general, you only need to access a volume’s database if you’re creating an application
that performs database activities (as opposed to an application that uses the Storage Kit
simply to access the file system).

Constructor and Destructor

BVolume()
BVolume(void)
BVolume(longvolume_id)

The first version of the constructor creates an “abstract” object that doesn’t correspond to
an actual volume. To create this correspondence, you invoke theSetID() function.

The second version creates a BVolume that corresponds to the volume identified by the
argument.

~BVolume()
virtual ~BVolume(void)

Destroys the object.

BVolume Member Functions

The Storage Kit –97

Member Functions

Capacity()
doubleCapacity(void)

Returns the number of bytes of data that the volume can hold. This is the total of used and
unused data—for an assessment of available storage, use theFreeBytes() function.

See also: FreeBytes()

Database()
BDatabase *Database(void)

Returns the BDatabase object that represents the volume’s database. Every volume
contains exactly one database (and each database is contained in exactly one volume).

See also: BDatabase::Volume()

FreeBytes()
doubleFreeBytes(void)

Returns a measure, in bytes, of the available storage in the volume.

See also: Capacity()

GetName()
 longGetName(char *name)

Copies the volume’s name into the argument. The argument should be at least
B_OS_NAME_LENGTH bytes long. The name returned here is that which, for example,
shows up in the Browser’s “volume window.”

Setting the name is typically (and most politely) the user’s responsibility (a task that’s
performed, most easily, through the Browser). If you really want to set the name of the
volume programmatically, you do so by renaming the volume’s root directory.

Currently, this function always returnsB_NO_ERROR.

See also: GetRootDirectory()

Member Functions BVolume

98 – The Storage Kit

GetRootDirectory()
long GetRootDirectory(BDirectory *dir)

Returns, indir, a BDirectory object that’s set to the volume’sroot directory. This is the
directory that lies at the root of the volume’s file system, and from which all other files and
directories descend.

You have to allocate the argument that you pass to this function; for example:

BDirectory root_dir;

a_volume->GetRootDirectory(&root_dir);

Some of the BDirectory (and, through inheritance, BStore) functions are treated specially
for the root directory:

• SetName() not only sets the name of the root directory, it also sets the name of the
volume.

• Remove() andMoveTo() always fail for a root directory—you’re not allowed to
remove or move a root directory.

• Parent() returnsB_ERROR. By definition, root directories don’t have parents.
(Admittedly, the error code returned byParent() is less than helpful; you can’t tell
the difference between an asked-for-the-root’s-parentB_ERROR, and a something-is-
terribly-wrongB_ERROR.)

Currently, this function always returnsB_NO_ERROR.

GetDevice()
long GetDevice(char *deviceName)

Copies the name of the device upon which the volume is mounted intodeviceName. The
argument should be allocated to hold at leastB_OS_NAME_LENGTH characters. If the
BVolume corresponds to an actual volume (if its ID is set), this returnsB_NO_ERROR.
Otherwise, it returnsB_ERROR.

ID()
long ID(void)

Returns the volume’s identification number. This number is unique among all volumes
that arecurrently mounted, and is only valid for as long as the volume is mounted.

The value returned by this function is used, primarily, when you’re communicating the
identity of a volume to some other application.

See also: volume_at() in “Global Functions”

BVolume Global Functions

The Storage Kit –99

IsReadOnly()
bool IsReadOnly(void)

ReturnsTRUE if the volume is declared to be read-only.

IsRemovable()
bool IsRemovable(void)

ReturnsTRUE if the volume’s media is removable (if it’s a floppy disk).

Global Functions

The following functions are declared as global functions (instorage/Volume.h). Since
they’re global, they don’t rightfully belong in the BVolume class specification. But since
they pertain specifically to volumes, their place, here, is justified.

boot_volume()
BVolumeboot_volume(void)

Returns the BVolume object that represents the “boot volume.” This is the volume that
contains the kernel and other system resources.

volume_at()
BVolumevolume_at(long index)

Returns theindex’th BVolume in your application’s volume list (counting from 0). The
list is created and administered for you by the Storage Kit. See the class description,
above, for an example of how the function is used.

If index is out-of-bounds, the function sets the returned object’sError() code toB_ERROR.

volume_for_database()
BVolumevolume_for_database(BDatabase *db)

Returns the BVolume that corresponds to the volume that contains the database identified
by the argument.

If db is invalid, the function sets the returned object’sError() code toB_ERROR.

Global Functions BVolume

100 – The Storage Kit

The Storage Kit –99

Global Functions, Constants, and
Defined Types

This section lists parts of the Storage Kit that aren’t contained in classes.

Global Functions

boot_volume()
<storage/Volume.h>

BVolumeboot_volume(void)

Returns the BVolume object that represents the machine’s “boot” volume. This is the
volume that contains the exectuables for the kernel, app server, net server, and so on, that
are currently running.

See also: “BVolume” on page 91

database_for()
<storage/Database.h>

BDatabase *database_for(longdatabaseID)

Returns the BDatabase object that represents the database that’s identified bydatabaseID.
Database ID numbers are unique and persistent (within a practical estimation of eternity).

If databaseID is invalid—if it doesn’t identify an available database—the function returns
NULL.

See also: “BDatabase” on page 7

does_ref_conform()
<storage/Record.h>

bool does_ref_conform(record_refref, const char *tableName)

ReturnsTRUE if the record referred to byref conforms to the table identified bytableName,
either directly or through table-inheritance; otherwise returnsFALSE. Although you can
use this function anywhere, it’s particularly useful when testing refs that you are passed to
your application in a BMessage object. Most commonly, you test to see if the refs you

Global Functions Global Functions, Constants, and Defined Types

100 – The Storage Kit

have received represent files, directories, or either. The table names that you use for each
of these is listed below:

• The “File” table is used for files.
• The “Folder” table is used for directories.
• The “FSItem” table is used for file system items (files and directories).

The Be software defines a number of other tables that you can use in the
does_ref_confrom() test (the names listed above are by far the most useful). The complete
list of Be-defined table names can be found in the section “System Tables” on page 107.

get_ref_for_path()
<storage/Store.h>

long get_ref_for_path(const char *pathName, record_ref *ref)

This function finds the file (or directory) that’s designated bypathName, and returns the
file’s ref by reference inref. The path name should be absolute, and should include the
volume name as its first element. (Althoughget_ref_for_path() will try to interpret a
relative pathname as branching from the current working directory, you shouldn’t rely on
this; the identity of the current working directory isn’t guaranteed.)

Note that BDirectory provides aGetRefForPath() member function that accepts absolute
or relative path names.

update_query()
<storage/Query.h>

void update_query(BMessage *aMessage)

Used to forward messages from the Storage Server to a live BQuery object. You use this
function as part of a derived-class implementation of BApplication’sMessageReceived()
function; you never call it elsewhere in your application.

See also: “BQuery” on page 35

volume_at()
<storage/Volume.h>

BVolumevolume_at(long index)

Returns theindex’th BVolume in your application’s volume list (counting from 0). The
list is created and administered for you by the Storage Kit.

If index is out-of-bounds, the function sets the returned object’sError() code toB_ERROR.

See also: “BVolume” on page 91

Global Functions, Constants, and Defined Types Constants

The Storage Kit –101

volume_for_database()
<storage/Volume.h>

BVolumevolume_for_database(BDatabase*db)

Returns the BVolume object that corresponds to the argument database (as represented by
a BDatabase object).

If db is invalid—if it doesn’t identify a database—the function sets the returned object’s
Error() code toB_ERROR.

Constants

File Open Modes
<storage/StorageDefs.h>

Constant Meaning

B_READ_ONLY The file is open for reading only.

B_READ_WRITE The file is open for reading and writing.

B_EXCLUSIVE The file is open for reading and writing, and no one else can
open the file until its closed.

B_FILE_NOT_OPEN The file isn’t open.

The first three constants are used by BFile’sOpen() function to describe the mode in
which the object should open its file. Add the fourth and you have the set of value that can
be returned by BFile’sOpenMode() function.

See also: BFile::Open()

File Seek Constants
<storage/StorageDefs.h>

Constant Meaning

B_FILE_TOP Seek from the first byte in the file.

B_FILE_MIDDLE Seek from the currently-pointed to position.

B_FILE_BOTTOM Seek from the last byte in the file.

These constants are used as arguments to BFile’sSeek() function to describe where a file
seek should start from.

See also: BFile::Seek()

Constants Global Functions, Constants, and Defined Types

102 – The Storage Kit

Live Query Messages
<storage/Query.h>

Constant Meaning

B_RECORD_ADDED A record ref needs to be added to the BQuery’s ref list.

B_RECORD_REMOVED A ref needs to be removed from the list.

D_RECORD_MODIFIED Data has changed in a record referred to by one of the refs
in the ref list.

These constants are the potentialwhat values of a BMessage that’s sent from the Storage
Server to your application.

See also: BQuery::MessageReceived()

query_op Constants
<storage/Query.h>

Constant Meaning

B_EQ equal
B_NE not equal
B_GT greater than
B_GE greater than or equal to
B_LT less than or equal to
B_LE less than or equal to
B_AND logically AND the previous two elements
B_OR logically OR the previous two elements
B_NOT negate the previous element
B_ALL wildcard; matches all records

These query_op constants are the operator values that can be used in the construction of a
BQuery’s predicate.

See also: PushOp() in the BQuery class

Table Field Flags
<storage/Table.h>

Constant Meaning

B_INDEXED_FIELD Create an index based on the values taken by this field.

Each field that you add to a BTable takes a set of flags. Currently, the only flag that is
recognized is B_INDEXED_FIELD.

See also: BTable::AddLongField()

Global Functions, Constants, and Defined Types Defined Types

The Storage Kit –103

Defined Types

database_id
<storage/StorageDefs.h>

typedef longdatabase_id

Thedatabase_id type represents values that uniquely identify individual databases.

See also: record_id, the BDatabase class description

field_key
<storage/StorageDefs.h>

typedef longfield_key

Thefield_key type represents fields in a BTable.

See also: the BTable class description

query_op
<storage/StorageDefs.h>

typedef long enum {...}query_op

Therecord_ref type represents a set of constants that can be used in a BQuery’s predicate.

See also: Query Operator Constants

record_id
<storage/StorageDefs.h>

typedef longrecord_id

Therecord_id type represents values that uniquely identify records in a known database.

See also: record_ref, the BRecord class description

record_ref
<storage/StorageDefs.h>

typedef struct {
record_idrecord;

Defined Types Global Functions, Constants, and Defined Types

104 – The Storage Kit

database_iddatabase;
} record_ref

Therecord_ref type is a structure that uniquely identifies a particular record among all
records in all currently available databases. The structure also defines the == and !=
operators, thus allowingrecord_ref structures to be compared as values.

See also: the BRecord class description

The Storage Kit –107

System Tables and Resources

System Tables

This section lists the names of the tables that are defined by the Storage Kit, as well as
the names (and types) of the tables’ fields. You should never need to use these tables,
except to create other tables that inherit from them—you certainly shouldn’t take
advantage of the field definitions presented here in order to set record values yourself.
They’re listed, primarily, so you can avoid name collisions. Note that none of these
names (whether of the tables or their fields) are defined as constants, nor are they
published in any of the header files.

If you want your tables to show up in a Browser query window, the table must inherit,
however remotely, from “BrowserItem”. Furthermore, only those fields that start with a
capital letter are displayed in the letter. Uncapitalized field names are considered
private.

“Icon”
Parent table: (none)

Field Name Field Type

“creator” LONG_TYPE
“type” LONG_TYPE
“largeBits” RAW_TYPE
“smallBits” RAW_TYPE

“Dock”
Parent table: (none)

Field Name Field Type

“dbType” LONG_TYPE
“dock_mode” LONG_TYPE
“big_origin” RAW_TYPE
“mini_origin” RAW_TYPE

System Tables System Tables and Resources

108 – The Storage Kit

“BrowserItem”
Parent table: (none)

Field Name Field Type

“Name” STRING_TYPE
“Size” LONG_TYPE
“Created” TIME_TYPE
“Modified” TIME_TYPE
“parentID” LONG_TYPE
“dbType” LONG_TYPE
“fsType” LONG_TYPE
“fsCreator” LONG_TYPE
“parentRef” RECORD_TYPE
“flags” LONG_TYPE
“xLoc” LONG_TYPE
“yLoc” LONG_TYPE
“iconRef” RECORD_TYPE
“dock_index” LONG_TYPE
“openOnMount” LONG_TYPE
“inited” LONG_TYPE
“invisible” LONG_TYPE

“FSItem”
Parent table: “BrowserItem”

Field Name Field Type

“appFlags” LONG_TYPE
“version” LONG_TYPE

“File”
Parent table: “FSItem”

Field Name Field Type

“Project” STRING_TYPE
“Description” STRING_TYPE

System Tables and Resources System Tables

The Storage Kit –109

“Folder”
Parent table: “FSItem”

Field Name Field Type

“sortProperty” LONG_TYPE
“sortReverse” LONG_TYPE
“dirID” LONG_TYPE
“viewMode” LONG_TYPE
“lastIconMode” LONG_TYPE
“numProperties” LONG_TYPE
“propertyList” RAW_TYPE
“windRect” RAW_TYPE
“iconOrigin” RAW_TYPE
“listOrigin” RAW_TYPE

“Proxy”
Parent table: “BrowserItem”

Field Name Field Type

“realItem” RECORD_TYPE

“Volume”
Parent table: “Folder”

Field Name Field Type

“Volume Size” LONG_TYPE
“isLocal” LONG_TYPE

“Machine”
Parent table: “Folder”

Field Name Field Type

(none)

“Query”
Parent table: “Folder”

Field Name Field Type

“QueryString” STRING_TYPE
“flatQuery” RAW_TYPE
“database_id” LONG_TYPE

System Tables System Tables and Resources

110 – The Storage Kit

“Person”
Parent table: “BrowserItem”

Field Name Field Type

“Company” STRING_TYPE
“Address” STRING_TYPE
“Phone” STRING_TYPE
“City” STRING_TYPE
“State” STRING_TYPE
“Zip” STRING_TYPE
“E-mail” STRING_TYPE
“Fax” STRING_TYPE
“Comments” STRING_TYPE

“E-Mail”
Parent table: “BrowserItem”

Field Name Field Type

“Status” STRING_TYPE
“Priority” LONG_TYPE
“From” STRING_TYPE
“Subject” STRING_TYPE
“Reply” STRING_TYPE
“When” DOUBLE_TYPE
“Enclosures” LONG_TYPE
“header” RAW_TYPE
“content” RAW_TYPE
“content_file” RECORD_TYPE
“enclosures” RAW_TYPE
“mail_flags” LONG_TYPE

“Message”
Parent table: “BrowserItem”

Field Name Field Type

“Status” LONG_TYPE
“Kind” LONG_TYPE
“From” STRING_TYPE
“When” TIME_TYPE
“Length” LONG_TYPE
“dataFile” STRING_TYPE
“At” STRING_TYPE
“outbound” LONG_TYPE
“Forum” STRING_TYPE

System Tables and Resources System Resources

The Storage Kit –111

“Preference”
Parent table: “BrowserItem”

Field Name Field Type

“appSignature” LONG_TYPE
“version” LONG_TYPE
“User Name” STRING_TYPE

System Resources

This section lists the resource types that the Be software uses. To be specific, the Icon
World application adds resources of the following types to the applications that you
create; the Browser looks for and recognizes these resource types when it displays file
information and icons.

As with the table listings, above, the following is provided primarily so you can avoid
unintentional collisions—in general, you shouldn’t add resources by the types listed
below. However, it isn’t inconceivable that someone might try adding an ‘ICON’
resource directly (for example).

‘APPI’

The resource that’s identified by the type ‘APPI’ stores information about the
application. The data in the resource is a singleapp_info structure. This structure is
described in Chapter 2, “The Application Kit.” The name of the ‘APPI’ resource is “app
info”.

‘ICON’

The ‘ICON’-type resource holds data that creates the application’s large icons. The data
for the resource is a 32x32 pixel bitmap inCOLOR_8_BIT color space. For the exact
representation of such data, see the BBitmap class in the Interface Kit.

There can be more than one ‘ICON’-typed resource:

• The ‘ICON’ resource that’s named “BAPP” holds the icon that’s displayed for the
application.

• The ‘ICON’ that takes, as a name, the application’s signature converted to a string
holds the data that’s displayed for documents created by the application.

‘MICN’

System Resources System Tables and Resources

112 – The Storage Kit

The ‘MICN’ type resource holds “mini-icon” data. The details are the same as the
‘ICON’ type described above, except that a mini-icon is a 16x16 pixel bitmap.

acrobat/04_InterfaceKit.pdf

The Interface Kit –1

4 The Interface Kit

Introduction . 9
Framework for the User Interface 9

Application Server Windows10
BWindow Objects. .11
BView Objects .11

Drawing Agent12
Message Handler12

The View Hierarchy. .13
Drawing and Message-Handling

in the View Hierarchy14
Overlapping Siblings14

The Coordinate Space. 14
Coordinate Systems 15
Coordinate Geometry. 16
Mapping Coordinates to Pixels. 17
Screen Pixels . .17

Drawing .18
View Coordinate Systems. 18

Frame and Bounds Rectangles19
Scrolling .19

The Clipping Region .20
The View Color . .22
The Mechanics of Drawing23

Graphics Environment 23
The Pen . .24
Colors. .25
Patterns . .26
Drawing Modes. 27

Views and the Server .31
The Update Mechanism. 32

Forcing an Update 32
Erasing the Clipping Region33
Drawing during an Update33
Drawing outside of an Update 34

2 – The Interface Kit

Picking Pixels to Stroke and Fill 34
Stroking Thin Lines 35
Stroking Curved Lines 37
Filling and Stroking Rectangles 37
Filling and Stroking Polygons 39
Stroking Thick Lines40

Responding to the User .41
Interface Messages .41
Hook Functions for Interface Messages 44

Dispatching . .45
The Focus View 46
Kinds of Keyboard Messages 46

Message Protocols .47
Keyboard Information. 47

Key Codes .48
Kinds of Keys .50
Modifier Keys .51
Character Mapping53
Key States .56

Class Descriptions . .57

BAlert .59
Overview .59
Constructor .60
Member Functions. .61

BBitmap. .63
Overview .63

Bitmap Data . .63
The Bounds Rectangle 63
The Color Space 64

Specifying the Image .65
Transparency .66

Constructor and Destructor .66
Member Functions. .67

BBox. .71
Overview .71
Constructor and Destructor .71
Member Functions. .72

BButton .73
Overview .73
Hook Functions .74
Constructor .74
Member Functions. .74

The Interface Kit –3

BCheckBox . .77
Overview .77
Constructor .77
Member Functions. .78

BColorControl .81
Overview .81
Constructor and Destructor .81
Member Functions. .82

BControl .85
Overview .85
Hook Functions .86
Constructor and Destructor .86
Member Functions. .87

BListView .93
Overview .93

Displaying the List .93
Selecting and Invoking Items93

Hook Functions .94
Constructor and Destructor .95
Member Functions. .95

BMenu . 105
Overview . 105

Menu Hierarchy . 105
Menu Items . 105

Hook Functions . 106
Constructor and Destructor 106
Member Functions. . 108

BMenuBar. . 117
Overview . 117

The Key Menu Bar . 117
A Kind of BMenu . 118

Constructor and Destructor 118
Member Functions. . 119

BMenuField . 121
Overview . 121
Constructor and Destructor 121
Member Functions. . 122

4 – The Interface Kit

BMenuItem . 127
Overview . 127

Kinds of Items. . 127
Shortcuts and Triggers 127
Marked Items . 128
Disabled Items . 128

Hook Functions . 128
Constructor and Destructor 129
Member Functions. . 130

BPicture . 139
Overview . 139

Recording a Picture . 139
The Picture Definition. 139

Constructor and Destructor 140
Member Functions. . 141

BPictureButton . 143
Overview . 143
Constructor and Destructor 144
Member Functions. . 145

BPoint . 149
Overview . 149
Data Members . 149
Constructor . 150
Member Functions. . 150
Operators . 151

BPolygon . 155
Overview . 155
Constructor and Destructor 155
Member Functions. . 156
Operators . 157

BPopUpMenu. . 159
Overview . 159
Constructor and Destructor 160
Member Functions. . 161

BPrintJob . 163
Overview . 163
Constructor and Destructor 165
Member Functions. . 166

The Interface Kit –5

BRadioButton . 171
Overview . 171
Constructor . 171
Member Functions. . 172

BRect . 175
Overview . 175
Data Members . 176
Constructor . 177
Member Functions. . 177
Operators . 182

BRegion . 185
Overview . 185
Constructor and Destructor 185
Member Functions. . 186
Operators . 188

BScrollBar . 189
Overview . 189

The Update Mechanism. 189
Value and Range . 190
Scroll Bar Options . 191

Hook Functions . 191
Constructor and Destructor 191
Member Functions. . 192

BScrollView . 197
Overview . 197
Constructor and Destructor 197
Member Functions. . 198

BSeparatorItem . 201
Overview . 201
Constructor and Destructor 201
Member Functions. . 202

BStringView . 203
Overview . 203
Constructor and Destructor 203
Member Functions. . 204

BTextControl . 207
Overview . 207
Constructor and Destructor 208
Member Functions. . 208

6 – The Interface Kit

BTextView. . 213
Overview . 213

Resizing . 213
Shortcuts and Menu Items 213
Newlines and Carriage Returns 215

Hook Functions . 215
Constructor and Destructor 215
Member Functions. . 216

BView . 233
Overview . 233

Views and Windows 233
User Interface . 234

Keyboard Navigation 234
Drag and Drop 235

Locking the Window 236
Derived Classes . 236

Hook Functions . 237
Constructor and Destructor 238
Member Functions. . 241

BWindow . 285
Overview . 285

View Hierarchy . 286
Window Threads . 286
Quitting . 286

Hook Functions . 287
Constructor and Destructor 288
Member Functions. . 291

Global Functions . 313

Constants and Defined Types . 335
Constants . 335
Defined Types . 346

The Interface Kit –7

Interface Kit Inheritance Hierarchy

BObject
(Support Kit)

BWindowBLooper
(Application Kit)

BHandler
(Application Kit)

BAlert

BView BTextView

BControl

BCheckBox

BPoint

BTextControl

BColorControl

BBox

BStringView

BRect

BPolygon

BRegion

BPicture

BBitmap

BRadioButton

BPictureButton

BPrintJob

BButton

BScrollBar

BScrollView

BListView

BMenuItem BSeparatorItem BMenu

BMenuBar

BPopUpMenu

BMenuField

8 – The Interface Kit

The Interface Kit –9

4 The Interface Kit

Most Be applications have an interactive and graphical user interface. When they start up,
they present themselves to the user on-screen in one or more windows. The windows
display areas where the user can do something—there may be menus to open, buttons to
click, text fields to type in, images to drag, and so on. Each user action on the keyboard or
mouse is packaged as aninterface message and reported to the application. The
application responds to each message as it is received. At least part of the response is
always a change in what the window displays—so that users can see the results of their
work.

To run this kind of user interface, an application has to do three things. It must:

• Manage a set of windows,
• Draw within the windows, and
• Respond to interface messages.

The application, in effect, carries on a conversation with the user. It draws to present itself
on-screen, the user does something with the keyboard or mouse, the event is reported to
the application in a message, and the application draws in response, prompting more user
actions and more messages.

The Interface Kit structures this interaction with the user. It defines a set of C++ classes
that give applications the ability to manage windows, draw in them, and efficiently
respond to the user’s instructions. Taken together, these classes define a framework for
interactive applications. By programming with the Kit, you’ll be able to construct an
application that effectively uses the capabilities of the BeBox.

This chapter first introduces the conceptual framework for the user interface, then
describes all the classes, functions, types, and constants the Kit defines. The reference
material that follows this introduction assumes the concepts and terminology presented
here.

Framework for the User Interface

A graphical user interface is organized around windows. Each window has a particular
role to play in an application and is more or less independent of other windows. While

Framework for the User Interface

10 – The Interface Kit

working on the computer, users think in terms of windows—what’s in them and what can
be done with them—perhaps more than in terms of applications.

The design of the software mirrors the way the user interface works: it’s also organized
around windows. Within an application, each window runs in its own thread and is
represented by a separate BWindow object. The object is the application’s interface to the
window the system provides; the thread is where all the work that’s centered on the
window takes place.

Because every window has its own thread, the user can, for example, scroll the contents of
one window while watching an animation in another, or start a time-consuming
computation in an application and still be able to use the application’s other windows. A
window won’t stop working when the user turns to another window.

Commands that the user gives to a particular window initiate activity within that window’s
thread. When the user clicks a button within a window, for example, everything that
happens in response to the click happens in the window thread (unless the application
arranges for other threads to be involved). In its interaction with the user, each window
acts on its own, independently of other windows.

Application Server Windows

In a multitasking environment, any number of applications might be running at the same
time, each with its own set of windows on-screen. The windows of all running
applications must cooperate in a common interface. For example, there can be only one
active window at a time—not one per application, but one per machine. A window that
comes to the front must jump over every other window, not just those belonging to the
same application. When the active window is closed, the window behind it must become
active, even if it belongs to a different application.

Because it would be difficult for each application to manage the interaction of its windows
with every other application, windows are assigned, at the lowest level, to a separate
entity, the Application Server. The Server’s principal role in the user interface is to
provide applications with the windows they require.

Everything a program or a user does is centered on the windows the Application Server
provides. Users type into windows, click buttons in windows, drag images to windows,
and so on; applications draw in windows to display the text users type, the buttons they
can click, and the images they can drag.

The Application Server, therefore, is the conduit for an application’s message input and
drawing output:

• It monitors the keyboard and mouse and sends messages reporting each user
keystroke and mouse action to the application.

• It receives drawing instructions from the application and interprets them to render
images within windows.

Framework for the User Interface

The Interface Kit –11

The Server relieves applications of much of the burden of basic user-interface work. The
Interface Kit organizes and further simplifies an application’s interaction with the Server.

BWindow Objects

Every window in an application is represented by a separate BWindow object.
Constructing the BWindow establishes a connection to the Application Server—one
separate from, but initially dependent on, the connection previously established by the
BApplication object. The Server creates a window for the new object and dedicates a
separate thread to it.

The BWindow object is a kind of BLooper, so it spawns a thread for the window in the
application’s address space and begins running a message loop where it receives and
responds to interface messages from the Server. The window thread in the application is
directly connected to the dedicated thread in the Server.

The BWindow object, therefore, is in position to serve three crucial roles:

• It can act as the application’s interface to a Server window. It has functions that the
application can call to manipulate the window programmatically—move it, resize it,
close it, and so on. It also declares the hook functions that the system calls to notify
the application that the user manipulated the window.

• It can organize message-handling within the window thread. Since it runs the
window’s message loop, it gets to decide how each message should be handled. It’s
the focus and central distribution point for all messages that initiate activity in the
thread.

• As the entity that holds rendered images, it can manage the objects that produce
those images. (This is discussed under “BView Objects” below.)

All other Interface Kit objects play roles that depend on a BWindow. They draw in a
window, respond to interface messages received by a window, or act in support of other
objects that draw and respond to messages.

BView Objects

For purposes of drawing and message-handling, a window can be divided up into smaller
rectangular areas calledviews. Each view corresponds to one part of what the window
displays—a scroll bar, a document, a list, a button, or some other more or less self-
contained portion of the window’s contents.

An application sets up a view by constructing a BView object and associating it with a
particular BWindow. The BView object is responsible for drawing within the view
rectangle, and for handling interface messages directed at that area.

Framework for the User Interface

12 – The Interface Kit

Drawing Agent

A window is a tablet that can retain and display rendered images, but it can’t draw them;
for that it needs a set of BViews. A BView is an agent for drawing, but it can’t render the
images it creates; for that it needs a BWindow. The two kinds of objects work hand in
hand.

Each BView object is an autonomous graphics environment for drawing. Some aspects of
the environment, such as the list of possible colors, are shared by all BViews and all
applications. But within those broad limits, every BView maintains an independent
graphics state. It has its own coordinate system, current colors, drawing mode, clipping
region, pen position, and so on.

The BView class defines the functions that applications call to carry out elemental drawing
tasks—such as stroking lines, filling shapes, drawing characters, and imaging bitmaps.
These functions are typically used to implement another function—calledDraw()—in a
class derived from BView. This view-specific function draws the contents of the view
rectangle.

The BWindow will call the BView’sDraw() function whenever the window’s contents (or
at least the part that the BView has control over) need to be updated. A BWindow first
asks its BViews to draw when the window is initially placed on-screen. Thereafter, they
might be asked to refresh the contents of the window whenever the contents change or
when they’re revealed after being hidden or obscured. A BView might be called upon to
draw at any time.

BecauseDraw() is called on the command of others, not the BView, it can be considered to
drawpassively. It presents the view as it currently appears. For example, theDraw()
function of a BView that displays editable text would draw the characters that the user had
inserted up to that point.

BViews also drawactively in response to messages reporting the user’s actions. For
example, text is highlighted as the user drags over it and is replaced as the user types.
Each change is the result of a system message reported to the BView. For passive
drawing, the BView implements a function (Draw()) that others may call. For active
drawing, it calls the drawing functions itself (it may even callDraw()).

Message Handler

The drawing that a BView does is often designed to prompt a user response of some
kind—an empty text field with a blinking caret invites typed input, a menu item or a
button invites a click, an icon looks like it can be dragged, and so on.

When the user acts, system messages that report the resulting events are sent to the
BWindow object, which determines which BView elicited the user action and should
respond to it. For example, a BView that draws typed text can expect to respond to
messages reporting the user’s keystrokes. A BView that draws a button gets to handle the
messages that are generated when the button is clicked. The BView class derives from
BHandler, so BView objects are eligible to handle messages dispatched by the BWindow.

Framework for the User Interface

The Interface Kit –13

Just as classes derived from BView implementDraw() functions to draw within the view
rectangle, they also implement the hook functions that respond to interface messages.
These functions are discussed later, under “Hook Functions for Interface Messages” on
page 44.

Largely because of its graphics role and its central role in handling interface messages,
BView is the biggest and most diverse class in the Interface Kit. Most other Interface Kit
classes are derived from it.

The View Hierarchy

A window typically contains a number of different views—all arranged in a hierarchy
beneath thetop view, a view that’s exactly the same size as the content area of the window.
The top view is a companion of the window; it’s created by the BWindow object when the
BWindow is constructed. When the window is resized, the top view is resized to match.
Unlike other views, the top view doesn’t draw or respond to messages; it serves merely to
connect the window to the views that the application creates and places in the hierarchy.

As illustrated in the diagram below, the view hierarchy can be represented as a branching
tree structure with the top view at its root. All views in the hierarchy (except the top view)
have one, and only one, parent view. Each view (including the top view) can have any
number of child views.

In this diagram, the top view has four children, the container view has three, and the
border view one. Child views are located within their parents, so the hierarchy is one of
overlapping rectangles. The container view, for example, takes up some of the top view’s
area and divides its own area into a document view and two scroll bars.

When a new BView object is created, it isn’t attached to a window and it has no parent.
It’s added to a window by making it a child of a view already in the view hierarchy. This
is done with theAddChild() function. A view can be made a child of the window’s top
view by calling BWindow’s version ofAddChild().

text field

buttonbordergraph

top view

view

vertical horizontal

container

scroll barscroll bar

view view

document
view

Framework for the User Interface

14 – The Interface Kit

Until it’s assigned to a window, a BView can’t draw and won’t receive reports of events.
BViews know how to produce images, but it takes a window to display and retain the
images they create.

Drawing and Message-Handling in the View Hierarchy

The view hierarchy determines what’s displayed where on-screen, and also how user
actions are associated with the responsible BView object:

• When the views in a window are called upon to draw, parents draw before their
children; children draw in front of their ancestors.

• Mouse events (like the mouse-down and mouse-up events that result from a click)
are associated with the view where the cursor is located. Since the cursor points to
the frontmost view at any given location, it’s likely to be pointing at a view close to
the bottom of the hierarchy. It’s those views—the ones that have no children—that
are responsible for most of the drawing and message-handling for the window.
Views farther up the hierarchy tend to contain and organize those at the bottom.

Overlapping Siblings

Although children wait for their parents when it comes time to draw and parents defer to
their offspring when it comes to time to respond to interface messages, sibling views are
not so well-behaved. Siblings don’t draw in any predefined order. This doesn’t matter, as
long as the view rectangles of the siblings don’t overlap. If they do overlap, it’s
indeterminate which view will draw last—that is, which one will draw on top of the other.

Similarly, it’s indeterminate which view will be associated with mouse events in the area
the siblings share. It may be one view or it may be the other, and it won’t necessarily be
the one that drew the image the user sees.

Therefore, it’s strongly recommended that sibling views should be arranged so that they
don’t overlap.

The Coordinate Space

To locate windows and views, draw in them, and report where the cursor is positioned
over them, it’s necessary to have some conventional way of talking about the display
surface. The same conventions are used whether the display device is a monitor that
shows images on a screen or a printer that puts them on a page.

Framework for the User Interface

The Interface Kit –15

In Be software, the display surface is described by a standard two-dimensional coordinate
system where they-axis extends downward and thex-axis extends to the right, as
illustrated below:

y coordinate values are greater towards the bottom of the display and smaller towards the
top,x coordinate values are greater to the right and smaller to the left.

The axes define a continuous coordinate space where distances are measured by floating-
point values (floats). All quantities in this space—including widths and heights,x andy
coordinates, font sizes, angles, and the size of the pen—are floating point numbers.

Floating-point coordinates permit precisely stated measurements that can take advantage
of display devices with higher resolutions than the screen. For example, a vertical line 0.4
units wide would be displayed using a single column of pixels on-screen, the same as a
line 1.4 units wide. However, a 300 dpi printer would use two pixel columns to print the
0.4-unit line and six to print the 1.4-unit line.

A coordinate unit is 1/72 of an inch, roughly equal to a typographical point. However, all
screens are considered to have a resolution of 72 pixels per inch (regardless of the actual
dimension), so coordinate units count screen pixels. One unit is the distance between the
centers of adjacent pixels on-screen.

Coordinate Systems

Specific coordinate systems are associated with the screen, with windows, and with the
views inside windows. They differ only in where the two axes are located:

• The global orscreen coordinate system has its origin, (0.0, 0.0), at the left top corner
of the screen. It’s used for positioning windows on-screen, < for arranging multiple
screens connected to the same machine, > and for comparing coordinate values that
weren’t originally stated in a common coordinate system.

• A window coordinate system has its origin at the left top corner of the content area
of a window. It’s used principally for positioning views within the window. Each
window has its own coordinate system so that locations within the window can be
specified without regard to where the window happens to be on-screen.

x-axis

y-axis (50.0, 22.5)

(25.0, 15.0)

(20.0, –5.0)

(0.0, 0.0)

(–10.0, 10.0)

(37.5, 5.0)

Framework for the User Interface

16 – The Interface Kit

• A view coordinate system has its default origin at the left top corner of the view
rectangle. However, scrolling can shift view coordinates and move the origin.
View-specific coordinates are used for all drawing operations and to report the
cursor location in most system messages.

Coordinate Geometry

The Interface Kit defines a handful of basic classes for locating points and areas within a
coordinate system:

• A BPoint object is the simplest way to specify a coordinate location. Each object
stores two values—anx coordinate and ay coordinate—that together locate a
specific point, (x, y), within a given coordinate system.

• A BRect object represents a rectangle; it’s the simplest way to designate an area
within a coordinate system. The BRect class defines a rectangle as a set of four
coordinate values—corresponding to the rectangle’s left, top, right, and bottom
edges, as illustrated below:

The sides of the rectangle are therefore parallel to the coordinate axes. The left and
right sides delimit the range ofx coordinate values within the rectangle, and the top
and bottom sides delimit the range ofy coordinate values. For example, if a
rectangle’s left top corner is at (0.8, 2.7) and its right bottom corner is at
(11.3, 49.5), all points havingx coordinates ranging from 0.8 through 11.3 and
y coordinates from 2.7 through 49.5 lie inside the rectangle.

If the top of a rectangle is the same as its bottom, or its left the same as its right, the
rectangle defines a straight line. If the top and bottom are the same and also the left
and right, it collapses to a single point. Such rectangles are still valid—they specify
real locations within a coordinate system. However, if the top is greater than the
bottom or the left greater than the right, the rectangle is invalid; it has no meaning.

bottom

top

left

right

(0.0, 0.0)

y-axis

x-axis

Framework for the User Interface

The Interface Kit –17

• A BPolygon object represents a polygon, a closed figure with an arbitrary number of
sides. The polygon is defined as an ordered set of points. It encloses the area that
would be outlined by connecting the points in order, then connecting the first and
last points to close the figure. Each point is therefore a potential vertex of the
polygon.

• A BRegion object defines a set of points. A region can be any shape and even
include discontinuous areas.

Mapping Coordinates to Pixels

The device-independent coordinate space described above must be mapped to the pixel
grid of a particular display device—the screen, a printer, or some other piece of hardware
that’s capable of rendering an image. For example, to display a rectangle, it’s necessary to
find the pixel columns that correspond to its right and left sides and the pixel rows that
correspond to its top and bottom.

This depends entirely on the resolution of the device. In essence, each device-independent
coordinate value must be translated internally to a device-dependent value—an integer
index to a particular column or row of pixels. In the coordinate space of the device, one
unit equals one pixel.

This translation is easy for the screen, since, as mentioned above, there’s a one-to-one
correspondence between coordinate units and pixels. It reduces to rounding floating-point
coordinates to integers. For other devices, however, the translation means first scaling the
coordinate value to a device-specific value, then rounding. For example, the point
(12.3, 40.8) would translate to (12, 41) on the screen, but to (51, 170) on a 300 dpi printer.

Screen Pixels

To map coordinate locations to device-specific pixels, you need to know only two things:

• The resolution of the device, and
• The location of the coordinate axes relative to pixel boundaries.

The axes are located in the same place for all devices: Thex-axis runs left to right along
the middle of a row of pixels and they-axis runs down the middle of a pixel column. They
meet at the very center of a pixel.

Because coordinate units match pixels on the screen, this means that all integral
coordinate values (those without a fractional part) fall midway across a screen pixel. The

Drawing

18 – The Interface Kit

following illustration shows where variousx coordinate values fall on thex-axis. The
broken lines represent the division of the screen into a pixel grid:

As this illustration shows, it’s possible to have coordinate values that lie on the boundary
between two pixels. A later section, “Picking Pixels to Stroke and Fill” on page 34,
describes how these values are mapped to one pixel or the other.

Drawing

Drawing is done by BView objects. As discussed above, the views within a window are
organized into a hierarchy—there can be views within views—but each view is an
independent drawing agent and maintains a separate graphics environment. This section
discusses the framework in which BViews draw, beginning with view coordinate systems.
Detailed descriptions of the functions mentioned here can be found in the BView and
BWindow class descriptions.

View Coordinate Systems

As a convenience, each view is assigned a coordinate system of its own. By default, the
coordinate origin—(0.0, 0.0)—is located at the left top corner of the view rectangle. (For
an overview of the coordinate systems assumed by the Interface Kit, see “The Coordinate
Space” on page 14 above.)

When a view is added as a child of another view, it’s located within the coordinate system
of its parent. A child is considered part of the contents of the parent view. If the parent
moves, the child moves with it; if the parent view scrolls its contents, the child view is
shifted along with everything else in the view.

Since each view retains its own internal coordinate system no matter who its parent is,
where it’s located within the parent, or where the parent is located, a BView’s drawing and
message-handling code doesn’t need to be concerned about anything exterior to itself. To
do its work, a BView need look no farther than the boundaries of its own view rectangle.

x-axis

y-axis

0.0 2.51.0 3.753.25–1.0 4.54.0

Drawing

The Interface Kit –19

Frame and Bounds Rectangles

Although a BView doesn’t have to look outside its own boundaries, it does have to know
where those boundaries are. It can get this information in two forms:

• Since a view is located within the coordinate system of its parent, the view rectangle
is initially defined in terms of the parent’s coordinates. This defining rectangle for a
view is known as itsframe rectangle. (See the BView constructor and theFrame()
function.)

• When translated from the parent’s coordinates to the internal coordinates of the view
itself, the same rectangle is known as thebounds rectangle. (See theBounds()
function.)

The illustration below shows a child view 180.0 units wide and 135.0 units high. When
viewed from the outside, from the perspective of its parent’s coordinate system, it has a
frame rectangle with left, top, right, and bottom coordinates at 90.0, 60.0, 270.0, and
195.0, respectively. But when viewed from the inside, in the view’s own coordinate
system, it has a bounds rectangle with coordinates at 0.0, 0.0, 180.0, and 135.0:

When a view moves to a new location in its parent, its frame rectangle changes but not its
bounds rectangle. When a view scrolls its contents, its bounds rectangle changes, but not
its frame. The frame rectangle positions the view in the world outside; the bounds
rectangle positions the contents inside the view.

Since a BView does its work in its own coordinate system, it refers to the bounds rectangle
more often than to the frame rectangle.

Scrolling

A BView scrolls its contents by shifting coordinate values within the view rectangle—that
is, by altering the bounds rectangle. If, for example, the top of a view’s bounds rectangle
is at 100.0 and its bottom is at 200.0, scrolling downward 50.0 units would put the top at
150.0 and the bottom at 250.0. Contents of the view withy coordinate values of 150.0 to
200.0, originally displayed in the bottom half of the view, would be shifted to the top half.

parent view
60.0
0.0

135.0
195.0

90.0 0.0 180.0 270.0

child view

Drawing

20 – The Interface Kit

Contents withy coordinate values from 200.0 to 250.0, previously unseen, would become
visible at the bottom of the view. This is illustrated below:

Scrolling doesn’t move the view—it doesn’t alter the frame rectangle—it moves only
what’s displayed inside the view. In the illustration above, a “data rectangle” encloses
everything the BView is capable of drawing. For example, if the view is able to display an
entire book, the data rectangle would be large enough to enclose all the lines and pages of
the book laid end to end. However, since a BView can draw only within its bounds
rectangle, everything in the data rectangle with coordinates that fall outside the bounds
rectangle would be invisible. To make unseen data visible, the bounds rectangle must
change the coordinates that it encompasses. Scrolling can be thought of as sliding the
view’s bounds rectangle to a new position on its data rectangle, as is shown in the
illustration above. However, as it appears to the user, it’s moving the data rectangle under
the bounds rectangle. The view doesn’t move; the data does.

The Clipping Region

The Application Server clips the images that a BView produces to the region where it’s
permitted to draw.

This region is never any larger than the view’s bounds rectangle; a view cannot draw
outside its bounds. Furthermore, since a child is considered part of its parent, a view can’t
draw outside the bounds rectangle of its parent either—or, for that matter, outside the
bounds rectangle of any ancestor view. In addition, since child views draw after, and
therefore logically in front of, their parents, a view concedes some of its territory to its
children.

Thus, thevisible region of a view is the part of its bounds rectangle that’s inside the
bounds rectangles of all its ancestors, minus the frame rectangles of its children. This is
illustrated in the figure below. It shows a hierarchy of three views. The area filled with a
crosshatch pattern is the visible region of viewA; it omits the area occupied by its child,
view B. The visible region of viewB is colored dark gray; it omits the part of the view that

bounds
rectangle

data
rectangle

100.0

250.0

150.0

200.0

300.0

100.0

250.0

150.0

200.0

300.0

Drawing

The Interface Kit –21

lies outside its parent. ViewC has no visible region, for it lies outside the bounds
rectangle of its ancestor, viewA:

The visible region of a view might be further restricted if its window is obscured by
another window or if the window it’s in lies partially off-screen. The visible region
includes only those areas that are actually visible to the user. For example, if the three
views in the illustration above were in a window that was partially blocked by another
window, their visible regions might be considerably smaller. This is illustrated below:

Note that in this case, viewA has a discontinuous visible region.

The Application Server clips the drawing that a view does to a region that’s never any
larger than the visible region. On occasion, it may be smaller. For the sake of efficiency,
while a view is being automatically updated, theclipping region excludes portions of the
visible region that don’t need to be redrawn:

view A

view B

view C

view A

view B

view C

another
window

Drawing

22 – The Interface Kit

• When a view is scrolled, the Application Server may be able to shift some of its
contents from one portion of the visible region to another. The clipping region
excludes any part of the visible region that the Server was able to update on its own;
it includes only the part where the BView must produce images that were not
previously visible.

• If a view is resized larger, the clipping region may include only the new areas that
were added to the visible region. (But see theflags argument for the BView
constructor.)

• If only part of a view is invalidated (by theInvalidate() function), the clipping
region is the intersection of the visible region and the invalid rectangle.

An application can also limit the clipping region for a view by passing a BRegion object to
ConstrainClippingRegion(). The clipping region won’t include any areas that aren’t in the
region passed. The Application Server calculates the clipping region as it normally would,
but intersects it with the specified region.

You can obtain the current clipping region for a view by callingGetClippingRegion().
(See also the BRegion class description.)

The View Color

Every view has a basic, underlying color. It’s the color that fills the view rectangle before
the BView does any drawing. The user may catch a glimpse of this color when the view is
first shown on-screen, when it’s resized larger, and when it’s erased in preparation for an
update. It will also be seen wherever the BView fails to draw in the visible region.

In a sense, the view color is the canvas on which the BView draws. It doesn’t enter into
any of the object’s drawing operations except to provide a background. Although it’s one
of the BView’s graphics parameters, it’s not one that any drawing functions refer to.

By default, the view color is white. You can assign a different color to a view by calling
BView’s SetViewColor() function. If you set the color toB_TRANSPARENT_32_BIT, the
Application Server won’t erase the view’s clipping region before an update. This is
appropriate only if the view erases itself by touching every pixel in the clipping region
when it draws.

Drawing

The Interface Kit –23

The Mechanics of Drawing

Views draw through a set of primitive functions such as:

• DrawString(), which draws a string of characters,

• DrawBitmap(), which produces an image from a bitmap,

• DrawPicture(), which executes a set of recorded drawing instructions,

• StrokeLine(), StrokeArc(), and otherStroke...() functions, which stroke lines along
defined paths, and

• FillEllipse(), FillRect(), and otherFill...() functions, which fill closed shapes.

The way these functions work depends not only on the values that they’re passed—the
particular string, bitmap, arc, or ellipse that’s to be drawn—but on previously set values in
the BView’s graphics environment.

Graphics Environment

Each BView object maintains its own graphics environment for drawing. The view color,
coordinate system, and clipping region are fundamental parts of that environment, but not
the only parts. It also includes a number of parameters that can be set and reset at will to
affect the next image drawn. These parameters are:

• Font attributes that determine the appearance of text the BView draws. (See
SetFontName() and its companion functions.)

• A symbol set that determines how character codes are mapped to visual symbols
(glyphs). (SeeSetSymbolSet().)

• Two pen parameters—a location and a size. The pen location determines where the
next drawing will occur and the pen size determines the thickness of stroked lines.
(SeeMovePenBy() andSetPenSize().)

• Two current colors—ahigh color and alow color—that can be used either alone or
in combination to form a pattern or halftone. The high color is used for most
drawing. The low color is sometimes set to the underlying view color so that it can
be used to erase other drawing or, because it matches the view background, make it
appear that drawing has not touched certain pixels.

(The high and low colors roughly match what other systems call the fore and back,
or foreground and background, colors. However, neither color truly represents the
color of the foreground or background. The terminology “high” and “low” is meant
to keep the sense of two opposing colors and to match how they’re defined in a
pattern. A pattern bit is turned on for the high color and turned off for the low color.
See theSetHighColor() andSetLowColor() functions and the “Patterns” section
below.)

Drawing

24 – The Interface Kit

• A drawing mode that determines how the next image is to be rendered. (See the
“Drawing Modes” section below and theSetDrawingMode() function.)

By default, a BView’s graphics parameters are set to the following values:

Font Kate (a 9-point bitmap font, no rotation, 90° shear)
Symbol Set Macintosh
Pen position (0.0, 0.0)
Pen size 1.0 coordinate units
High color Black (red, green, and blue components all equal to 0)
Low color White (red, green, and blue components all equal to 255)
Drawing mode Copy mode (B_OP_COPY)
View color White (red, green, and blue components all equal to 255)
Clipping region The visible region of the view
Coordinate system Origin at the left top corner of the bounds rectangle

However, as the next section, “Views and the Server” on page 31, explains, these values
take effect only when the BView is assigned to a window.

The Pen

The pen is a fiction that encompasses two properties of a view’s graphics environment: the
current drawing location and the thickness of stroked lines.

The pen location determines where the next image will be drawn—but only if another
location isn’t explicitly passed to the drawing function. Some drawing functions alter the
pen location—as if the pen actually moves as it does the drawing—but usually it’s set by
calling MovePenBy() or MovePenTo().

The pen that draws lines (through the variousStroke...() functions) has a malleable tip that
can be made broader or narrower by calling theSetPenSize() function. The larger the pen
size, the thicker the line that it draws.

The pen size is expressed in coordinate units, which must be translated to a particular
number of pixels for the display device. This is done by scaling the pen size to a device-
specific value and rounding to the closest integer. For example, pen sizes of 2.6 and 3.3
would both translate to 3 pixels on-screen, but to 7 and 10 pixels respectively on a 300 dpi
printer.

The size is never rounded to 0; no matter how small the pen may be, the line never
disappears. If the pen size is set to 0.0, the line will be as thin as possible—it will be
drawn using the fewest possible pixels on the display device. (In other words, it will be
rounded to 1 for all devices.)

If the pen size translates to a tip that’s broader than one pixel, the line is drawn with the tip
centered on the path of the line. Roughly the same number of pixels are colored on both
sides of the path.

Drawing

The Interface Kit –25

A later section, “Picking Pixels to Stroke and Fill” on page 34, illustrates how pens of
different sizes choose the pixels to be colored.

Colors

The high and low colors are specified asrgb_color values—full 32-bit values with
separate red, green, and blue color components, plus an alpha component for transparency.
Although there may sometimes be limitations on the colors that can be rendered on-
screen, there are no restrictions on the colors that can be specified.

The way colors are specified for a bitmap depends on the color space in which they’re
interpreted. The color space determines thedepth of the bitmap data (how many bits of
information are stored for each pixel) and itsinterpretation (whether the data represents
shades of gray or true colors, whether it’s segmented into color components, what the
components are, how they’re arranged, and so on). Five possible color spaces are
recognized:

B_MONOCHROME_1_BIT One bit of data per pixel, where 1 is black and 0 is
white.

B_GRAYSCALE_8_BIT Eight bits of data per pixel, where a value of 255 is
black and 0 is white.

B_COLOR_8_BIT Eight bits of data per pixel, interpreted as an index into
a list of 256 colors. The list is part of the system color
map, and is the same for all applications.

B_RGB_16_BIT < This color space is currently undefined. >

B_RGB_32_BIT Four components of data per pixel—red, green, blue,
and alpha—with eight bits per component. A
component value of 255 yields the maximum amount
of red, green, or blue, and a value of 0 indicates the
absence of that color. < The alpha component is
currently ignored. It will specify the coverage of the
color—how transparent or opaque it is. >

The components in theB_RGB_32_BIT color space are
meshed rather than separated into distinct planes; all
four components are specified for the first pixel before
the four components for the second pixel, and so on.
Unlike anrgb_color, the color components are
arranged in reverse order—blue, green, red—followed
by alpha. This is the natural order for many display
devices.

The screen can be configured to display colors in either theB_COLOR_8_BIT color space or
theB_RGB_32_BIT color space. When it’s in theB_COLOR_8_BIT color space, specified

Drawing

26 – The Interface Kit

rgb_colors are displayed as the closest 8-bit color in the color list. (See the BBitmap class
and thesystem_colors() global function.)

Patterns

Functions that stroke a line or fill a closed shape don’t draw directly in either the high or
the low color. Rather they take apattern, an arrangement of one or both colors that’s
repeated over the entire surface being drawn.

By combining the low color with the high color, patterns can produce dithered colors that
lie somewhere between two hues in theB_COLOR_8_BIT color space. Patterns also permit
drawing with less than the solid high color (for intermittent or broken lines, for example)
and can take advantage of drawing modes that treat the low color as if it were transparent,
as discussed below.

A pattern is defined as an 8-pixel by 8-pixel square. Thepattern type is 8 bytes long, with
one byte per row and one bit per pixel. Rows are specified from top to bottom and pixels
from left to right. Bits marked 1 designate the high color; those marked 0 designate the
low color. For example, a pattern of wide diagonal stripes could be defined as follows:

pattern stripes = { 0xc7, 0x8f, 0x1f, 0x3e,
 0x7c, 0xf8, 0xf1, 0xe3 };

Patterns repeat themselves across the screen, like tiles that are laid side by side. The
pattern defined above looks like this:

The dotted lines in this illustration show the separation of the screen into pixels. The
thicker black line outlines one 8-by-8 square that the pattern defines.

The outline of the shape being filled or the width of the line being stroked determines
where the pattern is revealed. It’s as if the screen was covered with the pattern just below
the surface, and stroking or filling allowed some of it to show through. For example,
stroking a one-pixel wide horizontal path in the pattern illustrated above would result in a

Drawing

The Interface Kit –27

dotted line, with the dashes (in the high color) slightly longer than the spaces between (in
the low color):

When stroking a line or filling a shape, the pattern serves as the source image for the
current drawing mode, as explained under “Drawing Modes” below. The nature of the
mode determines how the pattern interacts with the destination image, the image already
in place.

The Interface Kit defines three patterns:

• B_SOLID_HIGH consists only of the high color,
• B_SOLID_LOW has only the low color, and
• B_MIXED_COLORS mixes the two colors evenly, like the pattern on a checkerboard.

B_SOLID_HIGH is the default pattern for all drawing functions. Applications can define as
many other patterns as they need.

Drawing Modes

When a BView draws, it in effect transfers an image to a target location somewhere in the
view rectangle. The drawing mode determines how the image being transferred interacts
with the image already in place at that location. The image being transferred is known as
thesource image; it might be a bitmap or a pattern of some kind. The image already in
place is known as thedestination image.

In the simplest and most straightforward kind of drawing, the source image is simply
painted on top of the destination; the source replaces the destination. However, there are
other possibilities. There are nine different drawing modes—nine distinct ways of
combining the source and destination images. The modes are designated by
drawing_mode constants that can be passed toSetDrawingMode():

B_OP_COPY B_OP_MIN B_OP_ADD
B_OP_OVER B_OP_MAX B_OP_SUBTRACT
B_OP_ERASE B_OP_INVERT B_OP_BLEND

B_OP_COPY is the default mode and the simplest. It transfers the source image to the
destination, replacing whatever was there before. The destination is ignored.

In the other modes, however, some of the destination might be preserved, or the source
and destination might be combined to form a result that’s different from either of them.
For these modes, it’s convenient to think of the source image as an image that exists
somewhere independent of the destination location, even though it’s not actually visible.
It’s the image that would be rendered at the destination inB_OP_COPY mode.

Drawing

28 – The Interface Kit

The modes work for all BView drawing functions—including those that stroke lines and
fill shapes, those that draw characters, and those that image bitmaps. The way they work
depends foremost on the nature of the source image—whether it’s apattern or abitmap.
For theFill...() andStroke...() functions, the source image is a pattern that has the same
shape as the area being filled or the area the pen touches as it strokes a line. For
DrawBitmap(), the source image is a rectangular bitmap.

• Only a source pattern has designated “high” and “low” colors. Even if a source
bitmap has colors that match the current high and low colors, they’re not handled
like the colors in a pattern; they’re treated just like any other color in the bitmap.

• On the other hand, only a source bitmap can have transparent pixels. In the
B_COLOR_8_BIT color space, a pixel is made transparent by assigning it the
B_TRANSPARENT_8_BIT value. In theB_RGB_32_BIT color space, a pixel assigned the
B_TRANSPARENT_32_BIT value is considered transparent. These values have meaning
only for source bitmaps, not for source patterns. If the current high or low color in a
pattern happens to have a transparent value, it’s still treated as the high or low color,
not like transparency in a bitmap.

The way the drawing modes work also depends on the color space of the source image and
the color space of the destination. The following discussion concentrates on drawing
where the source and destination both contain colors. This is the most common case, and
also the one that’s most general.

When applied to colors, the nine drawing modes fall naturally into four groups:

• TheB_OP_COPY mode, which copies the source image to the destination.

• TheB_OP_OVER, B_OP_ERASE, andB_OP_INVERT modes, which—despite their
differences—all treat the low color in a pattern as if it were transparent.

• TheB_OP_ADD, B_OP_SUBTRACT, andB_OP_BLEND modes, which combine colors in
the source and destination images.

• TheB_OP_MIN andB_OP_MAX modes, which choose between the source and
destination colors.

The following paragraphs describe each of these groups in turn.

Copy Mode. In B_OP_COPY mode, the source image replaces the destination. This is
the default drawing mode and the one most commonly used. Because this mode doesn’t
have to test for particular color values in the source image, look at the colors in the
destination, or compute colors in the result, it’s also the fastest of the modes.

If the source image contains transparent pixels, their transparency will be retained in the
result; the transparent value is copied just like any other color. However, the appearance
of a transparent pixel when shown on-screen is indeterminate. If a source image has
transparent portions, it’s best to transfer it to the screen inB_OP_OVER or another mode.

Drawing

The Interface Kit –29

In all modes other thanB_OP_COPY, a transparent pixel in a source bitmap preserves the
color of the corresponding destination pixel.

Transparency Modes. Three drawing modes—B_OP_OVER, B_OP_ERASE, and
B_OP_INVERT—are designed specifically to make use of transparency in the source image;
they’re able to preserve some of the destination image. In these modes (and only these
modes) the low color in a source pattern acts just like transparency in a source bitmap.

• TheB_OP_OVER mode places the source image “over” the destination; the source
provides the foreground and the destination the background. In this mode, the
source image replaces the destination image (just as in theB_OP_COPY mode)—
except where a source bitmap has transparent pixels and a source pattern has the low
color. Transparency in a bitmap and the low color in a pattern retain the destination
image in the result.

By masking out the unwanted parts of a rectangular bitmap with transparent pixels,
this mode can place an irregularly shaped source image on top of a background
image. Transparency in the source foreground lets the destination background show
through. The versatility ofB_OP_OVER makes it the second most commonly used
mode, afterB_OP_COPY.

• TheB_OP_ERASE mode doesn’t draw the source image at all. Instead, it erases the
destination image. LikeB_OP_OVER, it preserves the destination image wherever a
source bitmap is transparent or a source pattern has the low color. But everywhere
else—where the source bitmap isn’t transparent and the source pattern has the high
color—it removes the destination image, replacing it with the low color.

Although this mode can be used for selective erasing, it’s simpler to erase by filling
an area with theB_SOLID_LOW pattern inB_OP_COPY mode.

• TheB_OP_INVERT mode, likeB_OP_ERASE, doesn’t draw the source image. Instead,
it inverts the colors in the destination image. As in the case of theB_OP_OVER and
B_OP_ERASE modes, where a source bitmap is transparent or a source pattern has the
low color, the destination image remains unchanged in the result. Everywhere else,
the color of the destination image is inverted.

These three modes also work for monochrome images. If the source image is
monochrome, the distinction between source bitmaps and source patterns breaks down.
Two rules apply:

• If the source image is a monochrome bitmap, it acts just like a pattern. A value of 1
in the bitmap designates the current high color and a value of 0 designates the
current low color. Thus, 0, rather thanB_TRANSPARENT_32_BIT or
B_TRANSPARENT_8_BIT, becomes the transparent value.

• If the source and destination are both monochrome, the high color is necessarily
black (1) and the low color is necessarily white (0)—but otherwise the drawing
modes work as described. With the possible colors this severely restricted, the three
modes are reduced to boolean operations:B_OP_OVER is the same as a logical ‘OR’,

Drawing

30 – The Interface Kit

B_OP_INVERT the same as logical ‘exclusive OR’, andB_OP_ERASE the same as an
inversion of logical ‘AND’.

Blending Modes. Three drawing modes—B_OP_ADD, B_OP_SUBTRACT, and
B_OP_BLEND—combine the source and destination images, pixel by pixel, and color
component by color component. As in most of the other modes, transparency in a source
bitmap preserves the destination image in the result. Elsewhere, the result is a
combination of the source and destination. The high and low colors of a source pattern
aren’t treated in any special way; they’re handled just like other colors.

• B_OP_ADD adds each component of the source color to the corresponding
component of the destination color, with a component value of 255 as the limit.
Colors become brighter, closer to white.

By adding a uniform gray to each pixel in the destination, for example, the whole
destination image can be brightened by a constant amount.

• B_OP_SUBTRACT subtracts each component of the source color from the
corresponding component of the destination color, with a component value of 0 as
the limit. Colors become darker, closer to black.

For example, by subtracting a uniform amount from the red component of each
pixel in the destination, the whole image can be made less red.

• B_OP_BLEND averages each component of the source and destination colors (adds
the source and destination components and divides by 2). The two images are
merged into one.

These modes work only for color images, not for monochrome ones. If the source or
destination is specified in theB_COLOR_8_BIT color space, the color will be expanded to a
full B_RGB_32_BIT value to compute the result; the result is then contracted to the closest
color in theB_COLOR_8_BIT color space.

Selection Modes. Two drawing modes—B_OP_MAX andB_OP_MIN—compare each
pixel in the source image to the corresponding pixel in the destination image and select
one to keep in the result. If the source pixel is transparent, both modes select the
destination pixel. Otherwise,B_OP_MIN selects the darker of the two colors and
B_OP_MAX selects the brighter of the two. If the source image is a uniform shade of gray,
for example,B_OP_MAX would substitute that shade for every pixel in the destination
image that was darker than the gray.

Like the blending modes,B_OP_MIN andB_OP_MAX work only for color images.

Drawing

The Interface Kit –31

Views and the Server

Windows lead a dual life—as on-screen entities provided by the Application Server and as
BWindow objects in the application. BViews have a similar dual existence—each BView
object has a shadow counterpart in the Server. The Server knows the view’s location, its
place in the window’s hierarchy, its visible area, and the current state of its graphics
parameters. Because it has this information, the Server can more efficiently associate a
user action with a particular view and interpret the BView’s drawing instructions.

BWindows become known to the Application Server when they’re constructed; creating a
BWindow object causes the Server to produce the window that the user will eventually see
on-screen. A BView, on the other hand, has no effect on the Server when it’s constructed.
It becomes known to the Server only when it’s attached to a BWindow. The Server must
look through the application’s windows to see what views it has.

A BView that’s not attached to a window therefore lacks a counterpart in the Server. This
restricts what some functions can do. Four groups of functions are affected:

• Drawing functions—DrawBitmap(), FillRect(), StrokeLine(), and so on—don’t work
for unattached views. A BView can’t draw unless it’s in a window.

• The scrolling functions—ScrollTo() andScrollBy()—require the BView to be in a
window. Manipulations of a view’s coordinate system are carried out in its Server
counterpart.

• Functions that indirectly depend on a BView’s graphics parameters—such as
GetMouse(), which reports the cursor location in the BView’s coordinates, and
StringWidth(), which returns how much room a string would take up in the BView’s
font—also require the BView to belong to a window. These functions need
information that an unattached BView can’t provide.

• The functions that set and return graphics parameters—such asSetDrawingMode(),
PenLocation(), SetFontSize(), andSetHighColor()—are also restricted. A view’s
graphic state is kept within the Server (where it’s needed to carry out drawing
instructions); BViews that the Server doesn’t know about don’t have a valid
graphics state.

Nevertheless, it’s possible to assign a value to a graphics parameter before the
BView is attached to a window. The value is simply cached until the view becomes
part of a window’s view hierarchy. It’s then set as the current value for the
parameter. Values set while the BView belongs to a window change the current
value, but not the cached value. Therefore, if the BView is removed from the view
hierarchy and reinstated as part of another hierarchy, the last cached value will be
reestablished as the current value.

Functions that return graphics parameters report the current value while the BView
is attached to a window, and the cached value when it’s unattached.

Because of these restrictions, you may find it difficult to complete the initialization of a
BView at the time it’s constructed. Instead, you may need to wait until the BView receives

Drawing

32 – The Interface Kit

anAttachedToWindow() notification informing it that it has been added to a window’s
view hierarchy. This function is called for each view that’s added to a window, beginning
with the root view being attached, followed by each of its children, and so on down the
hierarchy. After all views have been notified with anAttachedToWindow() function call,
they each get anAllAttached() notification, but in the reverse order. A parent view that
must adjust itself to calculations made by a child view when it’s attached to a window can
wait until AllAttached() to do the work.

These two function calls are matched by another pair—DetachedFromWindow() and
AllDetached()—which notify BViews that they’re about to be removed from the window.

The Update Mechanism

The Application Server sends a message to a BWindow whenever any of the views within
the window need to be updated. The BWindow then calls theDraw() function of each out-
of-date BView so that it can redraw the contents of its on-screen display.

Update messages can arrive at any time. A BWindow receives one whenever:

• The window is first placed on-screen, or is shown again after having been hidden.

• Any part of the window becomes visible after being obscured.

• The views in the window are rearranged—for example, if a view is resized or a child
is removed from the hierarchy.

• Something happens to alter what a particular view displays. For example, if the
contents of a view are scrolled, the BView must draw any new images that scrolling
makes visible. If one of its children moves, it must fill in the area the child view
vacated.

• The application forces an update by “invalidating” a view, or a portion of a view.

Update messages take precedence over other kinds of messages. To keep the on-screen
display as closely synchronized with event handling as possible, the window acts on
update messages as soon as they arrive. They don’t need to wait their turn in the message
queue.

(Update messages do their work quietly and behind the scenes. You won’t find them in the
BWindow’s message queue, they aren’t handled by BWindow’sDispatchMessage()
function, and they aren’t returned by BLooper’sCurrentMessage().)

Forcing an Update

When a user action or a BView function alters a view in a window—for example, when a
view is resized or its contents are scrolled—the Application Server knows about it. It
makes sure that an update message is sent to the window so the view can be redrawn.

Drawing

The Interface Kit –33

However, if code that’s specific to your application alters a view, you’ll need to inform the
Server that the view needs updating. This is done by calling theInvalidate() function. For
example, if you write a function that changes the number of elements a view displays, you
might invalidate the view after making the change, as follows:

void MyView::SetNumElements(long count)
{
 if (numElements == count)
 return;
 numElements = count;
 Invalidate();
}

Invalidate() ensures that the view’sDraw() function—which presumably looks at the new
value of thenumElements data member—will be called automatically.

At times, the update mechanism may be too slow for your application. Update messages
arrive just like other messages sent to a window thread, including the interface messages
that report events. Although they take precedence over other messages, update messages
must wait their turn. The window thread can respond to only one message at a time; it will
get the update message only after it finishes with the current one.

Therefore, if your application alters a view and callsInvalidate() while responding to an
interface message, the view won’t be updated until the response is finished and the
window thread is free to turn to the next message. Usually, this is soon enough. But if it’s
not, if the response to the interface message includes some time-consuming operations, the
application can request an immediate update by calling BWindow’sUpdateIfNeeded()
function.

Erasing the Clipping Region

Just before sending an update message, the Application Server prepares the clipping
region of each BView that is about to draw by erasing it to the view background color.
Note that only the clipping region is erased, not the entire view, and perhaps not the entire
area where the BView will, in fact, draw.

The Server foregoes this step only if the BView’s background color is set to the magical
B_TRANSPARENT_32_BIT color.

Drawing during an Update

While drawing, a BView may set and reset its graphics parameters any number of times—
for example, the pen position and high color might be repeatedly reset so that whatever is
drawn next is in the right place and has the right color. These settings are temporary.
When the update is over, all graphics parameters are reset to their initial values.

If, for example,Draw() sets the high color to a shade of light blue, as shown below,

SetHighColor(152, 203, 255);

Drawing

34 – The Interface Kit

it doesn’t mean that the high color will be blue whenDraw() is called next. If this line of
code is executed during an update, light blue would remain the high color only until the
update ends orSetHighColor() is called again, whichever comes first. When the update
ends, the previous graphics state, including the previous high color, is restored.

Although you can change most graphics parameters during an update—move the pen
around, reset the font, change the high color, and so on—the coordinate system can’t be
touched; a view can’t be scrolled while it’s being updated. Since scrolling causes a view
to be updated, scrolling during an update would, in effect, be an attempt to nest one update
in another, something that can’t logically be done (since updates happen sequentially
through messages). If the view’s coordinate system were to change, it would alter the
current clipping region and confuse the update mechanism.

Drawing outside of an Update

Graphics parameters that are set outside the context of an update are not limited; they
remain in effect until they’re explicitly changed. For example, if application code calls
Draw(), perhaps in response to an interface message, the parameter values thatDraw() last
sets would persist even after the function returns. They would become the default values
for the view and would be assumed the next timeDraw() is called.

Default graphics parameters are typically set as part of initializing the BView once it’s
attached to a window—in anAttachedToWindow() function. If you want aDraw()
function to assume the values set byAttachedToWindow(), it’s important to restore those
values after any drawing the BView does that’s not the result of an update. For example, if
a BView invokesSetHighColor() while drawing in response to an interface message, it will
need to restore the default high color when done.

If Draw() is called outside of an update, it can’t assume that the clipping region will have
been erased to the view color, nor can it assume that default graphics parameters will be
restored when it’s finished.

Picking Pixels to Stroke and Fill

This section discusses how the various BViewStroke...() andFill...() functions pick specific
pixels to color. Pixels are chosen after the pen size and all coordinate values have been
translated to device-specific units. Device-specific values measure distances by counting
pixels; one unit equals one pixel on the device.

A device-specific value can be derived from a coordinate value using a formula that takes
the size of a coordinate unit and the resolution of the device into account. For example:

device_value = coordinate_value × (dpi / 72)

dpi is the resolution of the device in dots (pixels) per inch, 72 is the number of coordinate
units in an inch, anddevice_value is rounded to the closest integer.

Drawing

The Interface Kit –35

To describe where lines and shapes fall on the pixel grid, this section mostly talks about
pixel units rather than coordinate units. The accompanying illustrations magnify the grid
so that pixel boundaries are clear. As a consequence, they can show only very short lines
and small shapes. By blowing up the image, they exaggerate the phenomena they
illustrate.

Stroking Thin Lines

The thinnest possible line is drawn when the pen size translates to 1 pixel on the device.
Setting the size to 0.0 coordinate units guarantees a one-pixel pen on all devices.

A one-pixel pen follows the path of the line it strokes and makes the line exactly one pixel
thick at all points. If the line is perfectly horizontal or vertical, it touches just one row or
one column of pixels, as illustrated below. (The grid of broken lines shows the separation
of the display surface into pixels.)

Only pixels that the line path actually passes through are colored to display the line. If a
path begins or ends on a pixel boundary, as it does for examples (a) and (b) above, the
pixels at the boundary aren’t colored unless the path crosses into the pixel. The pen
touches the fewest possible number of pixels.

A line path that doesn’t enter any pixels, but lies entirely on the boundaries between
pixels, colors the pixel row beneath it or the pixel column to its right, as illustrated by (f)
and (g) above. A path that reduces to a single point lying on the corner of four pixels, as
does (h) above, colors the pixel at its lower right. < However, currently, it’s indeterminate
which column or row of adjacent pixels would be used to display vertical and horizontal
lines like (f) and (g) above. Point (h) would not be visible. >

One-pixel lines that aren’t exactly vertical or horizontal touch just one pixel per row or
one per column. If the line is more vertical than horizontal, only one pixel in each row is

(a)

(c)

(e)

(f)

(d)

(b)

(h)

(g)

Drawing

36 – The Interface Kit

used to color the line. If the line is more horizontal than vertical, only one pixel in each
column is used. Some illustrations of slanted one-pixel thick lines are given below:

Although a one-pixel pen touches only pixels that lie on the path it strokes, it won’t touch
every pixel that the path crosses if that would mean making the line thicker than specified.
When the path cuts though two pixels in a column or row, but only one of those pixels can
be colored, the one that contains more of the path (the one that contains the midpoint of
the segment cut by the column or row) is chosen. This is illustrated in the close-up below,
which shows where a mostly vertical line crosses one row of pixels:

However, before a choice is made as to which pixel in a row or column to color, the line
path is normalized for the device. For example, if a line is defined by two endpoints, it’s
first determined which pixels correspond to those endpoints. The line path is then treated
as if it connected the centers of those pixels. This may alter which pixels get colored, as is

(j)(i)

(k)

(l)

(m)

Drawing

The Interface Kit –37

illustrated below. In this illustration, the solid black line is the line path as originally
specified and the broken line is its normalized version:

This normalization is nothing more than the natural consequence of the rounding that
occurs when coordinate values are translated to device-specific pixel values.

Stroking Curved Lines

Although all the diagrams above show straight lines, the principles they illustrate apply
equally to curved line paths. A curved path can be treated as if it were made up of a large
number of short straight segments.

Filling and Stroking Rectangles

The following illustration shows how some rectangles, represented by the solid black line,
would be filled with a solid color.

A rectangle includes every pixel that it encloses and every pixel that its sides pass through.
However, as rectangle (q) illustrates, it doesn’t include pixels that its sides merely touch at
the boundary.

If the pixel grid in this illustration represents the screen, rectangle (q) would have left, top,
right, and bottom coordinates with fractional values of .5. Rectangle (n), on the other

(p)

(o) (q)

(n)

Drawing

38 – The Interface Kit

hand, would have coordinates without any fractional parts. Nonfractional coordinates lie
at the center of screen pixels.

Rectangle (n), in fact, is the normalized version of all four of the illustrated rectangles. It
shows how the sides of the four rectangles would be translated to pixel values. Note that
for a rectangle like (q), with edges that fall on pixel boundaries, normalization means
rounding the left and top sides upward and rounding the right and bottom sides downward.
This follows from the principal that the fewest possible number of pixels should be
colored.

Although the four rectangles above differ in size and shape, when filled they all cover a
6 × 4 pixel area. You can’t predict this area from the dimensions of the rectangle.
Because the coordinate space is continuous andx andy values can be located anywhere,
rectangles with different dimensions might have the same rendered size, as shown above,
and rectangles with the same dimensions might have different rendered sizes, as shown
below:

If a one-pixel pen strokes a rectangular path, it touches only pixels that would be included
if the rectangle were filled. The illustration below shows the same rectangles that were
presented above, but strokes them rather than fills them:

Each of the rectangles still covers a 6× 4 pixel area. Note that even though the path of
rectangle (q′) lies entirely on pixel boundaries, pixels below it and to its right are not
touched by the pen. The pen touches only pixels that lie within the rectangle.

(s)(r)

(p′)

(o′) (q′)

(n′)

Drawing

The Interface Kit –39

If a rectangle collapses to a straight line or to a single point, it no longer contains any area.
Stroking or filling such a rectangle is equivalent to stroking the line path with a one-pixel
pen, as was discussed in the previous section.

Filling and Stroking Polygons

The figure below shows a polygon as it would be stroked by a one-pixel pen and as it
would be filled:

The same rules apply when stroking each segment of a polygon as would apply if that
segment were an independent line. Therefore, the pen may not touch every pixel the
segment passes through.

When the polygon is filled, no additional pixels around its border are colored. As is the
case for a rectangle, the displayed shape of filled polygon is identical to the shape of the
polygon when stroked with a one-pixel pen. The pen doesn’t touch any pixels when
stroking the polygon that aren’t colored when the polygon is filled. Conversely, filling
doesn’t color any pixels at the border of the polygon that aren’t touched by a one-pixel
pen.

(u)(t)

Drawing

40 – The Interface Kit

Stroking Thick Lines

A pen that’s thicker than one pixel touches the same pixels that a one-pixel pen does, but it
adds extra columns and rows adjacent to the line path. A thick pen tip is, in effect, a linear
brush that’s held perpendicular to the line path and kept centered on the line. The
illustration below shows two short lines, each five pixels thick:

The thickness or a vertical or horizontal line can be measured in an exact number of
pixels. When the line is slanted, as it is for (t) above, the stroking algorithm tries to make
the line visually approximate the thickness of a vertical or horizontal line. In this way,
lines retain their shape even when rotated.

(w)

(v)

Responding to the User

The Interface Kit –41

When a rectangle is stroked with a thick pen, the corners of the rectangle are filled in, as
shown in the example below:

Responding to the User

The BWindow and BView classes together define a structure for responding to user
actions on the keyboard and mouse. These actions generateinterface messages that are
delivered to BWindow objects. The BWindow distributes responsibility for the messages
it receives to other objects, typically BViews.

This section describes the messages that report user actions, and the way that BWindow
and BView objects are structured to respond to them.

Interface Messages

Twenty interface messages are currently defined. Two of them command the window to
do something in particular:

• A B_ZOOM instruction tells the window to zoom to a larger size—or to return to its
normal size having previously been zoomed larger. The message is typically caused
by the user operating the zoom button in the window’s title tab.

• A B_MINIMIZE instruction tells the window to replace itself on-screen with a token
representation—or to restore itself having been previously minimized. This
message is typically caused by the user double-clicking the window tab (or the
window token).

(x)

Responding to the User

42 – The Interface Kit

All other interface messages reportevents—something that happened, rather than
something that the application must do. In most cases, the message merely reports what
the user did on the keyboard or mouse. However, in some cases, the event may reflect the
way the Application Server interpreted or handled a user action. The Server might
respond directly to the user and pass along an message that indicates what it did—moved a
window or changed a value, for example. In a few cases, the event may even reflect what
the application thinks the user intended—that is, an application might interpret one or
more generic user actions as a more specific event.

The following five messages report atomic user actions on the keyboard and mouse:

• A B_KEY_DOWN message reports a single key-down event. Key-down events occur
when the user presses a character key on the keyboard. After the initial event (and a
brief threshold), most keys generate repeated key-down events—as long as the user
continues to hold the key down and doesn’t press another key. Only character keys
produce keyboard events. The modifier keys—Shift, Control, Caps Lock, and so
on—don’t produce events of any kind but may affect the character that’s reported
for another key.

• A B_KEY_UP message reports the event that occurs when the user releases the
character key. < Although defined, this message is currently not used. Key-up
events are unreported. >

• A B_MOUSE_DOWN message reports a single mouse-down event. A mouse-down
event occurs when the user presses one of the mouse buttons while the cursor is over
the content area of a window. The event is recognized (the message is generated)
only for the first button the user presses—that is, only if no other mouse buttons are
down at the time.

• A B_MOUSE_UP message reports the event that occurs when the user releases the
mouse button. The event is recognized only for the last button the user releases—
that is, only if no other mouse button remains down.

• A B_MOUSE_MOVED message captures some small portion of the cursor’s
movement into, within, or out of a window. If the cursor isn’t over a window, it’s
movement isn’t reported; it doesn’t create mouse-moved events. (All interface
events are associated with windows.) Repeated mouse-moved events occur as the
user moves the mouse.

The five messages above are all directed at particular views—the view where the cursor is
located or where typed input appears. Three others also concern views:

• A B_VIEW_MOVED message is sent when a view is moved within its parent’s
coordinate system. This can be a consequence of a programmatic action or of the
parent view being automatically resized. If the parent view is being continuously
resized because the user is resizing the window, repeated mouse-moved events may
be reported.

• A B_VIEW_RESIZED message is delivered when a view is resized, perhaps because the
program resized it or possibly as an automatic consequence of the window being

Responding to the User

The Interface Kit –43

resized. If the resizing is continuous, because the user is resizing the window,
repeated view-resized events are reported.

• A B_VALUE_CHANGED message reports that the Application Server changed a value
associated with an object. Currently, a value-changed event occurs only for
BScrollBar objects. Repeated events are reported as the user manipulates a scroll
bar.

A few messages concern events that affect the window itself:

• A B_WINDOW_ACTIVATED message reports an activation event. This event occurs
when a window becomes the active window and again when it gives up that status.
The single action of clicking a window to make it active might result in two
activation events—one for the window that gains active-window status and one for
the window that relinquishes it—plus a mouse-down and a mouse-up event.

• A B_QUIT_REQUESTED message is interpreted by a BWindow object as a request to
close the window. Quit-requested events occur when the user clicks a window’s
close button, or when the system perceives some other reason to request the window
to quit.

• A B_WINDOW_MOVED message records the new location of a window that has been
moved, either programmatically or by the user. When the user drags a window,
repeated messages are generated, each one capturing a small portion of the
window’s continuous movement. Only one window-moved event is reported when
the program moves a window.

• A B_WINDOW_RESIZED message reports that a window has been resized, again either
programmatically or by the user. The message is generated repeatedly as the user
resizes the window, but only once each time the application resizes it.

A few messages report changes to the on-screen environment for a window:

• A B_SCREEN_CHANGED message reports that the configuration of the screen—the
size of the pixel grid it displays or the color space of the frame buffer—has changed.
Such changes may require the window to take compensatory measures.

• A B_WORKSPACE_ACTIVATED message reports that the active workspace (the one
displayed on-screen) has changed. All windows that live in the previously active
workspace and in the one that has been newly activated are notified of the change.

• A B_WORKSPACES_CHANGED message notifies the window that the set of
workspaces in which it can be displayed has changed.

Two messages are produced by the save panel:

• A B_SAVE_REQUESTED message is sent when the user operates the panel to request
that a document be saved.

• A B_PANEL_CLOSED message is sent when the application or the user closes the
panel.

Responding to the User

44 – The Interface Kit

Finally, there’s one message that doesn’t derive from a user action:

• PeriodicB_PULSE messages are posted at regularly spaced intervals, like a steady
heartbeat. Pulses don’t involve any communication between the application and the
Server. They’re generated as long as no other events are pending, but only if the
application asks for them.

An application doesn’t have to wait for a message to discover what the user is doing on the
keyboard and mouse. Two BView functions,GetKeys() andGetMouse(), can provide an
immediate check on the state of these devices.

Hook Functions for Interface Messages

Interface messages are generated and delivered to the application as the user acts. The
Application Server determines which window an action affects and notifies the
appropriate window thread. Messages for keyboard events are delivered to the current
active window; messages announcing mouse events are sent to the window where the
cursor is located.

However, the message is just an intermediary. As soon as it arrives, the BWindow
dispatches it to initiate action within the window thread. Typically, one of the BViews
associated with the window is asked to respond to the message—usually the BView that
drew the image that elicited the user action. But some messages are handled by the
BWindow itself.

Interface messages are dispatched by calling a virtual function that’s matched to the
message. If the message delivers an instruction, the function is named for the action that
should be taken. For example, a zoom instruction is dispatched by calling theZoom()
function. If the message reports an event, the function is named for the event. For
example, the BView where a mouse-down event occurs is notified with aMouseDown()
function call. When the user clicks the close box of a window, generating a quit-requested
event, the BWindow’sQuitRequested() function is called.

The chart below lists the virtual functions that are called to initiate the application’s
response to interface messages, and the base classes where the functions are declared.
Each application can implement these message-specific functions in a way that’s
appropriate to its purposes.

Message type Virtual function Class

B_ZOOM Zoom() BWindow
B_MINIMIZE Minimize() BWindow

B_KEY_DOWN KeyDown() BView
B_KEY_UP none
B_MOUSE_DOWN MouseDown() BView
B_MOUSE_UP none
B_MOUSE_MOVED MouseMoved() BView

Responding to the User

The Interface Kit –45

B_VIEW_MOVED FrameMoved() BView
B_VIEW_RESIZED FrameResized() BView
B_VALUE_CHANGED ValueChanged() BScrollBar

B_WINDOW_ACTIVATED WindowActivated() BWindow and BView
B_QUIT_REQUESTED QuitRequested() BLooper
B_WINDOW_MOVED FrameMoved() BWindow
B_WINDOW_RESIZED FrameResized() BWindow

B_SCREEN_CHANGED ScreenChanged() BWindow
B_WORKSPACE_ACTIVATED WorkspaceActivated() BWindow
B_WORKSPACES_CHANGED WorkspacesChanged() BWindow

B_SAVE_REQUESTED SaveRequested() BWindow
B_PANEL_CLOSED SavePanelClosed() BWindow

B_PULSE Pulse() BView

< B_KEY_UP messages are currently not produced. >B_MOUSE_UP messages are produced,
but they aren’t dispatched by calling a virtual function. A BView can determine when a
mouse button goes up by callingGetMouse() from within itsMouseDown() function. As
it reports information about the location of the cursor and the state of the mouse buttons,
GetMouse() removes mouse messages from the BWindow’s message queue, so the same
information won’t be reported twice.

A BWindow reinterprets aB_QUIT_REQUESTED message, originally defined for the
BLooper class in the Application Kit, to mean a user request to close the window.
However, it doesn’t redeclare theQuitRequested() hook function that it inherits from
BLooper.

Dispatching

Notice, from the chart above, that the BWindow class declares the functions that handle
instructions and events directed at the window itself.FrameMoved() is called when the
user moves the window,FrameResized() when the user resizes it,WindowActivated()
when it becomes, or ceases to be, the active window,Zoom() when it should zoom larger,
and so on.

Although the BWindow handles some interface messages, the most common ones—those
reporting direct user actions on the keyboard and mouse—are handled by BViews. When
the BWindow receives a keyboard or mouse message, it must decide which view is
responsible.

This decision is relatively easy for messages reporting mouse events. The cursor points to
the affected view. For example, when the user presses a mouse button, the BWindow calls
theMouseDown() virtual function of the view under the cursor. When the user moves the
mouse, it calls theMouseMoved() function of each view the cursor travels through.

Responding to the User

46 – The Interface Kit

However, there’s no cursor attached to the keyboard, so the BWindow object must keep
track of the view that’s responsible for messages reporting key-down events. That view is
known as thefocus view.

The Focus View

The focus view is whatever view happens to be displaying the current selection (possibly
an insertion point) within the window, or whatever check box, button, or other gadget is
currently marked to show that it can be operated from the keyboard.

The focus view is expected to respond to the user’s keyboard actions when the window is
the active window. When the user presses a key on the keyboard, the BWindow calls the
focus view’sKeyDown() function. If the focus view displays editable data, it’s also
expected to handle commands that target the current selection, such as commands to cut,
copy, or paste data.

The focus typically doesn’t stay on one view all the time; it shifts from view to view. It
may change as the user changes the current selection in the window—from text field to
text field, for example. Or it changes when the user navigates from one view to another by
pressing the Tab key. Only one view in the window can be in focus at a time.

Views put themselves in focus when they’re selected by a user action of some kind. For
example, when a BView’sMouseDown() function is called, notifying it that the user has
selected the view, it can grab the focus by callingMakeFocus(). When a BView makes
itself the focus view, the previous focus view is notified that it has lost that status.

A view should become the focus view if:

• It has aKeyDown() function to display typed characters,
• It has aKeyDown() function so that the user can operate it from the keyboard, or
• It can show the current selection, whether or not it has aKeyDown() function.

A view should highlight the current selection only while it’s in focus.

BViews make themselves the focus view (with theMakeFocus() function), but BWindows
report which view is currently in focus (with theCurrentFocus() function).

Kinds of Keyboard Messages

The focus view gets most keyboard messages, but not all. Three kinds ofB_KEY_DOWN
messages are conscripted for special tasks:

• If the user holds a Command key down while pressing a character key, the
Command-character combination is interpreted as a keyboard shortcut (typically for
a menu item, but possibly for some other control device). Instead of assigning the
message to a view, the BWindow tries to issue the command associated with the
shortcut.

Responding to the User

The Interface Kit –47

• If the user holds an Option key down while pressing the Tab key, the Option-Tab
combination is interpreted as an instruction to change the focus view. Instead of
assigning the message to a view, the BWindow forces the change. This is done to
enable keyboard navigation in all circumstances.

• If the window has a default button and the user presses the Enter key, the window
assigns the message to the button, so that it can respond to the key-down event as it
would to a click. A “default button” is simply a button that can be operated from the
Enter key on the keyboard.

In all other cases, the BWindow assigns the message to the current focus view.

Message Protocols

The BMessage objects that convey interface messages typically contain various kinds of
data describing the events they report or clarifying the instructions they give. In most
cases, the message contains more information than is passed to the function that starts the
application’s response. For example, aMouseDown() function is passed the point where
the cursor was located when the user pressed the mouse button. But aB_MOUSE_DOWN
BMessage also includes information about when the event occurred, what modifier keys
the user was holding down at the time, which mouse button was pressed, whether the
event counts as a solitary mouse-down, the second event of a double-click, or the third of a
triple-click, and so on.

A MouseDown() function can get this information by taking it directly from the
BMessage. The BMessage that the window thread is currently responding to can be
obtained by calling theCurrentMessage() function, which the BWindow inherits from
BLooper. For example, aMouseDown() function might check whether the event is a
single-click or the second of a double-click as follows:

void MyView::MouseDown(BPoint point)
{
 long num = Window()->CurrentMessage()->FindLong("clicks");
 if (num == 1) {
 . . .
 }
 else if (num == 2) {
 . . .
 }
 . . .
}

TheMessage Protocols appendix lists the contents of all interface messages.

Keyboard Information

Most information about what the user is doing on the keyboard comes to applications by
way of messages reporting key-down events. The application can usually determine what

Responding to the User

48 – The Interface Kit

the user’s intent was in pressing a key by looking at the character recorded in the message.
But, as discussed under “B_KEY_DOWN” on page 7 of theMessage Protocols appendix, the
message carries other keyboard information in addition to the character—the key the user
pressed, the modifier states that were in effect at the time, and the current state of all keys
on the keyboard.

Some of this information can be obtained in the absence of key-down messages:

• The Interface Kit has a globalmodifiers() function that returns the current modifier
states, and

• The BView class has aGetKeys() function that can provide the current state of all
the keys and modifiers on the keyboard.

This section discusses in detail the kinds of information that you can get about the
keyboard through interface messages and these functions.

Key Codes

To talk about the keys on the keyboard, it’s necessary first to have a standard way of
identifying them. For this purpose, each key is arbitrarily assigned a numerical code.

The illustrations on the next two pages show the key identifiers for a typical keyboard.
The codes for the main keyboard are shown on page 49. This diagram shows a standard
101-key keyboard and an alternate version of the bottom row of keys—one that adds a
Menu key and left and right Command keys.

The codes for the numerical keypad and for the keys between it and the main keyboard are
shown on page 50.

Different keyboards locate keys in slightly different positions. The function keys may be
to the left of the main keyboard, for example, rather than along the top. The backslash key
(0x33) shows up in various places—sometimes above the Enter key, sometimes next to
Shift, and sometimes in the top row (as shown here). No matter where these keys are
located, they have the codes indicated in the illustrations.

The BMessage that reports a key-down event contains an entry named “key” for the code
of the key that was pressed.

Responding to the User

The Interface Kit –49

0x
01

E
sc

^

0x
176

% 0x
165

$

0x
154

#

0x
143

@ 0x
132

!

0x
121

~

0x
11‘

)

0x
1b0

(

0x
1a9

*

0x
198

&

0x
187

Q 0x
27

W 0x
28

E

0x
29

R

0x
2a

T

0x
2b

Y

0x
2c

U

0x
2d

O 0x
2f

I

0x
2e

0x
26

Ta
b

0x
3b

C
ap

s
Lo

ck
A

0x
3c

S

0x
3d

D

0x
3e

F

0x
3f

G 0x
40

H

0x
41

J

0x
42

L

0x
44

K

0x
43

Z

0x
4c

X

0x
4d

C

0x
4e

V

0x
4f

B

0x
50

N

0x
51

M 0x
52

0x
4b

S
hi

ft

0x
5c

C
on

tr
ol

0x
5d

A
lt

0x
5e

F
1

0x
02

F
2

0x
03

F
3

0x
04

F
4

0x
05

F
5

0x
06

F
6

0x
07

F
7

0x
08

F
8

0x
09

)

0x
1b0

O 0x
2f L

0x
44

M 0x
52

P

0x
30

{

0x
31[

}

0x
32]

+

0x
1d=

— 0x
1c–

:

0x
45;

”

0x
46’

<

0x
53,

?

0x
55/

>

0x
54.

|

0x
33\ 0x

47

E
nt

er

B
ac

k-
sp

ac
e

0x
1e

0x
56

S
hi

ft

0x
60

C
on

tr
ol

0x
5f

A
lt

F
9

0x
0a

F
10

0x
0b

F
11

0x
0c

F
12

0x
0d

0x
5c

C
on

tr
ol

0x
5d

A
lt

0x
66

C
om

m
an

d

0x
5f

A
lt

0x
60

C
on

tr
ol

0x
68

M
en

u

0x
67

C
m

d

0x
5e

Responding to the User

50 – The Interface Kit

Kinds of Keys

Keys on the keyboard can be distinguished by the way they behave and by the kinds of
information they provide. A principal distinction is betweencharacter keys andmodifier
keys:

• Character keys are mapped to particular characters; they generate key-down events
when pressed. Keys not mapped to characters don’t generate events.

• Modifier keys set states that can be discerned independently of key-down events
(through themodifiers() function). Some modifier keys—like Caps Lock and Num
Lock—toggle in and out of a locked modifier state. Others—like Shift and
Control—set the state only while the key is being held down.

If a key doesn’t fall into one of these categories or the other, there’s nothing for it to do; it
has no role to play in the interface. For most keys, the categories are mutually exclusive.
Modifier keys are typically not mapped to characters, and character keys don’t set modifier
states. However, the Scroll Lock key is an exception. It both sets a modifier state and
generates a character.

Page
Down

0x360x35

Page
Up

0x21

Scroll
Lock

0x0f

Delete

0x34

0x1f 0x20

Sys
Rq

0x7e

Print
Screen

0x0e

0x7f

0x10

0x61 0x62 0x63

0x57

Break

Home

Pause

End

Insert

•
Delete

0x65

Num
Lock

0x22

*

0x24

/

0x23

4

0x48

6

0x4a

9
PgUp

0x39

8

0x38

7
Home

0x37

0
Insert

0x64

1
End

0x58

2

0x59

3
PgDn

0x5a

5

0x49

–

0x25

Enter

0x5b

+

0x3a

Responding to the User

The Interface Kit –51

Keys can be distinguished on two other grounds as well:

• Repeating keys produce a continuous series of key-down events, as long as the user
holds the key down and doesn’t press another key. After the initial event, there’s a
slight delay before the key begins repeating, but then events are generated in rapid
succession.

All keys are repeating keys except for Pause, Break, and the three that set locks
(Caps Lock, Num Lock, and Scroll Lock). Even modifier keys like Shift and
Control would repeat if they were mapped to characters (but, since they’re not, they
don’t produce any key-down events at all).

• Dead keys are keys that don’t produce characters until the user strikes another key
(or the key repeats). If the key the user strikes after the dead key belongs to a
particular set, the two keys together produce one character (one key-down event). If
not, each produces a separate character. The key-down event for the dead key is
delayed until it can be determined whether it will be combined with another key to
produce just one event.

Dead keys are dead only when the Option key is held down. They’re most
appropriate for situations where the user can imagine a character being composed of
two distinguishable parts—such as ‘a’ and ‘e’ combining to form ‘æ’.

The system permits up to five dead keys. By default, they’re reserved for
combining diacritical marks with other characters. The diacritical marks are the
acute (´) and grave (`) accents, dieresis (¨), circumflex (ˆ), and tilde (˜).

There’s a system key map that determines the role that each key plays—whether it’s a
character key or a modifier key, which modifier states it sets, which characters it produces,
whether it’s dead or not, how it combines with other keys, and so on. The map is shared
by all applications.

Users can modify the key map with the Keyboard utility. Applications can look at it (and
perhaps modify it) by calling thesystem_key_map() global function. See that function on
page 327 for details on the structure of the map. The discussion here assumes the default
key map that comes with the computer.

Modifier Keys

The role of a modifier key is to set a temporary, modal state. There are eight modifier
states—eight different kinds of modifier key—defined functionally. Three of them affect
the character that’s reported in a key-down event:

• TheShift key maps alphabetic keys to the uppercase version of the character, and
other keys to alternative symbols.

• TheControl key maps alphabetic keys to Control characters—those with ASCII
values (character codes) below 0x20.

Responding to the User

52 – The Interface Kit

• TheOption key maps keys to alternative characters, typically characters in an
extended set—those with ASCII values above 0x7f.

Two modifier keys permit users to give the application instructions from the keyboard:

• When theCommand key is held down, the character keys perform keyboard
shortcuts.

• TheMenu key initiates keyboard navigation of menus. Pressing and releasing a
Command key (without touching another key) accomplishes the same thing.

Three modifiers toggle in and out of locked states:

• TheCaps Lock key reverses the effect of the Shift key for alphabetic characters.
With Caps Lock on, the uppercase version of the character is produced without the
Shift key, and the lowercase version with the Shift key.

• TheNum Lock key similarly reverses the effect of the Shift key for keys on the
numeric keypad.

• TheScroll Lock key temporarily prevents the display from updating. (It’s up to
applications to implement this behavior.)

There are two things to note about these eight modifier states. First, since applications can
read the modifiers directly from the messages that report key-down events and obtain them
at other times by calling themodifiers() andGetKeys() functions, they are free to interpret
the modifier states in any way they desire. They’re not tied to the narrow interpretation of,
say, the Control key given above. Control, Option, and Shift, for example, often modify
the meaning of a mouse event or are used to set other temporary modes of behavior.

Second, the set of modifier states listed above doesn’t quite match the keys that are
marked on a typical keyboard. A standard 101-key keyboard has left and right
“Alt(ernate)” keys, but lacks those labeled “Command,” “Option,” or “Menu.”

The key map must, therefore, bend the standard keyboard to the required modifier states.
The default key map does this in three ways:

• Because the “Alt(ernate)” keys are close to the space bar and are easily accessible,
the default key map assigns them the role of Command keys.

• It turns the right “Control” key into an Option key. Therefore, there’s just one
functional Control key (on the left) and one Option key (on the right).

• It leaves the Menu key unmapped. It relies on the Command key as an adequate
alternative for initiating keyboard navigation of menus.

The illustration below shows the modifier keys on the main keyboard, with labels that
match their functional roles. Users can, of course, remap these keys with the Keyboard

Responding to the User

The Interface Kit –53

utility. Applications can remap them by callingset_modifier_key() or
system_key_map().

Current modifier states are reported in a mask that can be tested against these constants:

B_SHIFT_KEY B_COMMAND_KEY B_CAPS_LOCK
B_CONTROL_KEY B_MENU_KEY B_NUM_LOCK
B_OPTION_KEY B_SCROLL_LOCK

The ..._KEY modifiers are set if the user is holding the key down. The ..._LOCK modifiers
are set only if the lock is on—regardless of whether the key that sets the lock happens to
be up or down at the time.

If it’s important to know which physical key the user is holding down, the one on the right
or the one on the left, the mask can be more specifically tested against these constants:

B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

If no keyboard locks are on and the user isn’t holding a modifier key down, the modifiers
mask will be 0.

The modifiers mask is returned by themodifiers() function and, along with other keyboard
information, by BView’sGetKeys(). It’s also included as a “modifiers” entry in every
BMessage that reports a keyboard or mouse event.

Character Mapping

Most keys are mapped to more than one character. The precise character that the key
produces depends on which modifier keys are being held down and which lock states the
keyboard is in at the time the key is pressed.

Caps Lock

Shift

OptionCommandControl Command

Shift

Responding to the User

54 – The Interface Kit

A few examples are given in the table below:

Key No modifiers Shift alone Option alone Shift & Option Control

0x15 ‘4’ ‘$’ ‘¢’ ‘4’
0x18 ‘7’ ‘&’ ‘¶’ ‘§’ ‘7’
0x26 B_TAB B_TAB B_TAB B_TAB B_TAB
0x2e ‘i’ ‘I’ B_TAB
0x40 ‘g’ ‘G’ ‘ ’ 0x07
0x43 ‘k’ ‘K’ ‘ ◊’ B_PAGE_UP
0x51 ‘n’ ‘N’ ‘ñ’ ‘Ñ’ 0x0e
0x55 ‘/’ ‘?’ ‘ ÷’ ‘¿’ ‘/’
0x64 B_INSERT ‘0’ B_INSERT ‘0’ B_INSERT

The mapping follows some fixed rules, including these:

• If a Command key is held down, the Control keys are ignored. Command trumps
Control. Otherwise, Command doesn’t affect the character that’s reported for the
key. If only Command is held down, the character that’s reported is the same as if
no modifiers were down; if Command and Option are held down, the character
that’s reported is the same as for Option alone; and so on.

• If a Control key is held down (without a Command key), Shift, Option, and all
keyboard locks are ignored. Control trumps the other modifiers (except for
Command).

• Num Lock applies only to keys on the numerical keypad. While this lock is on, the
effect of the Shift key is inverted. Num Lock alone yields the same character that’s
produced when a Shift key is down (and Num Lock is off). Num Lock plus Shift
yields the same character that’s produced without either Shift or the lock.

• Menu and Scroll Lock play no role in determining how keys are mapped to
characters.

The default key map also follows the conventional rules for Caps Lock and Control:

• Caps Lock applies only to the 26 alphabetic keys on the main keyboard. It serves to
map the key to the same character as Shift. Using Shift while the lock is on undoes
the effect of the lock; the character that’s reported is the same as if neither Shift nor
Caps Lock applied. For example, Shift-G and Caps Lock-G both are mapped to
uppercase ‘G’, but Shift-Caps Lock-G is mapped to lowercase ‘g’.

However, if the lock doesn’t affect the character, Shift plus the lock is the same as
Shift alone. For example, Caps Lock-7 produces ‘7’ (the lock is ignored) and Shift-
7 produces ‘&’ (Shift has an effect), so Shift-Caps Lock-7 also produces ‘&’ (only
Shift has an effect).

• When Control is used with a key that otherwise produces an alphabetic character,
the character that’s reported has an ASCII value 0x40 less than the value of the
uppercase version of the character (0x60 less than the lowercase version of the
character). This often results in a character that is produced independently by

Responding to the User

The Interface Kit –55

another key. For example, Control-I produces theB_TAB character and Control-L
producesB_PAGE_DOWN.

When Control is used with a key that doesn’t produce an alphabetic character, the
character that’s reported is the same as if no modifiers were on. For example,
Control-7 produces a ‘7’.

The Interface Kit defines constants for characters that aren’t normally represented by a
visible symbol. This includes the usual space and backspace characters, but most invisible
characters are produced by the function keys and the navigation keys located between the
main keyboard and the numeric keypad. The character values associated with these keys
are more or less arbitrary, so you should always use the constant in your code rather than
the actual character value. Many of these characters are also produced by alphabetic keys
when a Control key is held down.

The table below lists all the character constants defined in the Kit and the keys they’re
associated with.

Key label Key code Character reported

Backspace 0x1e B_BACKSPACE
Tab 0x26 B_TAB
Enter 0x47 B_ENTER
(space bar) 0x5e B_SPACE

Escape 0x01 B_ESCAPE
F1 – F12 0x02 through 0x0d B_FUNCTION_KEY
Print Screen 0x0e B_FUNCTION_KEY
Scroll Lock 0x0f B_FUNCTION_KEY
Pause 0x10 B_FUNCTION_KEY
System Request0x7e 0xc8
Break 0x7f 0xca

Insert 0x1f B_INSERT
Home 0x20 B_HOME
Page Up 0x21 B_PAGE_UP
Delete 0x34 B_DELETE
End 0x35 B_END
Page Down 0x36 B_PAGE_DOWN

(up arrow) 0x57 B_UP_ARROW
(left arrow) 0x61 B_LEFT_ARROW
(down arrow) 0x62 B_DOWN_ARROW
(right arrow) 0x63 B_RIGHT_ARROW

Responding to the User

56 – The Interface Kit

Several keys are mapped to theB_FUNCTION_KEY character. An application can determine
which function key was pressed to produce the character by testing the key code against
these constants:

B_F1_KEY B_F6_KEY B_F11_KEY
B_F2_KEY B_F7_KEY B_F12_KEY
B_F3_KEY B_F8_KEY B_PRINT_KEY (the “Print Screen” key)
B_F4_KEY B_F9_KEY B_SCROLL_KEY (the “Scroll Lock” key)
B_F5_KEY B_F10_KEY B_PAUSE_KEY

Note that key 0x30 (P) is also mapped toB_FUNCTION_KEY when the Control key is held
down.

Key States

You can look at the state of all keys on the keyboard at a given moment in time. This
information is captured and reported in two ways:

• As the “states” entry in everyB_KEY_DOWN message, and
• As thekey_states bitfield reported by BView’sGetKeys() function.

In both cases, the bitfield is an array of 16 bytes,

uchar states[16];

with one bit standing for each key on the keyboard. Bits are numbered from left to right,
beginning with the first byte in the array, as illustrated below:

Bit numbers start with 0 and match key codes. For example, bit 0x3c corresponds to theA
key, 0x3d to theS key, 0x3e to theD key, and so on. The first bit is 0x00, which doesn’t
correspond to any key. The first meaningful bit is 0x01, which corresponds to the Escape
key.

0x07
0x06
0x05
0x04
0x03
0x02
0x01
0x00

0x0f
0x0e
0x0d
0x0c
0x0b
0x0a
0x09
0x08

0x12
0x11
0x10

0 0 0 0 0 0 0 0 0 0 0 . . .0 0 0 0 0 0 0 0

Class Descriptions

The Interface Kit –57

When a key is down, the bit corresponding to its key code is set to 1. Otherwise, the bit is
set to 0. However, for the three keys that toggle keyboard locks—Caps Lock (key 0x3b),
Num Lock (key 0x22), and Scroll Lock (key 0x0f)—the bit is set to 1 if the lock is on and
set to 0 if the lock is off, regardless of the state of the key itself.

To test the bitfield against a particular key,

• Select the byte in thestates array that contains the bit for that key,
• Form a mask for the key that can be compared to that byte, and
• Compare the byte to the mask.

For example:

if (states[keyCode>>3] & (1 << (7 - (keyCode%8))))
 . . .

Here, the key code is divided by 8 to obtain an index into thestates array. This selects the
byte (theuchar) in the array that contains the bit for that key. Then, the part of the key
code that remains after dividing by 8 is used to calculate how far a bit needs to be shifted
to the left so that it’s in the same position as the bit corresponding to the key. This mask is
compared to thestates byte with the bitwise& operator.

Class Descriptions

The classes in the Interface Kit work together to define a program structure for drawing
and responding to the user. The two classes at the core of the structure—BWindow and
BView—have been discussed extensively above. Other Kit classes either derive from
BWindow and BView or support the work of those that do. The Kit defines several
different kinds of BViews that you can use in your application. But every application does
some unique drawing and has some application-specific responses to messages, so it must
also invent some BViews of its own.

To learn about the Interface Kit for the first time, it’s recommended that you first read this
introduction, then look at the BView and BWindow class descriptions, followed by the
descriptions of other classes as they interest you. It also might be useful to look at
supporting classes—like BPoint and BRect—early.

The class overview should help you determine which specific functions you need to turn to
in order to get more information about a class. The class constructor is often a good place
to start, as it contains general information on how instances of the class are initialized.

If you haven’t already read about the BApplication object and the messaging classes in the
Application Kit, be sure to do so. A program must have a BApplication object before it
can use the Interface Kit.

A reference to the Interface Kit follows. The classes are presented in alphabetical order,
beginning with BAlert.

Class Descriptions

58 – The Interface Kit

The Interface Kit –59

BAlert

Derived from: public BWindow

Declared in: <interface/Alert.h>

Overview

A BAlert places a modal window on-screen in front of other windows and keeps it there
until the user dismisses it. The window is analert panel that has a message for the user to
read and one or more buttons along the bottom that present various options for the user to
choose among. Operating a button with the keyboard or mouse selects a course of action
and dismisses the panel (closes the window). The message in the alert panel might warn
the user of something or convey some information that the application doesn’t want the
user to overlook. Typically, it asks a question that the user must answer (by operating the
appropriate button).

The alert panel stays on-screen only temporarily, until the user operates one of the buttons.
As long as it’s on-screen, other parts of the application’s user interface are disabled.
However, the user can continue to move windows around and work in other applications.

It’s possible to design such a panel using a BWindow object, some BButtons, and other
views. However, the BAlert class provides a simple way to do it. There’s no need to
construct views and arrange them, or call functions to show the window and then get rid of
it. All you do is:

• Construct the object.

• Call SetShortcut() if you want the user to be able to operate window buttons from
the keyboard. (The button on the right is automatically made the default button and
can be operated by the Enter key.)

• Call Go() to put the window on-screen.

For example:

BAlert *alert;
long result;

alert = new BAlert("", "Time’s up! Do you want to continue?",
 "Cancel", "Continue", NULL,
 B_WIDTH_FROM_WIDEST, B_WARNING_ALERT);
alert->SetShortcut(0, B_ESCAPE);
result = alert->Go();

Constructor BAlert

60 – The Interface Kit

Go() doesn’t return until the user operates a button to dismiss the panel. When it returns,
the window will have been closed, the window thread will have been killed, and the
BAlert object will have been deleted.

The valueGo() returns indicates which button dismissed the panel. If the user clicked the
“Cancel” button in this example or pressed the Escape key, the return result would be 0. If
the user clicked “Continue”, the result would be 1. Since the BAlert sets up the rightmost
button as the default button for the window, the user could also operate the “Continue”
button by pressing the Enter key.

Constructor

BAlert()
BAlert(const char *title, const char *text,

const char *firstButton,
const char *secondButton= NULL,
const char *thirdButton= NULL,
button_widthwidth= B_WIDTH_AS_USUAL,
alert_typetype= B_INFO_ALERT)

Creates an alert panel as a modal window. The window displays sometext for the user to
read, and can have up to three buttons. There must be at least afirstButton; the others are
optional. The BAlert must also have atitle, even though the panel doesn’t have a title tab
to display it. The title can beNULL or an empty string.

The buttons are arranged in a row at the bottom of the panel so that one is always in the
right bottom corner. They’re placed from left to right in the order specified to the
constructor. If labels for three buttons are provided,firstButton will be on the left,
secondButton in the middle, andthirdButton on the right. If only two labels are provided,
firstButton will come first andsecondButton will be in the right bottom corner. If there’s
just one label (firstButton), it will be at the right bottom location.

By default, the user can operate the rightmost button by pressing the Enter key. If a
“Cancel” button is included, it should be assigned theB_ESCAPE character as a keyboard
shortcut. Other buttons can be assigned other shortcut characters. Use BAlert’s
SetShortcut() function to set up the shortcuts, rather than BWindow’sAddShortcut().
Shortcuts added by a BWindow require the user to hold down a Command key, while
those set by a BAlert don’t.

By default, all the buttons have a standard, minimal width (B_WIDTH_AS_USUAL). This is
adequate for most buttons, but may not be wide enough to accommodate an especially
long label. To let the width of each button adjust to the width of its label, set thewidth
parameter toB_WIDTH_FROM_LABEL. To ensure that the buttons are all the same width, yet
wide enough to display the widest label, set thewidth parameter to
B_WIDTH_FROM_WIDEST.

BAlert Member Functions

The Interface Kit –61

For more hands-on manipulation of the buttons, you can get the BButton objects that the
BAlert creates by calling theButtonAt() function. To get the BTextView object that
displays thetext string, you can callTextView().

There are various kinds of alert panels, depending on the content of the textual message
and the nature of the options presented to the user. Thetype parameter should classify the
BAlert object as one of the following:

B_EMPTY_ALERT
B_INFO_ALERT
B_IDEA_ALERT
B_WARNING_ALERT
B_STOP_ALERT

Currently, the alerttype is used only to select a representative icon that’s displayed at the
left top corner of the window. AB_EMPTY_ALERT doesn’t have an icon.

After the BAlert is constructed,Go() must be called to place it on-screen. Before
returning,Go() destroys the object. You don’t need to write code to delete it.

See also: Go(), SetShortcut()

Member Functions

ButtonAt()
inline BButton *ButtonAt(long index) const

Returns a pointer to the BButton object for the button atindex. Indices begin at 0 and
count buttons from left to right. The BButton belongs to the BAlert object and should not
be freed.

See also: TextView()

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Overrides the BView function to adjust the layout within the panel when its dimensions
change. This function is called as the panel is being resized; there’s no need to call it or
override it in application code.

See also: BWindow::FrameResized()

Member Functions BAlert

62 – The Interface Kit

Go()
long Go(void)

Calls theShow() virtual function to place the alert panel on-screen, sets the modal loop for
the BAlert in motion, and returns when the loop has quit and the window has been closed.
The value returned is the index of the button that the user operated to dismiss the window.
Buttons are numbered from left to right, beginning with 0.

To put an alert panel on-screen, simply construct a BAlert object, set its keyboard
shortcuts, if any, and call this function. See the example code in the “Overview” section
above.

Before returning, this function deletes the BAlert object, and all the objects it created.

See also: the BAlert constructor

MessageReceived()
virtual voidMessageReceived(BMessage *message)

Closes the window in response to messages posted from the window’s buttons. There’s no
need for your application to call or override this function.

SetShortcut()
void SetShortcut(long index, charshortcut)

Sets ashortcut character that the user can type to operate the button atindex. Buttons are
indexed from left to right beginning with 0. By default,B_ENTER is the shortcut for the
rightmost button.

A “Cancel” button should be assigned theB_ESCAPE character as a shortcut.

The shortcut doesn’t require the user to hold down a Command key or other modifier
(except for any modifiers that would normally be required to produce theshortcut
character).

The shortcut is valid only while the window is on-screen.

TextView()
inline BTextView *TextView(void) const

Returns a pointer to the BTextView object that contains the textual information that’s
displayed in the panel. The object is created and the text is set when the BAlert is
constructed. The BTextView object belongs to the BAlert and should not be freed.

See also: the BAlert constructor,ButtonAt()

The Interface Kit –63

BBitmap

Derived from: public BObject

Declared in: <interface/Bitmap.h>

Overview

A BBitmap object is a container for an image bitmap; it stores pixel data—data that
describes an image pixel by pixel. The class provides a way of specifying a bitmap from
raw data, and also a way of creating the data from scratch using the Interface Kit graphics
mechanism.

BBitmap functions manage the bitmap data and provide information about it. However,
they don’t do anything with the data. Placing the image somewhere so that it can be seen
is the province of BView functions—such asDrawBitmap() andDragMessage()—not this
class.

Bitmap Data

An image bitmap records the color values of pixels within a rectangular area. The pixels
in the rectangle, as on the screen, are arranged in rows and columns. The data is specified
in rows, beginning with the top row of pixels in the image and working downward to the
bottom row. Each row of data is aligned on a long word boundary and is read from left to
right.

New BBitmap objects are constructed with two pieces of information that prepare them to
store bitmap data—a bounds rectangle and a color space. For example, this code

BRect rect(0.0, 0.0, 39.0, 79.0);
BBitmap *image = new BBitmap(rect, B_COLOR_8_BIT);

constructs a bitmap of 40 rows and 80 pixels per row. Each pixel is specified by an 8-bit
color value.

The Bounds Rectangle

A BBitmap’s bounds rectangle serves two purposes:

• It sets the size of the image. A bitmap covers as many pixels as its bounds rectangle
encloses—under the assumption that one coordinate unit equals one pixel, as it does
when the display device is the screen.

Overview BBitmap

64 – The Interface Kit

Since a bitmap can’t contain a fraction of a pixel, the bounds rectangle shouldn’t
contain any fractional coordinates. Without fractional coordinates, each side of the
bounds rectangle will be aligned with a column or a row of pixels. The pixels
around the edge of the rectangle are included in the image, so the bitmap will
contain one more column of pixels than the width of the rectangle and one more row
than the rectangle’s height. (See the BRect class “Overview” on page 175 for an
illustration.)

• It establishes a coordinate system that can be used later by drawing functions, such
asDrawBitmap() andDragMessage(), to designate particular points or portions of
the image.

For example, if one BBitmap was constructed with this bounds rectangle,

BRect firstRect(0.0, 0.0, 60.0, 100.0);

and another with this rectangle,

BRect secondRect(60.0, 100.0, 120.0, 200.0);

they would both have the same size and shape. However, the coordinates
(60.0, 100.0) would designate the right bottom corner of the first bitmap, but the left
top corner of the second.

< If a BBitmap object enlists BViews to create the bitmap data, it must have a bounds
rectangle with (0.0, 0.0) at the left top corner. >

The Color Space

The color space of a bitmap determines its depth (how many bits of information are
stored for each pixel) and its interpretation (what the data values mean). These five
color spaces are currently defined:

B_MONOCHROME_1_BIT
B_GRAYSCALE_8_BIT
B_COLOR_8_BIT
B_RGB_16_BIT
B_RGB_32_BIT

< Currently, bitmap data is stored only in theB_RGB_32_BIT, B_COLOR_8_BIT, and
B_MONOCHROME_1_BIT color spaces. TheB_GRAYSCALE_8_BIT andB_RGB_16_BIT color
spaces are not used at the present time. >

In theB_RGB_32_BIT color space, the color of each pixel is specified by its red, green, and
blue components. In theB_COLOR_8_BIT color space, colors are specified as byte indices
into the color map. In theB_MONOCHROME_1_BIT color space, a value of 1 means black
and 0 means white. (A more complete description of the five color spaces can be found
under “Colors” on page 25 of the introduction to this chapter.)

BBitmap Overview

The Interface Kit –65

Specifying the Image

BBitmap objects begin life empty. When constructed, they allocate sufficient memory to
store an image of the size and color space specified. However, the memory isn’t
initialized. The actual image must be set after construction. This can be done by
explicitly assigning pixel values with theSetBits() function:

image->SetBits(rawData, numBytes, 0, COLOR_8_BIT);

In addition to this function, BView objects can be enlisted to produce the bitmap. Views
are assigned to a BBitmap object just as they are to a BWindow (by calling theAddChild()
function). In reality, the BBitmap sets up a private, off-screen window for the views.
When the views draw, the window renders their output into the bitmap buffer. The
rendered image has the same format as the data captured by theSetBits() function. SetBits()
and BViews can be used in combination to create a bitmap.

The BViews that construct a bitmap behave a bit differently than the BViews that draw in
regular windows:

• In contrast to BViews attached to an ordinary window, the BViews assigned to a
BBitmap can create an image off-screen. When an ordinary window is hidden, it
doesn’t render images; its BViews may draw, but they don’t produce image data.
However, the BViews assigned to a BBitmap produce an off-screen bitmap.

• Because they never appear on-screen, the BViews that produce a bitmap image
never handle events and never get update messages telling them to draw. You must
call their drawing functions directly in your own code.

This is typically done just once, to create the bitmap. After that, the BViews can be
discarded; they’ll never be called upon to update the image. However, if the bitmap
will change—perhaps to reflect decisions the user makes as the program runs—the
BViews can be retained to make the changes.

• Because there are no update messages, the output buffer to the Application Server
isn’t automatically flushed. You must flush it explicitly in application code. This is
best done by callingSync(), rather thanFlush(), so that you can be sure the entire
image has been rendered before the bitmap is used.

• A BBitmap has no background color against which images are drawn. Your code
must color every pixel within the bounds rectangle.

• Views that are attached to a BWindow normally draw in the window’s thread.
However, views attached to a BBitmap don’t draw in a separate thread; the BBitmap
doesn’t set up an independent thread for its private window.

So that you can manage the BViews that are assigned to a BBitmap, the BBitmap class
duplicates a number of BWindow functions—such asAddChild(), FindView(), and
ChildAt().

A BBitmap that enlists views to produce the bitmap consumes more system resources than
one that relies solely onSetBits(). Therefore, by default, BBitmaps refuse to accept

Constructor and Destructor BBitmap

66 – The Interface Kit

BViews. If BViews will be used to create bitmap data, the BBitmap constructor must be
informed so that it can set up the off-screen window and prepare the rendering mechanism.

Transparency

Color bitmaps can have transparent pixels. When the bitmap is imaged in a drawing mode
other thanB_OP_COPY, its transparent pixels won’t be transferred to the destination view.
The destination image will show through wherever the bitmap is transparent.

To introduce transparency into aB_COLOR_8_BIT bitmap, a pixel can be assigned a value
of B_TRANSPARENT_8_BIT. In aB_RGB_32_BIT bitmap, a pixel can be assigned the special
value ofB_TRANSPARENT_32_BIT. (OrB_TRANSPARENT_32_BIT can be made the high or low
color of the BView drawing the bitmap.)

Transparency is covered in more detail under “Drawing Modes” on page 27 of the chapter
introduction.

See also: system_colors()

Constructor and Destructor

BBitmap()
BBitmap(BRectbounds, color_spacemode, boolacceptsViews = FALSE)

Initializes the BBitmap to the size and internal coordinate system implied by thebounds
rectangle and to the depth and color interpretation specified by themode color space.

This function allocates enough memory to store data for an image the size ofbounds at the
depth required bymode, but does not initialize any of it. All pixel data should be
explicitly set using theSetBits() function, or by enlisting BViews to produce the bitmap. If
BViews are to be used, the constructor must be informed by setting theacceptsViews flag
to TRUE. This permits it to set up the mechanisms for rendering the image, including an
off-screen window to contain the views.

< Currently, onlyB_RGB_32_BIT, B_COLOR_8_BIT, andB_MONOCHROME_1_BIT are
acceptable as the color spacemode. B_RGB_16_BIT is not supported for the present release
andB_GRAYSCALE_8_BIT is reinterpreted asB_COLOR_8_BIT. >

< If the BBitmap accepts BViews, the left and top sides of itsbounds rectangle must be
located at 0.0. >

BBitmap Member Functions

The Interface Kit –67

~BBitmap()
virtual ~BBitmap(void)

Frees all memory allocated to hold image data, deletes any BViews used to create the
image, gets rid of the off-screen window that held the views, and severs the BBitmap’s
connection to the Application Server.

Member Functions

AddChild()
virtual voidAddChild(BView *aView)

AddsaView to the hierarchy of views associated with the BBitmap, attaching it to an off-
screen window (one created by the BBitmap for just this purpose) by making it a child of
the window’s top view. IfaView already has a parent, it’s removed from that view
hierarchy and adopted into this one. A view can serve only one window at a time.

Like AddChild() in the BWindow class, this function calls the BView’s
AttachedToWindow() function to inform it that it now belongs to a view hierarchy. Every
view that descends fromaView also becomes attached to the BBitmap’s off-screen
window and receives its ownAttachedToWindow() notification.

AddChild() fails if the BBitmap was not constructed to accept views.

See also: BWindow::AddChild(), BView::AttachedToWindow(), RemoveChild(), the
BBitmap constructor

Bits()
inline void *Bits(void) const

Returns a pointer to the bitmap data. The data lies in memory shared by the application
and the Application Server. The length of the data can be obtained by calling
BitsLength()—or it can be calculated from the height of the bitmap (the number of rows)
and the number of bytes per row.

A B_RGB_32_BIT bitmap holds the data in an internal format that’s most natural for screen
display devices. In this format, the color components are ordered BGRA (blue, green, red,
alpha).

See also: Bounds(), BytesPerRow(), BitsLength()

Member Functions BBitmap

68 – The Interface Kit

BitsLength()
inline longBitsLength(void) const

Returns the number of bytes that were allocated to store the bitmap data.

See also: Bits(), BytesPerRow()

Bounds()
inline BRectBounds(void) const

Returns the bounds rectangle that defines the size and coordinate system of the bitmap.
This should be identical to the rectangle used in constructing the object.

See also: the BBitmap constructor

BytesPerRow()
inline longBytesPerRow(void) const

Returns how many bytes of data are required to specify a row of pixels. For example, a
monochrome bitmap (one bit per pixel) 80 pixels wide would require twelve bytes per row
(96 bits). The extra sixteen bits at the end of the twelve bytes are ignored. Every row of
bitmap data is aligned on a long word boundary.

ChildAt(), CountChildren()
BView *ChildAt(long index) const

long CountChildren(void) const

ChildAt() returns the child BView atindex, or NULL if there’s no child atindex. Indices
begin at 0 and count only BViews that were added to the BBitmap (added as children of
the top view of the BBitmap’s off-screen window) and not subsequently removed.

CountChildren() returns the number of BViews the BBitmap currently has. (It counts only
BViews that were added directly to the BBitmap, not BViews farther down the view
hierarchy.)

These functions fail if the BBitmap wasn’t constructed to accept views.

See also: BWindow::ChildAt(), BView::Parent()

BBitmap Member Functions

The Interface Kit –69

ColorSpace()
inline color_spaceColorSpace(void) const

Returns the color space of the data being stored (not necessarily the color space of the data
passed to theSetBits() function). Once set by the BBitmap constructor, the color space
doesn’t change.

Thecolor_space data type is defined ininterface/InterfaceDefs.h and is explained on
page 25 of the introduction to this chapter.

See also: the BBitmap constructor

CountChildren() see ChildAt()

FindView()
BView *FindView(BPointpoint) const
BView *FindView(const char *name) const

Returns the BView located atpoint within the bitmap, or the BView tagged withname.
The point must be somewhere within the BBitmap’s bounds rectangle, which must have
the coordinate origin, (0.0, 0.0), at its left top corner.

If the BBitmap doesn’t accept views, this function fails. If no view draws at thepoint
given, or no view associated with the BBitmap has thename given, it returnsNULL.

See also: BView::FindView()

Lock(), Unlock()
bool Lock(void)

void Unlock(void)

These functions lock and unlock the off-screen window where BViews associated with the
BBitmap draw. Locking works for this window and its views just as it does for ordinary
on-screen windows.

Lock() returnsFALSE if the BBitmap doesn’t accept views or if its off-screen window is
unlockable (and therefore unusable) for some reason. Otherwise, it doesn’t return until it
has the window locked and can returnTRUE.

See also: BLooper::Lock() in the Application Kit

Member Functions BBitmap

70 – The Interface Kit

RemoveChild()
virtual boolRemoveChild(BView *aView)

RemovesaView from the hierarchy of views associated with the BBitmap, but only if
aView was added to the hierarchy by calling BBitmap’s version of theAddChild()
function.

If aView is successfully removed,RemoveChild() returnsTRUE. If not, it returnsFALSE.

See also: AddChild()

SetBits()
void SetBits(const void *data, long length, longoffset, color_spacemode)

Assignslength bytes ofdata to the BBitmap object. The new data is copied into the
bitmap beginningoffset bytes (not pixels) from the start of allocated memory. To set data
beginning with the first (left top) pixel in the image, theoffset should be 0; to set data
beginning with, for example, the sixth pixel in the first row of aB_RGB_32_BIT image, the
offset should be 20. The offset counts any padding required to align rows of data.

The source data is specified in themode color space, which may or may not be the same as
the color space that the BBitmap uses to store the data. If not, the following conversions
are automatically made:

• B_MONOCHROME_1_BIT andB_RGB_32_BIT to B_COLOR_8_BIT.
• B_COLOR_8_BIT andB_GRAYSCALE_8_BIT to B_RGB_32_BIT.

Colors may be dithered in the conversion toB_COLOR_8_BIT, so that the resulting image
will match the original as closely as possible, despite the lost information.

If the color spacemode is B_RGB_32_BIT, thedata should be triplets of three 8-bit
components—red, green, and blue, in that order—without an alpha component. Although
stored as 32-bit quantities, the input data is only 24 bits. Rows of source data do not need
to be aligned.

However, if the source data is in anymode other thanB_RGB_32_BIT, padding must be
added so that each row is aligned on along word boundary.

This function works for all BBitmaps, whether or not BViews are also enlisted to produce
the image.

See also: Bits()

The Interface Kit –71

BBox

Derived from: public BView

Declared in: <interface/Box.h>

Overview

A BBox draws a labeled border around other views. It serves only to label those views
and organize them visually. It doesn’t respond to messages.

The border is drawn around the edge of the view’s frame rectangle. If the BBox has a
label, the border at the top of box is broken where the label appears (and the border is inset
from the top somewhat to make room for the label).

The current pen size of the view determines the width of the border, which by default is
1.0 coordinate unit. If you make the border thicker, it will be inset somewhat so that none
of it is clipped by the BBox’s frame rectangle. The label is drawn in the current font,
which by default is the Erich bitmap font. Both the border and the label are drawn in the
current high color; the default high color is black.

The views that the box encloses should be made children of the BBox object.

Constructor and Destructor

BBox()
BBox(BRectframe, const char *name= NULL,

ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW)

Initializes the BBox by passing all arguments to the BView constructor, and sets the font
for displaying the label to the 9.0-point Erich bitmap font. However, the new object
doesn’t have a label; callSetLabel() to assign it one.

See also: SetLabel()

Member Functions BBox

72 – The Interface Kit

~BBox()
virtual ~BBox(void)

Frees the label, if the BBox has one.

Member Functions

Draw()
virtual voidDraw(BRectupdateRect)

Draws the box and its label. This function is called automatically in response to update
messages.

See also: BView::Draw()

SetLabel(), Label()
void SetLabel(const char *string)

const char *Label(void) const

These functions set and return the label that’s displayed along the top edge of the box.
SetLabel() copiesstring and makes it the BBox’s label, freeing the previous label, if any.
If string is NULL, it removes the current label and frees it.

Label() returns a pointer to the BBox’s current label, orNULL if it doesn’t have one.

The Interface Kit –73

BButton

Derived from: public BControl

Declared in: <interface/Button.h>

Overview

A BButton object draws a labeled button on-screen and responds when the button is
clicked or when it’s operated from the keyboard. If the BButton is thedefault button for
its window and the window is the active window, the user can operate it by pressing the
Enter key.

BButtons have a single state. Unlike check boxes and radio buttons, the user can’t toggle
a button on and off. However, the button’s value changes while it’s being operated.
During a click (while the user holds the mouse button down and the cursor points to the
button on-screen), the BButton’s value is set to 1 (B_CONTROL_ON). Otherwise, the value
is 0 (B_CONTROL_OFF).

This class depends on the control framework defined in the BControl class. In particular,
it calls these BControl functions:

• SetValue() to make each change in the BControl’s value. This is a hook function
that you can override to take collateral action when the value changes.

• Invoke() to post a message each time the button is clicked or operated from the
keyboard. You can designate the object that should handle the message by calling
BControl’sSetTarget() function. A model for the message is set by the BButton
constructor (or by BControl’sSetMessage() function).

• IsEnabled() to determine how the button should be drawn and whether it’s enabled
to post a message. You can call BControl’sSetEnabled() to enable and disable the
button.

A BButton is an appropriate control device for initiating an action. Use a BCheckBox,
BPictureButton, or BRadioButtons to set a state.

Hook Functions BButton

74 – The Interface Kit

Hook Functions

MakeDefault() Makes the BButton the default button for its window or
removes that status; can be augmented by derived classes to
take note when the status of the button changes.

Constructor

BButton()
BButton(BRectframe, const char *name,

const char *label,
BMessage *message,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BButton by passing all arguments to the BControl constructor. BControl
initializes the button’slabel and assigns it a modelmessage that identifies the action that
should be carried out when the button is invoked.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class and are passed up the inheritance hierarchy to the BView constructor
without change.

When the button is attached to a window, it will be resized so that the height of itsframe
rectangle exactly accommodates the height of its label, given the BButton’s current font.

See also: the BControl and BView constructors,BControl::Invoke()

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version of this function to set the background color of the button
to match the background color of its parent. This function also resizes the button
vertically so that its height is just adequate to display the label and the button border. The
height of the label depends on the BView’s font.

Finally, it makes sure that the BButton does not consider itself the default button for the
window to which it has just become attached—even if it may have been the default button
for the window to which it was previously attached.

See also: BView::AttachedToWindow(), BControl::AttachedToWindow(), MakeDefault()

BButton Member Functions

The Interface Kit –75

Draw()
virtual voidDraw(BRectupdateRect)

Draws the button and labels it. If the BButton’s value is anything but 0, the button is
highlighted. If it’s disabled, it drawn in muted shades of gray. Otherwise, it’s drawn in its
ordinary, enabled, unhighlighted state.

See also: BView::Draw()

IsDefault() see MakeDefault

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the inherited version ofKeyDown() to respond to messages reporting that the
user pressed the Enter key or the space bar. Its response is to:

• Momentarily highlight the button and change its value, and
• Post a copy of the model BMessage to the target receiver.

The BButton can expectKeyDown() function calls when it’s the focus view for the active
window (which results when the user navigates to it) and also when it’s the default button
for the window andaChar is B_ENTER.

See also: BControl::Invoke(), BView::KeyDown(), MakeDefault()

MakeDefault(), IsDefault()
virtual voidMakeDefault(boolflag)

bool IsDefault(void) const

MakeDefault() makes the BButton the default button for its window whenflag is TRUE, and
removes that status whenflag is FALSE. The default button is the button the user can
operate by striking the Enter key when the window is the active window.IsDefault()
returns whether the BButton is currently the default button.

A window can have only one default button at a time. Setting a new default button,
therefore, may deprive another button of that status. WhenMakeDefault() is called with
an argument ofTRUE, it generates aMakeDefault() call with an argument ofFALSE for
previous default button. Both buttons are redisplayed so that the user can see which one is
currently the default.

The default button can also be set by calling BWindow’sSetDefaultButton() function.
That function makes sure that the button that’s forced to give up default status and the
button that obtains it are both notified throughMakeDefault() function calls.

Member Functions BButton

76 – The Interface Kit

MakeDefault() is therefore a hook function that can be augmented to take note each time
the default status of the button changes. It’s called once for each change in status, no
matter which function initiated the change.

See also: BWindow::SetDefaultButton()

MouseDown()
virtual voidMouseDown(BPointpoint)

Overrides the BView version ofMouseDown() to track the cursor while the user holds the
mouse button down. As the cursor moves in and out of the button, the BButton’s value is
reset accordingly. TheSetValue() virtual function is called to make the change each time.

If the cursor is inside the BButton’s bounds rectangle when the user releases the mouse
button, this function posts a copy of the model message so that it will be dispatched to the
target object.

See also: BView::MouseDown(), BControl::Invoke(), BControl::SetTarget()

The Interface Kit –77

BCheckBox

Derived from: public BControl

Declared in: <interface/CheckBox.h>

Overview

A BCheckBox object draws a labeled check box on-screen and responds to a keyboard
action or a click by changing the state of the device. A check box has two states: An “X”
is displayed in the box when the object’s value is 1 (B_CONTROL_ON), and is absent when
the value is 0 (B_CONTROL_OFF). The BCheckBox is invoked (it posts a message to the
target receiver) whenever its value changes in either direction—when it’s turned onand
when it’s turned off.

A check box is an appropriate control device for setting a state—turning a value on and
off. Use menu items or buttons to initiate actions within the application.

Constructor

BCheckBox()
BCheckBox(BRectframe, const char *name,

const char *label,
BMessage *message,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BCheckBox by passing all arguments to the BControl constructor. BControl
initializes thelabel of the check box and assigns it a modelmessage that encapsulates the
action that should be taken when the state of the check box changes.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class and are passed unchanged to the BView constructor.

When the BCheckBox is attached to a window, the height of itsframe rectangle will be
adjusted so that it has exactly the right amount of room to display the check box icon and
the label, given its current font. The object draws at the vertical center of its frame
rectangle beginning at the left side.

See also: the BControl and BView constructors,AttachedToWindow()

Member Functions BCheckBox

78 – The Interface Kit

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version ofAttachedToWindow() to set the view and low colors of
the BCheckbox to the match its parent’s view color, and to resize the view vertically to fit
the height of the label it displays. The height of the label depends on the BCheckBox’s
font, which the BControl constructor sets to the Emily bitmap font.

See also: BControl::AttachedToWindow()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the check box and its label. If the current value of the BCheckBox is 1
(B_CONTROL_ON), it’s marked with an “X”. If the value is 0 (B_CONTROL_OFF), it’s
empty.

See also: BView::Draw()

MouseDown()
virtual voidMouseDown(BPointpoint)

Responds to a mouse-down event within the check box by tracking the cursor while the
user holds the mouse button down. If the cursor is inside the bounds rectangle when the
user releases the mouse button, this function toggles the value of the BCheckBox and calls
Draw() to redisplay it. If the box was empty before the mouse-down event, it will be
marked afterward; if marked before, it will be empty afterwards.

When the value of the BCheckBox changes, a copy of the model BMessage is posted so
that it can be delivered to the object’s target handler. See BControl’sInvoke() and
SetTarget() functions for more information. The message is dispatched by calling the
target’sMessageReceived() virtual function.

BCheckBox Member Functions

The Interface Kit –79

The target object can get a pointer to the BCheckBox from the message, and use it to
discover the object’s new value. For example:

void MyHandler::MessageReceived(BMessage *msg)
{
 . . .
 BCheckBox *box = (BCheckBox *)msg->FindObject("source");
 if (message->Error() == B_NO_ERROR) {
 long value = box->Value();
 . . .
 }
 . . .
}

See also: BControl::Invoke(), BControl::SetTarget(), andBControl::SetValue()

Member Functions BCheckBox

80 – The Interface Kit

The Interface Kit –81

BColorControl

Derived from: public BControl

Declared in: <interface/ColorControl.h>

Overview

A BColorControl object displays an on-screen device that permits users to pick a color. It
reports the color as its current value—anrgb_color data structure stored as along integer.
If a model message is provided, it announces each change in value by sending a copy of
the message to a designated target.

When the screen is 8 bits deep, the BColorControl object presents users with a matrix of
the 256 available colors. The user chooses a color by pressing the primary mouse button
while the cursor is over one of the cells in the matrix. Dragging from cell to cell changes
the selected color. The arrow keys can similarly change the selection when the object is
the focus view. The BColorControl’s value changes each time the selection does.

When the screen is 32 bits deep, the BColorControl object displays ramps for each color
component. The user changes the current color by modifying a red, green, or blue
component value.

Constructor and Destructor

BColorControl()
BColorControl(BPoint leftTop, color_control_layoutmatrix, longcellSide,

const char *name, BMessage *message= NULL,
boolbufferedDrawing= FALSE)

Initializes the BColorControl so that the left top corner of its frame rectangle will be
located at the statedleftTop point in the coordinate system of its parent view. The frame
rectangle will be large enough to display 256 color cells arranged in the specifiedmatrix,
which can be any of the following constants:

B_CELLS_4x64
B_CELLS_8x32
B_CELLS_16x16
B_CELLS_32x8
B_CELLS_64x4

Member Functions BColorControl

82 – The Interface Kit

For example,B_CELLS_4x64 lays out a matrix with four cell columns and 64 rows;
B_CELLS_32x8 specifies 32 columns and 8 rows. Each cell is a squarecellSide coordinate
units on a side.

When the screen is 32 bits deep, the same frame rectangle will display four color ramps,
one each for the red, green, and blue components, plus a disabled ramp for the alpha
component. You might choosematrix andcellSize values with a view toward how the
resulting bounds rectangle would be divided into four horizontal rows.

Thename argument assigns a name to the object as a BHandler. It’s the same as the
argument declared by the BView constructor.

If a modelmessage is supplied, the BColorControl will announce every change in color
value by callingInvoke() (defined in the BControl class) to post a copy of the message to a
designated target.

If the bufferedDrawing flag isTRUE, all changes to the on-screen display will first be made
in an off-screen bitmap and then copied to the screen. This makes the drawing smoother,
but it requires more memory.

The initial value of the new object is 0, which when translated to anrgb_color structure,
means black.

See also: BHandler::SetName(), BControl::Invoke()

~BColorControl()
virtual ~BColorControl(void)

Gets rid of the off-screen bitmap, if one was requested when the object was constructed.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version of this function to set the BColorControl’s view color and
low color to be the same as its parent’s view color.

See also: BControl::AttachedToWindow(), BView::SetViewColor()

BColorControl Member Functions

The Interface Kit –83

Draw()
virtual voidDraw(BRectupdateRect)

Overrides the BView version of this function to draw the color control.

See also: BView::Draw()

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the BControl version ofKeyDown() to allow the user to navigate within the
color control using the arrow keys.

See also: BControl::KeyDown()

MouseDown()
virtual voidMouseDown(BPointpoint)

Overrides the BView version of this function to allow the user to operate the color control
with the mouse.

See also: BView::MouseDown()

SetValue(), ValueAsColor()
virtual voidSetValue(longcolor)
virtual voidSetValue(rgb_colorcolor)

rgb_colorValueAsColor(void)

These functions set and return the BColorControl’s current value—the last color that the
user selected.

The version ofSetValue() that takes along argument is essentially the same as the
BControl version of the function, which it augments only to take care of class-internal
housekeeping details. The version that takes anrgb_color argument packs the information
from that structure into along integer and passes it to the other version of the function.
Like all other objects that derive from BControl, a BColorControl stores its current value
as along; no information is lost in the translation from anrgb_color structure to an
integer.

ValueAsColor() is an alternative to theValue() function inherited from the BControl class.
It returns the object’s current value as anrgb_color; Value() returns it as along.

See also: BControl::SetValue()

Member Functions BColorControl

84 – The Interface Kit

The Interface Kit –85

BControl

Derived from: public BView

Declared in: <interface/Control.h>

Overview

BControl is an abstract class for views that draw control devices on the screen. Objects
that inherit from BControl emulate, in software, real-world control devices—like the
switches and levers on a machine, the check lists and blank lines on a form to fill out, or
the dials and knobs on a home appliance.

Controls translate the messages that report generic mouse and keyboard events into other
messages with more specific instructions for the application. A BControl object can be
customized by setting the message it posts when invoked and the target object that should
handle the message.

Controls also register a current value, stored as along integer that’s typically set to
B_CONTROL_ON or B_CONTROL_OFF. The value is changed only by callingSetValue(), a
virtual function that derived classes can implement to be notified of the change.

The Interface Kit currently includes six classes derived from BControl—BButton,
BPictureButton, BRadioButton, BCheckBox, BColorControl, and BTextControl. In
addition, it has two classes—BListView and BMenuItem—that implement control devices
but are not derived from this class. BListView shares an interface with the BList class (of
the Support Kit) and BMenuItem is designed to work with the other classes in the menu
system.

As BListView and BMenuItem demonstrate, it’s possible to implement a control device
that’s not a BControl. However, it’s simpler to take advantage of the code that’s already
provided by the BControl class. That way you can keep a simple programming interface
and avoid reimplementing functions that BControl has defined for you. If your application
defines its own control devices—dials, sliders, selection lists, and the like—they should be
derived from BControl.

Hook Functions BControl

86 – The Interface Kit

Hook Functions

SetEnabled() Enables and disables the control device; can be augmented
by derived classes to note when the state of the object has
changed.

SetValue() Changes the value of the control device; can be augmented
to take collateral action when the change is made.

Constructor and Destructor

BControl()
BControl(BRectframe, const char *name,

const char *label, BMessage *message,
ulongresizingMode, ulongflags)

Initializes the BControl by setting its initial value to 0 (B_CONTROL_OFF), assigning it a
label, and registering a modelmessage that captures what the control does—the command
it gives when it’s invoked and the information that accompanies the command. Thelabel
and themessage can each beNULL.

Thelabel is copied, but themessage is not. The BMessage object becomes the property of
the BControl; it should not be deleted, posted, assigned to another object, or otherwise
used in application code. The label and message can be altered after construction with the
SetLabel() andSetMessage() functions.

The BControl class doesn’t define aDraw() function to draw the label or aMouseDown()
function to post the message. (It does defineKeyDown(), but only to enable keyboard
navigation between controls.) It’s up to derived classes to determine how thelabel is
drawn and how themessage is to be used. Typically, when a BControl object needs to take
action (in response to a click, for example), it calls theInvoke() function, which copies the
model message and posts the copy so that it will be dispatched to the designated target.
By default, the target is the window where the control is located, butSetTarget() can
designate another handler.

Before posting a copy of the model message,Invoke() adds two data entries to it, under
the names “when” and “source”. These names should not be used for data items in the
model.

Theframe, name, resizingMode, andflags arguments are identical to those declared for the
BView class and are passed unchanged to the BView constructor.

The BControl begins life enabled, and the Emily bitmap font is made the default font for
all control devices.

See also: the BView constructor,BLooper::PostMessage() in the Application Kit,
SetLabel(), SetMessage(), SetTarget(), Invoke()

BControl Member Functions

The Interface Kit –87

~BControl()
virtual ~BControl(void)

Frees the model message and all memory allocated by the BControl.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Overrides BView’s version of this function to make the BWindow to which the BControl
has become attached the default target for theInvoke() function, provided that another
target hasn’t already been set. To designate the target, it callsSetTarget(), a virtual
function.

AttachedToWindow() is called for you when the BControl becomes a child of a view
already associated with the window.

See also: BView::AttachedToWindow(), BView::SetFontName(), Invoke(), SetTarget()

Command() see SetMessage()

Invoke()
protected:

void Invoke(void)

Copies the BControl’s model BMessage and posts the copy so that it will be dispatched to
the designated target. The following two pieces of information are added to the copy
before it’s posted:

Data name Type code Description

“when” B_DOUBLE_TYPE When the control was invoked, as
measured in microseconds from the time
the machine was last booted.

“source” B_OBJECT_TYPE A pointer to the BControl object. This
permits the message handler to request
more information from the source of the
message.

These two names shouldn’t be used for data entries in the model.

Member Functions BControl

88 – The Interface Kit

If the control doesn’t have a target BHandler, but it does have a designated BLooper where
it can post the message, it will ask the BLooper for its preferred handler and name it as the
target. Since the preferred handler for a BWindow object is the current focus view, this
option allows control devices to be targeted to whatever view happens to be in focus at the
time. See theSetTarget() function for information on how to designate a target BHandler
and BLooper for the control.

Invoke() is designed to be called from theMouseDown() andKeyDown() functions
defined for derived classes; it’s not called for you in BControl code. It’s up to each
derived class to define what user actions trigger the call toInvoke()—what activity
constitutes “invoking” the control.

This function doesn’t check to make sure the BControl is currently enabled. Derived
classes should make that determination before callingInvoke().

See also: SetTarget(), SetMessage(), SetEnabled()

IsEnabled() see SetEnabled()

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the BView version ofKeyDown() to toggle the BControl’s value and call
Invoke() whenaChar is theB_SPACE character orB_ENTER. This is done to facilitate
keyboard navigation and make all derived control devices operable from the keyboard.
Some derived classes—BCheckBox in particular—find this version of the function to be
adequate. Others, like BRadioButton, reimplement it.

KeyDown() is called only when the BControl is the focus view in the active window.
(However, if the window has a default button,B_ENTER events will be passed to that object
and won’t be dispatched to the focus view.)

See also: BView::KeyDown(), MakeFocus()

Label() see SetLabel()

MakeFocus()
virtual voidMakeFocus(bool focused = TRUE)

Augments the BView version of this function to call the BControl’sDraw() function when
the focus changes. This is done to aid keyboard navigation among control devices. If the
Draw() function of a derived class has a section of code that checks whether the object is in
focus and marks the on-screen display to show that it is (and removes any such marking
when it isn’t), the visual part of keyboard navigation will be taken care of. The derived

BControl Member Functions

The Interface Kit –89

class doesn’t have to reimplementMakeFocus(). Most of the derived classes
implemented in the Interface Kit depend on this version of the function.

See also: BView::MakeFocus(), KeyDown()

SetEnabled(), IsEnabled()
virtual voidSetEnabled(boolenabled)

bool IsEnabled(void) const

SetEnabled() enables the BControl if theenabled flag isTRUE, and disables it ifenabled is
FALSE. IsEnabled() returns whether or not the object is currently enabled. BControls are
enabled by default.

While disabled, a BControl won’t let the user navigate to it; theB_NAVIGABLE flag is
turned off ifenabled is FALSE and turned on again ifenabled is TRUE.

Typically, a disabled BControl also won’t post messages or respond visually to mouse and
keyboard manipulation. To indicate this nonfunctional state, the control device is
displayed on-screen in subdued colors. However, it’s left to each derived class to carry out
this strategy in a way that’s appropriate for the kind of control it implements. The
BControl class merely marks an object as being enabled or disabled; none of its functions
take the enabled state of the device into account.

Derived classes can augmentSetEnabled() (override it) to take action when the control
device becomes enabled or disabled. To be sure thatSetEnabled() has been called to
actually make a change, its current state should be checked before calling the inherited
version of the function. For example:

void MyControl::SetEnabled(bool enabled)
{
 if (enabled == IsEnabled())
 return;
 BControl::SetEnabled(enabled);
 /* Code that responds to the change in state goes here . */
}

Note, however, that you don’t have to overrideSetEnabled() just to update the on-screen
display when the control becomes enabled or disabled. If the BControl is attached to a
window, the Kit’s version ofSetEnabled() always calls theDraw() function. Therefore,
the device on-screen will be updated automatically—as long asDraw() has been
implemented to take the enabled state into account.

See also: the BControl constructor

Member Functions BControl

90 – The Interface Kit

SetLabel(), Label()
virtual voidSetLabel(const char *string)

const char *Label(void) const

These functions set and return the label on a control device—the text that’s displayed, for
example, on top of a button or alongside a check box or radio button. The label is a null-
terminated string.

SetLabel() makes a copy ofstring, replaces the current label with it, frees the old label,
and updates the control on-screen so the new label will be displayed to the user—but only
if the string that’s passed differs from the current label. The label is first set by the
constructor and can be modified thereafter by this function.

Label() returns the current label. The string it returns belongs to the BControl and may be
altered or freed without notice.

See also: the BControl constructor,BView::AttachedToWindow(), BView::SetFontName()

SetMessage(), Message(), Command()
virtual voidSetMessage(BMessage *message)

BMessage *Message(void) const

ulongCommand(void) const

SetMessage() sets the model BMessage that defines what the BControl does, and frees the
message that was previously set.Message() returns a pointer to the BMessage that’s the
current model, andCommand() returns itswhat data member. The message is first set by
the BControl constructor.

BecauseInvoke() adds “when” and “source” entries to the messages it posts, these two
names shouldn’t be used for any data entries in the model BMessage.

The model message passed toSetMessage() and returned byMessage() belongs to the
BControl object; it can be modified in application code, but it shouldn’t be deleted (except
by passingNULL to SetMessage()), posted, or put to any other use.

See also: the BControl constructor,Invoke(), SetTarget()

SetTarget(), Target()
virtual longSetTarget(BHandler *target)
virtual longSetTarget(BLooper *looper, booltargetsPreferredHandler)

BHandler *Target(BLooper **looper = NULL) const

These functions set and return the object that’s targeted to handle the messages that the
BControl posts (through itsInvoke() function).

BControl Member Functions

The Interface Kit –91

The version ofSetTarget() that takes a single argument sets thetarget BHandler object.
It’s successful only if thetarget can reveal, through itsLooper() function, a BLooper
object whereInvoke() can post messages so that they will be dispatched to that target.
Therefore, thetarget BHandler must either:

• Be a BLooper itself (such as a BWindow), so that it can fulfill the roles of both
BLooper and BHandler, or

• Have been added to a BLooper (as BViews are attached to BWindows).

Armed with both the BLooper and the target BHandler,Invoke() calls the BLooper’s
PostMessage() function and names thetarget as the object that should handle the
message:

theLooper->PostMessage(theMessage, target);

After being set as the control’starget, the BHandler must maintain its association with the
BLooper. If it moves to another BLooper,PostMessage() will fail.

The version ofSetTarget() that takes two arguments sets the BLooper object where the
BControl’sInvoke() function should post messages. If thetargetsPreferredHandler flag is
FALSE, messages will be targeted to thelooper object itself—it will also act as the handler.
In other words, passing a BLooper andFALSE to the version ofSetTarget() that takes two
arguments accomplishes the same thing as simply passing the BLooper alone to the
version that takes one argument. These two lines of code accomplish the same thing:

myControl->SetTarget(someLooper, FALSE);
myControl->SetTarget(someLooper);

The two-argument version ofSetTarget() becomes interesting only if the
targetsPreferredHandler flag isTRUE. In this case, messages are targeted to thelooper’s
preferred handler (the object returned by itsPreferredHandler() function). This permits
the targeting decision to be made dynamically, at the timeInvoke() is called:

looper ->PostMessage(theMessage, looper ->PreferredHandler());

For example, the preferred handler of a BWindow object is the current focus view.
Therefore, by passing a BWindowlooper andTRUE to SetTarget(),

myControl->SetTarget(someWindow, TRUE);

the control device can be targeted to whatever BView happens to be in focus at the time
the control is invoked. This is useful for controls that act on the current selection. (Note,
however, that if thePreferredHandler() is NULL, thelooper itself becomes the target, just as
it would if thetargetsPreferredHandler flag wereFALSE.)

When successful,SetTarget() returnsB_NO_ERROR. It fails and returnsB_BAD_VALUE if
the proposedtarget or looper is NULL. The one-argument version also returns
B_BAD_VALUE if it can’t discover a BLooper from the target handler.

Target() returns the current target and, if a pointer to alooper is provided, fills in the
BLooper whereInvoke() will post messages. If the target BHandler is the preferred

Member Functions BControl

92 – The Interface Kit

handler of thelooper, Target() returnsNULL. In other words, passing a BLooper andTRUE
to SetTarget() causesTarget() to report that there is alooper, but aNULL target—the
BLooper is known, but the BHandler is not. Passing a BLooper andFALSE to SetTarget()
causesTarget() to report that the same object is bothlooper and target.

By default (established byAttachedToWindow()), both roles—BLooper and BHandler—
are filled by the BWindow where the control device is located.

See also: BHandler::Looper() andBLooper::PreferredHandler() in the Application Kit,
BWindow::PreferredHandler(), Invoke(), AttachedToWindow()

SetValue(), Value()
virtual voidSetValue(longvalue)

long Value(void) const

These functions set and return the value of the BControl object.

SetValue() assigns the object a new value. If thevalue passed is in fact different from the
BControl’s current value, this function calls the object’sDraw() function so that the new
value will be reflected in what the user sees on-screen; otherwise it does nothing.

Value() returns the current value.

Classes derived from BControl should callSetValue() to change the value of the control
device in response to user actions. The derived classes defined in the Be software kits
change values only by calling this function.

SinceSetValue() is a virtual function, you can override it to take note whenever a control’s
value changes. However, if you want your code to act only when the value actually
changes, you must check to be sure the new value doesn’t match the old before calling the
inherited version of the function. For example:

void MyControl::SetValue(long value)
{
 if (value != Value()) {
 BControl::SetValue(value);
 /* MyControl’s additions to SetValue() go here */
 }
}

Remember that the BControl version ofSetValue() does nothing unless the new value
differs from the old.

Target() see SetTarget()

Value() see SetValue()

The Interface Kit –93

BListView

Derived from: public BView

Declared in: <interface/ListView.h>

Overview

A BListView is a view that displays a list of items the user can select and invoke. This
class is based on the BList class of the Support Kit. Every member function of the BList
class is replicated by BListView, so you can treat a BListView object just like a BList.
BListView simply makes the list visible.

Displaying the List

In both classes, the list keeps track of data pointers. Adding an item to the list adds only
the pointer; the data itself isn’t copied. Neither class imposes a type restriction on the data
(both declare items to be typevoid *). However, by default, BListView assumes they’re
pointers to strings (typechar *). Its functions can display the strings, highlight them when
selected, and so on. As long as only string pointers are placed in the list, a BListView
object can be used as is. However, if the list is to contain another kind of data, it’s
necessary to derive a class from BListView and reimplement some of its hook functions.

When the contents of the list change, the BListView makes sure the visible list on-screen
is updated. However, it can know that something changed only when a data pointer
changes, since pointers are all that the list records. If any pointed-to data is altered, but the
pointer remains the same, you must force the list to be redrawn (by calling the
InvalidateItem() function or BView’sInvalidate()).

Selecting and Invoking Items

The user can click an item in the list to select it and double-click an item to both select and
invoke it. The user can also select and invoke items from the keyboard. The navigation
keys (such as Down Arrow, Home, and Page Up) select items; Enter invokes the item
that’s currently selected.

The BListView highlights the selected item, but otherwise it doesn’t define what, if
anything, should take place when an item is selected. You can determine that yourself by
registering a “selection message” (a BMessage object) that should be delivered to a target
destination whenever the user selects an item.

Hook Functions BListView

94 – The Interface Kit

Similarly, the BListView doesn’t define what it means to “invoke” an item. You can
register a separate “invocation message” that’s posted whenever the user double-clicks an
item or presses Enter while an item is selected. For example, if the user double-clicks an
item in a list of file names, a message might be posted telling the BApplication object to
open that file.

A BListView doesn’t have a default selection message or invocation message. Messages
are posted only if registered with theSetSelectionMessage() and
SetInvocationMessage() functions. The registered message is only a model. When an
item is selected or invoked, the BListView makes a copy of the model, adds information to
the copy about itself and the item, then posts the copy. See the function descriptions for
information on the data that automatically gets added to the message.

See also: the BList class in the Support Kit

Hook Functions

DrawItem() Draws the character string that the item points to; can be
reimplemented to draw from another kind of data.

HighlightItem() Highlights the item by inverting all the colors in its frame
rectangle; can be reimplemented to highlight in a different
way.

Invoke() Posts the invocation message, if one has been registered for
the BListView; can be augmented to do whatever else may
be necessary when a item is invoked.

ItemHeight() Returns the height of a single item, assuming that it’s a
character string and is to be drawn in the current font; can
be reimplemented to return the height required to draw a
different kind of item. All items are taken to have the same
height.

Select() Highlights the selected item and posts the selection
message, if one has been registered for the BListView; can
be augmented to take any collateral action that may be
required when the selection changes.

BListView Constructor and Destructor

The Interface Kit –95

Constructor and Destructor

BListView()
BListView(BRectframe, const char *name,

ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags=

B_WILL_DRAW | B_NAVIGABLE | B_FRAME_EVENTS)

Initializes the new BListView. Theframe, name, resizingMode, andflags arguments are
identical to those declared for the BView class and are passed unchanged to the BView
constructor.

The list begins life empty. CallAddItem() or AddList() (documented for the BList class)
to put items in the list. CallSelect() (documented below) to select one of the items so that
it’s highlighted when the list is initially displayed to the user.

See also: the BView constructor,BList::AddItem()

~BListView()
virtual ~BListView(void)

Frees the model messages, if any, and all memory allocated to hold the list of items.

Member Functions

The BListView class reimplementsall of the member functions of the BList class in the
Support Kit. BListView’s versions of these functions work identically to the BList
versions, except that a BListView makes sure that the on-screen display is properly
updated whenever the list changes.

Consequently, this section excludes all functions that BList and BListView have in
common. It concentrates instead on those member functions that deal with the
BListView’s behavior as a view, not as a list. See the BList class for information on the
functions that you can use to manipulate the BListView’s list.

AttachedToWindow()
virtual voidAttachedToWindow(void)

Sets up the BListView so that it’s prepared to draw character strings for items, and makes
the BWindow to which the object has become attached the target for messages posted by
theSelect() andInvoke() functions—provided another target hasn’t already been set.

Member Functions BListView

96 – The Interface Kit

This function is called for you when the BListView becomes part of a window’s view
hierarchy.

See also: BView::AttachedToWindow(), SetTarget()

BaselineOffset()
protected:

float BaselineOffset(void)

Returns the distance from the bottom of an item’s frame rectangle to the baseline where
the item, assuming it is a character string, is drawn. The string is drawn beginning at a
point that’s offset 2.0 coordinate units from the left of the frame rectangle and
BaselineOffset() units from the bottom. The offsets are the same for all items.

This function will give unreliable results unless the BListView is attached to a window.

CurrentSelection()
inline longCurrentSelection(void) const

Returns the index of the currently selected item, or a negative number if no item is
selected.

See also: Select()

Draw()
virtual voidDraw(BRectupdateRect)

Calls theDrawItem() hook function to draw each visible item in theupdateRect area of the
view and highlights the currently selected item by calling theHighlightItem() hook
function.

Draw() is called for you whenever the list view is to be updated or redisplayed; you don’t
need to call it yourself. You also don’t need to reimplement it, even if you’re defining a
list that displays something other than character strings. You should implement data-
specific versions ofDrawItem() andHighlightItem() instead.

See also: BView::Draw(), DrawItem(), HighlightItem()

BListView Member Functions

The Interface Kit –97

DrawItem()
protected:

virtual voidDrawItem(BRectupdateRect, long index)

Draws the item atindex. The default version of this function assumes that the item is a
character string. It can be reimplemented by derived classes to draw differently, based on
other kinds of data.

TheupdateRect rectangle is stated in the BListView’s coordinate system. It’s the portion
of the item’s frame rectangle that needs to be updated. The full frame rectangle of the item
is returned by theItemFrame() function.

TheDraw() function determines which items in the BListView need to be updated and
callsDrawItem() for each one.

See also: ItemHeight(), ItemFrame(), HighlightItem(), BaselineOffset()

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Updates the on-screen display in response to a notification that the BListView’s frame
rectangle has been resized. In particular, this function looks for a vertical scroll bar that’s
a sibling of the BListView. It adjusts this scroll bar to reflect the way the list view was
resized, under the assumption that it must have the BListView as its target.

FrameResized() is called automatically at the appropriate times; you shouldn’t call it
yourself.

See also: BView::FrameResized()

HighlightItem()
protected:

virtual voidHighlightItem(boolflag, long index)

Highlights the item atindex if flag is TRUE, and removes the highlighting ifflag is FALSE.
Items are highlighted by inverting all colors in their frame rectangles.

This function is called (byDraw()) to highlight the selected item and (bySelect()) to
change the item that’s highlighted whenever the selection changes. It can be
reimplemented in a derived class to highlight in a different way.

See also: Select(), Draw()

Member Functions BListView

98 – The Interface Kit

InvalidateItem()
void InvalidateItem(long index)

Invalidates the item atindex so that an update message will be sent forcing the BListView
to redraw it.

See also: BView::Invalidate()

Invoke()
virtual void Invoke(long index)

Invokes the item atindex, provided that theindex isn’t out-of-range.

This function is called whenever the user double-clicks an item in the list, or presses the
Enter key while the BListView is the current focus view for the window and there’s a
selected item. It can also be called from application code to invoke a particular item;
usuallySelect() would first be called to select the item.

To invoke an item that’s identified by a pointer, first callIndexOf() to find where it’s
located in the list:

long i = myList->IndexOf(someItem);
myList->Select(i);
myList->Invoke(i);

If a model “invocation message” has been registered with the BListView (through
SetInvocationMessage()), Invoke() makes a copy of the message, adds information to the
copy identifying the BListView and the invoked item, and posts the copy so that it will be
handled by the designated target. The default target (established byAttachedToWindow())
is the BWindow where the BListView is located.SetTarget() can be called to name
another BHandler for the message. It can also be called to set a particular BLooper where
the message should be posted, but to let that BLooper’s preferred handler respond to the
message. In this case, the exact target will be picked whenInvoke() is called.

What it means to “invoke” an item depends entirely on the BMessage that’s posted and the
receiver’s response when it gets the message. This function does nothing but post the
message.

See also: Select(), SetInvocationMessage(), SetTarget()

IsItemSelected()
inline boolIsItemSelected(long index) const

ReturnsTRUE if the item atindex is currently selected, andFALSE if it’s not.

See also: CurrentSelection()

BListView Member Functions

The Interface Kit –99

ItemFrame()
protected:

BRectItemFrame(long index) const

Returns the frame rectangle of the item atindex. The rectangle defines the area where the
item is drawn; it’s stated in the coordinate system of the BListView. The rectangle is
calculated from the ordinal position of the item in the list and the value returned by
ItemHeight().

It’s expected that you’d need to find an item’s frame rectangle only if you’re implementing
a DrawItem() function.

< This function currently doesn’t check to be sure that the index is in range. >

See also: DrawItem()

ItemHeight()
protected:

virtual floatItemHeight(void) const

Returns how much vertical room is required to draw a single item in the list—how high
each item’s frame rectangle should be. The BListView callsItemHeight() extensively to
determine where items are located and where to draw them. By default, it returns a height
sufficient to draw a character string in the current font.

A derived class that draws items other than character strings should reimplement
ItemHeight() so that it returns the height required to draw one of its items.

See also: DrawItem()

KeyDown()
virtual voidKeyDown(ulongaChar)

Permits the user to operate the list using the following keys:

Keys Perform Action

Up Arrow and Down Arrow Select the items that are immediately before and
immediately after the currently selected item.

Page Up and Page Down Select the items that are one viewful above and
below the currently selected item—or the first and
last items if there’s no item a viewful away.

Home and End Select the first and last items in the list.

Enter and the space bar Invoke the currently selected item.

Member Functions BListView

100 – The Interface Kit

This function also incorporates the inherited BView version so that the Tab key can
navigate to another view.

KeyDown() is called to reportB_KEY_DOWN messages when the BListView is the focus
view of the active window; you shouldn’t call it yourself.

See also: BView::KeyDown(), Select(), Invoke()

MakeFocus()
virtual voidMakeFocus(bool focused= TRUE)

Overrides the BView version ofMakeFocus() to draw an indication that the BListView
has become the focus for keyboard events when thefocused flag isTRUE, and to remove
that indication when the flag isFALSE.

See also: BView::MakeFocus()

MouseDown()
virtual voidMouseDown(BPointpoint)

Determines which item is located atpoint and callsSelect() to select it (for a single-click
or the first event in a series) andInvoke() to invoke it (for a double-click or the second in a
series).

This function also makes the BListView the focus view so the user can operate the list
from the keyboard.

MouseDown() is called to notify the BListView of a mouse-down event; you don’t need to
call it yourself.

See also: BView::MouseDown(), Select(), Invoke()

Select()
virtual voidSelect(long index)

Selects the item located atindex, provided that theindex isn’t out-of-range. This function
removes the highlighting from the previously selected item and highlights the new
selection, scrolling the list so the item is visible if necessary. Selecting an item also marks
it as the item thatCurrentSelection() returns and that the Enter key can invoke.

Select() is called whenever the user selects an item, using either the keyboard or the
mouse. It can also be called from application code to set an initial selection in the list or
change the current selection.

BListView Member Functions

The Interface Kit –101

If a model “selection message” has been registered with the BListView,Select() copies the
message, adds information to the copy identifying the list and the item that was selected,
and posts the copy so that it will be dispatched to the target BHandler. If a message hasn’t
been registered, “selecting” an item simply means to highlight it and mark is as the
selected item.

Typically, BListViews are set up to post a message when an item is invoked, but not when
one is selected.

See also: SetSelectionMessage(), Invoke()

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear()
virtual voidSetFontName(const char *name)

virtual voidSetFontSize(floatpoints)

virtual voidSetFontRotation(floatdegrees)

virtual voidSetFontShear(floatangle)

SetFontName(), SetFontSize(), andSetFontShear() augment their BView counterparts to
recalculate the layout of items in the list when the font changes. However, the list is not
automatically redisplayed in the new font.

SetFontRotation() is disabled; a rotated font is incompatible with a list horizontal items.

See also: BView::SetFontName()

SetInvocationMessage(), InvocationMessage(),
InvocationCommand()

virtual voidSetInvocationMessage(BMessage *message)

BMessage *InvocationMessage(void) const

ulong InvocationCommand(void) const

These functions set and return information about the BMessage that the BListView posts
when an item is invoked.

SetInvocationMessage() assignsmessage to the BListView, freeing any message
previously assigned. The message becomes the responsibility of the BListView object and
will be freed only when it’s replaced by another message or the BListView is freed; you
shouldn’t free it yourself. Passing aNULL pointer to this function deletes the current
message without replacing it.

The BListView treats the BMessage as its “invocation message,” a model for the message
it posts when an item in the list is invoked. TheInvoke() function makes a copy of the
model and adds two pieces of relevant information. It then posts the copy, not the original.

Member Functions BListView

102 – The Interface Kit

The added information identifies the BListView and the invoked item:

Data name Type code Description

“source” B_OBJECT_TYPE A pointer to the BListView object.

“index” B_LONG_TYPE The index of the item that was invoked.

These names should not be used for any data that you add to the modelmessage.

Given this information, the message receiver can get a pointer to item data. For example:

void myWindow::MessageReceived(BMessage *message)
{
 BListView *theList;
 long theIndex;
 char *theItem;
 . . .
 theList = (BListView *)message->FindObject("source");
 if (message->Error() == B_NO_ERROR) {
 theIndex = message->FindLong("index");
 if (message->Error() == B_NO_ERROR) {
 theItem = (char *)theList->ItemAt(theIndex);
 . . .
 }
 }
 . . .
 }

(Although not shown in this example, you might also want to use thecast_as() macro to
make sure that it’s safe to cast the “source” object pointer to the BListView class.)

InvocationMessage() returns a pointer to the model BMessage and
InvocationCommand() returns itswhat data member. The message belongs to the
BListView; it can be altered by adding or removing data, but it shouldn’t be deleted. Nor
should it be posted or sent anywhere, since that would eventually free it. To get rid of the
current message, pass aNULL pointer toSetInvocationMessage().

See also: Invoke(), the BMessage class

SetSelectionMessage(), SelectionMessage(), SelectionCommand()
virtual voidSetSelectionMessage(BMessage *message)

BMessage *SelectionMessage(void) const

ulongSelectionCommand(void) const

These functions set, and return information about, the message that a BListView posts
whenever one of its items is selected. They’re exact counterparts to the invocation
message functions described above underSetInvocationMessage(), except that the
“selection message” is posted whenever an item in the list is selected, rather than when

BListView Member Functions

The Interface Kit –103

invoked. It’s more common to take action (to post a message) on invoking an item than on
selecting one.

Themessage thatSetSelectionMessage() assigns to the BListView is a model for the
messages that theSelect() function posts. Select() copies the model and posts the copy.
It adds the same two pieces of information to the copy as are added to the invocation
message:

Data name Type code Description

“source” B_OBJECT_TYPE A pointer to the BListView object.

“index” B_LONG_TYPE The index of the item that was selected.

You should not use these names for data you add to the modelmessage.

See also: Select(), SetInvocationMessage(), the BMessage class

SetSymbolSet()
virtual voidSetSymbolSet(const char *name)

Augments its BView counterpart to recalculate the layout of the list when the symbol set
changes.

See also: BView::SetSymbolSet()

SetTarget(), Target()
virtual longSetTarget(BHandler *target)
virtual longSetTarget(BLooper *target, booltargetsPreferredHandler)

BHandler *Target(BLooper **looper = NULL) const

These functions set and return the object that’s expected to handle messages the
BListView posts (through itsSelect() andInvoke() functions).

The version ofSetTarget() that takes a single argument sets thetarget BHandler object.
It’s successful only if it can also discern a BLooper object where the BListView can post
messages so that they will be dispatched to that target. To post a message, the BListView
calls the BLooper’sPostMessage() function and names thetarget as the object that should
receive the message:

theLooper->PostMessage(theMessage, target);

Therefore, thetarget BHandler must either:

• Have been added to a BLooper, or
• Be a BLooper itself, so that it can fulfill the roles of both BLooper and BHandler.

Member Functions BListView

104 – The Interface Kit

Once it’s set as the BListView’starget, the BHandler must continue its association with
the BLooper. If it moves to another BLooper,PostMessage() will fail.

The version ofSetTarget() that takes two arguments sets the BLooper object where the
BListView function should post messages. If thetargetsPreferredHandler flag isFALSE,
messages will be targeted to thelooper object itself—it will also act as the handler. In
other words, passing a BLooper andFALSE to the version ofSetTarget() that takes two
arguments accomplishes the same thing as simply passing the BLooper alone to the
version that takes one argument. These two lines of code are equivalent:

myListView->SetTarget(someLooper, FALSE);
myListView->SetTarget(someLooper);

However, if thetargetsPreferredHandler flag isTRUE, messages are targeted to the
looper’s preferred handler (the object returned by itsPreferredHandler() function). This
permits the targeting decision to be made dynamically:

looper ->PostMessage(theMessage, looper ->PreferredHandler());

For a BWindow, the preferred handler is the current focus view. Therefore, by passing a
BWindow looper andTRUE to SetTarget(),

myListView->SetTarget(someWindow, TRUE);

the BListView can be targeted to whatever BView happens to be in focus at the time an
item is invoked. (Note, however, that if thelooper’s PreferredHandler() is NULL, the
BLooper itself becomes the target, just as it would if thetargetsPreferredHandler flag
wereFALSE.)

When successful,SetTarget() returnsB_NO_ERROR. It fails and returnsB_BAD_VALUE if
the proposedtarget or looper is NULL. The one-argument version also returns
B_BAD_VALUE if it can’t discover a BLooper from the target handler.

Target() returns the current target and, if a pointer to alooper is provided, fills in the
BLooper where the BListView will post messages. If the target BHandler is the preferred
handler of thelooper, Target() returnsNULL. In other words, passing a BLooper andTRUE
to SetTarget() causesTarget() to report that there is alooper, but aNULL target; the
BLooper is known, but the target BHandler is not. Passing a BLooper andFALSE to
SetTarget() causesTarget() to report that the same object is bothlooper and target.

By default (established byAttachedToWindow()), the BWindow where the list is located
acts as both BLooper and BHandler.

See also: BView::Looper(), BWindow::PreferredHandler(), Invoke(), AttachedToWindow()

The Interface Kit –105

BMenu

Derived from: public BView

Declared in: <interface/Menu.h>

Overview

A BMenu object displays a pull-down or pop-up list of menu items. Menus organize the
features of an application—the common ones as well as the more obscure—and provide
users with points of entry for most everything the application can do.

Menus categorize the features of the application—all formatting possibilities might be
grouped in one menu, a list of documents in another, graphics choices in a third, and so on.
The arrangement of menus presents an outline of how the various parts of the application
fit together.

Menu Hierarchy

Menus are hierarchically arranged; an item in one menu can control another menu. The
controlled menu is asubmenu; the menu that contains the item that controls it is its
supermenu. A submenu remains hidden until the user operates the item that controls it; it
becomes hidden again when the user is finished with it. A submenu can have its own
submenus, and those submenus can have submenus of their own, and so on—although it
becomes hard for users to find their way around in a menu hierarchy that becomes too
deep.

The menu at the root of the hierarchy is displayed in a window as a list—perhaps a list of
just one item. Since it, unlike other menus, doesn’t have a controlling item, it must remain
visible. A root menu is therefore a special kind of menu in that it behaves more like an
ordinary view than do other menus, which stay hidden. Root menus should belong to the
BMenuBar class, which is derived from BMenu. The typical root menu is a menu bar
displayed across the top of a window (hence the name of the class).

Menu Items

Each item in a menu is a kind of BMenuItem object. An item can be marked (displayed
with a check mark to its left), assigned a keyboard shortcut, enabled and disabled, and
given a “trigger” character that the user can type to invoke the item when its menu is open
on-screen.

Hook Functions BMenu

106 – The Interface Kit

Every item has a particular job to do. If an item controls a submenu, its job is to show the
submenu on-screen and hide it again. All other items give instructions to the application.
When invoked by the user, they post a BMessage object to a target BHandler. What the
item does depends on the content of the BMessage and the BHandler’s response to it.

The BMenu and BMenuItem classes share some functions that accomplish the same thing
when called for a submenu or for the supermenu item that controls the submenu. For
example, setting the target for a BMenu (SetTarget()) sets the target for each of its items.
Disabling a submenu (SetEnabled()) is the same as disabling the item that controls it; the
user will be able to bring the submenu to the screen, but none of its items will work. This,
in effect, disables all items and menus in the branch of the menu hierarchy under the
superitem.

Hook Functions

ScreenLocation() Can be implemented to have the menu appear on-screen at
some location other than the default.

Constructor and Destructor

BMenu()
public:

BMenu(const char *name, menu_layoutlayout= B_ITEMS_IN_COLUMN)
BMenu(const char *name, floatwidth, floatheight)

protected:
BMenu(BRectframe, const char *name, ulongresizingMode, ulongflags,

menu_layoutlayout, boolresizeToFit)

Initializes the BMenu object. Thename of the object becomes the initial label of the
supermenu item that controls the menu and brings it to the screen. (It’s also the name that
can be passed to BView’sFindView() function.)

A new BMenu object doesn’t contain any items; you need to callAddItem() to set up its
contents.

BMenu Constructor and Destructor

The Interface Kit –107

A menu can arrange its items in any of three ways:

B_ITEMS_IN_COLUMN The items are stacked vertically in a column, one
on top of the other, as in a typical menu.

B_ITEMS_IN_ROW The items are laid out horizontally in a row, from
end to end, as in a typical menu bar.

B_ITEMS_IN_MATRIX The items are arranged in a custom fashion, such as
a matrix.

EitherB_ITEMS_IN_ROW or the defaultB_ITEMS_IN_COLUMN can be passed as thelayout
argument to the public constructor. (A column is the default for ordinary menus; a row is
the default for BMenuBars.) This version of the constructor isn’t designed for
B_ITEMS_IN_MATRIX layouts.

A BMenu object can arrange items that are laid out in a column or a row entirely on its
own. The menu will be resized to exactly fit the items that are added to it.

However, when items are laid out in a custom matrix, the menu needs more help. First,
the constructor must be informed of the exactwidth andheight of the menu rectangle. The
version of the constructor that takes these two parameters is designed just for matrix
menus—it sets the layout toB_ITEMS_IN_MATRIX. Then, when items are added to the
menu, the BMenu object expects to be informed of their precise positions within the
specified area. The menu isnot resized to fit the items that are added. Finally, when items
in the matrix change, you must take care of any required adjustments in the layout
yourself.

The protected version of the constructor is supplied for derived classes that don’t simply
devise different sorts of menu items or arrange them in a different way, but invent a
different kind of menu. If theresizeToFit flag isTRUE, it’s expected that thelayout will be
B_ITEMS_IN_COLUMN or B_ITEMS_IN_ROW. The menu will resize itself to fit the items that
are added to it. If the layout isB_ITEMS_IN_MATRIX, theresizeToFit flag should beFALSE.

~BMenu()
virtual ~BMenu(void)

Deletes all the items that were added to the menu and frees all memory allocated by the
BMenu object. Deleting the items serves also to delete any submenus those items control
and, thus, the whole branch of the menu hierarchy.

Member Functions BMenu

108 – The Interface Kit

Member Functions

AddItem()
bool AddItem(BMenuItem *item)
bool AddItem(BMenuItem *item, long index)
bool AddItem(BMenuItem *item, BRectframe)
bool AddItem(BMenu *submenu)
bool AddItem(BMenu *submenu, long index)
bool AddItem(BMenu *submenu, BRectframe)

Adds an item to the menu list atindex—or, if no index is mentioned, to the end of the list.
If items are arranged in a matrix rather than a list, it’s necessary to specify the item’sframe
rectangle—the exact position where it should be located in the menu view. Assume a
coordinate system for the menu that has the origin, (0.0, 0.0), at the left top corner of the
view rectangle. The rectangle will have the width and height that were specified when the
menu was constructed.

The versions of this function that take anindex (even an implicit one) can be used only if
the menu arranges items in a column or row (B_ITEMS_IN_COLUMN or B_ITEMS_IN_ROW);
it’s an error to use them for items arranged in a matrix. Conversely, the versions of this
function that take aframe rectangle can be used only if the menu arranges items in a
matrix (B_ITEMS_IN_MATRIX); it’s an error to use them for items arranged in a list.

If a submenu is specified rather than anitem, AddItem() constructs a controlling
BMenuItem for the submenu and adds the item to the menu.

If it’s unable to add the item to the menu—for example, if theindex is out-of-range or the
wrong version of the function has been called—AddItem() returnsFALSE. If successful, it
returnsTRUE.

See also: the BMenu constructor, the BMenuItem class,RemoveItem()

AddSeparatorItem()
bool AddSeparatorItem(void)

Creates an instance of the BSeparatorItem class and adds it to the end of the menu list,
returningTRUE if successful andFALSE if not (a very unlikely possibility). This function is
a shorthand for:

BSeparatorItem *separator = new BSeparatorItem;
AddItem(separator);

A separator serves only to separate other items in the list. It counts as an item and has an
indexed position in the list, but it doesn’t do anything. It’s drawn as a horizontal line

BMenu Member Functions

The Interface Kit –109

across the menu. Therefore, it’s appropriately added only to menus where the items are
laid out in a column.

See also: AddItem(), the BSeparatorItem class

AreTriggersEnabled() see SetTriggersEnabled()

AttachedToWindow()
virtual voidAttachedToWindow(void)

Finishes initializing the BMenu object by setting graphics parameters and laying out
items. This function is called for you each time the BMenu is assigned to a window. For
a submenu, that means each time the menu is shown on-screen.

See also: BView::AttachedToWindow()

CountItems()
long CountItems(void) const

Returns the total number of items in the menu, including separator items.

Draw()
virtual voidDraw(BRectupdateRect)

Draws the menu. This function is called for you whenever the menu is placed on-screen
or is updated while on-screen. It’s not a function you need to call yourself.

See also: BView::Draw()

FindItem()
BMenuItem *FindItem(const char *label) const
BMenuItem *FindItem(ulongcommand) const

Returns the item with the specifiedlabel—or the one that posts a message with the
specifiedcommand. If there’s more than one item in the menu hierarchy with that
particularlabel or associated with that particularcommand, this function returns the first
one it finds. It recursively searches the menu by working down the list of items in order.
If an item controls a submenu, it searches the submenu before returning to check any
remaining items in the menu.

If none of the items in the menu hierarchy meet the stated criterion,FindItem() returns
NULL.

Member Functions BMenu

110 – The Interface Kit

FindMarked()
BMenuItem *FindMarked(void)

Returns the first marked item in the menu list (the one with the lowest index), orNULL if no
item is marked.

See also: SetRadioMode(), BMenuItem::SetMarked()

Hide(), Show()
protected:

void Hide(void)

void Show(boolselectFirst)
virtual voidShow(void)

These functions hide the menu (remove the BMenu view from the window it’s in and
remove the window from the screen) and show it (attach the BMenu to a window and
place the window on-screen). If theselectFirst flag passed toShow() is TRUE, the first item
in the menu will be selected when it’s shown. IfselectFirst is FALSE, the menu is shown
without a selected item.

The version ofShow() that doesn’t take an argument simply calls the version that does and
passes it aselectFirst value ofFALSE.

These functions are not ones that you’d ordinarily call, even when implementing a derived
class. You’d need them only if you’re implementing a nonstandard menu of some kind
and want to control when the menu appears on-screen.

See also: BView::Show(), Track()

IndexOf()
long IndexOf(BMenuItem *item) const
long IndexOf(BMenu *submenu) const

Returns the index of the specified menuitem—or the item that controls the specified
submenu. Indices record the position of the item in the menu list. They begin at 0 for the
item at the top of a column or at the left of a row and include separator items.

If the menu doesn’t contain the specifieditem, or the item that controlssubmenu, the
return value will beB_ERROR.

See also: AddItem()

BMenu Member Functions

The Interface Kit –111

InvalidateLayout()
void InvalidateLayout(void)

Forces the BMenu to recalculate the layout of all menu items and, consequently, its own
size. It can do this only if the items are arranged in a row or a column. If the items are
arranged in a matrix, it’s up to you to keep their layout up-to-date.

All BMenu and BMenuItem functions that change an item in a way that might affect the
overall menu automatically invalidate the menu’s layout so it will be recalculated. For
example, changing the label of an item might cause the menu to become wider (if it needs
more room to accommodate the longer label) or narrower (if it no longer needs as much
room as before).

Therefore, you don’t need to callInvalidateLayout() after using a Kit function to change a
menu or menu item; it’s called for you. You’d call it only when making some other
change to a menu.

See also: the BMenu constructor

IsEnabled() see SetEnabled()

IsLabelFromMarked() see SetLabelFromMarked()

IsRadioMode() see SetRadioMode()

ItemAt(), SubmenuAt()
BMenuItem *ItemAt(long index) const

BMenu *SubmenuAt(long index) const

These functions return the item atindex—or the submenu controlled by the item atindex.
If there’s no item at the index, they returnNULL. SubmenuAt() is a shorthand for:

ItemAt(index)->Submenu()

It returnsNULL if the item atindex doesn’t control a submenu.

See also: AddItem()

Member Functions BMenu

112 – The Interface Kit

KeyDown()
virtual voidKeyDown(ulongaChar)

Handles keyboard navigation through the menu. This function is called to respond to
messages reporting key-down events. It should not be called from application code.

See also: BView::KeyDown()

Layout()
protected:

menu_layoutLayout(void) const

ReturnsB_ITEMS_IN_COLUMN if the items in the menu are stacked in a column from top to
bottom,B_ITEMS_IN_ROW if they’re stretched out in a row from left to right, or
B_ITEMS_IN_MATRIX if they’re arranged in some custom fashion. By default BMenu items
are arranged in a column and BMenuBar items in a row.

The layout is established by the constructor.

See also: the BMenu and BMenuBar constructors

RemoveItem()
BMenuItem *RemoveItem(long index)
bool RemoveItem(BMenuItem *item)
bool RemoveItem(BMenu *submenu)

Removes the item atindex, or the specifieditem, or the item that controls the specified
submenu. Removing the item doesn’t free it.

• If passed anindex, this function returns a pointer to the item so you can free it. It
returns aNULL pointer if the item couldn’t be removed (for example, if theindex is
out-of-range).

• If passed anitem, it returnsTRUE if the item was in the list and could be removed,
andFALSE if not.

• If passed asubmenu, it returnsTRUE if the submenu is controlled by an item in the
menu and that item could be removed, andFALSE otherwise.

When an item is removed from a menu, it loses its target; the cached value is set toNULL.
If the item controls a submenu, it remains attached to the submenu even after being
removed.

See also: AddItem()

BMenu Member Functions

The Interface Kit –113

ScreenLocation()
protected:

virtual BPointScreenLocation(void)

Returns the point where the left top corner of the menu should appear when the menu is
shown on-screen. The point is specified in the screen coordinate system.

This function is called each time a hidden menu (a submenu of another menu) is brought
to the screen. It can be overridden in a derived class to change where the menu appears.
For example, the BPopUpMenu class overrides it so that a pop-up menu pops up over the
controlling item.

See also: the BPopUpMenu class

SetEnabled(), IsEnabled()
virtual voidSetEnabled(boolenabled)

bool IsEnabled(void) const

SetEnabled() enables the BMenu if theenabled flag isTRUE, and disables it ifenabled is
FALSE. If the menu is a submenu, this enables or disables its controlling item, just as if
SetEnabled() were called for that item. The controlling item is updated so that it displays
its new state, if it happens to be visible on-screen.

Disabling a menu disables its entire branch of the menu hierarchy. All items in the menu,
including those that control other menus, are disabled.

IsEnabled() returnsTRUE if the BMenu, and every BMenu above it in the menu hierarchy,
is enabled. It returnsFALSE if the BMenu, or any BMenu above it in the menu hierarchy, is
disabled.

See also: BMenuItem::SetEnabled()

SetLabelFromMarked(), IsLabelFromMarked()
protected:

void SetLabelFromMarked(boolflag)

bool IsLabelFromMarked(void)

SetLabelFromMarked() determines whether the label of the item that controls the menu
(the label of the superitem) should be taken from the currently marked item within the
menu. Ifflag is TRUE, the menu is placed in radio mode and the superitem’s label is reset
each time the user selects a different item. Ifflag is FALSE, the setting for radio mode
doesn’t change and the label of the superitem isn’t automatically reset.

Member Functions BMenu

114 – The Interface Kit

IsLabelFromMarked() returns whether the superitem’s label is taken from the marked item
(but not necessarily whether the BMenu is in radio mode).

See also: SetRadioMode()

SetRadioMode(), IsRadioMode()
virtual voidSetRadioMode(boolflag)

bool IsRadioMode(void)

SetRadioMode() puts the BMenu in radio mode ifflag is TRUE and takes it out of radio
mode ifflag is FALSE. In radio mode, only one item in the menu can be marked at a time.
If the user selects an item, a check mark is placed in front of it automatically (you don’t
need to call BMenuItem’sSetMarked() function; it’s called for you). If another item was
marked at the time, its mark is removed. Selecting a currently marked item retains the
mark.

IsRadioMode() returns whether the BMenu is currently in radio mode. The default radio
mode isFALSE for ordinary BMenus, butTRUE for BPopUpMenus.

SetRadioMode() doesn’t change any of the items in the menu. If you want an initial item
to be marked when the menu is put into radio mode, you must mark it yourself.

WhenSetRadioMode() turns radio mode off, it callsSetLabelFromMarked() and passes it
an argument ofFALSE—turning off the feature that changes the label of the menu’s
superitem each time the marked item changes. Similarly, whenSetLabelFromMarked()
turns on this feature, it callsSetRadioMode() and passes it an argument ofTRUE—turning
radio mode on.

See also: BMenuItem::SetMarked(), SetLabelFromMarked()

SetTargetForItems()
virtual longSetTargetForItems(BHandler *target)

This function is a convenience for assigning the sametarget BHandler to all the items in
the menu. It works through the list of items in order, calling BMenuItem’sSetTarget()
virtual function for each one. If it’s unable to set the target of any item, it aborts and
returns the error it encountered. If successful in setting thetarget of all items, it returns
B_NO_ERROR. See BMenuItem’sSetTarget() for information on acceptabletarget values.

This function doesn’t work recursively; it acts only on items currently in the BMenu, not
on items that might be added later nor on items in submenus.

See also: BMenuItem::SetTarget()

BMenu Member Functions

The Interface Kit –115

SetTriggersEnabled(), AreTriggersEnabled()
virtual voidSetTriggersEnabled(boolflag)

bool AreTriggersEnabled(void) const

SetTriggersEnabled() enables the triggers for all items in the menu ifflag is TRUE and
disables them ifflag is FALSE. AreTriggersEnabled() returns whether the triggers are
currently enabled or disabled. They’re enabled by default.

Triggers are displayed to the user only if they’re enabled, and only when keyboard actions
can operate the menu.

Triggers are appropriate for some menus, but not for others.SetTriggersEnabled() is
typically called to initialize the BMenu when it’s constructed, not to enable and disable
triggers as the application is running. If triggers are ever enabled for a menu, they should
always be enabled; if they’re ever disabled, they should always be disabled.

See also: BMenuItem::SetTrigger()

Show() see Hide()

SubmenuAt() see ItemAt()

Superitem(), Supermenu()
BMenuItem *Superitem(void) const

BMenu *Supermenu(void) const

These functions return the supermenu item that controls the BMenu and the supermenu
where that item is located. The supermenu could be a BMenuBar object. If the BMenu
hasn’t been made the submenu of another menu, both functions returnNULL.

See also: AddItem()

Track()
protected:

BMenuItem *Track(boolopenAnyway= FALSE, BRect *clickToOpenRect= NULL)

Initiates tracking of the cursor within the menu. This function passes tracking control to
submenus (and submenus of submenus) depending on where the user moves the mouse. If
the user ends tracking by invoking an item,Track() returns the item. If the user didn’t
invoke any item, it returnsNULL. The item doesn’t have to be located in the BMenu; it
could, for example, belong to a submenu of the BMenu.

If the openAnyway flag isTRUE, Track() opens the menu and leaves it open even though a
mouse button isn’t held down. This enables menu navigation from the keyboard. If a

Member Functions BMenu

116 – The Interface Kit

clickToOpenRect is specified and the user has set the click-to-open preference,Track() will
leave the menu open if the user releases the mouse button while the cursor is inside the
rectangle. The rectangle should be stated in the screen coordinate system.

Track() is called by the BMenu to initiate tracking in the menu hierarchy. You would need
to call it yourself only if you’re implementing a different kind of menu that starts to track
the cursor under nonstandard circumstances.

The Interface Kit –117

BMenuBar

Derived from: public BMenu

Declared in: <interface/MenuBar.h>

Overview

A BMenuBar is a menu that can stand at the root of a menu hierarchy. Rather than appear
on-screen when commanded to do so by a user action, a BMenuBar object has a settled
location in a window’s view hierarchy, just like other views. Typically, the root menu is
the menu bar that’s drawn across the top of the window. It’s from this use that the class
gets its name.

However, instances of this class can also be used in other ways. A BMenuBar might
simply display a list of items arranged in a column somewhere in a window. Or it might
contain just one item, where that item controls a pop-up menu (a BPopUpMenu object).
Rather than look like a “menu bar,” the BMenuBar object would look something like a
button.

The Key Menu Bar

The “real” menu bar at the top of the window usually represents an extensive menu
hierarchy; each of its items typically controls a submenu.

The user should be able to operate this menu bar from the keyboard (using the arrow keys
and Enter). There are two ways that the user can put the BMenuBar and its hierarchy in
focus for keyboard events:

• Clicking an item in the menu bar. If the “click to open” preference is not turned off,
this opens the submenu the item controls so that it stays visible on-screen and puts
the submenu in focus.

• Pressing the Menu key, or pressing and releasing a Command key. This puts the
BMenuBar in focus and selects its first item.

Either method opens the entire menu hierarchy to keyboard navigation.

If a window’s view hierarchy includes more than one BMenuBar object, the Menu key (or
Command) must choose one of them to put in focus. By default, it picks the last one that
was attached to the window. However, theSetKeyMenuBar() function defined in the
BWindow class can be called to designate a different BMenuBar object as the “key” menu
bar for the window.

Constructor and Destructor BMenuBar

118 – The Interface Kit

A Kind of BMenu

BMenuBar inherits most of its functions from the BMenu class. It reimplements the
AttachedToWindow(), Draw(), andMouseDown() functions that set up the object and
respond to messages, but these aren’t functions that you’d call from application code;
they’re called for you.

The only real function (other than the constructor) that the BMenuBar class adds to those
it inherits isSetBorder(), which determines how the list of items is bordered.

Therefore, for most BMenuBar operations—adding submenus, finding items, temporarily
disabling the menu bar, and so on—you must call inherited functions and treat the object
like the BMenu that it is.

See also: the BMenu class

Constructor and Destructor

BMenuBar()
BMenuBar(BRectframe, const char *name,

ulongresizingMode=
B_FOLLOW_LEFT_RIGHT | B_FOLLOW_TOP,

menu_layoutlayout= B_ITEMS_IN_ROW,
bool resizeToFit= TRUE)

Initializes the BMenuBar by assigning it aframe rectangle, aname, and aresizingMode,
just like other BViews. These values are passed up the inheritance hierarchy to the BView
constructor. The default resizing mode (B_FOLLOW_LEFT_RIGHT | B_FOLLOW_TOP) is
designed for a true menu bar (one that’s displayed along the upper edge of a window). It
permits the menu bar to adjust itself to changes in the window’s width, while keeping it
glued to the top of the window frame.

The layout argument determines how items are arranged in the menu bar. By default,
they’re arranged in a row as befits a true menu bar. If an instance of this class is being
used to implement something other than a horizontal menu, items can be laid out in a
column (B_ITEMS_IN_COLUMN) or in a matrix (B_ITEMS_IN_MATRIX).

If the resizeToFit flag is turned on, as it is by default, the frame rectangle of the BMenuBar
will be automatically resized to fit the items it displays. This is generally a good idea,
since it relieves you of the responsibility of testing user preferences to determine what size
the menu bar should be. Because the font and font size for menu items are user
preferences, items can vary in size from user to user.

WhenresizeToFit is TRUE, theframe rectangle determines only where the menu bar is
located, not how large it will be. The rectangle’sleft andtop data members are respected,
but theright andbottom sides are adjusted to accommodate the items that are added to the
menu bar.

BMenuBar Member Functions

The Interface Kit –119

Two kinds of adjustments are made if thelayout is B_ITEMS_IN_ROW, as it typically is for a
menu bar:

• The height of the menu bar is adjusted to the height of a single item.

• If the resizingMode includesB_FOLLOW_LEFT_RIGHT, the width of the menu bar is
adjusted to match the width of its parent view. This means that a true menu bar (one
that’s a child of the window’s top view) will always be as wide as the window.

Two similar adjustments are made if the menu barlayout is B_ITEMS_IN_COLUMN:

• The width of the menu bar is adjusted to the width of the widest item.

• If the resizingMode includesB_FOLLOW_TOP_BOTTOM, the height of the menu bar is
adjusted to match the height of its parent view.

After setting up the key menu bar and adding items to it, you may want to set the
minimum width of the window so that certain items won’t be hidden when the window is
resized smaller.

Change theresizingMode, thelayout, and theresizeToFit flag as needed for BMenuBars
that are used for a purpose other than to implement a true menu bar.

See also: the BMenu constructor,BWindow::SetSizeLimits()

~BMenuBar()
virtual ~BMenuBar(void)

Frees all the items and submenus in the entire menu hierarchy, and all memory allocated
by the BMenuBar.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Finishes the initialization of the BMenuBar by setting up its graphics environment, and by
making the BWindow to which it has become attached the target handler for all items in
the menu hierarchy, except for those items for which a target has already been set.

This function also makes the BMenuBar the key menu bar, the BMenuBar object whose
menu hierarchy the user can navigate from the keyboard. If a window contains more than
one BMenuBar in its view hierarchy, the last one that’s added to the window gets to keep

Member Functions BMenuBar

120 – The Interface Kit

this designation. However, the key menu bar should always be the real menu bar at the top
of the window. It can be explicitly set with BWindow’sSetKeyMenuBar() function.

See also: BWindow::SetKeyMenuBar()

Border() see SetBorder()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the menu—whether as a true menu bar, as some other kind of menu list, or as a
single item that controls a pop-up menu. This function is called as the result of update
messages; you don’t need to call it yourself.

See also: BView::Draw()

MouseDown()
virtual voidMouseDown(BPointpoint)

Initiates mouse tracking and keyboard navigation of the menu hierarchy. This function is
called to notify the BMenuBar of a mouse-down event.

See also: BView::MouseDown()

SetBorder(), Border()
void SetBorder(menu_bar_borderborder)

menu_bar_borderBorder(void) const

SetBorder() determines how the menu list is bordered. Theborder argument can be:

B_BORDER_FRAME The border is drawn around the entire frame rectangle.
B_BORDER_CONTENTS The border is drawn around just the list of items.
B_BORDER_EACH_ITEM A border is drawn around each item.

Border() returns the current setting. The default isB_BORDER_FRAME.

The Interface Kit –121

BMenuField

Derived from: public BView

Declared in: <interface/MenuField.h>

Overview

A BMenuField object displays a labeled pop-up menu. It’s a simple object that employs a
BMenuBar object to control a BMenu. All it adds to what a BMenuBar can do on its own
is a label and a more control-like user interface that includes keyboard navigation.

The functions defined in this class resemble those of a BControl (SetLabel(), IsEnabled()),
especially a BTextControl (SetDivider(), Alignment()). However, unlike a real BControl
object, a BMenuField doesn’t maintain a current value and it can’t be invoked or post
messages. All the control work is done by items in the BMenu.

Constructor and Destructor

BMenuField()
BMenuField(BRectframe, const char *name,

const char *label,
BMenu *menu,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BMenuField object with the specifiedframe rectangle,name, resizingMode,
andflags. These arguments are the same as for any BView object and are passed
unchanged to the BView constructor. When the object is attached to a window, the height
of its frame rectangle will be adjusted to fit the height of the text it displays, which
depends on the user’s preferred font for menus.

By default, the frame rectangle is divided horizontally in half, with thelabel displayed on
the left and themenu on the right. This division can be changed with theSetDivider()
function. Themenu is assigned to a BMenuBar object and will pop up under the user’s
control. For most uses, themenu should be a BPopUpMenu object.

Member Functions BMenuField

122 – The Interface Kit

~BMenuField()
virtual ~BMenuField(void)

Frees the label, the BMenuBar object, and other memory allocated by the BMenuField.

Member Functions

Alignment() see SetAlignment()

AttachedToWindow(), AllAttached()
virtual voidAttachedToWindow(void)

virtual voidAllAttached(void)

These functions override their BView counterparts to make the BMenuField’s background
color match the color of its parent view and to adjust the height of the view to the height of
the BMenuBar child it contains. The height of the child depends on the size of the user’s
preferred font for menus.

See also: BView::AttachedToWindow()

Divider() see SetDivider()

Draw()
virtual voidDraw(BRectupdateRect)

Overrides the BView version of this function to draw the view’s border and label. The
way the menu field is drawn depends on whether it’s enabled or disabled and whether or
not it’s the current focus for keyboard actions.

See also: BView::Draw()

IsEnabled() see SetEnabled()

BMenuField Member Functions

The Interface Kit –123

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the BView version ofKeyDown() to permit keyboard navigation to and from
the view and to allow users to open the menu by pressing the space bar.

See also: BView::KeyDown()

Label() see SetLabel()

MakeFocus()
virtual voidMakeFocus(bool focused)

Augments the BView version ofMakeFocus() to enable keyboard navigation. This
function callsDraw() when the BMenuField becomes the focus view and when it loses that
status.

See also: BView::MakeFocus()

Menu(), MenuBar()
BMenu *Menu(void) const

BMenuBar *MenuBar(void) const

Menu() returns the BMenu object that pops up when the user operates the BMenuField;
MenuBar() returns the BMenuBar object that contains the menu. The BMenuBar is
created by the BMenuField; the menu is assigned to it during construction.

See also: the BMenuField constructor

MouseDown()
virtual voidMouseDown(BPointpoint)

Overrides the BView version ofMouseDown() to enable users to pop up the menu using
the mouse, even if the cursor isn’t directly over the menu portion of the bounds rectangle.

See also: BView::MouseDown()

Member Functions BMenuField

124 – The Interface Kit

SetAlignment(), Alignment()
virtual voidSetAlignment(alignmentlabel)

alignmentAlignment(void) const

These functions set and return the alignment of the label in its portion of the frame
rectangle.

B_ALIGN_LEFT The label is aligned at the left side of the bounds
rectangle.

B_ALIGN_RIGHT The label is aligned at the right boundary of its portion of
the bounds rectangle.

B_ALIGN_CENTER The label is centered in its portion of the bounds
rectangle.

The default isB_ALIGN_LEFT.

SetDivider(), Divider()
virtual voidSetDivider(floatxCoordinate)

float Divider(void) const

These functions set and return thex coordinate value that divides the bounds rectangle
between the label’s portion on the left and the portion that holds the menu on the right.
The coordinate is expressed in the BMenuField’s coordinate system.

The default divider splits the bounds rectangle in two equal sections. By resetting it, you
can provide more or less room for the label or the menu.

SetEnabled(), IsEnabled()
virtual voidSetEnabled(boolenabled)

bool IsEnabled(void) const

SetEnabled() enables the BMenuField if theenabled flag isTRUE, and disables it if the flag
is FALSE. IsEnabled() returns whether or not the object is currently enabled. When
disabled, the BMenuField doesn’t respond to mouse and keyboard manipulations.

If the enabled flag changes the current state of the object,SetEnabled() causes the view to
be redrawn, so that its new state can be displayed to the user.

BMenuField Member Functions

The Interface Kit –125

SetLabel(), Label()
virtual voidSetLabel(const char *string)

const char *Label(void) const

SetLabel() frees the current label and, if the argument it’s passed is notNULL, replaces it
with a copy ofstring. Label() returns the current label. The string it returns belongs to the
BMenuField object.

See also: the BMenuField constructor

Member Functions BMenuField

126 – The Interface Kit

The Interface Kit –127

BMenuItem

Derived from: public BObject

Declared in: <interface/MenuItem.h>

Overview

A BMenuItem is an object that contains and displays one item within a menu. By default,
Menu items are displayed simply as textual labels, like “Options...” or “Save As”.
Derived classes can be defined to draw something other than a label—or something in
addition to the label.

Kinds of Items

Some menu items play a role in helping users navigate the menu hierarchy. They give the
user access to submenus. A submenu remains hidden until the user operates the item that
controls it.

Other items accomplish specific actions. When the user invokes the item, a message is
posted so that it will be delivered to a target BHandler, usually the window where the
menu at the root of the hierarchy (a BMenuBar object) is displayed. The action that the
item initiates, or the state that it sets, depends entirely on the message and the handler’s
response to it.

The target handler and the message can be customized for every item. Each BMenuItem
retains a model for the BMessage it posts and can have a target that’s different from other
items in the same menu.

Items can also have a visual presence, but do nothing. Instances of the BSeparatorItem
class, which is derived from BMenuItem, serve only to visually separate groups of items
in the menu.

Shortcuts and Triggers

Any menu item (except for those that control submenus) can be associated with a
keyboard shortcut, a character the user can type in combination with a Command key (and
possibly other modifiers) to invoke the item. The shortcut character is displayed in the
menu item to the right of the label. All shortcuts for menu items require the user to hold
down the Command key.

Hook Functions BMenuItem

128 – The Interface Kit

A shortcut works even when the item it invokes isn’t visible on-screen. It, therefore, has
to be unique within the window (within the entire menu hierarchy).

Every menu item is also associated with atrigger, a character that the user can type
(without the Command key) to invoke the item. The trigger works only while the menu is
both open on-screen and can be operated using the keyboard. It therefore must be unique
only within a particular branch of the menu hierarchy (within the menu).

The trigger is one of the characters that’s displayed within the item—either the keyboard
shortcut or a character in the label. When it’s possible for the trigger to invoke the item,
the character is underlined. Like shortcuts, triggers are case-insensitive.

For an item to have a keyboard shortcut, the application must explicitly assign one.
However, by default, the Interface Kit chooses and assigns triggers for all items. The
default choice can be altered by theSetTrigger() function.

Marked Items

An item can also be marked (with a check mark drawn to the left of the label) in order to
indicate that the state it sets is currently in effect. Items are marked by theSetMarked()
function. A menu can be set up so that items are automatically marked when they’re
selected and exactly one item is marked at all times. (SeeSetRadioMode() in the BMenu
class.)

Disabled Items

Items can also be enabled or disabled (by theSetEnabled() function). A disabled item is
drawn in muted tones to indicate that it doesn’t work. It can’t be selected or invoked. If
the item controls a specific action, it won’t post the message that initiates the action. If it
controls a submenu, it will still bring the submenu to the screen, but all the items in
submenu will be disabled. If an item in the submenu brings its own submenu to the
screen, items in that submenu will also be disabled. Disabling the superitem for a
submenu in effect disables a whole branch of the menu hierarchy.

See also: the BMenu class, the BSeparatorItem class

Hook Functions

All BMenuItem hook functions are protected. They should be implemented only if you
design a special type of menu item that displays something other than a textual label.

Draw() Draws the entire item; can be reimplemented to draw the
item in a different way.

BMenuItem Constructor and Destructor

The Interface Kit –129

DrawContents() Draws the item label; can be reimplemented to draw
something other than a label.

GetContentSize() Provides the width and height of the item’s content area,
which is based on the length of the label and the current
font; can be reimplemented to provide the size required to
draw something other than a label.

Highlight() Highlights the item when it’s selected; can be
reimplemented to do highlighting in some way other than
the default.

Constructor and Destructor

BMenuItem()
BMenuItem(const char *label, BMessage *message,

charshortcut = NULL, ulongmodifiers= NULL)
BMenuItem(BMenu *submenu, BMessage *message= NULL)

Initializes the BMenuItem to displaylabel (which can beNULL if the item belongs to a
derived class that’s designed to display something other than text) and assigns it a model
message (which also can beNULL).

Whenever the user invokes the item, the model message is copied and the copy is posted
and marked for delivery to the target handler. Three pieces of information are added to the
copy before it’s posted:

Data name Type code Description

“when” B_DOUBLE_TYPE The time the item was invoked, as
measured in microseconds since the
machine was last booted.

“source” B_OBJECT_TYPE A pointer to the BMenuItem object.

“index” B_LONG_TYPE The index of the item, its ordinal position
in the menu. Indices begin at 0.

These names should not be used for any data that you place in themessage.

By default, the target of the message is the window associated with the item’s menu
hierarchy—the window where the BMenuBar at the root of the hierarchy is located.
Another target can be designated by calling theSetTarget() function.

The constructor can also optionally set a keyboard shortcut for the item. The character
that’s passed as theshortcut parameter will be displayed to the right of the item’s label.
It’s the accepted practice to display uppercase shortcut characters only, even though the
actual character the user types may not be uppercase.

Member Functions BMenuItem

130 – The Interface Kit

Themodifiers mask, not theshortcut character, determines which modifier keys the user
must hold down for the shortcut to work—including whether the Shift key must be down.
The mask can be formed by combining any of the modifiers constants, especially these:

B_SHIFT_KEY
B_CONTROL_KEY
B_OPTION_KEY
B_COMMAND_KEY

However,B_COMMAND_KEY is required for all keyboard shortcuts; it doesn’t have to be
explicitly included in the mask. For example, setting theshortcut to ‘U’ with no modifiers
would mean that the letter ‘U’ would be displayed alongside the item label and Command-
u would invoke the item. The sameshortcut with aB_SHIFT_KEY modifiers mask would
mean that the uppercase character (Command-Shift-U) would invoke the item.

If the BMenuItem is constructed to control asubmenu, it can’t take a shortcut and it
typically doesn’t post messages—its role is to bring up the submenu. However, it can be
assigned a modelmessage if the application must take some collateral action when the
submenu is opened. The item’s initial label will be taken from the name of the submenu.
It can be changed after construction by callingSetLabel().

See also: SetTarget(), SetMessage(), SetLabel()

~BMenuItem()
virtual ~BMenuItem(void)

Frees the item’s label and its model BMessage object. If the item controls a submenu, that
menu and all its items are also freed. Deleting a BMenuItem destroys the entire menu
hierarchy under that item.

Member Functions

Command() see SetMessage()

ContentLocation()
protected:

BPointContentLocation(void) const

Returns the left top corner of the content area of the item, in the coordinate system of the
BMenu to which it belongs. The content area of an item is the area where it displays its
label (or whatever graphic substitutes for the label). It doesn’t include the part of the item
where a check mark or a keyboard shortcut could be displayed, nor the border and
background around the content area.

BMenuItem Member Functions

The Interface Kit –131

You would need to call this function only if you’re implementing aDrawContent()
function to draw the contents of the menu item (likely something other than a label). The
content rectangle can be calculated from the point returned by this function and the size
specified byGetContentSize().

If the item isn’t part of a menu, the return value is indeterminate.

See also: GetContentSize(), DrawContent()

Draw(), DrawContent()
protected:

virtual voidDraw(void)

virtual voidDrawContent(void)

These functions draw the menu item and highlight it if it’s currently selected. They’re
called by theDraw() function of the BMenu where the item is located whenever the menu
is required to display itself; they don’t need to be called from within application code.

However, they can both be overridden by derived classes that display something other
than a textual label. TheDraw() function is called first. It draws the background for the
entire item, then callsDrawContent() to draw the label within the item’s content area.
After DrawContent() returns, it draws the check mark (if the item is currently marked) and
the keyboard shortcut (if any). It finishes by callingHighlight() if the item is currently
selected.

Both functions draw by calling functions of the BMenu in which the item is located. For
example:

void MyItem::DrawContent()
{
 . . .
 Menu()->DrawBitmap(image);
 . . .
}

A derived class can override eitherDraw(), if it needs to draw the entire item, or
DrawContent(), if it needs to draw only within the content area. ADraw() function can
find the frame rectangle it should draw within by calling the BMenuItem’sFrame()
function; aDrawContent() function can calculate the content area from the point returned
by ContentLocation() and the dimensions provided byGetContentSize().

WhenDrawContent() is called, the pen is positioned to draw the item’s label and the high
color is appropriately set. The high color may be a shade of gray, if the item is disabled, or
black if it’s enabled. If some other distinction is used to distinguish disabled from enabled
items,DrawContent() should check the item’s current state by callingIsEnabled().

Note: If a derived class implements its ownDrawContent() function, but still wants to
draw a textual string, it should do so by assigning the string as the BMenuItem’s label and

Member Functions BMenuItem

132 – The Interface Kit

calling the inherited version ofDrawContent(), not by callingDrawString(). This
preserves the BMenuItem’s ability to display a trigger character in the string.

See also: Highlight(), Frame(), ContentLocation(), GetContentSize()

Frame()
BRectFrame(void) const

Returns the rectangle that frames the entire menu item, in the coordinate system of the
BMenu to which the item belongs. If the item hasn’t been added to a menu, the return
value is indeterminate.

See also: BMenu::AddItem()

GetContentSize()
protected:

virtual voidGetContentSize(float *width, float *height)

Writes the size of the item’s content area into the variables referred to bywidth andheight.
The content area of an item is the area where its label (or whatever substitutes for the
label) is drawn.

A BMenu callsGetContentSize() for each of its items as it arranges them in a column or a
row; the function is not called for items in a matrix. The information it provides helps
determine where each item is located and the overall size of the menu.

GetContentSize() must report a size that’s large enough to display the content of the item
(and separate one item from another). By default, it reports an area just large enough to
display the item’s label. This area is calculated from the label and the BMenu’s current
font.

If you design a class derived from BMenuItem and implement your ownDraw() or
DrawContent() function, you should also implement aGetContentSize() function to report
how much room will be needed to draw the item’s contents.

See also: DrawContent(), ContentLocation()

Highlight()
protected:

virtual voidHighlight(boolflag)

Highlights the menu item whenflag is TRUE, and removes the highlighting whenflag is
FALSE. Highlighting simply inverts all the colors in the item’s frame rectangle (except for
the check mark).

BMenuItem Member Functions

The Interface Kit –133

This function is called by theDraw() function whenever the item is selected and needs to
be drawn in its highlighted state. There’s no reason to call it yourself, unless you define
your own version ofDraw(). However, it can be reimplemented in a derived class, if items
belonging to that class need to be highlighted in some way other than simple inversion.

See also: Draw()

IsEnabled() see SetEnabled()

isMarked() see SetMarked()

IsSelected()
protected:

bool IsSelected(void) const

ReturnsTRUE if the menu item is currently selected, andFALSE if not. Selected items are
highlighted.

Label() see SetLabel()

Menu()
BMenu *Menu(void) const

Returns the menu where the item is located, orNULL if the item hasn’t yet been added to a
menu.

See also: BMenu::AddItem()

Message() see SetMessage()

SetEnabled(), IsEnabled()
virtual voidSetEnabled(boolenabled)

bool IsEnabled(void) const

SetEnabled() enables the BMenuItem if theenabled flag isTRUE, disables it ifenabled is
FALSE, and updates the item if it’s visible on-screen. If the item controls a submenu, this
function calls the submenu’sSetEnabled() virtual function, passing it the same flag. This
ensures that the submenu is enabled or disabled as well.

Member Functions BMenuItem

134 – The Interface Kit

IsEnabled() returnsTRUE if the BMenuItem is enabled, its menu is enabled, and all menus
above it in the hierarchy are enabled. It returnsFALSE if the item is disabled or any objects
above it in the menu hierarchy are disabled.

Items and menus are enabled by default.

When using these functions, keep in mind that:

• Disabling a BMenuItem that controls a submenu serves to disable the entire menu
hierarchy under the item.

• Passing an argument ofTRUE to SetEnabled() is not sufficient to enable the item if
it’s located in a disabled branch of the menu hierarchy. It can only undo a previous
SetEnabled() call (with an argument ofFALSE) on the same item.

See also: BMenu::SetEnabled()

SetLabel(), Label()
virtual voidSetLabel(const char *string)

const char *Label(void) const

SetLabel() frees the item’s current label and copiesstring to replace it. If the menu is
visible on-screen, it will be redisplayed with the item’s new label. If necessary, the menu
will become wider (or narrower) so that it fits the new label.

The Interface Kit calls this virtual function to:

• Set the initial label of an item that controls a submenu to the name of the submenu,
and

• Subsequently set the item’s label to match the marked item in the submenu, if the
submenu was set up to have this feature.

Label() returns a pointer to the current label.

See also: BMenu::SetLabelFromMarked(), the BMenuItem constructor

SetMarked(), IsMarked()
virtual voidSetMarked(boolflag)

bool IsMarked(void) const

SetMarked() adds a check mark to the left of the item label ifflag is TRUE, or removes an
existing mark ifflag is FALSE. If the menu is visible on-screen. it’s redisplayed with or
without the mark.

BMenuItem Member Functions

The Interface Kit –135

IsMarked() returns whether the item is currently marked.

See also: BMenu::SetLabelFromMarked(), BMenu::FindMarked()

SetMessage(), Message(), Command()
virtual voidSetMessage(BMessage *message)

BMessage *Message(void) const

ulongCommand(void) const

SetMessage() makesmessage the model BMessage for the menu item, deleting any
previous message assigned to the item. The model message is first set by the BMenuItem
constructor;SetMessage() allows you to change the message in midstream. You might
need to change it, for example, when the item’s label changes. Passing aNULL message
frees the current model BMessage object without replacing it.

When a menu item is invoked, its model message is copied, relevant information is added
to the copy, and the copy is posted so that it will be dispatched to the target BHandler.
(The information that gets added to the copy is described under the BMenuItem
constructor.)

Message() returns a pointer to the BMenuItem’s model message andCommand() returns
its what data member. If the BMenuItem doesn’t post a message, both functions return
NULL.

The BMessage thatMessage() returns belongs to the BMenuItem. You can modify it by
adding and removing data, but you shouldn’t delete it or do anything that will cause it to
be deleted. In particular, you shouldn’t post or send the message anywhere, since that
would transfer ownership to a message loop and subject the message to automatic
deletion.

It’s possible to set and return a model BMessage for a separator item. However, the
message will never be used.

See also: the BMenuItem constructor,SetTarget()

SetShortcut(), Shortcut()
virtual voidSetShortcut(charshortcut, ulongmodifiers)

charShortcut(ulong *modifiers = NULL) const

SetShortcut() sets theshortcut character that’s displayed at the right edge of the menu item
and the set ofmodifiers that are associated with the character. These two arguments work
just like the arguments passed to the BMenuItem constructor. See the constructor for a
more complete description.

Shortcut() returns the character that’s used as the keyboard shortcut for invoking the item,
and writes a mask of all the modifier keys the shortcut requires to the variable referred to

Member Functions BMenuItem

136 – The Interface Kit

by modifiers. Since the Command key is required to operate the keyboard shortcut for any
menu item,B_COMMAND_KEY will always be part of themodifiers mask. The mask can
also be tested against theB_CONTROL_KEY, B_OPTION_KEY, andB_SHIFT_KEY constants.

The shortcut is initially set by the BMenuItem constructor.

See also: the BMenuItem constructor

SetTarget(), Target()
virtual longSetTarget(BHandler *target)
virtual longSetTarget(BLooper *target, booltargetsPreferredHandler)

BHandler *Target(BLooper **looper = NULL) const

These functions set and return the object that’s targeted to handle messages posted by the
BMenuItem.

The version ofSetTarget() that takes a single argument sets thetarget BHandler object.
It’s successful only if it can also discern a BLooper object where the BMenuItem can post
messages so that they will be dispatched to that target. To post a message, the BMenuItem
calls the BLooper’sPostMessage() function and names thetarget as the object that should
receive the message:

theLooper->PostMessage(theMessage, target);

Therefore, thetarget BHandler must be able, through itsLooper() function, to reveal the
BLooper object with which it is associated. It can do so if:

• It’s a BLooper itself (such as a BWindow), so that it can fulfill the roles of both
BLooper and BHandler.

• It has been added to a BLooper (as BViews are added to BWindows).

Once it becomes the BMenuItem’starget, the BHandler must maintain its association with
the BLooper. If it moves to another BLooper,PostMessage() will fail.

The version ofSetTarget() that takes two arguments sets the BLooper object where the
BMenuItem should post messages. If thetargetsPreferredHandler flag isFALSE, messages
will be targeted to thelooper object itself—it will act both as BLooper and BHandler. In
other words, passing a BLooper andFALSE to the version ofSetTarget() that takes two
arguments accomplishes the same thing as simply passing the BLooper alone to the
version that takes one argument. These two lines of code have the same result:

myItem->SetTarget(someLooper, FALSE);
myItem->SetTarget(someLooper);

The two-argument version ofSetTarget() becomes interesting only if the
targetsPreferredHandler flag isTRUE. In this case, messages are targeted to thelooper’s

BMenuItem Member Functions

The Interface Kit –137

preferred handler (the object returned by itsPreferredHandler() function). This permits
the targeting decision to be made dynamically, when the user invokes the item:

looper ->PostMessage(theMessage, looper ->PreferredHandler());

For example, the preferred handler for a BWindow object is the current focus view.
Therefore, by passing a BWindowlooper andTRUE to SetTarget(),

myItem->SetTarget(someWindow, TRUE);

the menu item can be targeted to whatever BView happens to be in focus at the time the
user operates the menu. This is useful for items—like Cut, Copy, and Paste—that act on
the current selection. (Note, however, that if thelooper’s PreferredHandler() is NULL, the
BLooper itself becomes the target, just as it would if thetargetsPreferredHandler flag
wereFALSE.)

When successful,SetTarget() returnsB_NO_ERROR. It fails and returnsB_BAD_VALUE if
the proposedtarget or looper is NULL. The one-argument version also returns
B_BAD_VALUE if it can’t discover a BLooper from the proposedtarget.

Target() returns the current target and, if a pointer to alooper is provided, fills in the
BLooper where the BMenuItem will post messages. If the target BHandler is the preferred
handler of thelooper, Target() returnsNULL. In other words, passing a BLooper andTRUE
to SetTarget() causesTarget() to report that there is alooper, but aNULL target; the
BLooper is known, but the target BHandler is not. Passing a BLooper andFALSE to
SetTarget() causesTarget() to report that the same object is bothlooper and target.

By default, the BLooper and BHandler roles are both filled by the BWindow at the root of
the menu hierarchy (the BWindow where the menu bar is located). These defaults are
established when the BMenuItem becomes part of a menu hierarchy that’s rooted in a
window, but only if anothertarget (or looper) hasn’t already been set. If a target hasn’t
been set and the BMenuItem isn’t part of a rooted menu hierarchy,Target() returnsNULL.

See also: BView::Looper(), BWindow::PreferredHandler()

SetTrigger(), Trigger()
virtual voidSetTrigger(chartrigger)

charTrigger(void) const

SetTrigger() sets thetrigger character that the user can type to invoke the item while the
item’s menu is open on-screen. If atrigger is not set, the Interface Kit will select one for
the item, so it’s not necessary to callSetTrigger().

The character passed to this function has to match a character displayed in the item—
either the keyboard shortcut or a character in the label. The case of the character doesn’t
matter; lowercase arguments will match uppercase characters in the item and uppercase
arguments will match lowercase characters. When the item can be invoked by its trigger,
the trigger character is underlined.

Member Functions BMenuItem

138 – The Interface Kit

If more than one character in the item matches the character passed,SetTrigger() tries first
to mark the keyboard shortcut. Failing that, it tries to mark an uppercase letter at the
beginning of a word. Failing that, it marks the first instance of the character in the label.

If the trigger doesn’t match any characters in the item, the item won’t have a trigger, not
even one selected by the system.

Trigger() returns the character set bySetTrigger(), or NULL if SetTrigger() didn’t succeed or
if SetTrigger() was never called and the trigger is selected automatically.

See also: BMenu::SetTriggersEnabled()

Shortcut() see SetShortcut()

Submenu()
BMenu *Submenu(void) const

Returns the BMenu object that the item controls, orNULL if the item doesn’t control a
submenu.

See also: the BMenuItem constructor, the BMenu class

Target() see SetTarget()

Trigger() see SetTrigger()

The Interface Kit –139

BPicture

Derived from: public BObject

Declared in: <interface/Picture.h>

Overview

A BPicture object holds a set of drawing instructions in the Application Server, where they
can be reused over and over again simply by passing the object to BView’sDrawPicture()
function. Because it contains instructions for producing an image, not the rendered result
of those instructions, a picture (unlike a bitmap) is independent of the resolution of the
display device.

Recording a Picture

Drawing instructions are captured by bracketing them with calls to a BView’s
BeginPicture() andEndPicture() functions. An empty BPicture object is passed to
BeginPicture(); EndPicture() returns the same object, fully initialized. For example:

BPicture *myPict;
someView->BeginPicture(new BPicture);
/* drawing code goes here */
myPict = someView->EndPicture();

The BPicture object records all of the drawing instructions given to the BView following
theBeginPicture() call and preceding theEndPicture() call. Only the drawing that the
BView does is recorded; drawing done by children and other views attached to the
window is ignored, as is everything except drawing code.

If the BPicture object passed toBeginPicture() isn’t empty, the new drawing is appended
to the code that’s already in place.

The Picture Definition

The picture captures everything that affects the image that’s drawn. It takes a snapshot of
the BView’s graphics parameters—the pen size, high and low colors, font size, and so
on—at the timeBeginPicture() is called. It then captures all subsequent modifications to
those parameters, such as calls toMovePenTo(), SetLowColor(), andSetFontSize().
However, changes to the coordinate system (ScrollBy() andScrollTo()) are ignored.

Constructor and Destructor BPicture

140 – The Interface Kit

The picture records all primitive drawing instructions—such as,DrawBitmap(),
StrokeEllipse(), FillRect(), andDrawString(). It can even include a call toDrawPicture();
one picture can incorporate another.

The BPicture traces exactly what BView drew and reproduces it precisely. For example,
whatever pen size happens to be in effect when a line is stroked will be the pen size that
the picture records, whether it was explicitly set while the BPicture was being recorded or
assumed from the BView’s graphics environment.

The picture makes its own copy of any data that’s passed during the recording session.
For example, it copies the bitmap passed toDrawBitmap() and the picture passed to
DrawPicture(). If that bitmap or picture later changes, it won’t affect what was recorded.

See also: BView::BeginPicture(), BView::DrawPicture(), the BPictureButton class

Constructor and Destructor

BPicture()
BPicture(void)
BPicture(const BPicture &picture)
BPicture(void *data, longsize)

Initializes the BPicture object by ensuring that it’s empty, by copying data from another
picture, or by copyingsize bytes of picturedata. The data should be taken, directly or
indirectly, from another BPicture object.

~BPicture()
virtual ~BPicture(void)

Destroys the Application Server’s record of the BPicture object and deletes all its picture
data.

BPicture Member Functions

The Interface Kit –141

Member Functions

Data()
void *Data(void) const

Returns a pointer to the data contained in the BPicture. The data can be copied from the
object, stored on disk (perhaps as a resource), and later used to initialize another BPicture
object.

See also: the BPicture constructor

DataSize()
long DataSize(void) const

Returns how many bytes of data the BPicture object contains.

See also: Data()

Member Functions BPicture

142 – The Interface Kit

The Interface Kit –143

BPictureButton

Derived from: public BControl

Declared in: <interface/PictureButton.h>

Overview

A BPictureButton object draws a button with a graphic image on its face, rather than a
textual label. The image is set by a BPicture object.

Like other BControl objects, BPictureButtons can have two values,B_CONTROL_OFF and
B_CONTROL_ON. A separate BPicture object is associated with each value. How the
BPictureButton displays these pictures depends on its behavior—whether it’s set to remain
in one state or to toggle between two states:

• A one-state BPictureButton usually has a value of 0 (B_CONTROL_OFF), and it
displays the BPicture associated with that value. However, while it’s being operated
(while the cursor is over the button on-screen and the user keeps the mouse button
down), its value is set to 1 (B_CONTROL_ON) and it displays the alternate picture.
That picture should be a highlighted version of the picture that’s normally shown.

This behavior is exactly like an ordinary, labeled BButton object. Just as a BButton
displays the same label, a one-state BPictureButton shows the same picture. Both
kinds of objects are appropriate devices for initiating an action of some kind.

• A two-state BPictureButton toggles between theB_CONTROL_OFF and
B_CONTROL_ON values. Each time the user operates the button, it’s value changes.
The picture that’s displayed changes with the value. The two BPictures are
alternatives to each other. TheB_CONTROL_ON picture might be a highlighted
version of theB_CONTROL_OFF picture, but it doesn’t need to be. The value of the
object changes only after it has been toggled to the other state, not while it’s being
operated.

This behavior is exactly like a BCheckBox or an individual BRadioButton. Like
those objects, a two-state BPictureButton is an appropriate device for setting a state.

Every BPictureButton must be assigned at least two BPictures. If it’s a one-state button,
one picture will be the one that’s normally shown and another will be shown while the
button is being operated. If it’s a two-state button, one picture is shown when the button is
turned on and one when it’s off.

If a one-state button can be disabled, it also needs to be assigned an image that can be
shown while it’s disabled. If a two-state button can be disabled, it needs two additional

Constructor and Destructor BPictureButton

144 – The Interface Kit

images—one in case it’s disabled while in theB_CONTROL_OFF state and another if it’s
disabled in theB_CONTROL_ON state.

Often the BPictures that are assigned to a BPictureButton simply wrap around a bitmap
image. For example:

BPicture *myPict;
someView->BeginPicture(new BPicture);
someView->DrawBitmap(&buttonBitmap);
myPict = someView->EndPicture();

See also: the BPicture class

Constructor and Destructor

BPictureButton()
BPictureButton(BRectframe, const char*name,

BPicture *off,
BPicture *on,
BMessage *message,
ulongbehavior= B_ONE_STATE_BUTTON,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BPictureButton by assigning it two images—anoff picture that will be
displayed when the object’s value isB_CONTROL_OFF and anon picture that’s displayed
when the value isB_CONTROL_ON—and by setting itsbehavior to either
B_ONE_STATE_BUTTON or B_TWO_STATE_BUTTON. A one-state button displays theoff image
normally and theon image to highlight the button as it’s being operated by the user. A
two-state button toggles between theoff image and theon image (between the
B_CONTROL_OFF andB_CONTROL_ON values). The initial value is set to
B_CONTROL_OFF.

If the BPictureButton can be disabled, it will need additional BPicture images that indicate
its disabled state. They can be set by callingSetDisabledOff() andSetDisabledOn().

All the BPictures assigned to the BPictureButton object become its property. It takes
responsibility for deleting them when they’re no longer needed.

Themessage parameter is the same as the one declared for the BControl constructor. It
establishes a model for the messages the BPictureButton sends to a target object each time
it’s invoked. SeeSetMessage(), SetTarget(), andInvoke() in the BControl class for more
information.

BPictureButton Member Functions

The Interface Kit –145

Theframe, name, resizingMode, andflags parameters are the same as those declared for
the BView constructor. They’re passed up the inheritance hierarchy to the BView class
unchanged. See the BView constructor for details.

See also: the BControl and BView constructors,SetEnabledOff(), BControl::Invoke(),
BControl::SetMessage(), BControl::SetTarget()

~BPictureButton()
virtual ~BPictureButton(void)

Deletes the model message and the BPicture objects that have been assigned to the
BPictureButton.

Member Functions

Behavior() see SetBehavior()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the BPictureButton. This function is called as the result of an update message to
draw the button in its current appearance; it’s also called from theMouseDown() function
to draw the button in its highlighted state.

See also: BView::Draw()

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the inherited version ofKeyDown() to respond whenaChar is B_ENTER or
B_SPACE, by:

• Momentarily highlighting the button,
• Temporarily changing its value while it’s being highlighted, and
• Posting a copy of the model BMessage to the target receiver.

< Note that this function matches the BButtonKeyDown() function. It regards all
BPictureButtons as being one-state buttons. >

See also: BView::KeyDown(), BControl::Invoke()

Member Functions BPictureButton

146 – The Interface Kit

MouseDown()
virtual voidMouseDown(BPointpoint)

Responds to a mouse-down event in the button by tracking the cursor while the user holds
the mouse button down. If the BPictureButton is a one-state object, this function resets its
value as the cursor moves in and out of the button on-screen. TheSetValue() virtual
function is called to make the change each time. If it’s a two-state object, the value is not
reset. < However, the picture corresponding to theB_CONTROL_ON value is shown while
the cursor is in the button on-screen and the mouse button remains down. >

If the cursor is inside the BPictureButton’s bounds rectangle when the user releases the
mouse button, this function posts a copy of the model message so that it will be dispatched
to the target handler. If it’s a one-state object, it’s value is reset toB_CONTROL_OFF. If it’s
a two-state object, it’s value is toggled on or off and the corresponding picture is
displayed.

See also: BView::MouseDown(), BControl::Invoke(), SetBehavior()

SetBehavior(), Behavior()
virtual voidSetBehavior(ulongbehavior)

ulongBehavior(void) const

These functions set and return whether the BPictureButton is aB_ONE_STATE_BUTTON or a
B_TWO_STATE_BUTTON. If it’s a one-state button, its value is normally set to
B_CONTROL_OFF and it displays a fixed image (theoff picture passed to the constructor or
the one passed toSetEnabledOff()). Its value is reset as its being operated and it displays
the alternate image (theon picture passed to the constructor or the one passed to
SetEnabledOn()).

If it’s a two-state button, its value toggles betweenB_CONTROL_OFF andB_CONTROL_ON
each time the user operates it. The image the button displays similarly toggles between
two pictures (theoff andon images passed to the constructor or the ones passed to
SetEnabledOff() andSetEnabledOn()).

See also: the BPictureButton constructor

BPictureButton Member Functions

The Interface Kit –147

SetEnabledOff(), SetEnabledOn(), SetDisabledOff(), SetDisabledOn(),
EnabledOff(), EnabledOn(), DisabledOff(), DisabledOn

virtual voidSetEnabledOff(BPicture *picture)

virtual voidSetEnabledOn(BPicture *picture)

virtual voidSetDisabledOff(BPicture *picture)

virtual voidSetDisabledOn(BPicture *picture)

inline BPicture *EnabledOff(void) const

inline BPicture *EnabledOn(void) const

inline BPicture *DisabledOff(void) const

inline BPicture *DisabledOn(void) const

These functions set and return the images the BPictureButton displays. Each
BPictureButton object needs to be assigned at least two BPicture objects—one
corresponding to theB_CONTROL_OFF value and another corresponding to the
B_CONTROL_ON value. These are the images that are displayed when the BPictureButton
is enabled, as it is by default. They’re initially set when the object is constructed and can
be replaced by calling theSetEnabledOff() andSetEnabledOn() functions.

If a BPictureButton can be disabled, it needs to display an image that indicates its disabled
condition. A two-state button might be disabled when its value is eitherB_CONTROL_OFF
or B_CONTROL_ON, so it needs two BPictures to indicate disabling, one corresponding to
each value. They can be set by callingSetDisabledOff() andSetDisabledOn().

The value of a one-state button is alwaysB_CONTROL_OFF (except when it’s being
operated), so it needs only a single BPicture to indicate disabling; you can set it by calling
SetDisabledOff().

All four of theSet...() functions free the image previously set, if any, and replace it with
picture. Thepicture belongs to the BPictureButton; it should not be freed or assigned to
any other object.

The last four functions listed above return the BPictureButton’s four images, orNULL if it
hasn’t been assigned a BPicture object in the requested category.

See also: the BPictureButton constructor

Member Functions BPictureButton

148 – The Interface Kit

The Interface Kit –149

BPoint

Derived from: none

Declared in: <interface/Point.h>

Overview

BPoint objects represent points on a two-dimensional coordinate grid. Each object holds
anx coordinate value and ay coordinate value declared as public data members. These
values locate a specific point, (x, y), relative to a given coordinate system.

Because the BPoint class defines a basic data type for graphic operations, its data members
are publicly accessible and it declares no virtual functions. It’s a simple class that doesn’t
inherit from BObject or any other class and doesn’t retain class information that it can
reveal at run time. In the Interface Kit, BPoint objects are typically passed and returned by
value, not through pointers.

For an introduction to coordinate geometry on the BeBox, see “The Coordinate Space” on
page 14.

Data Members

float x The coordinate value measured horizontally along the
x-axis.

float y The coordinate value measured vertically along they-axis.

Constructor BPoint

150 – The Interface Kit

Constructor

BPoint()
inline BPoint(floatx, floaty)
inline BPoint(const BPoint&point)
inline BPoint(void)

Initializes a new BPoint object to (x, y), or to the same values aspoint. For example:

BPoint somePoint(155.7, 336.0);
BPoint anotherPoint(somePoint);

Here, bothsomePoint andanotherPoint are initialized to (155.7, 336.0).

If no coordinate values are assigned to the BPoint when it’s declared,

BPoint emptyPoint;

its initial values are indeterminate.

BPoint objects can also be initialized or modified using theSet() function,

emptyPoint.Set(155.7, 336.0);
anotherPoint.Set(221.5, 67.8);

or the assignment operator:

somePoint = anotherPoint;

See also: Set(), the assignment operator

Member Functions

ConstrainTo()
void ConstrainTo(BRectrect)

Constrains the point so that it lies inside therect rectangle. If the point is already
contained in the rectangle, it remains unchanged. However, if it falls outside the
rectangle, it’s moved to the nearest edge. For example, this code

BPoint point(54.9, 76.3);
BRect rect(10.0, 20.0, 40.0, 80.0);
point.Constrain(rect);

modifies the point to (40.0, 76.3).

See also: BRect::Contains()

BPoint Operators

The Interface Kit –151

PrintToStream()
void PrintToStream(void) const

Prints the contents of the BPoint object to the standard output stream (stdout) in the form:

"BPoint(x, y)"

wherex andy stand for the current values of the BPoint’s data members.

Set()
inline voidSet(floatx, floaty)

Assigns the coordinate valuesx andy to the BPoint object. For example, this code

BPoint point;
point.Set(27.0, 53.4);

is equivalent to:

BPoint point;
point.x = 27.0;
point.y = 53.4;

See also: the BPoint constructor

Operators

= (assignment)
inline BPoint&operator =(const BPoint&)

Assigns thex andy values of one BPoint object to another BPoint:

BPoint a, b;
a.Set(21.5, 17.0);
b = a;

Pointb, like pointa, is set to (21.5, 17.0).

Operators BPoint

152 – The Interface Kit

== (equality)
bool operator ==(const BPoint&) const

Compares the data members of two BPoint objects and returnsTRUE if each one exactly
matches its counterpart in the other object, andFALSE if not. In the following example, the
equality operator would returnFALSE:

BPoint a(21.5, 17.0);
BPoint b(17.5, 21.0);
if (a == b)

. . .

!= (inequality)
bool operator !=(const BPoint&) const

Compares two BPoint objects and returnsTRUE unless their data members match exactly
(the two points are the same), in which case it returnsFALSE. This operator is the inverse
of the== (equality) operator.

+ (addition)
BPointoperator +(const BPoint&) const

Combines two BPoint objects by adding thex coordinate of the second to thex coordinate
of the first and they coordinate of the second to they coordinate of the first, and returns a
BPoint object that holds the result. For example:

BPoint a(77.0, 11.0);
BPoint b(55.0, 33.0);
BPoint c = a + b;

Pointc is initialized to (132.0, 44.0).

+= (addition and assignment)
BPoint& operator +=(const BPoint&)

Modifies a BPoint object by adding another point to it. As in the case of the+ (addition)
operator, the members of the second point are added to their counterparts in the first point:

BPoint a(77.0, 11.0);
BPoint b(55.0, 33.0);
a += b;

Pointa is modified to (132.0, 44.0).

BPoint Operators

The Interface Kit –153

– (subtraction)
BPointoperator –(const BPoint&) const

Subtracts one BPoint object from another by subtracting thex coordinate of the second
from thex coordinate of the first and they coordinate of the second from they coordinate
of the first, and returns a BPoint object that holds the result. For example:

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
BPoint c = a - b;

Pointc is initialized to (55.0, –22.0).

–= (subtraction and assignment)
BPoint& operator –=(const BPoint&)

Modifies a BPoint object by subtracting another point from it. As in the case of the
– (subtraction) operator, the members of the second point are subtracted from their
counterparts in the first point. For example:

BPoint a(99.0, 66.0);
BPoint b(44.0, 88.0);
a -= b;

Pointa is modified to (55.0, –22.0).

Operators BPoint

154 – The Interface Kit

The Interface Kit –155

BPolygon

Derived from: public BObject

Declared in: <interface/Polygon.h>

Overview

A BPolygon object represents apolygon—a closed, many-sided figure that describes an
area within a two-dimensional coordinate system. It differs from a BRect object in that it
can have any number of sides and the sides don’t have to be aligned with the coordinate
axes.

A BPolygon is defined as a series of connected points. Each point is a potential vertex in
the polygon. An outline of the polygon could be constructed by tracing a straight line
from the first point to the second, from the second point to the third, and so on through the
whole series, then by connecting the first and last points if they’re not identical.

The BView functions that draw a polygon—StrokePolygon() andFillPolygon()—take
BPolygon objects as arguments.StrokePolygon() offers the option of leaving the polygon
open—of not stroking the line that connects the first and last points in the list. The
polygon therefore won’t look like a polygon, but like an chain of lines fastened at their
endpoints.

Constructor and Destructor

BPolygon()
BPolygon(BPoint *pointList, longnumPoints)
BPolygon(const BPolygon *polygon)
BPolygon(void)

Initializes the BPolygon by copyingnumPoints from pointList, or by copying the list of
points from anotherpolygon. If one polygon is constructed from another, the original and
the copy won’t share any data; independent memory is allocated for the copy to hold a
duplicate list of points.

If a BPolygon is constructed without a point list, points must be set with theAddPoints()
function.

See also: AddPoints()

Member Functions BPolygon

156 – The Interface Kit

~BPolygon()
virtual ~BPolygon(void)

Frees all the memory allocated to hold the list of points.

Member Functions

AddPoints()
void AddPoints(const BPoint *pointList, longnumPoints)

AppendsnumPoints from pointList to the list of points that already define the polygon.

See also: the BPolygon constructor

CountPoints()
inline longCountPoints(void) const

Returns the number of points that define the polygon.

Frame()
inline BRectFrame(void) const

Returns the polygon’s frame rectangle—the smallest rectangle that encloses the entire
polygon.

MapTo()
void MapTo(BRectsource, BRectdestination)

Modifies the polygon so that it fits thedestination rectangle exactly as it originally fit the
source rectangle. Each vertex of the polygon is modified so that it has the same
proportional position relative to the sides of the destination rectangle as it originally had to
the sides of the source rectangle.

The polygon doesn’t have to be contained in either rectangle. However, to modify a
polygon so that it’s exactly inscribed in the destination rectangle, you should pass its
frame rectangle as the source:

BRect frame = myPolygon->Frame();
myPolygon->MapTo(frame, anotherRect);

BPolygon Operators

The Interface Kit –157

PrintToStream()
void PrintToStream(void) const

Prints the BPolygon’s point list to the standard output stream (stdout). The BPoint version
of this function is called to report each point as a string in the form

"BPoint(x, y)"

wherex andy stand for the coordinate values of the point in question.

See also: BPoint::PrintToStream()

Operators

= (assignment)
BPolygon&operator =(const BPolygon&)

Copies the point list of one BPolygon object and assigns it to another BPolygon. After the
assignment, the two objects describe the same polygon, but are independent of each other.
Destroying one of the objects won’t affect the other.

Operators BPolygon

158 – The Interface Kit

The Interface Kit –159

BPopUpMenu

Derived from: public BMenu

Declared in: <interface/PopUpMenu.h>

Overview

A BPopUpMenu is a specialized menu that’s typically used in isolation, rather than as part
of an extensive menu hierarchy. By default, it operates in radio mode—the last item
selected by the user, and only that item, is marked in the menu.

A menu of this kind can be used to choose one from among a limited set of mutually
exclusive states—to pick a paper size or paragraph style, for example, or to select a
category of information. It should not be used to group different kinds of choices (as other
menus may), nor should it include items that initiate actions rather than set states, except
in certain well-defined cases.

A pop-up menu can be used in any of four ways:

• It can be controlled by a BMenuBar object, often one that contains just a single
item. The BMenuBar, in effect, functions as a button that pops up a list. The label
of the marked item in the list can be displayed as the label of the controlling item in
the BMenuBar. In this way, the BMenuBar is able to show the current state of the
hidden menu. When this is the case, the menu pops up so its marked item is directly
over the controlling item.

• A BPopUpMenu can also be controlled by a view other than a BMenuBar. It might
be associated with a particular image the view displays, for example, and appear
over the image when the user moves the cursor there and presses the mouse button.
Or it might be associated with the view as a whole and come up under the cursor
wherever the cursor happens to be. When the view is notified of a mouse-down
event, it calls BPopUpMenu’sGo() function to show the menu on-screen.

• The BPopUpMenu might also be controlled by a particular mouse button, typically
the secondary mouse button. When the user presses the button, the menu appears at
the location of the cursor. Instead of passing responsibility for the mouse-down
event to a BView, the BWindow would intercept it and place the menu on-screen.

• Finally, the application’s main menu must be a BPopUpMenu object. This menu
should be set up to behave like an ordinary menu, even though it’s not included in an
ordinary menu hierarchy. (The main menu is the one that holds items with
application-wide significance, like “About . . .” and “Quit”. It’s accessible when the

Constructor and Destructor BPopUpMenu

160 – The Interface Kit

application is the active application by pressing on the application icon in the left
top corner of the screen. SeeSetMainMenu() in the BApplication class.)

Other thanGo() (and the constructor), this class implements no functions that you’d ever
need to call from application code. In all other respects, a BPopUpMenu can be treated
like any other BMenu.

Constructor and Destructor

BPopUpMenu()
BPopUpMenu(const char *name, boolradioMode = TRUE,

bool labelFromMarked= TRUE,
menu_layoutlayout= B_ITEMS_IN_COLUMN)

Initializes the BPopUpMenu object. If the object is added to a BMenuBar, itsname also
becomes the initial label of its controlling item (just as for other BMenus).

If the labelFromMarked flag isTRUE (as it is by default), the label of the controlling item
will change to reflect the label of the item that the user last selected. In addition, the menu
will operate in radio mode (regardless of the value passed as theradioMode flag). When
the menu pops up, it will position itself so that the marked item appears directly over the
controlling item in the BMenuBar.

If labelFromMarked is FALSE, the menu pops up < so that its first item is over the
controlling item >.

If the radioMode flag isTRUE (as it is by default), the last item selected by the user will
always be marked. In this mode, one and only one item within the menu can be marked at
a time. IfradioMode is FALSE, items aren’t automatically marked or unmarked.

However, theradioMode flag has no effect unless thelabelFromMarked flag isFALSE. As
long aslabelFromMarked is TRUE, radio mode will also beTRUE.

The BPopUpMenu that’s used as the application’s main menu should have both
labelFromMarked andradioMode set toFALSE.

The layout of the items in a BPopUpMenu can be eitherB_ITEMS_IN_ROW or the default
B_ITEMS_IN_COLUMN. It should never beB_ITEMS_IN_MATRIX. The menu is resized so
that it exactly fits the items that are added to it.

The new BPopUpMenu is empty; you add items to it by calling BMenu’sAddItem()
function.

See also: BMenu::SetRadioMode(), BMenu::SetLabelFromMarked()

BPopUpMenu Member Functions

The Interface Kit –161

~BPopUpMenu()
virtual ~BPopUpMenu(void)

Does nothing. The BMenu destructor is sufficient to clean up after a BPopUpMenu.

Member Functions

Go()
BMenuItem *Go(BPointscreenPoint,

booldeliversMessage = FALSE,
boolopenAnyway= FALSE)

BMenuItem *Go(BPointscreenPoint,
booldeliversMessage,
boolopenAnyway,
BRectclickToOpenRect)

Places the pop-up menu on-screen so that its left top corner is located atscreenPoint in the
screen coordinate system.Go() doesn’t return until the user dismisses the menu from the
screen. If the user invoked an item in the menu, it returns a pointer to the item. If no item
was invoked, it returnsNULL.

Go() is typically called from within theMouseDown() function of a BView. For example:

void MyView::MouseDown(BPoint point)
{
 BMenuItem *selected;
 BMessage *copy;
 . . .
 ConvertToScreen(&point);
 selected = myPopUp->Go(point);
 . . .
 if (selected) {
 BLooper *looper;
 BHandler *target = selected->Target(&looper);
 if (target == NULL)
 target = looper->PreferredHandler();
 copy = new BMessage(selected->Message());
 looper->PostMessage(copy, target);
 }
 . . .
}

Go() operates in two modes:

• If the deliversMessage flag isTRUE, the BPopUpMenu works just like a menu that’s
controlled by a BMenuBar. When the user invokes an item in the menu, the item
posts a message to its target.

Member Functions BPopUpMenu

162 – The Interface Kit

• If the deliversMessage flag isFALSE, a message is not posted. Invoking an item
doesn’t automatically accomplish anything. It’s up to the application to look at the
returned BMenuItem and decide what to do. It can mimic the behavior of other
menus and post the message—as shown in the example above—or it can take some
other course of action.

In the example, a copy of the BMessage returned by the item’sMessage() function was
posted, not the returned message itself. Posting the returned message would turn it over to
a message loop, which would eventually delete it. It would then be unavailable the next
time the item was invoked.

Go() always puts the pop-up menu on-screen, but ordinarily keeps it there only as long as
the user holds a mouse button down. When the user releases the button, the menu is
hidden andGo() returns. However, theopenAnyway flag and theclickToOpenRect
arguments can alter this behavior so that the menu will stay open even when the user
releases the mouse button (or even if a mouse button was never down). It will take
another user action—such as invoking an item in the menu or clicking elsewhere—to
dismiss the menu.

If the openAnyway flag isTRUE, Go() keeps the menu on-screen even if no mouse buttons
are held down. This permits a user to open and operate a pop-up menu from the keyboard.
If openAnyway is FALSE, mouse actions determine whether the menu stays on-screen.

If the user has the click-to-open menu preference turned on and releases the mouse button
while the cursor lies inside theclickToOpenRect rectangle,Go() interprets the action as
clicking to open the menu and keeps it on-screen. If the cursor is outside the rectangle
when the mouse button goes up, the menu is removed from the screen andGo() returns.
The rectangle should be stated in the screen coordinate system.

See also: BMenuItem::SetMessage()

ScreenLocation()
protected:

virtual BPointScreenLocation(void)

Determines where the pop-up menu should appear on-screen (when it’s being run
automatically, not byGo()). As explained in the description of the class constructor, this
largely depends on whether the label of the superitem changes to reflect the item that’s
currently marked in the menu. The point returned is stated in the screen coordinate
system.

This function is called only for BPopUpMenus that have been added to a menu hierarchy
(a BMenuBar). You should not call it to determine the point to pass toGo(). However,
you can override it to change where a customized pop-up menu defined in a derived class
appears on-screen when it’s controlled by a BMenuBar.

See also: BMenu::SetLabelFromMarked(), BMenu::ScreenLocation(), the BPopUpMenu
constructor

The Interface Kit –163

BPrintJob

Derived from: public BObject

Declared in: <interface/PrintJob.h>

Overview

A BPrintJob object runs a printing session. It negotiates everything after the user’s initial
request to print—from engaging the Print Server to formatting pages, calling upon
BViews to draw, and spooling the results to the printer.

A print job begins when the user requests the application to print something. In response,
the application should create a BPrintJob object, assign the job a name, and callInitJob()
to initialize the printing environment. For example:

void MyDocumentManager::Print()
{
 BPrintJob *job = new BPrintJob("document");
 if (job->InitJob() < B_NO_ERROR)
 goto end;
 else {
 . . .
 }
 . . .
end:
 delete job;
 return;
}

InitJob() has the Print Server interact with the user to set up the parameters for the job—
the number of copies, the size of the paper, scaling, orientation on the page, and so on.

You may want to store the user’s choices with the document so that they can be used to set
the initial configuration for the job when the document is next printed. By calling

Overview BPrintJob

164 – The Interface Kit

Config(), you can get the job configuration the user set up;SetConfig() initializes the
configuration that’s presented to the user. For example:

BMessage *configuration;
. . .
void MyDocumentManager::Print()
{
 BPrintJob *job = new BPrintJob("document");
 if (configuration)
 job->SetConfig(configuration);
 if (job->InitJob() < B_NO_ERROR)
 goto end;
 if (job->CanContinue()) {
 if (configuration)
 delete configuration;
 configuration = job->Config();
 }
 else
 goto end;
 . . .
}

A number of things can happen to derail a print job after it has started—most significantly,
the user can cancel it at any time. To be sure that the job hasn’t been canceled or
something else hasn’t happened to defeat it, you can callCanContinue() at critical
junctures in your code, as illustrated above. This function will tell you whether it’s
sensible to continue with the job.

The next step after initializing the job is to callBeginPrinting() to set up a spool file and
begin the production of pages. After all the pages are produced,Commit() is called to
commit them to the printer.

job->BeginPrinting();
/* draw pages here */
job->Commit();

BeginPrinting() andCommit() bracket all the drawing that’s done during the job.

Each page is produced by asking one or more BViews to draw within the page’s printable
rectangle (the rectangle that excludes the unprinted margin around the edge of the paper).
You can callDrawView() any number of times for a single page to ask any number of

BPrintJob Constructor and Destructor

The Interface Kit –165

BViews to contribute to the page. After all views have drawn, the page is spooled to the
file that will eventually be committed to the printer. For example:

for (. . .) {
 if (job->CanContinue()) {
 job->DrawView(someView, viewRect, pointOnPage);
 job->DrawView(anotherView, anotherRect, differentPoint);
 . . .
 job->SpoolPage();
 }
 else
 goto end;
}

DrawView() calls the BView’sDraw() function. That function can test whether it’s
drawing on the screen or on the printed page by calling the BViewIsPrinting() function.
SpoolPage() is called just once for each page.

< This is the first release of the printing API; it will be enhanced in future releases to
provide greater control over printing parameters. >

See also: BView::IsPrinting()

Constructor and Destructor

BPrintJob()
BPrintJob(char *name)

Initializes the BPrintJob object and assigns the job aname. The Print Server isn’t
contacted untilInitJob() is called. The spool file isn’t created untilBeginPrinting() starts
the production of pages.

See also: InitJob(), BeginPrinting()

~BPrintJob()
virtual ~BPrintJob(void)

Frees all memory allocated by the object.

Member Functions BPrintJob

166 – The Interface Kit

Member Functions

BeginPrinting()
void BeginPrinting(void)

Opens a spool file for the job and prepares for the production of a series of pages. Call this
function only once per printing session—just after initializing the job and just before
drawing the first page.

See also: Commit()

CancelJob()
void CancelJob(void)

Cancels the print job programmatically and gets rid of the spool file. The job cannot be
restarted; you must delete the BPrintJob object. Create a new object to renew printing.

CanContinue()
bool CanContinue(void)

ReturnsTRUE if there’s no impediment to continuing with the print job, andFALSE if the
user has canceled the job, the spool file has grown too big, or something else has happened
to terminate printing. It’s a good idea to liberally sprinkleCanContinue() queries
throughout your printing code to make sure that the work you’re about to do won’t be
wasted.

Commit()
void Commit(void)

Commits all spooled pages to the printer. This ends the print job; whenCommit() returns,
the BPrintJob object can be deleted.Commit() can be called only once per job.

See also: BeginPrinting()

Config() see SetConfig()

BPrintJob Member Functions

The Interface Kit –167

DrawView(), SpoolPage()
virtual voidDrawView(BView *view, BRectrect, BPointpoint)

void SpoolPage(void)

DrawView() calls upon aview to draw therect portion of its display atpoint on the page.
Theview’s Draw() function will be called withrect passed as the update rectangle. The
rectangle should be stated in the BView’s coordinate system and it should be fashioned so
that the view draws only in the page’s printable rectangle. Thepoint should be stated in a
coordinate system that has the origin at the top left corner of the printable rectangle.

Theview must be attached to a window; that is, it must be known to the Application
Server. However, when printing, a BView can be asked to draw portions of its display that
are not visible on-screen. Its drawing is not limited by the clipping region, its bounds
rectangle, or the frame rectangles of ancestor views.

DrawView() doesn’t look down the view hierarchy; it asks only the namedview to draw,
not any of its children. However, any number of BViews can draw on a page if they are
subjects of separateDrawView() calls.

After all views have drawn and the page is complete,SpoolPage() adds it to the spool file.
SpoolPage() must be called once to terminate each page.

See also: PrintableRect(), BView::Draw()

FirstPage(), LastPage()
long FirstPage(void)

long LastPage(void)

< These functions both currently return 0. >

InitJob()
long InitJob(void)

Engages the Print Server and initializes the job. IfSetConfig() has been called to establish
a recommended configuration for the job, this function will pass it to the Print Server so
the Server can present it to the user. Otherwise, a default configuration will be used.

InitJob() returnsB_ERROR if it has trouble communicating with the Server or if the job
can’t be established for any other reason. It returnsB_NO_ERROR if all goes well.

See also: SetConfig()

LastPage() see FirstPage()

Member Functions BPrintJob

168 – The Interface Kit

PaperRect(), PrintableRect()
BRectPaperRect(void)

BRectPrintableRect(void)

These functions return rectangles that describe the size of a printed page

PaperRect() returns a rectangle that records the presumed size of the paper that the printer
will use. It has 0.0 as its left and top coordinate values, and right and bottom coordinates
that reflect the size of a sheet of paper. The size depends on choices made by the user
when setting up the print job.

PrintableRect() returns a rectangle that encloses the portion of a page where printing can
appear. It’s stated in the same coordinate system as the rectangle returned byPaperRect(),
but excludes the margins around the edge of the paper. When drawing on the printed page,
the left top corner of this rectangle is taken to be the coordinate origin, (0.0, 0.0).

The diagram below illustrates the paper and printable rectangles, along with a closer view
showing the coordinates of the left top corner of the printable rectangle asPrintableRect()
would report them and asDrawView() would assume them, given a half-inch margin.

See also: DrawView()

coordinates returned

paper rectangle printable rectangle

coordinates of the printable

(36.0, 36.0)

rectangle assumed by DrawView()

(0.0, 0.0)

by PrintableRect()

BPrintJob Member Functions

The Interface Kit –169

SetConfig(), Config()
void SetConfig(BMessage *configuration)

BMessage *Config(void)

These functions set and return the group of parameters that configure the Print Server for
the current job. The parameters are recorded in a BMessage object that can be regarded as
a black box; the entries in the message are interpreted by the Print Server and will be
documented when the Server and the print driver API are documented.

Config() can be called to get the current configuration message, which can then be
flattened and stored with the document. You can retrieve it later and pass it toSetConfig()
to set initial configuration values the next time the document is printed, as illustrated in the
“Overview”.

See also: InitJob()

SpoolPage() see DrawView()

Member Functions BPrintJob

170 – The Interface Kit

The Interface Kit –171

BRadioButton

Derived from: public BControl

Declared in: <interface/RadioButton.h>

Overview

A BRadioButton object draws a labeled, two-state button that’s displayed in a group along
with other similar buttons. The button itself is a round icon that has a filled center when
the BRadioButton is turned on, and is empty when it’s off. The label appears next to the
icon.

Only one radio button in the group can be on at a time. When the user clicks a button to
turn it on, the button that’s currently on is turned off. The user can turn a button off only
by turning another one on; one button in the group must be on at all times. The button
that’s on has a value of 1 (B_CONTROL_ON); the others have a value of 0
(B_CONTROL_OFF).

The BRadioButton class handles the interaction between radio buttons in the following
way: A direct user action can only turn on a radio button, not turn it off. However, when
the user turns a button on, the BRadioButton object turns off all sibling BRadioButtons—
all BRadioButtons that have the same parent as the one that was turned on.

This means that a parent view should have no more than one group of radio buttons among
its children. Each set of radio buttons should be assigned a separate parent—perhaps an
empty BView that simply contains the radio buttons and does no drawing of its own.

Constructor

BRadioButton()
BRadioButton(BRectframe, const char *name, const char *label,

BMessage *message,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BRadioButton by passing all arguments to the BControl constructor without
change. BControl initializes the radio button’slabel and assigns it a modelmessage that
identifies the action that should be taken when the radio button is turned on. When the

Member Functions BRadioButton

172 – The Interface Kit

user turns the button on, the BRadioButton posts a copy of themessage so that it can be
delivered to the target handler.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class and are passed without change from BControl to the BView constructor.

The BRadioButton draws at the bottom of its frame rectangle beginning at the left side. It
ignores any extra space at the top or on the right. (However, the user can click anywhere
within theframe rectangle to turn on the radio button). When the object is attached to a
window, the height of the rectangle will be adjusted so that there is exactly the right
amount of room to accommodate the label.

See also: the BControl and BView constructors,AttachedToWindow()

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version ofAttachedToWindow() to set the view and low colors of
the BRadioButton to the match its parent’s view color, and to resize the radio button
vertically to fit the height of the label it displays. The height of the label depends on the
BRadioButton’s font (which the BControl class sets to Emily).

See also: BControl::AttachedToWindow()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the radio button—the circular icon—and its label. The center of the icon is filled
when the BRadioButton’s value is 1 (B_CONTROL_ON); it’s left empty when the value is 0
(B_CONTROL_OFF).

See also: BView::Draw()

KeyDown()
virtual voidKeyDown(ulongaChar)

Augments the inherited versions ofKeyDown() to turn the radio button on and post a
message to the target BHandler whenaChar is B_SPACE or B_ENTER.

See also: BView::KeyDown(), SetValue()

BRadioButton Member Functions

The Interface Kit –173

MouseDown()
virtual voidMouseDown(BPointpoint)

Responds to a mouse-down event in the radio button by tracking the cursor while the user
holds the mouse button down. If the cursor is pointing to the radio button when the user
releases the mouse button, this function turns the button on (and consequently turns all
sibling BRadioButtons off), calls the BRadioButton’sDraw() function, and posts a
message that will be delivered to the target BHandler. Unlike a BCheckBox, a
BRadioButton posts the message—it’s “invoked”—only when it’s turned on, not when it’s
turned off.

See also: BControl::Invoke(), BControl::SetTarget(), SetValue()

SetValue()
virtual voidSetValue(longvalue)

Augments the BControl version ofSetValue() to turn all sibling BRadioButtons off (set
their values to 0) when this BRadioButton is turned on (when thevalue passed is anything
but 0).

See also: BControl::SetValue()

Member Functions BRadioButton

174 – The Interface Kit

The Interface Kit –175

BRect

Derived from: none

Declared in: <interface/Rect.h>

Overview

A BRect object represents arectangle, one with sides that parallel thex andy coordinate
axes. The rectangle is defined by its left, top, right, and bottom coordinates, as illustrated
below:

In a valid rectangle, the topy coordinate value is never greater than the bottom
y coordinate, and the leftx coordinate value is never greater than the right.

A BRect is the simplest, most basic way of specifying an area in a two-dimensional
coordinate system. Windows, scroll bars, buttons, text fields, and the screen itself are all
specified as rectangles. For more details on the definition of a rectangle, see “Coordinate
Geometry” on page 16 in the chapter introduction.

When used to define the frame of a window or a view, or the bounds of a bitmap, the sides
of the rectangle must line up on screen pixels. For this reason, the rectangle can’t have
any fractional coordinates. Coordinate units have a one-to-one correspondence with
screen pixels.

Integral coordinates fall at the center of screen pixels, so frame rectangles cover a larger
area than their coordinate values would indicate. Just as the number of elements in an
array is one greater than the largest index, a frame rectangle covers one more column of
pixels than its width and one more row than its height.

bottom

top

left right

y-axis

x-axis

Data Members BRect

176 – The Interface Kit

The figure below illustrates why this is the case. It shows a rectangle with a right side 8.0
units from its left (62.0–54.0) and a bottom 4.0 units below its top (17.0–13.0). Because
the pixels that lie on all four sides of the rectangle are considered to be inside it, there’s an
extra pixel in each direction. When the rectangle is filled on-screen, it covers a 9-pixel-by-
5-pixel area.

Because the BRect structure is a basic data type for graphic operations, it’s constructed
more simply than most other Interface Kit classes: All its data members are publicly
accessible, it doesn’t have virtual functions, it doesn’t inherit from BObject or any other
class, and it doesn’t retain class information that it can reveal at run time. Within the
Interface Kit, BRect objects are passed and returned by value.

Data Members

float left The coordinate value of the rectangle’s leftmost side (the
smallestx coordinate in a valid rectangle).

float top The coordinate value of the rectangle’s top (the smallesty
coordinate in a valid rectangle).

float right The coordinate value of the rectangle’s rightmost side (the
largestx coordinate in a valid rectangle).

float bottom The coordinate value of the rectangle’s bottom (the largest
y coordinate in a valid rectangle).

12

13

14

15

16

17

18

52

(54.0, 13.0)

(62.0, 17.0)

5453 55 5656 58 6059 61 6362 6564

BRect Constructor

The Interface Kit –177

Constructor

BRect()
inline BRect(float left, floattop, floatright, floatbottom)
inline BRect(BPoint leftTop, BPointrightBottom)
inline BRect(const BRect&rect)
inline BRect(void)

Initializes a BRect with its four coordinate values—left, top, right, andbottom. The four
values can be directly stated,

BRect rect(11.0, 24.7, 301.5, 99.0);

or they can be taken from two points designating the rectangle’s left top and right bottom
corners,

BPoint leftTop(11.0, 24.7);
BPoint rightBottom(301.5, 99.0);
BRect rect(leftTop, rightBottom);

or they can be copied from another rectangle:

BRect anotherRect(11.0, 24.7, 301.5, 99.0);
BRect rect(anotherRect);

A rectangle that’s not assigned any initial values,

BRect rect;

is constructed to be invalid (its top and left are greater than its right and bottom), until a
specific assignment is made, typically with theSet() function:

rect.Set(77.0, 2.25, 510.8, 393.0);

See also: Set()

Member Functions

Contains()
bool Contains(BPointpoint) const
bool Contains(BRectrect) const

ReturnsTRUE if point—or rect—lies inside the area the BRect defines, andFALSE if not. A
rectangle contains a point even if the point coincides with one of the rectangle’s corners or
lies on one of its edges.

One rectangle contains another if their union is the same as the first rectangle and their
intersection is the same as the second—that is, if the second rectangle lies entirely within

Member Functions BRect

178 – The Interface Kit

the first. A rectangle is considered to be inside another rectangle even if they have one or
more sides in common. Two identical rectangles contain each other.

See also: Intersects(), the& (intersection) and| (union) operators,BPoint::ConstrainTo()

Height() see Width()

InsetBy()
void InsetBy(floathorizontal, floatvertical)
void InsetBy(BPointpoint)

Modifies the BRect by insetting its left and right sides byhorizontal units and its top and
bottom sides byvertical units. (If apoint is passed, itsx coordinate value substitutes for
horizontal and itsy coordinate value substitutes forvertical.)

For example, this code

BRect rect(10.0, 40.0, 100.0, 140.0);
rect.InsetBy(20.0, 30.0);

produces a rectangle identical to one that could be constructed as follows:

BRect rect(30.0, 70.0, 80.0, 110.0);

If horizontal or vertical is negative, the rectangle becomes larger in that dimension, rather
than smaller.

See also: OffsetBy()

IntegerWidth(), IntegerHeight()
inline longIntegerWidth(void) const

inline longIntegerHeight(void) const

These functions return the width and height of the rectangle expressed as integers.
Fractional widths and heights are rounded up to the next whole number.

See also: Width()

BRect Member Functions

The Interface Kit –179

Intersects()
bool Intersects(BRectrect) const

ReturnsTRUE if the BRect has any area—even a corner or part of a side—in common with
rect, andFALSE if it doesn’t.

See also: the& (intersection) operator

IsValid()
inline boolIsValid(void) const

ReturnsTRUE if the BRect’s right side is greater than or equal to its left and its bottom is
greater than or equal to its top, andFALSE otherwise. An invalid rectangle doesn’t
designate any area, not even a line or a point.

LeftBottom() see SetLeftBottom()

LeftTop() see SetLeftTop()

OffsetBy(), OffsetTo()
void OffsetBy(floathorizontal, floatvertical)
void OffsetBy(BPointpoint)

void OffsetTo(BPointpoint)
void OffsetTo(floatx, floaty)

These functions reposition the rectangle in its coordinate system, without altering its size
or shape.

OffsetBy() addshorizontal to the left and right coordinate values of the rectangle and
vertical to its top and bottom coordinates. (If apoint is passed,point.x substitutes for
horizontal andpoint.y for vertical.)

OffsetTo() moves the rectangle so that its left top corner is atpoint—or at (x, y). The
coordinate values of all its sides are adjusted accordingly.

See also: InsetBy()

Member Functions BRect

180 – The Interface Kit

PrintToStream()
void PrintToStream(void) const

Prints the contents of the BRect object to the standard output stream (stdout) in the form:

"BRect(left , top , right , bottom)"

whereleft, top, right, andbottom stand for the current values of the BRect’s data members.

RightBottom() see SetRightBottom()

RightTop() see SetRightTop()

Set()
inline voidSet(float left, floattop, floatright, floatbottom)

Assigns the valuesleft, top, right, andbottom to the BRect’s corresponding data members.
The following code

BRect rect;
rect.Set(0.0, 25.0, 50.0, 75.0);

is equivalent to:

BRect rect;
rect.left = 0.0;
rect.top = 25.0;
rect.right = 50.0;
rect.bottom = 75.0;

See also: the BRect constructor

SetLeftBottom(), LeftBottom()
void SetLeftBottom(const BPointpoint)

inline BPointLeftBottom(void) const

These functions set and return the left bottom corner of the rectangle.SetLeftBottom()
alters the BRect so that its left bottom corner is atpoint, andLeftBottom() returns its
current left and bottom coordinates as a BPoint object.

See also: SetLeftTop(), SetRightBottom(), SetRightTop()

BRect Member Functions

The Interface Kit –181

SetLeftTop(), LeftTop()
void SetLeftTop(const BPointpoint)

inline BPointLeftTop(void) const

These functions set and return the left top corner of the rectangle.SetLeftTop() alters the
BRect so that its left top corner is atpoint, andLeftTop() returns its current left and top
coordinates as a BPoint object.

See also: SetLeftBottom(), SetRightTop(), SetRightBottom()

SetRightBottom(), RightBottom()
void SetRightBottom(const BPointpoint)

inline BPointRightBottom(void) const

These functions set and return the right bottom corner of the rectangle.SetRightBottom()
alters the BRect so that its right bottom corner is atpoint, andRightBottom() returns its
current right and bottom coordinates as a BPoint object.

See also: SetRightTop(), SetLeftBottom(), SetLeftTop()

SetRightTop(), RightTop()
void SetRightTop(const BPointpoint)

inline BPointRightTop(void) const

These functions set and return the right top corner of the rectangle.SetRightTop() alters
the BRect so that its right top corner is atpoint, andRightTop() returns its current right and
top coordinates as a BPoint object.

See also: SetRightBottom(), SetLeftTop(), SetLeftBottom()

Width(), Height()
inline floatWidth(void) const

inline floatHeight(void) const

These functions return the width of the rectangle (the difference between the coordinates
of its left and right sides) and its height (the difference between its top and bottom
coordinates). If either value is negative, the rectangle is invalid.

The width and height of a rectangle are not accurate guides to the number of pixels it
covers on-screen. As illustrated in the “Overview” to this class, a rectangle without

Operators BRect

182 – The Interface Kit

fractional coordinates covers an area that’s one pixel broader than its coordinate width and
one pixel taller than its coordinate height.

See also: IntegerWidth()

Operators

= (assignment)
inline BRect&operator =(const BRect&)

Assigns the data members of one BRect object to another BRect:

BRect a(27.2, 36.8, 230.0, 359.1);
BRect b;
b = a;

Rectangleb is made identical to rectanglea.

== (equality)
bool operator ==(BRect) const

Compares the data members of two BRect objects and returnsTRUE if each one exactly
matches its counterpart in the other object, andFALSE if any of the members don’t match.
In the following example, the equality operator would returnFALSE, since the two objects
have different right boundaries:

BRect a(11.5, 22.5, 66.5, 88.5);
BRect b(11.5, 22.5, 46.5, 88.5);
if (a == b)
 . . .

!= (inequality)
charoperator !=(BRect) const

Compares two BRect objects and returnsTRUE unless their data members match exactly
(the two rectangles are identical), in which case it returnsFALSE. This operator is the
inverse of the== (equality) operator.

BRect Operators

The Interface Kit –183

& (intersection)
BRectoperator &(BRect) const

Returns the intersection of two rectangles—a rectangle enclosing the area they have in
common. The shaded area below shows where the two outlined rectangles intersect.

The intersection is computed by taking the greatest left and top coordinate values of the
two rectangles, and the smallest right and bottom values. In the following example,

BRect a(10.0, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a & b;

rectanglec will be identical to one constructed as follows:

BRect c(35.0, 40.0, 80.0, 65.0);

If the two rectangles don’t actually intersect, the result will be invalid. You can test for
this by calling theIntersects() function on the original rectangles, or by callingIsValid() on
the result.

See also: Intersects(), IsValid(), the| (union) operator

| (union)
BRectoperator |(BRect) const

Returns the union of two rectangles—the smallest rectangle that encloses them both. The
shaded area below illustrates the union of the two outlined rectangles. Note that it
includes areas not in either of them.

Operators BRect

184 – The Interface Kit

The union is computed by selecting the smallest left and top coordinate values from the
two rectangles, and the greatest right and bottom coordinate values. In the following
example,

BRect a(10.0, 40.0, 80.0, 100.0);
BRect b(35.0, 15.0, 95.0, 65.0);
BRect c = a | b;

rectanglec will be identical to one constructed as follows:

BRect c(10.0, 15.0, 95.0, 100.0);

Note that two rectangles will have a valid union even if they don’t intersect.

See also: the& (intersection) operator

The Interface Kit –185

BRegion

Derived from: public BObject

Declared in: <interface/Region.h>

Overview

A BRegion object describes an arbitrary area within a two-dimensional coordinate system.
The area can have irregular boundaries, contain holes, or be discontinuous. It’s
convenient to think of a region as a set of locations or points, rather than as a closed shape
like a rectangle or a polygon.

The points that a region includes can be described by a set of rectangles. Any point that
lies within at least one of the rectangles belongs to the region. You can define a region
incrementally by passing rectangles to functions likeSet(), Include(), andExclude().

BView'sGetClippingRegion() function modifies a BRegion object so that it represents the
current clipping region of the view. A BView can passGetClippingRegion() a pointer to
an empty BRegion,

BRegion temp;
GetClippingRegion(&temp);

then call BRegion’sIntersects() andContains() functions to test whether the potential
drawing it might do falls within the region:

if (temp.Intersects(someRect))
 . . .

Constructor and Destructor

BRegion()
BRegion(const BRegion®ion)
BRegion(void)

Initializes the BRegion object to have the same area as anotherregion—or, if no other
region is specified, to an empty region.

Member Functions BRegion

186 – The Interface Kit

The original BRegion object and the newly constructed one each have their own copies of
the data describing the region. Altering or freeing one of the objects will not affect the
other.

BRegion objects can be allocated on the stack and assigned to other objects:

BRegion regionOne(anotherRegion);
BRegion regionTwo = regionOne;

However, due to their size, it’s more efficient to pass them by pointer rather than by value.

~BRegion
virtual ~BRegion(void)

Frees any memory that was allocated to hold data describing the region.

Member Functions

Contains()
bool Contains(BPointpoint) const

ReturnsTRUE if point lies within the region, andFALSE if not.

Exclude()
void Exclude(BRectrect)
void Exclude(const BRegion *region)

Modifies the region so that it excludes all points contained withinrect or region that it
might have included before.

See also: Include(), IntersectWith()

Frame()
BRectFrame(void) const

Returns the frame rectangle of the BRegion—the smallest rectangle that encloses all the
points within the region.

If the region is empty, the rectangle returned won’t be valid.

See also: BRect::IsValid()

BRegion Member Functions

The Interface Kit –187

Include()
void Include(BRectrect)
void Include(const BRegion *region)

Modifies the region so that it includes all points contained within therect or region passed
as an argument.

See also: Exclude()

IntersectWith()
void IntersectWith(const BRegion *region)

Modifies the region so that it includes only those points that it has in common with another
region.

See also: Include()

Intersects()
bool Intersects(BRectrect) const

ReturnsTRUE if the BRegion has any area in common withrect, andFALSE if not.

MakeEmpty()
void MakeEmpty(void)

Empties the BRegion of all its points. It will no longer designate any area and its frame
rectangle won’t be valid.

See also: the BRegion constructor

OffsetBy()
void OffsetBy(longhorizontal, longvertical)

Offsets all points contained within the region by addinghorizontal to eachx coordinate
value andvertical to eachy coordinate value.

Operators BRegion

188 – The Interface Kit

PrintToStream()
void PrintToStream(void) const

Prints the contents of the BRegion to the standard output stream (stdout) as an array of
strings. Each string describes a rectangle in the form:

"BRect(left , top , right , bottom)"

whereleft, top, right, andbottom are the coordinate values that define the rectangle.

The first string in the array describes the BRegion’s frame rectangle. Each subsequent
string describes one portion of the area included in the BRegion.

See also: BRect::PrintToStream(), Frame()

Set()
void Set(BRectrect)

Modifies the BRegion so that it describes an area identical torect. A subsequent call to
Frame() should return the same rectangle (unless some other change was made to the
region in the interim).

See also: Include(), Exclude()

Operators

= (assignment)
BRegion&operator =(const BRegion&)

Assigns the region described by one BRegion object to another BRegion:

BRegion region = anotherRegion;

After the assignment, the two regions will be identical, but independent, copies of one
another. Each object allocates its own memory to store the description of the region.

The Interface Kit –189

BScrollBar

Derived from: public BView

Declared in: <interface/ScrollBar.h>

Overview

A BScrollBar object displays a scroll bar that users can operate to scroll the contents of
another view, atarget view. Scroll bars usually come in pairs, one horizontal and one
vertical, and are often grouped as siblings of the target view under a common parent. That
way, when the parent is resized, the target and scroll bars can be automatically resized to
match. (A companion class, BScrollView, defines just such a container view; a
BScrollView object sets up the scroll bars for a target view and makes itself the parent of
the target and the scroll bars.)

The Update Mechanism

BScrollBars are different from other views in one important respect: All their drawing
and event handling is carried out within the Application Server, not in the application. A
BScrollBar object doesn’t receiveDraw() or MouseDown() notifications; the Server
intercepts updates and interface messages that would otherwise be reported to the
BScrollBar and handles them itself. As the user moves the knob on a scroll bar or presses
a scroll arrow, the Application Server continuously refreshes the scroll bar’s image on-
screen and informs the application with a steady stream of messages reporting value-
changed events.

The window dispatches these messages by calling the BScrollBar’sValueChanged()
function. Each function call notifies the BScrollBar of a change in its value and,
consequently, of a need to scroll the target view.

Confining the update mechanism for scroll bars to the Application Server limits the
volume of communication between the application and Server and enhances the efficiency
of scrolling. The application’s messages to the Server can concentrate on updating the
target view as its contents are being scrolled, rather than on updating the scroll bars
themselves.

Overview BScrollBar

190 – The Interface Kit

Value and Range

A scroll bar’s value determines what the target view displays. The default assumption is
that the left coordinate value of the target view’s bounds rectangle should match the value
of the horizontal scroll bar, and the top of the target view’s bounds rectangle should match
the value of the vertical scroll bar. When a BScrollBar is notified of a change of value
(through itsValueChanged() function), it scrolls the target view to put the new value at
the left or top of the bounds rectangle.

The value reported in aValueChanged() notification depends on where the user moves
the scroll bar’s knob and on the range of values the scroll bar represents. The range is first
set in the BScrollBar constructor and can be modified by theSetRange() function.

The range must be large enough to bring all the coordinate values where the target view
can draw into its bounds rectangle. If everything the target view can draw is conceived as
being enclosed in a “data rectangle,” the range of a horizontal scroll bar must extend from
a minimum that makes the left side of the target’s bounds rectangle coincide with the left
side of its data rectangle, to a maximum that puts the right side of the bounds rectangle at
the right side of the data rectangle. This is illustrated in part below:

As this illustration helps demonstrate, the maximum value of a horizontal scroll bar can be
no less than the right coordinate value of the data rectangle minus the width of the bounds
rectangle. Similarly, for a vertical scroll bar, the maximum value can be no less than the
bottom coordinate of the data rectangle minus the height of the bounds rectangle. The
range of a scroll bar subtracts the dimensions of the target’s bounds rectangle from its data
rectangle. (The minimum values of horizontal and vertical scroll bars can be no greater
than the left and top sides of the data rectangle.)

What the target view can draw may change from time to time as the user adds or deletes
data. As this happens, the range of the scroll bar should be updated with theSetRange()
function. The range may also need to be recalculated when the target view is resized.

target view’s
data rectangle

target view’s
bounds rectangle

extent of the
bounds rectangle

range of the
horizontal scroll bar

BScrollBar Hook Functions

The Interface Kit –191

Scroll Bar Options

Users have control over some aspects of how scroll bars look and behave. With the
ScrollBar preferences application, they can choose:

• Whether the knob should be a fixed size, or whether it should grow and shrink to
proportionally represent how much of a document (how much of the data rectangle)
is visible within the target view. A proportional knob is the default.

• Whether double, bidirectional scroll arrows should appear on each end of the scroll
bar, or whether each end should have only a single, unidirectional arrow. Double
arrows are the default.

• Which of three patterns should appear on the knob.

• What the size of the knob should be—the minimum length of a proportional knob or
the fixed length of a knob that’s not proportional. The default length is 15 pixels.

When this class constructs a new BScrollBar, it conforms the object to the choices the user
has made.

See also: set_scroll_bar_info(), BView::ScrollBar(), the BScrollView class

Hook Functions

ValueChanged() Scrolls the target view when the BScrollBar is informed
that its value has changed; can be implemented to alter the
default interpretation of the scroll bar’s value.

Constructor and Destructor

BScrollBar()
BScrollBar(BRectframe, const char *name, BView *target,

longmin, longmax, orientationposture)

Initializes the BScrollBar and connects it to thetarget view that it will scroll. It will be a
horizontal scroll bar ifposture is B_HORIZONTAL and a vertical scroll bar ifposture is
B_VERTICAL.

The range of values that the scroll bar can represent at the outset is set bymin andmax.
These values should be calculated from the boundaries of a rectangle that encloses the
entire contents of the target view—everything that it can draw. Ifmin andmax are both 0,
the scroll bar is disabled and the knob is not drawn.

Member Functions BScrollBar

192 – The Interface Kit

The object’s initial value is 0 < even if that falls outside the range set for the scroll bar >.

The other arguments,frame andname, are the same as for other BViews:

• Theframe rectangle locates the scroll bar within its parent view. For consistency in
the user interface, a horizontal scroll bar should beB_H_SCROLL_BAR_HEIGHT
coordinate units high, and a vertical scroll bar should beB_V_SCROLL_BAR_WIDTH
units wide.

• The BScrollBar’sname identifies it and permits it to be located by theFindView()
function. It can beNULL.

Unlike other BViews, the BScrollBar constructor doesn’t set an automatic resizing mode.
By default, scroll bars have the resizing behavior that befits their posture—horizontal
scroll bars resize themselves horizontally (as if they had a resizing mode that combined
B_FOLLOW_LEFT_RIGHT with B_FOLLOW_BOTTOM) and vertical scroll bars resize
themselves vertically (as if their resizing mode combinedB_FOLLOW_TOP_BOTTOM with
B_FOLLOW_RIGHT).

~BScrollBar()
virtual ~BScrollBar(void)

Disconnects the scroll bar from its target.

Member Functions

GetRange() see SetRange()

GetSteps() see SetSteps()

Orientation()
inline orientationOrientation(void) const

ReturnsHORIZONTAL if the object represents a horizontal scroll bar andVERTICAL if it
represents a vertical scroll bar.

See also: the BScrollBar constructor

BScrollBar Member Functions

The Interface Kit –193

SetProportion(), Proportion()
void SetProportion(float ratio)

float Proportion(void) const

These functions set and return a value between 0.0 and 1.0 that represents the proportion
of the entire document that can be displayed within the target view—the ratio of the width
(or height) of the target’s bounds rectangle to the width (or height) of its data rectangle.
This ratio determines the size of a proportional scroll knob relative to the whole scroll bar.
It’s not adjusted to take into account the minimum size of the knob.

The proportion should be reset as the size of the data rectangle changes (as data is entered
and removed from the document) and when the target view is resized.

SetRange(), GetRange()
void SetRange(longmin, longmax)

void GetRange(long *min, long *max) const

These functions modify and return the range of the scroll bar.SetRange() sets the
minimum and maximum values of the scroll bar tomin andmax. GetRange() places the
current minimum and maximum in the variables thatmin andmax refer to.

If the scroll bar’s current value falls outside the new range, it will be reset to the closest
value—eithermin or max—within range.ValueChanged() is called to inform the
BScrollBar of the change whether or not it’s attached to a window.

If the BScrollBar is attached to a window, any change in its range will be immediately
reflected on-screen. The knob will move to the appropriate position to reflect the current
value.

Setting both the minimum and maximum to 0 disables the scroll bar. It will be drawn
without a knob.

See also: the BScrollBar constructor

SetSteps(), GetSteps()
void SetSteps(longsmallStep, longbigStep)

void GetSteps(long *smallStep, long *bigStep) const

SetSteps() sets how much a single user action should change the value of the scroll bar—
and therefore how far the target view should scroll.GetSteps() provides the current
settings.

When the user presses one of the scroll arrows at either end of the scroll bar, its value
changes by asmallStep. When the user clicks in the bar itself (other than on the knob), it

Member Functions BScrollBar

194 – The Interface Kit

changes by abigStep. For an application that displays text, the small step of a vertical
scroll bar should be large enough to bring another line of text into view.

The default small step is 1, which should be too small for most purposes; the default large
step is 10, which is also probably too small.

< Currently, a BScrollBar’s steps can be successfully set only after it’s attached to a
window. >

See also: ValueChanged()

SetTarget(), Target()
void SetTarget(BView *view)
void SetTarget(const char *name)

inline BView *Target(void) const

These functions set and return the target of the BScrollBar, the view that the scroll bar
scrolls. SetTarget() sets the target toview, or to the BView identified byname. Target()
returns the current target view. The target can also be set when the BScrollBar is
constructed.

SetTarget() can be called either before or after the BScrollBar is attached to a window. If
the target is set byname, the named view must eventually be found within the same
window as the scroll bar. Typically, the target and its scroll bars are children of a container
view that serves to bind them together as a unit.

See also: the BScrollBar constructor,ValueChanged(), BView::ScrollBar()

SetValue(), Value()
void SetValue(longvalue)

long Value(void) const

These functions modify and return the value of the scroll bar. The value is usually set as
the result of user actions;SetValue() provides a way to do it programmatically.Value()
returns the current value, whether set bySetValue() or by the user.

SetValue() assigns a newvalue to the scroll bar and calls theValueChanged() hook
function, whether or not the new value is really a change from the old. If thevalue passed
lies outside the range of the scroll bar, the BScrollBar is reset to the closest value within
range—that is, to either the minimum or the maximum value previously specified.

If the scroll bar is attached to a window, changing its value updates its on-screen display.
The call toValueChanged() enables the object to scroll the target view so that it too is
updated to conform to the new value.

BScrollBar Member Functions

The Interface Kit –195

The initial value of a scroll bar is 0.

See also: ValueChanged(), SetRange()

Target() see SetTarget()

Value() see SetValue()

ValueChanged()
virtual voidValueChanged(longnewValue)

Responds to a notification that the value of the scroll bar has changed tonewValue. For a
horizontal scroll bar, this function interpretsnewValue as the coordinate value that should
be at the left side of the target view’s bounds rectangle. For a vertical scroll bar, it
interpretsnewValue as the coordinate value that should be at the top of the rectangle. It
callsScrollTo() to scroll the target view’s contents accordingly.

ValueChanged() does nothing if a target BView hasn’t been set—or if the target has been
set by name, but the name doesn’t correspond to an actual BView within the scroll bar’s
window.

Derived classes can override this function to interpretnewValue differently, or to do
something in addition to scrolling the target view.

ValueChanged() is called as the result both of value-changed messages received from the
Application Server and ofSetValue() andSetRange() function calls within the application.

See also: SetTarget()

Member Functions BScrollBar

196 – The Interface Kit

The Interface Kit –197

BScrollView

Derived from: public BView

Declared in: <interface/ScrollView.h>

Overview

A BScrollView object is a container for another view, atarget view, typically a view that
can be scrolled. The BScrollView creates and positions the scroll bars the target view
needs and makes itself the parent of the scroll bars and the target view. It’s a convenient
way to set up scroll bars for another view.

If requested, the BScrollView draws a one-pixel wide black border around its children.
Otherwise, it does no drawing and simply contains the family of views it set up.

TheScrollBar() function provides access to the scroll bars the BScrollView creates, so you
can set their ranges and values as needed.

Constructor and Destructor

BScrollView()
BScrollView(const char *name, BView *target,

ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= 0,
boolhorizontal = FALSE,
boolvertical= FALSE,
boolbordered= TRUE)

Initializes the BScrollView. It will have a frame rectangle large enough to contain the
target view and any scroll bars that are requested. Ifhorizontal is TRUE, there will be a
horizontal scroll bar. Ifvertical is TRUE, there will be a vertical scroll bar. Scroll bars are
not provided unless you ask for them.

If bordered is TRUE, as it is by default, the frame rectangle will also be large enough to
draw a narrow black border around the target view and scroll bars. A BScrollView can be
used without scroll bars to simply contain and border the target view.

The BScrollView adapts its frame rectangle from the frame rectangle of the target view. It
positions itself so that its left and top sides are exactly where the left and top sides of the

Member Functions BScrollView

198 – The Interface Kit

target view originally were. It then adds the target view as its child along with any
requested scroll bars. In the process, it modifies the target view’s frame rectangle (but not
its bounds rectangle) so that it will fit within its new parent.

If the resize mode of the target view isB_FOLLOW_ALL_SIDES, it and the scroll bars will be
automatically resized to fill the container view whenever the container view is resized.

The scroll bars created by the BScrollView have an initial range extending from a
minimum of 0 to a maximum of 1000. You’ll generally need to ask for the scroll bars
(using theScrollBar() function) and set their ranges to more appropriate values.

Thename, resizeMode, andflags arguments are identical to those declared in the BView
class and are passed unchanged to the BView constructor.

See also: the BView constructor

~BScrollView()
virtual ~BScrollView(void)

Does nothing.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Resizes scroll bars belonging to BScrollViews that occupy the right bottom corner of a
document window (B_DOCUMENT_WINDOW) so that room is left for the resize knob. This
function assumes that vertical scroll bars areB_V_SCOLL_BAR_WIDTH units wide and
horizontal scroll bars areB_H_SCROLL_BAR_HEIGHT units high. It doesn’t check to make
sure the window is actually resizable.

See also: BView::AttachedToWindow()

Draw()
virtual voidDraw(BRectupdateRect)

Draws a one-pixel wide black border around the target view and scroll views, provided the
bordered flag wasn’t set toFALSE in the BScrollView constructor.

See also: the BScrollView constructor,BView::Draw()

BScrollView Member Functions

The Interface Kit –199

IsBordered() see SetBordered()

ScrollBar()
BScrollBar *ScrollBar(orientationposture) const

Returns the horizontal scroll bar ifposture is B_HORIZONTAL and the vertical scroll bar if
posture is B_VERTICAL. If the BScrollView doesn’t contain a scroll bar with the requested
orientation, this function returnsNULL.

See also: the BScrollBar class

SetBordered(), IsBordered()
virtual voidSetBordered(boolbordered)

inline boolIsBordered(void) const

SetBordered() determines whether a narrow black border will be drawn around the edge of
the view. Calling this function is equivalent to passing abordered flag to the BScrollView
constructor.Bordered() returns the current flag.

See also: the BScrollView constructor

Member Functions BScrollView

200 – The Interface Kit

The Interface Kit –201

BSeparatorItem

Derived from: public BMenuItem

Declared in: <interface/MenuItem.h>

Overview

A BSeparatorItem is a menu item that serves only to separate the items that precede it in
the menu list from the items that follow it. It’s drawn as a horizontal line across the menu
from the left border to the right. Although it has an indexed position in the menu list just
like other items, it doesn’t have a label, can’t be selected, posts no messages, and is
permanently disabled.

Since the separator is drawn horizontally, it’s assumed that items in the menu are arranged
in a column, as they are by default. It’s inappropriate to use a separator in a menu bar or
another menu where the items are arranged in a row.

A separator can be added to a BMenu by constructing an object of this class and calling
BMenu’sAddItem() function. As a shorthand, you can simply call BMenu’s
AddSeparatorItem() function, which constructs the object for you and adds it to the list.

A BSeparatorItem that’s returned to you (by BMenu’sItemAt() function, for example) will
always respondNULL to Message(), Command(), andSubmenu() queries andFALSE to
IsEnabled().

See also: BMenu::AddSeparatorItem()

Constructor and Destructor

BSeparatorItem()
BSeparatorItem(void)

Initializes the BSeparatorItem and disables it.

~BSeparatorItem()
virtual ~BSeparatorItem(void)

Does nothing.

Member Functions BSeparatorItem

202 – The Interface Kit

Member Functions

Draw()
protected:

virtual voidDraw(void)

Draws the item as a horizontal line across the width of the menu.

GetContentSize()
protected:

virtual voidGetContentSize(float *width, float *height)

Provides a minimal size for the item so that it won’t constrain the size of the menu.

SetEnabled()
virtual voidSetEnabled(boolflag)

Does nothing. A BSeparatorItem is disabled when it’s constructed and must stay that way.

The Interface Kit –203

BStringView

Derived from: public BView

Declared in: <interface/StringView.h>

Overview

A BStringView object draws a static character string. The user can’t select the string or
edit it; a BStringView doesn’t respond to user actions. An instance of this class can be
used to draw a label or other text that simply delivers a message of some kind to the user.
Use a BTextView object for selectable and editable text.

You can also draw strings by calling BView’sDrawString() function. However, assigning
a string to a BStringView object locates it in the view hierarchy. The string will be
updated automatically, just like other views. And, by setting the resizing mode of the
object, you can make sure that it will be positioned properly when the window or the view
it’s in (the parent of the BStringView) is resized.

Constructor and Destructor

BStringView()
BStringView(BRectframe, const char *name, const char *text,

ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW)

Initializes the BStringView by assigning it atext string, theB_OP_OVER drawing mode,
and the Erich bitmap font. These last two values are cached and communicated to the
Application Server when the BStringView is attached to a window.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class. They’re passed unchanged to the BView constructor.

Theframe rectangle needs to be large enough to display the entire string in the current
font. The string is drawn at the bottom of the frame rectangle and, by default, is aligned to
the left side. A different horizontal alignment can be set by callingSetAlignment().

See also: SetAlignment()

Member Functions BStringView

204 – The Interface Kit

~BStringView()
virtual ~BStringView(void)

Frees the text string.

Member Functions

Alignment() see SetAlignment()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the string along the bottom of the BStringView’s frame rectangle in the current
high color.

See also: BView::Draw()

SetAlignment(), Alignment()
void SetAlignment(alignmentflag)

inline alignmentAlignment(void) const

These functions align the string within the BStringView’s frame rectangle and return the
current alignment. The alignmentflag can be:

B_ALIGN_LEFT The string is aligned at the left side of the frame
rectangle.

B_ALIGN_RIGHT The string is aligned at the right side of the frame
rectangle.

B_ALIGN_CENTER The string is aligned so that the center of the string falls
midway between the left and right sides of the frame
rectangle.

The default isB_ALIGN_LEFT.

BStringView Member Functions

The Interface Kit –205

SetText(), Text()
void SetText(const char *string)

inline const char *Text(void) const

These functions set and return the text string that the BStringView draws.SetText() frees
the previous string and copiesstring to replace it.Text() returns the null-terminated string.

Member Functions BStringView

206 – The Interface Kit

The Interface Kit –207

BTextControl

Derived from: public BControl

Declared in: <interface/TextControl.h>

Overview

A BTextControl object displays a labeled text field that behaves like other control devices.
When the user takes certain key actions after modifying the text in the field, it posts a
message to a designated target.

There are two parts to the view: A static label on the left, which the user cannot modify,
and an editable field on the right, which behaves just like a one-line BTextView. In fact,
the BTextControl installs a BTextView object as its child to handle editing chores within
this part of the view. It’s this child view that responds to events for the BTextControl
rather than the control object itself.

The child BTextView must become the focus view for the window before the user can
enter or edit text in the field. If the user modifies the contents of the field and then causes
the child to cease being the focus view, the BTextControl posts a copy of its model
message to its target, just like any other BControl object when it’s invoked. The message
notifies the target that the user has finished making changes to the text. (It doesn’t matter
what causes the change in focus—a click in another text field, for example, or aB_TAB
character that navigates to another view.)

The message is also posted when the user types aB_ENTER character, though this doesn’t
change the focus view. It selects all the text in the field.

You can also arrange for another message—a “modification message”—to be posted when
the user makes the first change to the text after the child BTextView has become the focus
view (or afterB_ENTER caused all the text to be selected).

Because the label is drawn by the BTextControl itself and the editable text is drawn by its
child BTextView, you can assign different properties (color or font, for example) to each
string. The BTextControl has only one child, soChildAt() returns it when passed an index
of 0.

Constructor and Destructor BTextControl

208 – The Interface Kit

Constructor and Destructor

BTextControl()
BTextControl(BRectframe, const char *name,

const char *label, const char *text,
BMessage *message,
ulongresizingMode= B_FOLLOW_LEFT | B_FOLLOW_TOP,
ulongflags= B_WILL_DRAW | B_NAVIGABLE)

Initializes the BTextControl by assigning it alabel and sometext, both of which can be
NULL. If the label is NULL, the text can fill the bounds rectangle. Otherwise, half the view
is assigned to the label and half to the text, though the exact proportion can be changed by
theSetDivider() function. The label always is on the left and the text always on the right.
By default, both label and text are aligned at the left margins of their respective sections;
call SetAlignment() to alter the alignment.

Themessage parameter is the same as the one declared for the BControl constructor. It
establishes a model for the messages the BTextControl will send when it’s invoked. It can
beNULL. SeeSetMessage(), SetTarget(), andInvoke() in the BControl class for more
information.

Theframe, name, resizingMode, andflags arguments are the same as those declared for
the BView class and are passed up the inheritance hierarchy to the BView constructor
without change.

See also: SetDivider(), SetAlignment(), BControl::SetMessage(), BControl::SetTarget(),
BControl::Invoke()

~BTextControl()
virtual ~BTextControl(void)

Frees memory allocated by the BTextControl and its BTextView child.

Member Functions

AttachedToWindow()
virtual voidAttachedToWindow(void)

Augments the BControl version ofAttachedToWindow() to make the background color of
the BTextControl the same as the background color of its parent and to set up its child
BTextView.

See also: BView::AttachedToWindow(), BControl::AttachedToWindow()

BTextControl Member Functions

The Interface Kit –209

Divider() see SetDivider()

Draw()
virtual voidDraw(BRectupdateRect)

Draws the label. (The BTextControl defers to its child BTextView to draw the editable
text string.)

See also: BView::Draw()

GetAlignment() see SetAlignment()

Label() see SetLabel()

MakeFocus()
virtual voidMakeFocus(boolflag = TRUE)

Passes theMakeFocus() instruction on to the child BTextView. If theflag is TRUE, this
function selects all the text in the child BTextView, which becomes the new focus view for
the window. If theflag is FALSE, the child will no longer be the focus view. If the text has
changed when the child ceases to be the focus view, the BTextControl is considered to
have been invoked; a copy of its model message is posted so that it will be delivered to the
target handler.

Note that the BTextControl itself never becomes the focus view, so will returnFALSE to all
IsFocus() queries.

See also: BView::MakeFocus()

ModificationMessage() see SetModificationMessage()

MouseDown()
virtual voidMouseDown(BPointpoint)

Does nothing. The child BTextView handles the job of responding to the user.

See also: BTextView::MouseDown()

Member Functions BTextControl

210 – The Interface Kit

SetAlignment(), GetAlignment()
virtual voidSetAlignment(alignmentforLabel, alignmentforText)

void GetAlignment(alignment *forLabel, alignment *forText) const

These functions set and report the alignment of the label and the text within their
respective portions of the view. Three settings are possible:

B_ALIGN_LEFT The label or text is aligned at the left boundary of its part
of the view rectangle.

B_ALIGN_RIGHT The label or text is aligned at the right boundary of its
part of the view rectangle.

B_ALIGN_CENTER The label or text is centered within its part of the view
rectangle.

The default alignment isB_ALIGN_LEFT for both label and text.

See also: SetDivider()

SetDivider(), Divider()
virtual voidSetDivider(floatxCoordinate)

float Divider(void) const

These functions set and return thex coordinate value that marks the division between the
label portion of the view rectangle on the left and the text portion on the right. It’s stated
in the coordinate system of the BTextControl.

See also: the BTextControl constructor

SetEnabled()
virtual voidSetEnabled(boolenabled)

Disables the BTextControl if theenabled flag isFALSE, and reenables it ifenabled is TRUE.
BTextControls are enabled by default.

This function augments the BControl version ofSetEnabled(). When the control is
disabled, it makes the text unselectable (and therefore uneditable) and draws it in a way
that displays its disabled state. When the control is re-enabled, it makes the text editable
(and therefore selectable) and draws it as normal text.

See also: BControl::SetEnabled()

BTextControl Member Functions

The Interface Kit –211

SetLabel(), Label()
virtual voidSetLabel(const char *text)

const char *Label(void) const

These functions set and return the label displayed by the BTextControl. The label is first
set by the constructor.

SetModificationMessage(), ModificationMessage()
virtual voidSetModificationMessage(BMessage *message)

BMessage *ModificationMessage(void) const

These functions set and return the message that the BTextControl posts when the user
begins to enter or edit text.

SetModificationMessage() assignsmessage to the BTextControl, freeing the message
previously assigned, if any. The message becomes the responsibility of the BTextControl
object and will be freed only when it’s replaced by another message or the BTextControl is
freed; you shouldn’t free it yourself. Passing aNULL pointer to this function deletes the
current modification message without replacing it.

The assigned BMessage becomes the model for the message that the BTextControl posts
when the user first modifies the text after the child BTextView has become the focus view
(or after the user pressed the Enter key). The message is sent only for the first character
the user types, pastes, or deletes. Subsequent changes don’t invoke the message, until
after the user presses the Enter key to select all the text or after the child BTextView loses
focus view status and regains it again.

Before posting the message, the BTextControl adds two data entries to the copy:

Data name Type code Description

“when” B_DOUBLE_TYPE When the user modified the text, as
measured in microseconds since the
machines was last booted.

“source” B_OBJECT_TYPE A pointer to the BTextControl object.

These names should not be used for any data that you place in the modelmessage.

ModificationMessage() returns the model message.

Member Functions BTextControl

212 – The Interface Kit

SetText(), Text()
virtual voidSetText(const char *text)

const char *Text(void) const

These functions set and return the text displayed by the BTextControl—or rather by its
child BTextView. The text is first set by the constructor.

The Interface Kit –213

BTextView

Derived from: public BView

Declared in: <interface/TextView.h>

Overview

The BTextView class defines a view that displays text on-screen and supports a standard
user interface for entering, selecting, and editing text from the keyboard and mouse. It
also supports the principal editing commands—Cut, Copy, Paste, Delete, and Select All.

BTextView objects are suitable for displaying small amounts of text in the user interface
and for creating textual data in ASCII format. Full-scale text editors and word processors
will need to define their own objects to handle richer data formats.

A BTextView displays all its text in a single font, the font that it inherits as a BView
graphics parameter. Multiple fonts are not supported. Paragraph properties—such as
alignment and tab widths—are similarly uniform for all text displayed within the view.

Resizing

A BTextView can be made to resize itself to exactly fit the text that the user enters. This is
sometimes appropriate for small one-line text fields. See theMakeResizable() function.

Shortcuts and Menu Items

When a BTextView is the focus view for its window, it responds to these standard
keyboard shortcuts for cutting, copying, and pasting text:

• Command-x to cut text and copy it to the clipboard,
• Command-c to copy text without cutting it, and
• Command-v to paste text taken from the clipboard.

These shortcuts work even in the absence of Cut, Copy, and Paste menu items; they’re
implemented by the BWindow for any view that might be the focus view. All the focus
view has to do is cooperate, as a BTextView does, by handling the messages the shortcuts
generate.

Overview BTextView

214 – The Interface Kit

The only trick is to set up menu items that are compatible with the shortcuts. Follow these
guidelines if you put a menu with editing commands in a window that has a BTextView:

• Create Cut, Copy, and Paste menu items and assign them the Command-x,
Command-c, and Command-v shortcuts.

• Assign the items modelB_CUT, B_COPY andB_PASTE messages. These messages
don’t need to contain any information (other than awhat data member initialized to
the proper constant).

• Target the messages to the BWindow’s focus view (or directly to the BTextView).
No changes to the BTextView are necessary. When it gets these messages, the
BTextView calls itsCut(), Copy(), andPaste() functions.

You can also set up menu items that trigger calls to other BTextView editing and layout
functions. Simply create menu items like Select All or Align at Left that are targeted to
the focus view of the window where the BTextView is located, or to the BTextView itself.
The model messages assigned to these items can be structured with whatever command
constants and data entries you wish; the BTextView class imposes no constraints.

Then, in a class derived from BTextView, implement aMessageReceived() function that
responds to messages posted from the menu items by calling BTextView functions like
SelectAll() andSetAlignment(). For example:

void myText::MessageReceived(BMessage *message)
{
 switch (message->what) {
 case SELECT_ALL:
 SelectAll();
 break;
 case ALIGN_AT_LEFT:
 SetAlignment(B_ALIGN_LEFT);
 break;
 case ALIGN_AT_RIGHT:
 SetAlignment(B_ALIGN_RIGHT);
 break;
 . . .
 default:
 BTextView::MessageReceived(message);
 break;
 }
}

TheMessageReceived() function you implement should be sure to call BTextView’s
version of the function, which already handlesB_CUT, B_COPY, andB_PASTE messages.

BTextView Hook Functions

The Interface Kit –215

Newlines and Carriage Returns

A BTextView object treats newline characters (‘\n’, 0x0a) and carriage return characters
(‘\r’, 0x0d) alike. It converts received return characters into newlines and stores them
only as newlines. By default, none of keys on the BeBox is mapped to a carriage return.
TheB_ENTER character is a newline.

Hook Functions

AcceptsChar() Can be implemented to preview the characters the user
types and either accept or reject them before they’re added
to the display.

BreaksAtChar() Breaks word selection on spaces, tabs, and other invisible
characters, permitting all adjacent visible characters to be
selected when the user double-clicks a word. This function
can be augmented to break word selection on other
characters in addition to the invisible ones.

Constructor and Destructor

BTextView()
BTextView(BRectframe, const char *name, BRecttextRect,

ulongresizingMode, ulongflags)

Initializes the BTextView to theframe rectangle, stated in its eventual parent’s coordinate
system, assigns it an identifyingname, sets its resizing behavior toresizingMode and its
drawing behavior withflags. These four arguments—frame, name, resizingMode, and
flags—are identical to those declared for the BView class and are passed unchanged to the
BView constructor.

The text rectangle,textRect, is stated in the BTextView’s coordinate system. It determines
where text in placed within the view’s bounds rectangle:

• The first line of text is placed at the top of the text rectangle. As additional lines of
text are entered into the view, the text grows downward and may actually extend
beyond the bottom of the rectangle.

• The left and right sides of the text rectangle determine where lines of text are placed
within the view. Lines can be aligned to either side of the rectangle, or they can be
centered between the two sides. See theSetAlignment() function.

• When lines wrap on word boundaries, the width of the text rectangle determines the
maximum length of a line; each line of text can be as long as the rectangle is wide.

Member Functions BTextView

216 – The Interface Kit

When word wrapping isn’t turned on, lines can extend beyond the boundaries of the
text rectangle. See theSetWordWrap() function.

The bottom of the text rectangle is ignored; it doesn’t limit the amount of text the view can
contain. The text can be limited by the number of characters, but not by the number of
lines.

The constructor establishes the following default properties for a new BTextView:

• The text is left-aligned.
• The tab width is 44.0 coordinate units.
• Automatic indenting and word wrapping are turned off.
• The text is selectable and editable.
• All characters the user may type are acceptable.

A BTextView isn’t fully initialized until it’s assigned to a window and it receives an
AttachedToWindow() notification.

See also: AttachedToWindow(), the BView constructor

~BTextView()
virtual ~BTextView(void)

Frees the memory the BTextView allocated to hold the text and to store information about
it.

Member Functions

AcceptsChar()
virtual boolAcceptsChar(ulongaChar) const

Implemented by derived classes to returnTRUE if aChar designates a character that the
BTextView can add to its text, andFALSE if not. By returningFALSE, this function prevents
the character from being displayed or retained by the object.

AcceptsChar() is called for every character the user types (including those, like
B_BACKSPACE andB_RIGHT_ARROW, that are used for editing the text). The default
version of this function always returnsTRUE, but it can be overridden in a derived class to
restrict the text the user can enter. For example, a BTextView might reject uppercase
letters, or permit only numbers, or allow only those characters that are valid in a
pathname.

Sometimes, a character will be meaningful and trigger a response of some kind, even
though it can’t be displayed. For example, aB_TAB (0x09) might be rejected as a character
to display, and instead shift the selection to another text field. Similarly, a BTextView that

BTextView Member Functions

The Interface Kit –217

has room to display only a single line of text might returnFALSE for the newline character
(B_ENTER, 0x0a), yet take the occasion to simulate a click on a button.

When rejecting a character outright (not using it to take some other action), an application
has an obligation to explain to the user why the character is unacceptable, perhaps by
displaying an alert panel or dialog box.

As an alternative to implementing anAcceptsChar() function, you can simply inform the
BTextView at the outset that certain characters should not be allowed. Call
DisallowChar() when setting up the BTextView to tell it which characters won’t be
acceptable.

See also: KeyDown(), DisallowChar()

Alignment() see SetAlignment()

AllowChar() see DisallowChar()

AttachedToWindow()
virtual voidAttachedToWindow(void)

Completes the initialization of the BTextView object after it becomes attached to a
window. This function sets up the object so that it can correctly format text and display it.
It makes sure that all properties that were previously set—for example, word wrapping,
tab width, and alignment—are correctly reflected in the display on-screen. In addition, it
callsSetFontName() andSetFontSize() to set the font to the 9.0-point Erich bitmap font
(no rotation, 90° shear).

Because the BTextView uses pulses to animate (or “blink”) the caret, the vertical line that
marks the current insertion point, it enables pulsing in the window and fixes the pulse rate
at 2 per second (once every 500,000 microseconds).

This function is called for you when the BTextView becomes part a window’s view
hierarchy; you shouldn’t call it yourself, though you can override it to set a different
default font and do other graphics initialization. For more information on when it’s called,
see the BView class.

An AttachedToWindow() function that’s implemented by a derived class should begin by
incorporating the BTextView version:

void MyText::AttachedToWindow()
{
 BTextView::AttachedToWindow()
 . . .
}

Member Functions BTextView

218 – The Interface Kit

If it doesn’t, the BTextView won’t be able to properly display the text.

See also: BView::AttachedToWindow(), SetFontName()

BreaksAtChar()
virtual boolBreaksAtChar(ulongaChar) const

Implemented by derived classes to returnTRUE if theaChar character can break word
selection, andFALSE if it cannot. The BTextView class calls this function when the user
selects a word by double-clicking it. A return ofTRUE means that the character breaks the
selection—it cannot be selected as part of the word. A return ofFALSE means that the
character will be included in the selected word.

By default,BreaksAtChar() returnsTRUE if the character is aB_SPACE (0x20), a
B_TAB (0x09), a newline (B_ENTER, 0x0a), or some other character with an ASCII value
less than that of a space, andFALSE otherwise.

It can be reimplemented to add hyphens to the list of characters that break word selection,
as follows:

bool MyTextView::BreaksAtChar(ulong someChar)
{
 if (someChar == '-')
 return TRUE;
 return BTextView::BreaksAtChar(someChar);
}

See also: Text()

CharAt() see Text()

Copy()
virtual voidCopy(BClipboard *clipboard)

Copies the current selection to the clipboard. Theclipboard argument is identical to the
globalbe_clipboard object.

See also: Paste(), Cut()

CountLines() see GoToLine()

CurrentLine() see GoToLine()

BTextView Member Functions

The Interface Kit –219

Cut()
virtual voidCut(BClipboard *clipboard)

Copies the current selection to the clipboard, deletes it from the BTextView’s text, and
removes it from the display. Theclipboard argument is identical to the global
be_clipboard object.

See also: Paste(), Copy()

Delete()
void Delete(void)

Deletes the current selection from the BTextView’s text and removes it from the display,
without copying it to the clipboard.

See also: Cut()

DisallowChar(), AllowChar()
void DisallowChar(ulongaChar)

void AllowChar(ulongaChar)

These functions inform the BTextView whether the user should be allowed to enteraChar
into the text. By default, all characters are allowed. CallDisallowChar() for each
character you want to prevent the BTextView from accepting, preferably when first setting
up the object.

AllowChar() reverses the effect ofDisallowChar().

Alternatively, and for more control over the context in which characters are accepted or
rejected, you can implement anAcceptsChar() function for the BTextView.
AcceptsChar() is called for each key-down event that’s reported to the object.

See also: AcceptsChar()

DoesAutoindent() see SetAutoindent()

DoesWordWrap() see SetWordWrap()

Member Functions BTextView

220 – The Interface Kit

Draw()
virtual voidDraw(BRectupdateRect)

Draws the text on-screen. The Interface Kit calls this function for you whenever the text
display needs to be updated—for example, whenever the user edits the text, enters new
characters, or scrolls the contents of the BTextView.

See also: BView::Draw()

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Overrides the BView version of this function to reset the ranges of the BTextView’s scroll
bars and to update the sizes of their proportional knobs whenever the size of the
BTextView changes.

See also: BView::FrameResized()

GetSelection()
void GetSelection(long *start, long *finish)

Provides the current selection by writing the offset before the first selected character into
the variable referred to bystart and the offset after the last selected character into the
variable referred to byfinish. If no characters are selected, both offsets will record the
position of the current insertion point.

The offsets designate positions between characters. The position at the beginning of the
text is offset 0, the position between the first and second characters is offset 1, and so on.
If the 175th through the 202nd characters were selected, thestart offset would be 174 and
thefinish offset would be 202.

If the text isn’t selectable, both offsets will be 0.

See also: Select()

GetText() see Text()

BTextView Member Functions

The Interface Kit –221

GoToLine(), CountLines(), CurrentLine()
void GoToLine(long index)

long CurrentLine(void) const

inline longCountLines(void) const

GoToLine() moves the insertion point to the beginning of the line atindex. The first line
has an index of 0, the second line an index of 1, and so on. If theindex is out-of-range, the
insertion point is moved to the beginning of the line with the nearest in-range index—that
is, to either the first or the last line.

CurrentLine() returns the index of the line where the first character of the selection—or the
character following the insertion point—is currently located.

CountLines() returns how many lines of text the BTextView currently contains.

Like other functions that change the selection,GoToLine() doesn’t automatically scroll the
display to make the new selection visible. CallScrollToSelection() to be sure that the user
can see the start of the selection.

See also: ScrollToSelection()

Highlight()
void Highlight(longstart, longfinish)

Highlights the characters fromstart throughfinish, wherestart andfinish are the same sort
of offsets into the text array as are passed toSelect().

Highlight() is the function that the BTextView calls to highlight the current selection. You
don’t need to call it yourself for this purpose. It’s in the public API just in case you may
need to highlight a range of text in some other circumstance.

See also: Select()

IndexAtPoint()
long IndexAtPoint(BPointpoint) const
long IndexAtPoint(floatx, floaty) const

Returns the index of the character displayed closest topoint—or (x, y)—in the
BTextView’s coordinate system. The first character in the text array is at index 0.

If the point falls after the last line of text, the return value is the index of the last character
in the last line. If the point falls before the first line of text, or if the BTextView doesn’t
contain any text, the return value is 0.

See also: Text()

Member Functions BTextView

222 – The Interface Kit

Insert()
void Insert(const char *text, long length)
void Insert(const char *text)

Insertslength characters oftext—or if a length isn’t specified, all the characters of thetext
string up to the null character that terminates it—at the beginning of the current selection.
The current selection is not deleted and the insertion is not selected.

See also: SetText()

IsEditable() see MakeEditable()

IsSelectable() see MakeSelectable()

KeyDown()
virtual voidKeyDown(ulongaChar)

Enters text at the current selection in response to the user’s typing. This function is called
from the window’s message loop for every report of a key-down event—once for every
character the user types. However, it does nothing unless the BTextView is the focus view
and the text it contains is editable.

If aChar is one of the arrow keys (B_UP_ARROW, B_LEFT_ARROW, B_DOWN_ARROW, or
B_RIGHT_ARROW), KeyDown() moves the insertion point in the appropriate direction. If
aChar is theB_BACKSPACE character, it deletes the current selection (or one character at
the current insertion point). Otherwise, it checks whether the character was registered as
unacceptable (byDisallowChar()) and it calls theAcceptsChar() hook function to give the
application a chance to reject the character or handle it in some other way. If the character
isn’t disallowed andAcceptsChar() returnsTRUE, it’s entered into the text and displayed.

See also: BView::KeyDown(), AcceptsChar(), DisallowChar()

LineHeight()
inline floatLineHeight(void) const

Returns the height of a single line of text, as measured from the baseline of one line of
single-spaced text to the baseline of the line above or below it.

The height is stated in coordinate units and depends on the current font. It’s the sum of
how far characters can ascend above and descend below the baseline, plus the amount of
leading that separates lines.

See also: BView::GetFontInfo()

BTextView Member Functions

The Interface Kit –223

LineWidth()
float LineWidth(long index = 0) const

Returns the width of the line atindex—or, if no index is given, the width of the first line.
The value returned is the sum of the widths (in coordinate units) of all the characters in the
line, from the first through the last, including tabs and spaces.

Line indices begin at 0.

If the index passed is out-of-range, it’s reinterpreted to be the nearest in-range index—that
is, as the index to the first or the last line.

MakeEditable(), IsEditable()
void MakeEditable(boolflag = TRUE)

bool IsEditable(void) const

The first of these functions sets whether the user can edit the text displayed by the
BTextView; the second returns whether or not the text is currently editable. Text is
editable by default.

To edit text, the user must be able to select it. Therefore, whenMakeEditable() is called
with an argument ofTRUE (or with no argument), it makes the text both editable and
selectable. Similarly, whenIsEditable() returnsTRUE, the text is selectable as well as
editable;IsSelectable() will also returnTRUE.

A value ofFALSE means that the text can’t be edited, but implies nothing about whether or
not it can be selected.

See also: MakeSelectable()

MakeFocus()
virtual voidMakeFocus(boolflag = TRUE)

Overrides the BView version ofMakeFocus() to highlight the current selection when the
BTextView becomes the focus view (whenflag is TRUE) and to unhighlight it when the
BTextView no longer is the focus view (whenflag is FALSE). However, the current
selection is highlighted only if the BTextView’s window is the current active window.

This function is called for you whenever the user’s actions make the BTextView become
the focus view, or force it to give up that status.

See also: BView::MakeFocus(), MouseDown()

Member Functions BTextView

224 – The Interface Kit

MakeResizable()
void MakeResizable(BView *containerView)

Makes the BTextView’s frame rectangle and text rectangle automatically grow and shrink
to exactly enclose all the characters entered by the user. ThecontainerView is a view that
should be resized with the BTextView; typically it’s a view that draws a border around the
text (like a BScrollView object) and is the parent of the BTextView. This function won’t
work without a container view.

MakeResizable() is an alternative to the automatic resizing behavior provided in the
BView class. It triggers resizing on the user’s entry of text, not on a change in the parent
view’s size. The two schemes are incompatible; the BTextView and the container view
should not automatically resize themselves when their parents are resized.

< This function currently requires the text to be either left aligned or center aligned; it
doesn’t work for text that’s right aligned. >

See also: SetAlignment()

MakeSelectable(), IsSelectable()
void MakeSelectable(boolflag = TRUE)

bool IsSelectable(void) const

The first of these functions sets whether it’s possible for the user to select text displayed by
the BTextView; the second returns whether or not the text is currently selectable. Text is
selectable by default.

When text is selectable but not editable, the user can select one or more characters to copy
to the clipboard, but can’t position the insertion point (an empty selection), enter
characters from the keyboard, or paste new text into the view.

Since the user must be able to select text to edit it, callingMakeSelectable() with an
argument ofFALSE causes the text to become uneditable as well as unselectable. Similarly,
if IsSelectable() returnsFALSE, the user can neither select nor edit the text;IsEditable()
will also returnFALSE.

A value ofTRUE means that the text is selectable, but says nothing about whether or not it’s
also editable.

See also: MakeEditable()

MessageReceived()
virtual voidMessageReceived(BMessage *message)

Overrides the BHandler version ofMessageReceived() to handle four messages.

BTextView Member Functions

The Interface Kit –225

If this function gets aB_SIMPLE_DATA message, it looks for a data named “text” registered
asB_ASCII_TYPE. Failing that, it looks for a single character named “char” registered as
B_LONG_TYPE. If successful, it assumes that the message was dragged and dropped on the
view. It changes the current selection to the point of drop and inserts the text or character
at that point.

This function handlesB_CUT, B_COPY, andB_PASTE messages by calling theCut(), Copy(),
andPaste() virtual functions. For the BTextView to get these messages, Cut, Copy, and
Paste menu items should be:

• Assigned model messages withB_CUT, B_COPY, andB_PASTE as theirwhat data
members, and

• Targeted to the BTextView, or to the current focus view in the window that displays
the BTextView.

The BTextView, through this function, takes care of the rest.

To inherit this functionality,MessageReceived() functions implemented by derived
classes should be sure to call the BTextView version.

See also: BMenuItem::SetMessage(), BMenuItem::SetTarget()

MouseDown()
virtual voidMouseDown(BPointpoint)

Selects text and positions the insertion point in response to the user’s mouse actions. If the
BTextView isn’t already the focus view for its window, this function callsMakeFocus() to
make it the focus view.

MouseDown() is called for each mouse-down event that occurs inside the BTextView’s
frame rectangle.

See also: BView::MouseDown(), BView::MakeFocus()

MouseMoved()
virtual voidMouseMoved(BPointpoint, ulongtransit, BMessage *message)

Responds to messages reporting mouse-moved events by changing the cursor to the
standard I-beam image for editing text whenever the cursor enters the view and by
resetting it to the standard hand image when the cursor exits the view.

The cursor is changed to an I-beam only for text that is selectable, and only if the
BTextView is the current focus view in the active window.

See also: BView::MouseMoved()

Member Functions BTextView

226 – The Interface Kit

Paste()
virtual voidPaste(BClipboard *clipboard)

Takes textual data from the clipboard and pastes it into the text. The new text replaces the
current selection, or is placed at the site of the current insertion point.

Theclipboard argument is identical to the globalbe_clipboard object.

See also: Cut(), Copy()

Pulse()
virtual voidPulse(void)

Turns the caret marking the current insertion point on and off when the BTextView is the
focus view in the active window.Pulse() is called by the system at regular intervals.

This function is first declared in the BView class.

See also: BView::Pulse()

ScrollToSelection()
void ScrollToSelection(void)

Scrolls the text so that the beginning of the current selection is within the visible region of
the view, provided that the BTextView is equipped with a scroll bar that permits scrolling
in the required direction (horizontal or vertical).

See also: BView::ScrollBy()

Select()
void Select(longstart, longfinish)

Selects the characters fromstart up tofinish, wherestart andfinish are offsets into the
BTextView’s text. The offsets designate positions between characters. For example,

Select(0, 2);

selects the first two characters of text,

Select(17, 18);

selects the eighteenth character, and

Select(0, TextLength());

BTextView Member Functions

The Interface Kit –227

selects the entire text just as theSelectAll() function does. Ifstart andfinish are the same,
the selection will be empty (an insertion point).

Normally, the selection is changed by the user. This function provides a way to change it
programmatically.

If the BTextView is the current focus view in the active window,Select() highlights the
new selection (or displays a blinking caret at the insertion point). However, it doesn’t
automatically scroll the contents of the BTextView to make the new selection visible. Call
ScrollToSelection() to be sure that the user can see the start of the selection.

See also: Text(), GetSelection(), ScrollToSelection(), GoToLine(), MouseDown()

SelectAll()
void SelectAll(void)

Selects the entire text of the BTextView, and highlights it if the BTextView is the current
focus view in the active window.

See also: Select()

SetAlignment(), Alignment()
void SetAlignment(alignmentwhere)

alignmentAlignment(void) const

These functions set the way text is aligned within the text rectangle and return the current
alignment. Three settings are possible:

B_ALIGN_LEFT Each line is aligned at the left boundary of the text
rectangle.

B_ALIGN_RIGHT Each line is aligned at the right boundary of the text
rectangle.

B_ALIGN_CENTER Each line is centered between the left and right
boundaries of the text rectangle.

The default isB_ALIGN_LEFT.

SetAutoindent(), DoesAutoindent()
void SetAutoindent(boolflag)

bool DoesAutoindent(void) const

These functions set and return whether a new line of text is automatically indented the
same as the preceding line. When set toTRUE and the user types Return at the end of a line

Member Functions BTextView

228 – The Interface Kit

that begins with tabs or spaces, the new line will automatically indent past those tabs and
spaces to the position of the first visible character.

The default value isFALSE.

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear()
virtual voidSetFontName(const char *name)

virtual voidSetFontSize(floatpoints)

virtual voidSetFontRotation(floatdegrees)

virtual voidSetFontShear(floatangle)

These functions override their BView counterparts to recalculate the layout of the text
when the font changes, and to prevent the text displayed by a BTextView object from
being rotated.

Font rotation is disabled; the BTextView version ofSetFontRotation() does nothing. The
other three functions invoke their BView counterparts to change the font, then make sure
the entire text is recalculated and rewrapped for the new font. However, the text display is
not updated.

SetFontName() andSetFontSize() are called byAttachedToWindow() to set the
BTextView’s default font to 9.0-point Erich.

See also: BView::SetFontName()

SetMaxChars()
void SetMaxChars(longmax)

Sets the maximum number of characters that the BTextView can accept. The default is the
maximum number of characters that can be designated by along integer, a number
sufficiently large to accommodate all uses of a BTextView. Use this function only if you
need to restrict the number of characters that the user can enter in a text field.

SetSymbolSet()
virtual voidSetSymbolSet(const char *name)

Overrides its BView counterpart to recalculate the text layout when the symbol set
changes.

See also: BView::SetSymbolSet()

BTextView Member Functions

The Interface Kit –229

SetTabWidth(), TabWidth()
void SetTabWidth(floatwidth)

float TabWidth(void) const

These functions set the distance between tab stops towidth coordinate units and return the
current tab width. Tabs cannot be removed nor can they be individually set; all tabs have a
uniform width. The default tab width is 44.0 coordinate units.

SetText()
void SetText(const char *text, long length)
void SetText(const char *text)

Removes any text currently in the BTextView and copieslength characters oftext to
replace it—or all the characters in thetext string, up to the null character, if alength isn’t
specified. Iftext is NULL or length is 0, this function empties the BTextView. Otherwise, it
copies the required number oftext characters passed to it.

This function is typically used to set the text initially displayed in the view. If the
BTextView is attached to a window, it’s updated to show its new contents.

See also: Text(), TextLength()

SetTextRect(), TextRect()
void SetTextRect(BRectrect)

inline BRectTextRect(void) const

SetTextRect() makesrect the BTextView’s text rectangle—the rectangle that locates where
text is placed within the view. This replaces the text rectangle originally set in the
BTextView constructor. The layout of the text is recalculated to fit the new rectangle, and
the text is redisplayed.

TextRect() returns the current text rectangle.

See also: the BTextView constructor

SetWordWrap(), DoesWordWrap()
void SetWordWrap(boolflag)

bool DoesWordWrap(void) const

These functions set and return whether the BTextView wraps lines on word boundaries,
dropping entire words that don’t fit at the end of a line to the next line. Words break on
tabs, spaces, and other invisible characters; all adjacent visible characters wrap together.

Member Functions BTextView

230 – The Interface Kit

By default, word wrapping is turned off (DoesWordWrap() returnsFALSE). Lines break
only on a newline character (where the user types return).

See also: SetTextRect()

TabWidth() see SetTabWidth()

Text(), GetText(), CharAt()
const char *Text(void)

const char *GetText(char *buffer, long index, long length) const

charCharAt(long index) const

These functions reveal the text contained in the BTextView.

Text() returns a pointer to the text, which may be a pointer to an empty string if the
BTextView is empty. The returned pointer can be used to read the text, but not to alter it
(useSetText(), Insert(), Delete(), and other BTextView functions to do that).

GetText() copies up tolength characters of the text intobuffer, beginning with the
character atindex, and adds a null terminator (‘\0’). The first character in the BTextView
is at index 0, the second at index 1, and so on. Fewer thanlength characters are copied if
there aren’t that many betweenindex and the end of the text. The results won’t be reliable
if the index is out-of-range.

CharAt() returns the specific character located atindex.

The pointer thatText() returns is to the BTextView’s internal representation of the text.
When it returns, the text string is guaranteed to be null-terminated and without gaps.
However, the BTextView may have had to manipulate the text to get it in that condition.
Therefore, there may be a performance price to pay ifText() is called frequently. If you’re
going to copy the text, it’s more efficient to haveGetText() do it for you. If you’re going to
index into the text, it may be more efficient to callCharAt().

The pointer thatText() returns may no longer be valid after the user or the program next
changes the text. Even if valid, the string may no longer be null-terminated and gaps may
appear.

See also: TextLength()

BTextView Member Functions

The Interface Kit –231

TextLength()
long TextLength(void) const

Returns the number of characters the BTextView currently contains—the number of
characters thatText() returns (not counting the null terminator).

See also: Text(), SetMaxChars()

TextRect() see SetTextRect()

WindowActivated()
virtual voidWindowActivated(boolflag)

Highlights the current selection when the BTextView’s window becomes the active
window (whenflag is TRUE)—provided that the BTextView is the current focus view—and
removes the highlighting when the window ceases to be the active window (whenflag is
FALSE).

If the current selection is empty (if it’s an insertion point), it’s highlighted by turning the
caret on and off (blinking it).

The Interface Kit calls this function for you whenever the BTextView’s window becomes
the active window or it loses that status.

See also: BView::WindowActivated(), MakeFocus()

Member Functions BTextView

232 – The Interface Kit

The Interface Kit –233

BView

Derived from: public BHandler

Declared in: <interface/View.h>

Overview

BView objects are the agents for drawing and message handling within windows. Each
object sets up and takes responsibility for a particularview, a rectangular area that’s
associated with at most one window at a time. The object draws within the view rectangle
and responds to reports of events elicited by the images drawn.

Classes derived from BView implement the actual functions that draw and handle
messages; BView merely provides the framework. For example, a BTextView object
draws and edits text in response to the user’s activity on the keyboard and mouse. A
BButton draws the image of a button on-screen and responds when the button is clicked.
BTextView and BButton inherit from the BView class—as do most classes in the Interface
Kit.

The following Kit classes derive, directly or indirectly, from BView:

BControl BButton BMenu
BScrollBar BPictureButton BMenuBar
BScrollView BRadioButton BMenuField
BBox BCheckBox BPopUpMenu
BStringView BColorControl BListView
BTextView BTextControl

Serious applications will need to define their own classes derived from BView.

Views and Windows

For a BView to do its work, you must attach it to a window. The views in a window are
arranged in a hierarchy—there can be views within views—with those that are most
directly responsible for drawing and message handling located at the terminal branches of
the hierarchy and those that contain and organize other views situated closer to its trunk
and root. A BView begins life unattached. You can add it to a hierarchy by calling the
AddChild() function of the BWindow, or of another BView.

Overview BView

234 – The Interface Kit

Within the hierarchy, a BView object plays two roles:

• It’s a BHandler for messages delivered to the window thread. BViews implement
the functions that respond to the most common system messages—including those
that report keyboard and mouse events. They can also be targeted to handle
application-defined messages that affect what they view displays.

• It’s an agent for drawing. Adding a BView to a window gives it an independent
graphics environment. A BView draws on the initiative of the BWindow and the
Application Server, whenever they determine that the appearance of any part of the
view rectangle needs to be “updated.” It also draws on its own initiative in response
to events.

The relationship of BViews to BWindows and the framework for drawing and responding
to the user were discussed in the introduction to this chapter. The concepts and
terminology presented there are assumed in this class description. See especially “BView
Objects” on page 11, “The View Hierarchy” on page 13, “Drawing” beginning on page 18,
and “Responding to the User” beginning on page 41.

BViews can also be called upon to create bitmap images. See the BBitmap class for
details.

User Interface

Since they provide the content that’s displayed within windows, BViews carry most of the
burden of implementing an application’s user interface. Often this is simply a matter of
how a BView implements a hook function—howDraw() presents the view or how
MouseDown() handles a double-click. User-interface guidelines should be followed, but
the BView is essentially on its own. However, in some cases the Interface Kit provides a
mechanism that derived classes can participate in, if they coordinate with Kit-defined
code. Two such mechanisms are described below—keyboard navigation and the drag-
and-drop delivery of messages.

Keyboard Navigation

Keyboard navigation is a mechanism for allowing users to manipulate views—especially
buttons, check boxes, and other control devices—from the keyboard. It gives users the
ability to:

• Move the focus of keyboard actions from view to view within a window by pressing
the Tab key, and

• Operate the view that’s currently in focus by pressing the space bar and Enter key
(to invoke it) or the arrow keys (to move around inside it).

The first ability—navigation between views—is implemented by the Interface Kit. The
second—navigation within a view—is up to individual applications, as are most view-

BView Overview

The Interface Kit –235

specific aspects of the user interface. The only trick, and it’s not a difficult one, is to make
the two kinds of navigation work together.

To have the BView class you implement participate in the navigation mechanism, you
need to coordinate four pieces of code:

• IncludeB_NAVIGABLE in the BView’s flag mask whenever it’s possible for the user
to navigate to it (when it can become the focus view). This flag should be removed
from the mask when the view is disabled, and included again when it’s re-enabled.
The mask is first set on construction and can be altered with theSetFlags() function.

• Make sure the BView’sDraw() function provides some sort of visual indication of
whether the view is the current focus for keyboard actions. Guidelines are
forthcoming on what the indication should be. Currently, Be-defined views
underline text (for example, a button label) when the view is in focus, and avoid
drawing the underline when it’s not.Draw() can callIsFocus() to test the BView’s
current status.

• Override theMakeFocus() hook function to have it change the way the view is
displayed when it becomes the focus view and when it loses that status. It’s perhaps
simplest just to haveMakeFocus() call Draw().

• OverrideKeyDown() to handle the keystrokes that are used to operate the view (for
view-internal navigation). Always incorporate the inherited version so that it can
take care of navigation between views.

Several Kit classes that derive from BView implement these functions. For example,
BControl has a simpleKeyDown() function and aMakeFocus() function that callsDraw().
If you base your class on BControl, you won’t have to implementMakeFocus() and may
find that itsKeyDown() is adequate for your needs.

Drag and Drop

The BView class supports a drag-and-drop user interface. The user can transfer a parcel
of information from one place to another by dragging an image from a source view and
dropping it on a destination view—perhaps a view in a different window or even a
different application.

A source BView initiates dragging by callingDragMessage() from within its
MouseDown() function. The BView bundles all information relevant to the dragging
session into a BMessage object and passes it toDragMessage(). It also passes an image to
represent the data package on-screen.

The Application Server then takes charge of the BMessage object and animates the image
as the user drags it on-screen. As the image moves across the screen, the views it passes
over are informed withMouseMoved() function calls. These notifications give views a
chance to show the user whether or not they’re willing to accept the message being
dragged. When the user releases the mouse button, dropping the dragged message, the
message is delivered to the BWindow and targeted to the destination BView.

Overview BView

236 – The Interface Kit

Aside from creating a BMessage object and passing it toDragMessage(), or
implementingMouseMoved() andMessageReceived() functions to handle any messages
that come its way, there’s nothing an application needs to do to support a drag-and-drop
user interface. The bulk of the work is done by the Application Server and Interface Kit.

Locking the Window

If a BView is attached to a window, any operation that affects the view might also affect
the window and the BView’s shadow counterpart in the Application Server. For this
reason, any code that calls a BView function should first lock the window—so that one
thread can’t modify essential data structures while another thread is using them. A
window can be locked by only one thread at a time.

By default, before they do anything else, almost all BView functions check to be sure the
caller has the window locked. If the window isn’t properly locked, they print warning
messages and fail.

This check should help you develop an application that correctly regulates access to
windows and views. However, it adds a certain amount of time to each function call.
Once your application has been debugged and is ready to ship, you can turn the check off
by calling BWindow’sSetDiscipline() function and passing it an argument ofFALSE. The
discipline flag is separately set for each window.

BView functions can require the window to be locked only if the view has a window to
lock; the requirement can’t be enforced if the BView isn’t attached to a window.
However, as discussed under “Views and the Server” on page 31 of the introduction to this
chapter, many BView functions, including all those that depend on graphics parameters,
don’t work at all unless the view is attached—in which case the window must be locked.

Whenever the system calls a BView function to notify it of something—whenever it calls
WindowActivated(), Draw(), MessageReceived() or another hook function—it first locks
the window thread. The application doesn’t have to explicitly lock the window when
responding to an update, an interface message, or some other notification. The window is
already locked.

Derived Classes

When it comes time for a BView to draw, itsDraw() virtual function is called
automatically. When it needs to respond to an event, a virtual function named after the
kind of event is called—MouseMoved(), KeyDown(), and so on. Classes derived from
BView implement these hook functions to do the particular kind of drawing and message
handling characteristic of the derived class.

• Some classes derived from BView implement control devices—buttons, dials,
selection lists, check boxes, and so on—that translate user actions on the keyboard
and mouse into more explicit instructions for the application. In the Interface Kit,

BView Hook Functions

The Interface Kit –237

BMenu, BListView, BButton, BCheckBox, and BRadioButton are examples of
control devices.

• Other BViews visually organize the display—for example, a view that draws a
border around and arranges other views, or one that splits a window into two or
more resizable panels. The BBox, BScrollBar, and BScrollView classes fall into
this category.

• Some BViews implement highly organized displays the user can manipulate, such
as a game board or a scientific simulation.

• Perhaps the most important BViews are those that permit the user to create,
organize, and edit data. These views display the current selection and are the focus
of most user actions. They carry out the main work of an application. BTextView is
the only Interface Kit example of such a view.

Almost all the BView classes defined in the Interface Kit fall into the first two of these
groups. Control devices and organizational views can serve a variety of different kinds of
applications, and therefore can be implemented in a kit that’s common to all applications

However, the BViews that will be central to most applications fall into the last two groups.
Of particular importance are the BViews that manage editable data. Unfortunately, these
are not views that can be easily implemented in a common kit. Just as most applications
devise their own data formats, most applications will need to define their own data-
handling views.

Nevertheless, the BView class structures and simplifies the task of developing application-
specific objects that draw in windows and interact with the user. It takes care of the lower-
level details and manages the view’s relationship to the window and other views in the
hierarchy. You should make yourself familiar with this class before implementing you
own application-specific BViews.

Hook Functions

AllAttached() Can be implemented to finish initializing the BView after
it’s attached to a window, where the initialization depends
on a descendent view’sAttachedToWindow() function
having been called.

AllDetached() Can be implemented to prepare the BView for being
detached from a window, where the preparations depend on
a descendent view’sDetachedFromWindow() function
having been called.

AttachedToWindow() Can be implemented to finish initializing the BView after it
becomes part of a window’s view hierarchy.

Constructor and Destructor BView

238 – The Interface Kit

DetachedFromWindow() Can be implemented to prepare the BView for its
impending removal from a window’s view hierarchy.

Draw() Can be implemented to draw the view.

FrameMoved() Can be implemented to respond to a message notifying the
BView that it has moved in its parent’s coordinate system.

FrameResized() Can be implemented to respond to a message informing the
BView that its frame rectangle has been resized.

KeyDown() Can be implemented to respond to a message reporting a
key-down event.

MakeFocus() Makes the BView the focus view, or causes it to give up
being the focus view; can be augmented to take any action
the change in status may require.

MouseDown() Can be implemented to respond to a message reporting a
mouse-down event.

MouseMoved() Can be implemented to respond to a notification that the
cursor has entered the view’s visible region, moved within
the visible region, or exited from the view.

Pulse() Can be implemented to do something at regular intervals.
This function is called repeatedly when no other messages
are pending.

WindowActivated() Can be implemented to respond to a notification that the
BView’s window has become the active window, or has
lost that status.

Constructor and Destructor

BView()
BView(BRectframe, const char *name, ulongresizingMode, ulongflags)

Sets up a view with theframe rectangle, which is specified in the coordinate system of its
eventual parent, and assigns the BView an identifyingname, which can beNULL.

When it’s created, a BView doesn’t belong to a window and has no parent. It’s assigned a
parent by having another BView adopt it with theAddChild() function. If the other view
is in a window, the BView becomes part of that window’s view hierarchy. A BView can
be made a child of the window’s top view by calling BWindow’s version of the
AddChild() function.

BView Constructor and Destructor

The Interface Kit –239

When the BView gains a parent, the values inframe are interpreted in the parent’s
coordinate system. The sides of the view must be aligned on screen pixels. Therefore, the
frame rectangle should not contain coordinates with fractional values. Fractional
coordinates will be rounded to the nearest whole number.

TheresizingMode mask determines the behavior of the view when its parent is resized. It
should combine one constant for horizontal resizing,

B_FOLLOW_LEFT
B_FOLLOW_RIGHT
B_FOLLOW_LEFT_RIGHT
B_FOLLOW_H_CENTER

with one for vertical resizing:

B_FOLLOW_TOP
B_FOLLOW_BOTTOM
B_FOLLOW_TOP_BOTTOM
B_FOLLOW_V_CENTER

For example, ifB_FOLLOW_LEFT is chosen, the margin between the left side of the view and
left side of its parent will remain constant—the view’s left side will “follow” the parent’s
left side. Similarly, ifB_FOLLOW_RIGHT is chosen, the view’s right side will follow the
parent’s right side. IfB_FOLLOW_H_CENTER is chosen, the horizontal center of the view
will maintain a constant distance from the horizontal center of the parent.

If the constants name opposite sides of the view rectangle—left and right, or top and
bottom—the view will necessarily be resized in that dimension when the parent is.

If a side is not mentioned, the distance between that side of the view and the
corresponding side of the parent is free to fluctuate. This may mean that the view will
move within its parent’s coordinate system when the parent is resized.B_FOLLOW_RIGHT
plusB_FOLLOW_BOTTOM, for example, would keep a view from being resized, but the
view will move to follow the right bottom corner of its parent whenever the parent is
resized.B_FOLLOW_LEFT plusB_FOLLOW_TOP prevents a view from being resizedand
from being moved.

In addition to the constants listed above, there are two other possibilities:

B_FOLLOW_ALL_SIDES
B_FOLLOW_NONE

B_FOLLOW_ALL_SIDES is a shorthand forB_FOLLOW_LEFT_RIGHT and
B_FOLLOW_TOP_BOTTOM. It means that the view will be resized in tandem with its parent,
both horizontally and vertically.

B_FOLLOW_NONE keeps the view at its absolute position on-screen; the parent view is
resized around it. (Nevertheless, because the parent is resized, the view may wind up
being moved in its parent’s coordinate system.)

Constructor and Destructor BView

240 – The Interface Kit

Typically, a parent view is resized because the user resizes the window it’s in. When the
window is resized, the top view is too. Depending on how theresizingMode flag is set for
the top view’s children and for the descendants of its children, automatic resizing can
cascade down the view hierarchy. A view can also be resized programmatically by the
ResizeTo() andResizeBy() functions.

The resizing mode can be changed after construction with theSetResizingMode()
function.

Theflags mask determines what kinds of notifications the BView will receive. It can be
any combination of these four constants:

B_WILL_DRAW Indicates that the BView does some drawing of its
own and therefore can’t be ignored when the
window is updated. If this flag isn’t set, the BView
won’t receive update notifications—it won’t be
erased to its background color and itsDraw()
function won’t be called.

B_PULSE_NEEDED Indicates that the BView should receivePulse()
notifications.

B_FRAME_EVENTS Indicates that the BView should receive
FrameResized() andFrameMoved() notifications
when its frame rectangle changes—typically as a
result of the automatic resizing behavior described
above. FrameResized() is called when the
dimensions of the view change;FrameMoved() is
called when the position of its left top corner in its
parent’s coordinate system changes.

B_FULL_UPDATE_ON_RESIZE Indicates that the entire view should be updated
when it’s resized. If this flag isn’t set, only the
portions that resizing adds to the view will be
included in the clipping region.

B_NAVIGABLE Indicates that the BView can become the focus
view for keyboard actions. This flag makes it
possible for the user to navigate to the view and put
it in focus by pressing the Tab key. See “Keyboard
Navigation” above.

If none of these constants apply,flags can beNULL. The flags can be reset after
construction with theSetFlags() function.

See also: SetResizingMode(), SetFlags(), BHandler::SetName()

BView Member Functions

The Interface Kit –241

~BView()
virtual ~BView(void)

Removes the BView from the view hierarchy and ensures that each of its descendants is
also removed and destroyed.

Member Functions

AddChild()
virtual voidAddChild(BView *aView)

MakesaView a child of the BView, provided thataView doesn’t already have a parent. If
the BView is attached to a window,aView and all its descendants become attached to the
same window. Each of them is notified of this change throughAttachedToWindow() and
AllAttached() function calls.

AddChild() fails if aView already belongs to a view hierarchy. A view can live with only
one parent at a time.

When a BView object becomes attached to a BWindow, two other connections are
automatically established for it:

• The view is added to the BWindow’s flat list of BHandler objects, making it an
eligible target for messages received by the BWindow.

• The BView’s parent view becomes its next handler. Messages that the BView
doesn’t recognize will be passed to its parent.

See also: BWindow::AddChild(), AttachedToWindow(), BLooper::AddHandler(),
BHandler::SetNextHandler(), RemoveChild()

AddLine() see BeginLineArray()

AllAttached() see AttachedToWindow()

AllDetached() see DetachedFromWindow()

Member Functions BView

242 – The Interface Kit

AttachedToWindow(), AllAttached()
virtual voidAttachedToWindow(void)

virtual voidAllAttached(void)

Implemented by derived classes to complete the initialization of the BView when it’s
assigned to a window. A BView is assigned to a window when it, or one of its ancestors in
the view hierarchy, becomes a child of a view already attached to a window.

AttachedToWindow() is called immediately after the BView is formally made a part of the
window’s view hierarchy and after it has become known to the Application Server and its
graphics parameters are set. TheWindow() function can identify which BWindow the
BView belongs to.

All of the BView’s children, if it has any, also become attached to the window and receive
their ownAttachedToWindow() notifications. Parents receive the notification before their
children, but only after all views have become attached to the window and recognized as
part of the window’s view hierarchy. This function can therefore depend on all ancestor
and descendent views being in place.

For example,AttachedToWindow() can be implemented to set a view’s background color
to the same color as its parent, something that can’t be done before the view belongs to a
window and knows who its parent is.

void MyView::AttachedToWindow()
{
 if (Parent())
 SetViewColor(Parent()->ViewColor());
 inherited::AttachedToWindow();
}

TheAllAttached() notification follows on the heels ofAttachedToWindow(), but works its
way up the view hierarchy rather than down. WhenAllAttached() is called for a BView,
all its descendants have received bothAttachedToWindow() andAllAttached()
notifications. Therefore, parent views can depend on any calculations that their children
make in either function. For example, a parent can resize itself to fit the size of its
children, where their sizes depend on calculations done inAttachedToWindow().

The default (BView) version of both these functions are empty.

See also: AddChild(), Window()

BeginLineArray(), AddLine(), EndLineArray()
void BeginLineArray(longcount)

void AddLine(BPointstart, BPointend, rgb_colorcolor)

void EndLineArray(void)

These functions provide a more efficient way of drawing a large number of lines than
repeated calls toStrokeLine(). BeginLineArray() signals the beginning of a series of up to

BView Member Functions

The Interface Kit –243

countAddLine() calls;EndLineArray() signals the end of the series. EachAddLine() call
defines a line from thestart point to theend point, associates it with a particularcolor, and
adds it to the array. The lines can each be a different color; they don’t have to be
contiguous. WhenEndLineArray() is called, all the lines are drawn—using the then
current pen size—in the order that they were added to the array.

These functions don’t change any graphics parameters. For example, they don’t move the
pen or change the current high and low colors. Parameter values that are in effect when
EndLineArray() is called are the ones used to draw the lines. The high and low colors are
ignored in favor of thecolor specified for each line.

Thecount passed toBeginLineArray() is an upper limit on the number of lines that can be
drawn. Keeping the count close to accurate and within reasonable bounds helps the
efficiency of the line-array mechanism. It’s a good idea to keep it less than 256; above that
number, memory requirements begin to impinge on performance.

See also: StrokeLine()

BeginPicture(), EndPicture()
void BeginPicture(BPicture *picture)

BPicture *EndPicture(void)

BeginPicture() instructs the Application Server to begin recording a set of drawing
instructions for apicture; EndPicture() instructs the Server to end the recording session. It
returns the same object that was passed toBeginPicture().

The BPicture records exactly what the BView draws—and only what the BView draws—
between theBeginPicture() andEndPicture() calls. The drawing of other views is ignored,
as are function calls that don’t draw or affect graphics parameters. The picture captures
only primitive graphics operations—that is, functions defined in this class, such as
DrawString(), FillArc(), andSetFont(). If a complex drawing function (such asDraw()) is
called, only the primitive operations that it contains are recorded.

A BPicture can be recorded only if the BView is attached to a window. The window it’s in
can be off-screen and the view itself can be hidden or reside outside the current clipping
region. However, if the window is on-screen and the view is visible, the drawing that the
BView does will both be captured in thepicture and rendered in the window.

See also: the BPicture class,DrawPicture()

BeginRectTracking(), EndRectTracking()
void BeginRectTracking(BRectrect, ulonghow = B_TRACK_WHOLE_RECT)

void EndRectTracking(void)

These functions instruct the Application Server to display a rectangular outline that will
track the movement of the cursor.BeginRectTracking() puts the rectangle on-screen and

Member Functions BView

244 – The Interface Kit

initiates tracking;EndRectTracking() terminates tracking and removes the rectangle. The
initial rectangle,rect, is specified in the BView’s coordinate system.

This function supports two kinds of tracking, depending on the constant passed as thehow
argument:

B_TRACK_WHOLE_RECT The whole rectangle moves with the cursor. Its
position changes, but its size remains fixed.

B_TRACK_RECT_CORNER The left top corner of the rectangle remains fixed
within the view while its right and bottom edges
move with the cursor.

Tracking is typically initiated from within a BView’sMouseDown() function and is
allowed to continue as long as a mouse button is held down. For example:

void MyView::MouseDown(BPoint point)
{
 ulong buttons;

 BRect rect(point, point);
 BeginRectTracking(rect, B_TRACK_RECT_CORNER);
 do {
 snooze(30.0 * 1000.0);
 GetMouse(&point, &buttons);
 } while (buttons);
 EndRectTracking();

 rect.SetRightBottom(point);
 . . .
}

This example usesBeginRectTracking() to drag out a rectangle from the point recorded for
a mouse-down event. It sets up a modal loop to periodically check on the state of the
mouse buttons. Tracking ends when the user releases all buttons. The right and bottom
sides of the rectangle are then updated from the cursor location last reported by the
GetMouse() function.

See also: ConvertToScreen(), GetMouse()

Bounds()
BRectBounds(void) const

Returns the BView’s bounds rectangle. If the BView is attached to a window, this function
gets the current bounds rectangle from the Application Server. If not, it returns a rectangle
the same size as the BView’s frame rectangle, but with the left and top sides at 0.0.

See also: Frame()

BView Member Functions

The Interface Kit –245

ChildAt() see Parent()

ConstrainClippingRegion()
virtual voidConstrainClippingRegion(BRegion *region)

Restricts the drawing that the BView can do toregion.

The Application Server keeps track of a clipping region for each BView that’s attached to
a window. It clips all drawing the BView does to that region; the BView can’t draw
outside of it.

By default, the clipping region contains only the visible area of the view and, during an
update, only the area that actually needs to be drawn. By passing aregion to this function,
an application can further restrict the clipping region. When calculating the clipping
region, the Server intersects it with theregion provided. The BView can draw only in
areas common to theregion passed and the clipping region as the Server would otherwise
calculate it. The region passed can’t expand the clipping region beyond what it otherwise
would be.

If called during an update,ConstrainClippingRegion() restricts the clipping region only
for the duration of the update.

Calls toConstrainClippingRegion() are not additive; eachregion that’s passed replaces the
one that was passed in the previous call. Passing aNULL pointer removes the previous
region without replacing it. The function works only for BViews that are attached to a
window.

See also: GetClippingRegion(), Draw()

ConvertToParent(), ConvertFromParent()
BPointConvertToParent(BPoint localPoint) const
void ConvertToParent(BPoint *localPoint) const

BRectConvertToParent(BRectlocalRect) const
void ConvertToParent(BRect *localRect) const

BPointConvertFromParent(BPointparentPoint) const
void ConvertFromParent(BPoint *parentPoint) const

BRectConvertFromParent(BRectparentRect) const
void ConvertFromParent(BRect *parentRect) const

These functions convert points and rectangles to and from the coordinate system of the
BView’s parent.ConvertToParent() convertslocalPoint or localRect from the BView’s
coordinate system to the coordinate system of its parent BView.ConvertFromParent()
does the opposite; it convertsparentPoint or parentRect from the coordinate system of the
BView’s parent to the BView’s own coordinate system.

Member Functions BView

246 – The Interface Kit

If the point or rectangle is passed by value, the function returns the converted value. If a
pointer is passed, the conversion is done in place.

Both functions fail if the BView isn’t attached to a window.

See also: ConvertToScreen()

ConvertToScreen(), ConvertFromScreen()
BPointConvertToScreen(BPoint localPoint) const
void ConvertToScreen(BPoint *localPoint) const

BRectConvertToScreen(BRectlocalRect) const
void ConvertToScreen(BRect *localRect) const

BPointConvertFromScreen(BPointscreenPoint) const
void ConvertFromScreen(BPoint *screenPoint) const

BRectConvertFromScreen(BRectscreenRect) const
void ConvertFromScreen(BRect *screenRect) const

ConvertToScreen() convertslocalPoint or localRect from the BView’s coordinate system
to the global screen coordinate system.ConvertFromScreen() makes the opposite
conversion; it convertsscreenPoint orscreenRect from the screen coordinate system to the
BView’s local coordinate system.

If the point or rectangle is passed by value, the function returns the converted value. If a
pointer is passed, the conversion is done in place.

The screen coordinate system has its origin, (0.0, 0.0), at the left top corner of the main
screen.

Neither function will work if the BView isn’t attached to a window.

See also: BWindow::ConvertToScreen(), ConvertToParent()

CopyBits()
void CopyBits(BRectsource, BRectdestination)

Copies the image displayed in thesource rectangle to thedestination rectangle, where
both rectangles lie within the view and are stated in the BView’s coordinate system.

If the two rectangles aren’t the same size, the source image is scaled to fit. If not all of the
destination rectangle lies within the BView’s visible region, the source image is clipped
rather than scaled.

If not all of the source rectangle lies within the BView’s visible region, only the visible
portion is copied. It’s mapped to the corresponding portion of the destination rectangle.

BView Member Functions

The Interface Kit –247

The BView is then invalidated so itsDraw() function will be called to update the part of
the destination rectangle that can’t be filled with the source image.

The BView must be attached to a window.

CountChildren() see Parent()

DetachedFromWindow, AllDetached()
virtual voidDetachedFromWindow(void)

virtual voidAllDetached(void)

Implemented by derived classes to make any adjustments necessary when the BView is
about to be removed from a window’s view hierarchy. These two functions parallel the
more commonly implementedAttachedToWindow() andAllAttached() functions.

DetachedFromWindow() notifications work their way down the hierarchy of views being
detached, followed byAllDetached() notifications, which work their way up the
hierarchy. The second function call permits an ancestor view to take actions that depend
on calculations a descendant might have to make when it’s first notified of being detached.

The BView is still attached to the window when both functions are called.

See also: AttachedToWindow()

DragMessage()
void DragMessage(BMessage *message, BBitmap *image, BPointpoint,

BHandler *replyTarget= NULL)
void DragMessage(BMessage *message, BRectrect,

BHandler *replyTarget= NULL)

Initiates a drag-and-drop session. The first argument,message, is a BMessage object that
bundles the information that will be dragged and dropped on the destination view. Once
passed toDragMessage(), this object becomes the responsibility of—and will eventually
be freed by—the system. You shouldn’t free it yourself, try to access it later, or pass it to
another function. (Since data is copied when it’s added to a BMessage, only the copies are
automatically freed, not the originals.)

The second argument,image, represents the message on-screen; it’s the visible image that
the user drags. Like the BMessage, this BBitmap object becomes the responsibility of the
system; it will be freed when the message is dropped. If you want to keep the image
yourself, make a copy to pass toDragMessage(). The image isn’t dropped on the
destination BView; if you want the destination to have the image, you must add it to the
message as well as pass it as theimage argument.

Member Functions BView

248 – The Interface Kit

The third argument,point, locates the point within the image that’s aligned with the hot
spot of the cursor—that is, the point that’s aligned with the location passed to
MouseDown() or returned byGetMouse(). It’s stated within the coordinate system of the
source image and should lie somewhere within its bounds rectangle. The bounds
rectangle and coordinate system of a BBitmap are set when the object is constructed.

Alternatively, you can specify that an outline of a rectangle,rect, should be dragged
instead of an image. The rectangle is stated in the BView’s coordinate system.
(Therefore, apoint argument isn’t needed to align it with the cursor.)

The final argument,replyTarget, names the object that you want to handle any message
that might be sent in reply to the dragged message. IfreplyTarget is NULL, as it is by
default, any reply that’s received will be directed to the BView object that initiated the
drag-and-drop session.

This function works only for BViews that are attached to a window.

See also: BMessage::WasDropped(), the BBitmap class

Draw()
virtual voidDraw(BRectupdateRect)

Implemented by derived classes to draw theupdateRect portion of the view. The update
rectangle is stated in the BView’s coordinate system. It’s the smallest rectangle that
encloses the current clipping region for the view.

Since the Application Server won’t render anything a BView draws outside its clipping
region, applications will be more efficient if they avoid sending drawing instructions to the
Server for images that don’t intersect withupdateRect. For more efficiency and precision,
you can ask for the clipping region itself (by callingGetClippingRegion()) and confine
drawing to images that intersect with it.

A BView’s Draw() function is called (as the result of an update message) whenever the
view needs to present itself on-screen. This may happen when:

• The window the view is in is first shown on-screen, or shown after being hidden (see
the BWindow version of theHide() function).

• The view is made visible after being hidden (see BView’sHide() function).

• Obscured parts of the view are revealed, as when a window is moved from in high
of the view or an image is dragged across the view.

• The view is resized.

• The contents of the view are scrolled (seeScrollBy()).

• A child view is added, removed, or resized.

BView Member Functions

The Interface Kit –249

• A rectangle has been invalidated that includes at least some of the view (see
Invalidate()).

• CopyBits() can’t completely fill a destination rectangle within the view.

See also: BWindow::UpdateIfNeeded(), Invalidate(), GetClippingRegion()

DrawBitmap(), DrawBitmapAsync()
void DrawBitmap(const BBitmap *image)
void DrawBitmap(const BBitmap *image, BPointpoint)
void DrawBitmap(const BBitmap *image, BRectdestination)
void DrawBitmap(const BBitmap *image, BRectsource, BRectdestination)

void DrawBitmapAsync(const BBitmap *image)
void DrawBitmapAsync(const BBitmap *image, BPointpoint)
void DrawBitmapAsync(const BBitmap *image, BRectdestination)
void DrawBitmapAsync(const BBitmap *image, BRectsource,

BRectdestination)

These functions place a bitmapimage in the view at the current pen position, at thepoint
specified, or within the designateddestination rectangle. Thepoint and thedestination
rectangle are stated in the BView’s coordinate system.

If a source rectangle is given, only that part of the bitmap image is drawn. Otherwise, the
entire bitmap is placed in the view. Thesource rectangle is stated in the internal
coordinates of the BBitmap object.

If the source image is bigger than the destination rectangle, it’s scaled to fit.

The two functions differ in only one respect:DrawBitmap() waits for the Application
Server to finish rendering the image before it returns.DrawBitmapAsync() doesn’t wait; it
passes the image to the Server and returns immediately.

See also: “Drawing Modes” on page 27 in the chapter introduction, the BBitmap class

DrawChar()
void DrawChar(charc)
void DrawChar(charc, BPointpoint)

Draws the characterc at the current pen position—or at thepoint specified—and moves
the pen to a position immediately to the right of the character. This function is equivalent
to passing a string of one character toDrawString(). Thepoint is specified in the BView’s
coordinate system.

See also: DrawString()

Member Functions BView

250 – The Interface Kit

DrawingMode() see SetDrawingMode()

DrawPicture()
void DrawPicture(const BPicture *picture)
void DrawPicture(const BPicture *picture, BPointpoint)

Draws the previously recordedpicture at the current pen position—or at the specified
point in the BView’s coordinate system. The point or pen position is taken as the
coordinate origin for all the drawing instructions recorded in the BPicture.

Nothing that’s done in the BPicture can affect anything in the BView’s graphics state—for
example, the BPicture can’t reset the current high color or the pen position. Conversely,
nothing in the BView’s current graphics state affects the drawing instructions captured in
the picture. The graphics parameters that were in effect when the picture was recorded
determine what the picture looks like.

See also: BeginPicture(), the BPicture class

DrawString()
void DrawString(const char *string)
void DrawString(const char *string, long length)
void DrawString(const char *string, BPointpoint)
void DrawString(const char *string, long length, BPointpoint)

Drawslength characters ofstring—or, if the number of characters isn’t specified, all the
characters in the string, up to the null terminator (‘\0’).

This function places the first character on a baseline that begins at the current pen
position—or at the specifiedpoint in the BView’s coordinate system. It moves the pen to
the baseline immediately to the right of the last character drawn. A series of simple
DrawString() calls (with nopoint specified) will produce a continuous string. For example,
these two lines of code,

DrawString("tog");
DrawString("ether");

will produce the same result as this one:

DrawString("together");

This is a graphical drawing function, so all the characters to be drawn should have visible
representations (including whitespace). Control characters (those with values less than
B_SPACE, 0x20) will be rejected (skipped over) but at a substantial price in performance.

See also: MovePenBy(), SetFontName()

BView Member Functions

The Interface Kit –251

EndLineArray() see BeginLineArray()

EndPicture() see BeginPicture()

EndRectTracking() see BeginRectTracking()

FillArc() see StrokeArc()

FillEllipse() see StrokeEllipse()

FillPolygon() see StrokePolygon()

FillRect() see StrokeRect()

FillRoundRect() see StrokeRoundRect()

FillTriangle() see StrokeTriangle()

FindView()
BView *FindView(const char *name) const

Returns the BView identified byname, or NULL if the view can’t be found. Names are
assigned by the BView constructor and can be modified by theSetName() function
inherited from BHandler.

FindView() begins the search by checking whether the BView’s name matchesname. If
not, it continues to search down the view hierarchy, among the BView’s children and more
distant descendants. To search the entire view hierarchy, use the BWindow version of this
function.

See also: BWindow::FindView(), BHandler::SetName()

Flags() see SetFlags()

Flush(), Sync()
void Flush(void) const

void Sync(void) const

These functions flush the window’s connection to the Application Server. If the BView
isn’t attached to a window, neither function has an effect.

Member Functions BView

252 – The Interface Kit

For reasons of efficiency, the window’s connection to the Application Server is buffered.
Drawing instructions destined for the Server are placed in the buffer and dispatched as a
group when the buffer becomes full. Flushing empties the buffer, sending whatever it
contains to the Server, even if it’s not yet full.

The buffer is automatically flushed on every update. However, if you do any drawing
outside the update mechanism—in response to interface messages, for example—you
need to explicitly flush the connection so that drawing instructions won’t languish in the
buffer while waiting for it to fill up or for the next update. You should also flush it if you
call any drawing functions from outside the window’s thread.

Flush() simply flushes the buffer and returns. It does the same work as BWindow’s
function of the same name.

Sync() flushes the connection, then waits until the Server has executed the last instruction
that was in the buffer before returning. This alternative toFlush() prevents the application
from getting ahead of the Server (ahead of what the user sees on-screen) and keeps both
processes synchronized.

It’s a good idea, for example, to callSync(), rather thanFlush(), after employing BViews to
produce a bitmap image (a BBitmap object).Sync() is the only way you can be sure the
image has been completely rendered before you attempt to draw with it.

(Note that all BViews attached to a window share the same connection to the Application
Server. CallingFlush() or Sync() for any one of them flushes the buffer for all of them.)

See also: BWindow::Flush(), the BBitmap class

Frame()
BRectFrame(void) const

Returns the BView’s frame rectangle. The frame rectangle is first set by the BView
constructor and is altered only when the view is moved or resized. It’s stated in the
coordinate system of the BView’s parent.

If the BView is not attached to a window,Frame() reports the object’s own cached
conception of its frame rectangle. If it is attached,Frame() reports the Application
Server’s conception of the rectangle. When a BView is added to a window, its cached
rectangle is communicated to the Server. While it remains attached, the functions that
move and resize the frame rectangle affect the Server’s conception of the view, but don’t
alter the rectangle kept by the object. Therefore, if the BView is removed from the
window,Frame() will again report the frame rectangle that it had before it was attached,
no matter how much it was moved and resized while it belonged to the window.

See also: MoveBy(), ResizeBy(), the BView constructor

BView Member Functions

The Interface Kit –253

FrameMoved()
virtual voidFrameMoved(BPointparentPoint)

Implemented by derived classes to respond to a notification that the view has moved
within its parent’s coordinate system.parentPoint gives the new location of the left top
corner of the BView’s frame rectangle.

FrameMoved() is called only if theB_FRAME_EVENTS flag is set and the BView is attached
to a window.

If the view is both moved and resized,FrameMoved() is called beforeFrameResized().
This might happen, for example, if the BView’s automatic resizing mode is a combination
of B_FOLLOW_TOP_BOTTOM andB_FOLLOW_RIGHT and its parent is resized both
horizontally and vertically.

The default (BView) version of this function is empty.

< Currently,FrameMoved() is also called when a hidden window is shown on-screen. >

See also: MoveBy(), BWindow::FrameMoved(), SetFlags()

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Implemented by derived classes to respond to a notification that the view has been resized.
The arguments state the newwidth andheight of the view. The resizing could have been
the result of a user action (resizing the window) or of a programmatic one (calling
ResizeTo() or ResizeBy()).

FrameResized() is called only if theB_FRAME_EVENTS flag is set and the BView is attached
to a window.

BView’s version of this function is empty.

See also: ResizeBy(), BWindow::FrameResized(), SetFlags()

GetCharEscapements(), GetCharEdges()
void GetCharEscapements(charcharArray[], long numChars,

floatescapementArray[], float *factor) const

void GetCharEdges(charcharArray[], long numChars,
edge_infoedgeArray[]) const

These two functions are designed for programmers who want to precisely position
characters on the screen or printed page. For each character passed in thecharArray, they
write information about the horizontal dimension of the character into the

Member Functions BView

254 – The Interface Kit

escapementArray or theedgeArray. Both functions assume the BView’s current font.
Therefore, neither has any effect unless the BView is attached to a window.

< These functions provide inaccurate results for bitmap fonts. >

Escapement. An “escapement” is simply the width of a character recorded in very small
units. The units are sufficiently tiny to permit detailed information to be kept in integer
form for every character in the font—although declared asfloats, none of the values in the
escapementArray have fractional parts. Because the units are small, escapement values
are quite large. (The term “escapement” has its historical roots in the fact that the carriage
of a typewriter had to move or “escape” a certain distance after each character was typed
to make room for the next character.)

The escapement of a character measures the amount of horizontal room it requires when
positioned between other characters in a line of text. It includes a measurement of the
space required to display the character itself, plus some extra room on the left and right
edges to separate the character from its neighbors. In a proportionally spaced font, each
character has a distinctive escapement. The illustration below shows the approximate
escapements for the letters ‘l’ and ‘p’ as they might appear together in a word like “help”
or “ballpark.” The escapement for each character is the distance between the vertical
lines:

GetCharEscapements() measures the same space that functions such as BView’s
StringWidth() and BTextView’sLineWidth() do, though it measures each character
individually and records the result in arbitrary (rather than coordinate) units.

The escapement of a character in a particular font is a constant no matter what the font
size. To convert an escapement value to coordinate units, you must multiply it by three
values:

• A floating-point conversion factor,
• The font size (in points), and
• The resolution of the output device.

GetCharEscapements() writes the conversion factor into the variable referred to by
factor. GetFontInfo() can provide the current font size. When the output device is a

lp

BView Member Functions

The Interface Kit –255

printer, the resolution should be the actual resolution (the dpi or “dots per inch”) at which
it prints. When the output device is the screen, the resolution should be 72.0. (This
reflects the fact that screen pixels are taken to equal coordinate units—and one coordinate
unit is 1/72 of an inch, or roughly equivalent to one typographical point.)

Edges. Edge values measure how far a character outline is inset from its left and right
escapement boundaries.GetCharEdges() provides edge values in standard coordinate
units, not escapement units, that take the size of the current font into account. It places the
edge values into an array ofedge_info structures. Each structure has aleft and aright data
member, as follows:

typedef struct {
 float left;
 float right;
} edge_info;

The illustration below shows typical character edges. As in the illustration above, the
solid vertical lines mark escapement boundaries. The dotted lines mark off the part of
each escapement that’s an edge, the distance between the character outline and the
escapement boundary:

This is the normal case. The left edge is a positive value measured rightward from the left
escapement boundary. The right edge is a negative value measured leftward from the right
escapement boundary.

lp

Member Functions BView

256 – The Interface Kit

However, if the characters of a font overlap, the left edge can be a negative value and the
right edge can be positive. This is illustrated below:

Note that the italic ‘l’ extends beyond its escapement to the right, and that the ‘p’ begins
before its escapement to the left. In this case, instead of separating the adjacent characters,
the edges determine how much they overlap.

Edge values are specific to each character and depend on nothing but the character (and
the font). They don’t take into account any contextual information; for example, the right
edge for italic ‘l’ would be the same no matter what letter followed. Edge values therefore
aren’t sufficient to decide how character pairs can be kerned. Kerning is contextually
dependent on the combination of two particular characters.

See also: GetFontInfo()

GetClippingRegion()
void GetClippingRegion(BRegion *region) const

Modifies the BRegion object passed as an argument so that it describes the current
clipping region of the BView, the region where the BView is allowed to draw. It’s most
efficient to allocate temporary BRegions on the stack:

BRegion clipper;
GetClippingRegion(&clipper);
. . .

Ordinarily, the clipping region is the same as the visible region of the view, the part of the
view currently visible on-screen. The visible region is equal to the view’s bounds
rectangle minus:

• The frame rectangles of its children,

• Any areas that are clipped because the view doesn’t lie wholly within the frame
rectangles of all its ancestors in the view hierarchy, and

• Any areas that are obscured by other windows or that lie in a part of the window
that’s off-screen.

lp

BView Member Functions

The Interface Kit –257

The clipping region can be smaller than the visible region if the program restricted it by
callingConstrainClippingRegion(). It will exclude any area that doesn’t intersect with the
region passed toConstrainClippingRegion().

While the BView is being updated, the clipping region contains just those parts of the view
that need to be redrawn. This may be smaller than the visible region, or the region
restricted byConstrainClippingRegion(), if:

• The update occurs during scrolling. The clipping region will exclude any of the
view’s visible contents that the Application Server is able to shift to their new
location and redraw automatically.

• The view rectangle has grown (because, for example, the user resized the window
larger) and the update is needed only to draw the new parts of the view.

• The update was caused byInvalidate() and the rectangle passed toInvalidate()
didn’t cover all of the visible region.

• The update was necessary becauseCopyBits() couldn’t fill all of a destination
rectangle.

This function works only if the BView is attached to a window. Unattached BViews can’t
draw and therefore have no clipping region.

See also: ConstrainClippingRegion(), Draw(), Invalidate()

GetFontInfo()
void GetFontInfo(font_info *fontInfo) const

Writes information about the BView’s current font into the structure referred to by
fontInfo. Thefont_info structure contains the following fields:

font_namename The name of the font, which can be as long as 64
characters, plus a null terminator. The name can be set
by BView’s SetFontName() function.

float size The size of the font in points. It can be set by
SetFontSize().

float shear The shear angle, which is 90.0° by default and can vary
between 45.0° and 135.0°. It can be set by
SetFontShear().

float rotation The angle of rotation, which is 0.0° by default. It’s set by
SetFontRotation().

float ascent How far characters ascend above the baseline.

Member Functions BView

258 – The Interface Kit

float descent How far characters descend below the baseline.

float leading The amount of space separating lines (between the
descent of the line above and the ascent of the line
below).

The ascent, descent, and leading are measured in coordinate units.

This function works only if the BView is attached to a window.

See also: SetFontName()

GetKeys()
long GetKeys(key_info *keyInfo, boolcheckQueue)

Writes information about the state of the keyboard into thekey_info structure referred to
by keyInfo. This structure contains fields that match the BMessage entries that record
information about a key-down event. They are:

ulongchar_code An ASCII character value, such as ‘a’ orB_BACKSPACE.

ulongkey_code A code identifying the key that produced the character.

ulongmodifiers A mask indicating which modifier keys are down and
which keyboard locks are on.

ucharkey_states[16] A bit array that records the state of all the keys on the
keyboard, and all the keyboard locks. This array works
identically to the “states” array passed in a key-down
message. See “Key States” on page 56 for information
on how to read information from the array.

If the checkQueue flag isFALSE, GetKeys() provides information about the current state of
the keyboard. When this is the case, themodifiers field contains the same information that
themodifiers() function returns.

However, if thecheckQueue flag isTRUE, GetKeys() first checks the message queue to see
whether it contains any messages reporting keyboard (key-down or key-up) events. If
there are keyboard messages waiting in the queue, it takes the information from the oldest
message, places it in thekeyInfo structure, and removes the message from the queue. Each
time GetKeys() is called, it gets another keyboard message from the queue. If the queue
doesn’t contain any keyboard messages, it reports the current state of the keyboard, just as
if checkQueue wereFALSE.

When called repeatedly in a loop,GetKeys() will empty the queue of keyboard messages
and then reflect the current state of the keyboard. In this way, you can be sure that your
application has not jumped ahead of the user and overlooked any reports of the user’s
keyboard actions.

BView Member Functions

The Interface Kit –259

This function never looks at the current message, even if it happens to report a keyboard
event andcheckQueue is TRUE. The current message isn’t in the queue; to get information
about it, you must call BLooper’sCurrentMessage() function:

BMessage *current == myView->Window()->CurrentMessge();

If GetKeys() takes a keyboard message from the queue, all thekey_info fields are filled in
from the message. However, if it captures the current state of the keyboard, the
char_code andkey_code fields are set to 0; these fields are appropriate only for reporting
particular events.

GetKeys() returnsB_NO_ERROR if it was able to get the requested information, and
B_ERROR if the return results are unreliable.

See also: KeyDown(), “Keyboard Information” on page 47 of the chapter introduction,
modifiers()

GetMouse()
void GetMouse(BPoint *cursor, ulong *buttons, boolcheckQueue = TRUE) const

Provides the location of the cursor and the state of the mouse buttons. The position of the
cursor is recorded in the variable referred to bycursor; it’s provided in the BView’s own
coordinates. A bit is set in the variable referred to bybuttons for each mouse button that’s
down. This mask may be 0 (if no buttons are down) or it may contain one or more of the
following constants:

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

The cursor doesn’t have to be located within the view for this function to work; it can be
anywhere on-screen. However, the BView must be attached to a window.

If the checkQueue flag is set toFALSE, GetMouse() provides information about the current
state of the mouse buttons and the current location of the cursor.

If checkQueue is TRUE, as it is by default, this function first looks in the message queue for
any pending reports of mouse-moved or mouse-up events. If it finds any, it takes the one
that has been in the queue the longest (the oldest message), removes it from the queue, and
reports thecursor location andbutton states that were recorded in the message. Each
GetMouse() call removes another message from the queue. If the queue doesn’t hold any
B_MOUSE_MOVED or B_MOUSE_UP messages,GetMouse() reports the current state of the
mouse and cursor, just as ifcheckQueue wereFALSE.

This function is typically called from within aMouseDown() function to track the location
of the cursor and wait for the mouse button to go up. By having it check the message
queue, you can be sure that you haven’t overlooked any of the cursor’s movement or

Member Functions BView

260 – The Interface Kit

missed a mouse-up event (quickly followed by another mouse-down) that might have
occurred before the firstGetMouse() call.

See also: modifiers()

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Responds to theB_HANDLERS_REQUESTED message passed as an argument by sending a
B_HANDLERS_INFO message in reply. The reply message contains BMessenger objects for
the BView’s children in an entry labeled “handlers”.

If the receivedmessage contains an entry named “index”, the BView provides a
BMessenger for the child at that index. Otherwise, if themessage contains an entry
labeled “name”, the BView provides a BMessenger for the child with that name. If the
message contains neither an index nor a name, the BView places BMessengers for all its
children in the “handlers” array of the reply.

However, if the “index” or “name” doesn’t successfully designate a child of the BView, or
if the BView doesn’t have any children, this function doesn’t put any BMessengers in the
reply message. Instead, it places an appropriate error code—B_BAD_INDEX,
B_NAME_NOT_FOUND, or B_ERROR—in the message under the name “error”.

You can override this function to use different protocols for specifying child views, or to
prevent the BView from revealing any information about its children.

See also: BHandler::HandlersRequested()

Hide(), Show()
virtual voidHide(void)

virtual voidShow(void)

These functions hide a view and show it again.

Hide() makes the view invisible without removing it from the view hierarchy. The visible
region of the view will be empty and the BView won’t receive update messages. If the
BView has children, they also are hidden.

Show() unhides a view that had been hidden. This function doesn’t guarantee that the
view will be visible to the user; it merely undoes the effects ofHide(). If the view didn’t
have any visible area before being hidden, it won’t have any after being shown again
(given the same conditions).

Calls toHide() andShow() can be nested. For a hidden view to become visible again, the
number ofHide() calls must be matched by an equal number ofShow() calls.

BView Member Functions

The Interface Kit –261

However,Show() can only undo a previousHide() call on the same view. If the view
became hidden whenHide() was called to hide the window it’s in or to hide one of its
ancestors in the view hierarchy, callingShow() on the view will have no effect. For a view
to come out of hiding, its window and all its ancestor views must be unhidden.

Hide() andShow() can affect a view before it’s attached to a window. The view will reflect
its proper state (hidden or not) when it becomes attached. Views are created in an
unhidden state.

See also: BWindow::Hide(), IsHidden()

HighColor() see SetHighColor()

Invalidate()
void Invalidate(BRectrect)
void Invalidate(void)

Invalidates therect portion of the view, causing update messages—and consequently
Draw() notifications—to be generated for the BView and all descendants that lie wholly or
partially within the rectangle. The rectangle is stated in the BView’s coordinate system.

If no rectangle is specified, the BView’s entire bounds rectangle is invalidated.

Since only BViews that are attached to a window can draw, only attached BViews can be
invalidated.

See also: Draw(), GetClippingRegion(), BWindow::UpdateIfNeeded()

InvertRect()
void InvertRect(BRectrect)

Inverts all the colors displayed within therect rectangle. A subsequentInvertRect() call
on the same rectangle restores the original colors.

The rectangle is stated in the BView’s coordinate system.

See also: system_colors() global function

Member Functions BView

262 – The Interface Kit

IsFocus()
bool IsFocus(void) const

ReturnsTRUE if the BView is the current focus view for its window, andFALSE if it’s not.
The focus view changes as the user chooses one view to work in and then another—for
example, as the user moves from one text field to another when filling out an on-screen
form. The change is made programmatically through theMakeFocus() function.

See also: BWindow::CurrentFocus(), MakeFocus()

IsHidden()
bool IsHidden(void) const

ReturnsTRUE if the view has been hidden by theHide() function, andFALSE otherwise.

This function returnsTRUE whetherHide() was called to hide the BView itself, to hide an
ancestor view, or to hide the BView’s window. When a window is hidden, all its views are
hidden with it. When a BView is hidden, all its descendants are hidden with it.

If the view has no visible region—perhaps because it lies outside its parent’s frame
rectangle or is obscured by a window in front—this function may nevertheless return
FALSE. It reports only whether theHide() function has been called to hide the view, hide
one of the view’s ancestors in the view hierarchy, or hide the window where the view is
located.

If the BView isn’t attached to a window,IsHidden() returns the state that it will assume
when it becomes attached. By default, views are not hidden.

See also: Hide()

IsPrinting()
bool IsPrinting(void) const

ReturnsTRUE if the BView is being asked to draw for the printer, andFALSE if the drawing
it produces will be rendered on-screen (or if the BView isn’t being asked to draw at all).

This function is typically called from withinDraw() to determine whether the drawing it
does is destined for the printer or the screen. When drawing to the printer, the BView may
choose different parameters—such as fonts, bitmap images, or colors—than when
drawing to the screen.

See also: the BPrintJob class,Draw()

BView Member Functions

The Interface Kit –263

KeyDown()
virtual voidKeyDown(ulongaChar)

Implemented by derived classes to respond to a message reporting a key-down event.
Whenever a BView is the focus view of the active window, it receives aKeyDown()
notification for each character the user types, except for those that:

• Are produced while a Command key is held down. Command key events are
interpreted as keyboard shortcuts.

• Are produced by the Tab key when an Option key is held down. Option-Tab events
are interpreted as instructions to change the focus view (for keyboard navigation).

• Can operate the default button in a window. The BButton object’sKeyDown()
function is called, rather than the focus view’s.

The argument,aChar, names the character reported in the message. It’s an ASCII value
that takes into account the affect of any modifier keys that were held down or keyboard
locks that were in effect at the time of the keystroke. For example, Shift-i is reported as
uppercase ‘I’ (0x49) and Control-i is reported as aB_TAB (0x09).

The character can be tested against ASCII codes and these constants:

B_BACKSPACE B_LEFT_ARROW B_INSERT
B_ENTER B_RIGHT_ARROW B_DELETE
B_RETURN B_UP_ARROW B_HOME
B_SPACE B_DOWN_ARROW B_END
B_TAB B_PAGE_UP
B_ESCAPE B_FUNCTION_KEY B_PAGE_DOWN

B_ENTER andB_RETURN are the same character, a newline (‘\n’).

Only keys that generate characters produce key-down events; the modifier keys on their
own do not.

You can determine which modifier keys were being held down at the time of the event by
calling BLooper’sCurrentMessage() function and looking up the “modifiers” entry in the
BMessage it returns. IfaChar is B_FUNCTION_KEY and you want to know which key
produced the character, you can look up the “key” entry in the BMessage and test it
against these constants:

B_F1_KEY B_F6_KEY B_F11_KEY
B_F2_KEY B_F7_KEY B_F12_KEY
B_F3_KEY B_F8_KEY B_PRINT_KEY (Print Screen)
B_F4_KEY B_F9_KEY B_SCROLL_KEY (Scroll Lock)
B_F5_KEY B_F10_KEY B_PAUSE_KEY

Member Functions BView

264 – The Interface Kit

For example:

if (aChar == B_FUNCTION_KEY) {
 BMessage *msg = Window()->CurrentMessage();
 long key = msg->FindLong("key");
 if (msg->Error == B_NO_ERROR) {
 switch (key) {
 case B_F1_KEY:
 . . .
 break;
 case B_F2_KEY:
 . . .
 break;
 . . .
 }
 }
}

The BView version ofKeyDown() handles keyboard navigation from view to view
throughB_TAB characters. If the view you define is navigable, itsKeyDown() function
should permitB_SPACE characters to operate the object and perhaps allow the arrow keys
to navigate inside the view. It should also call the inherited version ofKeyDown() to
enable between-view navigation. For example:

void MyView::KeyDown(ulong aChar)
{
 switch (aChar) {
 case B_SPACE:
 /* mimic a click in the view */
 break;
 case B_RIGHT_ARROW:
 /* move one position to the right in the view */
 break;
 case B_LEFT_ARROW:
 /* move one position to the left in the view */
 break;
 default:
 inherited::KeyDown(aChar);
 break;
 }
}

If your BView is navigable but needs to respond toB_TAB characters—for example, if it
permits users to insert tabs in a text string—itsKeyDown() function should simply grab
the characters and not pass them to the inherited function. Users will have to rely on the
Option-Tab combination to navigate from your view.

See also: “Keyboard Information” on page 47 in the chapter introduction,
“B_KEY_DOWN” on page 7 in theMessage Protocols appendix,
BWindow::SetDefaultButton(), modifiers()

BView Member Functions

The Interface Kit –265

LeftTop()
BPointLeftTop(void) const

Returns the coordinates of the left top corner of the view—the smallestx andy coordinate
values within the bounds rectangle.

See also: BRect::LeftTop(), Bounds()

LowColor() see SetHighColor()

MakeFocus()
virtual voidMakeFocus(bool focused = TRUE)

Makes the BView the current focus view for its window (if thefocused flag isTRUE), or
causes it to give up that status (iffocused is FALSE). The focus view is the view that
displays the current selection and is expected to handle reports of key-down events when
the window is the active window. There can be no more than one focus view per window
at a time.

When called to make a BView the focus view, this function invokesMakeFocus() for the
previous focus view, passing it an argument ofFALSE. It’s thus called twice—once for the
new and once for the old focus view.

Calling MakeFocus() is the only way to make a view the focus view; the focus doesn’t
automatically change on mouse-down events. BViews that can display the current
selection (including an insertion point) or that can accept pasted data should call
MakeFocus() in theirMouseDown() functions.

A derived class can overrideMakeFocus() to add code that takes note of the change in
status. For example, a BView that displays selectable data may want to highlight the
current selection when it becomes the focus view, and remove the highlighting when it’s
no longer the focus view. A BView that participates in the keyboard navigation system
should visually indicate that it can be operated from the keyboard when it becomes the
focus view, and remove that indication when the user navigates to another view and it’s
notified that it’s no longer the focus view.

If the BView isn’t attached to a window, this function has no effect.

See also: BWindow::CurrentFocus(), IsFocus()

Member Functions BView

266 – The Interface Kit

MouseDown()
virtual voidMouseDown(BPointpoint)

Implemented by derived classes to respond to a message reporting a mouse-down event
within the view. The location of the cursor at the time of the event is given bypoint in the
BView’s coordinates.

MouseDown() functions are often implemented to track the cursor while the user holds the
mouse button down and then respond when the button goes up. You can call the
GetMouse() function to learn the current location of the cursor and the state of the mouse
buttons. For example:

void MyView::MouseDown(BPoint point)
{
 ulong buttons;
 . . .
 buttons = Window()->CurrentMessage()->FindLong("buttons");
 while (buttons) {
 . . .
 snooze(20.0 * 1000.0);
 GetMouse(&point, &buttons, TRUE);
 }
 . . .
}

It’s important to snooze betweenGetMouse() calls so that the loop doesn’t monopolize
system resources; 20,000.0 microseconds is a minimum time to wait.

To get complete information about the mouse-down event, look inside the BMessage
object returned by BLooper’sCurrentMessage() function. The “clicks” entry in the
message can tell you if this mouse-down is a solitary event or the latest in a series
constituting a multiple click.

The BView version ofMouseDown() is empty.

See also: “B_MOUSE_DOWN” on page 9 in theMessage Protocols appendix,GetMouse()

MouseMoved()
virtual voidMouseMoved(BPointpoint, ulongtransit, BMessage *message)

Implemented by derived classes to respond to reports of mouse-moved events associated
with the view. As the user moves the cursor over a window, the Application Server
generates a continuous stream of messages reporting where the cursor is located.

The first argument,point, gives the cursor’s new location in the BView’s coordinate
system. The second argument,transit, is one of three constants,

B_ENTERED_VIEW,
B_INSIDE_VIEW, or
B_EXITED_VIEW

BView Member Functions

The Interface Kit –267

which explains whether the cursor has just entered the visible region of the view, is now
inside the visible region having previously entered, or has just exited from the view.
When the cursor crosses a boundary separating the visible regions of two views (perhaps
moving from a parent to a child view, or from a child to a parent),MouseMoved() is called
for each of the BViews, once with atransit code ofB_EXITED_VIEW and once with a code
of B_ENTERED_VIEW.

If the user is dragging a bundle of information from one location to another, the final
argument,message, is a pointer to the BMessage object that holds the information. If a
message isn’t being dragged,message is NULL.

A MouseMoved() function might be implemented to ignore theB_INSIDE_VIEW case and
respond only when the cursor enters or exits the view. For example, a BView might alter
its display to indicate whether or not it can accept a message that has been dragged to it.
Or it might be implemented to change the cursor image when it’s over the view.

MouseMoved() notifications should not be used to track the cursor inside a view. Use the
GetMouse() function instead.GetMouse() provides the current cursor location plus
information on whether any of the mouse buttons are being held down.

The default version ofMouseMoved() is empty.

See also: “B_MOUSE_MOVED” on page 10 in theMessage Protocols appendix,
DragMessage()

MoveBy(), MoveTo()
void MoveBy(floathorizontal, floatvertical)

void MoveTo(BPointpoint)
void MoveTo(floatx, floaty)

These functions move the view in its parent’s coordinate system without altering its size.

MoveBy() addshorizontal coordinate units to the left and right components of the frame
rectangle andvertical units to the top and bottom components. Ifhorizontal andvertical
are positive, the view moves downward and to the right. If they’re negative, it moves
upward and to the left.

MoveTo() moves the upper left corner of the view topoint—or to (x, y)—in the parent
view’s coordinate system and adjusts all coordinates in the frame rectangle accordingly.

Neither function alters the BView’s bounds rectangle or coordinate system.

None of the values passed to these functions should specify fractional coordinates; the
sides of a view must line up on screen pixels. Fractional values will be rounded to the
closest whole number.

Member Functions BView

268 – The Interface Kit

If the BView is attached to a window, these functions cause its parent view to be updated,
so the BView is immediately displayed in its new location. If it doesn’t have a parent or
isn’t attached to a window, these functions merely alter its frame rectangle.

See also: FrameMoved(), ResizeBy(), Frame()

MovePenBy(), MovePenTo(), PenLocation()
void MovePenBy(floathorizontal, floatvertical)

void MovePenTo(BPointpoint)
void MovePenTo(floatx, floaty)

BPointPenLocation(void) const

These functions move the pen (without drawing a line) and report the current pen location.

MovePenBy() moves the penhorizontal coordinate units to the right andvertical units
downward. Ifhorizontal orvertical are negative, the pen moves in the opposite direction.
MovePenTo() moves the pen topoint—or to (x, y)—in the BView’s coordinate system.

PenLocation() returns the point where the pen is currently positioned in the BView’s
coordinate system. The default pen position is at (0.0, 0.0).

Some drawing functions also move the pen—to the end of whatever they draw. In
particular, this is true ofStrokeLine(), DrawString(), andDrawChar(). Functions that stroke
a closed shape (such asStrokeEllipse()) don’t move the pen.

The pen location is a parameter of the BView’s graphics environment, which the
Application Server maintains. If the BView doesn’t belong to a window,MovePenTo()
andMovePenBy() cache the location, so that later, when the BView is attached to a
window, it can be handed to the Server to become the initial pen location for the BView. If
the BView belongs to a window, these functions alter the Server parameter, but don’t
change any value that may have previously been cached.PenLocation() returns the
current pen position if the BView is attached, and the cached value if not.

See also: SetPenSize()

MoveTo() see MoveBy()

NextSibling() see Parent()

BView Member Functions

The Interface Kit –269

Parent(), NextSibling(), PreviousSibling(), ChildAt(), CountChildren()
BView *Parent(void) const

BView *NextSibling(void) const

BView *PreviousSibling(void) const

BView *ChildAt(long index) const

long CountChildren(void) const

These functions provide various ways of navigating the view hierarchy.Parent() returns
the BView’s parent view, unless the parent is the top view of the window, in which case it
returnsNULL. It also returnsNULL if the BView doesn’t belong to a view hierarchy and has
no parent.

All the children of the same parent are arranged in a linked list.NextSibling() returns the
next sibling of the BView in the list, orNULL if the BView is the last child of its parent.
PreviousSibling() returns the previous sibling of the BView, orNULL if the BView is the
first child of its parent.

ChildAt() returns the view atindex in the list of the BView’s children, orNULL if the BView
has no such child. Indices begin at 0 and there are no gaps in the list.CountChildren()
returns the number of children the BView has. If the BView has no children,
CountChildren() returnsNULL, as willChildAt() for all indices, including 0.

To scan the list of a BView’s children, you can increment the index passed toChildAt()
until it returnsNULL. However, it’s more efficient to ask for the first child and then use
NextSibling() to walk down the sibling list. For example:

BView *child;
if (child = myView->ChildAt(0)) {
 while (child) {
 . . .
 child = child->NextSibling();
 }
}

See also: AddChild()

PenLocation() see MovePenBy()

PenSize() see SetPenSize()

PreviousSibling() see Parent()

Member Functions BView

270 – The Interface Kit

Pulse()
virtual voidPulse(void)

Implemented by derived classes to do something at regular intervals. Pulses are regularly
timed events, like the tick of a clock or the beat of a steady pulse. A BView receives
Pulse() notifications when no other messages are pending, but only if it asks for them with
theB_PULSE_NEEDED flag.

The interval betweenPulse() calls can be set with BWindow’sSetPulseRate() function.
The default interval is around 500 milliseconds. The pulse rate is the same for all views
within a window, but can vary between windows.

Derived classes can implement aPulse() function to do something that must be repeated
continuously. However, for time-critical actions, you should implement your own timing
mechanism.

The BView version of this function is empty.

See also: SetFlags(), the BView constructor,BWindow::SetPulseRate()

RemoveChild()
virtual boolRemoveChild(BView *childView)

Severs the link between the BView andchildView, so thatchildView is no longer a child of
the BView. ThechildView retains all its own children and descendants, but they become
an isolated fragment of a view hierarchy, unattached to a window.

If it succeeds in removingchildView, this function returnsTRUE. If it fails, it returnsFALSE.
It will fail if childView is not, in fact, a child of the BView.

Removing a BView from a window’s view hierarchy also removes it from the BWindow’s
flat list of BHandler objects; the BView will no longer be eligible to handle messages
dispatched by the BWindow.

See also: AddChild(), RemoveSelf(), DetachedFromWindow()

RemoveSelf()
bool RemoveSelf(void)

Removes the BView from its parent and returnsTRUE, or returnsFALSE if the BView
doesn’t have a parent or for some reason can’t be removed from the view hierarchy.

This function acts just likeRemoveChild(), except that it removes the BView itself rather
than one of its children.

See also: AddChild(), RemoveChild()

BView Member Functions

The Interface Kit –271

ResizeBy(), ResizeTo()
void ResizeBy(floathorizontal, floatvertical)

void ResizeTo(floatwidth, floatheight)

These functions resize the view, without moving its left and top sides.ResizeBy() adds
horizontal coordinate units to the width of the view andvertical units to the height.
ResizeTo() makes the viewwidth units wide andheight units high. Both functions adjust
the right and bottom components of the frame rectangle accordingly.

Since a BView’s frame rectangle must be aligned on screen pixels, only integral values
should be passed to these functions. Values with fractional components will be rounded to
the nearest whole integer.

If the BView is attached to a window, these functions cause its parent view to be updated,
so the BView is immediately displayed in its new size. If it doesn’t have a parent or isn’t
attached to a window, these functions merely alter its frame and bounds rectangles.

See also: FrameResized(), MoveBy(), BRect::Width(), Frame()

ResizingMode() see SetResizingMode()

ScrollBar()
BScrollBar *ScrollBar(orientationposture) const

Returns a BScrollBar object that scrolls the BView (that has the BView as its target). The
requested scroll bar has theposture orientation—B_VERTICAL or B_HORIZONTAL. If the
BView isn’t the target of a scroll bar with the specified orientation, this function returns
NULL.

See also: ScrollBar::SetTarget()

ScrollBy(), ScrollTo()
void ScrollBy(floathorizontal, floatvertical)

void ScrollTo(BPointpoint)
void ScrollTo(floatx, floaty)

These functions scroll the contents of the view.

ScrollBy() addshorizontal to the left and right components of the BView’s bounds
rectangle, andvertical to the top and bottom components. This serves to shift the display
horizontal coordinate units to the left andvertical units upward. Ifhorizontal andvertical
are negative, the display shifts in the opposite direction.

Member Functions BView

272 – The Interface Kit

ScrollTo() shifts the contents of the view as much as necessary to putpoint—or (x, y)—at
the upper left corner of its bounds rectangle. The point is specified in the BView’s
coordinate system.

Anything in the view that was visible before scrolling and also visible afterwards is
automatically redisplayed at its new location. The remainder of the view is invalidated, so
the BView’sDraw() function will be called to fill in those parts of the display that were
previously invisible. The update rectangle passed toDraw() will be the smallest rectangle
that encloses just these new areas. If the view is scrolled in only one direction, the update
rectangle will be exactly the area that needs to be drawn.

These function don’t work on BViews that aren’t attached to a window.

See also: GetClippingRegion()

SetDrawingMode(), DrawingMode()
virtual voidSetDrawingMode(drawing_modemode)

drawing_modeDrawingMode(void) const

These functions set and return the BView’s drawing mode, which can be any of the
following nine constants:

B_OP_COPY B_OP_MIN B_OP_ADD
B_OP_OVER B_OP_MAX B_OP_SUBTRACT
B_OP_ERASE B_OP_INVERT B_OP_BLEND

The drawing mode is one element of the BView’s graphics environment, which the
Application Server maintains. If the BView isn’t attached to a window,
SetDrawingMode() caches themode. When the BView is placed in a window and
becomes known to the Server, the cached value is automatically set as the current mode.
If the BView belongs to a window,SetDrawingMode() changes the current drawing mode,
but doesn’t alter any value that may have been previously cached.DrawingMode() returns
the current mode if the view is in a window, and the cached value if not.

The default drawing mode isB_OP_COPY. It and the other modes are explained under
“Drawing Modes” on page 27 of the introduction to this chapter.

See also: “Drawing Modes” in the chapter introduction

BView Member Functions

The Interface Kit –273

SetFlags(), Flags()
virtual voidSetFlags(ulongmask)

inline ulongFlags(void) const

These functions set and return the flags that inform the Application Server about the kinds
of notifications the BView should receive. Themask set bySetFlags() and the return value
of Flags() is formed from combinations of the following constants:

B_WILL_DRAW,
B_FULL_UPDATE_ON_RESIZE,
B_FRAME_EVENTS, and
B_PULSE_NEEDED

The flags are first set when the BView is constructed; they’re explained in the description
of the BView constructor.

To set just one of the flags, combine it with the current setting:

myView->SetFlags(Flags() | B_FRAME_EVENTS);

Themask passed toSetFlags() and the value returned byFlags() can be 0.

See also: the BView constructor,SetResizingMode()

SetFontName(), SetFontSize(), SetFontRotation(), SetFontShear()
virtual voidSetFontName(const char *name)

virtual voidSetFontSize(floatpoints)

virtual voidSetFontRotation(floatdegrees)

virtual voidSetFontShear(floatangle)

These functions set characteristics of the font in which the BView draws text. The font is
part of the BView’s graphics state. It’s used byDrawString() andDrawChar() and assumed
by StringWidth(), GetFontInfo(), andGetCharEdges().

SetFontName() sets the precise name of the font, including the designation of whether it’s
bold, italic, oblique, black, narrow, or some other style. The name passed to this function
must be the same as the name assigned to the font by the vendor. For example, this code

SetFontName("Futura II Italic ATT");

sets the BView’s font to the TrueType™ italic Futura II font.

ForSetFontName() to be successful, the name it’s passed must select a font that’s installed
on the user’s machine. The globalget_font_name() function can provide the names of all
fonts that are currently installed. (Users can see the names listed in the Keyboard
application’s “Font” menu.)

Member Functions BView

274 – The Interface Kit

A handful of fonts are provided with the release, including Arial MT, Baskerville MT,
Courier New, Times New Roman, and their stylistic variations. < Additional fonts can be
installed by placing them in the proper subdirectory of/system/fonts and rebooting the
machine. > The names of the bitmap fonts that come with the system are:

Emily
Erich
Kate

At present, they’re available in only one size each—12.0 points for Emily and 9.0 points
for Erich and Kate. Kate is the default font; it’s built into the system. If you ask for a font
that isn’t available, you’ll get Kate instead.

< Currently, you must specifically ask for a bitmap font. In the future, bitmap equivalents
to the outline fonts will be automatically provided for on-screen display. >

SetFontSize() sets the size of the font. Valid sizes range from 4 points through 999 points.
< Currently, fractional font sizes are not supported. >

SetFontRotation() sets the rotation of the baseline. The baseline rotates counterclockwise
from an axis on the left side of the character. The default (horizontal) baseline is at 0°.
For example, this code

SetFontRotation(45.0);
DrawString("to the northeast");

would draw a string that extended upwards and to the right. < Currently, fractional angles
of rotation are not supported. >

SetFontShear() sets the angle at which characters are drawn relative to the baseline. The
default (perpendicular) shear for all font styles, including oblique and italic ones, is 90.0°.
The shear is measured counterclockwise and can be adjusted within the range 45.0°
(slanted to the right) through 135.0° (slanted to the left). < Currently, fractional shear
angles are not supported. >

The font name, size, rotation, and shear are all elements of the BView’s graphics
environment, which the Application Server maintains. If the BView isn’t attached to a
window, these functions cache the values they’re passed so that later, when the BView is
placed in a window and becomes known to the Server, the cached values can
automatically be established as the current font parameters for the BView. If the BView
belongs to a window, these functions alter the current parameters, but don’t change any
values that may have been previously cached.

< TheSetFontSize(), SetFontRotation(), andSetFontShear() functions don’t work for
bitmap fonts. >

Derived classes can override these functions to take any collateral measures required by
the font change. For example, BTextView and BListView override them to redisplay the
text in the new font.

See also: GetFontInfo(), AttachedToWindow(), get_font_name()

BView Member Functions

The Interface Kit –275

SetHighColor(), HighColor(), SetLowColor(), LowColor()
virtual voidSetHighColor(rgb_colorcolor)
void SetHighColor(ucharred, uchargreen, ucharblue, ucharalpha = 0)

rgb_colorHighColor(void) const

virtual voidSetLowColor(rgb_colorcolor)
void SetLowColor(ucharred, uchargreen, ucharblue, ucharalpha = 0)

rgb_colorLowColor(void) const

These functions set and return the current high and low colors of the BView. These colors
combine to form a pattern that’s passed as an argument to theStroke...() andFill...()
drawing functions. TheB_SOLID_HIGH pattern is the high color alone, andB_SOLID_LOW
is the low color alone.

The default high color is black—red, green, andblue values all equal to 0. The default
low color is white—red, green, andblue values all equal to 255. < Thealpha component
of the color is currently ignored. >

The versions ofSetHighColor() andSetLowColor() that take separate arguments for the
red, blue, andgreen color components work by creating anrgb_color data structure and
passing it to the corresponding function that’s declaredvirtual. Therefore, if you want to
override either of these functions, you should override the virtual version. (However, due
to the peculiarities of C++, overriding any version of an overloaded function hides all
versions of the function. For continued access to the nonvirtual version without explicitly
specifying the “BView::” prefix, you’ll need to reimplement it also.)

The high and low colors are parameters of the BView’s graphics environment, which is
kept in the BView’s shadow counterpart in the Application Server. If the BView isn’t
attached to a window,SetHighColor() andSetLowColor() cache thecolor value so that
later, when the BView is placed in a window and becomes known to the Server, the cached
value can automatically be established as the current high or low color for the BView. If
the BView belongs to a window, they alter the current parameters, but don’t change any
values that may have previously been cached.HighColor() andLowColor() return the
current parameters if the BView is in a window, and the cached values if not.

See also: “Patterns” on page 26 of the chapter introduction,SetViewColor()

SetPenSize(), PenSize()
virtual voidSetPenSize(floatsize)

float PenSize(void) const

SetPenSize() sets the size of the BView’s pen—the graphics parameter that determines the
thickness of stroked lines—andPenSize() returns the current pen size. The pen size is
stated in coordinate units, but is translated to a device-specific number of pixels for each
output device.

Member Functions BView

276 – The Interface Kit

The pen tip can be thought of as a brush that’s centered on the line path and held
perpendicular to it. If the brush is broader than one pixel, it paints roughly the same
number of pixels on both sides of the path.

The default pen size is 1.0 coordinate unit. It can be set to any non-negative value,
including 0.0. If set to 0.0, the size is translated to 1 pixel for all devices. This guarantees
that it will always draw the thinnest possible line no matter what the resolution of the
device.

Thus, lines drawn with pen sizes of 1.0 and 0.0 will look alike on the screen (one pixel
thick), but the line drawn with a pen size of 1.0 will be 1/72 of an inch thick when printed,
however many printer pixels that takes, while the line drawn with a 0.0 pen size will be
just one pixel thick.

The pen size is a parameter of the BView’s graphics environment maintained by the
Application Server. If the BView isn’t attached to a window,SetPenSize() caches thesize
so that later, when the BView is added to a window and becomes known to the Server, the
cached value can automatically be established as the initial pen size for the BView. If the
BView belongs to a window, this function changes the current pen size, but doesn’t alter
any value that may have previously been cached.PenSize() returns the current pen size if
the BView is in a window, and the cached value if not.

See also: “The Pen” on page 24 and “Picking Pixels to Stroke and Fill” on page 34 of the
chapter introduction,StrokeArc() and the otherStroke...() functions,MovePenBy()

SetResizingMode(), ResizingMode()
virtual voidSetResizingMode(ulongmode)

inline ulongResizingMode(void) const

These functions set and return the BView’s automatic resizing mode. The resizing mode
is first set when the BView is constructed. The various possible modes are explained
where the constructor is described.

See also: the BView constructor,SetFlags()

SetSymbolSet()
virtual voidSetSymbolSet(const char *name)

Determines the set of characters that the BView can display. A symbol set maps graphic
symbols (glyphs) to character values (ASCII codes). Sets differ mainly in which symbols
they associate with character values beyond the traditional ASCII range (above 0x7f),
though they sometimes also differ within the traditional range as well.

BView Member Functions

The Interface Kit –277

The default symbol set is “Macintosh”. However, there are many other possibilities to
choose from, including:

“ISO 8859/9 Latin 5”,
“Legal”,
“PC-850 Multilingual”, and
“Windows 3.1 Latin 2”.

Theget_symbol_set_name() global function can provide a list of all currently available
symbol sets.

Except for the bitmap fonts, every font implements every symbol set. However, some
fonts may not provide all the characters in every set.

Derived classes can override this function to take any collateral measures required by the
change in symbol set. For example, BTextView and BListView override it to recalculate
how displayed text is laid out.

The symbol set is part of the BView’s graphics environment, which is to say that the
Application Server maintains it. If the BView isn’t attached to a window,SetSymbolSet()
copies and caches thename so that later, when the BView is added to a window and
becomes known to the Server, it can automatically be established as the BView’s current
symbol set. If the BView belongs to a window, this function changes the current symbol
set, but doesn’t alter any string that may have previously been cached.

See also: SetFontName(), get_symbol_set_name()

SetViewColor(), ViewColor()
virtual voidSetViewColor(rgb_colorcolor)
void SetViewColor(ucharred, uchargreen, ucharblue, ucharalpha= 0)

rgb_colorViewColor(void) const

These functions set and return the background color that’s shown in all areas of the view
rectangle that the BView doesn’t cover with its own drawing. When the clipping region is
erased prior to an update, it’s erased to the view color. When a view is resized to expose
new areas, the new areas are first displayed in the view color. The default view color is
white, which matches the background color of the window’s content area.

If you know that a BView will cover every pixel in the clipping region when it draws, you
may want to avoid having the region erased to a color that will immediately be obliterated.
If you set the view color toTRANSPARENT_32_BIT, the Application Server will not draw its
background color before updates nor fill new areas with the background color. (Note that,
despite the name, this doesn’t make the view transparent—you can’t see through it to what
the view behind it would draw in that region.)

If the view color is anything but white, theB_WILL_DRAW flag needs to be set, even if the
BView does no other drawing except provide a background color. The flag informs the

Member Functions BView

278 – The Interface Kit

Application Server that there are specific drawing operations (in this case, a specific
background color) associated with the view.

The version ofSetViewColor() that takes separate arguments for thered, blue, andgreen
color components works by creating anrgb_color data structure and passing it to the
corresponding function that’s declaredvirtual. Therefore, you need override only the
rgb_color version to augment both functions. (However, due to the peculiarities of C++,
overriding any version of an overloaded function hides all versions of the function. For
continued access to the nonvirtual version without explicitly specifying the “BView::”
prefix, you’ll need to reimplement it also.)

< Thealpha color component is currently ignored. >

It’s best to set the view color before the window is shown on-screen.

The view color is a parameter of the BView’s graphics environment, which the
Application Server maintains. If the BView doesn’t belong to a window,SetViewColor()
caches thecolor it’s passed so that later, when the BView is attached to a window, it can
automatically be handed to the Server. If the BView belongs to a window,SetViewColor()
alters the Server parameter, but doesn’t change any value that may have previously been
cached.ViewColor() returns the current parameter if the BView is attached, and the
cached value if not.

See also: “The View Color” on page 22 of the introduction to the chapter,SetHighColor()

Show() see Hide()

StringWidth()
float StringWidth(const char *string) const
float StringWidth(const char *string, long length) const

Returns how much room is required to drawlength characters ofstring in the BView’s
current font. If no length is specified, the entire string is measured, up to the null
character, ‘\0’, which terminates it. The return value totals the width of all the characters.
It measures, in coordinate units, the length of the baseline required to draw the string.

This function works only for BViews that are attached to a window (since only attached
views have a current font).

See also: GetFontInfo(), GetCharEscapements()

BView Member Functions

The Interface Kit –279

StrokeArc(), FillArc()
void StrokeArc(BRectrect, floatangle, floatspan,

patternaPattern= B_SOLID_HIGH)
void StrokeArc(BPointcenter, floatxRadius, floatyRadius, floatangle, floatspan,

patternaPattern= B_SOLID_HIGH)

void FillArc(BRectrect, floatangle, floatspan,
patternaPattern= B_SOLID_HIGH)

void FillArc(BPointcenter, floatxRadius, floatyRadius, floatangle, floatspan,
patternaPattern= B_SOLID_HIGH)

These functions draw an arc, a portion of an ellipse.StrokeArc() strokes a line along the
path of the arc.FillArc() fills the wedge defined by straight lines stretching from the center
of the ellipse of which the arc is a part to the end points of the arc itself. For example:

The arc is a section of the ellipse inscribed inrect—or the ellipse located atcenter, where
the horizontal distance from the center to the edge of the ellipse is measured byxRadius
and the vertical distance from the center to the edge is measured byyRadius.

The arc starts atangle and stretches along the ellipse forspan degrees, where angular
coordinates are measured counterclockwise with 0° on the right, as shown below:

For example, ifangle is 180.0° andspan is 90.0°, the arc would be the lower left quarter of
the ellipse. The same arc would be drawn ifangle were 270.0° andspan were –90.0°.
< Currently,angle andspan measurements in fractions of a degree are not supported. >

The width of the line drawn byStrokeArc() is determined by the current pen size. Both
functions draw usingaPattern—or, if no pattern is specified, using the current high color.
Neither function alters the current pen position.

See also: StrokeEllipse()

0.0°

45.0°
90.0°

135.0°

180.0°

225.0°
270.0°

315.0°

Member Functions BView

280 – The Interface Kit

StrokeEllipse(), FillEllipse()
void StrokeEllipse(BRectrect, patternaPattern = B_SOLID_HIGH)
void StrokeEllipse(BPointcenter, floatxRadius, floatyRadius,

patternaPattern= B_SOLID_HIGH)

void FillEllipse(BRectrect, patternaPattern= B_SOLID_HIGH)
void FillEllipse(BPointcenter, floatxRadius, floatyRadius,

patternaPattern= B_SOLID_HIGH)

These functions draw an ellipse.StrokeEllipse() strokes a line around the perimeter of the
ellipse andFillEllipse() fills the area the ellipse encloses.

The ellipse has its center atcenter. The horizontal distance from the center to the edge of
the ellipse is measured byxRadius and the vertical distance from the center to the edge is
measured byyRadius. If xRadius andyRadius are the same, the ellipse will be a circle.

Alternatively, the ellipse can be described as one that’s inscribed inrect. If the rectangle is
a square, the ellipse will be a circle.

The width of the line drawn byStrokeEllipse() is determined by the current pen size. Both
functions draw usingaPattern—or, if no pattern is specified, using the current high color.
Neither function alters the current pen position.

See also: SetPenSize()

StrokeLine()
void StrokeLine(BPointstart, BPointend, patternaPattern= B_SOLID_HIGH)
void StrokeLine(BPointend, patternaPattern= B_SOLID_HIGH)

Draws a straight line between thestart andend points—or, if no starting point is given,
between the current pen position andend point—and leaves the pen at the end point.

This function draws the line using the current pen size and the specified pattern. If no
pattern is specified, the line is drawn in the current high color. The points are specified in
the BView’s coordinate system.

See also: SetPenSize(), BeginLineArray()

BView Member Functions

The Interface Kit –281

StrokePolygon(), FillPolygon()
void StrokePolygon(BPolygon *polygon,

bool isClosed= TRUE, patternaPattern= B_SOLID_HIGH)
void StrokePolygon(BPoint *pointList, longnumPoints,

bool isClosed= TRUE, patternaPattern= B_SOLID_HIGH)
void StrokePolygon(BPoint *pointList, longnumPoints, BRectrect,

bool isClosed= TRUE, patternaPattern= B_SOLID_HIGH)

void FillPolygon(BPolygon *aPolygon,
patternaPattern= B_SOLID_HIGH)

void FillPolygon(BPoint *pointList, longnumPoints,
patternaPattern= B_SOLID_HIGH)

void FillPolygon(BPoint *pointList, longnumPoints, BRectrect,
patternaPattern= B_SOLID_HIGH)

These functions draw a polygon with an arbitrary number of sides.StrokePolygon()
strokes a line around the edge of the polygon using the current pen size. If apointList is
specified rather than a BPolygon object, this function strokes a line from point to point,
connecting the first and last points if they aren’t identical. However, if theisClosed flag is
FALSE, StrokePolygon() won’t stroke the line connecting the first and last points that define
the BPolygon (or the first and last points in thepointList). This leaves the polygon open—
making it not appear to be a polygon at all, but rather a series of straight lines connected at
their end points. IfisClosed is TRUE, as it is by default, the polygon will appear to be a
polygon, a closed figure.

FillPolygon() is a simpler function; it fills in the entire area enclosed by the polygon.

Both functions must calculate the frame rectangle of a polygon constructed from a point
list—that is, the smallest rectangle that contains all the points in the polygon. If you know
what this rectangle is, you can make the function somewhat more efficient by passing it as
therect parameter.

Both functions draw using the specified pattern—or, if no pattern is specified, in the
current high color. Neither function alters the current pen position.

See also: SetPenSize(), the BPolygon class

StrokeRect(), FillRect()
void StrokeRect(BRectrect, patternaPattern= B_SOLID_HIGH)

void FillRect(BRectrect, patternaPattern= B_SOLID_HIGH)

These functions draw a rectangle.StrokeRect() strokes a line around the edge of the
rectangle; the width of the line is determined by the current pen size.FillRect() fills in the
entire rectangle.

Member Functions BView

282 – The Interface Kit

Both functions draw using the pattern specified byaPattern—or, if no pattern is specified,
in the current high color. Neither function alters the current pen position.

See also: SetPenSize(), StrokeRoundRect()

StrokeRoundRect(), FillRoundRect()
void StrokeRoundRect(BRectrect, floatxRadius, floatyRadius,

patternaPattern= B_SOLID_HIGH)

void FillRoundRect(BRectrect, floatxRadius, floatyRadius,
patternaPattern= B_SOLID_HIGH)

These functions draw a rectangle with rounded corners. The corner arc is one-quarter of
an ellipse, where the ellipse would have a horizontal radius equal toxRadius and a vertical
radius equal toyRadius.

Except for the rounded corners of the rectangle, these functions work exactly like
StrokeRect() andFillRect().

Both functions draw using the pattern specified byaPattern—or, if no pattern is specified,
in the current high color. Neither function alters the current pen position.

See also: StrokeRect(), StrokeEllipse()

StrokeTriangle(), FillTriangle()
void StrokeTriangle(BPointfirstPoint, BPointsecondPoint, BPointthirdPoint,

patternaPattern= B_SOLID_HIGH)
void StrokeTriangle(BPointfirstPoint, BPointsecondPoint, BPointthirdPoint,

BRectrect, patternaPattern= B_SOLID_HIGH)

void FillTriangle(BPointfirstPoint, BPointsecondPoint, BPointthirdPoint,
patternaPattern= B_SOLID_HIGH)

void FillTriangle(BPointfirstPoint, BPointsecondPoint, BPointthirdPoint,
BRectrect, patternaPattern= B_SOLID_HIGH)

These functions draw a triangle, a three-sided polygon.StrokeTriangle() strokes a line the
width of the current pen size from the first point to the second, from the second point to the
third, then back to the first point.FillTriangle() fills in the area that the three points enclose.

Each function must calculate the smallest rectangle that contains the triangle. If you know
what this rectangle is, you can make the function marginally more efficient by passing it as
therect parameter.

Both functions do their drawing using the pattern specified byaPattern—or, if no pattern
is specified, in the current high color. Neither function alters the current pen position.

See also: SetPenSize()

BView Member Functions

The Interface Kit –283

Sync() see Flush()

Window()
BWindow *Window(void) const

Returns the BWindow to which the BView belongs, orNULL if the BView isn’t attached to
a window. This function returns the same object thatLooper() (inherited from the
BHandler class) does—except thatWindow() returns it more specifically as a pointer to a
BWindow andLooper() returns it more generally as a pointer to a BLooper.

See also: BHandler::Looper() in the Application Kit,AddChild(), BWindow::AddChild(),
AttachedToWindow()

WindowActivated()
virtual voidWindowActivated(boolactive)

Implemented by derived classes to take whatever steps are necessary when the BView’s
window becomes the active window, or when the window gives up that status. Ifactive is
TRUE, the window has become active. Ifactive is FALSE, it no longer is the active window.

All objects in the view hierarchy receiveWindowActivated() notifications when the status
of the window changes.

BView’s version of this function is empty.

See also: BWindow::WindowActivated()

Member Functions BView

284 – The Interface Kit

The Interface Kit –285

BWindow

Derived from: public BLooper

Declared in: <interface/Window.h>

Overview

The BWindow class defines an application interface to windows. Each BWindow object
corresponds to one window in the user interface.

At the most basic level, it’s the Application Server’s responsibility to provide an
application with the windows it needs. The Server allocates the memory each window
requires, renders images in the window on instructions from the application, and manages
the user interface. It equips windows with all the accouterments that let users activate,
move, resize, reorder, hide, and close them. These user actions are not mediated by the
application; they’re handled within the Application Server alone. However, the Server
sends the application messages notifying it of user actions that affect the window. A class
derived from BWindow can implement virtual functions such asFrameResized(),
QuitRequested(), andWindowActivated() to respond to these messages.

BWindow objects are the application’s interface to the Server’s windows:

• Creating a BWindow object instructs the Application Server to produce a window
that can be displayed to the user. The BWindow constructor determines what kind
of window it will be and how it will behave. The window is initially hidden; the
Show() function makes it visible on-screen.

• BWindow functions give the application the ability to manipulate the window
programmatically—to activate, move, resize, reorder, hide, and close it just as a user
might.

• Classes derived from BWindow can implement functions that respond to interface
messages affecting the window.

BWindow objects communicate directly with the Server. However, before this
communication can take place, the constructor for the BApplication object must establish
an initial connection to the Server. You must construct the BApplication object before the
first BWindow.

Overview BWindow

286 – The Interface Kit

View Hierarchy

A window can display images, but it can’t produce them. To draw within a window, an
application needs a collection of various BView objects. For example, a window might
have several check boxes or radio buttons, a list of names, some scroll bars, and a
scrollable display of pictures or text—all provided by objects that inherit from the BView
class.

These BViews are created by the application and are associated with the BWindow by
arranging them in a hierarchy under atop view, a view that fills the entire content area of
the window. Views are added to the hierarchy by making them children of views already
in the hierarchy, which at the outset means children of the top view.

A BWindow doesn’t reveal the identity of its top view, but it does have functions that act
on the top view’s behalf. For example, BWindow’sAddChild() function adds a view to
the hierarchy as a child of the top view. ItsFindView() function searches the view
hierarchy beginning with the top view.

Window Threads

Each window runs in its own thread—both in the Application Server and in the
application. When it’s constructed, a BWindow object spawns awindow thread for the
application and begins running a message loop where it receives reports of user actions
associated with the window. You don’t have to callRun() to get the message loop going,
as you do for other BLoopers;Run() is called for you at construction time.

Actions initiated from a BWindow’s message loop are executed in the window’s thread.
This, of course, includes all actions that are spun off from the original message. For
example, if the user clicks a button in a window and this initiates a series of calculations
involving a variety of objects, those calculations will be executed in the thread of the
window where the button is located (unless the calculation explicitly spawns other threads
or posts messages to other BLoopers).

Quitting

To “close” a window is to remove the window from the screen, quit the message loop, kill
the window thread, and delete the BWindow object. As is the case for other BLoopers,
this process is initiated by a request to quit—aB_QUIT_REQUESTED message.

For a BWindow, a request to quit is an event that might be reported from the Application
Server (as when the user clicks a window’s close button) or from within the application (as
when the user clicks a “Close” menu item).

To respond to quit-requested messages, classes derived from BWindow implement
QuitRequested() functions. QuitRequested() can prevent the window from closing, or
take whatever action is appropriate before the window is destroyed. It typically interacts
with the user, asking, for example, whether recent changes to a document should be saved.

BWindow Hook Functions

The Interface Kit –287

QuitRequested() is a hook function declared in the BLooper class; it’s not documented
here. See the BLooper class in the Application Kit for information on the function and on
how classes derived from BWindow might implement it.

Hook Functions

FrameMoved() Can be implemented to take note of the fact that the
window has moved.

FrameResized() Can be implemented to take note of the fact that the
window has been resized.

MenusWillShow() Can be implemented to make sure menu data structures are
up-to-date before the menus are displayed to the user.

Minimize() Removes the window from the screen and replaces it with
its minimized representation, or restores the window if it
was previously minimized; can be reimplemented to
provide a different representation for a minimized window.

SavePanelClosed() Can be implemented to take note when the window’s save
panel closes.

SaveRequested() Can be implemented to save the document displayed in the
window when the user requests it in the save panel.

ScreenChanged() Makes sure the window stays visible on-screen when the
size of the pixel grid changes; can be implemented to make
other adjustments when the screen changes its depth or
dimensions.

WindowActivated() Can be implemented to take whatever action is necessary
when the window becomes the active window, or when it
loses that status.

WorkspaceActivated() Can be implemented to take remedial steps when the
workspace where the window lives becomes the active
workspace, or when it loses that status.

WorkspacesChanged() Can be implemented to respond when the set of workspaces
where the window can be displayed changes.

Zoom() Zooms the window to a larger size, or from the larger size
to its previous state; can be reimplemented to modify the
target window size or make other adjustments.

Constructor and Destructor BWindow

288 – The Interface Kit

Constructor and Destructor

BWindow()
BWindow(BRectframe, const char *title, window_typetype, ulongflags,

ulongworkspaces= B_CURRENT_WORKSPACE)

Produces a new window with theframe content area, spawns a new thread of execution for
the window, and begins running a message loop in that thread.

The first argument,frame, measures only the content area of the window; it excludes the
border and the title tab at the top. The window’s top view will be exactly the same size
and shape as its frame rectangle—though the top view is located in the window’s
coordinate system and the window’s frame rectangle is specified in the screen coordinate
system.

For the window to become visible on-screen, the frame rectangle you assign it must lie
within the frame rectangle of the screen. You can find the current dimensions of the screen
by callingget_screen_info(). In addition, both the width and height offrame must be
greater than 0.

Since a window is always aligned on screen pixels, the sides of its frame rectangle must
have integral coordinate values. Any fractional coordinates that are passed inframe will
be rounded to the nearest whole number.

The second argument,title, does two things: It sets the title the window will display if it
has a tab, and it determines the name of the window thread. The thread name is a string
that prefixes “w>” to the title in the following format:

"w> title "

If the title is long, only as many characters will be used as will fit within the limited length
of a thread name. (Only the thread name is limited, not the window title.) The title (and
thread name) can be changed with theSetTitle() function.

Thetitle can beNULL or an empty string.

Thetype of window is set by one of the following constants:

B_MODAL_WINDOW A modal window, one that disables other activity
in the application until the user dismisses it. It
has a border but no tab to display a title.

B_BORDERED_WINDOW An ordinary (nonmodal) window with a border
but no title tab.

B_TITLED_WINDOW A window with a tab that displays its title and a
narrow border that’s the same on all sides.

B_DOCUMENT_WINDOW A window with a title tab and a border. The
border on the right and bottom sides is a thin line

BWindow Constructor and Destructor

The Interface Kit –289

that’s designed to look good with vertical and
horizontal scroll bars.

The tab and border are drawn around the window’s frame rectangle.

The fourth argument,flags, is a mask that determines the behavior of the window. It’s
formed by combining constants from the following set:

B_NOT_MOVABLE Prevents the user from being able to move the
window. By default, a window with a tab at the
top is movable.

B_NOT_H_RESIZABLE Prevents the user from resizing the window
horizontally. A window is horizontally resizable
by default.

B_NOT_V_RESIZABLE Prevents the user from resizing the window
vertically. A window is vertically resizable by
default.

B_NOT_RESIZABLE Prevents the user from resizing the window in
any direction. This constant is a shorthand that
you can substitute for the combination of
B_NOT_H_RESIZABLE andB_NOT_V_RESIZABLE. A
window is resizable by default.

B_NOT_CLOSABLE Prevents the user from closing the window
(eliminates the close button from its tab).
Windows with title tabs have a close button by
default.

B_NOT_ZOOMABLE Prevents the user from zooming the window
larger or smaller (eliminates the zoom button
from the window tab). Windows with tabs are
zoomable by default.

B_NOT_MINIMIZABLE Prevents the user from collapsing the window to
its minimized form. Windows can be minimized
by default.

B_WILL_ACCEPT_FIRST_CLICK Enables the BWindow to receive mouse-down
and mouse-up messages even when it isn’t the
active window. By default, a click in a window
that isn’t the active window brings the window to
the front and makes it active, but doesn’t get
reported to the application. If a BWindow
accepts the first click, the event gets reported to
the application, but it doesn’t make the window
active. The BView that responds to the mouse-

Constructor and Destructor BWindow

290 – The Interface Kit

down message must take responsibility for
activating the window.

B_WILL_FLOAT Causes the window to float in front of other
windows.

If flags is 0, the window will be one the user can move, resize, close, and zoom. It won’t
float or accept the first click.

The final argument,workspaces, associates the window with a set of one or more
workspaces. Each workspace is identified by a specific bit in along integer; the
workspaces mask can name up to 32 workspaces. The mask can even name workspaces
that don’t yet exist. The window will live in those workspaces when and if the user
creates them.

Two special values can be passed as theworkspaces parameter:

B_CURRENT_WORKSPACE Associates the window with the workspace that’s
currently displayed on-screen (the active
workspace), whatever workspace that happens to
be. This is the default choice.

B_ALL_WORKSPACES Associates the window with all workspaces. The
window will show up in all workspaces the user
has created and in all future workspaces that will
be created.

The window’s message loop reads messages delivered to the window and dispatches them
by calling a virtual function of the responsible object. The responsible object is usually
one of the BViews in the window’s view hierarchy. Views are notified of system messages
throughMouseDown(), KeyDown(), MouseMoved() and other virtual function calls.
However, sometimes the responsible object is the BWindow itself. It handles
FrameMoved(), QuitRequested(), WindowActivated() and other notifications.

The message loop begins to run when the BWindow is constructed and continues until the
window is told to quit and the BWindow object is deleted. Everything the window thread
does is initiated by a message of some kind.

See also: SetFlags(), SetTitle()

~BWindow()
virtual ~BWindow(void)

Frees all memory that the BWindow allocated for itself.

Call theQuit() function to destroy the BWindow object; don’t use thedelete operator.
Quit() does everything that’s necessary to shut down the window—such as remove its

BWindow Member Functions

The Interface Kit –291

connection to the Application Server and get rid of its views—and invokesdelete at the
appropriate time.

See also: Quit()

Member Functions

Activate()
void Activate(boolflag = TRUE)

Makes the BWindow the active window (ifflag is TRUE), or causes it to relinquish that
status (ifflag is FALSE). When this function activates a window, it reorders the window to
the front <of its tier>, highlights its tab, and makes it the window responsible for handling
subsequent keyboard events. When it deactivates a window, it undoes all these things. It
reorders the window to the back <of its tier> and removes the highlighting from its tab.
Another window (the new active window) becomes the target for keyboard events.

When a BWindow is activated or deactivated (whether programmatically through this
function or by the user), it and all the BViews in its view hierarchy receive
WindowActivated() notifications.

This function will not activate a window that’s hidden.

See also: WindowActivated(), BView::WindowActivated()

AddChild()
virtual voidAddChild(BView *aView)

AddsaView to the hierarchy of views associated with the window, making it a child of the
window’s top view. However, ifaView already has a parent, it won’t be forcibly removed
from that family and adopted into this one. A view can live with but one parent at a time.

This function callsaView’s AttachedToWindow() function to inform it that it now belongs
to the BWindow. Every view that descends fromaView also becomes attached to the
window and receives its ownAttachedToWindow() notification.

When a BView is attached to a window, it also is added to the BWindow’s list of BHandler
objects, making it eligible to receive messages the BWindow dispatches. In addition, this
function assigns the BWindow asaView’s next handler.

See also: BView::AddChild(), BView::AttachedToWindow(), RemoveChild(),
BHandler::SetNextHandler()

Member Functions BWindow

292 – The Interface Kit

AddShortcut(), RemoveShortcut()
void AddShortcut(ulongaChar, ulongmodifiers, BMessage *message)
void AddShortcut(ulongaChar, ulongmodifiers, BMessage *message,

BHandler *target)

void RemoveShortcut(ulongaChar, ulongmodifiers)

These functions set up, and tear down, keyboard shortcuts for the window. A shortcut is a
character (aChar) that the user can type, in combination with the Command key and
possibly one or more othermodifiers to issue an instruction to the application. For
example, Command-r might rotate what’s displayed within a particular view. The
instruction is issued by posting a BMessage to the window thread.

Keyboard shortcuts are commonly associated with menu items. However,do not use
these functions to set up shortcuts for menus; use the BMenuItem constructor instead.
These BWindow functions are for shortcuts that aren’t associated with a menu.

AddShortcut() registers a new window-specific keyboard shortcut. The first two
arguments,aChar andmodifiers, specify the character and the modifier states that together
will issue the instruction.modifiers is a mask that combines any of the usual modifier
constants (see themodifiers() function for the full list). Typically, it’s one or more of these
four (or it’s 0):

B_SHIFT_KEY
B_CONTROL_KEY
B_OPTION_KEY
B_COMMAND_KEY

B_COMMAND_KEY is assumed; it doesn’t have to be specified. The character value that’s
passed as an argument should reflect the modifier keys that are required. For example, if
the shortcut is Command-Shift-C, aChar should be ‘C’, not ‘c’.

The instruction that the shortcut issues is embodied in a modelmessage that the BWindow
will copy and post whenever it’s notified of a key-down event matching theaChar and
modifiers combination (includingB_COMMAND_KEY).

Before posting the message, it adds one data entry to the copy:

Data name Type code Description

“when” B_DOUBLE_TYPE When the key-down event occurred, as
measured in microseconds from the time
the machine was last booted.

The modelmessage shouldn’t contain an entry of the same name.

The message is posted to the BWindow. If atarget BHandler object is specified, it will be
designated to respond to the message. If atarget isn’t specified, the current focus view
will be designated to handle it. If there is no focus view, the BWindow will act as the
handler.

BWindow Member Functions

The Interface Kit –293

The message is dispatched by calling the handler’sMessageReceived() function. If you
add a keyboard shortcut to a window, you must implement aMessageReceived() function
that can respond to the message the shortcut generates.

(Note, however, that if themessage hasB_QUIT_REQUESTED or the constant for another
interface message as itswhat data member, thetarget will be ignored and it will be
dispatched by calling a specific function, likeQuitRequested(), notMessageReceived().)

RemoveShortcut() unregisters a keyboard shortcut that was previously added.

See also: MessageReceived(), FilterKeyDown(), the BMenuItem constructor

Bounds()
BRectBounds(void) const

Returns the current bounds rectangle of the window. The bounds rectangle encloses the
content area of the window and is stated in the window’s coordinate system. It’s exactly
the same size as the frame rectangle, but its left and top sides are always 0.0.

See also: Frame()

ChildAt(), CountChildren()
BView *ChildAt(long index) const

long CountChildren(void) const

These first of these functions returns the child BView atindex, or NULL if there’s no such
child of the BWindow’s top view. Indices begin at 0 and there are no gaps in the list. The
second function returns the number of children the top view has.

See also: BView::Parent()

Close() see Quit()

CloseSavePanel() see RunSavePanel()

Member Functions BWindow

294 – The Interface Kit

ConvertToScreen(), ConvertFromScreen()
BPointConvertToScreen(BPointwindowPoint) const
void ConvertToScreen(BPoint *windowPoint) const

BRectConvertToScreen(BRectwindowRect) const
void ConvertToScreen(BRect *windowRect) const

BPointConvertFromScreen(BPointscreenPoint) const
void ConvertFromScreen(BPoint *screenPoint) const

BRectConvertFromScreen(BRectscreenRect) const
void ConvertFromScreen(BRect *screenRect) const

These functions convert points and rectangles to and from the global screen coordinate
system.ConvertToScreen() convertswindowPoint or windowRect from the window
coordinate system to the screen coordinate system.ConvertFromScreen() makes the
opposite conversion; it convertsscreenPoint or screenRect from the screen coordinate
system to the window coordinate system.

If the point or rectangle is passed by value, the function returns the converted value. If a
pointer is passed, the conversion is done in place.

The window coordinate system has its origin, (0.0, 0.0), at the left top corner of the
window’s content area. The origin of the screen coordinate system is at the left top corner
of the main screen.

See also: BView::ConvertToScreen()

CurrentFocus(), PreferredHandler()
BView *CurrentFocus(void) const

virtual BHandler *PreferredHandler(void) const

Both these functions return the current focus view for the BWindow, orNULL if no view is
currently in focus.CurrentFocus() returns the object as a BView, andPreferredHandler()
overrides the BLooper function to return it as a BHandler.

The focus view is the BView that’s responsible for showing the current selection and
handling keyboard messages when the window is the active window.

Various other objects in the Interface Kit, such as BButtons and BMenuItems, call
PreferredHandler() to discover where they should target messages posted to the BWindow
when a specific target hasn’t been designated. This mechanism permits these objects to
name the current focus view. Thus, a menu item or a control device can be set up to
always act on whatever BView happens to be displaying the current selection.

See also: BView::MakeFocus(), BControl::SetTarget(), BMenuItem::SetTarget(),
BLooper::PreferredHandler()

BWindow Member Functions

The Interface Kit –295

DefaultButton() see SetDefaultButton()

DisableUpdates(), EnableUpdates()
void DisableUpdates(void)

void EnableUpdates(void)

These function disable automatic updating within the window, and re-enable it again.
Updating is enabled by default, so every user action that changes a view and every
program action that invalidates a view’s contents causes the view to be automatically
redrawn.

This may be inefficient when there are a number of changes to a view, or to a group of
views within a window. In this case, you can temporarily disable the updating mechanism
by callingDisableUpdates(), make the changes, then callEnableUpdates() to re-enable
updating and have all the changes displayed at once.

See also: BView::Invalidate(), UpdateIfNeeded()

DispatchMessage()
virtual voidDispatchMessage(BMessage *message, BHandler *handler)

Overrides the BLooper function to dispatch messages as they’re received by the window
thread. This function is called for you each time the BWindow takes a message from its
queue. It dispatches the message by calling the virtual function that’s designated to begin
the application’s response.

• It dispatches system messages by calling a message-specific virtual function
implemented for the BWindow or the responsible BView. See “Hook Functions for
Interface Messages” on page 44 in the introduction to this chapter for a list of these
functions.

• It defers to the BLooper version of this function to dispatchB_QUIT_REQUESTED and
B_HANDLERS_REQUESTED messages.

• It dispatches other messages by calling the targetedhandler’s MessageReceived()
function.

Whenever it’s called,DispatchMessage() locks the BWindow. The lock remains in place
until the window thread’s response to the message is complete.

Member Functions BWindow

296 – The Interface Kit

Derived classes can override this function to make it dispatch specific kinds of messages
in other ways. For example:

void MyWindow::DispatchMessage(BMessage *message)
{
 Lock();
 if (message->what == MAKE_PREDICTIONS)
 predictor->GuessAbout(message);
 else
 BWindow::DispatchMessage(message);
 Unlock();
}

The message loop deletes every message it receives when the function that
DispatchMessage() calls, andDispatchMessage() itself, return. The message should not
be deleted in application code (unlessDetachCurrentMessage() is first called to detach it
from the message loop).

See also: the BMessage class,BLooper::DispatchMessage(), BLooper::CurrentMessage()

EnableUpdates() see DisableUpdates()

FindView()
BView *FindView(BPointpoint) const
BView *FindView(const char *name) const

Returns the view located atpoint within the window, or the view tagged withname. The
point is specified in the window’s coordinate system (the coordinate system of its top
view), which has the origin at the upper left corner of the window’s content area.

If no view is located at the point given, or no view within the window has the name given,
this function returnsNULL.

See also: BView::FindView()

Flush()
void Flush(void) const

Flushes the window’s connection to the Application Server, sending whatever happens to
be in the out-going buffer to the Server. The buffer is automatically flushed on every
update and after each message.

This function has the same effect as theFlush() function defined for the BView class.

See also: BView::Flush

BWindow Member Functions

The Interface Kit –297

Frame()
BRectFrame(void) const

Asks the Application Server for the current frame rectangle for the window and returns it.
The frame rectangle encloses the content area of the window and is stated in the screen
coordinate system. It’s first set by the BWindow constructor, and is modified as the
window is resized and moved.

See also: MoveBy(), ResizeBy(), the BWindow constructor

FrameMoved()
virtual voidFrameMoved(BPointscreenPoint)

Implemented by derived classes to respond to a notification that the window has moved.
The move—which placed the left top corner of the window’s content area atscreenPoint
in the screen coordinate system—could be the result of the user dragging the window or of
the program callingMoveBy() or MoveTo(). If the user drags the window,FrameMoved()
is called repeatedly as the window moves. If the program moves the window, it’s called
just once to report the new location.

The default version of this function does nothing.

See also: MoveBy(), “B_WINDOW_MOVED” on page 16 in theMessage Protocols
appendix

FrameResized()
virtual voidFrameResized(floatwidth, floatheight)

Implemented by derived classes to respond to a notification that the window’s content area
has been resized to a newwidth andheight. The resizing could be the result of the
program callingResizeTo(), ResizeBy(), or Zoom()—in which caseFrameResized() is
called just once to report the window’s new size—or of a user action—in which case it’s
called repeatedly as the user drags a corner of the window to resize it.

The default version of this function does nothing.

See also: ResizeBy(), “B_WINDOW_RESIZED” on page 16 in theMessage Protocols
appendix

GetSizeLimits() see SetSizeLimits()

Member Functions BWindow

298 – The Interface Kit

HandlersRequested()
virtual voidHandlersRequested(BMessage *message)

Responds to a request for information identifying the BHandlers associated with the
BWindow. This function sends aB_HANDLERS_INFO reply to theB_HANDLERS_REQUESTED
message it’s passed as an argument. The reply has an entry named “handlers” with
BMessenger objects corresponding to the requested BHandlers, or one named “error” with
an error code.

If theB_HANDLERS_REQUESTED message has an entry called “class” and that entry contains
the string “BView”, this function interprets the request as one that concerns the BView
objects that are the children of its top view. It limits its search for BHandlers accordingly.
Otherwise, the scope of the request is not limited and encompasses all BHandlers that
have been added to the window, including all BViews (except the top view).

If the message asks for a particular BView with an entry named “index”, the BWindow
puts a BMessenger in the reply message for the child BView (or the associated BHandler)
at the requested index. If not, and if themessage asks for a particular BView with an entry
labeled “name” and the string in the entry matches the name of one of the top view’s
children (or one of the window’s BHandlers), it puts a BMessenger for that object in the
reply message.

However, if themessage doesn’t specify a particular object, it supplies BMessengers for
all the top view’s children (or all the BWindow’s BHandlers).

If this function can’t supply BMessengers for the specified BHandlers, it doesn’t add any
BMessengers to theB_HANDLERS_INFO message, but places an appropriate error code—
B_BAD_INDEX, B_NAME_NOT_FOUND, or B_ERROR—in the message under the name
“error”.

You can override this function to respond to different protocols for requesting handlers, or
to prevent the BWindow’s BViews (and BHandlers) from being revealed.

See also: BView::HandlersRequested(), BApplication::HandlersRequested()

Hide(), Show()
virtual voidHide(void)

virtual voidShow(void)

These functions hide the window so it won’t be visible on-screen, and show it again.

Hide() removes the window from the screen. If it happens to be the active window,Hide()
also deactivates it. Hiding a window hides all the views attached to the window. While
the window is hidden, its BViews respondTRUE to IsHidden() queries.

Show() puts the window back on-screen. It places the window in front of other windows
and makes it the active window.

BWindow Member Functions

The Interface Kit –299

Calls toHide() andShow() can be nested; ifHide() is called more than once, you’ll need to
call Show() an equal number of times for the window to become visible again.

A window begins life hidden (as ifHide() had been called once); it takes an initial call to
Show() to display it on-screen.

See also: IsHidden()

IsActive()
bool IsActive(void) const

ReturnsTRUE if the window is currently the active window, andFALSE if it’s not.

See also: Activate()

IsFront()
bool IsFront(void) const

ReturnsTRUE if the window is currently the frontmost window on-screen, andFALSE if it’s
not.

IsHidden()
bool IsHidden(void) const

ReturnsTRUE if the window is currently hidden, andFALSE if it isn’t.

Windows are hidden at the outset. TheShow() function puts them on-screen, andHide()
can be called to hide them again.

If Show() has been called to unhide the window, but the window is totally obscured by
other windows or occupies coordinates that don’t intersect with the physical screen,
IsHidden() will nevertheless returnFALSE, even though the window isn’t visible.

See also: Hide()

IsSavePanelRunning() see RunSavePanel()

KeyMenuBar() see SetKeyMenuBar()

Member Functions BWindow

300 – The Interface Kit

MenusWillShow()
virtual voidMenusWillShow(void)

Implemented by derived classes to make sure menus are up-to-date before they’re placed
on-screen. This function is called just before menus belonging to the window are about to
be shown to the user. It gives the BWindow a chance to make any required alterations—
for example, disabling or enabling particular items—so that the menus are in synch with
the current state of the window.

See also: the BMenu and BMenuItem classes

MessageReceived()
virtual boolMessageReceived(BMessage *message)

Augments the BHandler version ofMessageReceived() to ensure thatB_KEY_DOWN
messages that find their way to the BWindow object (in the absence of a focus view, for
example), are not lost and can contribute to keyboard navigation.

See also: BHandler::MessageReceived()

Minimize()
virtual voidMinimize(boolminimize)

Removes the window from the screen and replaces it with a token representation, if the
minimize flag isTRUE—or restores the window to the screen and removes the token, if
minimize is FALSE.

This function can be called to minimize or unminimize the window. It’s also called by the
BWindow to respond toB_MINIMIZE messages, which are posted automatically when the
user double-clicks the window tab to minimize the window, and when the user double-
clicks the token to restore the window. It can be reimplemented to provide a different
minimal representation for the window.

See also: “B_MINIMIZE” on page 9 in theMessage Protocols appendix,Zoom()

MoveBy(), MoveTo()
void MoveBy(floathorizontal, floatvertical)

void MoveTo(BPointpoint)
void MoveTo(floatx, floaty)

These functions move the window without resizing it.MoveBy() addshorizontal
coordinate units to the left and right components of the window’s frame rectangle and
vertical units to the frame’s top and bottom. Ifhorizontal andvertical are negative, the
window moves upward and to the left. If they’re positive, it moves downward and to the

BWindow Member Functions

The Interface Kit –301

right. MoveTo() moves the left top corner of the window’s content area topoint—or
(x, y)—in the screen coordinate system; it adjusts all coordinates in the frame rectangle
accordingly.

None of the values passed to these functions should specify fractional coordinates; a
window must be aligned on screen pixels. Fractional values will be rounded to the closest
whole number.

Neither function alters the BWindow’s coordinate system or bounds rectangle.

When these functions move a window, a window-moved event is reported to the window.
This results in the BWindow’sFrameMoved() function being called.

See also: FrameMoved()

NeedsUpdate()
bool NeedsUpdate(void) const

ReturnsTRUE if any of the views within the window need to be updated, andFALSE if
they’re all up-to-date.

See also: UpdateIfNeeded()

PreferredHandler() see CurrentFocus()

PulseRate() see SetPulseRate()

Quit(), Close()
virtual voidQuit(void)

inline voidClose(void)

Quit() gets rid of the window and all its views. This function removes the window from
the screen, deletes all the BViews in its view hierarchy, destroys the window thread,
removes the window’s connection to the Application Server, and, finally, deletes the
BWindow object.

Use this function, rather than thedelete operator, to destroy a window.Quit() applies the
operator after it empties the BWindow of views and severs its connection to the
application and Server. It’s dangerous to applydelete while these connections remain
intact.

BWindow’s Quit() works much like the BLooper function it overrides. When called from
the BWindow’s thread, it doesn’t return. When called from another thread, it returns after
all previously posted messages have been responded to and the BWindow and its thread
have been destroyed.

Member Functions BWindow

302 – The Interface Kit

Close() is a synonym ofQuit(). It simply callsQuit() so if you overrideQuit(), you’ll
affect how both functions work.

See also: BLooper::QuitRequested(), BLooper::Quit(), BApplication::QuitRequested()

RemoveChild()
virtual boolRemoveChild(BView *aView)

RemovesaView from the BWindow’s view hierarchy, but only ifaView was added to the
hierarchy as a child of the window’s top view (by calling BWindow’s version of the
AddChild() function).

If aView is successfully removed,RemoveChild() returnsTRUE. If not, it returnsFALSE.

See also: AddChild()

RemoveShortcut() see AddShortcut()

ResizeBy(), ResizeTo()
void ResizeBy(floathorizontal, floatvertical)

void ResizeTo(floatwidth, floatheight)

These functions resize the window, without moving its left and top sides.ResizeBy() adds
horizontal coordinate units to the width of the window andvertical units to its height.
ResizeTo() makes the content area of the windowwidth units wide andheight units high.
Both functions adjust the right and bottom components of the frame rectangle accordingly.

Since a BWindow’s frame rectangle must line up with screen pixels, only integral values
should be passed to these functions. Values with fractional components will be rounded to
the nearest whole number.

When a window is resized, either programmatically by these functions or by the user, the
BWindow’s FrameResized() virtual function is called to notify it of the change.

See also: FrameResized()

BWindow Member Functions

The Interface Kit –303

RunSavePanel(), CloseSavePanel(), IsSavePanelRunning()
long RunSavePanel(const char *tentativeName= NULL,

const char *windowTitle= NULL,
const char *saveButtonLabel= NULL,
const char *cancelButtonLabel= NULL,
BMessage *message= NULL)

void CloseSavePanel(void)

bool IsSavePanelRunning(void)

RunSavePanel() requests the Browser to display a panel where the user can choose how to
save the document displayed in the window. The panel permits the user to navigate the
file system and type in file and directory names.

The arguments to this function are all optional. They’re used to configure the panel:

• If passed atentativeName for the document displayed in the window, the save panel
will place it in a text field where the user can type a name for the file. The name
might designate an existing file, or it might simply be a placeholder name like
“UNNAMED” or “UNTITLED–3”. If a tentativeName isn’t passed, the text field
will be empty.

• If anotherwindowTitle is not specified, the title of the window will include the
tentative file name. It will be “SavetentativeName As...” preceded by the name of
the application. The file name is enclosed in quotes. For example:

WishMaker : Save “UNTITLED-3” As...

If a tentativeName isn’t passed, the quotes will be empty.

• If a saveButtonLabel isn’t provided, the principal button in the panel (the default
button) will be labeled “Save”.

• If a cancelButtonLabel isn’t provided, the other button in the panel (to the left of the
principal button) will be labeled “Cancel”.

• If a message is passed, it can contain entries that further configure the panel. It also
serves as a model for the message that reports the directory and file name the user
selected. If amessage isn’t provided, this information will be reported in a standard
B_SAVE_REQUESTED message.

Member Functions BWindow

304 – The Interface Kit

If the message has one or both of the following entries, they will be used to help configure
the panel:

Data name Type code Description

“directory” B_REF_TYPE Therecord_ref for the directory that the
panel should display when it first comes
on-screen. If this entry is absent, the panel
will initially display the current directory
of the current volume.

“frame” B_RECT_TYPE A BRect that sets the size and position of
the panel in screen coordinates. If this
entry is absent, the Browser will choose an
appropriate frame rectangle for the panel.

When the user finishes choosing where to save the file and operates the “Save” (or
saveButtonLabel) button, the file panel sends a message to the BWindow (through the
BApplication object). If a customizedmessage is provided, it’s used as the model for the
message that’s sent. If amessage isn’t provided, a standardB_SAVE_REQUESTED message
is sent instead. In either case, it has two data entries:

Data name Type code Description

“name” B_STRING_TYPE The name of the file in which the
document should be saved.

“directory” B_REF_TYPE A record_ref reference to the directory
where the file should reside.

A B_SAVE_REQUESTED message is dispatched by calling theSaveRequested() hook
function; the “name” and “directory” are passed as arguments toSaveRequested(). This
function should be implemented to create the file, if necessary, and save the document.
RunSavePanel() doesn’t do this work; it simply delivers a BMessage object with the
information you need to do the job.

A customizedmessage works much like the model messages assigned to BControl objects
and BMenuItems. The save panel makes a copy of the model, adds the “name” and
“directory” entries (as described above) to the copy, and delivers the copy to the
BWindow. Other entries in the message remain unchanged.

Themessage can have any command constant you choose. If it’sB_SAVE_REQUESTED, the
“name” and “directory” will be extracted from the message and passed to
SaveRequested(). Otherwise, nothing is extracted and the message is dispatched by
calling MessageReceived().

The save panel disappears when the user operates the “Save” (orsaveButtonLabel)
button—provided that the message hasB_SAVE_REQUESTED as the command constant. If it
has a customized constant, it remains open untilCloseSavePanel() is called (or until the
application quits). You can choose to leave the panel on-screen if the user hasn’t chosen a
valid file name.IsSavePanelRunning() will report whether the save panel is currently
displayed on-screen. A BWindow can run only one save panel at a time.

BWindow Member Functions

The Interface Kit –305

The save panel is automatically closed when user operates the “Cancel” (or
cancelButtonLabel) button. Whenever it’s closed, by the user or the application, a
B_PANEL_CLOSED message is sent to the application and theSavePanelClosed() hook
function is called.

RunSavePanel() returnsB_NO_ERROR if it succeeds in getting the Browser to put the panel
on-screen. If the Browser isn’t running or the save panel already is, it returnsB_ERROR. If
the Browser is running but the application can’t communicate with it, it returns an error
code that indicates what went wrong; these codes are the same as those documented for
the BMessenger class in the Application Kit.

See also: SaveRequested(), SavePanelClosed()

SavePanelClosed()
virtual voidSavePanelClosed(BMessage *message)

Implemented by derived classes to take note when the save panel is closed. Themessage
argument contains information about how the panel was closed and its state at the time it
was closed. It has entries under the names “frame” (the panel’s frame rectangle),
“directory” (the directory the panel displayed), and “canceled” (whether the user closed
the panel). Some of this information can be retained to configure the panel the next time it
runs.

See also: “B_PANEL_CLOSED” on page 12 in theMessage Protocols appendix,
RunSavePanel()

SaveRequested()
virtual voidSaveRequested(record_refdirectory, const char *filename)

Implemented by derived classes to save the document displayed in the window. This
function is called when the BWindow receives aB_SAVE_REQUESTED message from the
save panel. It reports that the user has asked for the file to be saved in thedirectory
indicated and assigned the specifiedfilename. The file may already exist, or the
application may need to create it to carry out the request.

There’s no guarantee that thedirectory andfilename are valid.

If the file can be saved as requested, you may want this function to callCloseSavePanel()
to remove the panel from the screen. If the file can’t be saved,SaveRequested() should
notify the user. In some cases, you may want to leave the panel on-screen so the user can
try again with a different directory or file name.

See also: RunSavePanel()

Member Functions BWindow

306 – The Interface Kit

ScreenChanged()
virtual voidScreenChanged(BRectframe, color_spacemode)

Implemented by derived classes to respond to a notification that the screen configuration
has changed. This function is called for all affected windows when:

• The number of pixels the screen displays (the size of the pixel grid) is altered,
• < The screen changes its location in the screen coordinate system >, or
• The color mode of the screen changes.

frame is the new frame rectangle of the screen, andmode is its new color space.

< Currently, there can be only one monitor per machine, so the screen can’t change where
it’s located in the screen coordinate system. >

See also: set_screen_size(), “B_SCREEN_CHANGED” on page 14 in theMessage Protocols
appendix

SetDefaultButton(), DefaultButton()
void SetDefaultButton(BButton *button)

BButton *DefaultButton(void) const

SetDefaultButton() makesbutton the default button for the window—the button that the
user can operate by pressing the Enter key even if another BView is the focus view.
DefaultButton() returns the button that currently has that status, orNULL if there is no
default button.

At any given time, only one button in the window can be the default.SetDefaultButton()
may, therefore, affect two buttons: the one that’s forced to give up its status as the default
button, and the one that acquires that status. Both buttons are redisplayed, so that the user
can see which one is currently the default, and both are notified of their change in status
throughMakeDefault() virtual function calls.

If the argument passed toSetDefaultButton() is NULL, there will be no default button for the
window. The current default button loses its status and is appropriately notified with a
MakeDefault() function call.

The Enter key can operate the default button only while the window is the active window.
However, the BButton doesn’t have to be the focus view. Normally, the focus view is
notified of key-down messages the window receives. But if the character reported is
B_ENTER, the default button is notified instead (provided there is a default button).

See also: BButton::MakeDefault()

BWindow Member Functions

The Interface Kit –307

SetDiscipline()
void SetDiscipline(boolflag)

Sets aflag that determines how much programming discipline the system will enforce.
Whenflag is TRUE, as it is by default, Kit functions will check to be sure various rules are
adhered to. For example, most BView functions will require the caller to first lock the
window. < Currently, this is the only rule that comes under the discipline flag. > When
flag is FALSE, these rules are not enforced.

The disciplineflag should be set toTRUE while an application is being developed.
However, once it has matured, and it’s clear that none of the rules are being disobeyed, the
flag can be set toFALSE. This will eliminate various checking operations and improve
performance.

See also: “Locking the Window” in the BView class overview

SetKeyMenuBar(), KeyMenuBar()
void SetKeyMenuBar(BMenuBar *menuBar)

BMenuBar *KeyMenuBar(void) const

SetKeyMenuBar() makes the specified BMenuBar object the “key” menu bar for the
window—the object that’s at the root of the menu hierarchy that users can navigate using
the keyboard.KeyMenuBar() returns the object with key status, orNULL if the window
doesn’t have a BMenuBar object in its view hierarchy.

If a window contains only one BMenuBar view, it’s automatically designated the key
menu bar. If there’s more than one BMenuBar in the window, the last one added to the
window’s view hierarchy is considered to be the key one.

If there’s a “true” menu bar displayed along the top of the window, its menu hierarchy is
the one that users should be able to navigate with the keyboard.SetKeyMenuBar() can be
called to make sure that the BMenuBar object at the root of that hierarchy is the “key”
menu bar.

See also: the BMenuBar class

SetPulseRate(), PulseRate()
void SetPulseRate(doublemicroseconds)

doublePulseRate(void)

These functions set and return how oftenPulse() is called for the BWindow’s views (how
oftenB_PULSE messages are posted to the window). All BViews attached to the same
window share the same pulse rate.

Member Functions BWindow

308 – The Interface Kit

By turning on theB_PULSE_NEEDED flag, a BView can request periodicPulse()
notifications. By default,B_PULSE messages are posted every 500,000.0 microseconds, as
long as no other messages are pending. Each message causesPulse() to be called once for
every BView that requested the notification. There are no pulses if no BViews request
them.

SetPulseRate() permits you to set a different interval. The interval set should not be less
than 100,000.0 microseconds; differences less than 50,000.0 microseconds may not be
noticeable. A finer granularity can’t be guaranteed.

Setting the pulse rate to 0.0 disables pulsing for all views in the window.

See also: BView::Pulse(), the BView constructor

SetSizeLimits(), GetSizeLimits(), SetZoomLimits()
void SetSizeLimits(floatminWidth, floatmaxWidth,

floatminHeight, floatmaxHeight)

void GetSizeLimits(float *minWidth, float *maxWidth,
float *minHeight, float *maxHeight)

void SetZoomLimits(floatmaxWidth, floatmaxHeight)

These functions set and report limits on the size of the window. The user won’t be able to
resize the window beyond the limits set bySetSizeLimits()—to make it have a width less
thanminWidth or greater thanmaxWidth, nor a height less thanminHeight or greater than
maxHeight. By default, the minimums are sufficiently small and the maximums
sufficiently large to accommodate any window within reason.

SetSizeLimits() constrains the user, not the programmer. It’s legal for an application to set a
window size that falls outside the permitted range. The limits are imposed only when the
user attempts to resize the window; at that time, the window will jump to a size that’s
within range.

GetSizeLimits() writes the current limits to the variables provided.

SetZoomLimits() sets the maximum size that the window will zoom to (when theZoom()
function is called). The maximums set bySetSizeLimits() also apply to zooming; the
window will zoom to the screen size or to the smaller of the maximums set by these two
functions.

Since the sides of a window must line up on screen pixels, the values passed to both
SetSizeLimits() andSetZoomLimits() should be whole numbers.

See also: the BWindow constructor,Zoom()

BWindow Member Functions

The Interface Kit –309

SetTitle(), Title()
void SetTitle(const char *newTitle)

const char *Title(void) const

These functions set and return the window’s title.SetTitle() replaces the current title with
newTitle. It also renames the window thread in the following format:

"w>newTitle "

where as many characters of thenewTitle are included in the thread name as will fit.

Title() returns a pointer to the current title. The returned string is null-terminated. It
belongs to the BWindow object, which may alter the string or free the memory where it
resides without notice. Applications should ask for the title each time it’s needed and
make a copy for their own purposes.

A window’s title and thread name are originally set by an argument passed to the
BWindow constructor.

See also: the BWindow constructor

SetWorkspaces(), Workspaces()
void SetWorkspaces(ulongworkspaces)

ulongWorkspaces(void) const

These functions set and return the set of workspaces where the window can be displayed.
Theworkspaces argument passed toSetWorkspaces() and the value returned by
Workspaces() is a bitfield with one bit set for each workspace in which the window can
appear. Usually a window appears in just one workspace.

SetWorkspaces() can associate a window with workspaces that don’t exist yet. The
window will appear in those workspaces if and when the user creates them.

You can passB_CURRENT_WORKSPACE as theworkspaces argument to place the window
in the workspace that’s currently displayed (the active workspace) and remove it from all
others, orB_ALL_WORKSPACES to make sure the window shows up in all workspaces,
including any new ones that the user might create.Workspaces() may return
B_ALL_WORKSPACES, but will identify the current workspace rather than return
B_CURRENT_WORKSPACE.

Changing a BWindow’s set of workspaces causes it to be notified with a
WorkspacesChanged() function call.

See also: the BWindow constructor,WorkspacesChanged()

SetZoomLimits() see SetSizeLimits()

Member Functions BWindow

310 – The Interface Kit

Show() see Hide()

Title() see SetTitle()

UpdateIfNeeded()
void UpdateIfNeeded(void)

Causes theDraw() virtual function to be called immediately for each BView object that
needs updating. If no views in the window’s hierarchy need to be updated, this function
does nothing.

BView’s Invalidate() function generates an update message that the BWindow receives
just as it receives other messages. Although update messages take precedence over other
kinds of messages the BWindow receives, the window thread can respond to only one
message at a time. It will update the invalidated view as soon as possible, but it must
finish responding to the current message before it can get the update message.

This may not be soon enough for a BView that’s engaged in a time-consuming response to
the current message.UpdateIfNeeded() forces an immediate update, without waiting to
return the BWindow’s message loop. However, it works only if called from within the
BWindow’s thread.

(Because the message loop expedites the handling of update messages, they’re never
considered the current message and are never returned by BLooper’sCurrentMessage()
function.)

See also: BView::Draw(), BView::Invalidate(), NeedsUpdate()

WindowActivated()
virtual voidWindowActivated(boolactive)

Implemented by derived classes to make any changes necessary when the window
becomes the active window, or when it ceases being the active window. Ifactive is TRUE,
the window has just become the new active window, and ifactive is FALSE, it’s about to
give up that status to another window.

The BWindow receives aWindowActivated() notification whenever its status as the active
window changes. Each of its BViews is also notified.

See also: BView::WindowActivated()

BWindow Member Functions

The Interface Kit –311

WindowType()
inline window_typeWindowType(void) const

Returns what type of window it is. The type is set at construction as one of the following
constants:

B_MODAL_WINDOW
B_BORDERED_WINDOW
B_TITLED_WINDOW
B_DOCUMENT_WINDOW

See also: the BWindow constructor

Workspaces() see SetWorkspaces()

WorkspaceActivated()
virtual voidWorkspaceActivated(longworkspace, boolactive)

Implemented by derived classes to respond to a notification that the workspace displayed
on the screen has changed. All windows in the newly activated workspace as well as those
in the one that was just deactivated get this notification.

Theworkspace argument identifies the workspace in question and theactive flag conveys
its current status. Ifactive is TRUE, the workspace has just become the active workspace.
If active is FALSE, it has just stopped being the active workspace.

The default (BWindow) version of this function is empty.

See also: “B_WORKSPACE_ACTIVATED” on page 16 in theMessage Protocols appendix

WorkspacesChanged()
virtual voidWorkspacesChanged(ulongoldWorkspaces, ulongnewWorkspaces)

Implemented by derived classes to respond to a notification the the window has just
changed the set of workspaces in which it can be displayed fromoldWorkspaces to
newWorkspaces. This typically happens when the user moves a window from one
workspace to another, but it may also happen when a programmatic change is made to the
set of permitted workspaces.

The default (BWindow) version of this function is empty.

See also: “B_WORKSPACES_CHANGED” on page 17 in theMessage Protocols appendix,
SetWorkspaces()

Member Functions BWindow

312 – The Interface Kit

Zoom()
void Zoom(void)
virtual voidZoom(BPoint leftTop, floatwidth, floatheight)

Zooms the window to a larger size—or, if already zoomed larger, restores it to its previous
size.

The simple version of this function can be called to simulate the user operating the zoom
button in the window tab. It resizes the window to the full size of the screen, or to the size
previously set bySetSizeLimits() andSetZoomLimits(). However, if the width and height of
the window are both within five coordinate units of the fully zoomed size, it restores the
window to the size it had before being zoomed.

To actually change the window’s size, the simple version ofZoom() calls the virtual
version. The virtual version is also called by the system in response to aB_ZOOM system
message. The system generates this message when the user clicks the zoom button in the
window’s title tab.

The arguments to the virtual version propose awidth andheight for the window and a
location for the left top corner of its content area in the screen coordinate system. It can be
overridden to change these dimensions or to resize the window differently.

Zoom() may both move and resize the window, resulting inFrameMoved() and
FrameResized() notifications.

See also: SetSizeLimits(), ResizeBy()

The Interface Kit –313

Global Functions

This section describes the global (nonmember) functions defined in the Interface Kit. All
these functions deal with aspects of the system-wide environment for the user interface—
the keyboard and mouse, the screen, workspaces, installed fonts and symbol sets, the list
of possible colors, and various user preferences.

The Application Server maintains this environment (with just a few exceptions).
Therefore, for a global Interface Kit function to work, your application must be connected
to the Server. The connection these functions depend on is the one that’s established when
the BApplication object is constructed. Consequently, none of them should be called
before a BApplication object is present in your application.

activate_app()
<interface/InterfaceDefs.h>

void activate_app(team_idapp)

Activates theapp application < by bringing one of its windows to the front and making it
the active window >. This function works only if the target application has a window on-
screen. The newly activated application is notified with aB_APP_ACTIVATED message.

< This function is an alternative to sending the application aB_ACTIVATE message. It
accomplishes the same thing, except that it communicates directly with the Application
Server to do its work. >

See also: BApplication::Activate() in the Application Kit

activate_workspace(), current_workspace()
<interface/InterfaceDefs.h>

void activate_workspace(longworkspace)

long current_workspace(void)

These functions set and return the active workspace, the one that’s currently displayed on-
screen. Each workspace is represented by a bit in along integer.

See also: BWindow::WorkspaceActivated()

adjust_crt() see get_screen_info()

Global Functions

314 – The Interface Kit

count_fonts() see get_font_name()

count_screens() see get_screen_info()

count_symbol_sets() see get_symbol_set_name()

count_workspaces() see set_workspace_count()

current_workspace() see activate_workspace()

desktop_color() see set_desktop_color()

get_click_speed() see set_click_speed()

get_dock_width()
<interface/InterfaceDefs.h>

long get_dock_width(float *width)

Writes the current width of the dock into the variable referred to bywidth. Since the dock
floats on top of other windows, this function can help determine how much usable screen
space is actually available. It returnsB_NO_ERROR if successful andB_ERROR if not.

See also: get_screen_info()

get_font_name(), count_fonts()
<interface/InterfaceDefs.h>

void get_font_name(long index, font_name *name)

long count_fonts(void)

These two functions are used in combination to get the names of all installed fonts. For
example:

long numFonts = count_fonts();
font_name buf;

for (long i = 0; i < numFonts; i++) {
 get_font_name(i, &buf);
 . . .
}

The names of all installed fonts are kept in an alphabetically ordered list.
get_font_name() reads one of the names from the list, the name atindex, and copies it into
thename buffer. Font names can be up to 64 characters long, plus a null terminator.
Indices begin at 0.

Global Functions

The Interface Kit –315

count_fonts() returns the number of fonts currently installed, the number of names in the
list.

See also: BView::GetFontInfo(), BView::SetFontName()

get_key_repeat_delay() see set_key_repeat_rate()

get_key_repeat_rate() see set_key_repeat_rate()

get_keyboard_id()
<interface/InterfaceDefs.h>

long get_keyboard_id(ushort *theId)

Obtains the keyboard identifier from the Application Server and writes it into the variable
referred to bytheId. This number reveals what kind of keyboard is currently attached to
the computer.

The identifier for the standard 101-key keyboard—and for keyboards with a similar set of
keys—is 0x83ab. < Currently, this is the only value this function can provide. > See “Key
Codes” on page 48 for illustrations showing the keys found on a standard keyboard.

If unsuccessful for any reason,get_keyboard_id() returnsB_ERROR. If successful, it
returnsB_NO_ERROR.

get_menu_info() see set_menu_info()

get_mouse_map() see set_mouse_map()

get_mouse_speed() see set_mouse_map()

get_mouse_type() see set_mouse_map()

Global Functions

316 – The Interface Kit

get_screen_info(), count_screens()
<interface/InterfaceDefs.h>

void get_screen_info(screen_info *theInfo)
void get_screen_info(long index, screen_info *theInfo)

long count_screens(void)

long set_screen_space(long index, ulongspace, boolmakeDefault= TRUE)

long set_screen_refresh_rate(long index, floatrate, boolmakeDefault= TRUE)

long adjust_crt(long index, ucharhPosition, ucharvPosition,
ucharhSize, ucharvSize, boolmakeDefault= TRUE)

These functions provide information about the screens (monitors) that are currently
hooked up to the BeBox, and alter screen parameters.

Each screen that’s attached to the machine is identified by an index into a system-wide
screen list. The screen at index 0 is the one that has the origin of the screen coordinate
system at its left top corner. Other screens in the list are unordered; they’re located
elsewhere in the coordinate system that the first screen defines. < Currently, multiple
screens are not supported, so the screen at index 0 is the only one in the list. Therefore, the
index passed to these functions should always be 0. >

count_screens() returns the number of screens (monitors) that are attached to the
computer. < Since no more than one screen can be attached, this function currently always
returns 1. >

get_screen_info() writes information about the screen atindex into thescreen_info
structure referred to bytheInfo. If no index is mentioned, it assumes the screen at index 0.
Thescreen_info structure contains the following fields:

color_spacemode The depth and color interpretation of pixel data in
the screen’s frame buffer; currently, the mode will
be eitherB_COLOR_8_BIT or B_RGB_32_BIT. (See
“Colors” on page 25 of the chapter introduction for
an explanation of the variouscolor_space modes.)

BRectframe The frame rectangle of the screen—the rectangle
that defines the size and location of the screen in
the screen coordinate system.

ulongspaces A mask that enumerates all the possible
configurations of the screen space. The consonant
values that can contribute to the mask are listed
below.

float min_refresh_rate The maximum possible refresh rate in cycles per
second.

float max_refresh_rate The minimum possible refresh rate (which may be
the same as the maximum).

Global Functions

The Interface Kit –317

float refresh_rate The current refresh rate.

ucharh_position The current horizontal position of the CRT display
on the monitor, a value between 0 (as far to the left
as possible) and 100 (as far to the right as possible)
with 50 as the default.

ucharv_position The current vertical position of the CRT display on
the monitor, a value between 0 (as close to the top
as possible) and 100 (as close to the bottom as
possible) with 50 as the default.

ucharh_size The current horizontal size of the CRT display on
the monitor, a value between 0 (as narrow as
possible) and 100 (as wide as possible) with 50 as
the default.

ucharv_size The current vertical size of the CRT display on the
monitor, a value between 0 (as short as possible)
and 100 (as tall as possible) with 50 as the default.

If the color spacemode is B_COLOR_8_BIT, each pixel value in the frame buffer for the
screen is an 8-bit color index. InB_RGB_32_BIT mode, each value is a set of four 8-bit
color components (red, green, blue, and alpha). The components will be arranged in the
most natural order for the display device—typically blue, green, red, and alpha. You can
access the frame buffer only through the BWindowScreen class in the Game Kit.

Thespaces field is a mask that enumerates all the possible configurations of the screen
space (its depth and dimensions). It’s formed from the following constants:

B_8_BIT_640x400
B_8_BIT_640x480 B_16_BIT_640x480 B_32_BIT_640x480
B_8_BIT_800x600 B_16_BIT_800x600 B_32_BIT_800x600
B_8_BIT_1024x768 B_16_BIT_1024x768 B_32_BIT_1024x768
B_8_BIT_1152x900 B_16_BIT_1152x900 B_32_BIT_1152x900
B_8_BIT_1280x1024 B_16_BIT_1280x1024 B_32_BIT_1280x1024
B_8_BIT_1600x1200 B_16_BIT_1600x1200 B_32_BIT_1600x1200

For example, if the mask includesB_32_BIT_1280x1024, the frame buffer can be 32 bits
deep (theB_RGB_32_BIT color space) while the screen grid is 1,280 pixels wide and 1,024
pixels high. Not all configurations are possible for all graphics cards. < The operating
system currently doesn’t support depths of 16 bits. >

The current screen configuration can be read from themode andframe fields. To change
the configuration, you can pass one of thespaces constants toset_screen_space(). When
the configuration of the screen changes, every affected BWindow object is notified with a
ScreenChanged() function call. < Since there’s currently only one screen, all windows
are affected and all, whether on-screen or hidden, receiveScreenChanged()
notifications. >

Global Functions

318 – The Interface Kit

The refresh rate for the screen can be changed by passing a newrate to
set_screen_refresh_rate(). The rate should lie between the minimum and maximum
reported byget_screen_info(). The requested change is made to the best of the ability of
the graphics card driver; exact compliance is not promised.

Theh_position, v_position, h_size, andv_size fields of thescreen_info structure record the
placement of the CRT display on the physical monitor, as set by software controls—not
the hardware controls on the monitor itself. If the monitor and the driver for the graphics
card permit CRT adjustments through software,adjust_crt() can be called to change any
setting. ItshPosition, vPosition, hSize, andvSize arguments have the same meaning as the
corresponding fields ofscreen_info.

The three functions that alter screen parameters—adjust_crt(), set_screen_space(), and
set_screen_refresh_rate()—all make changes that take effect immediately. If the
makeDefault flag isTRUE, the new setting also becomes the default and will be used the
next time the machine is turned on. IfmakeDefault is FALSE, the setting is in effect for the
current session only. Each function returnsB_NO_ERROR if successful, andB_ERROR if
not.

These three functions are designed for preferences applications—like the Screen
application—that permit users to make system-wide choices. Other applications should
respect those choices and refrain from modifying them.

get_screen_info() reports on the screen as it is known to the Application Server. If you
bypass the Server with the Game Kit, it may not provide accurate information.

See also: BWindow::ScreenChanged(), The Game Kit chapter

get_scroll_bar_info() see set_scroll_bar_info()

get_symbol_set_name(), count_symbol_sets()
<interface/InterfaceDefs.h>

void get_symbol_set_name(long index, symbol_set_name *name)

long count_symbol_sets(void)

These functions are used to get the names of all available symbol sets. They work much
like the parallel font functionsget_font_name() andcount_fonts().

A symbol set associates character symbols (glyphs) with character codes (ASCII values).
They differ mainly in how they extend the standard ASCII set—how they assign
characters to codes above 0x7f.

get_symbol_set_name() gets one name from the list of symbol sets, the name atindex,
and copies it into thename buffer. count_symbol_sets() returns the total number of
symbol sets (the number of names in the list).

Global Functions

The Interface Kit –319

Unlike font names, the names of symbol sets are not arranged alphabetically.

Every font implements every symbol set. However, some fonts implement particular sets
more fully than others—that is, some characters in a symbol set may not be available in
some fonts. But the position of each character in the set (its character code) remains the
same across all fonts.

See also: BView::SetSymbolSet(), get_font_name()

idle_time()
doubleidle_time(void) const

Returns the number of microseconds since the user last manipulated the mouse or
keyboard. This information isn’t specific to a particular application;idle_time() tells you
when the user last directed an action atany application, not just yours.

index_for_color()
<interface/InterfaceDefs.h>

ucharindex_for_color(rgb_coloraColor)
ucharindex_for_color(ucharred, uchargreen, ucharblue, ucharalpha = 0)

Returns an index into the list of 256 colors that comprise theB_COLOR_8_BIT color space.
The value returned picks out the listed color that most closely matches a full 32-bit
color—specified either as anrgb_color value,aColor, or by itsred, green, andblue
components. < (Thealpha component is currently ignored.) >

The returned index identifies a color in theB_COLOR_8_BIT color space. It can, for
example, be passed to BBitmap’sSetBits() function.

To find the fully specified color that an index picks out, you have to get the color list from
the system color map. For example, if you first obtain the index for the “best fit” color that
most closely matches an arbitrary color,

uchar index = index_for_color(134, 210, 6);

you can then use the index to locate that color in the color list:

rgb_color bestFit = system_colors()->color_list[index];

See also: system_colors(), the BBitmap class

Global Functions

320 – The Interface Kit

modifiers()
<interface/InterfaceDefs.h>

ulongmodifiers(void)

Returns a mask that has a bit set for each modifier key the user is holding down and for
each keyboard lock that’s set. The mask can be tested against these constants:

B_SHIFT_KEY B_COMMAND_KEY B_CAPS_LOCK
B_CONTROL_KEY B_MENU_KEY B_SCROLL_LOCK
B_OPTION_KEY B_NUM_LOCK

No bits are set (the mask is 0) if no locks are on and none of the modifiers keys are down.

If it’s important to know which physical key the user is holding down, the one on the right
or the one on the left, the mask can be further tested against these constants:

B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

By default, on a 101-key keyboard, the keys labeled “Alt(ernate)” function as the
Command modifiers, the key on the right labeled “Control” functions as the right Option
key, and only the left “Control” key is available to function as a Control modifier.
However, users can change this configuration with the Keymap application.

See also: “Modifier Keys” on page 51 of the introduction to the chapter,
system_key_map(), BView::GetKeys()

restore_key_map() see system_key_map()

set_click_speed(), get_click_speed()
<interface/InterfaceDefs.h>

long set_click_speed(doubleinterval)

long get_click_speed(double *interval)

These functions set and report the timing for multiple-clicks. For successive mouse-down
events to count as a multiple-click, they must occur within theinterval set by
set_click_speed() and provided byget_click_speed(). The interval is measured in
microseconds; it’s usually set by the user in the Mouse preferences application. The
smallest possible interval is 100,000 microseconds (0.1 second).

If successful, these functions returnB_NO_ERROR; if unsuccessful, they return an error
code, which may be justB_ERROR.

See also: set_mouse_map()

Global Functions

The Interface Kit –321

set_desktop_color(), desktop_color()
<interface/InterfaceDefs.h>

void set_desktop_color(rgb_colorcolor, boolmakeDefault= TRUE)

rgb_colordesktop_color(void)

These functions set and return the color of the so-called “desktop”—the bare backdrop
against which windows are displayed. The color is the same for all screens attached to the
same machine (however, the Workspaces application can arrange for each workspace to
have a different background color).set_desktop_color() makes an immediate change in
the desktop color displayed on-screen;desktop_color() returns the color currently
displayed.

If the makeDefault flag isTRUE, thecolor that’s set becomes the default color for the
desktop; it’s the color that will be shown the next time the machine is booted. If the flag is
FALSE, the color is set only for the current session.

Users can change the default color with the Screen application found in/preferences.

set_key_repeat_rate(), get_key_repeat_rate(),
set_key_repeat_delay(), get_key_repeat_delay()

<interface/InterfaceDefs.h>

long set_key_repeat_rate(int rate)

long get_key_repeat_rate(int *rate)

long set_key_repeat_delay(doubledelay)

long get_key_repeat_delay(double *delay)

These functions set and report the timing of repeating keys. When the user presses a
character key on the keyboard, it produces an immediateB_KEY_DOWN message. If the
user continues to hold the key down, it will, after an initial delay, continue to produce
messages at regularly spaced intervals—until the user releases the key or presses another
key. The delay and the spacing between messages are both preferences the user can set
with the Keyboard application.

set_key_repeat_rate() sets the number of messages repeating keys produce per second.
For a standard PC keyboard, therate can be as low as 2 and as high as 30;
get_key_repeat_rate() writes the current setting into the integer thatrate refers to.

set_key_repeat_delay() sets the length of the initial delay before the key begins
repeating. Acceptable values are 250,000.0, 500,000.0, 750,000.0 and 1,000,000.0
microseconds (.25, .5, .75, and 1.0 second);get_key_repeat_delay() writes the current
setting into the variable thatdelay points to.

All four functions returnB_NO_ERROR if they successfully communicate with the
Application Server, andB_ERROR if not. It’s possible for theset...() functions to

Global Functions

322 – The Interface Kit

communicate with the Server but not succeed in setting therate or delay (for example, if
thedelay isn’t one of the listed four values).

set_keyboard_locks()
<interface/InterfaceDefs.h>

void set_keyboard_locks(ulongmodifiers)

Turns the keyboard locks—Caps Lock, Num Lock, and Scroll Lock—on and off. The
keyboard locks that are listed in themodifiers mask passed as an argument are turned on;
those not listed are turned off. The mask can be 0 (to turn off all locks) or it can contain
any combination of the following constants:

B_CAPS_LOCK
B_NUM_LOCK
B_SCROLL_LOCK

See also: system_key_map(), modifiers()

set_menu_info(), get_menu_info()
<interface/Menu.h>

void set_menu_info(menu_info *info)

void get_menu_info(menu_info *info)

These functions set and get the user’s preferences for how menus should look and work.
User’s express their preferences with the Menu application, which callsset_menu_info().
get_menu_info() writes the current preferences into themenu_info structure that into
refers to. This structure contains the following fields:

float font_size The size of the font that will be used to display
menu items.

font_namefont The name of the font that’s used to display menu
items.

rgb_colorbackground_color The background color of the menu.

long separator The style of horizontal line that separates groups of
items in a menu. The value is an index ranging
from 0 through 2; there are three possible
separators.

bool click_to_open Whether it’s possible to open a menu by clicking in
the item that controls it. The default value isTRUE.

bool triggers_always_shown Whether trigger characters are always marked in
menus and menu bars, regardless of whether the

Global Functions

The Interface Kit –323

menu hierarchy is the target for keyboard actions.
The default value isFALSE.

< At present, both functions always returnB_NO_ERROR. >

See also: the BMenu class

set_modifier_key()
<interface/InterfaceDefs.h>

void set_modifier_key(ulongmodifier, ulongkey)

Maps amodifier role to a particularkey on the keyboard, wherekey is a key identifier and
modifier is one of the these constants:

B_CAPS_LOCK B_LEFT_SHIFT_KEY B_RIGHT_SHIFT_KEY
B_NUM_LOCK B_LEFT_CONTROL_KEY B_RIGHT_CONTROL_KEY
B_SCROLL_LOCK B_LEFT_OPTION_KEY B_RIGHT_OPTION_KEY
B_MENU_KEY B_LEFT_COMMAND_KEY B_RIGHT_COMMAND_KEY

Thekey in question serves as the named modifier key, unmapping any key that previously
played that role. The change remains in effect until the default key map is restored. In
general, the user’s preferences for modifier keys—expressed in the Keymap application—
should be respected.

Modifier keys can also be mapped by callingsystem_key_map() and altering the
key_map structure directly. This function is merely a convenient alternative for
accomplishing the same thing.

See also: system_key_map()

set_mouse_map(), get_mouse_map(), set_mouse_type(),
get_mouse_type(), set_mouse_speed(), get_mouse_speed()

<interface/InterfaceDefs.h>

long set_mouse_map(mouse_map *map)

long get_mouse_map(mouse_map *map)

long set_mouse_type(longnumButtons)

long get_mouse_type(long *numButtons)

long set_mouse_speed(longacceleration)

long get_mouse_speed(long *acceleration)

These functions configure the mouse and supply information about the current
configuration. The configuration should usually be left to the user and the Mouse
preferences application.

Global Functions

324 – The Interface Kit

set_mouse_map() maps the buttons of the mouse to their roles in the user interface, and
get_mouse_map() writes the current map into the variable referred to bymap. The
mouse_map structure has a field for each button on a three-button mouse:

ulong left The button on the left of the mouse
ulongright The button on the right of the mouse
ulongmiddle The button in the middle, between the other two buttons

Each field is set to one of the following constants:

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

The same role can be assigned to more than one physical button. If all three buttons are
set toB_PRIMARY_MOUSE_BUTTON, they all function as the primary button; if two of them
are set toB_SECONDARY_MOUSE_BUTTON, they both function as the secondary button; and
so on.

set_mouse_type() informs the system of how many buttons the mouse actually has. If it
has two buttons, only theleft andright fields of themouse_map are operative. If it has
just one button, only theleft field is operative.set_mouse_type() writes the current
number of buttons into the variable referred to bynumButtons.

set_mouse_speed() sets the speed of the mouse—the acceleration of the cursor image on-
screen relative to the actual speed at which the user moves the mouse on its pad. An
acceleration value of 0 means no acceleration. The maximum acceleration is 20, though
even 10 is too fast for most users.set_mouse_speed() writes the current acceleration into
the variable referred to byacceleration.

All six functions returnB_NO_ERROR if successful, and an error code, typicallyB_ERROR,
if not.

set_screen_refresh_rate() see get_screen_info()

set_screen_space() see get_screen_info()

set_scroll_bar_info(), get_scroll_bar_info()
long set_scroll_bar_info(scroll_bar_info *info)

long get_scroll_bar_info(scroll_bar_info *info)

These functions set and report preferences that the BScrollBar class uses when it creates a
new scroll bar.set_scroll_bar_info() reads the values contained in thescroll_bar_info
structure thatinfo refers to and sets the system-wide preferences accordingly;
get_scroll_bar_info() writes the current preferences into the structure provided.

Global Functions

The Interface Kit –325

Thescroll_bar_info structure contains the following fields:

bool proportional TRUE if scroll bars should have a knob that grows
and shrinks to show what proportion of the
document is currently visible on-screen, andFALSE
if not. Scroll knobs are proportional by default.

bool double_arrows TRUE if a set of double arrows (for scrolling in both
directions) should appear at each end of the scroll
bar, orFALSE if only single arrows (for scrolling in
one direction only) should be used. Double arrows
are the default.

long knob An index that picks the pattern for the knob. Only
values of 0, 1, and 2 are currently valid. The
patterns can be seen in the ScrollBar preferences
application. The pattern at index 1 is the default.

long min_knob_size The length of the scroll knob, in pixels. This is the
minimum size for a proportional knob and the fixed
size for one that’s not proportional. The default
is 15.

The user can set these preferences with the ScrollBar application. Applications can call
get_scroll_bar_info() to find out what choices the user made, but should refrain from
calling set_scroll_bar_info(). That function is desigined for utilities, like the ScrollBar
application, that enable users to set preferences that are respected system-wide.

If successful, these functions returnB_NO_ERROR; if not, they returnB_ERROR.

See also: the BScrollBar class

set_workspace_count(), count_workspaces()
<interface/InterfaceDefs.h>

void set_workspace_count(longnumWorkspaces)

long count_workspaces(void)

These functions set and return the number of workspaces the user has available. There can
be as many as 32 workspaces and as few as 1. The choice of how many there should be is
usually left to the user and the Workspaces application.

See also: activate_workspace()

Global Functions

326 – The Interface Kit

system_colors()
<interface/InterfaceDefs.h>

color_map *system_colors(void)

Returns a pointer to the system’scolor map. The color map defines the set of 256 colors
that can be displayed in theB_COLOR_8_BIT color space. A single set of colors is shared
by all applications connected to the Application Server.

Thecolor_map structure is defined ininterface/InterfaceDefs.h and contains the
following fields:

long id An identifier that the Server uses to distinguish one
color map from another.

rgb_color color_list[256] A list of the 256 colors, expressed asrgb_color
structures. Indices into the list can be used to
specify colors in theB_COLOR_8_BIT color space.
See theindex_for_color() function above.

ucharinversion_map[256] A mapping of each color in thecolor_list to its
opposite color. Indices are mapped to indices. An
example of how this map might be used is given
below.

ucharindex_map[32768] An array that maps RGB colors—specified using
five bits per component—to their nearest
counterparts in the color list. An example of how
to use this map is also given below.

The inversion_map is a list of indices into thecolor_list where each index locates the
“inversion” of the original color. The inversion of then’th color in color_list would be
found as follows:

uchar inversionIndex = system_colors()->inversion_map[n];
rgb_color inversionColor =
 system_colors()->color_list[inversionIndex];

Inverting an inverted index returns the original index, so this code

uchar color = system_colors()->inversion_map[inversionIndex];

would returnn. < Inverted colors are used, primarily, for highlighting. Given a color, its
highlight complement is its inversion. >

The index_map maps every RGB combination that can be expressed in 15 bits (five bits
per component) to a singlecolor_list index that best approximates the original RGB data.

Global Functions

The Interface Kit –327

The following example demonstrates how to squeeze 24-bit RGB data into a 15-bit
number that can be used as an index into theindex_map:

long rgb15 = (((red & 0xf8) << 7) |
 ((green & 0xf8) << 2) |
 ((blue & 0xf8) >> 3));

Most applications won’t need to use the index map directly; theindex_for_color() function
performs the same conversion with less fuss (no masking and shifting required).
However, applications that implement repetitive graphic operations, such as dithering,
may want to access the index map themselves, and thus avoid the overhead of an
additional function call.

You should never modify or free thecolor_map structure returned by this function.

See also: index_for_color()

system_key_map(), restore_key_map()
<interface/InterfaceDefs.h>

key_map *system_key_map(void)

void restore_key_map(void)

The first of these functions returns a pointer to the system key map—the structure that
describes the role of each key on the keyboard. The second function restores the default
map, in case any of its fields have been changed.

The system key map is shared by all applications. An application can alter values in the
structure thatsystem_key_map() returns—and thus alter the roles that the keys play—but
it should make sure that those changes are local to itself and don’t affect other,
unsuspecting applications. In particular, it should:

• Modify the key map only when one of its windows becomes the active window, and

• Restore the default key map when it no longer has the active window.

Through the Keymap preferences application, users can configure the keyboard to their
liking. The user’s preferences affect all applications; they’re captured in the default key
map and stored in a file (/system/settings/Key_map).

When the machine reboots or whenrestore_key_map() is called, the key map is read from
this file. If the file doesn’t exist, the original map encoded in the Application Server is
used.

Global Functions

328 – The Interface Kit

Thekey_map structure contains a large number of fields, but it can be broken down into
these six parts:

• A version number.

• A series of fields that determine which keys will function as modifier keys—such as
Shift, Control, or Num Lock.

• A field that sets the initial state of the keyboard locks in the default key map.

• A series of ordered tables that assign character values to keys. Keys assigned a
value other than –1 produce key-down events when pressed. This includes almost
all the keys on the keyboard (all except for a handful of modifier keys).

• A series of tables that locate the dead keys for diacritical marks and determine how
a combination of a dead key plus another key is mapped to a particular character.

• A set of masks that determine which modifier keys are required for a key to be
considered dead.

The following sections describe each part of thekey_map structure in turn.

Version. The first field of the key map is a version number:

ulongversion An internal identifier for the key map.

The version number doesn’t change when the user configures the keyboard, and shouldn’t
be changed programmatically either. You can ignore it.

Modifiers. Modifier keys set states that affect other user actions on the keyboard and
mouse. Eight modifier states are defined—Shift, Control, Option, Command, Menu, Caps
Lock, Num Lock, and Scroll Lock. These states are discussed under “Modifier Keys” on
page 51 of the introduction. They overlap, but don’t exactly match the key caps found on
a standard keyboard—which generally has a set of Alt(ernate) keys, rarely Option keys,
and only sometimes Command and Menu keys. Because of these differences, the
mapping of keys to modifiers is the area of the key map most open to the user’s personal
judgement and taste, and consequently to changes in the default configuration.
Applications are urged to respect the user’s preferences.

Since two keys, one on the left and one on the right, can be mapped to the Shift, Control,
Option, and Command modifiers, the keyboard can have as many as twelve modifier keys.
Thekey_map structure has one field for each key:

ulongcaps_key The key that functions as the Caps Lock key—by
default, this is the key labeled “Caps Lock,” key
0x3b.

Global Functions

The Interface Kit –329

ulongscroll_key The key that functions as the Scroll Lock key—by
default, this is the key labeled “Scroll Lock,” key
0x0f.

ulongnum_key The key that functions as the Num Lock key—by
default, this is the key labeled “Num Lock,” key
0x22.

ulong left_shift_key A key that functions as a Shift key—by default,
this is the key on the left labeled “Shift,” key 0x4b.

ulongright_shift_key Another key that functions as a Shift key—by
default, this is the key on the right labeled “Shift,”
key 0x56.

ulong left_command_key A key that functions as a Command key—by
default, this is the left “Alt” key, key 0x5d.

ulongright_command_key Another key that functions as a Command key—by
default, this is the right “Alt” key, key 0x5f.

ulong left_control_key A key that functions as a Control key—by default,
this is the key labeled “Control” on the left, key
0x5c.

ulongright_control_key Another key that functions as a Control key—by
default, this key is not mapped. (The value of the
field is set to 0.)

ulong left_option_key A key that functions as an Option key—by default,
this is the key that’s labeled “Command” (or that
has a command symbol) on the left of some
keyboards, key 0x66. This key doesn’t exist on,
and therefore isn’t mapped for, a standard 101-key
keyboard.

ulongright_option_key A key that functions as an Option key—by default,
this is the key labeled “Control” on the right, key
0x60.

ulongmenu_key A key that initiates keyboard navigation of the
menu hierarchy—by default, this is the key labeled
“Menu,” key 0x68. This key doesn’t exist on, and
therefore isn’t mapped for, a standard 101-key
keyboard.

Each field names the key that functions as that modifier. For example, when the user holds
down the key whose code is set in theright_option_key field, theB_OPTION_KEY and
B_RIGHT_OPTION_KEY bits are turned on in the modifiers mask that themodifiers()
function returns. When the user then strikes a character key, theB_OPTION_KEY state
influences the character that’s generated.

Global Functions

330 – The Interface Kit

If a modifier field is set to a value that doesn’t correspond to an actual key on the keyboard
(including 0), that field is not mapped. No key fills that particular modifier role.

Keyboard locks. One field of the key map sets initial modifier states:

ulong lock_settings A mask that determines which keyboard locks are
turned on when the machine reboots or when the
default key map is restored.

The mask can be 0 or may contain any combination of these three constants:

B_CAPS_LOCK
B_SCROLL_LOCK
B_NUM_LOCK

It’s 0 by default; there are no initial locks.

Altering thelock_settings field has no effect unless the altered key map is made the
default (by writing it to a file that replaces/system/settings/Key_map).

Character maps. The principal job of the key map is to assign character values to keys.
This is done in a series of nine tables:

ulongcontrol_map[128] The characters that are produced when a Control
key is down but both Command keys are up.

ulongoption_caps_shift_map[128]
The characters that are produced when Caps Lock
is on and both a Shift key and an Option key are
down.

ulongoption_caps_map[128]
The characters that are produced when Caps Lock
is on and an Option key is down.

ulongoption_shift_map[128] The characters that are produced when both a Shift
key and an Option key are down.

ulongoption_map[128] The characters that are produced when an Option
key is down.

ulongcaps_shift_map[128] The characters that are produced when Caps Lock
is on and a Shift key is down.

ulongcaps_map[128] The characters that are produced when Caps Lock
is on.

ulongshift_map[128] The characters that are produced when a Shift key
is down.

Global Functions

The Interface Kit –331

ulongnormal_map[128] The characters that are produced when none of the
other tables apply.

Each of these tables is an array of 128 characters (declared asulongs). Key codes are used
as indices into the arrays. The value stored at any particular index is the character
associated with that key. For example, the code assigned to theM key is 0x52; the
characters to which theM key is mapped are recorded at index 0x52 in the various arrays.

The tables are ordered. Character values from the first applicable array are used, even if
another array might also seem to apply. For example, if Caps Lock is on and a Control key
is down (and both Command keys are up), thecontrol_map array is used, notcaps_map.
If a Shift key is down and Caps Lock is on, thecaps_shift_map is used, notshift_map or
caps_map.

Notice that the last eight tables (all exceptcontrol_map) are paired, with a table that
names the Shift key (..._shift_map) preceding an equivalent table without Shift:

• option_caps_shift_map is paired withoption_caps_map,
• option_shift_map with option_map,
• caps_shift_map with caps_map, and
• shift_map with normal_map.

These pairings are important for a special rule that applies to keys on the numerical
keypad when Num Lock is on:

• If the Shift key is down, the non-Shift table is used.
• However, if the Shift key isnot down, the Shift table is used.

In other words, Num Lock inverts the Shift and non-Shift tables for keys on the numerical
keypad.

Not every key needs to be mapped to a character. If the value recorded in a table is –1, the
key corresponding to that index is not mapped to a character given the particular modifier
states the table represents. Generally, modifier keys are not mapped to characters, but all
other keys are, at least for some tables. Key-down events are not generated for –1
character values.

Dead keys. Next are the tables that map combinations of keys to single characters. The
first key in the combination is “dead”—it doesn’t produce a key-down event until the user
strikes another character key. When the user hits the second key, one of two things will
happen: If the second key is one that can be used in combination with the dead key, a
single key-down event reports the combination character. If the second key doesn’t
combine with the dead key, two key-down events occur, one reporting the dead-key
character and one reporting the second character.

Global Functions

332 – The Interface Kit

There are five dead-key tables:

ulongacute_dead_key[32] The table for combining an acute accent (´) with
other characters.

ulonggrave_dead_key[32] The table for combining a grave accent (`) with
other characters.

ulongcircumflex_dead_key[32]
The table for combining a circumflex (ˆ) with other
characters.

ulongdieresis_dead_key[32]
The table for combining a dieresis (¨) with other
characters.

ulong tilde_dead_key[32] The table for combining a tilde (˜) with other
characters

The tables are named after diacritical marks that can be placed on more than one character.
However, the name is just a mnemonic; it means nothing. The contents of the table
determine what the dead key is and how it combines with other characters. It would be
possible, for example, to remap thetilde_dead_key table so that it had nothing to do with
a tilde.

Each table consists of a series of up to 16 character pairs, where each character is declared
as aulong. The first character in the pair is the one that must be typed immediately after
the dead key. The second character is the resulting character, the character that’s produced
by the combination of the dead key plus the first character in the pair. For example, if the
first character is ‘o’, the second might be ‘ô’—meaning that the combination of a dead key
plus the character ‘o’ produces a circumflexed ‘ô’.

The character pairs in the defaultgrave_dead_key array look something like this:

' ', '‘',
'A', 'À',
'E', 'È',
'I', 'Ì',
'O', 'Ò',
'U', 'Ù',
'a', 'à',
'e', 'è',
'i', 'ì',
'o', 'ò',
'u', 'ù',
. . .

By convention, the first pair in each array is a space followed by the dead-key character
itself. This pair does double duty: It states that the dead key plus a space yields the dead-
key character, and it also names the dead key. The system understands what the dead key
is from the second character in the array.

Global Functions

The Interface Kit –333

Character tables for dead keys. As mentioned above, for a key to be dead, it must be
mapped to the second character in a dead-key array. However, it’s not typical for every
key that’s mapped to the character to be dead. Usually, there’s a requirement that the user
must hold down certain modifier keys (often the Option key). In other words, a key is
dead only if selected character-map tables map it to the requisite character.

Five additional fields of thekey_map structure specify what those character-map tables
are—which modifiers are required for each of the dead keys:

ulongacute_tables The character tables that cause a key to be dead
when they map it to the second character in the
acute_dead_key array.

ulonggrave_tables The character tables that cause a key to be dead
when they map it to the second character in the
grave_dead_key array.

ulongcircumflex_tables The character tables that cause a key to be dead
when they map it to the second character in the
circumflex_dead_key array.

ulongdieresis_tables The character tables that cause a key to be dead
when they map it to the second character in the
dieresis_dead_key array.

ulong tilde_tables The character tables that cause a key to be dead
when they map it to the second character in the
tilde_dead_key array.

Each of these fields contains a mask formed from the following constants:

B_CONTROL_TABLE
B_OPTION_CAPS_SHIFT_TABLE
B_OPTION_CAPS_TABLE
B_OPTION_SHIFT_TABLE
B_OPTION_TABLE
B_CAPS_SHIFT_TABLE
B_CAPS_TABLE
B_SHIFT_TABLE
B_NORMAL_TABLE

The mask designates the character-map tables that permit a key to be dead. For example,
if the mask for thegrave_tables field is,

B_OPTION_TABLE | B_OPTION_CAPS_SHIFT_TABLE

Global Functions

334 – The Interface Kit

a key would be dead whenever either of those tables mapped the key to the second
character in thegrave_dead_key array (‘`’ in the example above). A key mapped to the
same character by another table would not be dead.

See also: BView::GetKeys(), modifiers(), “Keyboard Information” in the chapter
introduction,set_modifier_key()

The Interface Kit –335

Constants and Defined Types

This section lists the various constants and types that the Interface Kit defines to support
the work done by its principal classes. The Kit is a framework of cooperating classes;
almost all of its programming interface can be found in the class descriptions presented in
previous sections of this chapter. Most of the constants and types listed here have already
been explained in the descriptions of class member functions and global nonmember
functions. Only one or two have not yet been mentioned in full detail. All of them are
noted here and briefly described. If a more lengthy discussion is to be found under a class
or a function, you’ll be referred to that location.

Constants are listed first, followed by defined types. Constants that are defined as part of
an enumeration type are presented with the other constants, rather than with the type.
They’re listed in the “Constants” section under the type name.

Constants

alert_type Constants
<interface/Alert.h>

Enumerated constant

B_EMPTY_ALERT
B_INFO_ALERT
B_IDEA_ALERT
B_WARNING_ALERT
B_STOP_ALERT

These constants designate the various types of alert panels that are recognized by the
system. The type corresponds to an icon that’s displayed in the alert window.

See also: the BAlert constructor

Constants Constants and Defined Types

336 – The Interface Kit

alignment Constants
<interface/InterfaceDefs.h>

Enumerated constant

B_ALIGN_LEFT
B_ALIGN_RIGHT
B_ALIGN_CENTER

These constants define thealignment data type. They determine how lines of text are
aligned by BTextView and BStringView objects.

See also: BTextView::SetAlignment()

button_width Constants
<interface/Alert.h>

Enumerated constant

B_WIDTH_AS_USUAL
B_WIDTH_FROM_LABEL
B_WIDTH_FROM_WIDEST

These constants define thebutton_width type. They determine how the width of the
buttons in an alert panel will be set—whether they’re set to an standard (minimal) width, a
width just sufficient to accommodate the button’s own label, or a width sufficient to
accommodate the widest label of all the buttons.

See also: the BAlert constructor

Character Constants
<interface/InterfaceDefs.h>

Enumerated constant Character value

B_BACKSPACE 0x08 (same as ‘\b’)
B_ENTER 0x0a (same as ‘\n’)
B_RETURN 0x0a (synonym forB_ENTER)
B_SPACE 0x20 (same as ‘ ’)
B_TAB 0x09 (same as ‘\t’)
B_ESCAPE 0x1b

B_LEFT_ARROW 0x1c
B_RIGHT_ARROW 0x1d
B_UP_ARROW 0x1e
B_DOWN_ARROW 0x1f

B_INSERT 0x05
B_DELETE 0x7f

Constants and Defined Types Constants

The Interface Kit –337

B_HOME 0x01
B_END 0x04
B_PAGE_UP 0x0b
B_PAGE_DOWN 0x0c

B_FUNCTION_KEY 0x10

These constants stand for the ASCII characters they name. Constants are defined only for
characters that normally don’t have visible symbols.

See also: “Function Key Constants” below

color_space Constants
<interface/InterfaceDefs.h>

Enumerated constant Meaning

B_MONOCHROME_1_BIT One bit per pixel, where 1 is black and 0 is white.
B_GRAYSCALE_8_BIT 256 gray values, where 255 is black and 0 is white.
B_COLOR_8_BIT Colors specified as 8-bit indices into the color map.
B_RGB_16_BIT < undefined for the current release >
B_RGB_32_BIT Colors as 8-bit red, green, and blue components.

These constants define thecolor_space data type. A color space describes two properties
of bitmap images:

• How many bits of information there are per pixel (the depth of the image), and

• How those bits are to be interpreted (whether as colors or on a grayscale, what the
color components are, and so on).

See the “Colors” section in the chapter introduction for a fuller explanation of the color
spaces currently defined for this type, particularlyB_RGB_32_BIT.

See also: “Colors” on page 25, the BBitmap class

Control Values
<interface/Control.h>

Enumerated constant Value

B_CONTROL_ON 1
B_CONTROL_OFF 0

These constants define the bipolar states of a typical control device.

See also: BControl::SetValue()

Constants Constants and Defined Types

338 – The Interface Kit

Cursor Transit Constants
<interface/View.h>

Enumerated constant Meaning

B_ENTERED_VIEW The cursor has just entered a view.
B_INSIDE_VIEW The cursor has moved within the view.
B_EXITED_VIEW The cursor has left the view

These constants describe the cursor’s transit through a view. EachMouseMoved()
notification includes one of these constants as an argument, to inform the BView whether
the cursor has entered the view, moved while inside the view, or exited the view.

See also: BView::MouseMoved()

Dead-Key Mapping
<interface/InterfaceDefs.h>

Enumerated constants

B_CONTROL_TABLE
B_OPTION_CAPS_SHIFT_TABLE
B_OPTION_CAPS_TABLE
B_OPTION_SHIFT_TABLE
B_OPTION_TABLE
B_CAPS_SHIFT_TABLE
B_CAPS_TABLE
B_SHIFT_TABLE
B_NORMAL_TABLE

These constants determine which combinations of modifiers can cause a key to be the
“dead” member of a two-key combination.

See also: system_key_map()

drawing_mode Constants
<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_OP_COPY B_OP_ADD
B_OP_OVER B_OP_SUBTRACT
B_OP_ERASE B_OP_MIN
B_OP_INVERT B_OP_MAX
B_OP_BLEND

These constants define thedrawing_mode data type. The drawing mode is a BView
graphics parameter that determines how the image being drawn interacts with the image

Constants and Defined Types Constants

The Interface Kit –339

already in place in the area where it’s drawn. The various modes are explained under
“Drawing Modes” in the chapter introduction.

See also: “Drawing Modes” on page 27,BView::SetDrawingMode()

Font Name Length
<interface/InterfaceDefs.h>

Defined constant Value

B_FONT_NAME_LENGTH 64

This constant defines the maximum length of a font name. It’s used in the definition of the
font_name type.

See also: font_name under “Defined Types” below

Function Key Constants
<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_F1_KEY B_F9_KEY
B_F2_KEY B_F10_KEY
B_F3_KEY B_F11_KEY
B_F4_KEY B_F12_KEY
B_F5_KEY B_PRINT_KEY (the “Print Screen” key)
B_F6_KEY B_SCROLL_KEY (the “Scroll Lock” key)
B_F7_KEY B_PAUSE_KEY
B_F8_KEY

These constants stand for the various keys that are mapped to theB_FUNCTION_KEY
character. When theB_FUNCTION_KEY character is reported in a key-down event, the
application can determine which key produced the character by testing the key code
against these constants. (Control-p also produces theB_FUNCTION_KEY character.)

See also: “Character Mapping” on page 53 of the introduction to this chapter

Constants Constants and Defined Types

340 – The Interface Kit

Interface Messages
<app/AppDefs.h>

Enumerated constant Enumerated constant

B_ZOOM B_KEY_DOWN
B_MINIMIZE B_KEY_UP
B_WINDOW_RESIZED B_MOUSE_DOWN
B_WINDOW_MOVED B_MOUSE_UP
B_WINDOW_ACTIVATED B_MOUSE_MOVED
B_QUIT_REQUESTED B_VIEW_RESIZED
B_SCREEN_CHANGED B_VIEW_MOVED
B_WORKSPACE_ACTIVATED B_VALUE_CHANGED
B_WORKSPACES_CHANGED B_PULSE
B_SAVE_REQUESTED B_PANEL_CLOSED

These constants identify interface messages—system messages that are delivered to
BWindow objects. Each constant conveys an instruction to do something in particular
(B_ZOOM) or names a type of event (B_KEY_DOWN).

See also: “Interface Messages” on page 41 in the introduction to this chapter

menu_bar_border Constants
<interface/MenuBar.h>

Enumerated constant Meaning

B_BORDER_FRAME Put a border around the entire frame rectangle.
B_BORDER_CONTENTS Put a border around the group of items only.
B_BORDER_EACH_ITEM Put a border around each item.

These constants can be passed as an argument to BMenuBar’sSetBorder() function.

See also: BMenuBar::SetBorder()

menu_layout Constants
<interface/Menu.h>

Enumerated constant Meaning

B_ITEMS_IN_ROW Menu items are arranged horizontally, in a row.
B_ITEMS_IN_COLUMN Menu items are arranged vertically, in a column.
B_ITEMS_IN_MATRIX Menu items are arranged in a custom fashion.

These constants define themenu_layout data type. They distinguish the ways that items
can be arranged in a menu or menu bar—they can be laid out from end to end in a row like

Constants and Defined Types Constants

The Interface Kit –341

a typical menu bar, stacked from top to bottom in a column like a typical menu, or
arranged in some custom fashion like a matrix.

See also: the BMenu and BMenuBar constructors

Modifier States
<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_SHIFT_KEY B_OPTION_KEY
B_LEFT_SHIFT_KEY B_LEFT_OPTION_KEY
B_RIGHT_SHIFT_KEY B_RIGHT_OPTION_KEY

B_CONTROL_KEY B_COMMAND_KEY
B_LEFT_CONTROL_KEY B_LEFT_COMMAND_KEY
B_RIGHT_CONTROL_KEY B_RIGHT_COMMAND_KEY

B_CAPS_LOCK B_MENU_KEY
B_SCROLL_LOCK
B_NUM_LOCK

These constants designate the Shift, Option, Control, Command, and Menu modifier keys
and the lock states set by the Caps Lock, Scroll Lock, and Num Lock keys. They’re
typically used to form a mask that describes the current, or required, modifier states.

For each variety of modifier key, there are constants that distinguish between the keys that
appear at the left and right of the keyboard, as well as one that lumps both together. For
example, if the user is holding the left Control key down, bothB_CONTROL_KEY and
B_LEFT_CONTROL_KEY will be set in the mask.

See also: modifiers(), BWindow::AddShortcut(), the BMenu constructor

Mouse Buttons
<interface/View.h>

Enumerated constant

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

These constants name the mouse buttons. Buttons are identified, not by their physical
positions on the mouse, but by their roles in the user interface.

See also: BView::GetMouse(), set_mouse_map()

Constants Constants and Defined Types

342 – The Interface Kit

orientation Constants
<interface/InterfaceDefs.h>

Enumerated constant

B_HORIZONTAL
B_VERTICAL

These constants define theorientation data type that distinguishes between the vertical and
horizontal orientation of graphic objects. It’s currently used only to differentiate scroll
bars.

See also: the BScrollBar and BScrollView classes

Pattern Constants
<interface/InterfaceDefs.h>

const patternB_SOLID_HIGH = { 0xff, 0xff, 0xff, 0xff, 0xff,0xff, 0xff, 0xff }

const patternB_SOLID_LOW = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 }

const patternB_MIXED_COLORS
= { 0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55, 0xaa, 0x55 }

These constants name the three standard patterns defined in the Interface Kit.

B_SOLID_HIGH is a pattern that consists of the high color only. It’s the default pattern for
all BView drawing functions that stroke lines and fill shapes.

B_SOLID_LOW is a pattern with only the low color. It’s used mainly to erase images
(to replace them with the background color).

B_MIXED_COLORS alternates pixels between the high and low colors in a checkerboard
pattern. The result is a halftone midway between the two colors. This pattern can produce
fine gradations of color, especially when the high and low colors are set to two colors that
are already quite similar.

See also: “Patterns” on page 26 of the chapter introduction, thepattern defined type
below

Constants and Defined Types Constants

The Interface Kit –343

Resizing Modes
<interface/View.h>

Defined constants

B_FOLLOW_LEFT
B_FOLLOW_RIGHT
B_FOLLOW_LEFT_RIGHT
B_FOLLOW_H_CENTER

B_FOLLOW_TOP
B_FOLLOW_BOTTOM
B_FOLLOW_TOP_BOTTOM
B_FOLLOW_V_CENTER

B_FOLLOW_ALL
B_FOLLOW_NONE

These constants are used to set the behavior of a view when its parent is resized. They’re
explained under the BView constructor.

See also: the BView constructor,BView::SetResizingMode()

Screen Spaces
<interface/InterfaceDefs.h>

Enumerated constant Enumerated constant

B_8_BIT_640x480 B_32_BIT_640x480
B_8_BIT_800x600 B_32_BIT_800x600
B_8_BIT_1024x768 B_32_BIT_1024x768
B_8_BIT_1152x900 B_32_BIT_1152x900
B_8_BIT_1280x1024 B_32_BIT_1280x1024
B_8_BIT_1600x1200 B_32_BIT_1600x1200

B_16_BIT_640x480 B_8_BIT_640x400
B_16_BIT_800x600
B_16_BIT_1024x768
B_16_BIT_1152x900
B_16_BIT_1280x1024
B_16_BIT_1600x1200

These constants are used to configure the screen—to set its depth and the size of the pixel
grid it displays—as well as to report which configurations are possible. < 16-bit depths
are not currently supported. >

See also: set_screen_space(), get_screen_info()

Constants Constants and Defined Types

344 – The Interface Kit

Scroll Bar Constants
<interface/ScrollBar.h>

Defined constant

B_H_SCROLL_BAR_HEIGHT
B_V_SCROLL_BAR_WIDTH

These constants record the recommended thickness of scroll bars. They should be used to
help define the frame rectangles passed to the BScrollBar constructor.

See also: the BScrollBar class

Tracking Constants
<interface/View.h>

Enumerated constant Meaning

B_TRACK_WHOLE_RECT Drag the whole rectangle around.
B_TRACK_RECT_CORNER Drag only the left bottom corner of the rectangle.

These constants determines how BView’sBeginRectTracking() function permits the user
to drag (or drag out) a rectangle.

See also: BView::BeginRectTracking()

Transparency Constants
<interface/InterfaceDefs.h>

const ucharB_TRANSPARENT_8_BIT
const rgb_colorB_TRANSPARENT_32_BIT

These constants set transparent pixel values in a bitmap image.B_TRANSPARENT_8_BIT
designates a transparent pixel in theB_COLOR_8_BIT color space, and
B_TRANSPARENT_32_BIT designates a transparent pixel in theB_RGB_32_BIT color space.

Transparency is explained the “Drawing Modes” section of the chapter introduction.
Drawing modes other thanB_OP_COPY preserve the destination image where a source
bitmap is transparent.

See also: “Drawing Modes” on page 27, the BBitmap class,BView::SetViewColor()

Constants and Defined Types Constants

The Interface Kit –345

View Flags
<interface/View.h>

Enumerated constant Meaning

B_FULL_UPDATE_ON_RESIZE Include the entire view in the clipping region.
B_WILL_DRAW Allow the BView to draw.
B_PULSE_NEEDED Report pulse events to the BView.
B_FRAME_EVENTS Report view-resized and view-moved events.

These constants can be combined to form a mask that sets the behavior of a BView object.
They’re explained in more detail under the class constructor. The mask is passed to the
constructor, or to theSetFlags() function.

See also: the BView constructor,BView::SetFlags()

Window Areas
<interface/Window.h>

Enumerated constant

B_UNKNOWN_AREA
B_TITLE_AREA
B_CONTENT_AREA
B_RESIZE_AREA
B_CLOSE_AREA
B_ZOOM_AREA

These constants name the various parts of a window. They’re used to designate the area
where the cursor is located in messages that report the cursor’s movement over a window.

See also: “B_MOUSE_MOVED” on page 10 in theMessage Protocols appendix

Window Flags
<interface/Window.h>

Enumerated constant Enumerated constant

B_NOT_MOVABLE B_NOT_CLOSABLE
B_NOT_H_RESIZABLE B_NOT_ZOOMABLE
B_NOT_V_RESIZABLE B_NOT_MINIMIZABLE
B_NOT_RESIZABLE B_WILL_FLOAT
B_WILL_ACCEPT_FIRST_CLICK

These constants set the behavior of a window. They can be combined to form a mask
that’s passed to the BWindow constructor.

See also: the BWindow constructor

Defined Types Constants and Defined Types

346 – The Interface Kit

window_type Constants
<interface/Window.h>

Enumerated constant Meaning

B_MODAL_WINDOW The window is a modal window.
B_BORDERED_WINDOW The window has a border but no title tab.
B_TITLED_WINDOW The window has a border and a title tab.
B_DOCUMENT_WINDOW The window has a tab and borders fit for scroll bars.

These constants describe the various kinds of windows that can be requested from the
Application Server.

See also: the BWindow constructor

Workspace Constants
<interface/Window.h>

Defined constant

B_CURRENT_WORKSPACE
B_ALL_WORKSPACES

These constants are used—along with designations of specific workspaces—to associate a
set of one or more workspaces with a BWindow.

See also: the BWindow constructor,BWindow::SetWorkspaces()

Defined Types

alert_type
<interface/Alert.h>

typedef enum {. . .}alert_type

These constants name the various types of alert panel.

See also: “alert_type Constants” on page 335 above, the BAlert constructor

Constants and Defined Types Defined Types

The Interface Kit –347

alignment
<interface/InterfaceDefs.h>

typedef enum {. . .}alignment

Alignment constants determine where lines of text are placed in a view.

See also: “alignment Constants” on page 336 above,BTextView::SetAlignment()

button_width
<interface/Alert.h>

typedef enum {. . .}button_width

These constants name the methods that can be used to determine how wide to make the
buttons in an alert panel.

See also: “button_width Constants” on page 336 above, the BAlert constructor

color_map
<interface/InterfaceDefs.h>

typedef struct {
long id;
rgb_colorcolor_list[256];
ucharinversion_map[256];
ucharindex_map[32768];

} color_map

This structure contains information about the color context provided by the Application
Server. There’s one and only one color map for all applications connected to the Server.
Applications can obtain a pointer to the color map by calling the globalsystem_colors()
function. See that function for information on the various fields.

See also: system_colors()

color_space
<interface/InterfaceDefs.h>

typedef enum {. . .}color_space

Color space constants determine the depth and interpretation of bitmap images. They’re
described under “Colors” in the introduction.

See also: “color_space Constants” on page 337 above, “Colors” on page 25, the
BBitmap class

Defined Types Constants and Defined Types

348 – The Interface Kit

drawing_mode
<interface/InterfaceDefs.h>

typedef enum {. . .}drawing_mode

The drawing mode determines how source and destination images interact. The various
modes are explained in the chapter introduction under “Drawing Modes”.

See also: “Drawing Modes” on page 27, “drawing_mode Constants” on page 338 above

edge_info
<interface/View.h>

typedef struct {
float left;
float right;

} edge_info

This structure records information about the location of a character outline within the
horizontal space allotted to the character. Edges separate one character from adjacent
characters on the left and right. They’re explained under theGetCharEdges() function in
the BView class.

See also: BView::GetCharEscapements(), BView::GetFontInfo()

font_info
<interface/View.h>

typedef struct {
font_namename;
float size;
float shear;
float rotation;
float ascent;
float descent;
float leading;

} font_info

This structure holds information about a BView’s current font. Its fields are explained
under theGetFontInfo() function in the BView class.

See also: BView::GetFontInfo(), BView::SetFontName()

Constants and Defined Types Defined Types

The Interface Kit –349

font_name
<interface/InterfaceDefs.h>

typedef charfont_name[FONT_NAME_LENGTH + 1]

This type defines a string long enough to hold the name of a font—64 characters plus the
null terminator.

See also: BView::SetFontName(), get_font_name()

key_info
<interface/View.h>

typedef struct {
ulongchar_code;
ulongkey_code;
ulongmodifiers;
ucharkey_states[16];

} key_info

This structure is used by BView’sGetKeys() function to return all known information
about what the user is currently doing on the keyboard.

See also: BView::GetKeys(), “Keyboard Information” on page 47 in the introduction to
this chapter

Defined Types Constants and Defined Types

350 – The Interface Kit

key_map
<interface/InterfaceDefs.h>

typedef struct {
ulongversion;
ulongcaps_key;
ulongscroll_key;
ulongnum_key;
ulong left_shift_key;
ulongright_shift_key;
ulong left_command_key;
ulongright_command_key;
ulong left_control_key;
ulongright_control_key;
ulong left_option_key;
ulongright_option_key;
ulongmenu_key;
ulong lock_settings;
ulongcontrol_map[128];
ulongoption_caps_shift_map[128];
ulongoption_caps_map[128];
ulongoption_shift_map[128];
ulongoption_map[128];
ulongcaps_shift_map[128];
ulongcaps_map[128];
ulongshift_map[128];
ulongnormal_map[128];
ulongacute_dead_key[32];
ulonggrave_dead_key[32];
ulongcircumflex_dead_key[32];
ulongdieresis_dead_key[32];
ulong tilde_dead_key[32];
ulongacute_tables;
ulonggrave_tables;
ulongcircumflex_tables;
ulongdieresis_tables;
ulong tilde_tables;

} key_map

This structure maps the physical keys on the keyboard to their functions in the user
interface. It holds the tables that assign characters to key codes, set up dead keys, and
determine which keys function as modifiers. There’s just one key map shared by all
applications running on the same machine. It’s returned by thesystem_key_map()
function.

See also: system_key_map()

Constants and Defined Types Defined Types

The Interface Kit –351

menu_bar_border
<interface/MenuBar.h>

typedef enum {. . .}menu_bar_border

This type enumerates the ways that a menu bar can be bordered.

See also: BMenuBar::SetBorder(), “menu_bar_border Constants” above

menu_info
<interface/Menu.h>

typedef struct {
float font_size;
font_namefont;
rgb_colorbackground_color;
long separator;
bool click_to_open;
bool triggers_always_shown;

} menu_info

This structure records the user’s menu preferences.

See also: set_menu_info() , the BMenu class

menu_layout
<interface/Menu.h>

typedef enum {. . .}menu_layout

This type distinguishes the various ways that items can arranged in a menu or menu bar.

See also: the BMenu class, “menu_layout Constants” above

mouse_map
<interface/InterfaceDefs.h>

typedef struct {
ulong left;
ulongright;
ulongmiddle;

} mouse_map

This structure maps mouse buttons to their roles as theB_PRIMARY_MOUSE_BUTTON,
B_SECONDARY_MOUSE_BUTTON, or B_TERTIARY_MOUSE_BUTTON.

See also: set_mouse_map()

Defined Types Constants and Defined Types

352 – The Interface Kit

orientation
<interface/InterfaceDefs.h>

typedef enum {. . .}orientation

This type distinguishes between theB_VERTICAL andB_HORIZONTAL orientation of scroll
bars.

See also: the BScrollBar and BScrollView classes

pattern
<interface/InterfaceDefs.h>

typedef struct {
uchardata[8];

} pattern

A pattern is a arrangement of two colors—the high color and the low color—in an 8-pixel
by 8-pixel square. Pixels are specified in rows, with one byte per row and one bit per
pixel. Bits marked 1 designate the high color; those marked 0 designate the low color. An
example and an illustration are given under “Patterns” on page 26 of the introduction to
this chapter.

See also: “Pattern Constants” above, “Patterns” in the chapter introduction

print_file_header
<interface/PrintJob.h>

typedef struct {
long version;
long page_count;
long _reserved_1_;
long _reserved_2_;
long _reserved_3_;
long _reserved_4_;
long _reserved_5_;

} print_file_header

This structure defines the header information for a print job. < Although declared
publicly, it currently is used only internally by the BPrintJob class. >

Constants and Defined Types Defined Types

The Interface Kit –353

rgb_color
<interface/InterfaceDefs.h>

typedef struct {
ucharred;
uchargreen;
ucharblue;
ucharalpha;

} rgb_color

This type specifies a full 32-bit color. Each component can have a value ranging from a
minimum of 0 to a maximum of 255.

< Thealpha component, which is designed to specify the coverage of the color (how
transparent or opaque it is), is currently ignored. However, anrgb_color can be made
completely transparent by assigning it the special value,B_TRANSPARENT_32_BIT. >

See also: BView::SetHighColor()

screen_info
<interface/InterfaceDefs.h>

typedef struct {
color_spacemode;
BRectframe;
ulongspaces;
float min_refresh_rate;
float max_refresh_rate;
float refresh_rate;
ucharh_position;
ucharv_position;
ucharh_size;
ucharv_size;

} screen_info

This structure holds information about a screen. Its fields are explained under the
get_screen_info() global function.

See also: get_screen_info()

Defined Types Constants and Defined Types

354 – The Interface Kit

scroll_bar_info
<interface/InterfaceDefs.h>

typedef struct {
bool proportional;
bool double_arrows;
long knob;
long min_knob_size;

} scroll_bar_info

This structure captures the user’s preferences for how scroll bars should behave and
appear.

See also: set_scroll_bar_info(), the BScrollBar class

symbol_set_name
<interface/InterfaceDefs.h>

typedef font_namesymbol_set_name

This type defines a string long enough to hold the name of a symbol set—64 characters
plus the null terminator. The names of symbol sets are subject to the same length
constraint as the names of fonts, which is why this type is a redefinition offont_name.

See also: get_symbol_set_name()

window_type
<interface/Window.h>

typedef enum {. . .}window_type

This type describes the various kinds of windows that can be requested from the
Application Server.

See also: the BWindow constructor, “window_type Constants” on page 346 above

acrobat/05_MediaKit.pdf

The Media Kit –1

5 The Media Kit

Introduction . 3

BAudioSubscriber . 5
Overview . 5

Sound Hardware . 5
Inputs . 7
Converters . 7
Streams . 8
Outputs . 8

Controlling the Hardware 8
Volume and Mute. 9
The MUX and the Mic10

Sound Data .10
Receiving and Broadcasting Sound Data 11

Constructor and Destructor .12
Member Functions. .12

BSoundFile .17
Overview .17

Sound File Formats . .17
Sound Data Parameters18
Playing a Sound File .18

An Example .19
Constructor and Destructor .22
Member Functions. .23

BSubscriber . .27
Overview .27

Identifying a Server . .28
Subscribing .28

The Stream . .28
The Clique .28
Waiting for Access 30

Entering the Stream . .30
Positioning your BSubscriber 31
Receiving and Processing Buffers 31

2 – The Media Kit

Exiting the Stream 32
Processing Data in a Member Function. 33

Constructor and Destructor .35
Member Functions. .35

Global Functions, Constants, and Defined Types43
Global Functions. .43
Constants .44
Defined Types .46

Media Kit Inheritance Hierarchy

BMessenger
(Application Kit)

BAudioSubscriberBSubscriber

BSoundFile
BFile

(Storage Kit)

The Media Kit –3

The Media Kit

The Media Kit gives you tools that let you generate, examine, manipulate, and realize (or
render) medium-specific data in real-time. It also lets you synchronize the transmission of
data to different media devices, allowing you to build applications that can easily
incorporate and coordinate audio and video (for example).

There are three layers in the Media Kit:

• Through the classes provided by themodule layer, you create data-generating and -
manipulating modules that can be plugged into each other to create an ever-
narrowing data-processing tree. The tree terminates at a global scheduling object.
Every application can have its own processing tree, or it can share branches or even
individual modules with other applications. Synchronization between data from
different media is handled by the scheduler: All you have to do is define and hook
up the data-processing modules.

• At thesubscriber layer are classes that let you talk directly to the media servers that
are provided by the Kit. For each distinct medium there’s a distinct server—but
there’s only one server per medium per computer. Corresponding to each server is a
BSubscriber-derived class. Through instances of these classes you can receive and
send data to the server.

• Thestream layer lets you access the “data-streaming” facilities of the Kit. A data
stream (as used by the Kit) is a sequence of programming entities that each get
access to a set of data buffers. There are no servers or other media-specific
constraints at this layer; you can actually use the classes in the stream layer to
design a streamlined, intra-computer, data-transmission application (currently,
streams can’t broadcast over a network).

These three layers are interconnected: The module layer is built on top of the subscriber
layer, which is built on top of the stream layer. Most high-level media applications will
want to use the module layer exclusively. If you need more control or greater efficiency,
head for the subscriber layer. The stream layer is the least useful to media applications,
but, as mentioned above, it may find a home in applications—media-specific or not—that
want to set up an efficient, real-time data pipeline.

Currently, only the subscriber and stream layers of the Media Kit are implemented, and, in
this release, only the subscriber layer is documented.

At the subscriber layer, the Kit provides two classes:

5

4 – The Media Kit

• BSubscriber defines the basic rules to which all subscribers must adhere. If you
want to use the subscriber layer, this is where you start to learn about it.

• BAudioSubscriber provides additional functionality that speaks directly to the
Audio Server. The Audio Server is a background application that manages sound
data that arrives through the microphone or line-in jacks, and that sends sound data
to the internal speaker and line-out jacks. All subscribers that you create, for now,
will be instances of BAudioSubscriber.

The Kit also provides a BSoundFile class that lets you read the data in a sound file, and
global functions that let you play sound files.

The Media Kit –5

BAudioSubscriber

Derived from: public BSubscriber

Declared in: <media/AudioSubscriber.h>

Overview

BAudioSubscriber objects perform two functions:

• They let your application receive, process, and broadcast sound data.
• They let you control certain parameters—such as volume and muting—of the sound

hardware.

Ultimately, the first point is the more interesting of the two: Recording, generating, and
manipulating sound data is a bit more amusing than simply setting the volume levels of the
hardware devices. But to understand how and what data is received by your
BAudioSubscriber objects, and what happens when you broadcast data through an object,
you should first understand how the hardware is configured. The next section examines
the sound hardware; following that is a description of the sound data that appears in your
application.

Sound Hardware

The sound hardware consists of a number of physical devices (jacks, converters, and the
like), a signal path that routes audio data between these devices, and “control points”
along the signal path that let you adjust the format and flow of the audio data. These
elements are depicted in the following illustration.

Overview BAudioSubscriber

6 – The Media Kit

• The four large boxes (“inputs,” “converters,” “streams,” and “outputs”) divide the
signal path into manageable territories; each territory is examined in separate
sections, below.

• The smaller boxes (“MIC,” “CD,” and so on) are actual or virtual sound devices.

• The long arrowed lines show how the devices are connected. A single line indicates
a single channel, a double line means stereo. The arrowhead at the end of each line
indicates the direction of the signal.

• The circled arrows show where the software can exhibit gain control over a device.
Each control point is labelled as it’s known to the Media Kit. Every control point
has a volume control and a mute.

boost

inputs

INPUT MUX (SINGLE INPUT)

MIC

ADC STREAM

ADC

DAC STREAM

DAC

CD

LINE_IN

LINE-OUT

SPEAKER

converters

streams

outputs

D
A

C
_O

U
T

M
IC

_I
N

CD_THROUGH

LINE_IN_THROUGH

LOOPBACK

SPEAKER_OUT

M
A

S
T

E
R

_O
U

T

OUTPUT
MIX

HEADPHONES
and

BAudioSubscriber Overview

The Media Kit –7

Inputs

There are three analog audio input devices:

• The microphone. The microphone jack at the back of the computer accepts a stereo
mini-phone (1/8”) plug. The analog microphone signal has its own volume control
and mute, and also allows a 20 dB boost. The microphone signal then feeds into the
input MUX.

• Line-in. The stereo line-in jacks at the back of the computer bring a line-level
analog signal into the computer. This signal can be routed directly to the audio
output devices, and fed to the MUX. The direct-to-output, or “through,” path has its
own volume control and mute; this control point is calledB_LINE_IN_THROUGH by
the Kit.

• CD input. The CD (analog) input has the same features as line-in: The CD signal
can be sent through to the output (B_CD_THROUGH), and it can be fed to the MUX.

Note that the microphone signal doesn’thave a through path.

To bring an analog signal into your application (so you can record it, for example), the
signal must pass through the input MUX:

• The MUX is a “mutually exclusive” device that lets you choose a single (analog)
input from among the three sources listed above. In other words, you can bring in
the microphone signalor the line-in signalor the CD signal, but you can’t bring in
any two or all of them at the same time. The MUX passes the input signal to its
output without conversion to digital representation or other modification.

Converters

There are two sound data converters, the analog-to-digital converter (ADC) and the
digital-to-analog converter (DAC):

• The ADC takes the analog signal that it reads from the MUX and converts it to
digital representation. It does this by producing a series ofsamples, or
instantaneous measurements of the signal’s amplitude. The ADC control point is
calledB_ADC_IN.

• The DAC converts digital sound data into a continuous analog signal. The DAC
control point is calledB_DAC_OUT.

Acting as a sort of “short-circuit” between these two devices is the loopback:

• The loopback path takes the digital signal straight out of the ADC and sends it to the
DAC. This path is intended, primarily, to simulate a “through” path for the
microphone signal. There’s little reason to send the line-in or CD signal down the
loopback path since they have actual through paths built in.

Overview BAudioSubscriber

8 – The Media Kit

Streams

The ADC stream and DAC stream are the centerpieces of the BAudioSubscriber class. By
subscribing to the ADC stream you can receive the samples that are emitted by the ADC;
and by subscribing to the DAC stream, you can send buffers of digital sound data to the
DAC.

To enter the ADC stream you must create a BAudioSubscriber, subscribe to the stream (by
passingB_ADC_STREAM as the first argument toSubscribe()), and then callEnterStream().
At that point, your object will begin receiving buffers of ADC-converted data from the
Audio Server. The buffers show up as arguments to the object’s stream function.

Similarly, the DAC stream universe is broached by subscribing to and entering the
B_DAC_STREAM.

If you’re unfamiliar with the concepts of subscription, entering a stream, and the stream
function, take a break and read the BSubscriber specification.

Outputs

The output devices take analog signals and broadcast them to hardware that can turn the
signals into sound.

• The output mixer mixes the signal from the DAC with the signals from the line-in
and CD through paths. You can control the output of this mix at theB_MASTER_OUT
control point.

• The mixed signal is presented at the stereo line-out jacks at the back of the
computer. This is the same signal that’s presented at the headphone jack.

• The stereo signal is mixed to mono (and attenuated by 6 dB) and sent to the abysmal
internal speaker. The speaker has its own volume and mute control
(B_SPEAKER_OUT).

Controlling the Hardware

The BAudioSubscriber class defines a number of functions that control the sound
hardware and that query the state of the hardware. Note that you can call these functions
without first subscribing to one or the other of the audio streams.

BAudioSubscriber Overview

The Media Kit –9

Volume and Mute

To set the volume level of a particular sound device, you use BAudioSubscriber’s
SetVolume() function. The function takes three arguments:

• A constant that represents the device you want to control.
• A float that sets the volume level of the left channel of the device.
• A float that does the same for the right channel.

The device constants are listed below; they correspond to the named control points shown
in the hardware diagram:

• B_CD_THROUGH
• B_LINE_IN_THROUGH
• B_ADC_IN
• B_LOOPBACK
• B_DAC_OUT
• B_MASTER_OUT
• B_SPEAKER_OUT

All volume levels are floating-point numbers in the range [0.0, 1.0], where 0.0 is
inaudible, and 1.0 is maximum volume. If you’re setting a single-channel device (the
speaker), the left channel level is used—the value you pass as the right channel level is
ignored. If you want to set one channel of a stereo device but leave the other at its present
level, pass theB_NO_CHANGE constant for the no-change channel.

In the example below, a BAudioSubscriber is used to set the volume of the CD-through
signal:

BAudioSubscriber *setter = BAudioSubscriber("setter");

/* Set the right channel of the CD through signal
 * to half the maximum volume, and leave the left channel
 * alone.
 */
setter->SetVolume(B_CD_THROUGH, B_NO_CHANGE, 0.5);

To mute a device, you disable it; or, more precisely, you set it to be not enabled. This is
done through theEnableDevice() function. As withSetVolume(), the function’s first
argument is the constant that represents the device you want to control. The second
argument is a boolean that states whether you want to enable (TRUE) or disable (FALSE) the
device. For example:

/* Mute the internal speaker. */
setter->EnableDevice(B_SPEAKER_OUT, FALSE);

TheGetVolume() andIsDeviceEnabled() functions retrieve the current volume and
enabled state of a given device. (As a convenience,GetVolume() returns volumeand
enabled status; see the function description for details.)

Overview BAudioSubscriber

10 – The Media Kit

The MUX and the Mic

To select the analog device that will feed into the MUX, you use the SetADCInput()
function (the signal into the MUX goes to the ADC, hence the name of the function). The
input devices are represented by these constants:

• B_MIC_IN
• B_CD_IN
• B_LINE_IN

TheADCInput() function returns the current input device.

The microphone’s 20 dB boost is toggled through theBoostMic() function. The state of
the boost is retrieved byIsMicBoosted().

Sound Data

Sounds are propagated by the continuous fluctuation of air pressure. This fluctuation is
called a sound wave. The digital representation of a sound wave consists of a series of
discrete measurements of the instantaneous pressure (or amplitude) of the wave at precise,
(typically) equally-spaced points in time. Each measurement is called asample. There are
five attributes that characterize a digital sound sample:

• The size of a single sound sample (the Media Kit expresses this measurement in
bytes-per-sample).

• The order of bytes in a multiple-byte sample.

• The number of samples in a “frame” of sound, where each sample in the frame is
meant to be played at the same time. For example, a stereo sound would have two
samples-per-frame. Samples-per-frame is commonly called thechannel count.

• The number of frames that should be played in a second. This is commonly called
thesampling rate.

• The mapping from the value of a digital sample to a specific sound wave amplitude.
The Media Kit calls this thesample format. Usually, the mapping is linear: When
you double the value of a sample, you double the amplitude to which it corresponds.

The Be sound hardware (both the ADC and the DAC) allows the following sound attribute
settings:

• Sample size can be one or two bytes-per-sample.

• Byte-ordering is either most-significant-byte first (B_BIG_ENDIAN), or least-
significant-byte first (B_LITTLE_ENDIAN).

• The channel count can be one (mono) or two (stereo).

BAudioSubscriber Overview

The Media Kit –11

• The sampling rates, expressed as frames-per-second, that are supported by the
hardware are: 5510, 6620, 8000, 9600, 11025, 16000, 18900, 22050, 27420, 32000,
33075, 37800, 44100, 48000.

• There are two sample formats: The linear format, represented by the constant
B_LINEAR_SAMPLES, can be used with either one- or two-byte samples. The “mu-
law” format (B_MULAW_SAMPLES) can only be used with one-byte samples. Mu-law
is a quasi-exponential mapping that attempts to minimize quantization noise by
dedicating more bits, proportionally, to low amplitude values than to high amplitude
values.

The ADC and DAC use the same sampling rate. You can set the sampling rate through
BAudioSubscriber’sSetSamplingRate() function, but you can’t specify which device you
intend the setting to apply to: It always applies to both.

As for the other sound data parameters (sample size, byte order, channel count, and sample
format), the ADC and the DAC maintain independent settings. For example, you can set
the DAC to expect two-byte linear samples while the ADC produces one-byte mu-law
samples. The functions that set these sound format attributes areSetDACSampleInfo() and
SetADCSampleInfo(). Your BAudioSubscriber needn’t subscribe before setting the DAC
or ADC parameters.

Receiving and Broadcasting Sound Data

A BAudioSubscriber object receives buffers of sound data from one of the Audio Server’s
two buffer streams:

• The buffers that flow through the ADC stream are filled with sound data that’s been
brought into the computer, passed through the MUX, and converted by the ADC.
Data buffers that are received by your objects will already be filled with this data.
Although it’s not forbidden, you usually don’t modify the data in the ADC stream’s
buffers. BAudioSubscribers that enter the ADC stream do so, typically, to record or
examine the data that they find there.

• The buffers that flow through the DAC stream are ultimately dumped into the DAC.
The DAC stream’s buffers are zeroed at the start of their journey; if a
BAudioSubscriber wants to broadcast a sound, it enters the DAC stream and adds its
sound data into the buffers as they flow past.

The ADC stream isn’t automatically connected to the DAC stream. If you want to grab
data from the ADC and send it to the DAC, you have to subscribe to both streams through
two separate BAudioSubscriber objects, and then coordinate the hand off of data from the
ADC subscriber to the DAC subscriber.

Constructor and Destructor BAudioSubscriber

12 – The Media Kit

Constructor and Destructor

BAudioSubscriber()
BAudioSubscriber(const char *name)

Creates and returns a new BAudioSubscriber object. The object is given the name that
you pass asname; the name is provided as a convenience and needn’t be unique.

After creating a BAudioSubscriber, you typically do the following (in this order):

• Subscribe the object to one of the Audio Server’s streams (eitherB_ADC_STREAM or
B_DAC_STREAM) by callingSubscribe().

• Allow the object to begin receiving buffers by callingEnterStream().

See also: BSubscriber::Subscribe(), BSubscriber::EnterStream()

~BAudioSubscriber()
virtual ~BAudioSubscriber(void)

Destroys the BAudioSubscriber.

Member Functions

ADCInput(), SetADCInput
long ADCInput(void)
long SetADCInput(longdevice)

These functions get and set the device that feeds into the MUX (and so to the ADC, hence
the name). Validdevice constants are:

• B_MIC_IN
• B_CD_IN
• B_LINE_IN

You don’t need to be subscribed to the ADC stream in order to call these functions.

BoostMic(), IsMicBoosted()
long BoostMic(boolboost)
bool IsMicBoosted(void)

BoostMic() enables or disables the 20 dB boost on the microphone signal.IsMicBoosted()
returns the state of the boost.

BAudioSubscriber Member Functions

The Media Kit –13

GetADCSampleInfo(), GetDACSampleInfo(), SamplingRate()
long GetADCSampleInfo(long *bytesPerSample,

long *channelCount,
long *byteOrder,
long *sampleFormat)

long GetDACSampleInfo(long *bytesPerSample,
long *channelCount,
long *byteOrder,
long *sampleFormat)

long SamplingRate(void)

These functions return the values of the various sound data parameters.GetADC... returns
(by reference) the sound parameters that are used in the ADC stream. GetDAC... does the
same for the DAC stream. SamplingRate() returns the sampling rate directly; the
sampling rate is held in common by the two streams.

See the description ofSetADCSampleInfo() for a list of parameter values that you can
expect to see.

See also: SetADCSampleInfo()

GetDACSampleInfo() see GetADCSampleInfo()

SetADCSampleInfo(), SetDACSampleInfo(), SetSamplingRate()
long SetADCSampleInfo(longbytesPerSample,

longchannelCount,
longbyteOrder,
longsampleFormat)

long SetDACSampleInfo(longbytesPerSample,
longchannelCount,
longbyteOrder,
longsampleFormat)

long SetSamplingRate(longsamplingRate)

These functions set the values of the sound data attributes used by (respectively) the ADC
stream (SetADC...), DAC stream (SetDAC...), and both streams (SetSamplingRate()). The
arguments to theSetADC... andSetDAC... functions are:

• bytesPerSample is the size of a single sound sample measured in bytes. Acceptable
values are 1 and 2.

• channelCount is the number of samples in a “frame” of sound. Acceptable values
are 1(mono) and 2 (stereo).

Member Functions BAudioSubscriber

14 – The Media Kit

• byteOrder is the order of bytes in a multiple-byte sample. The ordering is either
B_BIG_ENDIAN or B_LITTLE_ENDIAN.

• sampleFormat is the data format of a single sample. Linear format
(B_LINEAR_SAMPLES) can be used for one- or two-byte samples; mu-law format
(B_MULAW_SAMPLES) can be used for 1-byte samples.

TheSetSamplingRate() function sets the sampling rate for both the ADC stream and the
DAC stream:

• The following sampling rates are supported by the sound hardware: 5510, 6620,
8000, 9600, 11025, 16000, 18900, 22050, 27420, 32000, 33075, 37800, 44100,
48000.

These functions don’t flinch at wildly inappropriate parameter settings. The values of the
arguments that you pass in are always rounded to the nearest acceptable value for the
particular parameter.

See also: GetADCSampleInfo()

SetDACSampleInfo() see SetADCSampleInfo()

SetVolume(), GetVolume(), EnableDevice(), IsDeviceEnabled()
long SetVolume(longdevice,

float leftVolume,
float rightVolume)

long GetVolume(longdevice,
float *leftVolume,
float *rightVolume,
bool isEnabled)

long EnableDevice(longdevice, boolenable)
bool IsDeviceEnabled(longdevice)

These functions set and return (by reference) the left and right volume levels, and the
enabled status of the device that’s identified by the first argument. Valid device constants
are:

• B_ADC_IN
• B_CD_THROUGH
• B_LINE_IN_THROUGH
• B_LOOPBACK
• B_DAC_OUT
• B_MASTER_OUT
• B_SPEAKER_OUT

BAudioSubscriber Member Functions

The Media Kit –15

Volume values are floating-point numbers that are clipped within the range [0.0, 1.0].
Across this range, the amplitude of a sound waveform is increased logarithmically; this
results, perceptually, in a linear increase in volume.

Note that the speaker is monophonic; when you set or retrieve the volume of the
B_SPEAKER_OUT device, only theleftVolume argument is used.

You needn’t be subscribed to call these functions.

Member Functions BAudioSubscriber

16 – The Media Kit

The Media Kit –17

BSoundFile

Derived from: public BFile

Declared in: <media/SoundFile.h>

Overview

BSoundFile objects give you access to files that contain sound data. The BSoundFile
functions let you examine the format of the data in the sound file, read the data, and
position a “frame pointer” in the file. Notably absent from the list of a BSoundFile’s
talents is the ability to play itself and to record into itself. Youcan play a BSoundFile’s
data, but this requires the assistance of a BAudioSubscriber (as explained later).
Currently, you can’t record into a BSoundFile.

To use a BSoundFile, you set its ref (using the methods that are described in the BFile
class), and then you open the file through a call toOpen(). Since you can’t record into a
BSoundFile, you almost always open such files inB_READ_ONLY mode. None of the
BSoundFile-defined functions work on an unopened file.

Sound File Formats

The BSoundFile class understands AIFF, WAVE, and “standard” UNIX sound files (.snd
and.au). When you tell a BSoundFile object to open its file, the object figures out the
format of the file—you can’t force it to assume a particular format. If it encounters a file
that’s in a format that it doesn’t understand (“unknown” format), it assumes that the file
contains 44.1 kHz, 16-bit stereo data, and that the file doesn’t have a header (it assumes
that the entire file is sound data). The admission of the unknown format means thatany
file can act as sound data. BSoundFile doesn’t know the meaning of “inappropriate data.”

The file formats are represented by the constantsB_AIFF_FILE, B_WAVE_FILE, B_UNIX_FILE,
andB_UNKNOWN_FILE. You can retrieve the file format from an open BSoundFile through
theFileFormat() function.

Note: 8-bit WAVE data is, by definition, unsigned. However, when you read such data
(through theReadFrames() function, which will be discussed later), it’s automatically
shifted so that itis signed. This automatic conversion allows an 8-bit WAVE file to be
mixed with other sound sources.

Overview BSoundFile

18 – The Media Kit

Sound Data Parameters

After opening your BSoundFile, you can ask for the parameters of its data by calling the
various parameter-retrieving functions (SamplingRate(), ChannelCount(), SampleSize(),
and so on). There’s also a set of parameter-setting functions (SetSamplingRate(),
SetChannelCount(), SetSampleSize(), ...), but note that these functions don’t actually
modify the data in the file (or in the BSoundFile object); they simply set the object’s
impression of the sort of data that it contains so other objects that act on your BSoundFile
will interpret the data correctly. This should only be necessary if the file format is
unknown.

For example, let’s say you have your own sound file format. Your format defines a header
that lists the usual information—the size of the samples, where the data starts, and so on.
BSoundFile won’t recognize your format, of course, but through a combination of the
Read() function (so you can read the header yourself) and the sample parameter-setting
functions defined by BSoundFile, you can tell the object what sort of data it contains.

If you’re creating your own BSoundFile-derived class to encapsulate your own sound file
format, you would put the header-reading code in your implementation of theOpen()
function. For example:

long MySoundFile::Open(long mode)
{

long result;

if ((result = BSoundFile::Open(mode)) < B_NO_ERROR)
return result;

/* ReadHeader() is assumed to be implemented
 * by MySoundFile--it isn’t a BSoundFile function.
 */
if (FileFormat() == B_UNKNOWN_FILE)

result = ReadHeader());
return result;

}

By invoking the BSoundFile version ofOpen(), you allow your object to represent the
standard file formats in addition to your own. (Keep in mind that BSoundFile sets the file
format in itsOpen() implementation.)

Playing a Sound File

There are two methods for playing a sound file:

• The easy way is to call theplay_sound() function. The function takes arecord_ref
argument (in addition to others), and plays the data that it finds in the referred to
file—you don’t need to create a BSoundFile object in order to callplay_sound().
(The complete documentation forplay_sound() and related functions can be found
in the final section of this chapter.)

BSoundFile Overview

The Media Kit –19

• A much more amusing approach is to create a BSoundFile object, open it, read the
data contained within, and add the data into the DAC stream. Obviously, this is a bit
more involved than the simpleplay_sound() (which a dead dog would have no
trouble using), but it gives you more control over the sound: Since you’re reading
the sound data yourself, the BSoundFile approach lets you manipulate the sound as
you’re throwing it into the stream.

 A demonstration of the second approach is given below. To understand the example, you
must be familiar with the subscription and stream-entering mechanisms described in the
BSubscriber class.

An Example

In this example, we show how to read data from a BSoundFile and add it to the DAC
stream for playback. In addition, we’ll allow dynamic amplitude control of the sound.
For the sake of brevity, we’ll restrict the example to 16-bit data.

First, we define an object called SoundPlayer that will be used to coordinate the Media Kit
objects. Notice that SoundPlayer needn’t derive from a Kit class:

class SoundPlayer : public BObject
{

public:
long SetSoundFile(record_ref ref);
void Play(void);
void SetAmpScale(double value);

private:
static bool _play_back(void *arg, char *sound,

long size);
bool Playback(short *sound, long sample_count);

BAudioSubscriber *a_sub;
BSoundFile s_file;
char transfer_buf[B_PAGE_SIZE];
double amp_scale;

};

There are three public functions:SetSoundFile() let’s you set the soundfile that you want
to play,Play() plays it, andSetAmpScale() will control the amplitude. In this
implementation, the file is always allowed to play to completion—aborting the playback is
left as an exercise for the reader.

The private_play_back() function will be the BAudioSubscriber’s literal stream function.
Playback() will be called from within_play_back(); it will do the actual stream work.
The privatetransfer_buf will be used to transfer data between the file and the audio stream
(a page at a time), andamp_scale will hold the amplitude scaling value.

Overview BSoundFile

20 – The Media Kit

Opening the File and Subscribing

In the implementation ofSetSoundFile(), we set the BSoundFile’s ref and open the file...

long SoundPlayer::SetSoundFile(record_ref ref)
{

/* Set the BSoundFile's ref and open the object. */
s_file.SetRef(ref);
s_file.Open(B_READ_ONLY);
if (s_file.Error() < B_NO_ERROR)

return B_ERROR;

/* Check for 16-bit data (given in bytes). */
if (s_file.SampleSize() != 2)

return B_ERROR;

...and then we create the BAudioSubscriber and subscribe it to the DAC stream and set the
stream’s sample parameters to match the data that’s in the file:

a_sub = new BAudioSubscriber("SoundFile Player");
if(!a_sub->Subscribe(B_DAC_STREAM, B_SHARED_SUBSCRIBER_ID,

FALSE) < B_NO_ERROR)
return B_ERROR;

a_sub->SetSamplingRate(s_file.SamplingRate());
a_sub->SetDACSampleInfo(s_file.SampleSize(),

s_file.CountChannels(),
s_file.ByteOrder(),
s_file.SampleFormat());

Next, we set the size of the stream’s buffers to match that of our transfer buffer. The
arguments toSetStreamBuffers() are buffer size, buffer count. The buffer count we use
here (8, the same as the Audio Server default) is unimportant in this example:

a_sub->SetStreamBuffers(B_PAGE_SIZE, 8);

Finally, we initialize the amp scaler and return:

amp_scale = 1.0;
return B_NO_ERROR;

}

By setting the DAC stream’s sample info and buffer size as shown in here, we make the
stream function’s job quite a bit easier—it won’t have to convert the samples as it reads
them from the file, or keep track of how many samples it has read. However, you should
be aware that some other BAudioSubscriber could come along and reset the DAC stream
at any time, thus screwing up the playback. For now, we’ll live with the danger.

Entering the Stream

ThePlay() function enters the BAudioSubscriber into the DAC stream. This causes
buffers to be sent to the stream function, which we’ll implement in the next section.

BSoundFile Overview

The Media Kit –21

void SoundPlayer::Play(void)
{

a_sub->EnterStream(NULL, /* no neighbor */
TRUE, /* head of the stream */
this, /* arg for the stream function */
_play_back, /* the stream function */
NULL, /* no completion function */
TRUE); /* run in the background */

}

While we’re at it, we’ll implement theSetAmpScale() function:

void SoundPlayer::SetAmpScale(double scale)
{

amp_scale = min(1.0, max(0.0, scale));
}

Reading and Playing the File

Now comes the fun part. First we implement the literal stream function,_play_back():

bool SoundPlayer::_play_back(void *arg, char *sound, long size)
{

return (((SoundPlayer *)arg)->Playback((short *)sound,
size/2));

}

As _play_back() receives buffers from the DAC stream, it forwards them (cast as 16-bit
data) to the guts of the operation,Playback(). At each invocation,Playback() reads the
correct number of frames from the sound file, scales their amplitudes, and adds the
samples into the DAC stream buffer. First, we set up some variables:

bool SoundPlayer::Playback(short *sound, long sample_count)
{

long frames_read, counter;
long channel_count = s_file.CountChannels();
long frame_count = sample_count / channel_count;
short *tb_ptr = (short *)transfer_buf;

Now we readframe_count sample frames from the file and place them in the transfer
buffer. (We should check to make sure that the transfer buffer can accommodate the
number of frames read—but, for this example, we’ll assume that the stream’s buffer size
hasn’t changed since we set it to be the same size as the transfer buffer.) IfReadFrames()
returns less than the number of frames that we asked for, we’re at the end of the file.
ReadFrames() returns the number of frames that it actually read, or an error code (as
usual, a negative number) if something went wrong:

frames_read = s_file.ReadFrames(transfer_buf, frame_count);

if (frames_read <= 0)
return FALSE;

Constructor and Destructor BSoundFile

22 – The Media Kit

Finally, we get to write into the sound buffer. We loop over the samples in the transfer
buffer, scale each by theamp_scale value, and then write the scaled value into the sound
buffer:

for (counter = 0; counter < frames_read; counter++) {
*sound++ += *tb_ptr++ * amp_scale; /* left or mono */
if (channel_count == 2)

*sound++ += *tb_ptr++ * amp_scale; /* right */
}

Once again we examine theframes_read count. If it’s less than what we expected to have
read, we’ve reached the end of the file, and so returnFALSE. Otherwise we returnTRUE:

if (frames_read < frame_count)
return FALSE;

else
return TRUE;

}

Obviously, this example is neither robust nor efficient. In particular, the file-reading
mechanism should probably read more than one page at a time—if you were to play more
than a couple files simultaneously with this code, the constant file seeking could cause
your hard disk to burn a hole right through to Australia. Or to California, if you live in
Perth. The point of this exercise was to demonstrate the basic procedures of playing a
sound file.

Constructor and Destructor

BSoundFile()
BSoundFile(void)
BSoundFile(record_refref)

Creates and returns a new BSoundFile object. The first version of the constructor must be
followed by a call toSetRef().

~BSoundFile()
virtual ~BSoundFile(void)

Closes the BSoundFile’s sound file and destroys the object. The data in the sound file isn’t
affected.

BSoundFile Member Functions

The Media Kit –23

Member Functions

CountFrames()
long CountFrames(void)

Returns the number of frames of sound that are in the object’s file. If the object’s file isn’t
open, this returnsB_ERROR.

FileFormat()
long FileFormat(void)

Returns a constant that identifies the type of sound file that this object is associated with.
Currently, three types of sound files are recognized:B_AIFF_FILE, B_WAVE_FILE,
B_UNIX_FILE andB_UNKNOWN_FILE. AIFF is the Apple-defined sound format, WAVE is a
popular PC format, theB_UNIX_FILE constant represents the sound file format that’s used
on many UNIX-based computers.B_UNKNOWN_FILE is returned for all other formats.

B_UNKNOWN_FILE isn’t as useless as it sounds: Any file that is so identified is considered
to contain “raw” sound data. You can accept the default values of the data format
parameters (seeSamplingRate() for a list of these values), or you can shape the data into a
recognizable format by setting the data format parameters directly, through calls to
SetSamplingRate(), SetChannelCount(), and so on. In this case, you’ll need to position
the frame pointer to the first frame—in other words, you have to read past the file’s header,
if any—yourself. Thus primed, subsequent calls toReadFrames() will read the proper
sequences of samples.

If the BSoundFile isn’t open, this returnsB_ERROR.

FrameIndex() see SeekToFrame()

FramesRemaining()
long FramesRemaining(void)

Returns the number of unread frames in the file, orB_ERROR if the object isn’t open.

ReadFrames()
virtual longReadFrames(char *buffer, long frameCount)

Reads (as many as)frameCount frames of data intobuffer. The function returns the
number of frames that were actually read and increments the frame pointer by that
amount. When you hit the end of the file, the function returns 0.

Member Functions BSoundFile

24 – The Media Kit

Note thatbuffer shouldn’t be the sound buffer that’s passed to you in a stream function. If
you read directly into a stream function’s sound buffer, you’ll be clobbering the data that’s
already there. If you’re callingReadFrames() from within a stream function, you must
first read into a “transfer buffer”, and then add the contents of this buffer into the sound
buffer.

If the BSoundFile object isn’t open, this returnsB_ERROR.

SamplingRate(), CountChannels(), SampleSize(), FrameSize(),
ByteOrder(), SampleFormat()

long SamplingRate(void)
long CountChannels(void)
long SampleSize(void)
long FrameSize(void)
long ByteOrder(void)
long SampleFormat(void)

These functions return information about the format of the data that’s found in the object’s
sound file:

• SamplingRate() returns the sampling rate.

• CountChannels() returns the number of channels of sound.

• SampleSize() returns the size, in bytes, of a single sample.

• FrameSize() is a convenience function that give the number of bytes in a single
frame of sound (it’s the same asCountChannels() * SampleSize()).

• ByteOrder() returns a constant that represents the order of samples within a frame.
It’s eitherB_BIG_ENDIAN or B_LITTLE_ENDIAN.

• SampleFormat() returns a constant that represents the data format of a single
sample. It’s one of:B_LINEAR_SAMPLES, B_MULAW_SAMPLES, B_FLOAT_SAMPLES,
or B_UNDEFINED_SAMPLES.

These functions returns default values if the object isn’t associated with a file. The
defaults are:

• 44100 frames per second
• 2 channels
• 2 bytes per sample (16-bit samples)
• 4 bytes per frame
• Bytes are ordered MSB first (B_BIG_ENDIAN)
• The sample format isB_LINEAR_SAMPLES

If the BSoundFile object isn’t open, these functions returnB_ERROR.

BSoundFile Member Functions

The Media Kit –25

SeekToFrame(), FrameIndex()
virtual longSeekToFrame(ulong index)
long FrameIndex(void)

Theses function set and return the location of the “frame pointer.” The frame pointer
points to the next frame that will be read from the file. The first frame in a file is frame 0.

If you try to set the frame pointer to a location that’s outside the bounds of the data, the
pointer is set to the frame at the nearest extreme.

If the BSoundFile object isn’t open, this returnsB_ERROR.

SetSamplingRate(),SetChannelCount(), SetSampleSize()
SetByteOrder(), SetSampleFormat()

virtual longSetSamplingRate(longsamplingRate)
virtual longSetChannelCount(longchannelCount)
virtual longSetSampleSize(longbytesPerSample)
virtual long SetByteOrder(longbyteOrder)
virtual longSetSampleFormat(longsampleFormat)

If the file format of your BSoundFile isB_UNKNOWN_FILE, you can use these functions to
tell the object how to interpret the format of its data. These functions don’t change the
actual data—neither as it’s represented within the object, nor as it resides in the file—they
simply prime the object for subsequent reads of the data.

The candidate values for the functions are:

• samplingRate can be any number, but will be rounded to the nearest hardware-
supported sampling rate when the data is played. The sampling rates that the
hardware supports are: 5510, 6620, 8000, 9600, 11025, 16000, 18900, 22050,
27420, 32000, 33075, 37800, 44100, 48000.

• channelCount is usually 1 (mono) or 2 (stereo). You can set the data to a higher
count but the hardware can play no more than 2 channels at a time.

• sampleSize is usually 2 (16 bit samples). But it can also be 1 (the usual setting for
mu-law encoding) or 4 (floating-point data).

• byteOrder is eitherB_BIG_ENDIAN or B_LITTLE_ENDIAN

• sampleFormat is one ofB_LINEAR_SAMPLES, B_MULAW_SAMPLES,
B_FLOAT_SAMPLES, or B_UNDEFINED_SAMPLES.

Each function returns the value that was actually implanted. If the BSoundFile object isn’t
open, they returnB_ERROR.

Member Functions BSoundFile

26 – The Media Kit

The Media Kit –27

BSubscriber

Derived from: public BObject

Declared in: <media/Subscriber.h>

Overview

BSubscriber objects receive and process buffers of media-specific data. These buffers are
allocated and sent (to the BSubscriber) by a media server; for example, buffers of audio
data are sent by theAudio Server. Each server can control more than onebuffer stream
(the Audio Server has a sound-in stream and a sound-out stream). A BSubscriber can
receive buffers from only one stream.

More than one BSubscriber can “subscribe” to the same stream. The collection of same-
stream BSubscribers stand shoulder-to-shoulder and pass buffers down the stream, in the
style of a bucket brigade. When a BSubscriber receives a buffer it does something to it—
typically, it examines, adds to, or filters the data it finds there—and then passes it to the
next BSubscriber (or, more accurately, lets the server pass it to the next BSubscriber).

The media servers take care of managing the data buffers in their streams—they allocate
new buffers, pass them between BSubscribers, clear existing buffers for re-use, and so on.
A BSubscriber’s primary tasks are these (and in this order):

• Identifying the media server that it wants to get buffers from.

• Applying for aceptance into one of the server’s streams (this is called
“subscribing”).

• Entering the stream. At the moment a BSubscriber enters a stream, the object
begins receiving data buffers from the server.

• Processing the data that it finds in the buffers that it receives.

The BSubscribers that subscribe to the same stream needn’t belong to the same
application. This means that your BSubscriber may be examining, adding to, or filtering
data that was generated in another application.

Most buffer streams need to “flow” quickly and uninterruptedly (this is especially true of
the Audio Server’s streams). The processing that a single BSubscriber performs when it
receives a buffer from the server should be as brief and efficient as possible.

Overview BSubscriber

28 – The Media Kit

Identifying a Server

BSubscriber is an abstract class—you never construct instances of BSubscriber directly.
Instead, you construct instances of one of its derived classes. Each BSubscriber-derived
class provided by the Media Kit corresponds to a particular media server. Identifying a
server, therefore, is implied by the act of choosing a BSubscriber-derived class with which
you instantiate an object.

Currently, the only BSubscriber-derived class that’s supplied by the Media Kit is
BAudioSubscriber. Instances of this class receive buffers from, obviously enough, the
Audio Server.

Subscribing

The first thing you do with your BSubscriber object, once you’ve constructed it, is to ask
its server’s permission to be sent buffers of data. This is performed through the
Subscribe() function. Subscription doesn’t cause buffers to actually be sent, but it does
get the BSubscriber into the ballpark. The act by which a BSubscriber receives buffers
(theEnterStream() function) depends on a successful subscription.

As part of a BSubscriber’s subscription, it must tell the server which stream it wants to
enter, which other BSubscribers it’s willing to share the buffer stream with, and whether
it’s willing to wait for “undesirable” brethren to get out of the stream before it gets in. The
object’s opinions on these topics are registered through arguments to theSubscribe()
function:

long Subscribe(longstream, subscriber_idclique, boolwillWait)

The arguments are discussed in the following sections.

The Stream

A server can shepherd more than one stream. For example, the Audio Server controls
access to two streams: The sound-out stream terminates at the DAC, the sound-in stream
begins at the ADC. You identify the stream you want by using one of the stream constants
defined by the server. The Audio Server defines the constantsB_DAC_STREAM for sound-
out andB_ADC_STREAM for sound-in.

A BSubscriber may only subscribe to one stream at a time.

The Clique

Note: The clique concept is being reconsidered. You can still set a clique value, but the
mechanism may be removed in a subsequent release, or moved into a different level of the
Kit’s software. For now, it’s recommended that youalways set the clique to
B_SHARED_SUBSCRIBER_ID.

BSubscriber Overview

The Media Kit –29

A BSubscriber’s clique (passed as theclique argument toSubscribe()) identifies the cabal
of BSubscribers that the calling object is willing to share the server’s buffer stream with.
The value ofclique acts as a “key” to the stream: To gain access to the stream, you have to
have the proper key.

Here’s how it works: The first BSubscriber that callsSubscribe() passes some value as the
clique argument. This value becomes the key to the buffer stream; any other BSubscriber
that wants to subscribe to that stream must pass the same clique value (unless you want to
be an “invisible” subscriber, as described in the next section). The actual value that’s used
to represent the clique is irrelevant; matching is the only concern. A given clique is
enforced until all subscribed objects haveunsubscribed(through theUnsubscribe()
function) at which point the next object that subscribes will establish a new clique value.

Note: Theclique argument is type cast as asubscriber_id. Such values are tokens that
uniquely identify BSubscriber objects among all extant BSubscribers of the same class
(across all applications). That the clique is represented as asubscriber_id is primarily a
convenience: Just as the actual clique value has no significance, neither does its type
imply any special properties about the clique.

Choosing a Clique Value

With regard to cliques, there are four types of BSubscribers: Those that want utterly
exclusive access to the buffer stream, those that are willing to share access with certain
(but not all) other BSubscribers, those that will share with any other BSubscriber, and
those that want to crash the party. The clique value that you choose depends on which of
these characterizations describes your BSubscriber:

• Exclusive access. If a BSubscriber wants to have exclusive access to the stream—if
it doesn’t want any other BSubscriber to be able to enter the stream while it’s
subscribed—then the object passes some value as theclique argument, but keeps the
value a secret. Typically, the object’s ownsubscriber_id value is used as the
argument; theID() function supplies this value:

/* FirstSub is assumed to be a valid BSubscriber
 * object (currently, it must be an instance of
 * BAudioSubscriber).
 */
subscriber_id firstID = FirstSub->ID();
FirstSub->Subscribe(..., firstID, ...);

• Selective sharing.If the first subscriber wants to share the stream with subsequent
subscribers, the initial clique value must be used in those subsequent subscriptions:

/* First... */
subscriber_id firstID = FirstSub->ID();
FirstSub->Subscribe(..., firstID, ...);
...

/* Notice that the second subscriber passes the
 * first subscriber's ID value as the clique argument.

Overview BSubscriber

30 – The Media Kit

 */
SecondSub->Subscribe(..., firstID, ...);

To share the stream with BSubscribers in other applications, the first subscriber’s
application would have to broadcast the first subscriber’s ID value (through a
BMessage, for example).

• Indiscriminate sharing. To share the stream between all BSubscribers in all
applications is easy: You pass theB_SHARED_SUBSCRIBER_ID constant as the value
for clique:

FirstSub->Subscribe(..., B_SHARED_SUBSCRIBER_ID, ...);

Note, however, that theB_SHARED_SUBSCRIBER_ID clique doesn’tguarantee that
every BSubscriber will be allowed in the stream. If an unsharing BSubscriber has
already set the clique to some other value, a BSubscriber that passes
B_SHARED_SUBSCRIBER_ID will be turned down. Conversely, if the clique is set to
B_SHARED_SUBSCRIBER_ID and a BSubscriber comes along that tries to subscribe
with a less generous clique value, it’s subscription will be denied.

• Gate crashing. If you just don’t care who’s in the stream or whether they like you or
not, use the constantB_INVISIBLE_SUBSCRIBER_ID as theclique value. This will get
you in regardless of—and without changing—the current clique setting. If you’re
the first subscriber, the next subscriber will be allowed in regardless of his clique
specification (and the stream’s clique will be set to this subsequent value).

Waiting for Access

If a BSubscriber is denied access to a server because it didn’t pass the clique test, it can
either give up immediately, or wait for the current clique members to unsubscribe. This is
expressed inSubscribe()’s final argument, the booleanwillWait:

• If willWait is FALSE, Subscribe() returns immediately, regardless of its success in
gaining access to the server. (The measure of its success is given by the function’s
return value.)

• If it’s TRUE, the function doesn’t return until the BSubscriber has successfully
subscribed. There’s no time-out provision, so the wait is indefinite. (Yes, there is a
SetTimeout() function; no, it doesn’t apply to subscription.)

Entering the Stream

Having successfully subscribed to a server’s stream, the BSubscriber’s next task is to enter
the stream. By this, the object will begin receiving buffers of data. You do this through
theEnterStream() function:

BSubscriber Overview

The Media Kit –31

virtual longEnterStream(subscriber_idneighbor,
boolbefore,
void *arg,
enter_stream_hookenterHook,
exit_stream_hookexitHook,
boolbackground)

The function’s operations and arguments are described in the following sections.

Positioning your BSubscriber

The first twoEnterStream() arguments position the BSubscriber with respect to the other
BSubscriber objects that are already in the stream (if any):

EnterStream(subscriber_idneighbor, boolbefore, ...)

Theneighbor argument identifies the BSubscriber (by its ID number, as returned by the
ID() function) that you want the entering BSubscriber to stand next to;before places the
entering object before (TRUE) or after (FALSE) the neighbor. The neighbor needn’t belong
to the same application as the entering object, but it must already have entered the stream.

If you want to place the BSubscriber at one or the other end of the stream (or to add the
first BSubscriber to the stream), you passNULL as the neighbor. A before value ofTRUE
thus places the BSubscriber at the “front” of the stream (the object will be the first to
receive each buffer that flows through the stream), and a value ofFALSE places it at the
“back” (it’s the last to receive buffers before they’re realized or recycled).

A BSubscriber’s position in the stream can’t be locked. If, for example, you place your
BSubscriber to stand at the back of the stream, some other BSubscriber—from some other
application, possibly—can come along later and also claim the back. Your object will be
bumped forward (towards the front of the stream) in deference to the newcomer.

Receiving and Processing Buffers

After your BSubscriber has entered the buffer stream, it will begin receiving buffers of
data. The third, fourth, and last arguments toEnterStream() pertain to the means by which
your object receives these buffers:

EnterStream(..., void *arg, enter_stream_hookentryHook, ..., boolbackground)

The arguments, taken out of order, are:

• entryHook is a pointer to a boolean function (the complete protocol is given below)
that will be invoked once for each buffer that’s received.

• arg is a pointer-sized value that will be passed as an argument toentryrHook.

Overview BSubscriber

32 – The Media Kit

• The value ofbackground is used to determine whetherentryHook will be executed
in a separate thread (TRUE) or in the same thread (FALSE) as that in which
EnterStream() was called. If you run in the background,EnterStream() returns
immediately; if not, the function doesn’t return until the object has exited the
stream.

Of initial interest, here, is the “entry hook” that you must supply: This is global C
function or static C++ member function that’s invoked once for each buffer that the
BSubscriber receives. The protocol for the function (which istypedef’d as
enter_stream_hook) is:

bool stream_function(void *arg, char *buffer, longcount)

• arg is the same as thearg argument that you passed toEnterStream().
• buffer is a pointer to the buffer that has just arrived.
• count is the number of bytes of data in the buffer.

You have to implement the entry hook yourself; the Media Kit doesn’t supply any entry
hook candidates. From within your implementation of the function, you’re expected to
process the data inbuffer as fits your intentions. As mentioned earlier, your processing
should be designed with efficiency in mind. The only rule by which you should abide is
this:

Don’t Clear the Buffer

If you’re generating data, you shouldadd it into the data that you find in the buffer.
Thank-you.

When you’re done with your processing, you simply return from the entry hook. You
don’t have to do anything to send the buffer to the next BSubscriber in the stream; the
Media Kit takes care of that for you. The value that the stream function returns is
important: If it returnsTRUE, the BSubscriber continues receiving buffers; if it returns
FALSE, the object is removed from the stream.

Exiting the Stream

There are two ways to remove a BSubscriber from a stream. The first was mentioned
above: ReturnFALSE from the stream function. The second method is to callExitStream()
directly. TheExitStream() function is particularly useful if you’re running the stream
function in the background and you want to pull the trigger from another thread.

Whichever method is used, the BSubscriber’s “exit hook” is invoked upon exiting the
stream. This is an optional call-back function, similar to the stream function in its
application, that you supply as the fifth argument toEnterStream():

EnterStream(..., exit_stream_hookexitHook, ...)

The protocol for the completion function is:

BSubscriber Overview

The Media Kit –33

long completion_function(void *arg, longerror)

• Thearg value is, again, taken from theEnterStream() call.
• error is a code that explains why the BSubscriber is exiting the stream.

Normally,error is B_NO_ERROR. This means that the BSubscriber is exiting naturally:
Either because the stream function returnedFALSE or becauseExitStream() was called. If
error isB_TIMED_OUT, then the BSubscriber is exiting because of a delay in receiving the
next buffer. (You set the time-out limit through BSubscriber’sSetTimeout() function,
specifying the limit in microseconds; by default the object will wait forever.) Any other
error code will have been generated by a lower-level entity and can be lumped into the
general category of “something went wrong.”

The completion function is executed in the same thread as the stream function. If this isn’t
a background thread, the value returned by the completion function is then returned by
EnterStream(). If youare using a background thread, the return value is lost.

You can perform whatever clean-up is necessary in your implementation of the completion
function. The only thing that you mustn’t do in the completion function is delete the
BSubscriber itself.

Processing Data in a Member Function

Typically, the stream functions is implemented as a “dummy” static member function of
some class. In this case, EnterStream()’s arg argument is a pointer to an instance of that
class. In the implemention of the static function, the “real” stream function is invoked on
thearg pointer that the function receives. The class that implements the functions derive
from BSubscriber.

For example, in the (fictitious) SoundDuller class, a static function called_dull_sound()
and a non-static functionDullSound() are defined. Both of these functions are private. In
addition, it defines publicStart() and Stop() functions that will run the show, and some
private variables—including a BAudioSubscriber object—that it requires to perform:

class SoundDuller : public BObject
{

public:
void Start(void);
void Stop(void);

private:
static bool _dull_sound(void *arg,

char *buf,
long count);

bool DullSound(char *buf, long count);

BAudioSubscriber a_sub;
short previous;

}

Overview BSubscriber

34 – The Media Kit

The implementation of_dull_sound() casts the arg pointer and then invokesDullSound():

bool SoundDuller::_dull_sound(void *arg, char *buf, long count)
{

return (((SoundDuller *)arg)->DullSound(buf,count));
}

DullSound() performs the actual stream data processing. The function shown here
implements a simple low-pass filter (the “HelloWorld” of signal processing). The function
assumes that the stream data is one channel of 16-bit sound:

bool SoundDuller::DullSound(char *buf, long count)
{

long short_count = count/2;
short *s_buf = (short *)buf;

while (short_count-- > 0) {
*s_buf += previous;
previous = *s_buf++;

}
}

TheStart() function initializes the BAudioSubscriber and theprevious variable, and then
callsEnterStream():

void SoundDuller::Start(void)
{

if (a_sub.Subscribe(B_DAC_STREAM, B_SHARED_SUBSCRIBER_ID,
FALSE) < B_NO_ERROR)

return;
previous = 0;

/* Enter at the stream's tail; run in the background. */
a_sub.EnterStream(NULL, FALSE,

this, _make_dull, NULL, TRUE);
}

Stop() removes the subscriber from the stream by callingExitStream(). The function’s
argument says whether we want to wait until the object isreally out of the stream; it’s
always a good idea to re-synchronize if the subscriber is running in the background:

void SoundDuller::Stop(void)
{

a_sub.ExitStream(TRUE);
a_sub.Unsubscribe();

}

Sound details used in this example, such as the meaning of theB_DAC_STREAM constant,
are explained in the BAudioSubscriber class. For another example of a stream function
implementation, see the BSoundFile class.

BSubscriber Constructor and Destructor

The Media Kit –35

Constructor and Destructor

BSubscriber()
BSubscriber(const char *name= NULL)

Creates and returns a new BSubscriber object. The object can be given a name; the name
needn’t be unique.

After creating a BSubscriber, you typically do the following (in this order):

• Subscribe the object to a buffer stream by callingSubscribe().
• Allow the object to begin receiving buffers by callingEnterStream().

The construction of a BSubscriber never fails. This function doesn’t set the object’sError()
value.

See also: Subscribe(), EnterStream()

~BSubscriber()
virtual ~BSubscriber(void)

Destroys the BSubscriber. You should never delete a BSubscriber from within an
implementation of the object’s stream function or completion function.

It isn’t necessary to tell the object to exit the buffer stream or to unsubscribe it before
deleting. These actions will happen automatically.

Member Functions

Clique()
subscriber_idClique(void)

Returns the clique (asubscriber_id value) that this BSubscriber used in its most recent
attempt to subscribe. The attempt need not have been successful, nor is there any
guarantee that the object hasn’t since unsubscribed. If the object hasn’t attempted to
subscribe, this returnsB_NO_SUBSCRIBER_ID.

See also: Subscribe()

Member Functions BSubscriber

36 – The Media Kit

EnterStream()
virtual longEnterStream(subscriber_idneighbor,

boolbefore,
void *arg,
enter_stream_hookstreamFunction,
exit_stream_hookcompletionFunction,
boolbackground)

Causes the BSubscriber to begin receiving buffers of data from its stream. The object
must have successfully subscribed (through a call toSubscribe()) for this function to
succeed.

The arguments to this function (and the function in general) is the topic of most of the
overview to this class; look there for the whole story. Briefly, the arguments are:

• neighbor identifies the BSubscriber that this object will stand next to in the buffer
stream. If neighbor isNULL, this BSubscriber will be positioned at the front or the
back of the stream (depending on the value of the next argument).

• before, if TRUE, places this BSubscriber immediately before neighbor in the stream.
If it’s FALSE, this object is placed after neighbor. If neighbor wasNULL, this object is
placed at the front or back of the stream asbefore is TRUE or FALSE.

• arg is a pointer-sized value that’s forwarded as an argument to the stream and
completion functions (specified in the next two arguments toEnterStream()).

• streamFunction is a global function that’s called once for every buffer that’s sent to
the BSubscriber. The protocol for the function is:

bool stream_function(void *arg, char *buffer, longcount)

Thearg argument, here, is taken literally as thearg value passed toEnterStream().
A pointer to the buffer itself is passed asbuffer; count is the number of bytes of data
in the buffer. If the stream function returnsTRUE, the object continues to receive
buffers; if it returnsFALSE, it exits the stream.

• completionFunction is a global function that’s called after the BSubscriber has
finished processing its last buffer. Its protocol is:

long completion_function(void *arg, longerror)

arg, again, is taken from the argument toEnterStream(). error is a code that
describes why the object is leaving the stream:B_NO_ERROR means that the object
has received anExitStream() call, or that the stream function returnedFALSE; an error
of B_TIMED_OUT means the time limit between buffer receptions (as set through
SetTimeout()) has expired. If the function isn’t running in the background (as
described in the next argument), the value returned by the completion function
becomes the value that’s returned byEnterStream().

The completion function is optional. A value ofNULL is accepted.

BSubscriber Member Functions

The Media Kit –37

• background, if TRUE, causes the stream and completion functions to be executed in a
separate thread (the Kit spawns the thread for you). In this case,EnterStream()
returns immediately. If it’sFALSE, the functions are executed synchronously within
theEnterStream() call.

If the designated neighbor isn’t in the buffer stream,EnterStream() returns
B_SUBSCRIBER_NOT_FOUND. If the BSubscriber is already in the stream,
B_BAD_SUBSCRIBER is returned.

If background is TRUE, EnterStream() immediately returnsB_NO_ERROR; if it’s FALSE,
EnterStream() returns the value returned by the completion function. If a completion
function isn’t supplied,EnterStream() returns a value that indicates the success of the
communication with the server; unless something’s gone wrong, it should return
B_NO_ERROR. In all cases, theError() value is set to the value returned here.

See also: ExitStream()

Error()
long Error(void)

Returns an error code that reflects the success of the function that was most recently
invoked upon this object. The error codes that a particular function uses are listed in that
function’s description.

ExitStream()
virtual longExitStream(boolandWait= FALSE)

Causes the BSubscriber to leave the buffer stream after it completes the processing of its
current buffer. IfandWait is TRUE, the function doesn’t return until the object has
completed processing this final buffer and has actually left the stream. If a completion
function was supplied in theEnterStream() invocation, it will run to completion before
ExitStream() returns. IfandWait is FALSE (the default),ExitStream() returns immediately.

If the object isn’t in the stream, theB_SUBSCRIBER_NOT_FOUND is returned. Otherwise the
function returnsB_NO_ERROR.

Note: In release 1.1d7,ExitStream() doesn’t return a reliable value—but it does set the
error code properly.

See also: EnterStream()

Member Functions BSubscriber

38 – The Media Kit

ID()
subscriber_idID(void)

Returns thesubscriber_id value that uniquely identifies this BSubscriber. A subscriber ID
is issued when the object subscribes to a stream; it’s withdrawn when the object
unsubscribes. ID values are used, primarily, to position a BSubscriber with respect to
some other BSubscriber within a buffer stream.

If the BSubscriber isn’t currently subscribed to a stream,B_NO_SUBSCRIBER_ID is
returned.

IsInStream()
bool IsInStream(void)

ReturnsTRUE if the object is currently in a stream; otherwise it returnsFALSE.

Name()
const char *Name(void)

Returns a pointer to the name of the BSubscriber. The name is set through an argument to
the BSubscriber constructor.

SetTimeout(), Timeout()
void SetTimeout(doublemicroseconds)
doubleTimeout(void)

These functions set and return the amount of time, measured in microseconds, that a
BSubscriber that has entered the buffer stream is willing to wait from the time that it
finishes processing one buffer till the time that it gets the next. If the time limit expires
before the next buffer arrives, the BSubscriber exits the stream and the completion
function is called with itserror argument set toB_TIMED_OUT.

A time limit of 0 (the default) means no time limit—the BSubscriber will wait forever for
its next buffer.

See also: EnterStream()

BSubscriber Member Functions

The Media Kit –39

StreamParameters()
long StreamParameters(long *bufferSize,

long *bufferCount,
bool *isRunning,
long *subscriberCount,
subscriber_id *clique)

Returns information about the stream to which the BSubscriber is currently subscribed:

• bufferSize is the size, in bytes, of the buffers that the object will receive.

• bufferCount is the number of buffers that are used in the stream.

• isRunning is TRUE if the stream is currently running, andFALSE if it isn’t.

• subscriberCount is the number of BSubscriber objects that are currently subscribed
to the stream (whether or not they’ve actually entered).

• clique is the currently enforced clique value for the stream.

You can set the buffer size and buffer count parameters (and so fine-tune the latency of the
stream) through theSetStreamBuffers() function. isRunning can be toggled through calls
to StartStreaming() and StopStreaming(). The other two parameters (subscriberCount and
clique) vary as subscribers come and go.

You must have successfully subscribed to the stream to call this function. If you haven’t,
B_BAD_SUBSCRIBER is returned. Otherwise, the function returnsB_NO_ERROR.

SetStreamBuffers()
long SetStreamBuffers(longbufferSize, longbufferCount)

Sets the size (in bytes) and number of buffers that are used to transport data through the
stream. Although it’s up to the server to provide reasonable default values, you can fine-
tune the performance of the stream by fiddling with this function:

• By decreasing the size and/or number of buffers, you can decrease the maximum
latency of the stream (the time it takes for a buffer to get from one end of the stream
to the other). However, if you go too far in this direction, you run the risk of falling
out of real time.

• By increasing the buffer size and count, you help ensure the real-time integrity of
the stream, but you increase its maximum latency.

You must have successfully subscribed to the stream to call this function. If you haven’t,
B_RESOURCE_UNAVAILABLE is returned. Otherwise, the function returnsB_NO_ERROR.

The Audio Server initializes its streams to use eight buffers (per stream), where each
buffer is a single page (4096 bytes). Currently, there’s no way to automatically restore
these default values after you’ve mangled one of the audio streams.

Member Functions BSubscriber

40 – The Media Kit

StartStreaming(), StopStreaming()
long StartStreaming(void)
long StopStreaming(void)

Starts and stops the passing of buffers through the stream to which the BSubscriber is
subscribed. By default, the stream begins running when the first BSubscriber enters it, and
it stops when the final remaining BSubscriber exits. You should only need to call
StartStreaming() or StopStreaming() if you want to interrupt this automation.

You must have successfully subscribed to the stream to call this function. If you haven’t,
B_RESOURCE_UNAVAILABLE is returned. Otherwise, the function returnsB_NO_ERROR.

Subscribe()
virtual longSubscribe(longstream, subscriber_idclique, boolwillWait)

Asks for admission into the server’s list of BSubscribers to which it (the server) will send
buffers of data. Subscribing doesn’t cause the BSubscriber to begin receiving buffers, it
simply gives the object theright to do so. (To receive buffers, you must invoke
EnterStream() on a BSubscriber that has successfully subscribed.)

The arguments are described fully in the overview to this class. Briefly, they are:

• stream is a constant that identifies the specific stream within the server that you wish
to subscribe to. The Audio Server provides two stream constants:B_DAC_STREAM
(sound-out), andB_ADC_STREAM (sound-in).

Theclique argument is used as a “key” to the server. If there are no other currently-
subscribed objects, any clique value is accepted and the BSubscriber is admitted.
Subsequent subscriptions (by other BSubscribers) are then denied if they don’t
match this clique value. Conversely, if some other object has successfully
subscribed (and hasn’t since unsubscribed) this object must pass the clique value by
which the currently-subscribed object gained admittance. The special
B_INVISIBLE_SUBSCRIBER_ID value, when used as the clique, will let you invade any
stream, any time.

Note: As mentioned in the overview to this class, its recommended that you set the
clique argument toB_SHARED_SUBSCRIBER_ID. The clique concept will either be
removed or transferred to some other class in a subsequent release.

• ThewillWait argument tells the server whether this BSubscriber will wait for the
coast to clear if the immediate attempt to subscribe is denied.

A successful subscription returnsB_NO_ERROR. If the subscription is denied (because
stream doesn’t identify a valid stream, or theclique value isn’t acceptable) and the
BSubscriber isn’t waiting,Subscribe() returnsRESOURCE_NOT_AVAILABLE. TheError()
value is set to the value returned directly here.

BSubscriber Member Functions

The Media Kit –41

Note: The timeout value that you can set through theSetTimeout() function doesn’t apply
to subscription (it only applies to the inter-buffer lacuna). A BSubscriber that’s willing to
wait for admission might be waiting a long time.

See also: Unsubscribe()

Timeout() see SetTimeout()

Unsubscribe()
virtual longUnsubscribe(void)

Revokes the BSubscriber’s access to its media server and sets its subscriber ID to
B_NO_SUBSCRIBER_ID. If the object is currently in a stream, it automatically exits the
stream and the object’s completion function is called.

When you delete a BSubscriber, it’s automatically unsubscribed.

If the object isn’t currently subscribed, the function returnsB_BAD_SUBSCRIBER.
Otherwise, it returnsB_NO_ERROR.

See also: Subscribe()

Member Functions BSubscriber

42 – The Media Kit

The Media Kit –43

Global Functions, Constants, and
Defined Types

This section lists parts of the Media Kit that aren’t contained in classes.

Global Functions

beep()
<media/Beep.h>

sound_handlebeep(void)

beep() plays the system beep. The sound is played in a background thread and beep()
returns immediately. If you want to re-synchronize with the sound playback, pass the
sound_handle token (returned by this function) as the argument towait_for_sound().
This will cause your thread to wait until the sound has finished playing.

beep() will mix other sounds, but it never waits if the immediate attempt to play is
thwarted.

play_sound()
<media/Beep.h>

sound_handleplay_sound(record_refsoundRef,
boolwillMix ,
boolwillWait,
boolbackground)

Plays the sound file identified bysoundRef. ThewillMix andwillWait arguments are
used to determine how the function behaves with regard to other sounds:

• If you want your sound to play all by itself, setwillMix to FALSE. If you don’t care
if it’s mixed with other sounds, set it toTRUE.

• If you want your sound to play immediately (whether or not you’re willing to
mix), setwillWait to FALSE. If you’re willing to wait for the sound playback
resources to become available, setwillWait to TRUE.

Note that settingwillMix to TRUE doesn’t ensure that your sound will play immediately.
If the sound playback resources are claimed for exclusive access by some other process,
you’ll be blocked, even if you’re willing to mix.

Constants Global Functions, Constants, and Defined Types

44 – The Media Kit

The background argument, ifTRUE, tells the function to spawn a thread in which to play
the sound. The function, in this case, returns immediately. If background isFALSE, the
sound is played synchronously and play_sound() won’t return until the sound has
finished.

Thesound_handle value that’s returned is a token that represents the sound playback.
This token is only valid if you’re playing in the background; you would use it in a
subsequent call tostop_sound() or wait_for_sound(). If the ref doesn’t represent a file,
or if the sound couldn’t be played, for whatever reason, play_sound() returns a negative
integer.

stop_sound()
<media/Beep.h>

long stop_sound(sound_handlehandle)

Stops the playback of the sound identified byhandle, a value that was returned by a
previous call tobeep() or play_sound(). The return value can be ignored.

wait_for_sound()
<media/Beep.h>

long wait_for_sound(sound_handlehandle)

Causes the calling thread to block until the sound identified byhandle has finished
playing. Thehandle value should have been returned by a previous call tobeep() or
play_sound(). Currently,wait_for_sound() always returnsB_NO_ERROR.

Constants

Byte Order Constants
<media/MediaDefs.h>

Constant Meaning

B_BIG_ENDIAN MSB first
B_LITTLE_ENDIAN LSB first

These constants are used by BAudioSubscriber and BSoundFile objects to describe the
order of bytes within a sound sample.

Global Functions, Constants, and Defined Types Constants

The Media Kit –45

Sound File Formats
<media/SoundFile.h>

Constant Meaning

B_UNKNOWN_FILE The file contains “raw” data
B_AIFF_FILE AIFF format
B_WAVE_FILE WAVE format
B_UNIX_FILE Sun/NeXT/SGI etc. format

These constants represent the sound file formats that are recognized by the BSoundFile
class.

Media Thread Priority
<media/MediaDefs.h>

Constant Value

B_MEDIA_LEVEL Same asB_REAL_TIME_PRIORITY

All threads that are spawned by the Media Kit are given a priority ofB_MEDIA_LEVEL;
this is the same asB_REAL_TIME_PRIORITY, the highest priority defined by the Kernel Kit.

No-Change Constant
<media/MediaDefs.h>

Constant Meaning

B_NO_CHANGE Don’t change the value of this parameter

TheB_NO_CHANGE constant is used in multiple-parameter-setting functions (such as
BAudioSubscriber’sSetSampleParameters() to indicate that you don’t want a particular
parameter to change its current setting (while changing the values of other parameters).

Sample Format Constants
<media/MediaDefs.h>

Constant Meaning

B_LINEAR_SAMPLES Linear quantization
B_FLOAT_SAMPLES Floating-point samples
B_MULAW_SAMPLES Mu-law encoding
B_UNDEFINED_SAMPLES Anything else

These constants represent the sample formats that are recognized by the sound
hardware.

Defined Types Global Functions, Constants, and Defined Types

46 – The Media Kit

Subscriber IDs
<media/MediaDefs.h>

Constant Meaning

B_SHARED_SUBSCRIBER_ID Share the stream with other subscribers.
B_INVISIBLE_SUBSCRIBER_ID Subscribe to the stream regardless of the clique.
B_NO_SUBSCRIBER_ID The BSubscriber object isn’t subscribed.

The first two subscriber ID constants are most commonly used as “clique” values,
passed to theEnterStream() function. The final ID,B_NO_SUBSCRIBER_ID, is the default,
subscriber-isn’t-subscribed subscriber ID value.

The subscriber ID constants are type assubscriber_id values.

Defined Types

sound_handle
<media/Beep.h>

typedef sem_idsound_handle

Thesound_handle type is a token that represents sounds that are currently being played
through calls tobeep() or play_sound().

subscriber_id
<media/MediaDefs.h>

typedef sem_idsubscriber_id

Thesubscriber_id type is a token that uniquely identifies—system-wide—a BSubscriber
object for a particular server.

acrobat/06_MidiKit.pdf

The Midi Kit – 1

6 The Midi Kit

Introduction . 3

BMidi . 5
Overview . 5

Forming Connections . 5
Generating MIDI Messages. 7
Spray Functions . 8
Input Functions . 8

Creating a MIDI Filter 9
Time . .10
Spraying Time. .11

Running in Real Time 11
Running Ahead of Time 11

Hook Functions .12
Constructor and Destructor .13
Member Functions. .14
Input and Spray Functions. .17

BMidiPort .21
Overview .21

Opening the Ports . .21
Run() and the Input Functions. 22
Looping through a BMidiPort Object. 22

Constructor and Destructor .22
Member Functions. .23

BMidiStore .25
Overview .25

Recording . .25
Timestamps . .26
Erasing and Editing a Recording26

Playback. .26
Setting the Current Event. 27

Reading and Writing MIDI Files 28
Constructor and Destructor .29
Member Functions. .29

2 – The Midi Kit

BMidiText .33
Overview .33
Constructor and Destructor .34
Member Functions. .34

Midi Kit Inheritance Hierarchy

BObject
(Support Kit)

BMidiStoreBMidi

BMidiPort

BMidiText

The Midi Kit – 3

The Midi Kit

The Musical Instrument Digital Interface (MIDI) is a standard for representing and
communicating musical data. Its fundamental notion is that instantaneous musical events
generated by a digital musical device can be encapsulated as “messages” of a known
length and format. These messages can then be transmitted to other computer devices
where they’re acted on in some manner. The MIDI standard allows digital keyboards to
be de-coupled from synthesizer boxes, lets computers record and playback performances
on digital instruments, and so on.

The Midi Kit understands the MIDI software format (including Standard MIDI Files).
With the Kit, you can create a network of objects that generate and broadcast MIDI
messages. Applications built with the Midi Kit can read MIDI data that’s brought into the
computer through a MIDI port, process the data, write it to a file, and send it back out
through the same port. The Kit contains four classes:

• The BMidi class is the centerpiece of the Kit. It defines the tenets to which all
MIDI-processing objects adhere, and provides much of the machinery that realizes
these ideas. BMidi is abstract—you never create direct instances of the class.
Instead, you construct and connect instances of the other Kit classes, all of which
derive from BMidi. You can also create your own classes that derive from BMidi.

• BMidiPort knows how to read MIDI data from and write it to a MIDI hardware port.

• BMidiStore provides a means for storing MIDI data, and for reading, writing, and
performing Standard MIDI Files.

• BMidiText is a debugging aid that translates MIDI messages into text and prints
them to standard output. You should only need this class while you’re designing
and fine-tuning your application.

To use the Midi Kit, you should have a working knowledge of the MIDI specification; no
attempt is made here to describe the MIDI software format.

The BeBox comes equipped with four MIDI hardware ports. These are standard MIDI
ports that accept standard MIDI cables—you don’t need a MIDI interface box. The ports
are aligned vertically at the back of the computer. Top-to-bottom they are MIDI-In A,
MIDI-Out A, MIDI-In B, and MIDI-Out B. Currently, the Midi Kit only talks to the top
set of ports (MIDI-In A and MIDI-Out A).

6

4 – The Midi Kit

The Midi Kit – 5

BMidi

Derived from: public BObject

Declared in: <midi/Midi.h>

Overview

BMidi is the centerpiece of the Midi Kit. It provides base class implementations of the
functions that create a MIDI performance. BMidi is abstract; all other Kit classes—and
any class that you want to design to take part in a performance—derive from BMidi.
When you create a BMidi-derived class, you do so mainly to re-implement the hook
functions that BMidi provides. The hook functions allow instances of your class to
behave in a fashion that the other objects will understand.

The functions that BMidi defines fall into four categories:

• Connection functions. The connection functions let you connect the output of one
BMidi object to the input of another BMidi object.

• Message-generation functions. Some BMidi objects generate (or otherwise
procure) MIDI data. To do this, a derived class must implement theRun() hook
function. Run() is the brains of a MIDI performance; other performance functions,
such asStart() andStop() control the performance.

• “Spray” functions. If a BMidi object wants to send a MIDI message to other BMidi
objects, it does so by calling one of the output, or “spray,” functions. There’s a
spray function for each type of MIDI message; for example,SprayNoteOn()
corresponds to MIDI’s Note On message. When a message is sprayed, it’s sent to
each of the objects that are connected to the output of the sprayer.

• Input functions. When a message is sprayed, the receivers of the message are
notified by the automatic invocation of particular “input” functions. For example,
when a BMidi object callsSprayNoteOn(), each of the objects that it’s connected to
becomes the target of theNoteOn() function. How the receiving object responds
depends on the object’s class: The input functions are virtual; the BMidi class
implementations are empty.

Forming Connections

A fundamental concept of the Midi Kit is that MIDI data should “stream” through your
application, passing from one BMidi-derived object to another. Each object does

Overview BMidi

6 – The Midi Kit

whatever it’s designed to do: Sends the data to a MIDI port, writes it to a file, modifies it
and passes it on, and so on.

You form the chain of BMidi objects that propagate MIDI data by connecting them to each
other. This is done through BMidi’s Connect() function. The function takes a single
argument: The object you want the caller to connect to. By callingConnect(), you
connect the output of the calling object to the input of the argument object.

For example, let’s say you want to connect a MIDI keyboard to your computer, play it, and
have the performance recorded in a file. To set this up, you connect a BMidiPort object,
which reads data from the MIDI port, to a BMidiStore object, which stores the data that’s
sent to it and can write it to a file:

/* Connect the output of a BMidiPort to the input of a
 * BMidiStore.
 */
BMidiPort *m_port = new BMidiPort();
BMidiStore *m_store = new BMidiStore();

m_port->Connect(m_store);

Simply connecting the objects isn’t enough, however; you have to tell the BMidiPort to
start listening to the MIDI port, by calling itsStart() function. This is explained in a later
section.

Once you’ve made the recording, you could play it back by re-connecting the objects in
the opposite direction:

/* We'll disconnect first, although this isn't strictly
 * necessary.
 */
m_port->Disconnect(m_store);
m_store->Connect(m_port);

In this configuration, a Start() call to m_store would cause its MIDI data to flow into the
BMidiPort (and thence to a synthesizer, for example, for realization).

You can connect any number of BMidi objects to the output of another BMidi object, as
depicted below:

The configuration in the illustration is created thus:

a_object

b_object

c_object

d_object

BMidi Overview

The Midi Kit – 7

a_object->Connect(b_object);
a_object->Connect(c_object);
a_object->Connect(d_object);

Every BMidi object knows which objects its output is connected to; you can get a BList of
these objects through the Connections() function. For example,a_object, above, would
list b_object, c_object, andd_object as its connections.

Similarly, the same BMidi object can be the argument in any number ofConnect() calls,
as shown below and depicted in the following illustration:

b_object->Connect(a_object);
c_object->Connect(a_object);
d_object->Connect(a_object);

When you use a BMidi object as the argument to a Connect() method, the argument object
isn’t informed. In the illustration,a_object doesn’tknow about the objects that are
connected to its input.

Generating MIDI Messages

To generate MIDI messages, you implement theRun() function in a BMidi-derived class.
An implementation ofRun() should include awhile() loop that produces (typically) a
single MIDI message on each pass, and then sprays the message to the connected objects.
To predicate the loop you test the value of theKeepRunning() boolean function.

The outline of aRun() implementation looks like this:

void MyMidi::Run()
{

while (KeepRunning()) {
/* Generate a message and spray it. */

}
}

Although your derived class can generate more than one MIDI message each time through
the loop, it’s recommended that you try to stick to just one.

To tell an object to perform itsRun() function, you call the object’sStart() function—you
never callRun() directly. Start() causes the object to spawn a thread (its “run” thread) and

c_object

b_object

a_object

d_object

Overview BMidi

8 – The Midi Kit

executeRun() within it. When you’re tired of the object’s performance, you call itsStop()
function.

TheRun() function is needed in classes that want to introduce new MIDI data into a
performance. For example, in its implementation ofRun(), BMidiStore sprays messages
that correspond to the MIDI data that it stores. In itsRun(), a BMidiPort reads data from
the MIDI port and produces messages accordingly. If you’re generating MIDI data
algorithmically, or reading your own file format (BMidiStore can read standard MIDI
files), then you’ll need to implement Run(). If, on the other hand, you’re creating an object
that “filters” data—that accepts data at its input, modifies it, then sprays it—you won’t
needRun().

Another point to keep in mind is that theRun() function can run ahead of real time. It
doesn’t have to generate and spray data precisely at the moment that the data needs to be
realized. This is further explained in the section “Time” on page 10.

Important: The BMidi-derived classes that you createmust implementRun(), even if they
don’t generate MIDI data; “do-nothing” implementations are acceptable, in this case. For
example, if you’re creating a filter (as described in a later section), your Run() function
could be, simply

void MidiFilter::Run()
{}

Spray Functions

The spray functions are used (primarily) within aRun() loop to send data to the running
object’s connections (the objects that are connected to the running object’s output).
There’s a separate spray function for each of the MIDI message types:SprayNoteOn(),
SprayNoteOff(), SprayPitchBend(), and so on. The arguments that these functions take are
the data items that comprise the specific messages. The spray functions also take an
additional argument that gives the message a time-stamp, as explained later (again, in the
“Time” section).

Input Functions

The input functions take the names of the MIDI messages to which they respond:
NoteOn() responds to a Note On message;NoteOff() responds to a Note Off;
KeyPressure() to a Key Pressure change, and so on. These are all virtual functions. BMidi
doesn’t provide a default implementation for any of them; it’s up to each BMidi-derived
class to decide how to respond to MIDI messages.

Input functions are never invoked directly; they’re called automatically when a running
object sprays MIDI data.

Every BMidi object automatically spawns an “input” thread when it’s constructed. It’s in
this thread that the input functions are executed. The input thread is always running—the

BMidi Overview

The Midi Kit – 9

Start() andStop() functions don’t affect it. As soon as you construct an object, it’s ready to
receive data.

For example, let’s say, once again, that you have a BMidiPort connected to a BMidiStore:

m_port->Connect(m_store);

Now you open the port (a BMidiPort detail that doesn’t extend to other BMidi-derived
classes) and tell the BMidiPort to start running:

m_port->Open("midi1");
m_port->Start();

As the BMidiPort is running, it sends data to its output. Since the BMidiStore is
connected to the BMidiPort’s output, it receives this data automatically in the form of
input function invocations. In other words, whenm_port calls its SprayNoteOn() function
(which it does in itsRun() loop),m_store’s NoteOn() function is automatically called. As
an instance of BMidiStore, the m_store object caches the data that it receives through the
input functions.

You can derive your own BMidi classes that implement the input functions in other ways.
For example the following implementation ofNoteOn(), in a proposed class called
NoteCounter, simply keeps track of the number of times each key (in the MIDI sense) is
played:

void NoteCounter::NoteOn(uchar channel, uchar keyNumber,
uchar velocity, ulong time)

{
/* We’ll assume the class has allocated an array that
 * holds the key counters.
 */
keyCounter[keyNumber]++;

}

Note that theNoteOn() function in the example includes atime argument (the other
arguments should be familiar if you understand the MIDI specification). This argument is
explained in the “Time” section.

Creating a MIDI Filter

Some BMidi classes may want to create objects that act as filters: They receive data,
modify it, and then pass it on. To do this, you call the appropriate spray functions from
within the implementations of the input functions. Below is the implementation of the
NoteOn() function for a proposed class called Transposer. It takes each Note On,
transposes it up a half step, and then sprays it:

Overview BMidi

10 – The Midi Kit

void Transposer::NoteOn(uchar channel, uchar keyNumber,
uchar velocity, ulong time)

{
uchar new_key = max(keyNumber + 1, 127);
SprayNoteOn(channel, new_key, velocity, time);

}

There’s a subtle but important distinction between a filter class and a “performance” class
(where the latter is a class that’s designed to actually realize the MIDI data it receives).
The distinction has to do with time, and is explained in the next section. An implication of
the distinction that affects the current discussion is that it may not be a great idea to invest,
in a single object, the ability to filterand perform MIDI data. By way of calibration, both
BMidiStore and BMidiPort are performance classes—objects of these classes realize the
data they receive, the former by caching it, the latter by sending it out the MIDI port. In
neither of these classes do the input functions spray data.

Time

Every spray and input function takes a finaltime argument. This argument declares when
the message that the function represents should be performed. The argument is given as
an absolute measurement inticks, or milliseconds. Tick 0 occurs when you boot your
computer; the tick counter automatically starts running at that point. To get the current
tick measurement, you call the global, Kernel Kit-definedsystem_time() function and
divide by 1000.0 (system_time() returns microseconds).

A convention of the Midi Kit holds that time arguments are applied at an object’s input. In
other words, the implementation of a BMidi-derived input function would look at the time
argument, wait until the designated time, and then do whatever it does that it does do.
However, this only applies to BMidi-derived classes that are designed to perform MIDI
data, as the term was defined in the previous section. Objects that filter datashouldn’t
apply the time argument.

To apply thetime argument, you call theSnoozeUntil() function, passing the value oftime.
For example, a “performance”NoteOn() function would look like this:

void MyPerformer::NoteOn(uchar channel, uchar keyNumber,
uchar velocity, ulong time)

{
SnoozeUntil(time);
/* Perform the data here. */

}

If time designates a tick that has already tocked,SnoozeUntil() returns immediately;
otherwise it tells the input thread to snooze until the designated tick is at hand.

An extremely important point, with regard to The SnoozeUntil() function, as used here,
may cause spraying objects (objects that are spraying

BMidi Overview

The Midi Kit – 11

Spraying Time

If you’re implementing theRun() function, then you have to generate a time value yourself
which you pass as the final argument to each spray functionthat you call. The value you
generate depends on whether you class runs in real time, or ahead of time.

Running in Real Time

If your class conjures MIDI data that needs to be performed immediately, you should use
theB_NOW macro as the value of thetime arguments that you pass to your spray functions.
B_NOW is simply a cover for (system_time()/1000.0) (converted to an integer). By using
B_NOW as thetime argument you’re declaring that the data should be performed in the
same tick in which it was generated. This probably won’t happen; by the time the input
functions are called and the data realized, a few ticks will have elapsed. In this case, the
expectedSnoozeUntil() calls (within the input function implementations) will see that the
time value has passed, and so will return immediately, allowing the data to be realized as
quickly as possible.

The lag between the time that you generate the data and the time it’s realized depends on a
number of factors, such as how loaded down your machine is and how much processing
your BMidi objects perform. But the Midi Kit machinery itself shouldn’t impose a latency
that’s beyond the tolerability of a sensible musical performance.

Running Ahead of Time

If you’re generating data ahead of its performance time, you need to compute the time
value so that it pinpoints the correct time in the future. For example, if you want to create
a class that generates a note every 100 milliseconds, you need to do something like this:

void MyTicker::Run()
{

ulong when = B_NOW;
uchar key_num;

while (KeepRunning()) {

/* Make a new note. */
SprayNoteOn(1, 60, 64, when);

/* Turn the note off 99 ticks later. */
when += 99;
SprayNoteOff(1, 60, 0, when);

/* Bump the when variable so the next Note On
 * will be 100 ticks after this one.
 */
when += 1;

}
}

Hook Functions BMidi

12 – The Midi Kit

When a MyTicker object is told to start running, it generates a sequence of Note On/Note
Off pairs, and sprays them to its connected objects. Somewhere down the line, a
performance object will apply the time value by callingSnoozeUntil().

Tethering MyTicker

But what, you may wonder, keeps MyTicker from running wild and generating thousands
or millions of notes—which aren’t scheduled to be played for hours—as fast as possible?

The answer is in the mechansim that connects a spray function to an input function: The
BMidi class creates a port (in the Kernel Kit sense) for every object. When you invoke a
spray function, the data is encoded in a message and written to each of the connected
objects’ ports. The input functions (invoked on the connected objects) then read from
their respective ports. The secret here is that these ports are declared to be 1 (one)
message deep. So, as long as one of the input function callsSnoozeUntil(), the spraying
object will never be more than one message ahead.

A useful feature of this mechanism is that if you connect a series of BMidi object that
don’t invokeSnoozeUntil(), you can process MIDI data faster than real-time. For example,
let’s say you want to spray data from one BMidiStore object, pass the data through a filter,
and then store it in another BMidiStore. The BMidiStore input functions don’t call
SnoozeUntil(); thus, data will flow out of the first object, through the filter, and into its
destination as quickly as possible, allowing you to process hours of real-time data in just a
few seconds. Of course, if you add a performance object into this mix (so you can hear the
data while it’s being processed), the data flow will be tethered, as described above.

Hook Functions

Run() Contains a loop that generates and broadcasts MIDI
messages.

Start() Starts the object’s run loop. Can be overridden to provide
pre-running adjustments.

Stop() Stops the object’s run loop. Can be overridden to perform
post-running clean-up.

The input functions (NoteOn(), NoteOff(), and so on) are also hook functions. These are
listed in the section “Input and Spray Functions” on page 17.

BMidi Constructor and Destructor

The Midi Kit – 13

Constructor and Destructor

BMidi()
BMidi(void)

Creates and returns a new BMidi object. The object’s input thread is spawned and started
in this function—in other words, BMidi objects are born with the ability to accept
incoming messages. The run thread, on the other hand, isn’t spawned untilStart() is
called.

~BMidi()
virtual ~BMidi(void)

Kills the input and run threads after they’ve gotten to suitable stopping points (as defined
below), deletes the list that holds the connections (but doesn’t delete the objects contained
in the list), then destroys the BMidi object.

The input thread is stopped after all currently-waiting input messages have been read. No
more messages are accepted while the input queue is being drained. The run thread is
allowed to complete its current pass through the run loop and then told to stop (in the
manner of theStop() function).

While the destructor severs the connections that this BMidi object has formed, it doesn’t
sever the connections from other objects to this one. For example, consider the following
(improper) sequence of calls:

/* DON'T DO THIS... */
a_midi->Connect(b_midi);
b_midi->Connect(c_midi);
...
delete b_midi;

Thedelete call severs the connection fromb_midi to c_midi, but it doesn’t disconnect
a_midi andb_midi. You have to disconnect the object’s “back-connections” explicitly:

/* ...DO THIS INSTEAD */
a_midi->Connect(b_midi);
b_midi->Connect(c_midi);
...
a_midi->Disconnect(b_midi);
delete b_midi;

See also: Stop()

Member Functions BMidi

14 – The Midi Kit

Member Functions

Connect()
void Connect(BMidi * toObject)

Connects the BMidi object’s output totoObject’s input. The BMidi object can connect its
output to any number of other objects. Each of these connected objects receives an input
function call as the BMidi sprays messages. For example, consider the following setup:

my_midi->Connect(your_midi);
my_midi->Connect(his_midi);
my_midi->Connect(her_midi);

The output ofmy_midi is connected to the inputs ofyour_midi, his_midi, and her_midi.
Whenmy_midi calls a spray function—SprayNoteOn(), for example—each of the other
objects receives an input function call—in this case,NoteOn().

Any object that’s been the argument in aConnect() call should ultimately be disconnected
through a call toDisconnect(). In particular, care should be taken to disconnect objects
when deleting a BMidi object, as described in the destructor.

See also: ~BMidi(), Connections(), IsConnected()

Connections()
inline BList *Connections(void)

Returns a BList that contains the objects that this object has connected to itself. In other
words, the objects that were arguments in previous calls toConnect(). When a BMidi
object sprays, each of the objects in its connection list becomes the target of an input
function invocation, as explained in the class description.

See also: Connect(), Disconnect(), IsConnected()

Disconnect()
void Disconnect(BMidi * toObject)

Severs the BMidi’s connection to the argument. The connection must have previously
been formed through a call to Connect() with a like disposition of receiver and argument.

See also: Connect()

BMidi Member Functions

The Midi Kit – 15

IsConnected()
inline bool IsConnected(BMidi * toObject)

ReturnsTRUE if the argument is present in the receiver’s list of connected objects.

See also: Connect(), Connections()

IsRunning()
bool IsRunning(void)

ReturnsTRUE if the object’sRun() loop is looping; in other words, if the object has received
a Start() function call, but hasn’t been told to Stop() (or otherwise hasn’t fallen out of the
loop).

See also: Start(), Stop()

KeepRunning()
protected:

bool KeepRunning(void)

Used by theRun() function to predicate itswhile loop, as explained in the class
description. This function shouldonly be called from withinRun().

See also: Run(), Start(), Stop()

Run()
private:

void Run(void)

A BMidi-derived class places its data-generating machinery in theRun() function, as
described in the section “Generating MIDI Messages” on page 7.

See also: Start(), Stop(), KeepRunning()

SnoozeUntil()
void SnoozeUntil(ulongtick)

Puts the calling thread to sleep untiltick milliseconds have elapsed since the computer was
booted. This function is meant to be used in the implementation of the input functions, as
explained in the section “Time” on page 10.

Member Functions BMidi

16 – The Midi Kit

Start()
virtual voidStart(void)

Tells the object to begin its run loop and execute theRun() function. You can override this
function in a BMidi-derived class to provide your own pre-running initialization. Make
sure, however, that you call the inherited version of this function within your
implementation.

See also: Stop(), Run()

Stop()
virtual voidStop(void)

Tells the object to halt its run loop. CallingStop() tells theKeepRunning() function to
returnFALSE, thus causing the run loop (in theRun() function) to terminate. You can
override this function in a BMidi-derived class to predicate the stop, or to perform post-
performance clean-up (as two examples). Make sure, however, that you invoke the
inherited version of this function within your implementation.

See also: Start(), Run()

BMidi Input and Spray Functions

The Midi Kit – 17

Input and Spray Functions

The protocols for the input and spray functions are given below, grouped by the MIDI
message to which they correspond (the input function for each group is shown first, the
spray function is second).

See the class overview for more information on these functions.

Channel Pressure
virtual void ChannelPressure(ucharchannel,

uchar pressure,
ulong time= B_NOW)

protected:

void SprayChannelPressure(ucharchannel,
uchar pressure,
ulong time)

Control Change
virtual void ControlChange(ucharchannel,

uchar controlNumber,
uchar controlValue,
ulong time= B_NOW)

protected:

void SprayControlChange(ucharchannel,
uchar controlNumber,
uchar controlValue,
ulong time)

Key Pressure
virtual voidKeyPressure(ucharchannel,

uchar note,
uchar pressure,
ulong time= B_NOW)

protected:

void SprayKeyPressure(ucharchannel,
uchar note,
uchar pressure,
ulong time)

Input and Spray Functions BMidi

18 – The Midi Kit

Note Off
virtual voidNoteOff(ucharchannel,

uchar note,
uchar velocity,
ulong time= B_NOW)

protected:

void SprayNoteOff(ucharchannel,
uchar note,
uchar velocity,
ulong time)

Note On
virtual voidNoteOn(ucharchannel,

uchar note,
uchar velocity,
ulong time= B_NOW)

protected:

void SprayNoteOn(ucharchannel,
uchar note,
uchar velocity,
ulong time)

Pitch Bend
virtual voidPitchBend(ucharchannel,

uchar lsb,
uchar msb,
ulong time= B_NOW)

protected:

void SprayPitchBend(ucharchannel,
uchar lsb,
uchar msb,
ulong time)

Program Change
virtual voidProgramChange(ucharchannel,

uchar programNumber,
ulong time= B_NOW)

protected:

void SprayProgramChange(ucharchannel,

BMidi Input and Spray Functions

The Midi Kit – 19

uchar programNumber,
ulongtime)

System Common
virtual voidSystemCommon(ucharstatus,

uchar data1,
uchar data2,
ulong time= B_NOW)

protected:

void SpraySystemCommon(ucharstatus,
uchar data1,
uchar data2,
ulong time)

System Exclusive
virtual voidSystemExclusive(void *data,

long dataLength,
ulong time= B_NOW)

protected:

void SpraySystemExclusive(void *data,
long dataLength,
ulong time)

SystemRealTime()
virtual voidSystemRealTime(ucharstatus, ulong time= B_NOW)

protected:

void SpraySystemRealTime(ucharstatus, ulong time)

Tempo Change()
virtual voidTempoChange(longbeatsPerMinute, ulong time= B_NOW)

protected:

void SprayTempoChange(longbeatsPerMinute, ulong time)aa

Input and Spray Functions BMidi

20 – The Midi Kit

The Midi Kit – 21

BMidiPort

Derived from: public BObject

Declared in: <midi/MidiPort.h>

Overview

The BMidiPort class provides the mechanisms for reading MIDI data from the MIDI-In
ports, and for writing MIDI data to the MIDI-Out ports. The BeBox has two pairs of
MIDI-In and MIDI-Out hardware ports, stacked vertically on the back panel:

You can use a single BMidiPort object to communicate with both halves (the input side
and the output side) of a single in/out pair. Thus, to talk to all four ports, you only need
two BMidiPort objects. However, you can create and use any number of BMidiPort
objects in your application—multiple BMidiPort objects can open and use the same
hardware ports at the same time.

Opening the Ports

To obtain data from a MIDI-In port or send data to a MIDI-Out port, you must first open
the ports by calling BMidiPort’sOpen() functions. The function’s single argument is a
string that names the identifies the in/out pair that you’re opening. The two pairs of MIDI
ports are named “midi1” and “midi2”. For example, to open the MIDI-In 1 and MIDI-Out
1 pair, you invokeOpen() thus:

BMidiPort *m_port = new BMidiPort();
m_port->Open("midi1");

MIDI-In 1

MIDI-Out 1

MIDI-In 2

MIDI-Out 2

Constructor and Destructor BMidiPort

22 – The Midi Kit

When you’re finished with the ports, you can close them through theClose() function.
The ports are closed automatically when the BMidiPort object is destroyed.

Run() and the Input Functions

According to the BMidi rules, a BMidi-derived class implementation ofRun() should
create and spray MIDI messages. Furthermore, the implementations of the input functions
should realize the messages they receive.

The BMidiPort implementation ofRun() produces messages by reading them from the
MIDI-In port and spraying them to the connected objects. The input functions send MIDI
messages to the MIDI-Out port. Linguistically, this might seem backwards, but it makes
sense if you think of a BMidiPort as representing not only the hardware port, but whatever
is connected to the port. For example, if you’re reading data that’s generated by an
external synthesizer, theRun() function can be thought of as encapsulating the synthesizer
itself. From this perspective, the message-generation description ofRun() is reasonable.
Similarly, the input functions fulfill their message-realization promise when you consider
them to be (for example) the synthesizer that’s connected to the MIDI-Out port.

Looping through a BMidiPort Object

It’s possible to use the same BMidiPort object to accept data from MIDI-In and broadcast
different data to MIDI-Out. You can even connect a BMidiPort object to itself to create a
“MIDI through” effect: Anything that shows up at the MIDI-In port will automatically be
sent out the MIDI-Out port.

Constructor and Destructor

BMidiPort()
BMidiPort(void)

Connects the object to the MIDI-In and MIDI-Out ports. The MIDI-Out connection is
active from the moment the object is constructed Messages that arrive through the input
functions are automatically sent to the MIDI-Out port. To begin reading from the MIDI-In
port, you have to invoke the object’sStart() function.

~BMidiPort()
virtual ~BMidiPort(void)

Closes the connections to the MIDI ports.

BMidiPort Member Functions

The Midi Kit – 23

Member Functions

AllNotesOff()
bool AllNotesOff(boolcontrolOnly, ulongtime= B_NOW)

Commands the BMidiPort object to issue an All Notes Off MIDI message to the MIDI-
Out port. IfcontrolOnly is TRUE, only the All Notes Off message is sent. If it’sFALSE, a
Note Off message is also sent for every key number on every channel.

Close()
void Close(void)

Closes the object’s MIDI ports. The ports should have been previously opened through a
call toOpen().

Open()
long Open(const char *name)

Opens a pair of MIDI ports, as identified byname, so the object can read and write MIDI
data. The names that correspond to the two set of MIDI ports are “midi1” and “midi2”.
The object isn’t given exclusive access to the ports that it has opened—other BMidiPort
objects, potentially from other applications, can open the same MIDI ports. When you’re
finished with the ports, you should close them through a (single) call toClose().

The function returnsB_NO_ERROR if the ports were successfully opened.

Member Functions BMidiPort

24 – The Midi Kit

The Midi Kit – 25

BMidiStore

Derived from: public BMidi

Declared in: <midi/MidiStore.h>

Overview

The BMidiStore class defines a MIDI recording and playback mechanism. The MIDI
messages that a BMidiStore object receives (at its input) are stored asevents in anevent
list, allowing a captured performance to be played back later. The object can also read and
write—or import andexport—standard MIDI files. Typically, the performance and file
techniques are combined: A BMidiStore is often used to capture a performance and then
export it to a file, or to import a file and then perform it.

Recording

The ability to record a MIDI performance is vested in BMidiStore’s input functions
(NoteOn(), NoteOff(), and so on, as declared by the BMidi class). When a BMidiStore
input function is invoked, the function fabricates a discrete event based on the data it has
received in its arguments, and adds the event to its event list. The event list, in a manner
of speaking,is the recording.

Since the ability to record is provided by the input functions, you don’t need to tell a
BMidiStore to start recording; it can record from the moment it’s constructed.

For example, to record a performance from an external MIDI keyboard, you connect a
BMidiStore to a BMidiPort object and then tell the BMidiPort to start:

/* Record a keyboard performance. */
BMidiStore *MyStore = new BMidiStore();
BMidiPort *MyPort = new BMidiPort();

MyPort->Connect(MyStore);
MyPort->Start();
/* Start playing... */

At the end of the performance, you tell the BMidiPort to stop:

MyPort->Stop();

Overview BMidiStore

26 – The Midi Kit

Timestamps

Events are added to a BMidiStore’s event list immediately upon arrival. Each event is
given a timestamp as it arrives; the value of the timestamp is the value of thetime
argument that was passed to the input function by the “upstream” object’s spray function.
For example, the time argument that a BMidiPort object passes through its spray functions
is alwaysB_NOW. SinceB_NOW is a shorthand for “the current tick,” and since time tends
to move forward at a reasonably steady rate (at least so far), the events that are recorded
from a BMidiPort are guaranteed to be in chronological order (as they appear in the event
list).

There’s no guarantee that other spraying objects will generatetime arguments that procede
in chronological order, however. And the BMidiStore object doesn’t time-sort its events
as they arrive; thus, after a recording has been made, events in the event list might not be
in chronological order. If you want to ensure that the events are properly ordered, you
should callSort() after you’ve added events to the event list.

Note that BMidiStore’s input functions don’t callSnoozeUntil(): A BMidiStore writes to
its event list as soon as it gets a new message, it doesn’t wait until the time indicated by
thetime argument.

Erasing and Editing a Recording

You can’t. If you make a mistake while you’re recording (for example) and want to try
again, you can simulate emptying the object by disconnecting the input to the
BMidiStore, destroying the object, making a new one, and re-connecting. For example:

MyPort->Disconnect(MyStore);
delete MyStore;
MyStore = new BMidiStore();
MyPort->Connect(MyStore);

Editing the events in the event list is less than impossible (were such a state possible). You
can’t do it, and you can’t simulate it, at least not with the default implementation of
BMidiStore. If you want to edit MIDI data, you have to provide your own BMidi-derived
class.

Playback

To “play” a BMidiStore’s list of events, you call the object’sStart() function. For
example, by reversing the roles taken by the BMidiStore and BMidiPort objects, you can
send the BMidiStore’s recording to an external synthesizer:

BMidiStore Overview

The Midi Kit – 27

/* First we disconnect the objects. */
MyPort->Disconnect(MyStore);

/* Now connect in the other direction...*/
MyStore->Connect(MyPort);

/* ...and start the playback. */
MyStore->Start();

As described in the BMidi class specification,Start() invokesRun(). In BMidiStore’s
implementation of Run(), the function reads events in the order that they appear in the
event list, and sprays the appropriate messages to the connected objects. You can interrupt
a BMidiStore playback by callingStop(); uninterrupted, the object will stop by itself after
it has sprayed the last event in the list.

The events’ timestamps are used as thetime arguments in the spray functions that are
called from withinRun(). But with a twist: Thetime argument that’s passed in the first
spray call (for a given performance) is alwaysB_NOW; subsequenttime arguments are re-
computed to maintain the correct timing in relation to the first event. In other words, when
you tell a BMidiStore to start playing, the first event is performed immediately regardless
of the actual value of its timestamp.

Setting the Current Event

A playback needn’t begin with the first event in the event list. You can tell the
BMidiStore to start somewhere in the middle of the list by callingSetCurrentEvent()
before starting the playback. The function takes an integer argument that gives the
index of the event that you want to begin with.

If you want to start playing from a particular time offset into the event list, you first have
to figure out which event lies at that time. To do this, you ask for the event that occurs at
or after the time offset (in milliseconds) through theEventAtDelta() function. The value
that’s returned by this function is suitable as the argument toSetCurrentEvent(). Here, we
prime a playback to begin three seconds into the event list:

long firstEvent = MyStore->EventAtDelta(3000);
MyStore->SetCurrentEvent(firstEvent);

Keep in mind thatEventAtDelta() returns the index of the first event ator after the desired
offset. If you need to know the actual offset of the winning event, you can pass its index to
DeltaOfEvent():

long firstEvent = MyStore->EventAtDelta(3000);
long actualDelta = MyStore->DeltaOfEvent(firstEvent);

Overview BMidiStore

28 – The Midi Kit

Reading and Writing MIDI Files

You can also add events to a BMidiStore’s event list by reading, orimporting, a Standard
MIDI File. To do this, you locate the file that you want to read, create a BFile to represent
it, and pass the object to the Import() function:

BFile midi_file;

/* We'll assume that a_dir is a legitimate directory. */
if (a_dir.Contains("myfile.mid"))
{

/* Get the file...*/
a_dir.GetFile("myfile.mid", &midi_file);

/* ...and import it. */
MyStore->Import(&midi_file);

}

Note that the BFile object isn’t open (you shouldn’t call BFile’sOpen() function before
you call Import()).

You can import any number of files into the same BMidiStore object. After you import a
file, the event list is automatically sorted.

One thing you shouldn’t do is import a MIDI file into a BMidiStore that contains events
that were previously recorded from a BMidiPort (in an attempt to mix the file and the
recording). Nor does the reverse work: You can’t import a file andthen record from a
BMidiPort. The file’s timestamps are incompatible with those that are generated for
events that are received from the BMidiPort; the result certainly won’t be satisfactory.

To write the event list as a MIDI file, you call BMidiStore’sExport() function:

BFile midi_file;

/* We'll assume that a_dir is a legitimate directory. The
 * file should be empty, so we delete it first if it exists.
 */
if (a_dir.Contains("myfile.mid"))
{

a_dir.GetFile("myfile.mid", &midi_file);
a_dir.Remove(&midi_file);

}

/* Create the file. */
a_dir.Create(&midi_file);

/* And export the BMidiStore. */
MyStore->Export(&midi_file, 1);

Export()’s second argument is an integer that declares the format of the file. The MIDI
specification provides three formats: 0, 1, and 2. As withImport(), the BFile mustn’t be
open.

BMidiStore Constructor and Destructor

The Midi Kit – 29

Constructor and Destructor

BMidiStore()
BMidiStore(void)

Creates a new, empty BMidiStore object.

~BMidiText()
virtual ~BMidiStore(void)

Frees the memory that the object allocated to store its events.

Member Functions

BeginTime()
inline ulongBeginTime(void)

Returns the time, in ticks, at which the most recent performance started. This function is
only valid if the object has actually performed.

CountEvents()
inline ulongCountEvents(void)

Returns the number of events in the object’s event list.

CurrentEvent()
inline ulongCurrentEvent(void)

Returns the index of the event that will be performed next.

See also: SetCurrentEvent()

DeltaOfEvent()
ulongDeltaOfEvent(ulong index)

Returns the “delta time” of theindex’th event in the object’s list of events. An event’s
delta time is the time span, in ticks, between the first event in the event list and itself.

See also: EventAtDelta()

Member Functions BMidiStore

30 – The Midi Kit

EventAtDelta()
ulongEventAtDelta(ulongdelta)

Returns the index of the event that occurs on or afterdelta ticks from the beginning of the
event list.

See also: DeltaOfEvent()

Export()
void Export(BFile *aFile, long format)

Writes the object’s event list as a standard MIDI file in the designated format. The BFile
must be allocated, must refer to an actual file, and its data portion must not be open. The
events are time-sorted before they’re written.

See also: Import()

Import()
void Import(BFile *aFile)

Reads the standard MIDI file from the BFile given by the argument. The BFile must not
be open.

See also: Export()

SetCurrentEvent()
void SetCurrentEvent(ulong index)

Sets the object’s “current event”—the event that it will perform next—to the event atindex
in the event list.

See also: CurrentEvent()

SetTempo()
void SetTempo(ulongbeatsPerMinute)

Sets the object’s tempo—the speed at which it performs events—tobeatsPerMinute. The
default tempo is 60 beats-per-minute.

See also: Tempo()

BMidiStore Member Functions

The Midi Kit – 31

SortEvents()
void SortEvents(bool force = FALSE)

Time-sorts the events in the BMidiStore. The object maintains a (conservative) notion of
whether the events are already sorted; ifforce is FALSE (the default) and the object doesn’t
think the operation is necessary, the sorting isn’t performed. If force isTRUE, the operation
is always performed, regardless of its necessity.

Tempo()
ulongTempo(void)

Returns the object’s tempo in beats-per-minute.

See also: SetTempo()

Member Functions BMidiStore

32 – The Midi Kit

The Midi Kit – 33

BMidiText

Derived from: public BMidi

Declared in: <midi/MidiText.h>

Overview

A BMidiText object displays, to standard output, a textual description of each MIDI
message it receives. You use BMidiText objects to debug and monitor your application; it
has no other purpose.

To use a BMidiText object, you construct it and connect it to some other BMidi object as
shown below:

BMidiText *midiText;

midiText = new BMidiText();
otherMidiObj->Connect(midiText);

/* Start a performance here ... */

BMidiText’s output (the text it displays) is timed: When it receives a MIDI message that’s
timestamped for the future, the object waits until that time has come to display its textual
representation of the message. While it’s waiting, the object won’t process any other in-
coming messages. Because of this, you shouldn’t connect the same BMidiText object to
more than one BMidi object. To monitor two or more MIDI-producing objects, you
should connect a separate BMidiText object to each.

The text that’s displayed by a BMidiText follows this general format:

timestamp: MESSAGE TYPE; message data

(Message-specific formats are given in the function descriptions, below.) Of particular
note is thetimestampfield. Its value is the number of milliseconds that have elapsed since
the object received its first message. The time value is computed through the use of an
internal timer; to reset this timer—a useful thing to do between performances, for
example—you call theResetTimer() function.

The BMidiText class doesn’t generate or spray MIDI messages, so the performance and
connection functions that it inherits from BMidi have no effect.

Constructor and Destructor BMidiText

34 – The Midi Kit

Constructor and Destructor

BMidiText()
BMidiText(void)

Creates a new BMidiText object. The object’s timer is set to zero and doesn’t start ticking
until the first message is received. (To force the timer to start, callResetTimer(TRUE).)

~BMidiText()
virtual ~BMidiText(void)

Does nothing.

Member Functions

ChannelPressure()
virtual void ChannelPressure(charchannel,

char pressure,
ulong time= B_NOW)

Responds to a Channel Pressure message by printing the following:

timestamp: CHANNEL PRESSURE; channel =channel, pressure =pressure

Thechannel andpressure values are taken directly from the arguments that are passed to
the function. Thetimestamp value is the number of milliseconds that have elapsed since
the timer started (seeResetTimer() for more information on time).

ControlChange()
virtual void ControlChange(charchannel,

char ctrl_num,
char ctrl_value,
ulong time= B_NOW)

Responds to a Control Change message by printing the following:

timestamp: CONTROL CHANGE; channel =channel, control =ctrl_num, value =ctrl_value

Thechannel, ctrl_num, andctrl_value values are taken directly from the arguments that
are passed to the function. Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

BMidiText Member Functions

The Midi Kit – 35

KeyPressure()
virtual voidKeyPressure(charchannel,

char note,
char pressure,
ulong time= B_NOW)

Responds to a Key Pressure message by printing the following:

timestamp: KEY PRESSURE; channel =channel, note =note, pressure =pressure

Thechannel, note, andpressure values are taken directly from the arguments that are
passed to the function. Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

NoteOff()
virtual voidNoteOff(charchannel,

char note,
char velocity,
ulong time= B_NOW)

Responds to a Note Off message by printing the following:

timestamp: NOTE OFF; channel =channel, note =note, velocity =velocity

Thechannel, note, andvelocity values are taken directly from the arguments that are
passed to the function. Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

NoteOn()
virtual voidNoteOn(charchannel,

char note,
char velocity,
ulong time= B_NOW)

Responds to a Note On message by printing the following:

timestamp: NOTE ON; channel =channel, note =note, velocity =velocity

Thechannel, note, andvelocity values are taken directly from the arguments that are
passed to the function. Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

Member Functions BMidiText

36 – The Midi Kit

PitchBend()
virtual voidPitchBend(charchannel,

char lsb,
char msb,
ulong time= B_NOW)

Responds to a Pitch Bend message by printing the following:

timestamp: PITCH BEND; channel =channel, lsb =lsb, msb =msb

Thechannel, lsb, andmsb values are taken directly from the arguments that are passed to
the function. Thetimestamp value is the number of milliseconds that have elapsed since
the timer started (seeResetTimer() for more information on time).

ProgramChange()
virtual voidProgramChange(charchannel,

char program_num,
ulong time= B_NOW)

Responds to a Program Change message by printing the following:

timestamp: PROGRAM CHANGE; channel =channel, program =program_num

Thechannel andprogram_num values are taken directly from the arguments that are
passed to the function. Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

ResetTimer()
void ResetTimer(boolstart = FALSE)

Sets the object’s internal timer to zero. Lacking astart argument—or with astart of
FALSE—the timer doesn’t start ticking until the next MIDI message is received. Ifstart is
TRUE, the timer begins immediately.

The timer value is used to compute the timestamp that’s displayed at the beginning of each
message description.

SystemCommon()
virtual voidSystemCommon(charstatus,

char data1,
char data2,
ulong time= B_NOW)

Responds to a System Common message by printing the following:

BMidiText Member Functions

The Midi Kit – 37

timestamp: SYSTEM COMMON; status =status, data1 =data1, data2=data2

Thechannel, data1, anddata2 values are taken directly from the arguments that are
passed to the function. Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

SystemExclusive()
virtual voidSystemExclusive(void *data,

long data_length,
ulong time= B_NOW)

Responds to a System Exclusive message by printing the following:

timestamp: SYSTEM EXCLUSIVE;

This is followed by the data itself, starting on the next line. The data is displayed in
hexadecimal, byte by byte. Thetimestamp value is the number of milliseconds that have
elapsed since the timer started (seeResetTimer() for more information on time).

SystemRealTime()
virtual voidSystemRealTime(charstatus, ulong time= B_NOW)

Responds to a System Real Time message by printing the following:

timestamp: SYSTEM REAL TIME; status =status

Thestatus value is taken directly from the arguments that are passed to the function. The
timestamp value is the number of milliseconds that have elapsed since the timer started
(seeResetTimer() for more information on time).

Member Functions BMidiText

38 – The Midi Kit

acrobat/07_3DKit.pdf

The 3D Kit –3

The 3D Kit

The 3D Kit contains classes that let you create, animate, and interact with three-
dimensional objects. The Kit is new in Developer Release 8; in this release, a minimum of
functionality has been implemented. And an even minimumer amount of technical
documentation is currently available. The minimumest, to be precise.

For now, look in the /boot/develop/projects/Live3d directory for some example source
code that you can play with. This is source code for theLive3D application thta you can
find in /boot/apps. You can also find a 3D Kit white paper on the Be Web site: Point your
NetPositive at<www.be.com/developers/3DWhitePaper.html>.

Authentic, detailed technical documentation for the 3D Kit will be published on the Be
Web site in the coming weeks.

7

4 – The 3D Kit

acrobat/08_KernelKit.pdf

The Kernel Kit –1

8 The Kernel Kit

Introduction . 3

Threads and Teams . 5
Overview . 5

Spawning a Thread . 5
Telling a Thread to Run 6
The Entry Function . 6

The Entry Function’s Argument 7
Using a C++ Entry Function 7
Entry Function Return Values 9

Thread Names. . 9
Thread Priority .10
Synchronizing Threads 10
Controlling a Thread .11

Death and the Main Thread. 11
Passing Data to a Thread 12

Blocking when Sending and Receiving 13
Functions .14

Ports . .23
Overview .23

Creating a Port .23
The Message Queue: Reading and Writing Port Messages 24
Port Messages . .24

Function Descriptions . .25

Semaphores .31
Overview .31

How Semaphores Work31
The Thread Queue .32
The Thread Count . .32
Using a Semaphore as a Lock. 33
Deleting a Semaphore. 35
Using Semaphores to Impose an Execution Order 35
Broadcasting Semaphores. 38

Functions .38

2 – The Kernel Kit

Areas .45
Overview .45

Identifying an Area .45
Sharing Areas . .46
Locking an Area. .46
Using an Area . .47
Deleting an Area .47

Functions .48

Images .55
Overview .55

Loading an App Image 55
Creating a Shared Library. 57
 Creating and Using an Add-on Image 57

Loading an Add-on Image 58
Symbols. .58
Function Symbol Encoding. 59

Functions .60

Miscellaneous Functions, Constants, and Defined Types65
Miscellaneous Functions .65
Constants .66
Defined Types .72

The Kernel Kit –3

The Kernel Kit

The Kernel Kit is a collection of C functions that let you define and control the contexts in
which your application operates. There are five main topics in the Kit:

• Threads and Teams. A thread is a synchronous computer process. By creating
multiple threads, you can make your application perform different tasks at
(virtually) the same time. A team is the collection of threads that your application
creates.

• Ports. A port can be thought of as a mailbox for threads: A thread can write a
message to a port, and some other thread (or, less usefully, the same thread) can then
retrieve the message.

• Semaphores. A semaphore is a system-wide counting variable that can be used as a
lock that protects a piece of code. Before a thread is allowed to execute the code, it
must acquire the semaphore that guards it. Semaphores can also be used to
synchronize the execution of two or more threads.

• Areas. The area functions let you allocate large chunks of virtual memory. The two
primary features of areas are: They can be locked into the CPU’s on-chip memory,
and the data they hold can be shared between applications.

• Images. An image is compiled code that can be dynamically linked into a running
application. By loading and unloading images you can make run-time decisions
about the resources that your application has access to. Images are of particular
interest to driver designers.

The rest of this chapter describes these topics in detail. The final section, “Miscellaneous
Functions, Constants, and Defined Types”, describes the associated API that support the
Kit functions.

8

4 – The Kernel Kit

The Kernel Kit –5

Threads and Teams

Declared in: <kernel/OS.h>

Overview

A thread is a synchronous computer process that executes a series of program instructions.
Every application has at least one thread: When you launch an application, an initial
thread—themain thread—is automatically created (orspawned) and told to run. The
main thread executes the ubiquitousmain() function, winds through the functions that are
called frommain(), and is automatically deleted (orkilled) whenmain() exits.

The Be operating system ismulti-threaded: From the main thread you can spawn and run
additional threads; from each of these threads you can spawn and run more threads, and so
on. All the threads in all applications run concurrently and asynchronously with each
other. Furthermore, threads are independent of each other; most notably, a given thread
doesn’t own the other threads it has spawned. For example, if thread A spawns thread B,
and thread A dies (for whatever reason), thread B will continue to run. (But before you get
carried away with the idea of leap-frogging threads, you should take note of the caveat in
the section “Death and the Main Thread” on page 11,)

Although threads are independent, they do fall into groups calledteams. A team consists
of a main thread and all other threads that “descend” from it (that are spawned by the main
thread directly, or by any thread that was spawned by the main thread, and so on). Viewed
from a higher level, a team is the group of threads that are created by a single application.
You can’t “transfer” threads from one team to another. The team is set when the thread is
spawned; it remains the same throughout the thread’s life.

All the threads in a particular team share the same address space: Global variables that are
declared by one thread will be visible to all other threads in that team.

The following sections describe how to spawn, control, and examine threads and teams.

Spawning a Thread

You spawn a thread by calling thespawn_thread() function. The function assigns and
returns a system-widethread_id number that you use to identify the new thread in
subsequent function calls. Validthread_id numbers are positive integers; you can check
the success of a spawn thus:

Overview Threads and Teams

6 – The Kernel Kit

thread_id my_thread = spawn_thread(...);

if ((my_thread) < B_NO_ERROR)
/* failure */

else
/* success */

The arguments tospawn_thread(), which are examined throughout this description,
supply information such as what the thread is supposed to do, the urgency of its operation,
and so on.

Note: A conceptual neighbor of spawning a thread is the act of loading an executable (or
loading anapp image). This is performed by calling theload_executable() function.
Loading an executable causes a separate program, identified as a file, to be launched by the
system. For more information on the load_executable() function, see “Images”
beginning on page 55.

Telling a Thread to Run

Spawning a thread isn’t enough to make it run. To tell a thread to start running, you must
pass itsthread_id number to either theresume_thread() or wait_for_thread() function:

• resume_thread() starts the new thread running and immediately returns. The new
thread runs concurrently and asynchronously with the thread in which
resume_thread() was called.

• wait_for_thread() starts the thread running but doesn’t return until the thread has
finished. (You can also callwait_for_thread() on a thread that’s already running.)

Of these two functions,resume_thread() is the more common means for starting a thread
that was created through spawn_thread(). wait_for_thread(), on the other hand, is often
used to start a thread that was created throughload_executable().

The Entry Function

When you callspawn_thread(), you must identify the new thread’sentry function. This is
a global C function (or a static C++ member function) that the new thread will execute
when it’s told to run. When the entry function exits, the thread is automatically killed by
the operating system.

A thread’s entry function assumes the following protocol:

long thread_entry(void *data);

The protocol signifies that the function can return a value (to whom the value is returned is
a topic that will be explored later), and that it accepts a pointer to a buffer of arbitrarily-
typed data. (The function’s name isn’t prescribed by the protocol; in other words, an entry
function doesn’thave to be named “thread_entry”.)

Threads and Teams Overview

The Kernel Kit –7

You specify a thread’s entry function by passing a pointer to the function as the first
argument tospawn_thread(); the last argument to spawn_thread() is forwarded as the
entry function’sdata argument. Sincedata is delivered as avoid *, you have to cast the
value to the appropriate type within your implementation of the entry function. For
example, let’s say you define an entry function calledlister() that takes a pointer to a BList
object as an argument:

long lister(void *data)
{

/* Cast the argument. */
BList *listObj = (BList *)data;
...

}

To create and run a thread that would execute thelister() function, you call
spawn_thread() andresume_thread() thus (excluding error checks):

BList *listObj = new BList();
thread_id my_thread;

my_thread = spawn_thread(lister, ..., (void *)listObj);
resume_thread(my_thread);

The Entry Function’s Argument

The spawn_thread() functiondoesn’tcopy the data thatdata points to. It simply passes
the pointer through literally. Because of this, you should never pass a pointer that’s
allocated locally (on the stack).

The reason for this restriction is that there’s no guarantee that the entry function will
receiveany CPU attention before the stack frame from whichspawn_thread() was called
is destroyed. Thus, the entry function won’t necessarily have a chance to copy the
pointed-to data before the pointer vanishes. There are ways around this restriction—for
example, you could use a semaphore to ensure that the entry function has copied the data
before the calling frame exits. A better solution is to use thesend_data() function (which
does copy its data). See “Passing Data to a Thread” on page 12.

Using a C++ Entry Function

If you’re up in C++ territory, you’ll probably want to define a class member function that
you can use as a thread’s entry function. Unfortunately, you can’t pass a normal (non-
static) member function directly as the entry function argument tospawn_thread()—the
system won’t know which object it’s supposed to invoke the function on (it won’t have a
this pointer). To get from here to there, you have to declare two member functions:

• a static member function that is, literally, the entry function,

• and a non-static member function that the static function can invoke. This non-
static function will perform the intended work of the entry function.

Overview Threads and Teams

8 – The Kernel Kit

To “connect” the two functions, you pass an object of the appropriate class (through the
data argument) to the static function, and then allow the static function to invoke the non-
static function upon that object. An example is called for: Here we define a class that
contains a static function calledentry_func(), and a non-static function called
entryFunc(). By convention, these two are private. In addition, the class declares a public
Go() function, and a privatethread_id variable:

class MyClass : public BObject {
public:

long Go(void);

private:
static long entry_func(void *arg);
long entryFunc(void);
thread_id my_thread;

};

entry_func() is the literal entry function. It doesn’t really do anything—it simply casts its
argument as a MyClass object, and then invokesentryFunc() on the object:

long MyClass::entry_func(void *arg)
{

MyClass *obj = MyClass *arg;
return (obj->entryFunc());

}

entryFunc() performs the actual work:

long MyClass::entryFunc(void)
{

/* do something here */
...
return (whatever);

}

TheGo() function contains thespawn_thread() call that starts the whole thing going:

long MyClass::Go(void)
{

my_thread = spawn_thread(entry_func, ..., this);
return (resume_thread(my_thread));

}

If you aren’t familiar with static member functions, you should consult a qualified C++
textbook. Briefly, the only thing you need to know for the purposes of the technique
shown here, is that a static function’s implementation can’t call (non-static) member
functions nor can it refer to member data. Maintain the form demonstrated above and
you’ll be rewarded in heaven.

Threads and Teams Overview

The Kernel Kit –9

Entry Function Return Values

The entry function’s protocol declares that the function should return along value when it
exits. This value can be captured by sitting in await_for_thread() call until the entry
function exits. wait_for_thread() takes two arguments: Thethread_id of the thread that
you’re waiting for, and a pointer to along into which the value returned by that thread’s
entry function will be placed. For example:

thread_id other_thread;
long result;

other_thread = spawn_thread(...);
resume_thread(other_thread);

...
wait_for_thread(other_thread, &result);

If the target thread is already dead,wait_for_thread() returns immediately (with an error
code as described in the function’s full description), and the second argument will be set to
an invalid value. If you’re late for the train, you’ll miss the boat.

Warning: You must pass a valid pointer as the second argument towait_for_thread(); you
mustn’t passNULL even if you’re not interested in the return value.

Thread Names

A thread can be given a name which you assign through the second argument to
spawn_thread(). The name can be 32 characters long (as represented by the
B_OS_NAME_LENGTH constant) and needn’t be unique—more than one thread can have the
same name.

You can look for a thread based on its name by passing the name to thefind_thread()
function; the function returns thethread_id of the so-named thread. If two or more
threads bear the same name, thefind_thread() function returns the first of these threads
that it finds.

You can retrieve thethread_id of the calling thread by passingNULL to find_thread():

thread_id this_thread = find_thread(NULL);

To retrieve a thread’s name, you must look in the thread’sthread_info structure. This
structure is described in theget_thread_info() function description.

Dissatisfied with a thread’s name? Use therename_thread() function to change it. Fool
your friends.

Overview Threads and Teams

10 – The Kernel Kit

Thread Priority

In a multi-threaded environment, the CPUs must divide their attention between the
candidate threads, executing a few instructions from this thread, then a few from that
thread, and so on. But the division of attention isn’t always equal: You can assign a
higher or lowerpriority to a thread and so declare it to be more or less important than other
threads.

You assign a thread’s priority (an integer) as the third argument tospawn_thread(). There
are two categories of priorities:

• “Time-sharing” priorities (priority values from 1 to 99).
• “Real-time” priorities (100 and greater).

A time-sharing thread (a thread with a time-sharing priority value) is executed only if
there are no real-time threads in the ready queue. In the absence of real-time threads, a
time-sharing thread is elected to run once every “scheduler quantum” (currently, every
three milliseconds). The higher the time-sharing thread’s priority value, the greater the
chance that it will be the next thread to run.

A real-time thread is executed as soon as it’s ready. If more than one real-time thread is
ready at the same time, the thread with the highest priority is executed first. The thread
is allowed to run without being preempted (except by a real-time thread with a higher
priority) until it blocks, snoozes, is suspended, or otherwise gives up its plea for
attention.

The Kernel Kit defines seven priority constants. Although you can use other, “in-
between” value as the priority argument tospawn_thread(), it’s strongly suggested that
you stick with these:

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

Synchronizing Threads

There are times when you may want a particular thread to pause at a designated point until
some other (known) thread finishes some task. Here are three ways to effect this sort of
synchronization:

Threads and Teams Overview

The Kernel Kit –11

• The most general means for synchronizing threads is to use a semaphore. The
semaphore mechanism is described in great detail in the major section
“Semaphores” beginning on page 31.

• Synchronization is sometimes a side-effect of sending data between threads. This is
explained in “Passing Data to a Thread” on page 12, and in the major section
“Ports” beginning on page 23

• Finally, you can tell a thread to wait for some other thread to die by calling
wait_for_thread(), as described earlier.

Controlling a Thread

There are three ways to control a thread while it’s running:

• You can put a thread to sleep for some number of microseconds through the
snooze() function. After the thread has been asleep for the requested time, it
automatically resumes execution with its next instruction.snooze() only works on
the calling thread: The function doesn’t let you identify an arbitrary thread as the
subject of its operation. In other words, whichever thread callssnooze() is the
thread that’s put to sleep.

• You can suspend the execution of any thread through thesuspend_thread()
function. The function takes a singlethread_id argument that identifies the thread
you wish to suspend. The thread remains suspended until you “unsuspend” it
through a call toresume_thread() or wait_for_thread().

• You can kill the calling thread throughexit_thread(). The function takes a single
(long) argument that’s used as the thread’s exit status (to makewait_for_thread()
happy). More generally, you can kill any thread by passing itsthread_id to the
kill_thread() function. kill_thread() doesn’t let you set the exit status.

Feeling all tense and irritated? Try killing an entire team of threads: The kill_team()
function is more than a system call. It’s therapy.

Death and the Main Thread

As mentioned earlier, the control that’s imposed upon a particular thread isn’t visited upon
the “children” that have been spawned from that thread. (Recall the “thread A spawns
thread B then dies” business near the beginning of this overview.) However, the death of
an application’s main thread can affect the other threads:

When a main thread dies, it takes the team’s heap, its statically allocated objects,
and other team-wide resources—such as access to standard IO—with it. This
may seriously cripple any threads that linger beyond the death of the main thread.

It’s certainly possible to create an application in which the main thread sets up one or more
other threads, gets them running, and then dies. But such applications should be rare. In

Overview Threads and Teams

12 – The Kernel Kit

general, you should try to keep your main thread around until all other threads in the team
are dead.

Passing Data to a Thread

There are three ways to pass data to a thread:

• Through the argument to the entry function, as described in “The Entry Function’s
Argument” on page 7.

• By using a port or, at a higher level, by sending a BMessage. Ports are described in
the next major section (“Ports”); BMessages are part of the Application Kit.

• By sending data to the thread’s message cache through thesend_data() and
receive_data() functions, as described below.

Thesend_data() function sends data from one thread to another. With eachsend_data()
call, you can send two packets of information:

• a single four-byte value (this is called thecode),
• and an arbitrarily long buffer of arbitrarily-typed data.

The function’s four arguments identify, in order,

• the thread that you want to send the data to,
• the four-byte code,
• a pointer to the buffer of data (avoid *),
• and the size of the buffer of data, in bytes.

In the following example, the main thread spawns a thread, sends it some data, and then
tells the thread to run:

main(int argc, char *argv[])
{

thread_id other_thread;
long code = 63;
char *buf = "Hello";

other_thread = spawn_thread(entry_func, ...);
send_data(other_thread, code, (void *)buf, strlen(buf));
resume_thread(other_thread);
...

}

Thesend_data() call copies the code and the buffer (the second and third arguments) into
the target thread’s message cache and then (usually) returns immediately. In some cases,
the four-byte code is all you need to send; in such cases, the buffer pointer can beNULL and
the buffer size set to 0.

To retrieve the data that’s been sent to it, the target thread (having been told to run) calls
receive_data(). This function returns the four-byte code directly, and copies the data

Threads and Teams Overview

The Kernel Kit –13

from the message cache into its second argument. It also returns, by reference in its first
argument, the thread_id of the thread that sent the data:

long entry_func(void *data)
{

thread_id sender;
long code;
char buf[512];

code = receive_data(&sender, (void *)buf, sizeof(buf));
...

}

Keep in mind that the message data iscopied into the second argument; you must allocate
adequate storage for the data, and pass, as the final argument toreceive_data(), the size of
the buffer that you allocated. A slightly annoying aspect of this mechanism is that there
isn’t any way for the data-receiving thread to determine how much data is in the message
cache, so it can’t know, before it receives the data, what an “adequate” size for its buffer
is. If the buffer isn’t big enough to accommodate all the data, the left-over portion is
simply thrown away. (But at least you don’t get a segmentation fault.)

As shown in the example,send_data() is called before the target thread is running. This
feature of the system is essential in situations where you want the target thread to receive
some data as its first act (as demonstrated above). However,send_data() isn’t limited to
this use—you can also send data to a thread that’s already running.

Blocking when Sending and Receiving

A thread’s message cache isn’t a queue; it can only hold one message at a time. If you call
send_data() twice with the same target thread, the second call will block until the target
reads the first transmission through a call toreceive_data(). Analogously,
receive_data() will block if there isn’t (yet) any data to receive.

If you want to make sure that you won’t block when receiving data, you should call
has_data() before calling receive_data(). has_data() takes athread_id argument, and
returnsTRUE if that thread has a message waiting to be read:

if (has_data(find_thread(NULL)))
code = receive_data(...);

You can also use has_data() to query the target thread before sending it data. This, you
hope, will ensure that the send_data() call won’t block:

if (!has_data(target_thread))
send_data(target_thread, ...);

This usually works, but be aware that there’s a race condition between thehas_data() and
send_data() calls. If yet another thread sends a message to the same target in that time
interval, yoursend_data() (might) block.

Functions Threads and Teams

14 – The Kernel Kit

Functions

exit_thread(), kill_thread(), kill_team()
void exit_thread(long return_value)

long kill_thread(thread_idthread)

long kill_team(team_idteam)

These functions command one or more threads to halt execution:

• exit_thread() tells the calling thread to exit with a return value as given by the
argument. Declaring the return value is only useful if some other thread is sitting in
a wait_for_thread() call on this thread.

• kill_thread() kills the thread given by the argument. The value that the thread will
return towait_for_thread() is undefined and can’t be relied upon.

• kill_team() kills all the threads within the given team. Again, the threads’ return
values are random.

Exiting a thread is a fairly safe thing to do—since a thread can only exit itself, it’s assumed
that the thread knows what it’s doing. Killing some other thread or an entire team is a bit
more drastic since the death certificate(s) will be delivered at an indeterminate time.
Nonetheless, in every case (exiting or killing) the system reclaims the resources that the
thread (or team) had claimed. So executing a thread shouldn’t cause a memory leak.

Keep in mind that threads die automatically (and their resources are reclaimed) if allowed
to exit naturally from their entry functions. You should only need to kill a thread if
something has gone screwy.

The kill functions returnB_BAD_THREAD_ID or B_BAD_TEAM_ID if the argument is invalid.
Otherwise, they returnB_NO_ERROR.

find_thread()
thread_idfind_thread(const char *name)

Finds and returns the thread with the given name. Aname argument ofNULL returns the
calling thread. Ifname doesn’t identify a thread,B_NAME_NOT_FOUND is returned.

A thread’s name is assigned when the thread is spawned. The name can be changed
thereafter through therename_thread() function. Keep in mind that thread names needn’t
be unique: If two (or more) threads boast the same name, afind_thread() call on that
name returns the first so-named thread that it finds.

Threads and Teams Functions

The Kernel Kit –15

get_team_info(), get_nth_team_info()
long get_team_info(team_idteam, team_info *info)
long get_nth_team_info(longn, team_info *info)

These functions copy, into theinfo argument, theteam_info structure for a particular team:

• Theget_team_info() function retrieves information for the team identified byteam.

• Theget_nth_team_info() function retrieves team information for then’th team
(zero-based) of all teams currently running on your computer. By calling this
function with a monotonically increasingn value, you can retrieve information for
all teams. When, in this scheme, the function no longer returnsB_NO_ERROR, all
teams will have been visited.

The team_info structure is defined as:

typedef struct {
team_idteam;
long thread_count;
long image_count;
long area_count;
thread_iddebugger_nub_thread;
port_iddebugger_nub_port;
long argc;
charargs[64];

} team_info

The first field is obvious; the next three reasonably so: They give the number of threads
that have been spawned, images that have been loaded, and areas that have been created or
cloned within this team.

The debugger fields are used by the, uhm, the...debugger?

Theargc field is the number of command line arguments that were used to launch the
team;args is a copy of the first 64 characters from the command line invocation. If this
team is an application that was launched through the user interface (by double-clicking, or
by accepting a dropped icon), thenargc is 1 andargs is the name of the application’s
executable file.

Both functions returnB_NO_ERROR upon success. If the designated team isn’t found—
becauseteam in get_team_info() isn’t valid, orn in get_nth_team_info() is out-of-
bounds—the functions returnBAD_TEAM_ID.

Functions Threads and Teams

16 – The Kernel Kit

get_thread_info(), get_nth_thread_info()
long get_thread_info(thread_idthread, thread_info *info)
long get_nth_thread_info(team_idteam, longn, thread_info *info)

These functions copy, into theinfo argument, thethread_info structure for a particular
thread:

• Theget_thread_info() function gets this information for the thread identified by
thread.

• Theget_nth_thread_info() function retrieves thread information for then’th thread
(zero-based) within the team identified byteam. If team is 0 (zero), all teams are
considered. You use this function to retrieve the info structures of all the threads in
a team (or in all teams) by repeatedly calling the function with a monotonically
increasing value ofn—the actual value ofn has no other significance. When, in this
scheme, the function no longer returnsB_NO_ERROR, all candidate threads will have
been visited.

The thread_info structure is defined as:

typedef struct {
thread_idthread;
team_idteam;
char name[B_OS_NAME_LENGTH];
thread_statestate;
long priority;
sem_idsem;
doubleuser_time;
doublekernel_time;
void *stack_base;
void *stack_end;

} thread_info

The fields in the structure are:

• thread. Thethread_id number of the thread.
• team. The team_id of the thread’s team.
• name. The name assigned to the thread.
• state. What the thread is currently doing (see the thread state constants, below).
• priority. The level of attention the thread gets (see the priority constants, below).
• sem. If the thread is waiting to acquire a semaphore, this is that semaphore.
• user_time. The time, in microseconds, the thread has spent executing user code.
• kernel_time. The amount of time the kernel has run on the thread’s behalf.
• stack_base. A pointer to the first byte in the thread’s execution stack.
• stack_end. A pointer to the last byte in the thread’s execution stack.

The last two fields are only meaningful if you understand the execution stack format.
Keep in mind that the stack grows down, from higher to lower addresses. Thus,
stack_base will always be greater than stack_end.

Threads and Teams Functions

The Kernel Kit –17

The value of thestate field is one of followingthread_state constants:

Constant Meaning

B_THREAD_RUNNING The thread is currently receiving attention from a CPU.

B_THREAD_READY The thread is waiting for its turn to receive attention.

B_THREAD_SUSPENDED The thread has been suspended or is freshly-spawned and
is waiting to start.

B_THREAD_WAITING The thread is waiting to acquire a semaphore. (Note that
when a thread is sitting in await_for_thread() call, or is
waiting to read from or write to a port, it’s actually
waiting to acquire a semaphore.) When in this state, the
sem field of thethread_info structure is set to thesem_id
number of the semaphore the thread is attempting to
acquire.

B_THREAD_RECEIVING The thread is sitting in areceive_data() function call.

B_THREAD_ASLEEP The thread is sitting in asnooze() call.

The value of the priority field takes one of the followinglong constants (the difference
between “time-sharing” priorities and “real-time” priorities is explained in “Thread
Priority” on page 10):

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

Thread info is provided primarily as a debugging aid. None of the values that you find in
a thread_info structure are guaranteed to be valid—the thread’s state, for example, will
almost certainly have changed by the timeget_thread_info() returns.

Both functions returnB_NO_ERROR upon success. If the designated thread isn’t found—
becausethread in get_thread_info() isn’t valid, orn in get_nth_thread_info() is out of
range—the functions returnB_BAD_THREAD_ID. If its team argument is invalid,
get_nth_thread_info() return B_BAD_TEAM_ID.

See also: get_team_info()

Functions Threads and Teams

18 – The Kernel Kit

has_data()
bool has_data(thread_idthread)

ReturnsTRUE if the given thread has an unread message in its message cache, otherwise
returnsFALSE. Messages are sent to a thread’s message cache through thesend_data()
call. To retrieve a message, you callreceive_data().

See also: send_data(), receive_data()

kill_team() see exit_thread()

kill_thread() see exit_thread()

receive_data()
long receive_data(thread_id*sender,

void *buffer,
longbuffer_size)

Retrieves a message from the thread’s message cache. The message will have been placed
there through a previoussend_data() function call. If the cache is empty,receive_data()
blocks until one shows up—it never returns empty-handed.

The thread_id of the thread that calledsend_data() is returned by reference in thesender
argument. Note that there’s no guarantee that the sender will still be alive by the time you
get its ID. Also, the value ofsender going into the function is ignored—you can’t ask for
a message from a particular sender.

Thesend_data() function copies two pieces of data into a thread’s message cache: A
single four-byte code, and a arbitrarily long data buffer. The four-byte code is delivered,
here, asreceive_data()’s return value. The contents of the buffer part of the cache is
copied intoreceive_data()’s bufferargument (you must allocate and freebuffer yourself).
Thebuffer_size argument tells the function how many bytes of data to copy. If you don’t
need the data buffer—if the code value returned directly by the function is sufficient—you
setbuffer to NULL andbuffer_size to 0.

Unfortunately, there’s no way to tell how much data is in the cache before you call
receive_data(). If there’s more data thanbuffer can accommodate, the unaccommodated
portion is discarded—a secondreceive_data() call will not read the rest of the message.
Conversely, ifreceive_data() asks for more data than was sent, the function returns with
the excess portion ofbuffer unmodified—receive_data() doesn’t wait for another
send_data() call to provide more data with which to fill up the buffer.

Each receive_data() corresponds to exactly onesend_data(). Lacking a previous
invocation of its mate,receive_data() will block until send_data() is called. If you don’t

Threads and Teams Functions

The Kernel Kit –19

want to block, you should callhas_data() before callingreceive_data() (and proceed to
receive_data() only if has_data() returnsTRUE).

See also: send_data(), has_data()

rename_thread()
long rename_thread(thread_idthread, const char *name)

Changes the name of the given thread toname. Keep in mind that the maximum length of
a thread name isB_OS_NAME_LENGTH (32 characters).

If the thread argument isn’t a validthread_id number,B_BAD_THREAD_ID is returned.
Otherwise, the function returnsB_NO_ERROR.

resume_thread()
 long resume_thread(thread_idthread)

Tells a new or suspended thread to begin executing instructions. If the thread has just been
spawned, its execution begins with the entry-point function (keep in mind that a freshly
spawned thread doesn’t run until told to do so through this function). If the thread was
previously suspended (throughsuspend_thread()), it continues from where it was
suspended.

This function only works on threads that have a status ofB_THREAD_SUSPENDED (newly
spawned threads are born with this state). You can’t use this function to wake up a
sleeping thread (B_THREAD_ASLEEP), or to unblock a thread that’s waiting to acquire a
semaphore (B_THREAD_WAITING) or waiting in a receive_data() call
(B_THREAD_RECEIVING).

If the thread argument isn’t a validthread_id number,B_BAD_THREAD_ID is returned. If
the thread exists but isn’t suspended,B_BAD_THREAD_STATE is returned (the target thread is
unaffected in this case). Otherwise, the function returnsB_NO_ERROR.

See also: wait_for_thread()

send_data()
long send_data(thread_idthread,

longcode,
void *buffer,
longbuffer_size)

Copies data intothread’s message cache. The target thread can then retrieve the data from
the cache by callingreceive_data(). There are two parts to the data that you send:

• A single four-byte “code” given by thecode argument.

Functions Threads and Teams

20 – The Kernel Kit

• An arbitrarily long buffer of data that’s pointed to bybuffer. The length of the
buffer, in bytes, is given bybuffer_size.

If you only need to send the code, you should setbuffer to NULL andbuffer_size to 0.
After send_data() returns you can free thebuffer argument

Normally,send_data() returns immediately—it doesn’t wait for the target to call
receive_data(). However, send_data() will block if the target has an unread message
from a previoussend_data()—keep in mind that a thread’s message cache is only one
message deep. A thread that’s blocked insend_data() assumesB_THREAD_WAITING
status.

If the target thread couldn’t allocate enough memory for its copy ofbuffer, this function
fails and returnsB_NO_MEMORY. If thread doesn’t identify a valid thread,
BAD_THREAD_ID is returned. Otherwise, the function succeeds and returnsB_NO_ERROR.

See also: receive_data(), has_data()

set_thread_priority()
 longset_thread_priority(thread_idthread, longnew_priority)

Resets the given thread’s priority tonew_priority. The priority level constants that are
defined by the Kernel Kit are:

The value of the priority field takes one of the followinglong constants (the difference
between “time-sharing” priorities and “real-time” priorities is explained in “Thread
Priority” on page 10):

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

The difference between “time-sharing” priorities and “real-time” priorities is explained in
“Thread Priority” on page 10.

If thread is invalid,B_BAD_THREAD_ID is returned. Otherwise, the priority to which the
thread was set is returned.

Threads and Teams Functions

The Kernel Kit –21

snooze()
 longsnooze(doublemicroseconds)

Pauses the calling thread for the given number of microseconds. The thread’s state is set
to B_THREAD_ASLEEP while it’s snoozing and restored to its previous state when it awakes.

The function returnsB_ERROR if microseconds is less than 0.0, otherwise it returns
B_NO_ERROR. Note that it isn’t illegal to put a thread to sleep for 0.0 microseconds, but
neither is it effectual; a call ofsnooze(0.0) is, essentially, ignored.

spawn_thread()
thread_idspawn_thread(thread_entryfunc,

const char *name,
longpriority,
void *data)

Creates a new thread and returns itsthread_id identifier (a positive integer). The
arguments are:

• func is a pointer to the thread’s entry function. This is the function that the thread
will execute when it’s told to run.

• name is the name that you wish to give the thread. It can be, at most,
B_OS_NAME_LENGTH (32) characters long.

• priority is the CPU priority level of the thread. It takes one of the following
constant values (listed here from lowest to highest):

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

For a complete explanation of these constants, see “Thread Priority” on page 10.

• data is forwarded as the argument to the thread’s entry function.

A newly spawned thread is in a suspended state (B_THREAD_SUSPENDED). To tell the
thread to run, you pass itsthread_id to theresume_thread() function. The thread will
continue to run until the entry-point function exits, or until the thread is explicitly killed
(through a call toexit_thread(), kill_thread(), or kill_team()).

Functions Threads and Teams

22 – The Kernel Kit

If all thread_id numbers are currently in use,spawn_thread() returns
B_NO_MORE_THREADS; if the operating system lacks the memory needed to create the
thread (which should be rare),B_NO_MEMORY is returned.

suspend_thread()
long suspend_thread(thread_idthread)

Halts the execution of the given thread, but doesn’t kill the thread entirely. The thread
remains suspended until it is told to run through theresume_thread() function. Nothing
prevents you from suspending your own thread, i.e.:

suspend_thread(find_thread(NULL));

Of course, this is only smart if you have some other thread that will resume you later.

This function only works on threads that have a status ofB_THREAD_RUNNING or
B_THREAD_READY. In other words, you can’t suspend a thread that’s sleeping, waiting to
acquire a semaphore, waiting to receive data, or that’s already suspended.

If the thread argument isn’t a validthread_id number,B_BAD_THREAD_ID is returned. If
the thread exists, but is neither running nor ready to run,B_BAD_THREAD_STATE is returned.
Otherwise, the function returnsB_NO_ERROR.

wait_for_thread()
long wait_for_thread(thread_idthread, long*exit_value)

This function causes the calling thread to wait untilthread (the “target thread”) has died.
If thread is suspended, thewait_for_thread() call will cause it to resume. Thus, you can
usewait_for_thread() to tell a newly-spawned thread to start running.

When the target thread is dead, the value that was returned by its entry function (or that’s
imposed byexit_thread(), if such was called) is returned by reference inexit_value. If the
target thread was killed (bykill_thread() or kill_team()), or if the entry function doesn’t
return a value, the value returned inexit_value will be unreliable.

If the target thread has already exited or is otherwise invalid, this function returns
B_BAD_THREAD_ID, otherwise it returnsB_NO_ERROR. Note that if the thread is killed
while you’re waiting for it, the function returnsB_NO_ERROR.

See also: resume_thread()

Ports Overview

The Kernel Kit –23

Ports

Declared in: <kernel/OS.h>

Overview

A port is a system-wide message repository into which a thread can copy a buffer of data,
and from which some other thread can then retrieve the buffer. This repository is
implemented as a first-in/first-out message queue: A port stores its messages in the order
in which they’re received, and it relinquishes them in the order in which they’re stored.
Each port has its own message queue.

There are other ways to send data between threads. Most notably, the data-sending and -
receiving mechanism provided by the send_data() and receive_data() functions can also
transmit data between threads. But note these differences between using a port and using
the send_data()/receive_data() functions:

• A port can hold more than one message at a time. A thread can only hold one at a
time. Because of this, the function that writes data to a port (write_port()) rarely
blocks. Sending data to a thread will block if the thread has a previous, unread
message.

• The messages that are transmitted through a port aren’t directed at a specific
recipient—they’re not addressed to a specific thread. A message that’s been written
to a port can be read by any thread.send_data(), by definition, has a specific thread
as its target.

Creating a Port

A port is represented by a unique, system-wideport_id number (a positive integer). The
create_port() function creates a new port and assigns it aport_id number. Although ports
are accessible to all threads, theport_id numbers aren’t disseminated by the operating
system; if you create a port and want some other thread to be able to write to or read from
it, you have to broadcast theport_id number to that thread. Typically, ports are used
within a single team. The easiest way to broadcast aport_id number to the threads in a
team is to declare it as a global variable.

A port is owned by the team in which it was created. When a team dies (when all its
threads are killed, by whatever hand), the ports that belong to the team are deleted. A
team can bestow ownership of its ports to some other team (through theset_port_owner()
function).

Overview Ports

24 – The Kernel Kit

If you want explicitly get rid of a port, you can calldelete_port(). You can delete any
port, not just those that are owned by the team of the calling thread.

The Message Queue: Reading and Writing Port Messages

The length of a port’s message queue—the number of messages that it can hold at a time—
is set when the port is created. TheB_MAX_PORT_COUNT constant provides a reasonable
queue length.

The functionswrite_port() andread_port() manipulate a port’s message queue:
write_port() places a message at the tail of the port’s message queue;read_port() removes
the message at the head of the queue and returns it the caller. write_port() blocks if the
queue is full; it returns when room is made in the queue by an invocation ofread_port().
Similarly, if the queue is empty,read_port() blocks untilwrite_port() is called. When a
thread is waiting in awrite_port() or read_port() call, its state isB_THREAD_SEM_WAIT (it’s
waiting to acquire a system-defined, port-specific semaphore).

You can provide a timeout for your port-writing and port-reading operations by using the
“full-blown” functions write_port_etc() andread_port_etc(). By supplying a timeout, you
can ensure that your port operations won’t block forever.

Although each port has its own message queue, all ports share a global “queue slot”
pool—there are only so many message queue slots that can be used by all ports taken
cumulatively. If too many port queues are allowed to fill up, the slot pool will drain,
which will causewrite_port() calls on less-than-full ports to block. To avoid this situation,
you should make sure that yourwrite_port() andread_port() calls are reasonably balanced.

Thewrite_port() and read_port() functions are the only way to traverse a port’s message
queue. There’s no notion of “peeking” at the queue’s unread messages, or of erasing
messages that are in the queue.

Port Messages

A port message—the data that’s sent through a port—consists of a “message code” and a
“message buffer.” Either of these elements can be used however you like, but they’re
intended to fit these purposes:

• The message code (a single four-byte value) should be a mask, flag, or other
predictable value that gives a general representation of the flavor or import of the
message. For this to work, the sender and receiver of the message must agree on the
meanings of the values that the code can take.

• The data in the message buffer can elaborate upon the code, identify the sender of
the message, or otherwise supply additional information. The length of the buffer
isn’t restricted. To get the length of the message buffer that’s at the head of a port’s
queue, you call theport_buffer_size() function.

Ports Function Descriptions

The Kernel Kit –25

The message that you pass towrite_port() is copied into the port. Afterwrite_port()
returns, you may free the message data without affecting the copy that the port holds.

When you read a port, you have to supply a buffer into which the port mechanism can
copy the message. If the buffer that you supply isn’t large enough to accommodate the
message, the unread portion will be lost—the next call toread_port() won’t finish reading
the message.

You typically allocate the buffer that you pass to read_port() by first calling
port_buffer_size(), as shown below:

char *buf;
long size;
long code;

/* We'll assume that my_port is valid.
 * port_buffer_size() will block until a message shows up.
 */
if ((size = port_buffer_size(my_port) < B_NO_ERROR)

/* Handle the error */

if (size > 0)
buf = (char *)malloc(size * sizeof(char));

else
buf = 0;

/* Now we can read the buffer. */
if (read_port(my_port, &code, (void *)buf, size) < B_NO_ERROR)

/* Handle the error */

Obviously, there’s a race condition (in the example) betweenport_buffer_size() and the
subsequentread_port() call—some other thread could read the port in the interim. If
you’re going to use port_buffer_size() as shown in the example, you shouldn’t have more
than one thread reading the port.

As stated in the example,port_buffer_size() blocks until a message shows up. If you don’t
want to (potentially) block forever, you should use theport_buffer_size_etc() version of
the function. As with the other...etc() functions,port_buffer_size_etc() provides a
timeout option.

Function Descriptions

create_port()
port_id create_port(longqueue_length, const char *name)

Creates a new port and returns itsport_id number. The port’s name is set toname and the
length of its message queue is set toqueue_length. Neither the name nor the queue length

Function Descriptions Ports

26 – The Kernel Kit

can be changed once they’re set. The name shouldn’t exceedB_OS_NAME_LENGTH (32)
characters.

In setting the length of a port’s message queue, you’re telling it how many messages it can
hold at a time. When the queue is filled—when it’s holdingqueue_length messages—
subsequent invocations ofwrite_port() (on that port) block until room is made in the queue
(through calls toread_port()) for the additional messages. As a convenience, you can use
theB_MAX_PORT_COUNT constant as thequeue_length value; this constant represents the
(ostensible) maximum port queue length. Once the queue length is set (here), it can’t be
changed.

This function also sets the owner of the port to be the team of the calling thread.
Ownership can subsequently be transferred through theset_port_owner() function. When
a port’s owner dies (when all the threads in the team are dead), the port is automatically
deleted. If you want to delete a port prior to its owner’s death, use thedelete_port()
function.

The function returnsB_BAD_VALUE if queue_length is out of bounds (less than one or
greater than the maximum capacity). It returns B_NO_MORE_PORTS if all port_id numbers
are currently being used.

See also: delete_port(), set_port_owner()

delete_port()
long delete_port(port_idport)

Deletes the given port. The port’s message queue doesn’t have to be empty—you can
delete a port that’s holding unread messages. Threads that are blocked inread_port() or
write_port() calls on the port are automatically unblocked (and returnB_BAD_SEM_ID).

The thread that callsdelete_port() doesn’t have to be a member of the team that owns the
port; any thread can delete any port.

The function returnsB_BAD_PORT_ID if port isn’t a valid port; otherwise it returns
B_NO_ERROR.

See also: create_port()

find_port()
port_idfind_port(const char *port_name)

Returns theport_id of the named port. If the argument doesn’t name an existing port,
B_NAME_NOT_FOUND is returned.

See also: create_port()

Ports Function Descriptions

The Kernel Kit –27

get_port_info(), get_nth_port_info()
long get_port_info(port_idport, port_info*info)
long get_nth_port_info(team_idteam, longn, port_info*info)

These functions copy, into theinfo argument, theport_info structure for a particular port:

• Theget_port_info() function gets this information for the port identified byport.

• Theget_nth_port_info() function retrieves port information for then’th port (zero-
based) that’s owned by the team identified byteam. If team is 0 (zero), all teams are
considered. You use this function to retrieve the info structures of all the ports in a
team (or in all teams) by repeatedly calling the function with a monotonically
increasing value ofn—the actual value ofn has no other significance. When, in this
scheme, the function no longer returnsB_NO_ERROR, all candidate ports will have
been visited.

Theport_info structure is defined as:

typedef struct port_info {
port_idport;
team_idteam;
charname[B_OS_NAME_LENGTH];
long capacity;
long queue_count;
long total_count;

} port_info

The structure’s fields are:

• port. Theport_id number of the port.
• team. The team_id of the port’s team.
• name. The name assigned to the port.
• capacity. The length of the port’s message queue.
• queue_count. The number of messages currently in the queue.
• total_count. The total number of message that have been read from the port.

Note that thetotal_count number doesn’t include the messages that are currently in the
queue.

The information in theport_info structure is guaranteed to be internally consistent, but the
structure as a whole should be consider to be out-of-date as soon as you receive it. It
provides a picture of a port as it exists just before the info-retrieving function returns.

The functions returnB_NO_ERROR if the designated port is successfully found. Otherwise,
they returnB_BAD_PORT_ID, B_BAD_TEAM_ID, or B_BAD_INDEX.

Function Descriptions Ports

28 – The Kernel Kit

port_buffer_size(), port_buffer_size_etc()
long port_buffer_size(port_idport)

long port_buffer_size_etc(port_idport, longflags, doubletimeout)

These functions return the length (in bytes) of the message buffer that’s at the head of
port’s message queue. You call this function in order to allocate a sufficiently large buffer
in which to retrieve the message data.

Theport_buffer_size() function blocks if the port is currently empty. It unblocks when a
write_port() call gives this function a buffer to measure (even if the buffer is 0 bytes long),
or when the port is deleted.

Theport_buffer_size_etc() function lets you set a limit on the amount of time the function
will wait for a message to show up. To set the limit, you passB_TIMEOUT as the flags
argument, and settimeout to the amount of time, in microseconds, that you’re willing to
wait.

If port doesn’t identify an existing port (or if the port is deleted while the function is
blocked), B_BAD_PORT_ID is returned. If thetimeout limit is exceeded,B_TIMED_OUT is
returned. If thetimeout limit is 0.0 (andB_TIMEOUT is set), and there are no messages in
the queue, the function immediately returnsB_WOULD_BLOCK.

See also: read_port()

port_count()
long port_count(port_idport)

Returns the number of messages that are currently inport’s message queue. This is the
number of messages that have been written to the port through calls towrite_port() but that
haven’t yet been picked up through correspondingread_port() calls. This function is
provided mostly as a convenience and a semi-accurate debugging tool. The value that it
returns is inherently undependable (there’s no guarantee that additionalread_port() or
write_port() calls won’t change the count as this function is returning).

If port isn’t a valid port identifier,B_BAD_PORT_ID is returned.

See also: get_port_info()

Ports Function Descriptions

The Kernel Kit –29

read_port(), read_port_etc()
long read_port(port_idport,

long *msg_code,
void *msg_buffer,
longbuffer_size)

long read_port_etc(port_idport,
long *msg_code,
void *msg_buffer,
longbuffer_size,
longflags,
doubletimeout)

These functions remove the message at the head ofport’s message queue and copy the
messages’s contents into themsg_code andmsg_buffer arguments. The size of the
msg_buffer buffer, in bytes, is given bybuffer_size. It’s up to the caller to ensure that the
message buffer is large enough to accommodate the message that’s being read. If you
want a hint about the message’s size, you should callport_buffer_size() before calling this
function.

If port’s message queue is empty when you call read_port(), the function will block. It
returns when some other thread writes a message to the port throughwrite_port(). A
blocked read is also unblocked if the port is deleted.

Theread_port_etc() function lets you set a limit on the amount of time the function will
wait for a message to show up. To set the limit, you passB_TIMEOUT as the flags argument,
and settimeout to the amount of time, in microseconds, that you’re willing to wait.

The functions returnsB_BAD_PORT_ID if port isn’t valid (this includes the case where the
port is deleted during a blocked read_port() call). If thetimeout value is exceeded,
B_TIMED_OUT is returned. If thetimeout limit is 0.0 (withB_TIMEOUT set), and there are no
messages in the queue, the function immediately returnsB_WOULD_BLOCK.

A successful call returns the number of bytes that were written into themsg_buffer
argument.

See also: write_port(), port_buffer_size()

set_port_owner()
long set_port_owner(port_idport, team_idteam)

Transfers ownership of the designated port toteam. A port can only be owned by one
team at a time; by setting a port’s owner, you remove it from its current owner.

There are no restrictions on who can own a port, or on who can transfer ownership. In
other words, the thread that callsset_port_owner() needn’t be part of the team that
currently owns the port, nor must you only assign ports to the team that owns the calling
thread (although these two are the most likely scenarios).

Function Descriptions Ports

30 – The Kernel Kit

Port ownership is meaningful for one reason: When a team dies (when all its threads are
dead), the ports that are owned by that team are deleted. Ownership, otherwise, has no
significance—it carries no special privileges or obligations.

To discover a port’s owner, use theget_port_info() function.

set_port_owner() fails and returnsB_BAD_PORT_ID or B_BAD_TEAM_ID if one or the other
argument is invalid. Otherwise it returnsB_NO_ERROR.

See also: get_port_info()

write_port(), write_port_etc()
long write_port(port_idport,

longmsg_code,
void *msg_buffer,
longbuffer_size)

long write_port_etc(port_idport,
longmsg_code,
void *msg_buffer,
longbuffer_size,
longflags,
doubletimeout)

These functions place a message at the tail ofport’s message queue. The message consists
of msg_code andmsg_buffer:

• msg_code holds the message code. This is a mask, flag, or other predictable value
that gives a general representation of the message.

• msg_buffer is a pointer to a buffer that can be used to supply additional information.
You pass the length of the buffer, in bytes, as the value of the buffer_size argument.
The buffer can be arbitrarily long.

If the port’s queue is full when you callwrite_port(), the function will block. It returns
when aread_port() call frees a slot in the queue for the new message. A blocked
write_port() will also return if the target port is deleted.

Thewrite_port_etc() function lets you set a limit on the amount of time the function will
wait for a free queue slot. To set the limit, you passB_TIMEOUT as the flags argument, and
settimeout to the amount of time, in microseconds, that you’re willing to wait.

If port isn’t valid B_BAD_PORT_ID is returned (this includes the case where the port is
deleted during a blocked read_port() call). If thetimeout value is exceeded,B_TIMED_OUT
is returned. If thetimeout limit is 0.0 (withB_TIMEOUT set), and the target port’s queue is
full, the function immediately returnsB_WOULD_BLOCK. A successful call returns
B_NO_ERROR.

See also: read_port()

The Kernel Kit –31

Semaphores

Declared in: <kernel/OS.h>

Overview

A semaphore is a token that’s used in a multi-threaded operating system to coordinate
access, by competing threads, to “protected” resources or operations. This coordination
usually takes one of these tacks:

• The most common use of semaphores is to limit the number of threads that can
execute a piece of code at the same time. The typical limit is one—in other words,
semaphores are most often used to create mutually exclusive locks.

• Semaphores can also be used to impose the order in which a series of interdependent
operations are performed.

Examples of these uses are given in sections below.

How Semaphores Work

A semaphore acts as a key that a thread must acquire in order to continue execution. Any
thread that can identify a particular semaphore can attempt to acquire it by passing its
sem_id identifier—a system-wide number that’s assigned when the semaphore is
created—to theacquire_sem() function. The function doesn’t return until the semaphore
is actually acquired. (An alternate function,acquire_sem_etc() lets you specify a limit, in
microseconds, on the amount of time you’re willing to wait for the semaphore to be
acquired. Unless otherwise noted, characteristics ascribed toacquire_sem() apply to
acquire_sem_etc() as well.)

When a thread acquires a semaphore, that semaphore (typically) becomes unavailable for
acquisition by other threads (in the rarer case, more than one thread is allowed to acquire
the semaphore at a time; the precise determination of availability is explained in “The
Thread Count” on page 32). The semaphore remains unavailable until it’s passed in a call
to therelease_sem() function.

The code that a semaphore “protects” lies between the calls toacquire_sem() and
release_sem(). The disposition of these functions in your code usually follows this
pattern:

acquire_sem(my_semaphore);
/* Protected code goes here. */
release_sem(my_semaphore);

Overview Semaphores

32 – The Kernel Kit

Keep in mind that these function calls needn’t be so explicitly balanced. A semaphore can
be acquired within one function and released in another. Acquisition and release of the
same semaphore can even be performed by two different threads; an example of this is
given in “Using Semaphores to Impose an Execution Order” on page 35.

The Thread Queue

Every semaphore has its ownthread queue: This is a list that identifies the threads that are
waiting to acquire the semaphore. A thread that attempts to acquire an unavailable
semaphore is placed at the tail of the semaphore’s thread queue; from the programmer’s
point of view, a thread that’s been placed in the queue will be blocked in the
acquire_sem() call. Each call torelease_sem() “releases” the thread at the head of that
semaphore’s queue (if there are any waiting threads), thus allowing the thread to return
from its call toacquire_sem().

Semaphores don’t discriminate between acquisitive threads—they don’t prioritize or
otherwise reorder the threads in their queues—the oldest waiting thread is always the next
to acquire the semaphore.

The Thread Count

To assess availability, a semaphore looks at itsthread count. This is a counting variable
that’s initialized when the semaphore is created. The ostensible (although, as we shall see,
not entirely accurate) meaning of a thread count’s initial value, which is passed as the first
argument tocreate_sem(), is the number of threads that can acquire the semaphore at a
time. For example, a semaphore that’s used as a mutually exclusive lock takes an initial
thread count of 1—in other words, only one thread can acquire the semaphore at a time.

Calls toacquire_sem() andrelease_sem() alter the semaphore’s thread count:
acquire_sem() decrements the count, andrelease_sem() increments it. When you call
acquire_sem(), the function looks at the thread count (before decrementing it) to
determine if the semaphore is available:

• If the count is greater than zero, the semaphore is available for acquisition, so the
function returns immediately.

• If the count is zero or less, the semaphore is unavailable, and so the thread is placed
in the semaphore’s thread queue.

The initial thread count isn’t an inviolable limit on the number of threads that can acquire
a given semaphore—it’s simply the initial value for the sempahore’s thread count variable.
For example, if you create a semaphore with an initial thread count of 1 and then
immediately callrelease_sem() five times, the semaphore’s thread count will increase to
6. Furthermore, although you can’t initialize the thread count to less-than-zero, an initial
value of zero itself is common—it’s an integral part of using semaphores to impose an
execution order (as demonstrated later).

Semaphores Overview

The Kernel Kit –33

Summarizing the description above, there are three significant thread count value ranges:

• A positive thread count (n) means that there are no threads in the semaphore’s
queue, and the nextn acquire_sem() calls will return without blocking.

• If the count is 0, there are no queued threads, but the nextacquire_sem() call will
block.

• A negative count (-n) means there aren threads in the semaphore’s thread queue,
and the next call toacquire_sem() will block.

Although it’s possible to retrieve the value of a semaphore’s thread count (by looking at a
field in the semaphore’ssem_info structure, as described later), you should only do so for
amusement—while you’re debugging, for example. You should never predicate your code
on the basis of a semaphore’s thread count.

Using a Semaphore as a Lock

As mentioned above, the most common use of semaphores is to ensure that only one
thread is executing a certain piece of code at a time. The following example demonstrates
this use.

Consider an application that manages a one-job-at-a-time device such as a printer. When
the application wants to start a new print job (upon a request from some other application,
no doubt) it spawns and runs a thread to perform the actual data transmission. Given the
nature of the device, each spawned thread must be allowed to complete its transmission
before the next thread takes over. However, your application wants to accept print
requests (and so spawn threads) as they arrive.

To ensure that the spawned threads don’t interrupt each other, you can define a semaphore
that’s acquired and released—that, in essence, is “locked” and “unlocked”—as a thread
begins and ends its transmission, as shown below. The thread functions that are used in
the example are described in “Threads and Teams” on page 5.

/* Include the semaphore API declarations. */
#include <OS.h>

/* The semaphore is declared globally so the spawned threads
 * will be able to get to it (there are other ways of
 * broadcasting the sem_id, but this is the easiest).
 */
sem_id print_sem;

/* print_something() is the data-transmission function.
 * The data itself would probably be passed as an argument
 * (which isn't shown in this example).
 */
long print_something(void *data);

Overview Semaphores

34 – The Kernel Kit

main()
{

/* Create the semaphore with an initial thread count of 1.
 * If the semaphore can't be created (error conditions
 * are listed later), we exit. The second argument to
 * create_sem(), as explained in the function
 * descriptions is a handy string name for the semaphore.
 */
if ((print_sem = create_sem(1, "print sem")) < B_NO_ERROR)

exit -1;

while (1)
{

/* Wait-for-a-request code and break conditions
 * go here.
 */
...

/* Spawn a thread that calls print_something(). */
if (resume_thread(spawn_thread(print_something ...))

< B_NO_ERROR)
break;

}

/* Acquire the semaphore and delete it (as explained
 * later)
 */
acquire_sem(print_sem);
delete_sem(print_sem);
exit 0;

}

long print_something(void *data)
{

/* Acquire the semaphore; an error means the semaphore
 * is no longer valid. And we'll just die if it's no good.
 */
if (acquire_sem(print_sem) < B_NO_ERROR)

return 0;

/* The code that sends data to the printer goes here. */

/* Release the semaphore. */
release_sem(print_sem);

return 0;
}

Theacquire_sem() andrelease_sem() calls embedded in theprint_something() function
“protect” the data-transmission code. Although any number of threads may concurrently
executeprint_something(), only one at a time is allowed to proceed past the
acquire_sem() call.

Semaphores Overview

The Kernel Kit –35

Deleting a Semaphore

Notice that the example explicitly deletes theprint_sem semaphore before it exits. This
isn’t wholly necessary: Every semaphore is owned by a team (the team of the thread that
called create_sem()). When the last thread in a team dies, it takes the team’s semaphores
with it.

Prior to the death of a team, you can explicitly delete a semaphore through the
delete_sem() call. Note, however, thatdelete_sem() must be called from a thread that’s a
member of the team that owns the semaphore—you can’t delete another team’s
semaphores.

You’re allowed to delete a semaphore even if it still has threads in its queue. However,
you usually want to avoid this, so deleting a semaphore may require some thought. In the
example, the main thread (the thread that executes themain() function) makes sure all
print threads have finished by acquiring the semaphore before deleting it. When the main
thread is allowed to continue (when theacquire_sem() call returns) the queue is sure to be
empty and all print jobs will have completed.

When you delete a semaphore (or when it dies naturally), all its queued threads are
immediately allowed to continue—they all return from acquire_sem() at once. You can
distinguish between a “normal” acquisition and a “semaphore deleted” acquisition by the
value that’s returned byacquire_sem() (the specific return values are listed in the function
descriptions, below).

Using Semaphores to Impose an Execution Order

Semaphores can also be used to coordinate threads that are performing separate
operations, but that need to perform these operations in a particular order. In the following
example, an application repeatedly spawns, in no particular order, threads that either write
to or read from a global buffer. Each writing thread must complete before the next reading
thread starts, and each written message must be fully read exactly once. Thus, the two
operations must alternate (with a writing thread going first). Two semaphores are used to
coordinate the threads that perform these operations:

/* Here's the global buffer. */
char buf[1024];

/* The ok_to_read and ok_to_write semaphores inform the
 * appropriate threads that they can proceed.
 */
sem_id ok_to_write, ok_to_read;

/* These are the writing and reading functions. */
long write_it(void *data);
long read_it(void *data);

Overview Semaphores

36 – The Kernel Kit

main()
{

/* These will be used when we delete the semaphores. */
long write_count, read_count;

/* Create the semaphores. ok_to_write is created with a
 * thread count of 1; ok_to_read's count is set to 0.
 * This is explained below.
 */
if ((ok_to_write = create_sem(1, "write sem"))<B_NO_ERROR)

return (B_ERROR);

if ((ok_to_read = create_sem(0, "read sem")) < B_NO_ERROR)
{

delete_sem(ok_to_write);
return (B_ERROR);

}

bzero(buf,1024);

/* Spawn some reading and writing threads. */
while(1)
{

if (...) /* spawn-a-writer condition */
resume_thread(spawn_thread(write_it, ...));

if (...) /* spawn-a-reader condition */
resume_thread(spawn_thread(read_it, ...);

if (...) /* break condition */
break;

}

/* It's time to delete the semaphores. First, get the
 * semaphores' thread counts.
 */
if (get_sem_count(ok_to_write, &write_count) < B_NO_ERROR)
{

delete_sem(ok_to_read);
return (B_ERROR);

}

if (get_sem_count(ok_to_read, &read_count) < B_NO_ERROR)
{

delete_sem(ok_to_write);
return (B_ERROR);

}

/* Place this thread at the end of whichever queue is
 * shortest (or the writing queue if they're equal).
 * Remember: thread count is decremented as threads
 * are placed in the queue, so the shorter queue is
 * the one with the greater thread count.
 */
if (write_count >= read_count)

acquire_sem(ok_to_write);

Semaphores Overview

The Kernel Kit –37

else
acquire_sem(ok_to_read);

/* Delete the semaphores and exit. */
delete_sem(ok_to_write);
delete_sem(ok_to_read);
return (B_NO_ERROR);

}

long write_it(void *data)
{

/* Acquire the writing semaphore. */
if (acquire_sem(ok_to_write) < B_NO_ERROR)

return (B_ERROR);

/* Write to the buffer. */
strncpy(buf, (char *)data, 1023);

/* Release the reading semaphore. */
return (release_sem(ok_to_read));

}

long read_it(void *data)
{

/* Acquire the reading semaphore. */
if (acquire_sem(ok_to_read) < B_NO_ERROR)

return (B_ERROR);

/* Read the message and do something with it. */
...

/* Release the writing semaphore. */
return (release_sem(ok_to_write));

}

Notice the distribution of theacquire_sem() and release_sem() calls for the respective
semaphores: The writing function acquires the writing semaphore (ok_to_write) and then
releases the reading semaphore (ok_to_read). The reading function does the opposite.
Thus, after the buffer has been written to, no other thread can write to it until it has been
read (and vice versa).

By settingok_to_write’s initial thread count to 1 andok_to_read’s initial thread count to 0,
you ensure that a writing operation will be performed first. If a reading thread is spawned
first, it will block until a writing thread releases theok_to_read semaphore.

When it’s semaphore-deletion time in the example, the main thread acquires one of the
semaphores. Specifically, it acquires the semaphore that has the fewer threads in its
queue. This allows the remaining (balanced) pairs of reading and writing threads to
complete before the semaphores are deleted, and throws away any unpaired reading or
writing threads. (Actually, the unpaired threads aren’t “thrown away” as the semaphore
upon which they’re waiting is deleted, but by the error check in the first line of the reading
or writing function. As mentioned earlier, deleting the semaphore releases its queued
threads, allowing them, in this instance, to rush to their deaths.)

Functions Semaphores

38 – The Kernel Kit

Broadcasting Semaphores

Thesem_id number that identifies a semaphore is a system-wide token—thesem_id
values that you create in your application will identify your semaphores in all other
applications as well. It’s possible, therefore, to broadcast the sem_id numbers of the
semaphores that you create and so allow other applications to acquire and release them—
but it’s not a very good idea. A semaphore is best controlled if it’s created, acquired,
released, and deleted within the same team. If you want to provide a protected service or
resource to other applications, you should follow the model used by the examples: Your
application should accept messages from other applications and then spawn threads that
acquire and release the appropriate semaphores.

Functions

acquire_sem(), acquire_sem_etc()
long acquire_sem(sem_idsem)
long acquire_sem_etc(sem_idsem, longcount, longflags, doubletimeout)

These functions attempt to acquire the semaphore identified by thesem argument. Except
in the case of an error,acquire_sem() doesn’t return until the semaphore has actually been
acquired.

acquire_sem_etc() is the full-blown acquisition version: It’s essentially the same as
acquire_sem(), but, in addition, it lets you acquire a semaphore more than once, and also
provides a timeout facility:

• Thecount argument lets you specify that you want the semaphore to be acquired
count times. This means that the semaphore’s thread count is decremented by the
specified amount. It’s illegal to specify a count that’s less than 1.

• To enable the timeout, you passB_TIMEOUT as theflags argument, and settimeout to
the amount of time, in microseconds, that you’re willing to wait for the semaphore
to be acquired. If the semaphore hasn’t been acquired withintimeout microseconds,
the function gives up and returns the valueB_TIMED_OUT. If you specify atimeout of
0.0 and the semaphore isn’t immediately available, the function returns
B_WOULD_BLOCK.

In addition to B_TIMEOUT, the Kernel Kit defines two other semaphore-acquisition flag
constants (B_CAN_INTERRUPT andB_CHECK_PERMISSION). These additional flags are used
by device drivers—adding these flags into a “normal” (or “user-level”) acquisition has no
effect. However, you should be aware that theB_CHECK_PERMISSION flag is always added
in to user-level semaphore acquisition in order to protect system-defined semaphores.

Other than the timeout and the acquisition count, there’s no difference between the two
acquisition functions. Specifically, any semaphore can be acquired through either of these

Semaphores Functions

The Kernel Kit –39

functions; you always release a semaphore through release_sem() (or release_sem_etc())
regardless of which function you used to acquire it.

To determine if the semaphore is available, the function looks at the semaphore’s thread
count (before decrementing it):

• If the thread count is positive, the semaphore is available and the current acquisition
succeeds. Theacquire_sem() or acquire_sem_timeout() function returns
immediately upon acquisition.

• If the thread count is zero or less, the calling thread is placed in the semaphore’s
thread queue where it waits for a correspondingrelease_sem() call to de-queue it
(or for the timeout to expire).

If the sem argument doesn’t identify a valid semaphore,B_BAD_SEM_ID is returned. It’s
possible for a semaphore to become invalid while an acquisitive thread is waiting in the
semaphore’s queue. For example, if your thread callsacquire_sem() on a valid (but
unavailable) semaphore, and then some other thread deletes the semaphore, your thread
will return B_BAD_SEM_ID from its call toacquire_sem().

If you pass an illegalcount value (less than 1) toacquire_sem_etc(), the function returns
B_BAD_VALUE. If the acquisition time surpasses the designated timeout limit (with
B_TIMEOUT set), theacquire_sem_etc() function returnsB_TIMED_OUT; if the timeout
value is 0.0 and the semaphore isn’t immediately available, the function returns
B_WOULD_BLOCK.

If the semaphore is successfully acquired, the functions returnB_NO_ERROR.

See also: release_sem()

create_sem()
sem_idcreate_sem(long thread_count, const char *name)

Creates a new semaphore and returns a system-widesem_id number that identifies it. The
arguments are:

• thread_count initializes the semaphore’s thread count, the counting variable that’s
decremented and incremented as the semaphore is acquired and released
(respectively). You can pass any non-negative number as the count, but you
typically pass either 1 or 0, as demonstrated in the examples above.

• name is an optional string name that you can assign to the semaphore. The name is
meant to be used only for debugging. A semaphore’s name needn’t be unique—any
number of semaphores can have the same name.

Valid sem_id numbers are positive integers. You should always check the validity of a
new semaphore through a construction such as

if ((my_sem = create_sem(1,"My Semaphore")) < B_NO_ERROR)

Functions Semaphores

40 – The Kernel Kit

/* If it's less than B_NO_ERROR, my_sem is invalid. */

create_sem() sets the new semaphore’s owner to the team of the calling thread.
Ownership may be re-assigned through theset_sem_owner() function. When the owner
dies (when all the threads in the team are dead), the semaphore is automatically deleted.
The owner is also signficant in a delete_sem() call: Only those threads that belong to a
semaphore’s owner are allowed to delete that semaphore.

The function returns one of the following codes if the semaphore couldn’t be created:

Return Code Meaning

B_BAD_ARG_VALUE Invalid thread_count value (less than zero).
B_NO_MEMORY Not enough memory to allocate the semaphore’s name.
B_NO_MORE_SEMS All valid sem_id numbers are being used.

See also: delete_sem()

delete_sem()
long delete_sem(sem_idsem)

Deletes the semaphore identified by the argument. If there are any threads waiting in the
semaphore’s thread queue, they’re immediately de-queued and allowed to continue
execution.

This function may only be called from a thread that belongs to the target semaphore’s
owner; if the calling thread belongs to a different team, or ifsem is invalid, the function
returnsB_BAD_SEM_ID. Otherwise, it returnsB_NO_ERROR.

See also: acquire_sem()

get_sem_count()
long get_sem_count(sem_idsem, long *thread_count)

Returns, by reference inthread_count, the value of the semaphore’s thread count variable:

• A positive thread count (n) means that there are no threads in the semaphore’s
queue, and the nextn acquire_sem() calls will return without blocking.

• If the count is zero, there are no queued threads, but the nextacquire_sem() call
will block.

• A negative count (-n) means there aren threads in the semaphore’s thread queue and
the next call toacquire_sem() will block.

By the time this function returns and you get a chance to look at thethread_count value,
the semaphore’s thread count may have changed. Although watching the thread count

Semaphores Functions

The Kernel Kit –41

might help you while you’re debugging your program, this function shouldn’t be an
integral part of the design of your application.

If sem is a valid semaphore identifier, the function returnsB_NO_ERROR; otherwise,
B_BAD_SEM_ID is returned (and the value of thethread_count argument that you pass in
isn’t changed).

See also: get_sem_info()

get_sem_info(), get_nth_sem_info()
long get_sem_info(sem_idsem, sem_info*info)
long get_nth_sem_info(team_idteam, longn, sem_info*info)

These functions copy, into theinfo argument, thesem_info structure for a particular
semaphore:

• Theget_sem_info() function gets this information for the semaphore identified by
sem.

• Theget_nth_sem_info() function retrieves semaphore information for then’th
semaphore (zero-based) that’s owned by the team identified byteam. If team is 0
(zero), all teams are considered. You use this function to retrieve the info structures
of all the semaphores in a team (or in all teams) by repeatedly calling the function
with a monotonically increasing value ofn—the actual value ofn has no other
significance. When, in this scheme, the function no longer returnsB_NO_ERROR, all
candidate semaphores will have been visited.

Thesem_info structure is defined as:

typedef struct sem_info {
sem_idsem;
team_idteam;
charname[B_OS_NAME_LENGTH];
long count;
thread_idlatest_holder;

} sem_info

The structure’s fields are:

• sem. Thesem_id number of the semaphore.
• team. The team_id of the semaphore’s owner.
• name. The name assigned to the semaphore.
• count. The semaphore’s thread count.
• latest_holder. The thread that most recently acquired the semaphore.

Note that the thread that’s identified in thelastest_holder field may no longer be holding
the semaphore—it may have since released the semaphore. The latest holder is simply the
last thread to have calledacquire_sem() (of whatever flavor) on this semaphore.

Functions Semaphores

42 – The Kernel Kit

The information in thesem_info structure is guaranteed to be internally consistent, but the
structure as a whole should be consider to be out-of-date as soon as you receive it. It
provides a picture of a semaphore as it exists just before the info-retrieving function
returns.

The functions returnB_NO_ERROR if the designated semaphore is successfully found.
Otherwise, they returnB_BAD_SEM_ID, B_BAD_TEAM_ID, or B_BAD_INDEX.

release_sem(), release_sem_etc()
long release_sem(sem_idsem)
long release_sem_etc(sem_idsem, longcount, longflags)

Therelease_sem() function de-queues the thread that’s waiting at the head of the
semaphore’s thread queue (if any), and increments the semaphore’s thread count.
release_sem_etc() does the same, but forcount threads.

Normally, releasing a semaphore automatically invokes the kernel’s scheduler. In other
words, when your thread callsrelease_sem() (or the sequel), you’re pretty much
guaranteed that some other thread will be switched in immediately afterwards, even if
your thread hasn’t gotten its fair share of CPU time. If you want to subvert this
automatism, callrelease_sem_etc() with aflags value ofB_DO_NOT_RESCHEDULE.
Preventing the automatic rescheduling is particularly useful if you’re releasing a number
of different semaphores all in a row: By avoiding the rescheduling you can prevent some
unnecessary context switching.

If sem is a valid semaphore identifier, these functions return B_NO_ERROR; if it’s invalid,
they returnB_BAD_SEM_ID. Note that if a released thread deletes the semaphore (before
the releasing function returns), these functions will still returnB_NO_ERROR.

Thecount argument torelease_sem_count() must be greater than zero; the function
returnsB_BAD_VALUE otherwise.

See also: acquire_sem()

set_sem_owner()
long set_sem_owner(sem_idsem, team_idteam)

Transfers ownership of the designated semaphore toteam. A semaphore can only be
owned by one team at a time; by setting a semaphore’s owner, you remove it from its
current owner.

There are no restrictions on who can own a semaphore, or on who can transfer ownership.
In practice, however, the only reason you should ever transfer ownership is if you’re
writing a device driver and you need to bequeath a semaphore to the kernel (the team of
which is known, for this purpose, asB_SYSTEM_TEAM).

Semaphores Functions

The Kernel Kit –43

Semaphore ownership is meaningful for two reason: When a team dies (when all its
threads are dead), the semaphores that are owned by that team are deleted. Also, only a
thread that belongs to a semaphore’s owner is allowed to delete that semaphore.

To discover a semaphore’s owner, use theget_sem_info() function.

set_sem_owner() fails and returnsB_BAD_SEM_ID or B_BAD_TEAM_ID if one or the other
argument is invalid. Otherwise it returnsB_HOKEY_POKEY.

See also: get_sem_info()

Functions Semaphores

44 – The Kernel Kit

The Kernel Kit –45

Areas

Declared in: <kernel/OS.h>

Overview

An area is a chunk of virtual memory. As such, it has all the expected properties of virtual
memory: It has a starting address, a size, the addresses it comprises are contiguous, and it
maps to (possibly non-contiguous) physical memory. The primary differences between an
area and “standard” virtual memory (memory that you allocate throughmalloc(), for
example) are these:

• Different areas can refer to the same physical memory. Put another way, different
virtual memory addresses can map to the same physical locations. Furthermore, the
different areas needn’t belong to the same application. By creating and “cloning”
areas, applications can easily share the same data.

• You can specify that the area’s physical memory be locked into RAM when it’s
created, locked on a page-by-page basis as pages are swapped in, or that it be
swapped in and out as needed.

• Areas always start on a page boundary, and are allocated in integer multiples of the
size of a page. (A page is 4096 bytes, as represented by theB_PAGE_SIZE constant.)

• You can specify the starting address of the area’s virtual memory. The specification
can require that the area start precisely at a certain address, anywhere above a
certain address, or anywhere at all.

• An area can be read- and write-protected.

Because areas are large—4096 bytes minimum—you don’t create them arbitrarily. The
two most compelling reasons to create an area are the two first points listed above: To
share data among different applications, and to lock memory into RAM.

Identifying an Area

An area is uniquely identified (system-wide) by itsarea_id number. Thearea_id is
assigned automatically bycreate_area(), a function that does what it says. Most of the
other area functions require an area_id argument.

When you create an area, you get to name it. Area names are not unique—any number of
areas can be assigned the same name.

Overview Areas

46 – The Kernel Kit

Sharing Areas

If you want to share an area with another application, you can broadcast the area’sarea_id
number, but it’s recommended that, instead, you publish the area’s name. Given an area
name, a “remote” application can retrieve the area’s ID number by callingfind_area().

To use an area that was created by another application, the first thing you do, having
acquired the area’sarea_id throughfind_area(), is “clone” the area. You do this by
calling theclone_area() function. The function returns a newarea_id number that
identifies your clone of the original area. All further references to the area (in the cloning
application) must be based on the ID of the clone.

The physical memory that lies beneath a cloned area is never implicitly copied—for
example, the area mechanism doesn’t perform a “copy-on-write.” If two areas (more
specifically, twoarea_id numbers) refer to the same memory because of cloning, a data
modification that’s affected through one area will be seen by the other area.

Note: Because names aren’t unique, multiple calls tofind_area() with the same name
won’t all necessarily return the samearea_id—consider the case where more than one
instantiation of the same area-creating application is running on your computer.

Locking an Area

When you’re working with moderately large amounts of data, it’s often the case that you
would prefer that the data remain in RAM, even if the rest of your application needs to be
swapped out. An argument tocreate_area() lets you declare, through the use of one of
the following constants, the locking scheme that you wish to apply to your area:

• B_FULL_LOCK means the area’s memory is locked into RAM when the area is
created, and won’t be swapped out.

• B_LAZY_LOCK allows individual pages of memory to be brought into RAM through
the natural order of things andthen locks them.

• B_NO_LOCK means pages are never locked, they’re swapped in and out as needed.

Keep in mind that locking an area essentially reduces the amount of RAM that can be used
by other applications, and so increases the likelihood of swapping. So you shouldn’t lock
simply because you’re greedy. But if the area that you’re locking is going to be shared
among some number of other applications, or if you’re writing a real-time application that
processes large chunks of data, then locking can be a benefit.

The locking scheme is set by thecreate_area() function and is thereafter immutable. You
can’t re-declare the lock when you clone an area.

Areas Overview

The Kernel Kit –47

Using an Area

Ultimately, you use an area for the virtual memory that it represents: You create an area
because you want some memory to which you can write and from which you can read
data. These acts are performed in the usual manner, through references to specific
addresses. Setting a pointer to a location within the area, and checking that you haven’t
exceeded the area’s memory bounds as you increment the pointer (while reading or
writing) are your own responsibility. To do this properly, you need to know the area’s
starting address and its extent:

• An area’s starting address is maintained as theaddress field in itsarea_info
structure; you retrieve thearea_info for a particular area through the
get_area_info() function.

• The size of the area (in bytes) is given as thesize field of itsarea_info structure.

An important point, with regard toarea_info, is that theaddress field is only valid for the
application that created or cloned the area (in other words, the application that created the
area_id that was passed toget_area_info()). Although the memory that underlies an area
is global, the address that you get from anarea_info structure refers to a specific address
space.

If there’s any question about whether a particulararea_id is “local” or “foreign,” you can
compare thearea_info.team field to your thread’s team.

Deleting an Area

When your application quits, the areas (thearea_id numbers) that it created through
create_area() or clone_area() are automatically rendered invalid. The memory
underlying these areas, however, isn’t necessarily freed. An area’s memory is freed only
when (and as soon as) there are no more areas that refer to it.

You can force the invalidation of anarea_id by passing it to thedelete_area() function.
Again, the underlying memory is only freed if yours is the last area to refer to the memory.

Deleting an area, whether explicitly throughdelete_area(), or because your application
quit, never affects the status of other areas that were cloned from it.

Functions Areas

48 – The Kernel Kit

Functions

area_for()
area_idarea_for(void *addr)

Returns thearea_id of the area that contains the given address within your own team’s
address space. The argument needn’t be the starting address of an area, nor must it start on
a page boundary: If the address lies anywhere within one of your application’s areas, the
ID of that area is returned.

Since the address is taken to be in the local address space, the area that’s returned will also
be local—it will have been created or cloned by your application.

If the address doesn’t lie within an area,B_ERROR is returned.

See also: find_area()

clone_area()
long clone_area(const char *clone_name,

void **clone_addr,
ulongclone_addr_spec,
ulongclone_protection,
area_idsource_area)

Creates a new area (theclone area) that maps to the same physical memory as an existing
area (thesource area). The arguments are:

• clone_name is the name that you wish to assign to the clone area. Area names are,
at most,B_OS_NAME_LENGTH (32) characters long.

• clone_addrpoints to a value that gives the address at which you want the clone area
to start; the pointed-to value must be a multiple ofB_PAGE_SIZE (4096). The
function sets the value pointed to byclone_addr to the area’s actual starting
address—it may be different from the one you requested. The constancy of
*clone_addr depends on the value ofclone_addr_spec, as explained next.

• clone_addr_spec is one of four constants that describes howclone_addr is to be
interpreted. The first three constants, B_EXACT_ADDRESS, B_BASE_ADDRESS, and
B_ANY_ADDRESS, have meanings as explained undercreate_area().

The fourth constant,B_CLONE_ADDRESS, specifies that the address of the cloned
area should be the same as the address of the source area. Cloning the address is
convenient if you have two (or more) applications that want to pass pointers to each
other—by using cloned addresses, the applications won’t have to offset the pointers
that they receive. For both theB_ANY_ADDRESS andB_CLONE_ADDRESS
specifications, the value that’s pointed to by theclone_addr argument is ignored.

Areas Functions

The Kernel Kit –49

• clone_protection is one or both ofB_READ_AREA andB_WRITE_AREA. These have
the same meaning as increate_area(); keep in mind, as described there, that a
cloned area can have a protection that’s different from that of its source.

• source_area is thearea_id of the area that you wish to clone. You usually supply
this value by passing an area name to thefind_area() function.

The cloned area inherits the source area’s locking scheme (B_FULL_LOCK, B_LAZY_LOCK,
or B_NO_LOCK).

Usually, the source area and clone area are in two different applications. It’s possible to
clone an area from a source that’s in the same application, but there’s not much reason to
do so unless you want the areas to have different protections.

If area_clone() clone is successful, the clone’sarea_id is returned. Otherwise, the
function returns one of the following error constants:

Constant Meaning

B_BAD_VALUE Bad argument value; you passed an unrecognized
constant foraddr_spec or lock, theaddr value isn’t a
multiple ofB_PAGE_SIZE, you setaddr_spec to
B_EXACT_ADDRESS or B_CLONE_ADDRESS but the
address request couldn’t be fulfilled, or source_area
doesn’t identify an existing area.

B_NO_MEMORY Not enough memory to allocate the system structures that
support this area.

B_ERROR Some other system error prevented the area from being
created.

See also: create_area(), delete_area()

create_area()
area_idcreate_area(const char *name,

void **addr,
ulongaddr_spec,
ulongsize,
ulong lock,
ulongprotection)

Creates a new area and returns itsarea_id. The arguments are:

• name is the name that you wish to assign to the area. It needn’t be unique. Area
names are, at most,B_OS_NAME_LENGTH (32) characters long.

• addr points to the address at which you want the area to start. The value of*addr
must signify a page boundary; in other words, it must be an integer multiple of
B_PAGE_SIZE (4096). Note that this is a pointer to a pointer: *addr—notaddr—

Functions Areas

50 – The Kernel Kit

should be set to the desired address; you then pass the address ofaddr as the
argument, as shown below:

/* Set the address to a page boundary. */
char *addr = (char *)(4096 * 100);

/* Pass the address of addr as the second argument. */
create_area("my area", &addr, ...);

The function sets the value of*addr to the area’s actual starting address—it may be
different from the one you requested. The constancy of *addr depends on the value
of addr_spec, as explained next.

• addr_specis a constant that tells the function how the*addr value should be
applied. There are three address specification constants:

B_EXACT_ADDRESS means you want the value of *addr to be taken literally and
strictly. If the area can’t be allocated at that location, the function fails.

B_BASE_ADDRESS means the area can start at a location equal to or greater than
*addr.

B_ANY_ADDRESS means the starting address is determined by the system. In this
case, the value that’s pointed to byaddr is ignored (going into the function).

(A fourth specification,B_CLONE_ADDRESS, is only used by the clone_area()
function.)

• size is the size, in bytes, of the area. The size must be an integer multiple of
B_PAGE_SIZE (4096). The upper limit ofsize depends on the available swap space
(or RAM, if the area is to be locked).

• lock describes how the physical memory should be treated with regard to swapping.
There are three locking constants:

B_FULL_LOCK means the area’s memory is immediately locked into RAM and won’t
be swapped out.

B_LAZY_LOCK allows individual pages of memory to be brought into RAM through
the natural order of things andthen locks them.

B_NO_LOCK means pages are never locked, they’re swapped in and out as needed.

• protection is a mask that describes whether the memory can be written and read.
You form the mask by adding the constantsB_READ_AREA (the area can be read) and
B_WRITE_AREA (it can be written). The protection you describe applies only to this
area. If your area is cloned, the clone can specify a different protection.

If create_area() is successful, the new area_id number is returned. If it’s unsuccessful,
one of the following error constants is returned:

Areas Functions

The Kernel Kit –51

Constant Meaning

B_BAD_VALUE Bad argument value. You passed an unrecognized
constant foraddr_spec or lock, theaddr or size value
isn’t a multiple ofB_PAGE_SIZE, or you setaddr_spec to
B_EXACT_ADDRESS but the address request couldn’t be
fulfilled.

B_NO_MEMORY Not enough memory to allocate the necessary system
structures that support this area. Note that this error code
doesn’t mean that you asked for too much physical
memory.

B_ERROR Some other system error prevented the area from being
created. Most notably,B_ERROR is returned ifsize is too
large.

See also: clone_area(), delete_area()

delete_area()
long delete_area(area_idarea)

Deletes the designated area. If no one other area maps to the physical memory that this
area represents, the memory is freed.

Note: Currently, anybody can delete any area—the act isn’t denied if, for example, the
area_id argument was created by another application. This freedom will be rescinded in a
later release. Until then, try to avoid deleting other application’s areas.

If area doesn’t designate an actual area, this function returnsB_ERROR; otherwise it returns
B_NO_ERROR.

See also: create_area(), clone_area()

find_area()
area_idfind_area(const char *name)

Returns an area that has a name that matches the argument. Area names needn’t be
unique—successive calls to this function with the same argument value may not return the
samearea_id.

What you do with the area you’ve found depends on where it came from:

• If you’re finding an area that your own application created or cloned, you can use
the returned ID directly.

• If the area was created or cloned by some other application, you should immediately
clone the area (unless you’re doing something truly innocuous, such as simply
examining the area’s info structure).

Functions Areas

52 – The Kernel Kit

If the argument doesn’t identify an existing area, theB_NAME_NOT_FOUND error code is
returned.

See also: area_for()

get_area_info(), get_nth_area_info()
long get_area_info(area_idarea, area_info*info)
long get_nth_area_info(team_idteam, longn, area_info*info)

Copies information about a particular area into thearea_info structure designated by info.
The first version of the function designates the area directly, byarea_id. The second
version designates then’th area within the given team. If theteam argument is 0, all teams
are considered.

Thearea_info structure is defined as:

typedef structarea_info {
area_idarea;
char name[B_OS_NAME_LENGTH];
void *address;
ulong size;
ulong lock;
ulong protection;
team_id team;
ulong ram_size;
ulong copy_count;
ulong in_count;
ulong out_count;

} area_info;

The fields are:

• area is thearea_id that identifies the area. This will be the same as the function’s
area argument.

• name is the name that was assigned to the area when it was created or cloned.

• address is a pointer to the area’s starting address. Keep in mind that this address is
only meaningful to the application that created (or cloned) the area.

• size is the size of the area, in bytes.

• lock is a constant that represents the area’s locking scheme. This will be one of
B_FULL_LOCK, B_LAZY_LOCK, or B_NO_LOCK.

• protection specifies whether the area’s memory can be read or written. It’s a
combination ofB_READ_AREA andB_WRITE_AREA.

• team is theteam_id of the thread that created or cloned this area.

Areas Functions

The Kernel Kit –53

The final four fields give information about the area that’s useful in diagnosing system use.
The fields are particularly valuable if you’re hunting for memory leaks:

• ram_size gives the amount of the area, in bytes, that’s currently swapped in.

• copy_count is a “copy-on-write” count that can be ignored—it doesn’t apply to the
areas that you create. The system can create copy-on-write areas (it does so when it
loads the data section of an executable, for example), but you can’t.

• in_count is a count of the total number of times any of the pages in the area have
been swapped in.

• out_count is a count of the total number of times any of the pages in the area have
been swapped out.

If the area argument doesn’t identify an existing area, the function returnsB_BAD_VALUE;
otherwise it returns B_NO_ERROR.

resize_area()
long resize_area(area_idarea, ulong new_size)

Sets the size of the designated area tonew_size, measured in bytes. Thenew_size
argument must be a multiple ofB_PAGE_SIZE (4096).

Size modifications affect the end of the area’s existing memory allocation: If you’re
increasing the size of the area, the new memory is added to the end of area; if you’re
shrinking the area, end pages are released and freed. In neither case does the area’s
starting address change, nor is existing data modified (expect, of course, for data that’s lost
due to shrinkage).

If the function is successful,B_NO_ERROR is returned. Otherwise one of the following
error codes is returned:

Constant Meaning

B_BAD_VALUE Eitherarea doesn’t signify a valid area, ornew_size isn’t
a multiple ofB_PAGE_SIZE.

B_NO_MEMORY Not enough memory to allocate the system structures that
support the new portion of the area. This should only
happen if you’re increasing the size of the area. Note that
this error codedoesn’t mean that you asked for too much
physical memory.

B_ERROR Some other system error prevented the area from being
created. Most notably,B_ERROR is returned ifnew_size is
too large.

See also: create_area()

54 – The Kernel Kit

set_area_protection()
long set_area_protection(area_id area, ulongnew_protection)

Sets the given area’s read and write protection. Thenew_protection argument is a mask
that specifies one or both of the valuesB_READ_AREA andB_WRITE_AREA. The former
means that the area can be read; the latter, that it can be written to. An area’s protection
only applies to access to the underlying memory through that specific area. Different area
clones that refer to the same memory may have different protections.

The function fails (the old protection isn’t changed) and returnsB_BAD_VALUE if area
doesn’t identify a valid area; otherwise it returnsB_NO_ERROR.

See also: create_area()

The Kernel Kit –55

Images

Declared in: <kernel/image.h>

Overview

An image is compiled code; put another way, an image is what the compiler produces.
There are three types of images:

• An app image is an application. Every application has a single app image.

• A library image is a dynamically linked library (a “shared library”). Most
applications link against the system library (libbe.so) that Be provides.

• An add-on imageis an image that you load into your application as it’s running.
Symbols from the add-on image are linked and references are resolved when the
image is loaded. Thus, an add-on image provides a sort of “heightened dynamic
linking” beyond that of a DLL.

The following sections explain how to load and run an app image, how to create a shared
library, and how to create and load an add-on image.

Loading an App Image

Loading an app image is like running a “sub-program.” The image that you load is
launched in much the same way as had you double-clicked it in the Browser, or launched it
from the command line. It runs in its own team—it doesn’t share the address space of the
application from which it was launched—and, generally, leads its own life.

Any application can be loaded as an app image; you don’t need to issue special compile
instructions or otherwise manipulate the binary. The one requirement of an app image is
that it must have amain() function; hardly a restrictive request.

To load an app image, you call theload_executable() function, the protocol for which is:

thread_idload_executable(BFile *file,
int argc,
const char **argv,
const char **env)

The function takes, as its first argument, a BFile object that represents the image file.
Having located the file, the function creates a new team, spawns a main thread in that
team, and then returns thethread_id of that thread to you. The thread that’s returned is the

Overview Images

56 – The Kernel Kit

executable’s main thread. It won’t be running: To make it run you pass thethread_id to
resume_thread() or wait_for_thread() (as explained in the major section “Threads and
Teams”).

In addition to the BFile argument,load_executable() takes anargc/argv argument pair
(which are copied and forwarded to the new thread’smain() function), as well as a pointer
to an array of environment variables (strings):

• Theargc/argv arguments must be set up properly—you can’t just pass 0 andNULL.
To properly instantiate the arguments, the first string in theargv array must be the
name of the image file (in other words, the name of the program that you’re going to
launch). You then install any other arguments you want in the array, and terminate
the array with aNULL entry. argc is set to the number of entries in theargv array (not
counting the terminatingNULL). It’s the caller’s responsibility to free theargv array
after load_executable() returns.

• envp is an array of environment variables that are also passed tomain(). Typically,
you use the globalenviron pointer (which you must declare as anextern—see the
example, below). You can, of course, create your environment variable array: As
with theargv array, theenvp array should be terminated with aNULL entry, and you
must free the array when load_executable() returns (that is, if you allocated it
yourself—don’t try to freeenviron).

The following example demonstrates a typical use ofload_executable(). First, we
include the appropriate files and declare the necessary variables:

#include <image.h> /* load_executable() */
#include <OS.h> /* wait_for_thread() */
#include <stdlib.h> /* malloc() */

/* Here's how you declare the environment variable array. */
extern char **environ;

BFile exec_file;
record_ref exec_ref;
char **arg_v; /* choose a name that doesn't collide with argv */
long arg_c; /* same here vis a vis arg_c */
thread_id exec_thread;
long return_value;

Next, we set our BFile’s ref so the object refers to the executable file, which we’re calling
adder. For this example, we useget_ref_for_path() to set the ref’s value (see the Storage
Kit chapter for more information on these manipulations):

get_ref_for_path("/hd/my_apps/adder", &exec_ref);
exec_file.SetRef(exec_ref);

Install, in thearg_v array, the “command line” arguments that we’re sending toadder.
Let’s pretend theadder program takes two integers, adds them together, and returns the
result asmain()'s exit code. Thus, there are three arguments: The name of the program
(“adder”), and the values of the two addends converted to strings. Since there are three

Images Overview

The Kernel Kit –57

arguments, we allocatearg_v to hold four pointers (to accommodate the finalNULL). Then
we allocate and copy the arguments.

arg_c = 3;
arg_v = (char **)malloc(sizeof(char *) * (agc + 1));

arg_v[0] = strdup("adder");
arg_v[1] = strdup("5");
arg_v[2] = strdup("3");
arg_v[3] = NULL;

Now that everything is properly set up, we callload_executable(). After the function
returns, it’s safe to free the allocatedarg_v array:

exec_thread=load_executable(&exec_file, arg_c, arg_v, environ);
free(arg_v);

At this point,exec_thread is suspended (the natural state of a newly-spawned thread). In
order to retrieve its return value, we use wait_for_thread() to tell the thread to run:

wait_for_thread(exec_thread, &return_value);

After wait_for_thread() returns, the value ofreturn_value should be 8 (i.e. 5 + 3).

Creating a Shared Library

The primary documentation for creating a shared library is provided by MetroWerks in
their CodeWarrior manual. Beyond the information that you find there, you should be
aware of the following amendments and caveats.

• You mustn’t export your library’s symbols through the-export all compiler flag.
Instead, you should either use-export pragma or -@export filename (which is the
same as -f filename). See the MetroWerks manual for details on how to use these
flags.

• The libraries that you create must be placed in/system/lib so the loader can find
them when an application (that’s uses your libraries) is launched.

 Creating and Using an Add-on Image

An add-on image is indistinguishable from a shared library image. Creating an add-on is,
therefore, exactly like creating a shared library, a topic that we breezed through
immediately above. The one exception to the rules given above is in where the add-on
must live: You can keep your add-ons anywhere in the file system. When you load an
add-on (through theload_add_on() function), you have to refer to the add-on file directly
through the use of a BFile—the system doesn’t search for the file for you.

Overview Images

58 – The Kernel Kit

Loading an Add-on Image

To load an add-on into your application, you call theload_add_on() function. The
function takes a pointer to a BFile object that refers to the add-on file, and returns an
image_id number that uniquely identifies the image across the entire system.

For example, let’s say you’ve created an add-on image that’s stored in the file
/hd/addons/adder (the add-on will perform the same adding operation that was
demonstrated in theload_executable() example). The code that loads the add-on would
look like this:

/* For brevity, we won't check errors. */
BFile addon_file;
record_ref addon_ref;
image_id addon_image;

/* Establish the file's ref. */
get_ref_for_path("/hd/addons/adder", &addon_ref);
addon_file.SetRef(addon_ref);

/* Load the add-on. */
addon_image = load_add_on(&addon_file);

Unlike loading an executable, loading an add-on doesn’t create a separate team (nor does
it spawn another thread). The whole point of loading an add-on is to bring the image into
your application’s address space so you can call the functions and fiddle with the variables
that the add-on defines.

Symbols

After you’ve loaded an add-on into your application, you’ll want to examine the symbols
(variables and functions) that it has brought with it. To get information about a symbol,
you call theget_image_symbol() function:

long get_image_symbol(image_idimage,
char *symbol_name,
longsymbol_type,
void ** location)

 The function’s first three arguments identify the symbol that you want to get:

• The first argument is the image_id of the add-on that owns the symbol.

• The second argument is the symbol’s name. This assumes, of course, that you know
the name. In general, using an add-on implies just this sort of cooperation.

• The third is a constant that gives the symbol’ssymbol type. The only types you
should care about areB_SYMBOL_TYPE_DATA which you use for variables, and
B_SYMBOL_TYPE_TEXT which you use for functions.

Images Overview

The Kernel Kit –59

The function returns, by reference in its final argument, a pointer to the symbol’s address.
For example, let’s say theadder add-on code looks like this:

long addend1 = 0;
long addend2 = 0;

long adder(void)
{

return (addend1 + addend2);
}

To examine the variables (addend1 andaddend2), you would callget_image_symbol()
thus:

long *var_a1, *var_a2;

/* addon_image is the image_id that was returned by the
 * load_add_on() call in the previous example.
 */
get_image_symbol(addon_image, "addend1", 1, &var_a1);
get_image_symbol(addon_image, "addend2", 1, &var_a2);

To get the symbol for theadder() function is a bit more complicated. The compiler
renames a function’s symbol to encode the data types of the function’s arguments. The
encoding scheme is explained in the next section; to continue with the example, we’ll
simply accept that theadder() function’s symbol is

adder__Fv

And so...

long (*func_add)();
get_image_symbol(addon_image, "adder__Fv", 2, &func_add);

Now that we’ve retrieved all the symbols, we can set the values of the two addends and
call the function:

*var_a1 = 5;
*var_a2 = 3;
long return_value = (*func_add)();

Function Symbol Encoding

The compiler encodes function symbols according to this format:

functionName__F<arg1Type><arg2Type><arg3Type>....

where the argument type codes are

Code Type

i int
l long

Functions Images

60 – The Kernel Kit

f float
d double
c char
v void

In addition, if the argument is declared as unsigned, the type code character is preceded by
“U”. If it’s a pointer, the type code (and, potentially, the “U”) is preceded by “P”; a
pointer to a pointer is preceded by “PP”. For example, a function that’s declared as

void Func(long, unsigned char **, float *, double);

would have the following symbol name:

Func__FlUPPcPfd

Note thattypedef’s are translated to their natural types. So, for example, this:

void dump_thread(thread_id, bool);

becomes

dump_thread__FlUc

Functions

get_image_info(), get_nth_image_info()
long get_image_info(image_idimage, image_info *info)

long get_nth_image_info(team_idteam,
longn,
image_info *info)

These functions return information about a particular image. The first version identifies
the image by its first argument; the second version locates then’th image that’s loaded into
team. The information is returned in theinfo argument. Theimage_info structure is
defined as:

typedef struct {
long volume;
long directory;
char name[B_FILE_NAME_LENGTH];
image_idid;
void *text;
long text_size;
void *data;
long data_size;
image_typetype;

} image_info

Images Functions

The Kernel Kit –61

The volume and directory fields are, practically speaking, private. The other fields are:

• name. The name of the file whence sprang the image.
• id. The image’simage_id number.
• text andtext_size. The address and the size (in bytes) of the image’s text segment.
• data anddata_size. The address and size of the image’s data segment.
• type. A constant that tells whether this is an app, library, or add-on image.

The self-explanatoryimage_type constants are:

• B_APP_IMAGE
• B_LIBRARY_IMAGE
• B_ADD_ON_IMAGE

The functions returnB_BAD_IMAGE_ID or B_BAD_INDEX if the designated image doesn’t
exist. Otherwise, they returnB_NO_ERROR.

get_image_symbol(), get_nth_image_symbol()
long get_image_symbol(image_idimage,

char *symbol_name,
longsymbol_type,
void ** location)

long get_nth_image_symbol(image_idimage,
longn,
char *name,
int *name_length,
int *symbol_type,
void ** location)

get_image_symbol() returns, inlocation, a pointer to the address of the symbol that’s
identified by theimage, symbol_name, andsymbol_type arguments. An example
demonstrating the use of this function is given in “Symbols” on page 58.

get_nth_image_symbol() returns information about then’th symbol in the given image.
The information is returned in the arguments:

• name is the name of the symbol. You have to allocate thename buffer before you
pass it in—the function copies the name into the buffer.

• You pointname_length to an integer that gives the length of thename buffer that
you’re passing in. The function uses this value to truncate the string that it copies
into name. The function then resetsname_length to the full (untruncated) length of
the symbol’s name (plus one byte to accommodate a terminatingNULL). To ensure
that you’ve gotten the symbol’s full name, you should compare the in-going value of
name_length with the value that the function sets it to. If the in-going value is less
than the full length, you can then re-invokeget_nth_image_symbol() with an
adequately lengthenedname buffer, and an increased name_lengthvalue.

Functions Images

62 – The Kernel Kit

Important: Keep in mind thatname_length is reset each time you call
get_nth_image_symbol(). If you’re calling the function iteratively (to retrieve all
the symbols in an image), you need to reset thename_length value between calls.

• The function setssymbol_typeto B_SYMBOL_TYPE_DATA if the symbol is a variable,
or B_SYMBOL_TYPE_TEXT if the symbol is a function. The argument’s value going
into the function is of no consequence.

• The function setslocation to point to the symbol’s address.

To retrieveimage_id numbers on which these functions can act, use the
get_nth_image_info() function. Such numbers are also returned directly when you load
an add-on image through theload_add_on() function.

The functions returnB_BAD_IMAGE_ID or B_BAD_INDEX if the designated image doesn’t
exist. Otherwise, they returnB_NO_ERROR.

load_add_on(), unload_add_on()
image_idload_add_on(BFile *file)
long unload_add_on(image_idimage)

load_add_on() loads an add-on image, identified byfile, into your application’s address
space. The function returns animage_id (a positive integer) that represents the loaded
image. An example that demonstrates the use of load_add_on() is given in “Loading an
Add-on Image” on page 58.

You can load the same add-on image twice; each time you load the add-on a new, unique
image_id is created and returned. If the requested file couldn’t be loaded as an add-on (for
whatever reason), the function returnsB_ERROR.

unload_add_on() removes the add-on image identified by the argument. The image’s
symbols are removed, and the memory that they represent is freed. If the argument
doesn’t identify a valid image, the function returnsB_ERROR. Otherwise, it returns
B_NO_ERROR.

load_executable()
thread_idload_executable(BFile *file,

int argc,
const char **argv,
const char **env)

Loads an app image into the system (itdoesn’t load the image into the caller’s address
space), creates a separate team for the new application, and spawns and returns the ID of
the team’s main thread. The image is identified by thefile argument;file must have its ref
set before this function is called. It’s of no consequence whether the object is open or
closed when you call this function.

Images Functions

The Kernel Kit –63

The other arguments are passed to the image’smain() function (they show up there as the
function’s similarly named arguments):

• argc gives the number of entries that are in theargv array.

• The first string in theargv array must be the name of the image file (in other words,
the name of the program that you’re going to launch). You then install any other
arguments you want in the array, and terminate the array with aNULL entry. Note
that the value ofargc shouldn’t countargv’s terminatingNULL.

• envp is an array of environment variables that are also passed tomain(). Typically,
you use the globalenviron pointer:

extern char **environ;

load_executable(..., environ);

Theargv andenvp arrays are copied into the new thread’s address space. If you allocated
either of these arrays, it’s safe to free them immediately afterload_executable() returns.

The thread that’s returned by load_executable() is in a suspended state. To start the
thread running, you pass thethread_id to resume_thread() or wait_for_thread().

An example that demonstrates the use ofload_executable() is given in “Loading an App
Image” on page 55.

If the function returnsB_ERROR upon failure.

Functions Images

64 – The Kernel Kit

The Kernel Kit –65

Miscellaneous Functions,
Constants, and Defined Types

Miscellaneous Functions

debugger()
void debugger(const char *string)

Throws the calling thread into the debugger. Thestring argument becomes the
debugger’s first utterance.

get_system_info()
long get_system_info(system_info *info)

Returns information about the computer. The information is returned ininfo, a
system_info structure.

is_computer_on()
long is_computer_on(void)

Returns 1 if the computer is on. If the computer isn’t on, the value returned by this
function is undefined.

system_time()
double system_time(void)

Returns the number of microseconds that have elapsed since the computer was booted.

Constants Miscellaneous Functions, Constants, and Defined Types

66 – The Kernel Kit

Constants

Area Location Constants
<kernel/OS.h>

Constant Meaning

B_ANY_ADDRESS Put the area anywhere
B_EXACT_ADDRESS The area must start exactly at a given address
B_BASE_ADDRESS The area can start anywhere above a given address
B_CLONE_ADDRESS The clone must start at the same address as the original

These constants represent the different locations at which an area can be placed when
it’s created. They’re used as values for the address arguments increate_area() and
clone_area(). B_CLONE_ADDRESS can be passed toclone_area() only; the other three
can be passed to either function.

See also: “Areas” on page 45

Area Lock Constants
<kernel/OS.h>

Constant Meaning

B_NO_LOCK Never lock the area’s pages
B_LAZY_LOCK Lock pages as they’re swapped in
B_FULL_LOCK Lock all pages now

These constants represent an area’s “locking scheme,” the circumstances in which the
area’s underlying memory is locked into RAM. You set the locking scheme for an area
by passing one of these constants tocreate_area()’s lock argument; the scheme can’t be
changed thereafter.

To query an area’s locking scheme, retrieve itsarea_info structure (through
get_area_info()) and look at thelock field.

See also: “Areas” on page 45

Area Protection Constants
<kernel/OS.h>

Constant Meaning

B_READ_AREA The area can be read from
B_WRITE_AREA The area can be written into

These constants represent the read and write protection that’s enforced for an area. The
constants are flags that can be added together and passed as the protection argument to

Miscellaneous Functions, Constants, and Defined Types Constants

The Kernel Kit –67

create_area() andclone_area(). You can change an area’s protection through the
set_area_protection() function.

To query an area’s protection, retrieve itsarea_info structure (throughget_area_info())
and look at theprotection field.

See also: “Areas” on page 45

CPU Count
<kernel/OS.h>

Constant Value

B_MAX_CPU_NUM 8

This constant gives the maximum number of CPUs that a single system can support.
Thecpu_count field of thesystem_info structure gives the number of CPUs that are
actually on a given system. To retrieve this structure, call theget_system_info()
function.

See also: get_system_info()

CPU Type Constant
<kernel/OS.h>

Constant

B_CPU_PPC_601
B_CPU_PPC_603
B_CPU_PPC_603e
B_CPU_PPC_604
B_CPU_PPC_604e
B_CPU_PPC_686

These constants represent the different CPU chips that the BeBox has used/is
using/might use. To discover which chip the local machine is using, looking in the
cpu_type field of thesystem_info structure. To retrieve this structure, call the
get_system_info() function.

See also: get_system_info()

Constants Miscellaneous Functions, Constants, and Defined Types

68 – The Kernel Kit

File Name Length
<kernel/OS.h>

Constant Value

B_FILE_NAME_LENGTH 64

This constant gives the maximum length of the name of a file or directory.

Image Type Constants
<kernel/image.h>

Constant Meaning

B_APP_IMAGE Application image
B_LIBRARY_IMAGE Shared library image
B_ADD_ON_IMAGE Add-on image
B_SYSTEM_IMAGE System-defined image

The image type constants (typeimage_type) enumerate the differentimages, or loadable
compiled code, that you can create or otherwise find on the system. Of the four image
types, you can’t createB_SYSTEM_IMAGES; however, it’s possible to run across a system-
defined image if you retrieve all the image info structures for all teams (through the
get_nth_image_info() function).

See also: “Images” on page 55

Image Symbol Type Constants
<kernel/OS.h>

Constant Meaning

B_SYMBOL_TYPE_DATA The symbol is a variable
B_SYMBOL_TYPE_TEXT The symbol is a function

The image symbol type constants describe the nature of a particular image symbol. You
retrieve symbol information from an image through theget_image_symbol().

See also: “Images” on page 55

Miscellaneous Functions, Constants, and Defined Types Constants

The Kernel Kit –69

Operating System Doodad Name Length
<kernel/OS.h>

Constant Value

B_OS_NAME_LENGTH 32

This constant gives the maximum length of the name of a thread, semaphore, port, area,
or other operating system bauble.

Page Size
<kernel/OS.h>

Constant Value

B_PAGE_SIZE 4096

TheB_PAGE_SIZE constant gives the size, in bytes, of a page of RAM.

Port Message Count
<kernel/OS.h>

Constant Value

B_MAX_PORT_COUNT 128

This constant gives the maximum number of messages that a port can hold at a time.
This value isn’t applied automatically—you declare a port’s message capacity when you
create it.

To query a port’s message capacity, retrieve itsport_info structure (through the
get_port_info() function) and look at thecapacity field.

See also: “Ports” on page 23

Constants Miscellaneous Functions, Constants, and Defined Types

70 – The Kernel Kit

Semaphore Control Flags
<kernel/OS.h>

Acquire Flag Meaning

B_TIMEOUT Honoracquire_sem_etc()’s timeout argument.
B_CAN_INTERRUPT The semaphore can be interrupted by a signal.
B_CHECK_PERMISSION Make sure this isn’t a system semaphore.

Release Flag Meaning

B_DO_NOT_RESCHEDULE Don’t reschedule after the semaphore is released.

These are the flag values that can be passed to theacquire_sem_etc() and
release_sem_etc() functions.

The timeout flag (B_TIMEOUT) applies to all semaphore acquisitions: If, having set the
B_TIMEOUT flag, youracquire_sem_etc() call blocks, the acquisition attempt will give
up after some number of microseconds (as given in the function’stimeout argument). If
B_TIMEOUT isn’t set, the acquisition can, potentially, block forever. The other two
acquisition flags are used by device driver writers only. The meanings of these flags is
given in the Device Kit chapter.

TheB_DO_NOT_RESCHEDULE flag applies to therelease_sem_etc() function. Normally,
when a semaphore is released, the kernel immediately finds another thread to run, even
if the releasing thread hasn’t used up a full “schedule quantum” worth of CPU attention.
By setting theB_DO_NOT_RESCHEDULE flag, you tell the scheduler to let the releasing
thread run for its normally alloted amount of time.

Thread Priority Constants
<kernel/OS.h>

Time-Sharing Priority Value

B_LOW_PRIORITY 5
B_NORMAL_PRIORITY 10
B_DISPLAY_PRIORITY 15
B_URGENT_DISPLAY_PRIORITY 20

Real-Time Priority Value

B_REAL_TIME_DISPLAY_PRIORITY 100
B_URGENT_PRIORITY 110
B_REAL_TIME_PRIORITY 120

These constants represent the thread priority levels. The higher a thread’s priority value,
the more attention it gets from the CPUs; the constants are listed here from lowest to
highest priority.

Miscellaneous Functions, Constants, and Defined Types Constants

The Kernel Kit –71

There are two priority categories:

• Time-sharing priorities (priority values from 1 to 99).
• Real-time priorities (100 and greater).

A time-sharing thread (a thread with a time-sharing priority value) is executed only if
there are no real-time threads in the ready queue. In the absence of real-time threads, a
time-sharing thread is elected to run once every “scheduler quantum” (currently, every
three milliseconds). The higher the time-sharing thread’s priority value, the greater the
chance that it will be the next thread to run.

A real-time thread is executed as soon as it’s ready. If more than one real-time thread is
ready at the same time, the thread with the highet priority is executed first. The thread is
allowed to run without being preempted (except by a real-time thread with a higher
priority) until it blocks, snoozes, is suspended, or otherwise gives up its plea for
attention.

You set a thread’s priority when you spawn it (spawn_thread()); it can be changed
thereafter through theset_thread_priority() function. Although you can set a thread
priority to values other than those defined by the constants shown here, it’s strongly
suggested that you stick with the constants.

To query a thread’s priority, look at thepriority field of the thread’sthread_info structure
(which you can retrieve through get_thread_info()).

See also: “Threads and Teams” on page 5

Thread State Constants
<kernel/OS.h>

Constant Meaning

B_THREAD_RUNNING The thread is currently receiving attention from a CPU.
B_THREAD_READY The thread is waiting for its turn to run.
B_THREAD_RECEIVING The thread is sitting in areceive_data() call.
B_THREAD_ASLEEP The thread is sitting in asnooze() call.
B_THREAD_SUSPENDED The thread has been suspended or is freshly-spawned.
B_THREAD_WAITING The thread is waiting to acquire a semaphore.

These constants (typethread_state) represent the various states that a thread can be in.
You can’t set a thread’s state directly; the state changes as the result of the thread’s
sequence of operations.

You can query a thread’s state by looking at thestate field of itsthread_info structure.
To retrieve the structure, callget_thread_info(). Be aware, however, that a thread’s state
is extremely ephemeral; by the time you retrieve it, it may have changed.

See also: “Threads and Teams” on page 5

Defined Types Miscellaneous Functions, Constants, and Defined Types

72 – The Kernel Kit

System Team ID
<kernel/OS.h>

Constant Meaning

B_SYSTEM_TEAM The team_id of the kernel’s team

TheB_SYSTEM_TEAM constant identifies the kernel’s team. You should only need to use
this constant if you’re bequeathing ownership of a port or semaphore to the kernel, an
activity that’s typically the province of driver writers.

Defined Types

area_id
<kernel/OS.h>

typedef long area_id

Thearea_id type uniquely identifies area.

See also: “Areas” on page 45

area_info
<kernel/OS.h>

typedef struct {
area_idarea;
charname[B_OS_NAME_LENGTH];
void *address;
ulongsize;
ulong lock;
ulongprotection;
team_idteam;
ulong ram_size;
ulong copy_count;
ulong in_count;
ulong out_count;

} area_info

Thearea_info structure holds information about a particular area.area_info structures
are retrieved through the get_area_info() function. The structure’s fields are:

• area is thearea_id that identifies the area.

• name is the name that was assigned to the area when it was created or cloned.

Miscellaneous Functions, Constants, and Defined Types Defined Types

The Kernel Kit –73

• address is a pointer to the area’s starting address. Keep in mind that this address is
only meaningful to the application that created (or cloned) the area.

• size is the size of the area, in bytes.

• lock is a constant that represents the area’s locking scheme. This will be one of
B_FULL_LOCK, B_LAZY_LOCK, or B_NO_LOCK.

• protection specifies whether the area’s memory can be read or written. It’s a
combination ofB_READ_AREA andB_WRITE_AREA.

• team is theteam_id of the thread that created or cloned this area.

Three of the final four fields (you can ignore thecopy_count field) give information about
the area that’s useful in diagnosing system use:

• ram_size gives the amount of the area, in bytes, that’s currently swapped in.
• in_count is the number of times the system has swapped in a page from the area.
• out_count is the number of times pages have been swapped out.

See also: “Areas” on page 45

cpu_info
<kernel/OS.h>

typedef struct {
double active_time;

} cpu_info

Thecpu_info structure describes facets of a particular CPU. Currently, the structure
contains only one field,active_time, that measures the amount of time, in microseconds,
that the CPU has actively been working since the machine was last booted. One
structure for each CPU is created and maintained by the system. An array of all such
structures can be found in thecpu_infos field of thesystem_info structure. To retrieve a
system_info structure, you call theget_system_info() function.

See also: system_info

Defined Types Miscellaneous Functions, Constants, and Defined Types

74 – The Kernel Kit

image_info
<kernel/image.h>

typedef struct {
long volume;
long directory;
char name[B_FILE_NAME_LENGTH];
image_idid;
void *text;
long text_size;
void *data;
long data_size;
image_typetype;

} image_info

The image_info structure contains information about a specific image. The fields are:

• Thevolume anddirectory fields are, practically speaking, private.
• name. The name of the file whence sprang the image.
• id. The image’simage_id number.
• text andtext_size. The address and the size (in bytes) of the image’s text segment.
• data anddata_size. The address and size of the image’s data segment.
• type. A constant that tells whether this is an app, library, or add-on image.

The self-explanatoryimage_type constants are:

• B_APP_IMAGE
• B_LIBRARY_IMAGE
• B_ADD_ON_IMAGE

image_type
<kernel/image.h>

typedef enum { ... }image_type

The image_type type defines the different image types.

See also: Image Type Constants

Miscellaneous Functions, Constants, and Defined Types Defined Types

The Kernel Kit –75

machine_id
<kernel/OS.h>

typedef longmachine_id[2]

Themachine_id type encodes a 64-bit number that uniquely identifies a particular
BeBox. To discover the machine id of the local machine, look in theid field of the
system_info structure. To retrieve this structure, call theget_system_info() function.

See also: get_system_info()

port_id
<kernel/OS.h>

typedef longport_id

Theport_id type uniquely identifies ports.

See also: “Ports” on page 23

port_info
<kernel/OS.h>

typedef struct port_info {
port_idport;
team_idteam;
charname[B_OS_NAME_LENGTH];
long capacity;
long queue_count;
long total_count;

} port_info

Theport_info structure holds information about a particular port. It’s fields are:

• port. Theport_id number of the port.
• team. The team_id of the port’s team.
• name. The name assigned to the port.
• capacity. The length of the port’s message queue.
• queue_count. The number of messages currently in the queue.
• total_count. The total number of message that have been read from the port.

Note that thetotal_count number doesn’t include the messages that are currently in the
queue.

You retrieve aport_info structure through theget_port_info() function.

See also: “Ports” on page 23

Defined Types Miscellaneous Functions, Constants, and Defined Types

76 – The Kernel Kit

sem_id
<kernel/OS.h>

typedef longsem_id

Thesem_id type uniquely identifies semaphores.

See also: “Semaphores” on page 31

sem_info
<kernel/OS.h>

typedef struct sem_info {
sem_idsem;
team_idteam;
charname[B_OS_NAME_LENGTH];
long count;
thread_idlatest_holder;

} sem_info

Thesem_info structure holds information about a given semaphore. The structure’s fields
are:

• sem. Thesem_id number of the semaphore.
• team. The team_id of the semaphore’s owner.
• name. The name assigned to the semaphore.
• count. The semaphore’s thread count.
• latest_holder. The thread that most recently acquired the semaphore.

Note that the thread that’s identified in thelastest_holder field may no longer be holding
the semaphore—it may have since released the semaphore. The latest holder is simply the
last thread to have calledacquire_sem() (of whatever flavor) on this semaphore.

You retrieve a sem_info structure through theget_sem_info() function.

See also: “Semaphores” on page 31

Miscellaneous Functions, Constants, and Defined Types Defined Types

The Kernel Kit –77

system_info
<kernel/OS.h>

typedef struct {
machine_id id;
doubleboot_time;
long cpu_count;
long cpu_type;
long cpu_revision;
cpu_infocpu_infos[B_MAX_CPU_NUM];
doublecpu_clock_speed;
doublebus_clock_speed;
long max_pages;
long used_pages;
long page_faults;
long max_sems;
long used_sems;
long max_ports;
long used_ports;
long max_threads;
long used_threads;
long max_teams;
long used_teams;
long volume;
long directory;
charname [B_FILE_NAME_LENGTH];

} system_info

Thesystem_info structure holds information about the machine and the state of the kernel.
The structure’s fields are:

• id. The 64-bit number (encoded as twolongs) that uniquely identifies this
machine.

• boot_time. The time at which the computer was last booted, measured in
microseconds since January 1st, 1970.

• cpu_count. The number of CPUs.
• cpu_type andcpu_revision. The type constant and revision number of the CPUs.
• cpu_infos. An array ofcpu_info structures, one for each CPU.
• cpu_clock_speed. The speed (in Hz) at which the CPUs operate.
• bus_clock_speed. The speed (in Hz) at which the bus operates.

• max_resources andused_resources. The five pairs ofmax/used fields give the
total number of RAM pages, semaphores, and so on, that the system can create,
and the number that are currently in use.

• page_faults. The number of times the system a read a page of memory into RAM
due to a page fault.

Defined Types Miscellaneous Functions, Constants, and Defined Types

78 – The Kernel Kit

• volume. The volume (listed by its ID) that contains the kernel.
• directory. The directory (listed by its ID) that contains the kernel.
• name. The file name of the kernel.

Thedirectory field is unusable: Directory ID numbers aren’t visible through the present
(public) means of file system access. But you can save the directory IDs that you collect
now and trade them in for a higher draft pick next season.

You retrieve asystem_info structure through theget_system_info() function.

See also: get_system_info()

team_id
<kernel/OS.h>

typedef longteam_id

The team_id type uniquely identifies teams.

See also: “Threads and Teams” on page 5

team_info
<kernel/OS.h>

typedef struct {
team_idteam;
long thread_count;
long image_count;
long area_count;
thread_iddebugger_nub_thread;
port_iddebugger_nub_port;
long argc;
charargs[64];

} team_info

The team_info structure holds information about a team. It’s returned by the
get_team_info() function. It’s fields are:

• team is the team’s ID number.

• thread_count, image_count, andarea_count give the number of threads that
have been spawned, images that have been loaded, and areas that have been
created or cloned within this team.

• debugger_nub_thread anddebugger_nub_port are used to communicate with
the debugger. Unless you’re designing your own debugger, you can ignore these
fields.

Miscellaneous Functions, Constants, and Defined Types Defined Types

The Kernel Kit –79

• Theargc field is the number of command line arguments that were used to launch
the team;args is a copy of the first 64 characters from the command line
invocation. If this team is an application that was launched through the user
interface (by double-clicking, or by accepting a dropped icon), thenargc is 1 and
args is the name of the application’s executable file.

See also: “Threads and Teams” on page 5

thread_entry
<kernel/OS.h>

typedef long (*thread_entry)(void *)

The thread_entry type is a function protocol for functions that are used as the entry
points for new threads. You assign an entry function to a thread when you all
spawn_thread(); the function takes athread_entry function as its first argument.

See also: “Threads and Teams” on page 5

thread_id
<kernel/OS.h>

typedef longthread_id

The thread_id type uniquely identifies threads.

See also: “Threads and Teams” on page 5

thread_info
<kernel/OS.h>

typedef struct {
thread_idthread;
team_idteam;
charname[B_OS_NAME_LENGTH];
thread_statestate;
long priority;
sem_idsem;
doubletime;
void *stack_base;
void *stack_end;

} thread_info

This structure holds information about a thread. It’s returned by functions such as
get_thread_info(). The fields are:

Defined Types Miscellaneous Functions, Constants, and Defined Types

80 – The Kernel Kit

• thread. Thethread_id number of the thread.

• team. The team_id of the thread’s team.

• name. The name assigned to the thread.

• state. A constant that describes what the thread is currently doing.

• priority. A constant that represents the level of attention the thread gets.

• sem. If the thread is waiting to acquire a semaphore, this is thesem_id number of
that semaphore. Thesem field is only valid if the thread’s state is
B_THREAD_WAITING.

• time. The amount of active attention the thread has received from the CPUs,
measured in microseconds.

• stack_base. A pointer to the first byte of memory in the thread’s execution stack.

• stack_end. A pointer to the last byte of memory in the thread’s execution stack.

See also: “Threads and Teams” on page 5

thread_state
<kernel/OS.h>

typedef enum { ... }thread_state

The thread_state type represents values that describe the various states that a thread can
be in.

See also: Thread State Constants

acrobat/09_DeviceKit.pdf

The Device Kit –1

9 The Device Kit

Introduction . 5

The GeekPort and its Classes . 7

BA2D and BD2A . 9
Overview . 9

The GeekPort . 9
The ADC . .10
The DAC . .10

BA2D . .11
BD2A . .12

Constructor and Destructor .13
Member Functions. .13

BDigitalPort . .17
Overview .17

BDigitalPort Objects .18
Using Both Digital Ports at the Same Time. 19
Overdriving an Output Pin 20

Constructor and Destructor .20
Member Functions. .21

BJoystick .23
Overview .23
Data Members . .23
Constructor and Destructor .24
Member Functions. .24

BSerialPort .27
Overview .27
Constructor and Destructor .27
Member Functions. .28

Constants and Defined Types . .35
Constants .35
Defined Types .37

2 – The Device Kit

Developing a Device Driver. .39
Overview .39
Recommended Reading . .40

Developing a Kernel-Loadable Driver 41
Entry Points .42

Driver Initialization . .42
Device Declarations. .43

Static Drivers . .44
Dynamic Drivers45

Hook Functions . .46
Opening and Closing a Device46
Reading and Writing Data 47
Controlling the Device47

Control Operations .48
B_GET_SIZE andB_SET_SIZE 48
B_SET_BLOCKING_IO

andB_SET_NONBLOCKING_IO. 48
B_GET_READ_STATUS andB_GET_WRITE_STATUS48
B_GET_GEOMETRY 49
B_FORMAT. .49

Exported Functions .49
Support Kit Functions. 50
Kernel Kit Functions .50
C Library Functions. .52
System Calls .53
Kernel Functions for Drivers 53

Installation . .54

Functions for Drivers . .55

Constants and Defined Types for Kernel-Loadable Drivers69
Constants .69
Defined Types .70

Developing a Driver for a Graphics Card 77
Entry Point. .77

Main Control Operations 78
B_OPEN_GRAPHICS_CARD78
B_CLOSE_GRAPHICS_CARD 79
B_SET_INDEXED_COLOR 79
B_GET_GRAPHICS_CARD_HOOKS 79
B_GET_GRAPHICS_CARD_INFO80
B_GET_REFRESH_RATES 81

The Device Kit –3

B_GET_SCREEN_SPACES. 81
B_CONFIG_GRAPHICS_CARD 82
B_SET_SCREEN_GAMMA 82

Control Operations for Cloning the Driver83
B_GET_INFO_FOR_CLONE. 83
B_GET_INFO_FOR_CLONE_SIZE 84
B_SET_CLONED_GRAPHICS_CARD 84
B_CLOSE_CLONED_GRAPHICS_CARD 85

Control Operations for Manipulating the Frame Buffer . .85
B_PROPOSE_FRAME_BUFFER 86
B_SET_FRAME_BUFFER86
B_SET_DISPLAY_AREA 87
B_MOVE_DISPLAY_AREA 87

Hook Functions . .87
Index 0: Defining the Cursor. 88
Index 1: Moving the Cursor89
Index 2: Showing and Hiding the Cursor 89
Index 3: Drawing a Line with an 8-Bit Color 90
Index 4: Drawing a Line with a 32-Bit Color 90
Index 5: Drawing a Rectangle

with an 8-Bit Color 91
Index 6: Drawing a Rectangle

with a 32-Bit Color 91
Index 7: Copying Pixel Data. 91
Index 8: Drawing a Line Array

with an 8-Bit Color 92
Index 9: Drawing a Line Array

with a 32-Bit Color 92
Index 10: Synchronizing Drawing Operations . . .93
Index 11: Inverting Colors93

Exported Functions .94
Installation . .95

Constants and Defined Types for Graphics Card Drivers97
Constants .97
Defined Types .98

4 – The Device Kit

Device Kit Inheritance Hierarchy

BObject
(Support Kit)

BDigitalPort

BA2D

BSerialPort

BD2A

BJoystick

The Device Kit –5

9 The Device Kit

The Device Kit contains software for controlling various input/output devices and for
writing your own device drivers. You’ll find two kinds of software documented in this
chapter:

• Encapsulated interfaces to some of the ports found on the back of the BeBox.
Currently, this part of the kit contains five classes—BJoystick, BSerialPort,
BDigitalPort, BA2D (analog to digital), and BD2A (digital to analog). A BJoystick
object represents a joystick connection to the BeBox. A BSerialPort object can
represent any of the four RS–232 serial ports that are visible on the back of the
machine. The other three classes represent particular functions of the GeekPort™.

These classes are all part of the shared system library,libbe.so. Their header files
are collected inDeviceKit.h and are precompiled with the header files of other kits.

• The programming interfaces and protocols for developing your own drivers for
input/output devices. All drivers are dynamically loaded, add-on modules that run
as extensions either of the kernel or of a specific server. Most drivers run as part of
the kernel, but drivers for graphics cards extend the Application Server and printer
drivers connect to the Print Server.

The programming interfaces for device drivers arenot included in the master
DeviceKit.h header file or the precompiled headers; this part of the Kit doesn’t
belong to the Be system library. A driver links only against its host module (or
perhaps statically against a private library), not against the system library.

If you’re interested in the interface to a joystick or serial port, you need read only about
the BJoystick or BSerialPort class. If you’re interested in the GeekPort interface, there’s a
small section that introduces the port and its three classes; look at it before turning to the
particular class that interests you. If you’re interesting in writing a device driver, skip the
first part of the chapter and begin with “Developing a Device Driver” on page 39.

6 – The Device Kit

The Device Kit –7

The GeekPort and its Classes

The GeekPort is a piece of hardware that communicates with external devices. Depending
on how you use the GeekPort’s ports, you can get up to 24 independent data paths:

• Four 12-bit analog input channels.
• Four 8-bit analog output channels
• Two 8-bit wide digital ports (16 paths, total) that can act as inputs or outputs.

To provide high-level access to these data paths, the Device Kit defines three classes:

• The BA2D class (“analog to digital”) lets you get at the analog input channels.
• The BD2A class (“digital to analog”) does the same for the analog output channels.
• The BDigitalPort class lets you configure, read, and write the digital ports.

The signals and data that these classes read and write appear at the GeekPort connector, a
37-pin female connector that you’ll find at the back of every BeBox. In addition to the
pins that correspond to the analog and data paths, the GeekPort provides power and
ground pins. Everything you need to feed your external gizmo is right there.

The GeekPort connector’s pins are assigned thus:

The BA2D, BD2A, and BDigitalPort class descriptions re-visit this illustration to provide
more detailed examinations of the specific GeekPort pins.

18 7 6 5 4 3 216 15 14 13 12 11 10 919 18 17

26 25 24 23 22 21 2034 33 32 31 30 29 28 2737 36 35

ground

digital port B digital port A+5v +5v+12v-12v

analog analog inputanalog output
output

reference

analog
input

reference

The GeekPort and its Classes

8 – The Device Kit

The Device Kit –9

BA2D and BD2A

Derived from: public BObject

Declared in: <device/A2D.h>
<device/D2A.h>

Overview

The BA2D and BD2A classes let you talk to the GeekPort’s analog-to-digital converter
(ADC) and digital-to-analog converter (DAC). Before we examine the classes, let’s visit
the GeekPort.

The GeekPort

The GeekPort provides four channels of simultaneous analog-to-digital (a/d) and four
channels of simultaneous digital-to-analog (d/a) conversion. The signals that feed the
ADC arrive on pins 25-28 of the GeekPort connector; the signals that are produced by the
DAC depart through pins 29-32 (as depicted below). Pins 24 and 33 are DC reference
levels (ground) for the a/d and d/a signals, respectively (don’t use pins 24 or 33 as power
grounds):

In the illustration, the a/d and d/a pins are labelled (“A2D1”, “A2D2”, etc.) as they are
known to the BA2D and BD2A classes.

If you’ve read the GeekPort hardware specification, you’ll have discovered that the ADC
can be placed in a few different modes (the DAC is less flexible). The BA2D and BD2A
classes (more accurately, the ADC and DAC drivers) refine the GeekPort specification, as
described in the following sections.

Note: Keep in mind that the a/d and d/a converters that the GeekPort uses arenot part of
the Crystal codec that’s used by the audio software (and brought into your application
through the Media Kit). The two sets of converters are completely separate and can be

a/d signalsd/a signals

18 7 6 5 4 3 216 15 14 13 12 11 10 919 18 17

26 25 24 23 22 21 2034 33 32 31 30 29 28 2737 36 35

a/d DCd/a DC

A
2

D
1

A
2

D
2

A
2

D
3

D
2

A
4

D
2

A
3

D
2

A
2

D
2

A
1

A
2

D
4

reference reference

Overview BA2D and BD2A

10 – The Device Kit

used independently and simultaneously. If you’re doing on-board high-fidelity sound
processing (or generation) in real time, you should stick with the Crystal convertors.

The ADC

The ADC accepts signals in the range [0, +4.096] Volts, performs a linear conversion,
and spits out unsigned 12-bit data. The 4.096V to 12-bit conversion produces a
convenient one-digital-step per milliVolt of input.

A/d conversion is performed on-demand: When you read a value from the ADC, the
voltage that lies on the specified pin is immediately sampled (this is the “Single Shot”
mode described in the GeekPort hardware specification). In other words, the ADC doesn’t
perform a sample and hold—it doesn’t constantly and regularly measure the voltages at its
inputs. Nonetheless, youcan’t retrieve samples at an arbitrarily high frequency simply by
reading in a tight loop. This is because of the “sampling latency”: When you ask for a
sample, it takes the driver about ten milliseconds to process the request, not counting the
(slight) overhead imposed by the C++ call (from your BA2D object). Therefore, the
fastest rate at which you can get samples from the ADC is a bit less than 100 kHz.

Furthermore, the ADC driver “fakes” the four channels of a/d conversion. In reality,
there’s only one ADC data path; the driver multiplexes the path to create four independent
signals. This means that the optimum 100 kHz sampling frequency is divided by the
number of channels that you want to read. If all four channels are being read at the same
time, you’ll find that successive samples on aparticular channel arrive slightly less often
than once every 40 milliseconds (a rate of < 25 kHz).

Finally, the ADC hardware is shared by the GeekPort and the two joysticks. This
cooperative use shouldn’t affect your application—you can treat the ADC as if it were all
your own—but this increases the multiplexing. In general, joysticks shouldn’t need to
sample very often, so while the theoretical “worst hit” on the ADC is a sample every 60
milliseconds, the reality should be much better. If we can assume that a joystick-reading
application isn’t oversampling, then the BA2D “sampling latency” should stay near the 10
milliseconds per channel measurement.

The DAC

The DAC accepts 8-bit unsigned data and converts it, in 16 mV steps, to an analog
signal in the range [0, +4.080] Volts. Again, the quantization is linear. The DAC output
isn’t filtered; if you need to smooth the stair-step output, you have to build a filter into
the gizmo that you’re connecting to the GeekPort.

Each of the d/a pins is protected by an in-series 4.7 kOhm resistor; however, pin 33, the
d/a DC reference (ground) pin, is not similarly impeded. If you want to attach an op-amp
circuit to the DAC output, you should hang a 4.7 kOhm resistor on the ground pin that
you’re using.

BA2D and BD2A Overview

The Device Kit –11

When you write a digital sample to the DAC, the specified pin is immediately set to the
converted voltage. The pin continues to produce that voltage until you write another
sample.

Unlike the ADC, the DAC is truly a four-channel device, so there’s no multiplexing
imposition to slow things down. Furthermore, writing to the DAC is naturally faster than
writing to the ADC. You should be able to write to the DAC as frequently as you want,
without worrying about a hardware-imposed “sampling latency.”

BA2D

The BA2D class lets you create objects that can read the GeekPort’s a/d channels. Each
BA2D object can read a single channel at a time; if you want to read all four channels
simultaneously, you have to create four separate objects.

To retrieve a value from one of the a/d channels, you create a new BA2D object, open it on
the channel you want (using the labels shown above), and then (repeatedly) invoke the
object’sRead() function. When you’re through reading, you callClose() so some other
object can open the channel.

Reading is a one-shot deal: For eachRead() invocation, you get a singleushort that stores
the 12-bit ADC value in its least significant 12 bits. To get a series of successive values,
you have to put theRead() call in a loop. Keep in mind that there’s no sampling rate or
other automatic time tethering. For example, if you want to read the ADC every tenth of a
second, you have to impose the waiting period yourself (by snoozing between reads, for
example).

The outline of a typical a/d-reading setup is shown below:

#include <A2D.h>

void ReadA2D1()
{

ushort val;
BA2D *a2d = new BA2D();

if (a2d->Open("A2D1") <= 0)
return;

while (/* whatever */) {

/* Read() returns the number of bytes that were
 * read; a successful read returns the value 2.
 */
if (a2d->Read(&val) != 2)

break;

/* Apply val here. */
...

Overview BA2D and BD2A

12 – The Device Kit

/* Snooze for a bit. */
snooze(1000);

}
a2d->Close();
delete a2d;

}

BD2A

Creating and using a BD2A object follows the same outline as shown above, but instead of
reading aushort value, you write auchar. TheWrite() function returns 1 if successful:

#include <D2A.h>

void WriteD2A1()
{

uchar val;
BD2A *d2a = new BD2A();

if (d2a->Open("D2A1") <= 0)
return;

while (/* whatever */) {
/* Get an 8-bit value from somewhere. */
val = ...;

if (d2a->Write(val) != 1)
break;

snooze(1000);
}
d2a->Close();
delete d2a;

}

The DAC performs a “sample and hold”: The voltage that the DAC produces on a
particular channel (and to which it sets the appropriate GeekPort pin) is maintained until
anotherWrite() call (on the same channel) changes the setting. Furthermore, the “hold”
persists across BD2A objects: Neither closing nor deleting a BD2A object affects the
voltage that’s produced by the corresponding GeekPort pin.

The BD2A class also implements aRead() function. This function returns the value that
was most recently written to the particular DAC channel.

BA2D and BD2A Constructor and Destructor

The Device Kit –13

Constructor and Destructor

BA2D(), BD2A()
long BA2D(void)

long BD2A(void)

Creates a new object that can open an ADC or DAC channel (respectively). The particular
channel is specified in a subsequentOpen() call. Constructing a new BA2D or BD2A
object doesn’t affect the state of the ADC or DAC.

~BA2D(), ~BD2A()
virtual ~BA2D(void)

virtual ~BD2A(void)

Closes the channel that the object holds open (if any) and then destroys the object.

Important: Deleting a BD2A objectdoesn’t affect the DAC channel’s output voltage. If
you want the voltage cleared (for example), you have to set it to 0 explicitly before
deleting (or otherwise closing) the BD2A object.

Member Functions

Open(), IsOpen(), Close()
long Open(const char *name)

bool IsOpen(void)

void Close(void)

Open() opens the named ADC (BA2D) or DAC (BD2A) channel. The channel names (as
you would pass them toOpen())are:

BA2D Channels BD2A Channels

“A2D1” “D2A1”
“A2D2” “D2A2”
“A2D3” “D2A3”
“A2D4” “D2A4”

See the GeekPort connector illustration, above, for the correspondences between the
channel names and the GeekPort connector pins.

Each channel can only be held open by one object at a time; you should close the channel
as soon as you’re finished with it. Furthermore, each BA2D or BD2A object can only hold
one channel open at a time. When you invokeOpen(), the channel that the object

Member Functions BA2D and BD2A

14 – The Device Kit

currently has open is automatically closed—even if the channel that you’re attempting to
open is the channel that the object already has open.

Opening an ADC or DAC channel doesn’t affect the data in the channel itself. In
particular, when you open a DAC channel, the channel’s output voltage isn’t changed.

Open() returns a positive integer if the channel is successfully opened; otherwise, it
returnsB_ERROR.

IsOpen() returnsTRUE if the object holds its assigned channel open channel is successfully
opened. Otherwise, it returnsFALSE.

Close() does the obvious without affecting the state of the ADC or DAC channel. If you
want to set a DAC channel’s output voltage to 0 (for example), you must explicitly write
the value before invokingClose().

Read()
BA2D:

long Read(ushort *adc_12_bit)

BD2A:
long Read(uchar *dac_8_bit)

BA2D’s Read() function causes the ADC to sample and convert (within a 12-bit range)
the voltage level on the GeekPort pin that corresponds to the object’s ADC channel. The
12-bit unsigned value is returned by reference in theadc_12_bit argument.

BD2A’s Read() returns, by reference in dac_8_bit, the value that was most recently
written to the object’s particular DAC channel. The value needn’t have been written by
this object—it could have been written by the channel’s previous opener.

Important: The BD2ARead() function returns a value that’s cached by the DAC
driver—it doesn’t actually tap the GeekPort pin to see what value it’s currently carrying.
This should only matter to the clever few who will attempt (unsuccessfully) to use the d/a
pins as input paths.

The object must open an ADC or DAC channel before callingRead(). The functions
returnB_ERROR if a channel isn’t open, or if, for any other reason, the read failed.
Otherwise they return the number of bytes that were read: 2 in the case of a BA2D, 1 for a
BD2A object. Note that it’s not an error to read the DAC before a value has been written
to it.

BA2D and BD2A Member Functions

The Device Kit –15

Write()
BD2A only:

long Write(uchardac_8_bit)

Sends thedac_8_bit value to the object’s DAC channel. The DAC converts the value to
an analog voltage in the range [0, +4.080] Volts and sets the corresponding GeekPort pin.
The pin continues to produce the voltage until another Write() call—possibly by a different
BD2A object—changes the setting.

The DAC’s conversion is linear: Each digital step corresponds to 16 mV at the output.
The analog voltage midpoint, +2.040V, can be approximated by a digital input of 0x7F
(which produces +2.032V) or 0x80 (+2.048V).

If the object isn’t open, this function returnsB_ERROR, otherwise it returns 1 (specifically,
the number of bytes that were written).

Member Functions BA2D and BD2A

16 – The Device Kit

The Device Kit –17

BDigitalPort

Derived from: public BObject

Declared in: <device/DigitalPort.h>

Overview

The BDigitalPort class is the programmer’s interface to the GeekPort’s twodigital ports.
Each digital port is an 8-bit wide device that can be set for input or output. The following
illustration shows the disposition of the GeekPort connector pins as they are assigned to
the digital ports:

Each pin in a digital port transmits the value of a single bit; the pins are labelled by bit
position. Thus, A0 is the least significant bit of digital port A, and A7 is its most
significant bit. You can use any of the seven ground pins (1, 6, 8, 10, 12, 14, and 19) in
your digital port circuit. The unmarked pins (24-33) are the analog ports; see “BA2D and
BD2A” on page 9 for more information on these ports.

Devices that you connect to the digital ports should send and (expect to) receive voltages
that are below 0.8 Volts or above 2.0 Volts. These thresholds correspond, respectively, to
the greatest value for digital 0 and the least for digital 1 (as depicted below). The
correspondence to bit value for voltages between these limits is undefined.

Although there’s no lower voltage limit for digital 0, nor upper limit for digital 1, the
BeBox outputs voltages that are no less than 0 Volts, nor no more than +5 Volts. Your
input device can exceed this range without damaging the BeBox circuitry: Excessive
input emf is clipped to fall within [-0.5V, +5.5V].

18 7 6 5 4 3 216 15 14 13 12 11 10 919 18 17

26 25 24 23 22 21 2034 33 32 31 30 29 28 2737 36 35

ground

digital port B
B2B4B6 B0

B3B5B7 B1

digital port A
A5 A3 A1A7

A4 A2 A0A6

+5v +5v+12v-12v

Volts: -0.5 +0.8 +2.0

0 1undefined

. . .

Digital Value:

+5.5. . .

Overview BDigitalPort

18 – The Device Kit

Be aware that behind each digital port pin lies a 1 kOhm resistor.

BDigitalPort Objects

To access a digital port, you construct a BDigitalPort object, open it on the port you want,
assign the object to work as either an input or an output, and then read or write a series of
bytes from or to the object.

In the following example, we open and read from digital port A:

#include <DigitalPort.h>

void ReadDigitalPortA()
{

char val;
BDigitalPort *dPortA = new BDigitalPort();

if (dPortA->Open("DigitalA") <= 0 ||
dPortA->SetAsInput() != B_NO_ERROR) {
~dPortA;
return;

}

while (/* whatever */) {

/* Read() returns the number of bytes that were
 * read; a successful read returns the value 1.
 */
if (dPortA->Read(&val) != 1)

break;

/* Do something with the value. */
...

/* Snooze for a bit. */
snooze(1000);

}
dPortA->Close();
delete dPortA;

}

As shown here, the BDigitalPort is constructed without reference to a specific port. It’s
not until you actually open the object (throughOpen()) that you have to identify the port
that you want; identification is by name, “DigitalA” or “DigitalB”. TheRead() function
returns only one value per invocation, and is untimed—if you don’t provide some sort of
tethering (as we do withsnooze(), above) the read loop will spin as fast as possible.

To safeguard against an inadvertant burst of equipment-destroying output, the digital port
is set to be an input when it’s opened, and automatically reset to be an input when you
close it.

BDigitalPort Overview

The Device Kit –19

Using Both Digital Ports at the Same Time

To access both digital ports at the same time, you have to construct two BDigitalPort
objects. One of the objects can be used as an output and the other an input, both as
outputs, or both as inputs.

In the following example, digital port A is used to write data to an external device, while
digital port B is used for acknowledgement signalling: Before each write we set port B to
0, and after the write we wait for port B to be set to 1. We’re assuming that the external
device will write a 1 to port B when it’s ready to receive the next 8-bits of data.

void WriteAndAck()
{

char val;
BDigitalPort *dPortA = new BDigitalPort();
BDigitalPort *dPortB = new BDigitalPort();

if (dPortA->Open("DigitalA") <= 0 ||
dPortA->SetAsOutput() != B_NO_ERROR)
goto error_tag;

if (dPortB->Open("DigitalB") <= 0 ||
dPortB->SetAsOutput() != B_NO_ERROR) {
goto error_tag;

while (/* whatever */) {

/* Clear the acknowledgement signal. */
val = 0;
if (dPortB->Write(&val) != 1)

break;

/* Reset val to the data we want to send. */
val = ...;

if (dPortA->Write(val) != 1)
break;

/* Reset digital port B to be an input. */
if (dPortB->SetAsInput() != B_NO_ERROR)

break;

/* Wait for the acknowledgement. */
while (1) {

if (dPortB->Read(&val) != 1)
goto error_tag;

if (val == 1)
break;

snooze(1000);
}

Constructor and Destructor BDigitalPort

20 – The Device Kit

/* Reset digital port B to be an output. */
if (dPortB->SetAsOutput() != B_NO_ERROR)

break;
}

error_tag:
delete dPortA;
delete dPortB;

}

Notice that the acknowledgement signal only takes one bit of digital port B. This leaves
seven bits that the external device can use to send additional data (triggers or gates, for
example). The restriction in this scheme, given the structure shown above, is that this
additional data would have to be synchronized with the acknowledgement signal.

By extension, if the data that you want to write to the external device is, at most, only
seven-bits wide, then you could rewrite this example to use a single port: You would mask
one of the bits as the acknowledgment carrier, and let the other seven bits carry the data,
toggling the port between input and ouput as needed; the actual implementation is left as
an exercise for the reader.

Overdriving an Output Pin

One of the features of the digital ports is that you can “overdrive” a pin from the outside.
This means that you can set a port to be an output, and then force a voltage back onto the
pin from an external device and read that voltage with theRead() functionwithout having
to reset the port to be an input. Keep in mind that there’s a 1 KOhm resistor behind the pin
(on the BeBox side), so your “overdrive” circuit has to be hot enough to balance the
resistance.

When you overdrive an output pin, the voltage on the pin is altered for as long as the
external force keeps it there. If you write an “opposing” value to an overdriven pin
(throughWrite()), the written value won’t pull the pin—the overdriven value will still be
enforced. As soon as the overdrive voltage is removed, the pin will produce the voltage
that was more recently written to it by theWrite() function.

Constructor and Destructor

BDigitalPort()
long BDigitalPort(void)

Creates a new object that can open one of the digital ports. The particular port is specified
in a subsequentOpen() call.

BDigitalPort Member Functions

The Device Kit –21

~BDigitalPort
virtual ~BDigitalPort(void)

Destroys the object, but not before closing the port that the object holds open (if any).

Deleting a BDigitalPort object sets the port (at the driver level) to be an input. The values
at the port’s pins are, at that point, undefined.

Member Functions

Open(), IsOpen(), Close()
long Open(const char *name)

bool IsOpen(void)

void Close(void)

Open() opens the named digital port; thename argument should be either “DigitalA” or
“DigitalB”. See the GeekPort illustration in the “Overview” section for the
correspondences between the port names and the GeekPort connector pins.

A digital port can only be held open by one BDigitalPort object at a time; you should close
the port as soon as you’re finished with it. Furthermore, each BDigitalPort object can only
hold one port open at a time. When you invokeOpen(), the port that the object currently
has open is automatically closed—even if the port that you’re attempting to open is the
port that the object already has open.

When you open a digital port, the device is automatically set to be an input. If you want
the port to be an output, you must follow this call with a call to SetAsOutput(). Just to be
safe, it couldn’t hurt to explicitly set the port to be an input (through SetAsInput()) if that’s
what you want.

Open() returns a positive integer if the named port is successfully opened. Otherwise, it
returnsB_ERROR.

IsOpen() returnsTRUE if the object currently has a port open, andFALSE if not.

Close() does the obvious. When a digital port is closed, it’s set to be an input at the driver
level.

Read()
long Read(char *buf)

Reads the data that currently lies on the digital ports pins, and returns this data as a single
word inbuf. Although you usually read a digital port that’s been set to be an input, it’s
also possible to read an output port. In any case, the port must be open.

Member Functions BDigitalPort

22 – The Device Kit

If the port was successfully read, the function returns 1 (the number of bytes read).
Otherwise, it returnsB_ERROR.

SetAsInput(), SetAsOutput(), IsInput(), IsOutput()
long SetAsInput(void)

long SetAsOutput(void)

bool IsInput(void)

bool IsOutput(void)

SetAsInput() and SetAsOutput() set the object’s port to act as an input or output. They
returnB_ERROR if the object isn’t open, andB_NO_ERROR otherwise.

IsInput() andIsOutput() returnTRUE andFALSE much as you would expect them to.

Write()
long Write(charvalue)

Sendsvalue to the object’s port. The port continues to produce the written data until
another Write() call changes the setting.

The object must be open as an output for this function to succeed. Success is indicated by
a return value of 1 (the number of bytes that were written). Failure returnsB_ERROR.

The Device Kit –23

BJoystick

Derived from: public BObject

Declared in: <device/Joystick.h>

Overview

A BJoystick object provides an interface to a joystick connected to the BeBox. There are
two joystick ports on the back of the machine, one above the other. With the aid of a
simple Y connector, each of them can support two joysticks for a total of four ports.

Unlike the event and message-driven interface to the mouse and keyboard, the interface to
a joystick is strictly demand-driven. An application must repeatedly poll the state of the
joystick by calling the BJoystick object’sUpdate() function. Update() queries the port
and updates the object’s data members to reflect the current state of the joystick.

Data Members

doubletimestamp The time of the most recent update, as measured in
microseconds from the time the machine was last booted.

shorthorizontal The horizontal position of the joystick at the time of the last
update.

shortvertical The vertical position of the joystick at the time of the last
update.

bool button1 TRUE if the first button was pressed at the time of the last
update, andFALSE if not.

bool button2 TRUE if the second button was pressed at the time of the last
update, andFALSE if not.

horizontal andvertical values can range from 0 through 4,095, but joysticks typically
don’t use the full range and some don’t register all values within the range that is used.
The scale is not linear—identical increments in different parts of the range can reflect
differing amounts of horizontal and vertical movement. The exact variance from linearity
and the extent of the usable range are partly characteristics of the individual joystick and
partly functions of the BeBox hardware < which will be more fully documented in a later
release >.

Constructor and Destructor BJoystick

24 – The Device Kit

Constructor and Destructor

BJoystick()
BJoystick(void)

Initializes the BJoystick object so that all values are set to 0. Before using the object, you
must callOpen() to open a particular joystick port. For the object to register any
meaningful values, you must callUpdate() to query the open port.

See also: Open(), Update()

~BJoystick()
virtual ~BJoystick(void)

Closes the port, if it was not closed already.

Member Functions

Open(), Close()
long Open(const char *name)

void Close(void)

These functions open thename joystick port and close it again. There are two ports on the
back panel of the BeBox, and they have names that correspond to their labels on the
machine (and inThe Be User’s Guide diagram):

“joystick1” (on the top)
“joystick2” (on the bottom)

By attaching a Y cable to a machine port, you can make it support two joysticks. Cables,
therefore, add two additional ports:

“joystick3” (on the top)
“joystick4” (on the bottom)

The cable maps the bottom row of pins on a machine port to the top row on a cable port.
Therefore, the first two names listed above correspond to the top row of pins on a machine
port; the last two names correspond to the bottom row of pins.

If it’s able to open the port,Open() returns a positive integer. If unable or if thename isn’t
valid, it returnsB_ERROR. If thename port is already open,Open() tries to close it first,
then open it again.

To be able to obtain joystick data, a BJoystick object must have a port open.

BJoystick Member Functions

The Device Kit –25

Update()
long Update(void)

Updates the data members of the object so that they reflect the current state of the joystick.
An application would typically callUpdate() periodically to poll the condition of the
device, then read the values of the data members.

This function returnsB_ERROR if the BJoystick object doesn’t have a port open, and
B_NO_ERROR if it does.

Member Functions BJoystick

26 – The Device Kit

The Device Kit –27

BSerialPort

Derived from: public BObject

Declared in: <device/SerialPort.h>

Overview

A BSerialPort object represents an RS-232 serial port connection to the BeBox. There are
four such ports on the back of the machine.

Through BSerialPort functions, you can read data received at a serial port and write data
over the connection. You can also configure the connection—for example, set the number
of data and stop bits, determine the rate at which data is sent and received, and select the
type of flow control (hardware or software) that should be used.

To read and write data, a BSerialPort object must first open one of the serial ports by
name. For example:

BSerialPort *connection = new BSerialPort;
if (connection->Open("serial2") > 0) {
 . . .
}

The BSerialPort object communicates with the driver for the port it has open. The driver
maintains an input buffer of 1K bytes to collect incoming data and an output buffer half
that size to hold outgoing data. When the object reads and writes data, it reads from and
writes to these buffers.

Constructor and Destructor

BSerialPort()
BSerialPort(void)

Initializes the BSerialPort object to the following default values:

• Hardware flow control (seeSetFlowControl())
• A data rate of 19,200 bits per second (seeSetDataRate())
• A serial unit with 8 bits of data, 1 stop bit, and no parity (seeSetDataBits())
• Blocking, but with a timeout of 0.0 microseconds, for reading data (seeRead())

Member Functions BSerialPort

28 – The Device Kit

The new object doesn’t represent any particular serial port. After construction, it’s
necessary to open one of the ports by name.

The type of flow control must be decided before a port is opened. But the other default
settings listed above can be changed before or after opening a port.

See also: Open()

~BSerialPort()
virtual ~BSerialPort(void)

Makes sure the port is closed before the object is destroyed.

Member Functions

ClearInput(), ClearOutput()
void ClearInput(void)

void ClearOutput(void)

These functions empty the serial port driver’s input and output buffers, so that the contents
of the input buffer won’t be read (by theRead() function) and the contents of the output
buffer (after having been written byWrite()) won’t be transmitted over the connection.

The buffers are cleared automatically when a port is opened.

See also: Read(), Write(), Open()

Close() see Open()

DataBits() see SetDataBits()

DataRate() see SetDataRate()

FlowControl() see SetFlowControl()

IsCTS()
bool IsCTS(void)

ReturnsTRUE if the Clear to Send (CTS) pin is asserted, andFALSE if not.

BSerialPort Member Functions

The Device Kit –29

IsDCD()
bool IsDCD(void)

ReturnsTRUE if the Data Carrier Detect (DCD) pin is asserted, andFALSE if not.

IsDSR()
bool IsDSR(void)

ReturnsTRUE if the Data Set Ready (DSR) pin is asserted, andFALSE if not.

IsRI()
bool IsRI(void)

ReturnsTRUE if the Ring Indicator (RI) pin is asserted, andFALSE if not.

Open(), Close()
long Open(const char *name)

void Close(void)

These functions open thename serial port and close it again. Ports are identified by names
that correspond to their labels on the back panel of the BeBox:

“serial1”
“serial2”
“serial3”
“serial4”

To be able to read and write data, the BSerialPort object must have a port open. It can
open first one port and then another, but it can have no more than one open at a time. If it
already has a port open whenOpen() is called, that port is closed before an attempt is
made to open thename port. (Thus, bothOpen() andClose() close the currently open
port.)

Open() can’t open thename port if some other entity already has it open. (If the
BSerialPort itself hasname open,Open() first closes it, then opens it again.)

If it’s able to open the port,Open() returns a positive integer. If unable, it returns
B_ERROR.

When a serial port is opened, its input and output buffers are emptied and the Data
Terminal Ready (DTR) pin is asserted.

See also: Read()

Member Functions BSerialPort

30 – The Device Kit

ParityMode() see SetDataBits()

Read(), SetBlocking(), SetTimeout()
long Read(void *buffer, longmaxBytes)

void SetBlocking(boolshouldBlock)

void SetTimeout(doubletimeout)

Read() takes incoming data from the serial port driver and places it in the databuffer
specified. In no case will it read more thanmaxBytes—a value that should reflect the
capacity of thebuffer; it returns the actual number of bytes read.Read() fails if the
BSerialPort object doesn’t have a port open.

The number of bytes thatRead() reads before returning depends not only onmaxBytes,
but also on theshouldBlock flag and thetimeout set by the other two functions.

SetBlocking() determines whetherRead() should block and wait formaxBytes of data to
arrive at the serial port if that number isn’t already available to be read. If theshouldBlock
flag isTRUE, Read() will block. However, ifshouldBlock is FALSE, Read() will take
however many bytes are waiting to be read, up to the maximum asked for, then return
immediately. If no data is waiting at the serial port, it returns without reading anything.

SetTimeout() sets a time limit on how longRead() will block while waiting for data to
arrive at the input buffer. Thetimeout is relevant toRead() only if theshouldBlock flag is
TRUE. (However, the time limit also applies to theWaitForInput() function, which always
blocks if the limit is greater than 0.0, regardless of theshouldBlock flag.)

Thetimeout is expressed in microseconds and is limited to 25,500,000.0 (25.5 seconds);
it’s set to the maximum value if a greater amount of time is specified. Differences less
than 100,000.0 microseconds (0.1 second) are not recognized; they’re rounded to the
nearest tenth of a second. If thetimeout is set to 0.0 microseconds,Read() (and
WaitForInput()) will not block.

The defaultshouldBlock setting isTRUE, but the defaulttimeout is 0.0, which prevents
blocking in any case. < In future releases, the default timeout will be an infinite amount of
time; it won’t impose a time limit on blocking. >

Like the standardread() system function,Read() returns the number of bytes it succeeded
in placing in thebuffer, which may be 0. It returnsB_ERROR (–1) if there’s an error of any
kind—for example, if the BSerialPort object doesn’t have a port open. It’s not considered
an error if a timeout expires.

See also: Write(), Open(), WaitForInput()

SetBlocking() see Read()

BSerialPort Member Functions

The Device Kit –31

SetDataBits(), SetStopBits(), SetParityMode(),
DataBits(), StopBits(), ParityMode()

void SetDataBits(data_bitscount)

void SetStopBits(stop_bitscount)

void SetParityMode(parity_modemode)

data_bitsDataBits(void)

stop_bitsStopBits(void)

parity_modeParityMode(void)

These functions set and return characteristics of the serial unit used to send and receive
data. SetDataBits() sets the number of bits of data in each unit. Thecount can be:

B_DATA_BITS_7 or
B_DATA_BITS_8

The default isB_DATA_BITS_8.

SetStopBits() sets the number of stop bits in each unit. It can be:

B_STOP_BITS_1 or
B_STOP_BITS_2

The default isB_STOP_BITS_1.

SetParityMode() sets whether the serial unit contains a parity bit and, if so, the type of
parity used. The mode can be:

B_EVEN_PARITY,
B_ODD_PARITY, or
B_NO_PARITY

The default isB_NO_PARITY.

SetDataRate(), DataRate()
void SetDataRate(data_ratebitsPerSecond)

data_rateDataRate(void)

These functions set and return the rate (in bits per second) at which data is both
transmitted and received. Permitted values are:

B_0_BPS B_200_BPS B_4800_BPS
B_50_BPS B_300_BPS B_9600_BPS
B_75_BPS B_600_BPS B_19200_BPS
B_110_BPS B_1200_BPS B_38400_BPS
B_134_BPS B_1800_BPS B_57600_BPS
B_150_BPS B_2400_BPS B_115200_BPS

Member Functions BSerialPort

32 – The Device Kit

The default data rate isB_19200_BPS. If the rate is set to 0 (B_0_BPS), data will be sent and
received at an indeterminate number of bits per second.

SetDTR()
long SetDTR(boolpinAsserted)

Asserts the Data Terminal Ready (DTR) pin if thepinAsserted flag isTRUE, and de-asserts
it if the flag isFALSE.

See also: SetRTS()

SetFlowControl(), FlowControl()
void SetFlowControl(ulongmask)

ulongFlowControl(void)

These functions set and return the type of flow control the driver should use. There are
two possibilities:

B_SOFTWARE_CONTROL Control is maintained through XON and XOFF
characters inserted into the data stream.

B_HARDWARE_CONTROL Control is maintained through the Clear to Send
(CTS) and Request to Send (RTS) pins.

Themask passed toSetFlowControl() and returned byFlowControl() can be just one of
these constants—or it can be a combination of the two, in which case the driver will use
both types of flow control together. It can also be 0, in which case the driver won’t use any
flow control. B_HARDWARE_CONTROL is the default.

SetFlowControl() should be called before a specific serial port is opened. You can’t change
the type of flow control the driver uses in midstream.

SetParityMode() see SetDataBits()

SetRTS()
long SetRTS(boolpinAsserted)

Asserts the Request to Send (RTS) pin if thepinAsserted flag isTRUE, and de-asserts it if
the flag isFALSE.

See also: SetDTR()

BSerialPort Member Functions

The Device Kit –33

SetStopBits() see SetDataBits()

SetTimeout() see Read()

StopBits() see SetDataBits()

WaitForInput()
long WaitForInput(void)

Waits for input data to arrive at the serial port and returns the number of bytes available to
be read.

If data is ready to be read when this function is called, it immediately returns without
blocking and reports how many bytes there are. If data hasn’t arrived, it blocks and waits
for the first bytes to be transmitted. When they’re detected, it immediately reports how
many have arrived.

This function doesn’t respect the flag set bySetBlocking(); it blocks even if blocking is
turned off for theRead() function. However, it does respect the timeout set by
SetTimeout(). If the timeout expires before input data arrives at the serial port, it returns 0.
A timeout of 0.0 microseconds doesn’t giveWaitForInput() enough time to block; it returns
immediately.

See also: Read()

Write()
long Write(const void *data, longnumBytes)

Writes up tonumBytes of data to the serial port’s output buffer. This function will be
successful in writing the data only if the BSerialPort object has a port open. The output
buffer holds a maximum of 512 bytes.

Like thewrite() system function,Write() returns the actual number of bytes written, which
will never be more thannumBytes, and may be 0. If it fails (for example, if the
BSerialPort object doesn’t have a serial port open) or if it’s interrupted before it can write
anything, it returnsB_ERROR (–1).

See also: Read(), Open()

Member Functions BSerialPort

34 – The Device Kit

The Device Kit –35

Constants and Defined Types

This section lists all the constants and types defined for the BJoystick, BSerialPort,
BDigitalPort, BA2D, and BD2A classes—though, in fact, only the BSerialPort class relies
on any defined constants or types. Everything listed here is explained more fully in the
descriptions of the member functions of that class.

Constants

data_bits Constants
<device/SerialPort.h>

Enumerated constant

B_DATA_BITS_7
B_DATA_BITS_8

These constants name the possible number of data bits in a serial unit.

See also: BSerialPort::SetDataBits()

data_rate Constants
<device/SerialPort.h>

Enumerated constant Enumerated constant

B_0_BPS B_1200_BPS
B_50_BPS B_1800_BPS
B_75_BPS B_2400_BPS
B_110_BPS B_4800_BPS
B_134_BPS B_9600_BPS
B_150_BPS B_19200_BPS
B_200_BPS B_38400_BPS
B_300_BPS B_57600_BPS
B_600_BPS B_115200_BPS

These constants give the possible rates—in bits per second (bps)—at which data can be
transmitted and received over a serial connection.

See also: BSerialPort::SetDataRate()

Constants Constants and Defined Types

36 – The Device Kit

Flow Control Constants
<device/SerialPort.h>

Enumerated constant

B_SOFTWARE_CONTROL
B_HARDWARE_CONTROL

These constants form a mask that records the method(s) of flow control the serial port
driver should use.

See also: BSerialPort::SetFlowControl()

parity_mode Constants
<device/SerialPort.h>

Enumerated constant

B_NO_PARITY
B_ODD_PARITY
B_EVEN_PARITY

These constants list the possibilities for parity when transmitting data over a serial
connection.

See also: BSerialPort::SetDataBits()

stop_bits Constants
<device/SerialPort.h>

Enumerated constant

B_STOP_BITS_1
B_STOP_BITS_2

These constants name the possible number of stop bits in a serial unit.

See also: BSerialPort::SetDataBits()

Constants and Defined Types Defined Types

The Device Kit –37

Defined Types

data_bits
<device/SerialPort.h>

typedef enum { . . . }data_bits

This type is used to set and return the number of data bits in a serial unit.

See also: “data_bits Constants” above,BSerialPort::SetDataBits()

data_rate
<device/SerialPort.h>

typedef enum { . . . }data_rate

This type is used to set and return the rate at which data is sent and received through a
serial connection.

See also: “data_rate Constants” above,BSerialPort::SetDataRate()

parity_mode
<device/SerialPort.h>

typedef enum { . . . }parity_mode

This type is used to set and return the type of parity that should be used when sending and
receiving data.

See also: “parity_mode Constants” above,BSerialPort::SetDataBits()

stop_bits
<device/SerialPort.h>

typedef enum { . . . }stop_bits

This type is used to set and return the number of stop bits in a serial unit.

See also: “stop_bits Constants” above,BSerialPort::SetDataBits()

Defined Types Constants and Defined Types

38 – The Device Kit

The Device Kit –39

Developing a Device Driver

A device driver ties an input/output hardware device to the computer’s operating system.
To develop a driver, you have to know about both ends of that link:

• On the one hand, you need to be thoroughly familiar with the hardware device and
its particular interface.

• On the other hand, you must understand the operating system and the demands it
places on the driver.

Hardware specifications and manuals can provide you with the first kind of information;
this documentation can help only with the second—that is, with information specific to the
Be operating system. On the next page, you’ll see a list of recommended documentation
for the DMA controller, the PCI bus, and other hardware found inside the BeBox. This
book is concerned solely with how a driver must be structured to work with Be system
software.

Overview

On the BeBox, device drivers run as dynamically loaded add-on modules—as extensions
of a host component of the operating system. The Application Server, the part of the
operating system that’s responsible for all graphics operations, is the host for graphics card
drivers. The Print Server hosts drivers for printers. The kernel acts as the host for all other
drivers. The kernel and the two servers load drivers on demand, and can unload them
when they’re no longer needed.

Because drivers are linked to their hosts and run in the host’s address space, they must
play by the host’s rules. The kernel and servers impose three different kinds of restrictions
on loadable drivers:

• A driver must be constructed so that it can respond to its host. It has to be able to
inform the host of the device or devices it drives, and it has to provide functions that
the host can call to operate the driver. As an add-on module, a driver lacks an
independent main thread of execution (and amain() function). Instead, it provides
the host with entry points to driver functionality and responds only to the host’s
instructions.

• A driver can call only those functions that it implements itself or that the host makes
available to it. It cannot, for example, link against the shared system library and call
any function it wants from the Kernel Kit or Storage Kit. It might statically link
against a private library, but it typically links only to the host and is limited to
calling functions that the host exports.

Recommended Reading Developing a Device Driver

40 – The Device Kit

• The driver must be compiled as an add-on module and it must be installed in a
directory where the host expects to find it.

Although the kernel, the Application Server, and the Print Server all impose these three
kinds of restrictions on their loadable drivers, they each impose a different set of
restrictions. The kernel’s rules are not the Application Server’s rules, and the Application
Server’s are not the same as the Print Server’s.

To learn the rules that apply to the type of driver you intend to develop, begin with the
section listed in the following chart:

To develop: Go to:

A driver for a graphics card “Developing a Driver for a Graphics Card”
on page 77

A driver for a printer < Wait until the next release, or contact Be
developer support. The interface for
printer drivers is under development and
not yet documented. >

All other drivers “Developing a Kernel-Loadable Driver”
on page 41

Recommended Reading

For information on the PCI bus:

PCI Local Bus Specification, revision 2.1, June 1, 1995, PCI Special Interest Group,
PO Box 14070, Portland OR 97214, (800) 433-5177 or (503) 797-4207

For information on the ISA bus, ISA 8259 interrupt controller, and ISA-standard 8237
DMA controller:

82378 System I/O (SIO), August 1994, order number 290473-004, Intel
Corporation, 2200 Mission College Boulevard, PO Box 58119, Santa Clara,
CA 95052

For information on the SCSI common access method (CAM):

Draft Proposed American National StandardSCSI-2 Common Access Method
Transport and SCSI Interface Module, ASC X3T–10, revision 12, December 14,
1994, American National Standards Institute, 11 West 42nd Street, New York,
NY 10036

The Device Kit –41

Developing a
Kernel-Loadable Driver

At the most basic level, devices (other than graphics cards) are controlled by system calls
that the kernel traps and translates for the driver. Five different kinds of functions control
input/output devices on the BeBox:

open() Opens a device for reading or writing.
close() Closes a device that was previously opened.
read() Reads data from the device.
write() Writes data to the device.
ioctl() Formats, initializes, queries, and otherwise controls the device.

All these functions, exceptioctl(), are Posix-compliant. Instead ofioctl(), Posix defines a
set of functions liketcsetattr() andtcflush() to control data terminals. These functions are
supported, but they can be treated as special cases ofioctl(). (Posix also defines afcntl()
function for file control that has the same syntax asioctl().)

Whenopen(), close(), read(), write(), or ioctl() is called for a device, the kernel expects a
driver to do the work that’s required. Each driver must implement a set of functions that
correspond directly to the five system calls. Everything the driver does to operate the
device is initiated through one of these functions.

Because drivers run in the kernel’s address space as extensions of the kernel, they must
conform to the kernel’s expectations. Separate sections discuss the three types of
restrictions that the kernel imposes on drivers:

• “Entry Points” on page 42 describes how drivers must be constructed to work with
the kernel. The driver must provide the kernel with entry points to its functionality
and follow the kernel’s instructions.

• “Exported Functions” on page 49 discusses the kinds of functions that the kernel
exports for drivers. These include some from the Kernel Kit, Support Kit, and
standard C library, and some that are defined especially for drivers. The driver is
limited to calling functions that it itself implements or that the kernel exports.

• “Installation” on page 54 discusses how to compile a driver and install it on the
BeBox. The driver must be installed where the kernel can find it.

The exported functions that the kernel defines specifically for drivers are documented
following these three sections.

Entry Points Developing a Kernel-Loadable Driver

42 – The Device Kit

Entry Points

The kernel loads a device driver when it’s needed—typically when someone first attempts
to open the device for reading or writing. Opening a device is a prerequisite to using it.

To theopen() function, drivers are identified by a fictitious pathname beginning with
/dev/. For example, this code opens the parallel port driver for writing:

int fd = open("/dev/parallel", O_WRONLY);

The first thing the kernel must do is match the device name—“/dev/parallel” in this case—
to a driver; it must find a driver for the device. The driver might be one that has already
been loaded, or it might be one that the kernel must search for and load. Loadable drivers
reside in the/system/drivers directory; this is where the kernel looks for drivers and
where they all must be installed.

Once a driver has been located and loaded, the kernel begins communicating with it—first
to get information from it and test whether it’s the right driver, then to initialize it and have
it open the device.

One key piece of information that the kernel needs from the driver is the names of all its
devices. Another is a list of the functions it can call to exercise those devices. For each
device, the driver implements a set of hook functions that open the device, control it, read
data from it, write data to it, and perhaps eventually close it. These hooks correspond to
the system functions discussed above.

To give the kernel initial access to this information, drivers make declarations—of
functions and data structures—using names the kernel will look for. Five such names will
be discussed in the following sections:

init_driver() Initializes the driver after it’s loaded.
uninit_driver() Cleans up after the driver before it’s unloaded.
devices Declares the devices and their hook functions.
publish_device_names() Lists the devices the driver handles.
find_device_entry() Associates a device with its hook functions.

These are the main entry points for driver control.

Driver Initialization

Immediately after loading a driver, the kernel gives it a chance to initialize itself. If the
driver implements a function calledinit_driver(), the kernel will call it before proceeding
with anything else—before asking the driver to open a device. The function should expect
no arguments and return eitherB_ERROR or B_NO_ERROR:

long init_driver(void)

A return ofB_ERROR means that the driver can’t continue; the kernel will consequently
unload it. A return ofB_NO_ERROR means that all is well; the kernel will continue by

Developing a Kernel-Loadable Driver Entry Points

The Device Kit –43

asking the driver to open a device. The absence of aninit_driver() function is equivalent to
a return ofB_NO_ERROR.

init_driver() might go a long way toward initializing the data structures the driver uses to
do its work—for example, setting up needed semaphores. However, details specific to a
particular device should be left to the hook function that opens that device.

When the kernel is about to get rid of a driver, it gives the driver a chance to undo what
init_driver() did. If the driver implements a function calleduninit_driver(), the kernel will
call it immediately before unloading the driver. This function has the same syntax as the
initialization function:

long uninit_driver(void)

This function can do nothing to prevent the driver from being unloaded. It should simply
clean up after the driver—for example, delete semaphores—and returnB_NO_ERROR.

Driver initialization and its opposite happen just once—when the driver is loaded and
unloaded. In contrast, devices might be opened and closed many times while the driver
continues to reside in the kernel.

Device Declarations

For the kernel to find the driver for a given device, all drivers must declare the names of
the devices they control. For the kernel to be able to communicate with the driver to
operate the device, every driver must declare a set of device-specific hook functions the
kernel can call.

These declarations are made in adevice_entry structure that maps the device name to the
set of hook functions. This structure is declared indevice/Drivers.h and contains the
following fields:

const char *name The name of the device—for example, “/dev/serial”.
This is the same name that’s passed toopen().
Driver code can assign any name it wants to the
device, but it must begin with the “/dev/” prefix,
which distinguishes devices from ordinary files.

device_open_hookopen The function that the kernel should call to open the
device. The kernel will invoke this function to
respond toopen() system calls.

device_close_hookclose The function that should be called to close the
device. It corresponds to theclose() system call.

device_control_hookcontrol The function that the kernel should call to control the
device, including querying the driver for information
about it. The kernel will invoke this function to
respond toioctl() calls.

Entry Points Developing a Kernel-Loadable Driver

44 – The Device Kit

device_io_hookread The function that should be called to read data from
the device. The kernel will invoke this function to
respond to theread() system call.

device_io_hookwrite The function that should be called to write data to the
device. It corresponds to thewrite() system call.

(The five functions are described in more detail under “Hook Functions” below.)

A driver declares onedevice_entry structure for each device it can drive. If it can handle
more than one device, it must provide adevice_entry structure for each one. If it permits
a device to be referred to by more than one name, it must provide a structure for each
name it recognizes.

There are two ways for a driver to provide the kernel with the information in a
device_entry structure: If the list of devices is known at compile time, the driver can
declare them statically. If the list might change at run time, it can return them
dynamically.

Static Drivers

Most drivers are designed to handle a fixed set of known devices—perhaps a single device
or perhaps many. Such drivers should declare a null-terminated array ofdevice_entry
structures under the global namedevices:

device_entrydevices[]

For example, the serial port driver might declare adevices array that looks like this:

device_entry devices[7] = {
 {"/dev/serial1", open_func, close_func, control_func,
 read_func, write_func},
 {"/dev/serial2", open_func, close_func, control_func,
 read_func, write_func},
 {"/dev/serial3", open_func, close_func, control_func,
 read_func, write_func},
 {"/dev/serial4", open_func, close_func, control_func,
 read_func, write_func},
 {"/dev/com3", open_com_func, close_func, control_com_func,
 read_func, write_func},
 {"/dev/com4", open_com_func, close_func, control_com_func,
 read_func, write_func},
 0
};

In this case, the driver handles the four serial ports seen on the back of the BeBox, each of
which it identifies by a different name. It can also control “com3” and “com4” ports on an
add-on board.

As this example illustrates, the hook functions declared in adevice_entry structure are
specific to the device. For the most part, the serial port driver above uses the same set of

Developing a Kernel-Loadable Driver Entry Points

The Device Kit –45

functions to operate all the devices, but declares special functions for opening and
controlling “com3” and “com4”.

Note also that the array is null terminated.

Dynamic Drivers

A driver can also providedevice_entry information dynamically. Instead of adevices
array, it implements two functions,publish_device_names() andfind_device_entry().

The first of these functions should be declared as follows:

char **publish_device_names(const char *deviceName)

If passed a proposeddeviceName that matches the name of a device the driver handles, or
if passed aNULL device name, this function should return a null-terminated array of all the
names of all the devices that it handles. For example, the serial port driver described
above would return the following array:

"/dev/serial1",
"/dev/serial2",
"/dev/serial3",
"/dev/serial4",
"/dev/com3",
"/dev/com4",
0

However, if the proposed device name doesn’t match any that the driver handles,
publish_device_names() should returnNULL.

While publish_device_names() informs the kernel of the devices that the driver handles,
find_device_entry() returns entry information about a particular device. It has the
following form:

device_entry *find_device_entry(const char *deviceName)

If passed the name of a device that the driver knows about, this function should return the
device_entry for that name. If thedeviceName doesn’t match one of the driver’s devices,
it should returnNULL.

The kernel first callspublish_device_names() during the boot sequence to find what
devices the driver handles. It may call the function again to update the list when it tries to
match a driver to a specific device. If a match is made, it callsfind_device_entry() to get
the list of hook functions for the device.

Entry Points Developing a Kernel-Loadable Driver

46 – The Device Kit

Hook Functions

The five hook functions that are declared in adevice_entry structure can have any names
that you want to give them, provided that they don’t clash with names that the kernel
exports (see “Exported Functions” on page 49). However, their syntax is strictly
prescribed by the kernel (through type definitions found indevice/Drivers.h).

The five functions have two points in common: First, they each return an error code,
which should be 0 (B_NO_ERROR) if there is no error. The error value is passed through as
the return value for theopen(), close(), read(), write(), or ioctl() system call that caused
the kernel to invoke the driver function. The driver should return error values that are
compatible with ones that are expected from those functions.

Second, all five functions are passed information identifying the device. As their first
argument, they receive a pointer to adevice_info structure (also defined in
device/Drivers.h), which contains just two fields:

device_entry *entry Thedevice_entry structure for the device that’s
being operated on. This is a copy of information that
the driver declared in itsdevices array or that its
find_device_entry() function returned.

void *private_data Arbitrary data that describes the device. This data is
a way for the driver to record information about the
device and have it persist between function calls.
Although the kernel stores this data and passes it to
the driver, the driver initializes it and maintains it; the
kernel doesn’t query or modify it.

Thus, all of the device-specific hook functions have the same return types and initial
arguments:

long function(device_info *info, . . .)

Differences among the functions are discussed below.

Opening and Closing a Device

The function that opens a device is of typedevice_open_hook and the one that closes it is
of typedevice_close_hook. They’re defined as follows:

typedef long (*device_open_hook)(device_info *info, ulongflags)

typedef long (*device_close_hook)(device_info *info)

Theflags mask that’s passed to theopen() system call is passed through to the device
function. It typically will contain a flag likeO_RDONLY, O_RDWR, or O_WRONLY.

Since the hook function that opens the device is the first one that’s called, it might set up
thedevice_info description of the device (to the extent thatinit_driver() hasn’t already

Developing a Kernel-Loadable Driver Entry Points

The Device Kit –47

done so). It might also use that description, or some static data, to record whether or not
the device is currently open. Typically, only one process can have a device open at a time.
If the hook function sees that the device is already open, it can refuse to open it again.

Whatever values these functions return will also be returned by theopen() andclose()
system calls.

Reading and Writing Data

The driver functions that read data from and write data to a device must be of type
device_io_hook, which is defined as follows:

typedef long (*device_io_hook)(device_info *info,
void *buffer, ulongnumBytes, ulongposition)

The function that reads data from the device should place up tonumBytes of data into the
specifiedbuffer. The hook that writes to the device should takenumBytes of data from the
buffer. These functions should read and write the data beginning at theposition offset on
the device. The offset is meaningful for some drivers (mostly drivers for storage devices),
but can be ignored by others (such as a serial port driver).

Whatever values these functions return will also be returned by theread() andwrite()
system calls.

Controlling the Device

The hook function that initializes, formats, queries, and otherwise controls a device is of
typedevice_control_hook, defined as follows:

typedef long (*device_control_hook)(device_info *info, ulongop, void *data)

The second argument,op, is a constant that specifies the particular control operation that
the function should perform. The third argument,data, points either to some information
that the control function needs to carry out theop operation or to a data structure that it
should fill in with information that the operation requests. The interpretation of the data
pointer depends entirely on the nature of the operation and will differ from operation to
operation; theop anddata arguments go hand-in-hand.

For example, if theop code isSET_CONFIG, data might point to a structure with values
that the control function should use to re-configure the device. If the operation is
GET_ENABLED_STATE, data might point to an integer that the function would be expected to
set to either 1 or 0. If it’sRESTART, data might simply beNULL.

The kernel defines a number of control operations (which are explained in the next
section). These are operations that the kernel might call upon any driver to perform.

If you define your own control operations (for anioctl() call on your driver), you should be
sure that they aren’t confused with any that the kernel currently defines—or any that it will
define in the future. We pledge that all system-defined control constants will have values

Entry Points Developing a Kernel-Loadable Driver

48 – The Device Kit

belowB_DEVICE_OP_CODES_END. The constants you define should be increments above
this value. For example:

enum {
 REPORT_STATUS = B_DEVICE_OP_CODES_END + 1,
 SET_TIMER,
 . . .
}

If a control function doesn’t recognize theop code it’s passed or can’t perform the
requested operation, it should returnB_ERROR (–1).

Control Operations

Several control operations are defined by the kernel. The kernel can request any driver to
perform these operations, even in the absence of anioctl() call. A control function should
respond to as many of these requests as it can. It should respond to inappropriate or
unrecognized requests by returningB_ERROR.

The set of system-defined control operations is described below.

B_GET_SIZE and B_SET_SIZE

These control operations request the driver to get and set the memory capacity of the
physical device. The capacity is measured in bytes and is recorded as aulong integer. For
aB_GET_SIZE request, the control function should write this number to the location referred
to by thedata pointer. ForB_SET_SIZE, data will be the requested number of bytes (not a
pointer to it).

B_SET_BLOCKING_IO and B_SET_NONBLOCKING_IO

These operations determine whether or not the driver should block when reading and
writing data. B_SET_BLOCKING_IO requests the driver to put itself in blocking mode. Its
read function should wait for data to arrive if none is readily available and its write
function should wait for the device to be ready to accept data if it’s not immediately free to
take it. IfB_SET_NONBLOCKING_IO is requested, the read function should return
immediately if there is no data available to read and the write function should return
immediately if the device isn’t ready to accept written data.

For these operations, thedata argument doesn’t contain a meaningful value.

B_GET_READ_STATUS and B_GET_WRITE_STATUS

These control operations request the driver to report whether or not it’s ready to read and
write without blocking. The control function should respond by placingTRUE or FALSE as a
ulong integer in the location thatdata points to.

Developing a Kernel-Loadable Driver Exported Functions

The Device Kit –49

For B_GET_READ_STATUS, it should respondTRUE if there’s data waiting to be read, and
FALSE if not. ForB_GET_WRITE_STATUS, it should respondTRUE if the device is free to
accept data, andFALSE if not.

B_GET_GEOMETRY

Thisop code requests the driver to supply information about the physical configuration of
the device; it’s generally appropriate only for mass storage devices. The control function
should write the requested information into thedevice_geometry structure that thedata
pointer refers to. Adevice_geometry structure contains the following fields:

ulongbytes_per_sector The number of bytes in each sector of storage.

ulongsectors_per_track The number of sectors in each track.

ulongcylinder_count The number of cylinders.

ulonghead_count The number of heads.

bool removable Whether or not the storage medium can be removed
(TRUE if it can be,FALSE if not).

bool read_only Whether or not the medium can be read but not
written (TRUE if it cannot be written,FALSE if it can).

bool write_once Whether or not the medium can be written once, after
which it becomes read-only (TRUE if it can be written
only once,FALSE if it cannot be written or can be
written more than once).

B_FORMAT

This operation requests the control function to format the device. Thedata argument
doesn’t contain any valid information.

Exported Functions

After a driver has been loaded, it runs as part of the kernel in the kernel’s address space. It
therefore is restricted to calling functions (a) that it implements or (b) that the kernel
makes available to it. The driver links against the kernel alone; it cannot also
independently link to something else, even the standard C library.

Exported Functions Developing a Kernel-Loadable Driver

50 – The Device Kit

The kernel exports five kinds of functions so that they’re available to a driver:

• Support Kit functions, such asread_32_swap() andatomic_or(). Like the error
constants and data types that are defined in the Support Kit, these functions are
available to drivers.

• Standard kernel functions, such asarea_for() andwrite_port(), that were
documented in the chapter on the Kernel Kit. Because the driver runs in the kernel’s
address space, it accesses these functions directly, not through the Kit. For this
reason, not all of the functions are available to drivers; there are some services the
kernel can provide to others, but not to itself.

• Library functions that the kernel incorporates. These are functions from the
standard C library that have been adopted by the kernel and that the kernel, in turn,
exports to the driver. They’re a small, selected subset of library functions.

• Standard system calls, such asread() andioctl().

• Special functions that are implemented specifically for device drivers.

Functions from all five groups are listed in the sections below. Special driver functions are
documented in detail in the section entitled “Functions for Drivers” on page 55.

Support Kit Functions

The kernel exports the following Support Kit functions:

read_16_swap() atomic_and()
read_32_swap() atomic_or()
write_16_swap() atomic_add()
write_32_swap() real_time_clock()

See the chapter on the Support Kit for descriptions of these functions.

Kernel Kit Functions

Most functions from the Kernel Kit are available to drivers. However, a few are not,
sometimes because it would make no sense for a driver to call the function, and sometimes
because it’s difficult for the kernel to provide its very basic services to its own modules. In
some cases, a special function is defined for drivers that takes the place of the missing Kit
function. For example,spawn_thread() can’t spawn a thread in the kernel. Since drivers
run in the kernel, they need to use the specialspawn_kernel_thread() instead. Similarly,
debugger() can’t be used to debug the kernel. Drivers should callkernel_debugger()
instead.

Developing a Kernel-Loadable Driver Exported Functions

The Device Kit –51

The following Kernel Kit functions are exported for drivers:

Semaphores

create_sem() get_sem_info()
acquire_sem() get_nth_sem_info()
acquire_sem_etc() get_sem_count()
release_sem() set_sem_owner()
release_sem_etc() delete_sem()

Threads

find_thread() suspend_thread()
rename_thread() resume_thread()
set_thread_priority() wait_for_thread()
get_thread_info() exit_thread()
get_nth_thread_info() kill_thread()

Teams

kill_team()
get_team_info()
get_nth_team_info()

Ports

create_port() find_port()
read_port() port_count()
read_port_etc() port_buffer_size()
write_port() port_buffer_size_etc()
write_port_etc() set_port_owner()
get_port_info() delete_port()
get_nth_port_info()

Time

snooze()
system_time()

Other

area_for()
get_system_info()

Exported Functions Developing a Kernel-Loadable Driver

52 – The Device Kit

C Library Functions

The kernel exports a small number of functions from the standard C library. They include:

Functions declared in stdlib.h

atof() malloc()
atoi() calloc()
atol() free()
strtod() abs()
strtol() div()
strtoul() labs()
bsearch() ldiv()
qsort()

Functions and macros declared in ctype.h

isalnum() ispunct()
isalpha() isspace()
iscntrl() isprint()
isdigit() isgraph()
isxdigit()
islower() tolower()
isupper() toupper()

Functions declared in string.h

strlen() strspn()
strcat() strcspn()
strncat() strstr()
strcpy() strpbrk()
strncpy() memset()
strcmp() memchr()
strncmp() memcmp()
strchr() memcpy()
strrchr() memmove()

Functions declared in stdio.h

sprintf()
vsprintf()

The driver accesses these functions from the kernel, not from the library.

Developing a Kernel-Loadable Driver Exported Functions

The Device Kit –53

System Calls

The kernel also exports the five system calls that control devices:

open()
close()
read()
write()
ioctl()

Kernel Functions for Drivers

The kernel defines the following functions especially for drivers. For full documentation
of these functions, see “Functions for Drivers” on page 55.

Spinlocks:

acquire_spinlock()
release_spinlock()

Disabling interrupts:

disable_interrupts()
restore_interrupts()

Interrupt handling:

set_io_interrupt_handler() set_isa_interrupt_handler()
disable_io_interrupt() disable_isa_interrupt()
enable_io_interrupt() enable_isa_interrupt()

Memory management:

lock_memory() isa_address()
unlock_memory() ram_address()
get_memory_map()

ISA DMA:

start_isa_dma() lock_isa_dma_channel()
start_scattered_isa_dma() unlock_isa_dma_channel()
make_isa_dma_table()

PCI:

read_pci_config()
write_pci_config()
get_nth_pci_info()

Debugging:

dprintf()
set_dprintf_enabled()
kernel_debugger()

Installation Developing a Kernel-Loadable Driver

54 – The Device Kit

Hardware versions:

motherboard_version()
io_card_version()

SCSI common access method:

xpt_init() xpt_action()
xpt_ccb_alloc() xpt_bus_register()
xpt_ccb_free() xpt_bus_deregister()

Other

spin()
spawn_kernel_thread()

Installation

The driver must be compiled as an add-on image, which in practical terms is much the
same as compiling a shared library.The Kernel Kit chapter explains add-on images, and
the MetrowerksCodeWarrior manual gives compilation instructions. In summary, you’ll
need to specify the following options for the linker (asLDFLAGS in themakefile):

• Instruct the linker to produce an add-on image by listing the–G (or–sharedlibrary)
option.

• Disable the default behavior of linking against the shared system library by
including the–nodefaults option.

• Export the driver’s entry points so that the kernel can access them. The simplest
way to do this is to export everything with the–export all option.

• Link the driver against the kernel by specifying the/system/kernel file. This is the
only file that the driver should be linked against.

For the kernel to be able to find the compiled driver, it must be installed in the
/system/drivers directory. This is the only place that the kernel looks for drivers to load.

When an attempt is made to open a device, the kernel first looks for its driver among those
that are already loaded. Failing that, it looks on a floppy disk (in/fd/system/drivers).
Failing to find one there, it looks next on the boot disk (in/boot/system/drivers).

If the /system/drivers directory contains more than one driver for the same device, it’s
indeterminate which one will be loaded.

You can give your driver any name you wish, as long as it doesn’t match the name of
another file in/system/drivers.

The Device Kit –55

Functions for Drivers

The kernel exports a number of functions for the benefit of device drivers. These are
functions that drivers can call to do their work; they’re not functions that are available to
applications. Although implemented by the kernel, they’re not part of the Kernel Kit. The
device driver accesses these functions directly from the kernel, not through a library.

acquire_spinlock(), release_spinlock()
<device/KernelExport.h>

void acquire_spinlock(spinlock *lock)

void release_spinlock(spinlock *lock)

These functions acquire and release thelock spinlock. Spinlocks, like semaphores, are
used to protect critical sections of code that must remain on the same processor for a single
path of execution—for example, code that atomically accesses a hardware register or a
shared data structure. A common use for spinlocks is to protect data structures that both
an interrupt handler and normal driver code must access.

However, spinlocks work quite differently from semaphores. No count is kept of how
many times a thread has acquired the lock, for example, so calls toacquire_spinlock() and
release_spinlock() should not be nested. More importantly,acquire_spinlock() spins
while attempting to acquire the lock; it doesn’t block or release its hold on the CPU.

These functions assume that interrupts have been disabled. They should be nested within
calls todisable_interrupts() andrestore_interrupts() as follows:

spinlock lock;
cpu_status former = disable_interrupts();
acquire_spinlock(&lock);
/* critical code goes here */
release_spinlock(&lock);
restore_interrupts(former);

These two pairs of functions enable the thread to get into the critical code without
rescheduling. Disabling interrupts ensures that the thread won’t be preemptively
rescheduled. Becauseacquire_spinlock() doesn’t block, it provides the additional
assurance that the thread won’t be voluntarily rescheduled.

Executing the critical code under the protection of the spinlock guarantees that no other
thread will execute the same code at the same time on another processor. Spinlocks
should be held only as long as necessary and released as quickly as possible.

See also: create_spinlock()

Functions for Drivers

56 – The Device Kit

create_spinlock(), delete_spinlock()
<device/KernelExport.h>

spinlock *create_spinlock(void)

void delete_spinlock(spinlock *lock)

< These functions will, when implemented and exported, produce and destroy spinlocks.
Currently, they’re declared but not exported. To create a spinlock at present, simply
declare aspinlock variable and pass a pointer to it toacquire_spinlock(). >

See also: acquire_spinlock()

disable_interrupts(), restore_interrupts()
<device/KernelExport.h>

cpu_statusdisable_interrupts(void)

void restore_interrupts(cpu_statusstatus)

These functions disable interrupts at the CPU (the one the caller is currently running on)
and restore them again.disable_interrupts() prevents the CPU from being interrupted and
returns its previous status—whether or not interrupts were already disabled before the
disable_interrupts() call. restore_interrupts() restores the previousstatus of the CPU,
which should be the value thatdisable_interrupts() returned. Passing the status returned
by disable_interrupts() to restore_interrupts() allows these functions to be paired and
nested.

As diagrammed below, individual interrupts can be enabled and disabled at two other
hardware locations.disable_isa_interrupt() andenable_isa_interrupt() work at the ISA

Functions for Drivers

The Device Kit –57

standard 8259 interrupt controller, anddisable_io_interrupt() andenable_io_interrupt()
act at the Be-defined I/O interrupt controller that combines ISA and PCI interrupts.

Interrupts that have been disabled bydisable_interrupts() must be reenabled by
restore_interrupts().

See also: acquire_spinlock(), set_io_interrupt_handler(), set_isa_interrupt_handler()

disable_io_interrupt() see set_io_interrupt_handler()

disable_isa_interrupt() see set_isa_interrupt_handler()

dprintf(), set_dprintf_enabled(), kernel_debugger()
<device/KernelExport.h>

void dprintf(const char *format, ...)

bool set_dprintf_enabled(boolenabled)

void kernel_debugger(const char *string)

dprintf() is a debugging function that has the same syntax and behavior as standard C
printf(), except that it writes its output to the fourth serial port (“/dev/serial4”) at a data rate
of 19,200 bits per second. By default,dprintf() is disabled.

set_dprintf_enabled() enablesdprintf() if theenabled flag isTRUE, and disables it if the
flag isFALSE. It returns the previous enabled state. Calls to this function can be nested by

8259 ISA

Be I/O
interrupt
controller

interrupt
controller

ISA

PCI interrupts
and other Be devices

interruptsdisable_interrupts()

CPU

restore_interrupts()

disable_io_interrupt()
enable_io_interrupt()

disable_isa_interrupt()
enable_isa_interrupt()

Functions for Drivers

58 – The Device Kit

caching the return value of a call that disables printing and passing it to the paired call that
restores the previous state.

kernel_debugger() drops the calling thread into a debugger that writes its output to the
fourth serial port at 19,200 bits per second, just asdprintf() does. This debugger
producesstring as its first message; it’s not affected byset_dprintf_enabled().

kernel_debugger() is identical to thedebugger() function documented in the Kernel
Kit, except that it works in the kernel and engages a different debugger. Drivers should
use it instead ofdebugger().

See also: debugger() in the Kernel Kit

enable_io_interrupt() see set_io_interrupt_handler()

enable_isa_interrupt() see set_isa_interrupt_handler()

get_memory_map()
<device/KernelExport.h>

long get_memory_map(void *address, ulongnumBytes,
physical_entry *table, longnumEntries)

Locates the separate pieces of physical memory that correspond to the contiguous buffer
of virtual memory beginning ataddress and extending fornumBytes. Each piece of
physical memory is described by aphysical_entry structure. It has just two fields:

void *address The address of a block of physical memory.

ulongsize The number of bytes in the block.

This function is passed a pointer to atable of physical_entry structures. It fills in the table,
stopping when the entire buffer of virtual memory has been described or whennumEntry
entries in the table have been written, whichever comes first.

If the table provided isn’t big enough, you’ll need to callget_memory_map() again and
ask it to describe the rest of the buffer. If the table is too big, this function sets thesize
field of the entry following the last one it needed to 0. This indicates that it has finished
mapping the entireaddress buffer.

Memory should be locked while it is being mapped. Before callingget_memory_map(),
call lock_memory() to make sure that it all stays in place:

physical_entry table[count];
lock_memory(someAddress, someNumberOfBytes, FALSE);
get_memory_map(someAddress, someNumberOfBytes, table, count);
. . .
unlock_memory(someAddress, someNumberOfBytes);

Functions for Drivers

The Device Kit –59

< This function consistently returnsB_NO_ERROR. >

See also: lock_memory(), start_isa_dma()

get_nth_pci_info()
<device/PCI.h>

long get_nth_pci_info(long index, pci_info *info)

This function looks up the PCI device atindex and provides a description of it in the
pci_info structure thatinfo refers to. Indices begin at 0 and there are no gaps in the list.

Thepci_info structure contains a number of fields that report values found in the
configuration register space for the device and it also describes how the device has been
mapped into the system. The following fields are common to all devices:

ushortvendor_id An identifier for the manufacturer of the device.

ushortdevice_id An identifier for the particular device of the vendor,
assigned by the vendor.

ucharbus The bus number.

uchardevice The number that identifies the location of the device
on the bus.

ucharfunction The function number in the device.

ucharrevision A device-specific version number, assigned by the
vendor.

ucharclass_api The type of specific register-level programming
interface for the device (the lower byte of the class
code field).

ucharclass_sub The specific type of function the device performs (the
middle byte of the class code field).

ucharclass_base The broadly-defined device type (the upper byte of
the class code field).

ucharline_size The size of the system cache line, in units of 32-bit
words.

ucharlatency The latency timer for the PCI bus master.

ucharheader_type The header type.

ucharbist The contents of the register for the built-in self test.

ucharu A union of structures, one for each header type.

Functions for Drivers

60 – The Device Kit

Currently, there’s only one header (type 0x00), but in the future there may be others.
Consequently, header-specific information is recorded in a union of structures, one for
each header type. The union (named simplyu) at present has just one member, a structure
for the current header (namedh0):

typedef struct {
. . .
union {

struct {
. . .

} h0;
} u;

} pci_info

The fields of theh0 structure are:

ulongcardbus_cis The CardBus CIS pointer.

ushortsubsystem_id The vendor-assigned identifier for the add-in card
containing the device.

ushortsubsystem_vendor_id The identifier for manufacturer of the add-in card that
contains the device.

ulongrom_base The base address for the expansion ROM, as viewed
from the host processor.

ulongrom_base_pci The base address for the expansion ROM, as viewed
from the PCI bus. This is the address a bus master
would use.

ulongrom_size The amount of memory in the expansion ROM, in
bytes.

ulongbase_registers[6] The base addresses of requested memory spaces and
I/O spaces, as viewed from the host processor.

ulongbase_registers_pci[6] The base addresses of requested memory spaces and
I/O spaces, as viewed from the PCI bus. This is the
address a bus master would use.

ulongbase_register_sizes[6] The sizes of requested memory spaces and I/O
spaces.

ucharbase_register_flags[6] The flags from the base-address registers.

Functions for Drivers

The Device Kit –61

ucharinterrupt_line The interrupt line. This number identifies the
interrupt associated with the device. See
set_io_interrupt_handler().

ucharinterrupt_pin The interrupt pin that the device uses.

ucharmin_grant The minimum burst period the device needs,
assuming a clock rate of 33 MHz.

ucharmax_latency The maximum frequency at which the device needs
access to the PCI bus.

In device/PCI.h, you’ll find a number of constants that you can use to test various fields of
a pci_info structure. See thePCI Local Bus Specification, published by the PCI Special
Interest Group (Portland, OR) for more information on the configuration of a PCI device.

get_nth_pci_info() returnsB_NO_ERROR if it successfully describes a PCI device, and
B_ERROR if it can’t find the device (for example, ifindex is out-of-range).

See also: read_pci_config()

io_card_version() see motherboard_version()

isa_address()
<device/KernelExport.h>

void *isa_address(longoffset)

Returns the virtual address corresponding to the specifiedoffset in the ISA I/O address
space. By passing anoffset of 0, you can find the base address that’s mapped to the ISA
address space.

kernel_debugger() see dprintf()

lock_isa_dma_channel(), unlock_isa_dma_channel()
<device/KernelExport.h>

long lock_isa_dma_channel(longchannel)

long unlock_isa_dma_channel(longchannel)

These functions reserve an ISA DMAchannel and release a channel previously reserved.
They returnB_NO_ERROR if successful, andB_ERROR if not. Like semaphores, these
functions work only if all participating parties adhere to the protocol.

Functions for Drivers

62 – The Device Kit

There are 7 ISA DMA channels. In general, they’re used as follows:

Channel Use

0 Unreserved, available
1 Unreserved, available
2 Reserved for the floppy disk controller
3 Reserved for the parallel port driver
5 Reserved for IDE
6 Reserved for sound
7 Reserved for sound

Channel 4 is taken by the system; it cannot be used.

lock_memory(), unlock_memory()
<device/KernelExport.h>

long lock_memory(void *address, ulongnumBytes, boolwillChange)

long unlock_memory(void *address, ulongnumBytes)

lock_memory() makes sure that all the memory beginning at the specified virtualaddress
and extending fornumBytes is resident in RAM, and locks it so that it won’t be paged out
until unlock_memory() is called. It pages in any of the memory that isn’t resident at the
time it’s called.

ThewillChange flag should beTRUE if any part of the memory range will be altered while
it’s locked—especially if the hardware device will do anything to modify the memory,
since that won’t otherwise be noticed by the system and the modified pages may not be
written. ThewillChange flag should beFALSE if the memory won’t change while it’s
locked.

Each of these functions returnsB_NO_ERROR if successful andB_ERROR if not. The main
reason thatlock_memory() would fail is that you’re attempting to lock more memory than
can be paged in.

make_isa_dma_table() see start_isa_dma()

motherboard_version(), io_card_version()
<device/KernelExport.h>

long motherboard_version(void)

long io_card_version(void)

These functions return the current versions of the motherboard and of the I/O card.

Functions for Drivers

The Device Kit –63

ram_address()
<device/KernelExport.h>

void *ram_address(void *physicalAddress)

Returns the address of a physical block of system memory (RAM) as viewed from the PCI
bus. If passedNULL as thephysicalAddress, this function returns a pointer to the first byte
of RAM; otherwise it returns a pointer to thephysicalAddress.

This information is needed by bus masters—components, such as the ethernet and some
SCSI controllers, that can perform DMA reads and writes (directly read from and write to
system memory without CPU intervention).

Memory must be locked when calling this function. For example:

physical_entry table[count];
void *where;

lock_memory(someAddress, someNumberOfBytes, FALSE);
get_memory_map(someAddress, someNumberOfBytes, table, count);
where = ram_address(table[i].address)
. . .
unlock_memory(someAddress, someNumberOfBytes);

See also: get_memory_map(), lock_memory()

read_pci_config(), write_pci_config()
<device/PCI.h>

long read_pci_config(ucharbus, uchardevice, ucharfunction,
longoffset, longsize)

void write_pci_config(ucharbus, uchardevice, ucharfunction,
longoffset, longsize, longvalue)

These functions read from and write to the PCI configuration register space. Thebus,
device, andfunction arguments can be read from thebus, device, andfunction fields of
thepci_info structure provided byget_nth_pci_info(). They identify the configuration
space that belongs to the device.

Theoffset is an offset to the location in the 256-byte configuration space that is to be read
or written andsize is the number of bytes to be read from that location or written to it.
Permitted sizes are 1, 2, and 4 bytes.read_pci_config() returns the bytes that are read,
write_pci_config() writessize bytes ofvalue to theoffset location.

See also: get_nth_pci_info()

release_spinlock() see acquire_spinlock()

Functions for Drivers

64 – The Device Kit

restore_interrupts() see disable_interrupts()

set_dprintf_enabled() see dprintf()

set_io_interrupt_handler(),
disable_io_interrupt(), enable_io_interrupt()

<device/KernelExport.h>

long set_io_interrupt_handler(long interrupt,
interrupt_handlerfunction, void *data)

long disable_io_interrupt(long interrupt)

long enable_io_interrupt(long interrupt)

These functions manage interrupts at the Be-designed I/O interrupt controller that
combines ISA and PCI interrupts. Theinterrupt can be an ISA IRQ value or the
interrupt_line field read from thepci_info structure provided byget_nth_pci_info().

set_io_interrupt_handler() installs the handlerfunction that will be called each time the
specifiedinterrupt occurs. This function should have the following syntax:

bool handler(void *data)

Thedata that’s passed toset_io_interrupt_handler() will be passed to the handler function
each time it’s called. It can be anything that might be of use to the handler, orNULL. This
function should always returnTRUE.

set_io_interrupt_handler() itself returnsB_NO_ERROR if successful in installing the
handler, andB_ERROR if not.

disable_io_interrupt() disables the namedinterrupt, andenable_io_interrupt() reenables it.
Both functions returnB_ERROR for an invalidinterrupt number, andB_NO_ERROR
otherwise. Neither function takes into account the disabled or enabled state of the
interrupt as it might be affected by other functions, such asdisable_isa_interrupt() or
restore_interrupts(). An interrupt that has been disabled bydisable_io_interrupt() must be
reenabled byenable_io_interrupt().

See also: get_nth_pci_info(), disable_interrupts()

Functions for Drivers

The Device Kit –65

set_isa_interrupt_handler(),
disable_isa_interrupt(), enable_isa_interrupt()

<device/KernelExport.h>

long set_isa_interrupt_handler(long interrupt,
interrupt_handlerfunction, void *data)

long disable_isa_interrupt(long interrupt)

long enable_isa_interrupt(long interrupt)

These functions manage interrupts at the 8259 ISA-compatible interrupt controller. The
interrupt is identified by its standard IRQ value.

set_isa_interrupt_handler() installs the handlerfunction for the specifiedinterrupt. This
function should take one argument and return abool:

bool handler(void *data)

The argument is the samedata that’s passed toset_isa_interrupt_handler(); it can be any
kind of data thefunction might need, orNULL. The return value indicates whether the
interrupt was handled—TRUE if it was andFALSE if not. By returningFALSE, the handler
function can indicate that the device didn’t generate the interrupt. The system can then try
a different handler installed for a different device at the same interrupt number.
< However, this architecture is not currently supported, so the handler function should
always returnTRUE. >

set_isa_interrupt_handler() returnsB_NO_ERROR if it can install the handler for the
interrupt, andB_ERROR if not.

disable_isa_interrupt() disables the specified ISAinterrupt, andenable_isa_interrupt()
reenables it. Both functions returnB_ERROR if the interrupt passed is not a valid IRQ
value. Neither function considers whether the interrupt might be disabled or enabled by
some other function, such asdisable_io_interrupt(). An interrupt that has been disabled by
disable_isa_interrupt() must be reenabled byenable_isa_interrupt().

ISA interrupts can also be managed at the Be-designed interrupt dispatcher that controls
PCI interrupts. The Be interrupt controller is somewhat faster than the edge-sensitive ISA
controller. If your device can generate a level-sensitive interrupt, it should use the
counterpartset_io_interrupt_handler() function instead ofset_isa_interrupt_handler().
However, if it depends on the edge-sensitive ISA interrupt controller widely found in the
PC world, it needs to use these ISA functions.

See also: set_io_interrupt_handler(), disable_interrupts()

Functions for Drivers

66 – The Device Kit

spawn_kernel_thread()
<device/KernelExport.h>

thread_idspawn_kernel_thread(thread_entryfunc, const char *name,
longpriority, void *data)

This function is a counterpart tospawn_thread() in the Kernel Kit, which is not exported
for drivers. It has the same syntax as the Kernel Kit function, but is able to spawn threads
in the kernel itself.

See also: spawn_thread() in the Kernel Kit

spin()
<device/KernelExport.h>

void spin(doublemicroseconds)

Executes a delay loop lasting at least the specified number ofmicroseconds. It could last
longer, due to rounding errors, interrupts, and context switches.

start_isa_dma(), start_scattered_isa_dma(), make_isa_dma_table()
<device/KernelExport.h>

long start_isa_dma(longchannel, void *address, longtransferCount,
ucharmode, uchareMode)

long start_scattered_isa_dma(longchannel, isa_dma_entry *table,
ucharmode, uchareMode)

long make_isa_dma_table(void *address, longnumBytes,
ulongnumTransferBits,
isa_dma_entry *table, longnumEntries)

These functions initiate ISA DMA memory transfers for the specifiedchannel. They
engage the ISA 8237 DMA controller.

start_isa_dma() starts the transfer of a contiguous block of physical memory beginning at
the specifiedaddress. It requeststransferCount number of transfers, which cannot be
greater thanB_MAX_ISA_DMA_COUNT. Each transfer will move 8 or 16 bits of memory,
depending on themode andeMode flags. These arguments correspond to the mode and
extended mode flags recognized by the DMA controller.

The physical memoryaddress that’s passed tostart_isa_dma() can be obtained by calling
get_memory_map().

start_scattered_isa_dma() starts the transfer of a memory buffer that’s physically
scattered in various pieces. The separate pieces of memory are described by thetable
passed as a second argument and provided bymake_isa_dma_table().

Functions for Drivers

The Device Kit –67

make_isa_dma_table() provides a description of the separate chunks of physical memory
that make up the contiguous virtual buffer that begins ataddress and extends for
numBytes. This function anticipates a subsequent call tostart_scattered_isa_dma(),
which initiates a DMA transfer. It ensures that the information it provides is in the format
expected by the 8237 DMA controller. This depends in part on how many bits will be
transferred at a time. The third argument,numTransferBits, provides this information. It
can beB_8_BIT_TRANSFER or B_16_BIT_TRANSFER.

Each chunk of physical memory is described by aisa_dma_entry structure, which
contains the following fields (not that its arcane details matter, since you don’t have to do
anything with the information except pass it tostart_scattered_isa_dma()):

ulongaddress A physical memory address (in little endian format).

ushorttransfer_count The number of transfers it will take to move all the
physical memory at that address, minus 1 (in little
endian format). This value won’t be greater than
B_MAX_ISA_DMA_COUNT.

int flags.end_of_list:1 A flag that’s set to mark the last chunk of physical
memory corresponding to the virtual buffer.

make_isa_dma_table() is passed a pointer to atable of isa_dma_entry structures. It fills
in the table, stopping when the entire buffer of virtual memory has been described or when
numEntry entries in the table have been written, whichever comes first. It returns the
number of bytes from the virtualaddress buffer that it was able to account for in thetable.

start_isa_dma() andstart_scattered_isa_dma() both returnB_NO_ERROR if successful in
initiating the transfer, andB_ERROR if the channel isn’t free.

unlock_isa_dma_channel() see lock_isa_dma_channel()

unlock_memory() see lock_memory()

write_pci_config() see read_pci_config()

Functions for Drivers

68 – The Device Kit

xpt_init(), xpt_ccb_alloc(), xpt_ccb_free(), xpt_action(),
xpt_bus_register(), xpt_bus_deregister()

<device/CAM.h>

long xpt_init (void)

CCB_HEADER *xpt_ccb_alloc(void)

void xpt_ccb_free(void *ccb)

long xpt_action(CCB_HEADER *ccbHeader)

long xpt_bus_register(CAM_SIM_ENTRY *entryPoints)

long xpt_bus_deregister(longpathID)

These functions conform to the SCSI common access method (CAM) specification. See
the draft ANSI standardSCSI-2 Common Access Method Transport and SCSI Interface
Modules for information.

< The current implementation doesn’t support asynchronous callback functions. All CAM
requests are executed synchronously in their entirety. >

The Device Kit –69

Constants and Defined Types
for Kernel-Loadable Drivers

This section lists the constants and types that are defined for drivers the kernel loads.
Everything listed here was explained in the previous sections on “Developing a Kernel-
Loadable Driver” and “Functions for Drivers”.

Constants

Control Operations
<device/Drivers.h>

Enumerated constant

B_GET_SIZE
B_SET_SIZE
B_SET_NONBLOCKING_IO
B_SET_BLOCKING_IO
B_GET_READ_STATUS
B_GET_WRITE_STATUS
B_GET_GEOMETRY
B_FORMAT

B_DEVICE_OP_CODES_END = 9999

These constants name the control operations that the kernel defines. You should expect
the control hook function for any driver you develop to be called with these constants as
the operation code (op).

All system-defined control constants are guaranteed to have values less than
B_DEVICE_OP_CODES_END. Since additional constants might be defined for future
releases, any that you define should be greater thanB_DEVICE_OP_CODES_END.

See also: “Control Operations” on page 48

Defined Types Constants and Defined Types for Kernel-Loadable Drivers

70 – The Device Kit

ISA DMA Transfer Maximum
<device/KernelExport.h>

Defined constant Value

B_MAX_ISA_DMA_COUNT 0x10000

This constant indicates the maximum number of transfers for a single DMA request.

See also: start_isa_dma() on page 66

ISA DMA Transfer Sizes
<device/KernelExport.h>

Enumerated constant

B_8_BIT_TRANSFER
B_16_BIT_TRANSFER

These constants are passed tomake_isa_dma_table() to indicate the size of a single DMA
transfer.

See also: start_isa_dma() on page 66

Defined Types

cpu_status
<device/KernelExport.h>

typedef ulongcpu_status

This defined type is returned bydisable_interrupts() to record whether interrupts were
already disabled or not. It can be passed torestore_interrupts() to restore the previous
state.

See also: disable_interrupts() on page 56

device_close_hook
<device/Drivers.h>

typedef long (*device_close_hook)(device_info *info)

The hook function that the kernel calls to close a device must conform to this type.

See also: “Opening and Closing a Device” on page 46

Constants and Defined Types for Kernel-Loadable Drivers Defined Types

The Device Kit –71

device_control_hook
<device/Drivers.h>

typedef long (*device_control_hook)(device_info *info, ulongop, void *data)

The hook function for controlling a device must conform to this type.

See also: “Controlling the Device” on page 47

device_entry
<device/Drivers.h>

typedef struct {
const char *name;
device_open_hookopen;
device_close_hookclose;
device_control_hookcontrol;
device_io_hookread;
device_io_hookwrite;

} device_entry

This structure declares the name of a device and the hook functions that the kernel can call
to operate that device. The driver must provide onedevice_entry declaration for each of
its devices.

See also: “Device Declarations” on page 43

device_geometry
<device/Drivers.h>

typedef struct {
ulongbytes_per_sector;
ulongsectors_per_track;
ulongcylinder_count;
ulonghead_count;
bool removable;
bool read_only;
bool write_once;

} device_geometry

Drivers use this structure to report the physical configuration of a mass-storage device.

See also: “B_GET_GEOMETRY” on page 49

Defined Types Constants and Defined Types for Kernel-Loadable Drivers

72 – The Device Kit

device_info
<device/Drivers.h>

typedef struct {
device_entry *entry;
void *private_data;

} device_info

This structure contains publicly declared and private information about a device. It’s
passed as the first argument to each of the device-specific hook functions.

See also: “Hook Functions” on page 46

device_io_hook
<device/Drivers.h>

typedef long (*device_io_hook)(device_info *info, void *data, ulongnumBytes,
ulongposition)

The hook functions that the kernel calls to read data from or write it to a device must
conform to this type.

See also: “Reading and Writing Data” on page 47

device_open_hook
<device/Drivers.h>

typedef long (*device_open_hook)(device_info *info, ulongflags)

The hook function that opens a device must conform to this type.

See also: “Opening and Closing a Device” on page 46

Constants and Defined Types for Kernel-Loadable Drivers Defined Types

The Device Kit –73

interrupt_handler
<device/KernelExport.h>

typedef bool (*interrupt_handler)(void *data)

The functions that are installed to handle interrupts must conform to this type.

See also: set_io_interrupt_handler() on page 64,set_isa_interrupt_handler() on page 65

isa_dma_entry
<device/KernelExport.h>

typedef struct {
ulongaddress;
ushorttransfer_count;
ucharreserved;
struct {

int end_of_list:1;
int reserved:7;

} flags;
} isa_dma_entry

This structure is filled in bymake_isa_dma_table() and is passed unchanged to
start_scattered_isa_dma().

See also: start_isa_dma() on page 66

Defined Types Constants and Defined Types for Kernel-Loadable Drivers

74 – The Device Kit

pci_info
<device/PCI.h>

typedef struct {
ushortvendor_id;
ushortdevice_id;
ucharbus;
uchardevice;
ucharfunction;
ucharrevision;
ucharclass_api;
ucharclass_sub;
ucharclass_base;
ucharline_size;
ucharlatency;
ucharheader_type;
ucharbist;
ucharreserved;
union {

struct {
ulongcardbus_cis;
ushortsubsystem_id;
ushortsubsystem_vendor_id;
ulongrom_base;
ulongrom_base_pci;
ulongrom_size;
ulongbase_registers[6];
ulongbase_registers_pci[6];
ulongbase_register_sizes[6];
ucharbase_register_flags[6];
ucharinterrupt_line;
ucharinterrupt_pin;
ucharmin_grant;
ucharmax_latency;

} h0;
} u;

} pci_info

This structure reports values from the PCI configuration register space and describes how
the device has been mapped into the system.

See also: get_nth_pci_info() on page 59

Constants and Defined Types for Kernel-Loadable Drivers Defined Types

The Device Kit –75

physical_entry
<device/KernelExport.h>

typedef struct {
void *address;
ulongsize;

} physical_entry

This structure is used to describe a chunk of physical memory corresponding to some part
of a contiguous virtual buffer.

See also: get_memory_map() on page 58

spinlock
<device/KernelExport.h>

typedef vlongspinlock

This data type serves theacquire_spinlock()/release_spinlock() protocol.

See also: acquire_spinlock() on page 55

Defined Types Constants and Defined Types for Kernel-Loadable Drivers

76 – The Device Kit

The Device Kit –77

Developing a Driver for a
Graphics Card

Like other drivers, drivers for graphics cards are dynamically loaded modules—but
they’re loaded by the Application Server, the software component that’s responsible for
graphics operations, not by the kernel. Because they’re add-on modules, these drivers
share some similarities with other drivers:

• They lack amain() function, but must provide entry points where the host software
(the Application Server in this case) can access driver functionality.

• They’re mostly limited to calling functions that they implement themselves. They
don’t link against the system library or the host Application Server, < but they can
link against a private library that gives them the ability to make some system calls >.

• They must be compiled as add-on modules and installed in a place well-known to
the host.

Because the host module is the Application Server rather than the kernel, graphics card
drivers must follow protocols that the Server defines, not those that the kernel imposes on
other drivers. The entry points, exported functions, and installation directory are all
specific to graphics card drivers. Therefore, if you’re developing a driver for a graphics
card, disregard the preceding sections of this chapter dealing with kernel drivers and
follow the rules outlined in this section instead.

Control of a graphics card driver resides only with the host module; there are no functions
(like open() or ioctl()) through which a program can control the driver.

However, applications can get direct access to the graphics card through the
BWindowScreen class in the Game Kit. Access is provided by making a clone of the
graphics card driver and attaching it to the application. The original driver remains
running as part of the Application Server, but its connection to the screen is suspended
while the clone is active.

Entry Point

Every graphics card driver must implement a function calledcontrol_graphics_card().
This is the Application Server’s main entry point into the driver; it’s the function the

Entry Point Developing a Driver for a Graphics Card

78 – The Device Kit

Server calls to set up the driver, query it for information, pass it configuration instructions,
and generally control what it does. It has the following syntax:

long control_graphics_card(ulongop, void *data)

The first argument,op, names the operation the driver is requested to perform. The second
argument,data, points either to some information that will help the driver carry out the
request or to a location where it should write some information as a result of the operation.
The exact type of data in either case depends on the nature of the operation. Theop and
data arguments are inextricably linked.

The return value is an error code. In general, the control function should return
B_NO_ERROR if it can successfully respond to a particularop request, andB_ERROR if it
cannot. It should also respondB_ERROR to any undefinedop code requests it doesn’t
understand.

Main Control Operations

There are seventeen control operations that a driver’scontrol_graphics_card() function
can be requested to perform (seventeenop codes defined indevice/GraphicsCard.h).
Nine of these operations give the Application Server general control over the driver. The
other eight concern the cloning of the driver and the direct control of the frame buffer
through the Game Kit. Those operations are discussed under “Control Operations for
Cloning the Driver” and “Control Operations for Manipulating the Frame Buffer” below.
This sections lists and discusses the nine main control operations.

B_OPEN_GRAPHICS_CARD

Thisop code requests the driver to open and initialize the graphics card specified by the
data argument. If the driver can open the card, it should do so and returnB_NO_ERROR. If
it can’t, it should returnB_ERROR. Thedata pointer refers to agraphics_card_spec
structure with the following fields:

void *screen_base The beginning of memory on the graphics card. The
driver can locate the frame buffer somewhere in this
memory, but not necessarily at the base address.

void *io_base The base address for the I/O registers that control the
graphics card. Registers are addressed by 16-bit
offsets from this base address.

ulongvendor_id The number that identifies the manufacturer of the
graphics chip on the card.

ulongdevice_id A number that identifies the particular graphics chip
of that manufacturer.

If the driver can open the graphics card, it should take the opportunity to initialize any data
structures it might need. However, it should wait for further instructions—particularly a

Developing a Driver for a Graphics Card Entry Point

The Device Kit –79

B_CONFIG_GRAPHICS_CARD request—before initializing the frame buffer or turning on
the video display.

If the driver returnsB_ERROR, indicating that it’s not the driver for the specified graphics
card, it will immediately get a request to close the card as a prelude to being unloaded.

B_CLOSE_GRAPHICS_CARD

This operation notifies the graphics card driver that it’s about to be unloaded. Thedata
argument is meaningless (it doesn’t point to any valid information). The Application
Server ignores the return value and unloads the driver no matter what.

B_SET_INDEXED_COLOR

This operation is used to set up the palette of colors that can be displayed when the frame
buffer is 8 bits deep. It requests the driver to place a particular color at a particular
position in the list of 256 colors that’s kept on the card. Thedata argument points to a
indexed_color structure with two pieces of information:

long index The index of the color in the list. This value is used
as the color value in theB_COLOR_8_BIT color space.
Indices begin at 0.

rgb_colorcolor The full 32-bit color that should be associated with
the index.

A driver can expect a series ofB_SET_INDEXED_COLOR requests soon after it is opened. It
might get subsequent requests when an application (through the Game Kit) modifies the
color list, and when the game returns control to the Application Server.

B_GET_GRAPHICS_CARD_HOOKS

Thisop code requestscontrol_graphics_card() to supply the Application Server with an
array of function pointers. Each pointer is to a hook function that the Server can call to
carry out a specific graphics task. A total ofB_HOOK_COUNT (48 at present) pointers
must be written, although only a quarter of that number are currently used. The full array
should be written to the location thedata argument points to, withNULL values inserted for
undefined functions.

A later section, “Hook Functions” on page 87, describes the hook functions, the tasks they
should perform, their arguments and return types, and their positions in the array.

A driver can expect aB_GET_GRAPHICS_CARD_HOOKS request soon after it is opened,
and again any time the screen configuration changes. The hook functions can be tailored
to a specific screen dimension and depth.

Entry Point Developing a Driver for a Graphics Card

80 – The Device Kit

B_GET_GRAPHICS_CARD_INFO

Thisop code requests thecontrol_graphics_card() function to supply information about
the driver and the current configuration of the screen. Thedata argument points to a
graphics_card_info structure where it should write this information. This structure
contains the following fields:

shortversion The version of the Be architecture for graphics cards
that the driver was designed to work with. The
current version is 2.

shortid An identifier for the driver, understood in relation to
the version number. The Application Server doesn’t
check this number; it can be set to any value you
desire.

void *frame_buffer A pointer to the first byte of the frame buffer.

charrgba_order[4] The order of color components as the bytes for those
components are stored in video memory (in the frame
buffer). This array should arrange the characters
‘r’ (red), ‘g’ (green), ‘b’ (blue), and ‘a’ (alpha) in the
order in which those components are intermeshed for
each pixel in the frame buffer; a typical order is
“bgra”. This field is valid only for screen depths of
32 bits per pixel.

shortflags A mask containing flags that describe the ability of
the graphics card driver to perform particular tasks.

shortbits_per_pixel The depth of the screen in bits per pixel. Only 32-bit
(B_RGB_32_BIT) and 8-bit (B_COLOR_8_BIT) depths
are currently supported.

long bytes_per_row The offset, in bytes, between two adjacent rows of
pixel data in the frame buffer (the number of bytes
assigned to each row).

shortwidth The width of the frame buffer in pixels (the number
of pixel columns it defines).

shortheight The height of the frame buffer in pixels (the number
of pixel rows it defines).

Three constants are currently defined for theflags mask:

B_CRT_CONTROL Indicates that the driver is able to control, to any
extent, the position or the size of the CRT display on
the monitor—that there’s a provision for controlling
the CRT through software, not just hardware.

B_GAMMA_CONTROL Indicates that the driver is able to make gamma
corrections that compensate for the particular
characteristics of the display device.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –81

B_FRAME_BUFFER_CONTROL Indicates that the driver allows clients to set arbitrary
dimensions for the frame buffer and to control which
portion of the frame buffer (the display area) is
mapped to the screen.

The driver will receive frequentB_GET_GRAPHICS_CARD_INFO requests. The
graphics_card_info structure it supplies should always reflect the values currently in
force.

B_GET_REFRESH_RATES

Thisop code askscontrol_graphics_card() to place the current refresh rate, as well as the
maximum and minimum rates, in therefresh_rate_info structure referred to by thedata
pointer. This structure contains the following fields:

float min The minimum refresh rate that the graphics card is
capable of, given the current configuration.

float max The maximum refresh rate that the graphics card is
capable of, given the current configuration.

float current The current refresh rate.

All values should be provided in hertz.

B_GET_SCREEN_SPACES

Thisop code requests the driver to supply a mask containing all possible configurations of
the screen space—all supported combinations of pixel depth and dimensions of the pixel
grid. The mask is formed from the following constants—which are defined in
interface/InterfaceDefs.h—and is written to the location indicated by thedata pointer:

B_8_BIT_640x480 B_16_BIT_640x480 B_32_BIT_640x480
B_8_BIT_800x600 B_16_BIT_800x600 B_32_BIT_800x600
B_8_BIT_1024x768 B_16_BIT_1024x768 B_32_BIT_1024x768
B_8_BIT_1152x900 B_16_BIT_1152x900 B_32_BIT_1152x900
B_8_BIT_1280x1024 B_16_BIT_1280x1024 B_32_BIT_1280x1024
B_8_BIT_1600x1200 B_16_BIT_1600x1200 B_32_BIT_1600x1200

For example, if the mask includesB_8_BIT_1600x1200, the driver can configure a frame
buffer that’s simultaneously 8 bits deep (theB_COLOR_8_BIT color space), 1,600 pixel
columns wide, and 1,200 pixel rows high. The mask should include all configurations that
the graphics card is capable of supporting.

< The Application Server currently doesn’t permit depths of 16 bits. >

(InterfaceDefs.h defines one other screen space,B_8_BIT_640x400, but this is reserved for
the default “supervga” driver provided by Be.)

Entry Point Developing a Driver for a Graphics Card

82 – The Device Kit

B_CONFIG_GRAPHICS_CARD

Thisop code asks the control function to configure the display according to the values set
in thegraphics_card_config structure that thedata argument points to. This structure
contains the following fields:

ulongspace The size of the pixel grid on-screen and the depth of
the frame buffer in bits per pixel. This field will be
one of the constants listed above for the
B_GET_SCREEN_SPACES control operation.

float refresh_rate The refresh rate of the screen in hertz.

ucharh_position The horizontal position of the CRT display on the
monitor.

ucharv_position The vertical position of the CRT display on the
monitor.

ucharh_size The horizontal size of the CRT display on the
monitor.

ucharv_size The vertical size of the CRT display on the monitor.

The most important configuration parameter is thespace field. The driver should
reconfigure the screen to the depth and size requested and returnB_NO_ERROR. If it can’t
carry out the request, it should returnB_ERROR.

Failure to comply with the other fields of thegraphics_card_config structure should not
result in aB_ERROR return value. The driver should come as close as it can to the
requested refresh rate. The last four fields are appropriate only for drivers that reported
that they could control the positioning of the CRT display (by setting theB_CRT_CONTROL
flag in response to aB_GET_GRAPHICS_CARD_INFO request).

The values for the four CRT configuration fields range from 0 through 100, with 50 as the
default. Values of less than 50 forh_position andv_position should move the display
toward the left and top; those greater than 50 should move it to the right and bottom.
Values of less than 50 forh_size andv_size should make the display narrower and shorter,
squeezing it into a smaller area; values greater than 50 should make it wider and taller.

B_SET_SCREEN_GAMMA

This operation asks the driver to set up a table for adjusting color values to correct for the
peculiarities of the display device. Thedata argument points to ascreen_gamma
structure with gamma corrections for each color component. It contains the following
three fields:

ucharred[256] Mappings for the red component.

uchargreen[256] Mappings for the green component.

ucharblue[256] Mappings for the blue component.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –83

Each field is a component-specific array. The stated color value is used as an index into
the array; the value found at that index substitutes for the stated value. For example, if the
value atblue[152] is 154, all blue component values of 152 should be replaced by 154,
essentially adding to the blueness of the color as displayed.

Only drivers that indicated they could make gamma corrections (by setting the
B_GAMMA_CONTROL flag in response to aB_GET_GRAPHICS_CARD_INFO request) need
to respond toB_SET_SCREEN_GAMMA requests.

< The control function is currently not requested to perform this operation. >

Control Operations for Cloning the Driver

Normally, an application’s access to the screen is mediated by the Application Server. The
application can draw in windows the Server provides through BView objects with
graphics environments kept by the Server. The Application Server doesn’t let applications
communicate directly with the graphics card driver.

To give an application direct access to the screen, as the Game Kit does, the Application
Server must get out of the way and the driver must be attached directly to the application.
This is accomplished, not by detaching the driver from the Server, but by making a copy
of it—a clone—for the application. While the clone is active, the Server suspends its
graphic operations.

Graphics card drivers must therefore be prepared to clone themselves—to respond to the
four control operations described below. Two of the requests are made of a driver the
Application Server has loaded, and two are made of the clone.

B_GET_INFO_FOR_CLONE

Thisop code requestscontrol_graphics_card() to write information about the current state
of the driver to the location referred to by thedata pointer. This request is made of a
driver loaded by the Application Server; the information it provides is passed to the clone
(in aB_SET_CLONED_GRAPHICS_CARD request) so that the clone can duplicate the state of
the driver.

The driver should package the requested information in a data structure it defines; it can be
any structure you desire. The package should include all the driver’s variable settings—
everything from the current configuration of the screen to the location of the frame buffer

Entry Point Developing a Driver for a Graphics Card

84 – The Device Kit

in card memory. For example, if the structure is calledinfo_for_clone, driver code might
look something like this:

case B_GET_INFO_FOR_CLONE:
 ((info_for_clone *)data)->depth = info.bits_per_pixel;
 ((info_for_clone *)data)->height = info.height;
 ((info_for_clone *)data)->width = info.width;
 ((info_for_clone *)data)->row_byte = info.bytes_per_row;
 ((info_for_clone *)data)->frame_base = info.frame_buffer;
 ((info_for_clone *)data)->io_base = spec.io_base;
 ((info_for_clone *)data)->available_mem = unused_memory;
 ((info_for_clone *)data)->refresh_rate = rate.current;
 . . .
 break;

Of course, information that’s kept on the card itself, such as the current color map, does
not have to be duplicated for the clone.

Since an attempt is made to keep the driver and its clone in the same state, you can expect
numerousB_GET_INFO_FOR_CLONE requests while the clone is active.

B_GET_INFO_FOR_CLONE_SIZE

This operation requests the driver to inform the Application Server how many bytes of
information it will provide in response to aB_GET_INFO_FOR_CLONE request. The control
function should write the size of the data structure as along integer in the location that the
data pointer refers to. For example:

*((long *)data) = sizeof(info_for_clone);

This information enables the Application Server to allocate enough memory to hold the
data it will receive.

B_SET_CLONED_GRAPHICS_CARD

This operation sets up the clone. In thedata pointer, it passes the clone’s
control_graphics_card() function all the information that the driver provided in response
to aB_GET_INFO_FOR_CLONE request. The clone should read the information from the
data pointer and set all the parameters that are provided.

The clone receives aB_SET_CLONED_GRAPHICS_CARD request instead of a
B_OPEN_GRAPHICS_CARD notification when it first is created and loaded by the Game
Kit. It subsequently will receive the request many more times—whenever it must be
synchronized with the driver loaded by the Application Server.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –85

B_CLOSE_CLONED_GRAPHICS_CARD

Thisop code is passed to the clone’scontrol_graphics_card() function to signal that the
clone is about to be unloaded. The clone receives this notification instead of
B_CLOSE_GRAPHICS_CARD. Thedata pointer should be ignored.

Control Operations for Manipulating the Frame Buffer

The BWindowScreen class of the Game Kit defines a set of four functions that give
applications more or less arbitrary control over the frame buffer:

ProposeFrameBuffer()
SetFrameBuffer()
SetDisplayArea()
MoveDisplayArea()

Each of these functions translates to an identically named operation that the driver’s
control_graphics_card() function can be requested to perform. Graphics card drivers
announce their ability to respond to these requests by including a constant in theflags field
of thegraphics_card_info structure they report in response to a
B_GET_GRAPHICS_CARD_INFO request. The constant isB_FRAME_BUFFER_CONTROL.

All four of the control operations use the same structure to pass data to the driver, though
they don’t all make use the same set of fields within the structure. The structure is called
frame_buffer_info and it contains the following fields:

shortbits_per_pixel The depth of the frame buffer; the number of bits
assigned to a pixel.

shortbytes_per_row The number of bytes that are used to store one row of
pixel data in the frame buffer.

shortwidth The width of the frame buffer in pixels (the total
number of pixel columns).

shortheight The height of the frame buffer in pixels (the total
number of pixel rows.

shortdisplay_width The width of the screen display in pixels (the number
of pixel columns displayed on-screen).

shortdisplay_height The height of the screen display in pixels (the
number of pixel rows displayed on-screen).

shortdisplay_x The pixel column in the frame buffer that’s mapped
to the leftmost column of pixels on the screen, where
columns are indicated by a left-to-right index
beginning with 0.

shortdisplay_y The pixel row in the frame buffer that’s mapped to
the topmost row of pixels on the screen, where rows
are indicated by a top-to-bottom index beginning
with 0.

Entry Point Developing a Driver for a Graphics Card

86 – The Device Kit

The first four fields of this structure are identical to the last four of thegraphics_card_info
structure. However,graphics_card_info is used only to return information to the host,
whereasframe_buffer_info can pass requests to the driver. It’s possible for those four
fields to be set to arbitrary values, so the frame buffer isn’t limited to the standard
configurations of depth, width, and height described under “B_GET_SCREEN_SPACES”
above. (Of course, the driver can reject proposed configurations that it can’t
accommodate.)

The last four fields of theframe_buffer_info structure distinguish between the frame buffer
itself and the part of the frame buffer that’s displayed on-screen—thedisplay area. This
distinction permits the display area to be moved and resized on a (possibly) much larger
area defined by the frame buffer. For buffered drawing, the frame buffer can be
partitioned into discrete sections and the display area moved from one to another. For
hardware scrolling, the display area can be moved repeatedly by small increments. For
simulated zooming, it’s size can be incrementally reduced or expanded.

Both areas are defined by a width (the number of pixel columns the area includes) and a
height (the number of pixel rows). The display area is located in the frame buffer by the
index to the column (display_x) and row (display_y) of its left top pixel. See the
SetDisplayArea() function on page 14 inThe Game Kit chapter for an illustration

The four operations that exercise control over the frame buffer are described below.

B_PROPOSE_FRAME_BUFFER

Thisop code proposes a particular width and depth for the frame buffer to the driver. The
only valid fields of theframe_buffer_info structure passed through thedata pointer are
bits_per_pixel andwidth. If the driver can configure a frame buffer with those
dimensions, it should fill in the rest of frame buffer description and returnB_NO_ERROR.
In thebytes_per_row field, it should write the minimum number of bytes required to store
each row of pixel data given the proposed depth and width. In theheight field, it should
report the maximum number of pixel rows it can provide given the other dimensions. The
fields of theframe_buffer_info structure that describe the display area can be ignored.

The driver should not actually configure the frame buffer in response to the proposal; it
should wait for aB_SET_FRAME_BUFFER instruction. B_PROPOSE_FRAME_BUFFER merely
tests the driver’s capabilities.

If the driver can’t accommodate a frame buffer with the proposed dimensions, it should
place –1 in thebytes_per_row andheight fields and returnB_ERROR.

B_SET_FRAME_BUFFER

This operation requests the driver’scontrol_graphics_card() function to configure the
frame buffer according to the description in theframe_buffer_info structure passed
through thedata pointer. All fields in the structure contain meaningful values and should
be read.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –87

The specified configuration ought to have been previously tested through a
B_PROPOSE_FRAME_BUFFER operation, and therefore should be one the driver can
accommodate. If it’s not,control_graphics_card() should do nothing and returnB_ERROR.
If it can configure the frame buffer according to the request, it should returnB_NO_ERROR.

B_SET_DISPLAY_AREA

Thisop code requests the control function to set the display area, as specified by the last
four fields of theframe_buffer_info structure passed through thedata pointer. The other
fields should be ignored.

If the driver can map the display area as requested,control_graphics_card() should return
B_NO_ERROR. Otherwise, it should returnB_ERROR.

B_MOVE_DISPLAY_AREA

Thisop code requests the control function to move the display area without resizing it, as
specified by thedisplay_x anddisplay_y fields of theframe_buffer_info structure that the
data pointer refers to. The other fields of the structure should be ignored.

The driver should move the display area so that the left top pixel displayed on-screen is the
one located at (display_x, display_y) in the frame buffer and returnB_NO_ERROR. If it
can’t move the display area to that location, it should returnB_ERROR.

Hook Functions

A graphics card driver can implement hook functions to manage the cursor and perform
particular, well-defined drawing tasks on behalf of the Application Server. Drivers should
implement as many of these functions as they can to speed on-screen graphics
performance.

The driver informs the Application Server about these functions soon after it’s loaded
when itscontrol_graphics_card() function receives aB_GET_GRAPHICS_CARD_HOOKS
request (see page 79 above). In response to this request, the driver needs to place an array
of B_HOOK_COUNT (48) function pointers at the location thedata argument points to. The
request is repeated whenever the configuration of the frame buffer (its dimensions and
depth) changes. The driver can provide hook functions specific to a particular
configuration.

Currently, only the first 12 slots in the array are defined. These functions fall into four
groups:

• Indices 0–2: The first three functions define and manage the cursor. Drivers must
implement all three of these functions, or none of them. The Application Server
defers to driver-defined cursors because of the significant performance
improvements they offer.

Entry Point Developing a Driver for a Graphics Card

88 – The Device Kit

• Indices 3–9: The next seven hook functions take on specific drawing tasks, such as
stroking a minimum-width line or filling a rectangle. You can choose which of these
functions to implement.

• Index 10: The function at this index is used to synchronize the Application Server
with the driver. Drivers should implement it only if the Server might sometimes
need to wait for the driver to finish the drawing undertaken by any of the other hook
functions.

• Index 11: The final function inverts the colors in a rectangle.

Each undefined slot in the array of hook functions should be filled with aNULL pointer.
Similarly, the driver should place aNULL value in any defined slot if it can’t usefully
implement the function.

Although all pointers in the array are declared to be of typegraphics_card_hook,

typedef void (*graphics_card_hook)(void)

each function has its own set of arguments and returns a meaningful error value, declared
as along. The functions should be implemented to returnB_NO_ERROR if all goes well
and they’re successful in performing the task at hand, andB_ERROR if unsuccessful. It’s
better by far to place aNULL pointer in the array than to define a function that always
returnsB_ERROR.

The coordinate system that the Application Server assumes for all hook functions equates
one coordinate unit to one screen pixel. The origin is at the pixel in the left top corner of
the screen. In other words, anx coordinate value is a left-to-right index to a pixel column
and ay coordinate value is a top-to-bottom index to a pixel row.

The following sections discuss each of the hook functions in turn.

Index 0: Defining the Cursor

The function at index 0 is called to set the cursor image. It has the following syntax:

long define_cursor(uchar *xorMask, uchar *andMask, longwidth, longheight,
longhotX, longhotY)

The first two arguments,xorMask andandMask, together define the shape of the cursor.
Each mask has a depth of 1 bit per pixel, yielding a total of four possible values for each
cursor pixel. They should be interpreted as follows:

xorMask andMask meaning

0 0 Transparency; let the color of the screen pixel
under the cursor pixel show through.

1 0 Inversion; invert the color of the screen pixel.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –89

0 1 White; replace the screen pixel with a white
cursor pixel.

1 1 Black; replace the screen pixel with a black
cursor pixel.

Inversion in its simplest form is accomplished by taking the complement of the color
index or of each color component. For example:

color = 255 - color;

< However, the results of inversion may not be very pleasing given the current color map.
Therefore, none of the Be-defined cursors will use inversion until a future release. It
would be better for your drivers to avoid it as well. The color map will be corrected in a
future release. >

The second two arguments,width andheight, determine the size of the cursor image in
pixels. Currently, the Application Server supports only one cursor size; they must be
16 pixels wide and 16 pixels high.

The (hotX, hotY) arguments define the hot pixel in the image—the pixel that’s used to
report the location of the cursor. They assume a coordinate system where the pixel at the
left top corner of the image is (0, 0) and the one at the right bottom corner is (15, 15).

This function should change the cursor image on-screen, if the cursor is currently
displayed on-screen. But if the cursor is hidden, it should not show it. Wait for explicit
calls to the next two functions to move the cursor or change its on-screen status.

Index 1: Moving the Cursor

The function at index 1 changes the location of the cursor image. It should expect two
arguments:

long move_cursor(longscreenX, longscreenY)

In response, this function should move the cursor so that its hot pixel corresponds to
(screenX, screenY).

Index 2: Showing and Hiding the Cursor

The function at index 2 shows and hides the cursor:

long show_cursor(boolflag)

If the flag argument isTRUE, this function should show the cursor image on-screen; if it’s
FALSE, it should remove the cursor from the screen.

< If this function is asked to show the cursor before the function at index 1 is called, it
should show it at (0, 0). >

Entry Point Developing a Driver for a Graphics Card

90 – The Device Kit

Index 3: Drawing a Line with an 8-Bit Color

The function at index 3 draws a straight line in theB_COLOR_8_BIT color space. It takes 10
arguments:

long draw_line_with_8_bit_depth(longstartX, longstartY, longendX, longendY,
ucharcolorIndex, boolclipToRect, shortclipLeft,
shortclipTop, shortclipRight, shortclipBottom)

The first four arguments define the starting and ending points of the line; it begins at
(startX, startY) and ends at (endX, endY). Both points are included within the line. The
fifth argument,colorIndex, is the color of the line; it’s an index into the map of 256 colors.

< In the current release, the second and third arguments are inverted; the first four
arguments are ordered:startX, endX, startY, endY. >

If the sixth argument,clipToRect, is TRUE, the function should draw only the portion of the
line that lies within the clipping rectangle defined by the last four arguments. The sides of
the rectangle are included within the drawing area—they’re inside the visible region;
everything outside the rectangle is clipped.

If clipToRect is FALSE, the final four arguments should be ignored.

This function should draw a line of minimal thickness, which means a line no thicker than
one pixel at any given point. If the line is more vertical than horizontal, only one pixel per
row between the start and end points should be colored; if it’s more horizontal than
vertical, only one pixel per column should be colored.

Index 4: Drawing a Line with a 32-Bit Color

The function at index 4 is like the one at index 3, except that it draws a line in the
B_RGB_32_BIT color space:

longdraw_line_with_32_bit_depth(longstartX, longstartY, longendX, longendY,
ulongcolor, boolclipToRect, shortclipLeft,
shortclipTop, shortclipRight, shortclipBottom)

The only difference between this and the previous function is thecolor argument. Here
the color is specified as a full 32-bit quantity with 8-bit red, green, blue, and alpha
components. Thecolor argument arranges the components in the order that the driver
asked for them (in thergba_order field of thegraphics_card_info structure that it
provided in response to aB_GET_GRAPHICS_CARD_INFO request).

Otherwise, this function should work just like the one at index 3. < And like the function
at index 3, the second and third arguments are inverted in the current release; the first four
arguments are ordered:startX, endX, startY, endY. >

Developing a Driver for a Graphics Card Entry Point

The Device Kit –91

Index 5: Drawing a Rectangle with an 8-Bit Color

The function at index 5 should be implemented to fill a rectangle with a color specified by
its index:

long draw_rect_with_8_bit_depth(long left, longtop, longright, longbottom,
ucharcolorIndex)

The left, top, right, andbottom sides of the rectangle should be included in the area being
filled.

Index 6: Drawing a Rectangle with a 32-Bit Color

The function at index 6, like the one at index 5, fills a rectangle:

long draw_rect_with_32_bit_depth(long left, longtop, longright, longbottom,
ulongcolor)

Thecolor value contains the four color components—red, green, blue, and alpha—
arranged in the natural order for the device (the same order that the driver recorded in the
rgba_order field of thegraphics_card_info structure it provided to the Application
Server).

The sides of the rectangle should be included in the area being filled.

Index 7: Copying Pixel Data

The function at index 7 should copy pixel values from a source rectangle on-screen to a
destination rectangle:

long blit(longsourceX, longsourceY, longdestinationX, longdestinationY,
longwidth, longheight)

The left top corner of the source rectangle is the pixel at (sourceX, sourceY). The left top
pixel of the destination rectangle is at (destinationX, destinationY). Both rectangles are
width pixels wide andheight pixels high, and both are guaranteed to always lie entirely
on-screen. Thewidth andheight arguments will always contain positive values.

Entry Point Developing a Driver for a Graphics Card

92 – The Device Kit

Index 8: Drawing a Line Array with an 8-Bit Color

The function at index 8 should draw an array of lines in theB_COLOR_8_BIT color space. It
takes the following set of arguments:

long draw_array_with_8_bit_depth(indexed_color_line *array, longnumItems,
boolclipToRect, shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

The linearray holds a total ofnumItems. Each item is specified as anindexed_color_line
structure, which contains the following fields:

shortx1 Thex coordinate of one end of the line.

shorty1 They coordinate of one end of the line.

shortx2 Thex coordinate of the other end of the line.

shorty2 They coordinate of the other end of the line.

ucharcolor The color of the line, expressed as an index into the
color map.

The function should draw each line from (x1, y1) to (x2, y2) using thecolor specified for
that line.

If the clipToRect flag isTRUE, nothing should be drawn that falls outside the clipping
rectangle defined by the final four arguments. The sides of the rectangle are included in
the visible region. IfclipToRect is FALSE, the final four arguments should be ignored.

Each line in the array should be drawn with the minimal possible thickness, as described
under “Index 3: Drawing a Line with an 8-Bit Color” on page 90 above.

Index 9: Drawing a Line Array with a 32-Bit Color

The function at index 9 has the same syntax as the one at index 8, except for the first
argument:

long draw_array_with_32_bit_depth(rgb_color_line *array, longnumItems,
boolclipToRect, shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

Here, each line in the array is specified as anrgb_color_line structure, rather than as an
indexed_color_line. The two structures differ only in how the color is specified:

shortx1 Thex coordinate of one end of the line.

shorty1 They coordinate of one end of the line.

shortx2 Thex coordinate of the other end of the line.

shorty2 They coordinate of the other end of the line.

rgb_colorcolor The color of the line, expressed as a full 32-bit value.

Developing a Driver for a Graphics Card Entry Point

The Device Kit –93

In all other respects, this function should work like the one at index 8.

Index 10: Synchronizing Drawing Operations

The Application Server calls the function at index 10 to synchronize its activities with the
driver. It takes no arguments:

long sync(void)

This function simply returns when the driver is finished modifying the frame buffer—
when it’s finished touching video RAM.

If any of the other hook functions works asynchronously—if it returns before the drawing
it’s asked to do is complete—the synchronizing function should wait until all drawing
operations have been completed before it returns. The return value is not important; the
Application Server ignores it.

However, if all the other hook functions are synchronous—if they don’t return until the
drawing is finished—this function would simply return; it would be empty. It’s better not
to implement such a function. It’s preferable to put aNULL pointer at index 10 and save the
Application Server a function call.

Therefore, your driver should implement this function only if at least one of the other hook
functions draws asynchronously.

Index 11: Inverting Colors

The function at index 11 should invert the colors in a rectangle. It has the following
syntax:

long invert_rect(long left, longtop, longright, longbottom)

Inversion is typically defined as taking the complement of each color component. For
example:

color.red = 255 - color.red;
color.green = 255 - color.green;
color.blue = 255 - color.blue;

The inversion rectangle includes the pixel columns and rows that four arguments
designate.

Exported Functions Developing a Driver for a Graphics Card

94 – The Device Kit

Exported Functions

Graphics card drivers are not linked against the Application Server, so the Server cannot
export functions to them. They are also not linked against any library. Consequently,
they’re generally limited to calling functions that they implement themselves.

However, in the current release, a graphics card driver can be statically linked against
scalls.o, located with the libraries in/develop/libraries. < A future release will replace
this file with a private library. >

Linking againstscalls.o makes it possible for the driver to call any system function. The
future library won’t be as liberal, however, so system calls should be limited to the
following functions:

Functions defined in the Kernel Kit

create_sem()
acquire_sem()
release_sem()
delete_sem()

system_time()
snooze()

spawn_thread()
resume_thread()

Functions defined in the Support Kit

atomic_add()

Other functions

dprintf() < accessed through the name_kdprintf_() >
set_dprintf_enabled() < accessed through the name_kset_dprintf_enabled_() >

Functions from the first two groups are documented in the respective chapters on the
Kernel Kit and the Support Kit. Functions in the last group are documented in the section
on “Functions for Drivers” in this chapter on page 55.

Developing a Driver for a Graphics Card Installation

The Device Kit –95

Installation

The graphics card driver should be compiled as an “add-on image,” as described inThe
Kernel Kit chapter. This means following the directions for compiling a shared library
presented in the MetrowerksCodeWarrior manual. In summary, you’ll need to specify the
following options for the linker (asLDFLAGS in themakefile):

• Tell the linker to produce an add-on image by including the–G (or –sharedlibrary)
option.

• Turn off the default behavior—which is to link against the Be system library,
libbe.so—by specifying the–nodefaults flag.

• Export the driver’s entry point,control_graphics_card(), so that the Application
Server can call it. The most direct way to do this is to surround its definition with
explicit directives that turn exporting on and off,

#pragma export on
long control_graphics_card(ulong op, void *data)
{
 . . .
}
#pragma export off

and inform the linker with an–export pragma flag.

• Specify thescalls.o file if you want your driver to call any of the system functions
listed under “Exported Functions” on page 94 above. Don’t link the driver against
any other file.

After the driver has been compiled, it should be installed in:

/system/add-ons/app_server

This is the only place where the Application Server will look for graphics card drivers to
load.

The Server first looks for a driver for the graphics card in anapp_server directory on a
floppy disk (/fd/system/add-ons/app_server). Failing to find one, it looks next on the
boot disk (/boot/system/add-ons/app_server).

When it searches each disk for a driver, the Application Server begins by looking for one
developed specifically for the installed graphics card. If there are more than one, it’s
indeterminate which one it will choose to load. If there aren’t any, the Server looks for the
generic driver calledsupervga. This driver should be able to do a minimal job of putting
a display on-screen, but probably won’t be able to exploit the full potential of the graphics
card.

You can give your driver any name you wish. However, the name “supervga” is reserved
for the generic driver provided by Be.

Installation Developing a Driver for a Graphics Card

96 – The Device Kit

The Device Kit –97

Constants and Defined Types
for Graphics Card Drivers

This section lists the various constants and types that are defined for graphics card drivers.
Explanations for all of them can be found in the preceding section, “Developing a Driver
for a Graphics Card”.

Constants

Control Operations
<device/GraphicsCard.h>

Enumerated constant Enumerated constant

B_OPEN_GRAPHICS_CARD B_GET_INFO_FOR_CLONE
B_CLOSE_GRAPHICS_CARD B_GET_INFO_FOR_CLONE_SIZE
B_GET_GRAPHICS_CARD_INFO B_SET_CLONED_GRAPHICS_CARD
B_GET_GRAPHICS_CARD_HOOKS B_CLOSE_CLONED_GRAPHICS_CARD
B_SET_INDEXED_COLOR
B_GET_SCREEN_SPACES B_PROPOSE_FRAME_BUFFER
B_CONFIG_GRAPHICS_CARD B_SET_FRAME_BUFFER
B_GET_REFRESH_RATES B_SET_DISPLAY_AREA
B_SET_SCREEN_GAMMA B_MOVE_DISPLAY_AREA

These constants define the various control operations that the Application Server or the
Game Kit can request a driver to perform.

See also: “Main Control Operations” on page 78

Hook Count
<device/GraphicsCard.h>

Defined constant Value

B_HOOK_COUNT 48

This constant is the number of hook function pointers that a driver must provide. Most
will be NULL pointers.

See also: “Hook Functions” on page 87

Defined Types Constants and Defined Types for Graphics Card Drivers

98 – The Device Kit

Info Flags
<device/GraphicsCard.h>

Defined constant

B_CRT_CONTROL
B_GAMMA_CONTROL
B_FRAME_BUFFER_CONTROL

These flags report the driver’s ability to control the CRT display, make gamma
corrections, and permit nonstandard configurations of the frame buffer.

See also: “B_GET_GRAPHICS_CARD_INFO” on page 80

Defined Types

frame_buffer_info
<device/GraphicsCard.h>

typedef struct {
shortbits_per_pixel;
shortbytes_per_row;
shortwidth;
shortheight;
shortdisplay_width;
shortdisplay_height;
shortdisplay_x;
shortdisplay_y;

} frame_buffer_info

This structure is used to pass information to the driver on how the frame buffer should be
configured.

See also: the BWindowScreen class in the Game Kit, “Control Operations for
Manipulating the Frame Buffer” on page 85 above

Constants and Defined Types for Graphics Card Drivers Defined Types

The Device Kit –99

graphics_card_config
<device/GraphicsCard.h>

typedef struct {
ulongspace;
float refresh_rate;
ucharh_position;
ucharv_position;
ucharh_size;
ucharv_size;

} graphics_card_config

This structure is used to pass the driver a set of parameters describing how the graphics
card should be configured.

See also: “B_CONFIG_GRAPHICS_CARD” on page 82

graphics_card_hook
<device/GraphicsCard.h>

typedef void (*graphics_card_hook)(void)

This is the general type declaration for a hook function. Specific hook functions will in
fact declare various sets of arguments and all return along error code rather thanvoid.

See also: “Hook Functions” on page 87

graphics_card_info
<device/GraphicsCard.h>

typedef struct {
shortversion;
shortid;
void *frame_buffer;
charrgba_order[4];
shortflags;
shortbits_per_pixel;
shortbytes_per_row;
shortwidth;
shortheight;

} graphics_card_info

Drivers use this structure to supply information about themselves and the current
configuration of the frame buffer to the Application Server and to the BWindowScreen
class in the Game Kit.

See also: “B_GET_GRAPHICS_CARD_INFO” on page 80

Defined Types Constants and Defined Types for Graphics Card Drivers

100 – The Device Kit

graphics_card_spec
<device/GraphicsCard.h>

typedef struct {
void *screen_base;
void *io_base;
ulongvendor_id;
ulongdevice_id;
ulong_reserved1_;
ulong_reserved2_;

} graphics_card_spec

This structure informs the driver about the graphics card and how it’s mapped into the
system.

See also: “B_OPEN_GRAPHICS_CARD” on page 78

indexed_color
<device/GraphicsCard.h>

typedef struct {
long index;
rgb_colorcolor;

} indexed_color

This structure is used to set up the list of 256 colors in theB_COLOR_8_BIT color space. It
locates a particular color at a particular index in the list.

See also: “B_SET_INDEXED_COLOR” on page 79

indexed_color_line
<device/GraphicsCard.h>

typedef struct {
shortx1;
shorty1;
shortx2;
shorty2;
ucharcolor;

} indexed_color_line

This structure defines a colored line in theB_COLOR_8_BIT color space.

See also: “Index 8: Drawing a Line Array with an 8-Bit Color” on page 92

Constants and Defined Types for Graphics Card Drivers Defined Types

The Device Kit –101

refresh_rate_info
<device/GraphicsCard.h>

typedef struct {
float min;
float max;
float current;

} refresh_rate_info

Drivers use this structure to report the current refresh rate, and the maximum and
minimum possible rates.

See also: “B_GET_REFRESH_RATES” on page 81

rgb_color_line
<device/GraphicsCard.h>

typedef struct {
shortx1;
shorty1;
shortx2;
shorty2;
rgb_colorcolor;

} rgb_color_line

This structure defines a colored line in theB_RGB_32_BIT color space.

See also: “Index 9: Drawing a Line Array with a 32-Bit Color” on page 92

screen_gamma
<device/GraphicsCard.h>

typedef struct {
ucharred[256];
uchargreen[256];
ucharblue[256];

} screen_gamma

This structure defines the table used to make gamma corrections for the screen display.

See also: “B_SET_SCREEN_GAMMA” on page 82

Defined Types Constants and Defined Types for Graphics Card Drivers

102 – The Device Kit

acrobat/10_GameKit.pdf

The Game Kit –1

10 The Game Kit

Introduction . 3

BWindowScreen . 5
Overview . 5
Hook Functions . 6
Constructor and Destructor . 6
Member Functions. . 7

2 – The Game Kit

The Game Kit –3

10 The Game Kit

The Game Kit is a collection of software that’s especially useful for developing games.
Currently, the collection consists of just one class, BWindowScreen, but it will grow in
future releases. A BWindowScreen object gives an application direct access to the
screen—that is, direct access to the driver for the graphics card so it can bypass the
Application Server, customize the card for the game, call graphics functions the driver
implements, and draw directly into the frame buffer.

Although designed with games in mind, nothing in the Game Kit is restricted to game
applications. Other kinds of applications can profitably take advantage of this Kit.

4 – The Game Kit

The Game Kit –5

BWindowScreen

Derived from: public BWindow

Declared in: <game/WindowScreen.h>

Overview

A BWindowScreen object has the dual nature its name implies: It’s both a window and an
object that provides direct access to the screen, bypassing the window system. When a
BWindowScreen object becomes the active window—which it does when constructed—it
establishes a direct connection to the graphics card driver for the screen, independent of
the Application Server. This permits the application to set up a game-specific graphics
environment on the card, call driver-implemented drawing functions, and directly
manipulate the frame buffer.

The Application Server’s graphic operations are suspended until the BWindowScreen
object gives up active window status. While it’s active, normal drawing operations have
no effect; application code can move windows and call upon BView objects to draw, but
nothing is rendered on-screen. Only the BWindowScreen object can provide access to the
frame buffer.

By constructing a BWindowScreen object, an application takes over the whole screen.
The object’s frame rectangle is as large as the screen, so that the Application Server will
automatically erase every pixel when the window becomes active and refresh everything
when it ceases to be the active window. While the BWindowScreen is active, nothing
except what the application draws will be visible to the user—no dock and no other
windows. The entire screen is the application’s canvas.

A BWindowScreen object remains a window while it has control of the screen; it stays
attached to the Application Server and its message loop continues to function. It gets
messages reporting the user’s actions on the keyboard and mouse, just like any other
active window. Because it covers the whole screen, it’s notified of all mouse and keyboard
events. < Messages that report mouse events are currently unreliable; the cursor is
reported at a static location, inhibiting mouse-moved messages and making mouse-down
and mouse-up messages inaccurate. >

This class respects workspaces. A BWindowScreen object releases its grip on the screen
when the user turns to another workspace and reestablishes its control when the user
returns to the workspace and it again becomes the active window. Short of quitting the
application, changing workspaces is the only way that the user can move in and out of the
game. Because other windows and applications aren’t visible while the BWindowScreen

Hook Functions BWindowScreen

6 – The Game Kit

object is connected to the screen, the usual methods of selecting another application
(picking it from the application list or clicking in one of its windows) are not available.

Hook Functions

ScreenConnected() Can be implemented to do whatever is necessary when the
BWindowScreen object obtains direct access to the frame
buffer for the screen, and when it loses that access.

Constructor and Destructor

BWindowScreen()
BWindowScreen(const char *title, ulongspace)

Initializes the BWindowScreen object by assigning the window atitle and specifying a
space configuration for the screen. The window won’t have a visible border or a tab in
which to display the title to the user. However, others—such as the Workspaces
application—can use the title to identify the window.

The window is constructed to fill the screen; its frame rectangle contains every screen
pixel when the screen is configured according to thespace argument. That argument
describes the pixel dimensions and bits-per-pixel depth of the screen that the
BWindowScreen object should establish when it first obtains direct access to the frame
buffer. It should be one of the following constants:

B_8_BIT_640x480 B_16_BIT_640x480 B_32_BIT_640x480
B_8_BIT_800x600 B_16_BIT_800x600 B_32_BIT_800x600
B_8_BIT_1024x768 B_16_BIT_1024x768 B_32_BIT_1024x768
B_8_BIT_1152x900 B_16_BIT_1152x900 B_32_BIT_1152x900
B_8_BIT_1280x1024 B_16_BIT_1280x1024 B_32_BIT_1280x1024
B_8_BIT_1600x1200 B_16_BIT_1600x1200 B_32_BIT_1600x1200

These are the same constants that can be passed toset_screen_space(), the Interface Kit
function that preference applications call to configure the screen. < Sixteen-bit depths are
not currently supported. >

The constructor assigns the window to the active workspace (B_CURRENT_WORKSPACE)
and callsShow() to immediately place it on-screen, make it the active window, and have it
take direct charge of the workspace screen. It fails if another BWindowScreen object in
any application already has established a direct screen connection for the same workspace.

To be sure there wasn’t an error in constructing the object, call theError() function. If there
is an error, it’s likely to occur in this constructor, not the inherited BWindow constructor.

BWindowScreen Member Functions

The Game Kit –7

Since the object will probably have spawned a thread and will be running a message loop,
you’ll need to instruct it to quit. For example:

MyWindowScreen *screen =
 new MyWindowScreen("Glacier", B_8_BIT_1024x768);
if (Error() != B_NO_ERROR)
 screen->PostMessage(B_QUIT_REQUESTED);

If all goes well,Error() will return B_NO_ERROR (0).

See also: Error(), get_screen_info() in the Interface Kit

~BWindowScreen()
virtual ~BWindowScreen(void)

Closes the clone of the graphics card driver (through which the BWindowScreen object
established its connection to the screen), unloads it from the application, and cleans up
after it.

Member Functions

CanControlFrameBuffer()
bool CanControlFrameBuffer(void)

ReturnsTRUE if the graphics card driver permits applications to control the configuration
of the frame buffer, andFALSE if not. Control is exercised through four functions:

ProposeFrameBuffer()
SetFrameBuffer()
SetDisplayArea()
MoveDisplayArea()

A return ofTRUE means that all of these functions can communicate with the graphics card
driver and at least the first two of them will do something useful. A return ofFALSE means
that none of them will work.

See also: ProposeFrameBuffer(), SetDisplayArea()

CardHookAt()
inline graphics_card_hookCardHookAt(long index)

Returns a pointer to the function implemented by the graphics card driver and located at
index in its list of hook functions, orNULL if the graphics card driver doesn’t implement a
function at that index or the index is out-of-range.

Member Functions BWindowScreen

8 – The Game Kit

The hook functions are documented under “Hook Functions” on page 87 inThe Device
Kit chapter and are summarized briefly below. Currently, 12 functions are defined, from
index 0 through index 11. However, the first three, which set and manipulate the cursor,
are unavailable through the Game Kit; if you pass an index of 0, 1, or 2 toCardHookAt(),
it will return NULL.

The other hook functions are summarized by index in the chart below:

Index: What the function does: What arguments it takes:

3 Draws a line (8-bit depth) (longstartX, longstartY,
longendX, longendY,
ucharcolorIndex, boolclipToRect,
shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

4 Draws a line (32-bit depth) (longstartX, longstartY,
longendX, longendY,
ulongcolor, boolclipToRect,
shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

5 Draws a rectangle (8-bit depth) (longleft, longtop, longright, longbottom,
ucharcolorIndex)

6 Draws a rectangle (32-bit depth) (longleft, longtop, longright, longbottom,
ulongcolor)

7 Copies pixel data (blits) (longsourceX, longsourceY,
longdestinationX, longdestinationY,
longwidth, longheight)

8 Draws a line array (8-bit depth) (indexed_color_line *array, longnumItems,
boolclipToRect, shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

9 Draws a line array (32-bit depth) (rgb_color_line *array, longnumItems,
boolclipToRect, shortclipLeft, shortclipTop,
shortclipRight, shortclipBottom)

10 Waits for drawing to finish none

11 Inverts the colors in a rectangle (longleft, longtop, longright, longbottom)

You must ensure that all coordinate values passed to these functions lie somewhere in the
frame buffer; the function will not do the checking for you. (Anx coordinate value is a
left-to-right index to a pixel column in the frame buffer and ay coordinate value is a top-
to-bottom index to a pixel row.)

For example, before calling the function at index 7, which blits a rectanglewidth pixels
wide andheight pixels high from (sourceX, sourceY) to (destinationX, destinationY), you

BWindowScreen Member Functions

The Game Kit –9

should be sure that the source and destination rectangles both lie entirely within the area
defined by the frame buffer.

CardInfo()
inline graphics_card_info *CardInfo(void)

Returns a description of the current configuration of the graphics card, as kept by the
driver for the card. The returnedgraphics_card_info structure is defined in
device/GraphicsCard.h and contains the following fields:

shortversion The version of the Be architecture for graphics cards;
the current version is 2.

shortid An identifier for the driver.

void *frame_buffer A pointer to the first byte of the frame buffer.
Applications can use this pointer to draw directly to
the frame buffer.

charrgba_order[4] The characters ‘r’ (red), ‘g’ (green), ‘b’ (blue), and
‘a’ (alpha) ordered as those components are
intermeshed for each pixel in the frame buffer. This
field is valid only for screen depths of 32 bits per
pixel.

shortflags A mask formed from three flags (B_CRT_CONTROL,
B_FRAME_BUFFER_CONTROL, and
B_GAMMA_CONTROL) that describe the ability of the
graphics card driver to perform particular tasks.
B_FRAME_BUFFER_CONTROL matches the
CanControlFrameBuffer() function; the other two
flags aren’t important to the control exercised
through the BWindowScreen object.

shortbits_per_pixel The depth of the screen in bits per pixel.

long bytes_per_row The offset, in bytes, between two adjacent rows of
pixel data in the frame buffer (the number of bytes
assigned to each row).

shortwidth The width of the frame buffer in pixels (the number
of pixel columns it defines).

shortheight The height of the frame buffer measured in lines of
pixels (the number of pixel rows the frame buffer
defines).

The returned structure belongs to the BWindowScreen object and is provided for
information only; you should not modify any of its fields.

See“B_GET_GRAPHICS_CARD_INFO” on page 80 inThe Device Kit chapter for a fuller
description of thegraphics_card_info structure.

Member Functions BWindowScreen

10 – The Game Kit

ColorList() see SetColorList()

Disconnect() see Quit()

Error()
long Error(void)

Returns the error code for the last BWindowScreen operation—including constructing the
BWindowScreen object. The code will beB_NO_ERROR if the operation was successful
and some other value (currently justB_ERROR) if not. Most functions also return the error
code directly.

See also: the BWindowScreen constructor

FrameBufferInfo()
inline frame_buffer_info *FrameBufferInfo(void)

Returns a pointer to theframe_buffer_info structure that holds the application’s current
conception of the frame buffer. This may or may not capture the actual configuration of
the frame buffer. If the application has proposed a configuration (ProposeFrameBuffer())
but not yet set it (SetFrameBuffer()), the returned structure will reflect the proposal, not the
reality.

The frame_buffer_info structure is defined indevice/GraphicsCard.h and contains the
following fields:

shortbits_per_pixel The depth of the frame buffer; the number of bits
assigned to a pixel.

shortbytes_per_row The number of bytes required to store one row of
pixel data in the frame buffer.

shortwidth The width of the frame buffer in pixels (the number
of columns).

shortheight The height of the frame buffer in pixels (the number
of rows).

shortdisplay_width The width of the screen display in pixels (the number
of pixel columns shown on-screen).

shortdisplay_height The height of the screen display in pixels (the
number of pixel rows shown on-screen).

BWindowScreen Member Functions

The Game Kit –11

shortdisplay_x The horizontal position of the left top pixel shown
on-screen, where 0 is the leftmost column of pixels in
the frame buffer.

shortdisplay_y The vertical position of the left top pixel shown on-
screen, where 0 is the topmost row of pixels in the
frame buffer.

Note that the first four fields of this structure are identical to the last four of
graphics_card_info.

The returned structure belongs to the BWindowScreen object. Call functions like
ProposeFrameBuffer() to modify its fields; don’t modify them directly.

See “Control Operations for Manipulating the Frame Buffer” on page 85 inThe Device Kit
chapter for a fuller description of theframe_buffer_info structure.

See also: ProposeFrameBuffer(), SetDisplayArea(), CardInfo()

IOBase()
inline void *IOBase(void)

Returns a pointer to the base address for the input/output registers on the graphics card.
Registers are addressed by 16-bit offsets from this base address.

MoveDisplayArea() see SetDisplayArea()

ProposeFrameBuffer(), SetFrameBuffer()
long ProposeFrameBuffer(shortdepth, shortwidth,

short *height, short *bytesPerRow= NULL)

long SetFrameBuffer(shortheight)
long SetFrameBuffer(shortheight, shortdisplayWidth, shortdisplayHeight,

shortdisplayX= 0, shortdisplayY= 0)

These functions, in a two-step process, configure the frame buffer on the graphics card.
They work only if the driver for the graphics card allows custom configurations (as
reported byCanControlFrameBuffer()).

The first function proposes a possible configuration for the frame buffer and in return
receives information on how accommodating the graphics card driver will be. Based on
that information, the second function can set the dimensions and depth of the frame buffer.

ProposeFrameBuffer() proposes two parameters for the frame buffer—depth, the number
of bits assigned to each pixel, andwidth, the number of pixels in one row of data (the total
number of pixel columns). If the driver can accommodate those two parameters, this

Member Functions BWindowScreen

12 – The Game Kit

function returnsB_NO_ERROR and reports on the two other parameters that define the
configuration. In the integer referred to byheight, it writes the maximum number of pixel
rows (the maximum number of pixels in one column) that the graphics card can provide at
the proposed depth and width. If abytesPerRow argument is provided, it reports the
minimum number of bytes the driver must dedicate to one row of pixel data at the
proposed width.

If the driver can’t accommodate the proposeddepth andwidth, ProposeFrameBuffer()
returnsB_ERROR and puts no useful information in the integers thatheight and
bytesPerRow refer to.

An application can callProposeFrameBuffer() any number of times to test possible
configurations. This function doesn’t make any changes in the frame buffer (though it
does set values in the structure thatFrameBufferInfo() returns). When the application finds
a configuration that it wants to use, it can callSetFrameBuffer() to set the desiredheight of
the frame buffer—the actual number of rows—plus the most recently proposeddepth and
width. The height set should not be greater than the maximum height reported by
ProposeFrameBuffer().

By default,SetFrameBuffer() sets the display area—the part of the frame buffer that’s
mapped to the screen—to be the same size as the frame buffer. In other words, it maps the
entire frame buffer to the screen.

If you want a display area that’s smaller than the frame buffer, you must set it explicitly by
passingSetFrameBuffer() adisplayWidth anddisplayHeight in pixels. The left top corner
of the display area will be located at pixel (0, 0), the first pixel in the first row of data. If
you want to locate it somewhere else, you must pass this function differentdisplayX and
displayY values.

The display area can subsequently be moved and resized through theMoveDisplayArea()
andSetDisplayArea() functions.

To locate the display area, all these functions assume a coordinate system in which an
x coordinate value is a left-to-right index to a pixel column in the frame buffer and a
y coordinate value is a top-to-bottom index to a pixel row.

See also: SetDisplayArea()

Quit(), Disconnect()
virtual voidQuit(void)

void Disconnect(void)

Quit() overrides the BWindow version of the same function to force the BWindowScreen
object to disconnect itself from the screen, so that it doesn’t quit while in control of the
frame buffer.

BWindowScreen Member Functions

The Game Kit –13

Disconnect() similarly causes the BWindowScreen object to give up its authority over the
graphics card driver, allowing the Application Server to reassert control. It doesn’t force
the application to quit.

AlthoughQuit() disconnects the object before quitting, this may not be soon enough for
your application. For example, if you need to destroy some drawing threads before the
BWindowScreen object is itself destroyed, you should get rid of them after the screen
connection is severed. You can force the object to disconnect itself by calling
Disconnect(). For example:

void MyWindowScreen::Quit()
{
 Disconnect();
 kill_thread(drawing_thread_a);
 kill_thread(drawing_thread_b);
 BWindowScreen::Quit();
}

Before breaking the screen connection, bothQuit() andDisconnect() cause the
BWindowScreen object to receive aScreenConnected() notification with a flag ofFALSE.
Neither function returns untilScreenConnected() returns and the connection is broken.

See also: ScreenConnected()

ScreenChanged()
virtual voidScreenChanged(BRectframe, color_spacemode)

Overrides the BWindow version ofScreenChanged() so that it does nothing. This
function is called automatically when the screen configuration changes. It’s not one that
you should call (or override) in application code.

See also: BWindow::ScreenChanged()

ScreenConnected()
virtual voidScreenConnected(boolconnected)

Implemented by derived classes to take action when the application gains direct access to
the screen and when it’s about to lose that access.

This function is called with theconnected flag set toTRUE immediately after the
BWindowScreen object becomes the active window and establishes a direct connection to
the graphics card driver for the screen. At that time, the Application Server’s connection
to the screen is suspended; drawing can only be accomplished through the screen access
that the BWindowScreen object provides.

It’s called with a flag ofFALSE just before the BWindowScreen object is scheduled to lose
its control over the screen and the Application Server’s control is reasserted. The
BWindowScreen’s connection to the screen is not broken untilScreenConnected()

Member Functions BWindowScreen

14 – The Game Kit

returns. It should delay returning until the application has finished all current drawing and
no longer needs direct screen access.

Note that wheneverScreenConnected() is called, the BWindowScreen object is
guaranteed to be connected to the screen; ifconnected is TRUE, it just became connected, if
connected is FALSE, it’s still connected but will be disconnected when the function returns.

Derived classes typically use this function to regulate access to the screen. For example,
they may acquire a semaphore when theconnected flag isFALSE, so that application
threads won’t attempt direct drawing when the connection isn’t in place, and release the
semaphore for drawing threads to acquire when the flag isTRUE. For example:

void MyWindowScreen::ScreenConnected(bool connected)
{
 if (connected == FALSE)
 acquire_sem(directDrawingSemaphore);
 else
 release_sem(directDrawingSemaphore);
}

SetColorList(), ColorList()
void SetColorList(rgb_color *colors, longfirst = 0, longlast= 255)

inline rgb_color *ColorList(void)

These functions set and return the list of 256 colors that can be displayed when the frame
buffer has a depth of 8 bits per pixel (theB_COLOR_8_BIT color space).SetColorList()
passes an array of one or more colors to replacecolors currently in the list. The first color
in the array replaces the color at the specifiedfirst index in the list; the last color that’s
passed replaces the color at thelast index. ColorList() returns a pointer to the entire list of
256 colors.

SetColorList() alters the list of colors kept on the graphics card.ColorList() doesn’t return a
pointer to that list, but to a local copy. This list belongs to the BWindowScreen object; it
should be altered only by callingSetColorList().

See also: system_colors() in the Interface Kit

SetDisplayArea(), MoveDisplayArea()
long SetDisplayArea(shortwidth, shortheight, shortx = 0, shorty = 0)

long MoveDisplayArea(shortx, shorty)

These functions resize and move the display area, the portion of the frame buffer that’s
mapped to the screen. The area is defined by a rectanglewidth pixels wide andheight
pixels high located entirely within the frame buffer, as illustrated in miniature below. The
left top pixel in the rectangle is located at (x, y), wherex coordinate values are left-to-right

BWindowScreen Member Functions

The Game Kit –15

indices to a pixel column defined by the frame buffer andy coordinate values are top-to-
bottom indices to a pixel row.

For example, the frame buffer might define twice as many pixel rows as the screen
displays, so the display area can alternate between the top and bottom halves of the frame
buffer for a smooth transition between images. Or the dimensions of the display area can
be incrementally reduced to simulate a zoom effect as the size of on-screen pixels
becomes bigger.

Like ProposeFrameBuffer() andSetFrameBuffer(), these functions work only if the
graphics card driver permits application control over the frame buffer. It must also permit
a display area that’s smaller than the total area the frame buffer defines. If successful in
moving or resizing the display area, they returnB_NO_ERROR; if not, they returnB_ERROR.

See also: ProposeFrameBuffer(), CanControlFrameBuffer()

SetFrameBuffer() see ProposeFrameBuffer()

row 0
row 1
row 2
row 3

column 0
 column 1
 column 2
 column 3

display area area defined by the frame buffer

. . .

 . . .

(2, 16)

(28 × 19) (35 × 39)

Member Functions BWindowScreen

16 – The Game Kit

SetSpace()
long SetSpace(ulongspace)

Configures the screen space to one of the standard combinations of width, height, and
depth. The configuration is first set by the class constructor—permittedspace constants
are documented there—and it may be altered by theSetFrameBuffer() function in addition
to this one.

If the requested configuration is refused by the graphics card driver, this function returns
B_ERROR. If all goes well, it returnsB_NO_ERROR.

See also: the BWindowScreen constructor,ProposeFrameBuffer()

WindowActivated()
virtual voidWindowActivated(boolactive)

Overrides the BWindow version ofWindowActivated() to connect the BWindowScreen
object to the screen (give it control over the graphics card driver) when theactive flag is
TRUE.

This function doesn’t disconnect the BWindowScreen when the flag isFALSE, because
there’s no way for the window to cease being the active window without the connection
already having been lost.

Don’t reimplement this function in your application, even if you call the inherited version;
rely instead onScreenConnected() for accurate notifications of when the
BWindowScreen gains and loses control over the screen.

See also: BWindow::WindowActivated(), ScreenConnected()

WorkspaceActivated()
virtual voidWorkspaceActivated(longworkspace, boolactive)

Overrides the BWindow version ofWorkspaceActivated() to connect the
BWindowScreen object to the screen when theactive flag isTRUE and to disconnect it
when the flag isFALSE. User’s typically activate the game by activating the workspace in
which it’s running, and deactivate it by moving to another workspace.

Don’t override this function in your application; implementScreenConnected() instead.

See also: BWindow::WorkspaceActivated(), ScreenConnected()

acrobat/11_NetworkKit.pdf

The Network Kit –1

11 The Network Kit

Network Names, Addresses, and Services. 5
Overview . 5

Terms and Tools. . 5
Functions . 6

Thegethostbyname() Function 7
Thegethostbyaddr() Function 7
Thehostent Structure. 7
h_errno and theherror() Function 8

Network Sockets . .13
Overview .13
Thesocket() Function . .13

Thesocket() Arguments 14
Sorts of Sockets. 15

Other Functions .16
Thebind() Arguments 17
listen() Closer . .22
accept() Examined. 22
The Arguments25

The Mail Daemon .29
Overview .29

The Mail Daemon and the Mail Server29
Sending and Retrieving Mail 30
Other Mail Daemon Features30

Functions .31

Mail Messages (BMailMessage) 37
Overview .37
 Creating a Mail Reader . .38

Asking the Daemon to Get New Mail 38
Getting Messages from the Database38

The Example Refined—E-Mail Status39
Let the Browser do the Work40
Creating BMailMessage Objects41

Displaying the Contents of a Message 42

2 – The Network Kit

The E-Mail Table .43
Constructor and Destructor .44
Member Functions. .45

The Network Kit –3

11 The Network Kit

The Network Kit is divided into two domains:

• The Kit provides a collection of global C functions that let you communicate with
other computers through the TCP or UDP protocols. With a few exceptions, the
names and intents of the functions adhere to the precedent set by the BSD
network/socket implementation. Note, however, that some BSD-defined functions
are not yet implemented.

• The Kit also provides C functions and a class (BMailMessage) that let you talk to
the mail daemon, and send and receive mail messages. With the functions and the
class, you should be able to write a fully-featured mail-reading and -writing
application.

The network and socket documentation can be found in the sections “Network Names,
Addresses, and Services” on page 5, and “Network Sockets” on page 13. In addition, you
can find some further socket examples and tips in the “Be Engineering Insights” column of
the Be Newsletter, issues 19 and 30.

Functions that access the mail daemon, the process that makes the mail system run, are
documented in “The Mail Daemon” on page 29. The BMailMessage class is documented
in “Mail Messages (BMailMessage)” on page 37.

4 – The Network Kit

The Network Kit –5

Network Names, Addresses, and
Services

Declared in: <net/netdb.h>
<net/socket.h>

Overview

The functions described below let you look up the names, addresses, and other
information about the computers and services that the local computer knows about, and let
you retrieve information about the current user’s account. Also defined here are functions
that performInternet Protocol (IP) address format conversion.

You use the functions defined here to find the information you need so you can form a
connection to some other machine. Connecting to other machines is described in
“Network Sockets” on page 13.

Terms and Tools

Throughout the following function descriptions, anIP address is the familiar four-byte,
dot-separated numeric identifier. For example,

192.0.0.1

The bytes in a multi-byte address are always given innetwork byte order (big-endian).
The current BeBox is also big-endian, so you don’t have to convert IP address values—but
for portability and forward-compatibility, you may want to. See the group of functions
with the obsessively shortened names (ntohs(), htohl(), etc.) for more information on such
transformations.

An IP name is the three-element “machine.domain.extension” case-insensitive text name:

decca.be.com

The two most important functions described below,gethostbyname() and
gethostbyaddr(), retrieve information about computers (“hosts”) that can be reached
through the network. Host information is typically (and primarily) gotten from the
Domain Name Server(DNS), a service that’s usually provided by a server computer that’s
responsible for tasks such as mail distribution and direct communication with theInternet
Provider Service(IPS).

Functions Network Names, Addresses, and Services

6 – The Network Kit

You can also provide host information by adding to your computer’s /boot/system/hosts
file. This is a text file that contains the IP addresses and names of the hosts that you want
your computer to know about. Each entry in the file lists, in order on a single line, a host’s
IP address, IP name, and other names (aliases) by which it’s also known. For example:

Example /boot/system/hosts entries
192.0.0.1 phaedo.racine.com fido phydough
205.123.5.12 playdo.mess.com plywood funfactory

The amount of whitespace separating the elements is arbitrary. The only killing point is
that there mustn’t be any leading whitespace before the IP address.

If you’re connected to DNS, then you shouldn’t need thehosts file. If you’re not
connected to a network at all, the only way to get information about other machines is
through thehosts file, but it won’t do you much good—you won’t be able to use the
information to connect to other machines. The archetypal situation in which thehosts file
becomes useful is if your BeBox is connected to some other machine (we’ll call it Brand
X), and the Brand X machine is supposed to be connected to a DNS machine, but this
latter connection is down (or the DNS machine isn’t running). If you have an entry in
your BeBoxhosts file that identifies the Brand X machine, you’ll still be able to look up
the machine’s address and connect to it, despite the absence of DNS.

Functions

gethostbyname(), gethostbyaddr(), herror()
struct hostent *gethostbyname(const char *name)
struct hostent *gethostbyaddr(const char *address, int length, int type)
void herror(const char *string)

The twogethostby...() functions retrieve information about a particular host machine,
stuff the information into a global “host entry” structure, and then return a pointer to that
structure. To get this information, the functions talks to the Domain Name Server. If DNS
doesn’t respond or doesn’t know the desired host, the functions then look for an entry in
the file/boot/system/hosts. See “Terms and Tools” on page 5 for more information on
DNS and thehosts file.

herror() generates a human-readable message that describes the most recentgethostby...()
error, and prints it to standard error.

Note: Becausegethostbyname() andgethostbyaddr() use a global structure to return
information, the functions arenot thread safe.

Network Names, Addresses, and Services Functions

The Network Kit –7

The gethostbyname() Function

gethostbyname()’s name argument is aNULL-terminated, case-insensitive host name that
must be no longer thanMAXHOSTNAMELEN (64) characters (not counting theNULL). The
name can be:

• An entire “machine.domain.extension” IP name—“mybox.me.com”, for example.

• Just the machine name portion—“mybox” (DNS only). In this case, the domain and
extension of the local machine are automatically appended. (If you’re looking up an
IP name in thehosts file, the domain and extensionaren’t appended for you.)

• A host name alias. Aliases are alternate names by which a host is known. Your
DNS should provide a means for declaring aliases; you can also declare them in
yourhosts file.

The gethostbyaddr() Function

gethostbyaddr()’s address argument is a pointer to a complete IP address given in its
natural format (but cast to achar *; note that the argument’s type declarationdoesn’t mean
that the function wants the address converted to a string).length is the length ofaddress
in bytes;type is a constant that gives the format of the address.

For IP format, the first argument is a four-byte integer,length is always 4, and type is
AF_INET (“AddressFormat:InterNET”). The following gets thehostent for a hard-coded
address:

/* This is the hex equivalent of 192.0.0.1
ulong addr = 0xc0000001;
struct hostent *theHost;

theHost = gethostbyaddr((char *)&addr, 4, AF_INET);

If you have an address stored as a string, you can use theinet_addr() function to convert it
to an integer:

ulong addr = inet_addr("192.0.0.1");
struct hostent *theHost;

theHost = gethostbyaddr((char *)&addr, 4, AF_INET);

The hostent Structure

If a gethostby...() function fails, it returnsNULL; otherwise, it returns a pointer to a global
hostent structure. Thehostent structure (which isn’ttypedef’d) looks like this:

Functions Network Names, Addresses, and Services

8 – The Network Kit

struct hostent {
char *h_name;
char **h_aliases;
int h_addrtype;
int h_length;
char **h_addr_list;

};

The fields are:

• h_name is the IP name of the host (or the “official” name given in thehosts file).

• h_aliases is aNULL-terminated array of other names by which the host is known.
These names aren’t necessarily in IP name format; typically, they’re single-word
names.

• h_addrtype identifies the format of the addresses listed inh_addr_list. Currently,
the type is alwaysAF_INET.

• h_length is the length, in bytes, of the host’s address. InAF_INET format, the address
is four bytes long

• h_addr_list is aNULL-terminated array of pointers to the addresses by which the host
is known. Host addresses are given in network byte order.

As a convenience, the globalh_addr constant is a fake field that points to the first item in
theh_addr_list field. Keep in mind thath_addr must be treated as a structure field—it
must point off ahostent structure. Also, make sure you dereference theh_addr “field”
properly. For example:

ulong ip_address;
struct hostent *theHost;

theHost = gethostbyname("fido");
ip_address = *(ulong *)theHost->h_addr;

As a demonstration of theh_addr definition, the final line is the same as

ip_address = *(ulong *)theHost->h_addr_list[0];

Keep in mind that thehostent structure that’s pointed to by thegethostby...() functions is
global to your application’s address space. If you want to cache the structure, you should
copy it as soon as it’s returned to you.

h_errno and the herror() Function

The host look-up functions use a global error variable (an integer), calledh_errno, to
register errors. You can look at theh_errno value directly in your code after a host
function fails (the potentialh_errno values are listed below). Alternatively, you can use
theherror() function which prints, to standard error, its argument followed by a system-
generated string that describes the current state ofh_errno.

Network Names, Addresses, and Services Functions

The Network Kit –9

The values thath_errno can take, and the correspondingherror() strings, are:

Value Meaning

HOST_NOT_FOUND “unknown host name”
TRY_AGAIN “host name server busy”
NO_RECOVERY “unrecoverable system error”
NO_DATA “no address data is available for this host name”
anything else “unknown error”

Note that whileh_errno is set when something goes wrong, it isn’t cleared if all is well.
For example, ifgethostbyname() can’t find the named host,h_errno is set to
HOST_NOT_FOUND and the function returnsNULL. If, in an immediately subsequent call,
the function succeeds, a pointer to a validhostent is returned, buth_errno will still report
HOST_NOT_FOUND.

The moral of this tale is that you shouldonly checkh_errno (or callherror()) if the network
function call has failed, or clear it yourself before eachgethostby...() call. Or both:

struct hostent *host_ent;

h_errno = 0;
if (!(host_ent = gethostbyname("a.b.c"))

herror("Error");

Furthermore,h_errno might be legitimately set to a new error code even if the
gethostby...() function succeeds. For example, if DNS can’t be reached but the desired
host is found in thehosts file, h_errno will be set toTRY_AGAIN, yet the returnedhostent
will be legitimate (it won’t beNULL).

Be aware thatTRY_AGAIN is used as a blanket “DNS doesn’t know” state,regardless of
the reason why. In other words,h_errno is set toTRY_AGAIN if DNS is actually down, if
your machine isn’t connected to the network, or if DNS simply doesn’t know the
requested host. You can use this fact to tell whether a (successful) look-up was performed
through DNS or thehosts file:

struct hostent *host_ent;

h_errno = 0;
if (!(host_ent = gethostbyname("a.b.c"))

herror("Error");
else

if (h_errno == TRY_AGAIN)
/* The hosts file was used. */

else
/* DNS was used. */

Keep in mind thath_errno is global; be careful if you’re using it in a multi-threaded
program.

Functions Network Names, Addresses, and Services

10 – The Network Kit

gethostname(), getusername(), getpassword()
int gethostname(char *name, unsigned intlength)
int getusername(char *name, unsigned intlength)
int getpassword(char *password, unsigned intlength)

These functions retrieve, and copy into their first arguments, the name of the local
computer, the name of the current user, and the current user’s encoded password,
respectively. In all three case,length gives the maximum number of characters that the
functions should copy. If the length of the desired element is less thanlength, the copied
string will beNULL-terminated.

The functions return the number of characters that were actually copied (not counting the
NULL terminator). If there’s an error—and such should be rare—thegethostname() and
getusername() functions return 0 and point their respective name arguments toNULL.
getpassword(), sensing an error, copies “*” into the password argument and returns -1
(thus you can tell the difference between aNULL password—which would legitimately
return 0—and an error).

All three bits of information (host name, user name, and password) are taken from the
settings that are declared through theNetwork preferences application.

A typical use ofgethostname() is to follow the call withgethostbyname() in order to
retrieve the address of the local host, as shown below:

/* To fill a need, we invent the gethostaddr() function. */
long gethostaddr(void)
{

struct hostent *host_ent;
char host_name[MAXHOSTNAMELEN];

if (gethostname(host_name, MAXHOSTNAMELEN) == 0)
return -1;

if ((host_ent = gethostbyname(host_name)) == NULL)
return -1;

return *(long *)host_ent.h_addr;
}

Keep in mind that since host name information is taken from Network preferences, there’s
no guarantee that the name that’s returned bygethostname() will match an entry that
DNS or thehosts file knows about.

getservbyname()
struct servent *getservbyname(const char *name, const char *protocol)

You pass in the name of a service (such as “ftp”) that runs under a particular protocol
(such as “tcp”), andgetservbyname() returns a pointer to aservent structure that
describes the service.

Network Names, Addresses, and Services Functions

The Network Kit –11

Theservent structure is:

struct servent {
char *s_name;
char **s_aliases;
int s_port;
char *s_proto;

};

• s_name is the name of the service.

• s_aliases is aNULL-terminated array of other names by which the services is known.

• s_port is the port number on which the service runs (given in network byte order)

• s_proto names the protocol (“tcp”, “udp”, etc.) that supports the service.

Currently, the function recognizes only two services: “ftp” and “telnet”. Both run under
the “tcp” protocol; thus, the only valid calls to getservbyname() are:

getservbyname("ftp", "tcp");

and

getservbyname("telnet", "tcp");

Such calls point to (separate) pre-definedservent structures that look like this:

field ftp structure telnet structure

s_name “ftp” “telnet”
s_aliases NULL NULL
s_port 21 23
s_proto “tcp” “tcp”

If you ask for a service other than these two, the function returnsNULL. Although the two
servent structures are separate entities, they are both global to your application. In theory,
this means thegetservbyname() function isn’t thread-safe. However, since the structures
are hard-coded and separate, there’s little danger in using them unprotected in a multi-
threaded program.

inet_addr(), inet_ntoa()
unsigned longinet_addr(const char *addr)
char *inet_ntoa(struct in_addraddr)

These functions convert addresses from ASCII to IP format and vice versa. Neither of
them consults the DNS or the hosts file to perform the conversion—in other words, they
perform the conversions without regard for an address’ correspondence to an actual
machine.

Functions Network Names, Addresses, and Services

12 – The Network Kit

inet_addr() converts from ASCII to IP:

ulong addr = inet_addr("192.0.0.1");

The result of this call (addr) would be appropriate as the initial argument to
gethostbyaddr() (for example). The returned address is in network byte order.

inet_ntoa() converts the other way: It takes an IP address and converts it into an ASCII
string. Note that the address that you pass in must first be placed in thes_addr field of the
argumentin_addr structure (s_addr is the structure’s only field). For example:

in_addr addr;
char addr_buf[16];

addr.s_addr = 0xc0000001;
strcpy(addr_buf, inet_ntoa(addr));

Here,addr_buf will contain the (NULL-terminated) string “192.0.0.1”.inet_ntoa() isn’t
thread-safe; if you want to cache the string that it returns you must copy it, as shown in the
example. Given the IP format, the string thatinet_ntoa() returns is guaranteed to be no
more than 16 characters long (four 3-character address components, three dots, and a
NULL).

ntohs(), ntohl(), htons(), htonl()
shortntohs(shortval)
long ntohl(longval)
shorthtons(shortval)
long htonl(longval)

These macros convert values between host and network byte order:

Macro Meaning

ntohs() network short to host short
ntohl() network long to host long
htons() host short to network short
htonl() host long to network long

Network byte order is big-endian; the host byte order is machine-dependent. The current
BeBox is big-endian, so these macros are, essentially, no-ops: They return their respective
arguments without conversion. To be scrupulous, however, you should convert all multi-
byte values that you write to or get from the Internet. For example, a truly “safe” call to
gethostbyaddr() (for example) would look like this:

ulong addr = htonl(inet_addr("192.0.0.1");
struct hostent *theHost;

theHost = gethostbyaddr((char *)&addr, 4, AF_INET);

The Network Kit –13

Network Sockets

Declared in: <net/socket.h>

Overview

Sockets are entry ways onto a network. To transmit data to another machine, you create a
socket, tell it how to find the other computer, and then tell it to send. To receive data, you
do the opposite: You create a socket, tell it who to listen to (in some cases), and then wait
for data to come pouring in.

Socket concepts are mixed in with regular function descriptions; thesocket() function,
which is where any socket user must start, is described first. The description gives a
general overview of the different types of sockets, how you use them, and where to go to
next. The other socket functions are then listed in a separate section, in the expected
alphabetical order.

The socket implementation (and philosophy) follows the precedent established by
4.2BSD. In particular, the API presented here bends many of the Be naming and calling
conventions in order to make porting existing programs easier.

The socket() Function

socket(), closesocket()
int socket(int family, int type, int protocol)

int closesocket(int socket)

Thesocket() function returns a token (a non-negative integer) that represents the local end
of a connection to another machine. Freshly returned, the token is abstract and unusable;
to put the token to use, you have to pass it as an argument to other functions—such as
bind() andconnect()—that know how to establish a connection (however temporary)
over the network. (The function’s arguments are examined in a separate section, below.)

A successfulsocket() call returns a non-negative integer—keep in mind that 0 is a valid
socket token. Also keep in mind that socket tokens arenot file descriptors (this violates
the BSD tradition). Upon failure,socket() returns -1 and sets the globalerrno variable to
one of these values:

The socket() Function Network Sockets

14 – The Network Kit

Value Meaning

EAFNOSUPPORT format was other thanAF_INET.
EPROTOTYPE type andprotocol mismatch.
EPROTONOSUPPORT Unrecognizedtype or protocol value.

closesocket() closes a socket’s connection (if it’s the type of socket that can hold a
connection) and frees the resources that have been assigned to the socket. When you’re
done with the sockets that you’ve created, you should pass each socket token to
closesocket()—no socket, no matter how abstract or how you use it, is exempt from the
need to be closed. In regard to this universal need, you should be aware that this extends
to sockets that are created through theaccept() function (which we’ll get to later).

closesocket() returns less-than-zero if its argument is invalid.

The socket() Arguments

socket()’s three arguments, all of which take predefined constants as values, describe the
type of communication the socket can handle:

• family takes a constant the describes the network address format that the socket
understands. Currently, it must beAF_INET (the Internet address format).

• Thetype constant must be eitherSOCK_STREAM or SOCK_DGRAM. The constant
describes (roughly) the “persistence” of the connection that can be formed through
this socket. TheSOCK_STREAM constant means the impending connection (which is
formed through aconnect() or bind() call) will remain open until told to close.
SOCK_DGRAM describes a “datagram” socket; the connection through a datagram
socket is open while data is being sent (typically throughsendto()) or received
(similarly, recvfrom()). It’s closed at all other times (note, however, that you still
have to callclosesocket() on a datagram socket when you’re done with it).

• protocol describes the “messaging” protocol, a description that’s closely related to
the socket type. Although there are threeprotocol constants (IPPROTO_TCP,
IPPROTO_UDP, andIPPROTO_ICMP), values that you would actually use are either 0
or, less commonly,IPPROTO_ICMP. More specifically, if you set thetype to be
SOCK_STREAM, then aprotocol of 0 automatically sets the messaging protocol to
IPPROTO_TCP—this is the “natural” messaging protocol for a stream socket.
Similarly, IPPROTO_UDP is the natural protocol for theSOCK_DGRAM type. Note
that it’s an error to ask for a “udp stream” or a “tcp datagram”—in other words, you
can’t specifySOCK_STREAM with IPPROTO_UDP, or SOCK_DGRAM with
IPPROTO_TCP.

As implied by the preceding description, the most typical socket calls are:

/* Create a stream TCP socket. */
long tcp_socket = socket(AF_INET, SOCK_STREAM, 0);

/* Create a datagram UDP socket. */
long udp_socket = socket(AF_INET, SOCK_DGRAM, 0);

Network Sockets The socket() Function

The Network Kit –15

ICMP messages are, traditionally, sent through “raw” sockets. The Network Kit doesn’t
currently support such sockets, so you should use datagram sockets instead:

/* Create a datagram icmp socket. */
long icmp_socket = socket(AF_INET, SOCK_DGRAM, IPPROTO_ICMP);

Sorts of Sockets

There are only two socket type constants:SOCK_STREAM andSOCK_DGRAM. However, if
we look at the way sockets are used, we see that there are really five different categories of
sockets, as illustrated below.

The labelled ovals represent individual computers that are attached to the network. The
solid circles represent individual sockets. The numbers near the sockets are keys to the
socket categories, which are examined in the following:

1. The stream listener socket. A stream listener socket provides access to a service that’s
running on the “listener” machine (you might want to think of the machine as being
a “server.”) The listener socket waits for client machines to “call in” and ask to be
served. In order to listen for clients, the listener must callbind(), which “binds” the
socket to an IP address and machine-specific port, and thenlisten(). Thus primed,
the socket waits for a client message to show up by sitting in anaccept() call.

2. The stream client socket. A stream client socket asks for service from a server machine
by attempting to connect to the server’s listener socket. It does this through the
connect() function. A stream client can be bound (you can call bind() on it), but it’s
not mandatory.

3. The “accept” socket. When a stream listener hears a client in an accept() call, the
function call creates yet another socket called the “accept” socket. Accept sockets
are valid sockets, just like those you create throughsocket(). In particular, you have
to remember to close accept sockets (throughclosesocket()) just as you would the
sockets you explicitly create. Note that you can’t bind an accept socket—the socket
is bound automatically by the system.

listener

Streams (TCP)
Datagrams (UDP)

client

senderreceiver

client client

“accept”
sockets

1

2 2 2

3
33

54

Other Functions Network Sockets

16 – The Network Kit

4. The datagram receiver socket. A datagram receiver socket is sort of like a stream
listener: It callsbind() and waits for “senders” to send messages to it. Unlike the
stream listener, the datagram receiverdoesn’t have to calllisten() or accept().
Furthermore, when a datagram sender sends a message to the receiver, there’s no
ancillary socket created to handle the message (there’s no UDP analog to the TCP
accept socket).

5. The datagram sender socket. A datagram sender is the simplest type of socket—all it
has to do is identify a datagram receiver and send messages to it, through the
sendto() function. Binding a datagram sender socket is optional.

Returning to the illustration, notice that the paths connecting the stream socket clients to
the stream listener (through the accept sockets) are “double arrow-headed.” This indicates
that TCP communication is two-way: Once the link between a client and the listener has
been established (throughbind()/listen()/accept() on the listener side, andconnect() on
the client side), the two machines can talk to each other through respective and
complementary send() andrecv() calls.

Communication along a UDP path, on the other hand, is one-way, as indicated by the
direction of the arrow. The datagram sender can send messages (through sendto()), and
the datagram receiver can receive them (throughrecvfrom()), but the receiver can’t send
message back to the sender. However, you can simulate a two-way UDP conversation by
binding both sockets. This doesn’t change the definition of the UDP path, or the
capabilities of the two types of datagram sockets, it simply means that a bound datagram
socket can act as a receiver (it can callrecvfrom()) or as a sender (it can callsendto()).

Note: To be complete, it should be mentioned that datagram sockets can also invoke
connect() and then pass messages throughsend() andrecv(). The datagram use of these
functions is a convenience; its advantages are explained in the description of thesendto()
function.

Other Functions

bind()
int bind(int socket, struct sockaddr *interface, int size)

Thebind() function creates an association between a socket and an “interface,” where an
interface is a combination of an IP address and a port number. Binding is, primarily, an
in-coming message primer: When a message sender (whether it’s a stream client or a
datagram sender) sends a message, it tags the message with an IP address and a port
number. The receiving machine—the machine with the tagged IP address—delivers the
message to the socket that’s bound to the tagged port.

The necessity of the bind operation, therefore, depends on the type of socket; referring to
the five categories of sockets enumerated in the socket() function description (and

Network Sockets Other Functions

The Network Kit –17

illustrated in the charming picture found there), the “do I need to bind?” question is
answered thus:

1. Stream listener socketsmust be bound. Furthermore, after binding a listener socket,
you must then call listen() and, when a client calls,attach().

2. Stream client socketscan be bound, but they don’t have to be. If you’re going to bind
a client socket, you should do sobefore you callconnect(). The advantages of
binding a stream client escape me at the moment. In any case, the client doesn’t
have to bind to the same port number as the listener—the listener’s binding and the
client’s binding are utterly separate entities (let alone that they are on different
machines). However, the client doesconnect to the interface that the listener is
bound to.

3. Stream attach socketsmust notbe bound.

4. Datagram receiver socketsmust be bound.

5. Datagram sender sockets don’thave to be bound...but if you’re going to turn around
and use the socket as a receiver, then you’ll have to bind it.

Once you’ve bound a socket, you can’t unbind it. If you no longer want the socket to be
bound to its interface, the only thing you can do is close the socket (closesocket()) and
start all over again.

Also, a particular interface can be bound to by only one socket at a time. Furthermore, in
the current Be implementation of sockets, a single socket can only bind to one interface at
a time. This differs with the BSD socket implementation which sets the expectation for a
socket to be able to bind to more than one interface. Consider it a bug that will be fixed in
a subsequent release. If you need to bind to more than one interface, you’ll need, instead,
to create more than one socket and bind each one separately. An example of this is given
later in this function description.

The bind() Arguments

bind()’s first argument is the socket that you’re attempting to bind. This is, typically, a
socket of typeSOCK_STREAM. The address/port combination (or “interface”) to which
you’re binding the socket is passed through theinterface argument. This is typed as a
sockaddr structure, but, in reality, you have to create and pass asockaddr_in structure
cast as asockaddr. Thesockaddr_in structure is defined as:

struct sockaddr_in {
unsigned short sin_family;
unsigned short sin_port;
struct in_addr sin_addr;
char sin_zero[4];

};

• sin_family is the same as the address format constant that used to create the socket
(the first argument tosocket()). Currently, it’s alwaysAF_INET.

Other Functions Network Sockets

18 – The Network Kit

• sin_port is the port number that the socket will bind to, given in network byte order.
Valid port numbers are between 1 and 65535; numbers up to 1024 are reserved for
services such asftp andtelnet. If you’re not implementing a standard service, you
should choose a port number above 1024. The actual value of the port number is
meaningless, but keep in mind that the port number must be unique for a particular
address; only one socket can be bound to a particular address/port combination.

Note: Currently, there’s no system-defined mechanism for allowing a client/sender
machine to ask a listener/receiver machine for its port numbers. Therefore, when
you create a networked application, you either have to hard-code the port numbers
or, better yet, provide default port numbers that the user (or a system administrator)
can easily change.

• sin_addr is anin_addr structure that stores, in itss_addr field, the IP address of the
socket’s machine. As always, the address is in network byte order. You can use an
address of 0 to tell the binding mechanism to find an address for you. By
convention, binding to address 0 (which is conveniently symbolized by the
INADDR_ANY address) means that you want to bind toevery address by which your
computer is known, including the “loopback” (address 127.0.0.1, or the constant
INADDR_LOOPBACK).

On the BeBox, currently, this global-binding convention isn’t implemented; instead,
when you bind toINADDR_ANY, thebind() function binds to thefirst available
interface (where “availability” means the address/port combination is currently
unbound). Internet interfaces are considered before the loopback interface. If you
want to bind to all interfaces, you have to create a separate socket for each. An
example of this is given later.

• sin_zero is padding. To be safe, you should fill it with zeros.

Thesize argument is the size, in bytes, of the second argument.

If the bind() call is successful, theinterface argument is set to contain the actual address
that was used. If the socket can’t be bound, the function returns less-than-zero, and sets
the globalerrno to EABDF if thesocket argument is invalid; for all other errors,errno is set
to -1.

The following example shows an unexceptional use of thebind() function. The example
uses the fictitiousgethostaddr() function that was defined in the description of the
gethostname() function in “Network Names, Addresses, and Services”.

Network Sockets Other Functions

The Network Kit –19

struct sockaddr_in sa;
int sock;
long host_addr;

/* Create the socket. */
if ((sock = socket(AF_INET, SOCK_STREAM, 0)) < 0)

/* error */

/* Set the address format for the imminent bind. */
sa.sin_family = AF_INET;

/* We'll choose an arbitrary port number. */
sa.sin_port = htonl(2125);

/* Get the address of the local machine. If the address can't
 * be found (the function looks it up based on the host name),
 * then we use address INADDR_ANY.
 */
if ((host_addr = (ulong)gethostaddr()) == -1)

host_addr = INADDR_ANY;
sa.sin_addr.s_addr = host_addr;

/* Clear sin_zero. */
memset(sa.sin_zero, 0, sizeof(sa.sin_zero));

/* Bind the socket. */
if (bind(sock, (struct sockaddr *)&sa, sizeof(sa)) < 0)

/* error */

As mentioned earlier, the bind-to-all-interfaces convention (by asking to bind to address 0)
isn’t currently implemented. Thus, if thegethostaddr() call fails in the example, the
socket will be bound to the first address by which the local computer is known.

But let’s say that you really do want to bind to all interfaces. To do this, you have to create
separate sockets for each interface, then callbind() on each one. In the example below, we
create a series of sockets, and then bind each socket to an interface that specifies address 0.
In doing this, we depend on the “firstavailable interface” rule to find the next interface for
us. Keep in mind that a successfulbind() re-writes the contents of thesockaddr argument
(most importantly, it resets the 0 address component). Thus, we have to re-initialize the
structure each time through the loop:

/* Declare an array of sockets. we’ll create as many as ten. /
#define MAXSOCKETS
int socks[MAXSOCKETS];
int sockN;
int bind_res;

struct sockaddr_in sock_addr;

for (sockN = 0; sockN < MAXSOCKETS; sockN++)
{

(socks[sockN] = socket(AF_INET, SOCK_STREAM, 0));
if (socks[sktr] < 0) {

perror("socket");

Other Functions Network Sockets

20 – The Network Kit

goto sock_error;
}

/* Initialize the structure. */
sa.sin_family =AF_INET;
sa.sin_port = htonl(2125);
sa.sin_addr.s_addr = 0;
memset(sa.sin_zero,0,sizeof(sa.sin_zero));

bind_res = bind(socks[sockN],
(struct sockaddr *)&sa,
sizeof(sa));

/* A bind error means we've run out of addresses. */
if (bind_res < 0) {

closesocket(socks[sockN--]);
break;

}
}

/* Use the bound socket (listen, accept, recv/send). */
...

sock_error:
for (;sockN >=0 sockN--)

closesocket(socks[sockN]);

To ask a socket about the address and port to which it is bound you use the
getsockname() function, described elsewhere.

connect()
int connect(int socket, struct sockaddr *remote_interface, int remote_size)

The meaning of theconnect() function depends on the type of socket that’s passed as the
first argument:

• If it’s a stream client, thenconnect() attempts to form a connection to the socket
that’s specified byremote_interface. The remote socket must be a bound stream
listener. A client socket can only be connected to one listener at a time. Note that
you can’t callconnect() on a stream listener.

• If it’s a datagram socket (either a sender or a receiver),connect() simply caches the
remote_interface information in anticipation of subsequentsend() andrecv() calls.
By usingconnect(), a datagram avoids the fuss of filling in the remote information
that’s needed by the “normal” datagram message functions,sendto() and
recvfrom(). Note that a datagram may only callsend() andrecv() if it has first
calledconnect().

Theremote_interface argument is a pointer to asockaddr_in structure cast as asockaddr
pointer. Theremote_size value gives the size ofremote_interface. See thebind() function
for a description of thesockaddr_in structure.

Network Sockets Other Functions

The Network Kit –21

Currently, you can’t disconnect a connected socket. If you want to connect to a different
listener, or re-set a datagram’s interface information, you have to close the socket and start
over.

When you attempt toconnect() a stream client, the listener must respond with an
accept() call. Having gone through this dance, the two sockets can then pass messages to
each other through complementarysend() andrecv() calls. If the listener doesn’t respond
immediately to a client’s attempt to connect, the client’sconnect() call will block. If the
listener doesn’t respond within (about) a minute, the connection will time out. If the
listener’s acceptance queue is full, the client will be refused andconnect() will return
immediately.

If connect() fails, it returns less-than-zero, and setserrno to a descriptive constant:

errno Value Meaning

EISCONN The socket is already connected.
ECONNREFUSED The listener rejected the connection.
ETIMEDOUT The connection attempt timed out.
ENETUNREACH The client can’t get to the network.
EBADF Thesocket argument is invalid.
-1 All other errors.

getsockname()
int getsockname(int socket, struct sockaddr *interface, int size)

getsockname() returns, by reference ininterface, asockaddr_in structure that contains
the interface information for the bound socket given bysocket. The*size argument gives
the size of the interface structure;*size is reset, on the way out, to the size of the interface
argument as it’s passed back. Note that thesockaddr_in pointer that you pass as the
second argument must be cast as a pointer to asockaddr structure:

struct sockaddr_in interface;
int size = sizeof(interface);

/* We'll assume "sock" is a valid socket token. */
if (getsockname(sock, (struct sockaddr*)&interface, &size) < 0)

/* error */

If getsockname() fails, the function returns less-than-zero and setserrno to one of the
following constants:

errno Value Meaning

EINVAL The *size value (going in) wasn’t big enough.
EBADF Thesocket argument is invalid.
-1 All other errors.

Other Functions Network Sockets

22 – The Network Kit

listen(), accept()
int listen(int socket, int acceptance_count);

int accept(int socket, struct sockaddr *client_interface, int *client_size)

After you’ve bound a stream listener socket to an interface (throughbind()), you then tell
the socket to start “listening” for clients that are trying to connect. You then pass the
socket toaccept(); the function blocks until a client connects to the listener (the client
does this by calling connect, passing a description of the interface to which the listener is
bound).

Whenaccept() returns, the value that it returns directly is a new socket token; this socket
token represents an “accept” socket that was created as a proxy (on the local machine) for
the client. To receive a message from the client, or to send a message to the client, the
listener must pass the accept socket to the respective stream messaging functions,recv()
andsend().

A listener only needs to invokelisten() once; however, it can accept more than one client
at a time. Often, a listener will spawn an “accept” thread that loops over theaccept() call.

Note that only stream listeners need to invokelisten() andaccept(). None of the other
socket types (enumerated in thesocket() description) need to call these functions.

listen() Closer

int listen(int socket, int acceptance_count);

listen() takes two arguments: The first is the socket that you want to have start listening.
The second is the length of the listener’s “acceptance count.” This is the number of clients
that the listener is willing to accept at a time. If too many clients try to connect at the same
time, the excess clients will be refused—the connection isn’t automatically retried later.

After the listener starts listening, it must process the client connections within a certain
amount of time, or the connection attempts will time out.

If listen() succeeds, the function returns 0; otherwise it returns less-than-zero and sets the
globalerrno to a descriptive constant. Currently, the onlyerrno value thatlisten() uses,
other than -1, isEBADF, which means the socket argument is invalid.

accept() Examined

int accept(int socket, struct sockaddr *client_interface, int *client_size)

The arguments toaccept() are the socket token of the listener (socket), a pointer to a
sockaddr_in structure cast as asockaddr structure (client_interface), and a pointer to an
integer that gives the size of theclient_interface argument (client_size).

Network Sockets Other Functions

The Network Kit –23

Theclient_interface structure returns interface information (IP address and port number)
of the client that’s attempting to connect. See thebind() function for an examination of
thesockaddr_in structure.

The*client_size argument is reset to give the size ofclient_interface as it’s passed back by
the function.

The value thataccept() returns directly is a token that represents the accept socket. After
checking the token value (where less-than-zero indicates an error), you must cache the
token so you can use it in subsequentsend() andrecv() calls.

When you’re done talking to the client, remember to callclosesocket() on the accept
socket thataccept() returned. This frees a slot in the listener’s acceptance queue,
allowing a possibly frustrated client to connect to the listener.

If accept() fails, it returns less-than-zero (as mentioned above) and setserrno to one of
the following constants:

errno Value Meaning

EINVAL The listener socket isn’t bound.
EWOULDBLOCK The acceptance queue is full.
EBADF Thesocket argument is invalid.
-1 All other errors.

select()
int select(int socket_range,

struct fd_set *read_bits,
struct fd_set *write_bits,
struct fd_set *exception_bits,
struct timeval *timeout)

Theselect() function returns information about selected sockets. Thesocket_range
argument tells the function how many sockets to check: It only checks the first
(socket_range - 1) sockets. You don’t have to be exact with this value; typically, you set
the argument to 32. Note that asocket_range value of 0doesn’t select the first socket
(which will have a token of 0). You have to pass a value of at least 1.

The fd_set structure that types the next three arguments is simply a 32-bit mask that
encodes the sockets that you’re interested in; this refines the range of sockets that was
specified in the first argument. You should use theFD_OP() macros to manipulate the
structures that you pass in:

• FD_ZERO(set) clears the mask given byset.
• FD_SET(socket, set) adds a socket to the mask.
• FD_CLEAR(socket, set) clears a socket from the mask.
• FD_ISSET(socket, set) returns non-zero if the given socket is already in the mask.

Other Functions Network Sockets

24 – The Network Kit

The function passes socket information back to you by resetting the threefd_set
arguments. The arguments themselves represent the types of information that you can
check:

• read_bits tells you if a socket is “ready to read.” In other words, it tells you if a
socket has a in-coming message waiting to be read.

• write_bits tells you if a socket is “ready to write.”

• exception_bits tells you if there’s an exception pending on the socket.

Note: Currently, onlyread_bits is implemented. You should passNULL as thewrite_bits
andexception_bits arguments.

select() doesn’t return until at least one of thefd_set-specified sockets is ready for one of
the requested operations. To avoid blocking forever, you can provide a time limit in the
final argument, passed as atimeval structure.

In the following example function implementation, we check if a given datagram socket
has a message waiting to be read. Theselect() times out after two seconds:

bool can_read_datagram(int socket)
{

struct timeval tv;
struct fd_set fds;
int n;

tv.tv_sec = 2;
tv.tv_usec = 0;

/* Initialize (clear) the socket mask. */
FD_ZERO(&fds);

/* Set the socket in the mask. */
FD_SET(socket, &fds);
select(s + 1, &fds, NULL, NULL, &tv);

/* If the socket is still set, then it's ready to read. */
return FD_ISSET(socket, &fds);

}

If select() experiences an error, it returns -1; if the function times out, it returns 0.
Otherwise—explicitly, ifany of the selected sockets was found to be ready—it returns 1.

send(), recv()
int send(int socket, const char *buf, int size, int flags)
int recv(int socket, char *buf, int size, int flags)

These functions are used to send data to a remote socket, and to receive data that was sent
by a remote socket.send() andrecv() calls must be complementary: After socket A sends

Network Sockets Other Functions

The Network Kit –25

to socket B, socket B needs to callrecv() to pick up the data that A sent.send() sends its
data and returns immediately.recv() will block until it has some data to return.

Thesend() andrecv() functions can be called by stream or datagram sockets. However,
there are some differences between the way the functions work when used by these two
types of socket:

• For a stream listener and a stream client to transmit messages, the listener must
have previously calledbind(), listen(), accept(), and the client must have called
connect(). Having been properly connected, the two sockets can send and receive
as if they were peers.

For stream sockets,send() andrecv() can both block:send() blocks if the amount
of data that’s sent overwhelms the receiver’s ability to read it, andrecv() blocks if
there’s no message waiting to be read. You can tell arecv() to be non-blocking by
setting the sending socket’s no-block socket option (seesetsockopt()). The
no-block option doesn’t apply to sending.

• If you want to callsend() or recv() through a datagram socket, you must first
connect() the socket. In addition, a receiving datagram socket must also be bound
to an interface (throughbind()). See theconnect() description for more
information on what that function means to a datagram socket.

Datagram sockets never block onsend(), but they can block in arecv() call. As
with stream sockets, you can set a datagram socket to be non-blocking (for the
recv(), as well as forrecvfrom()) throughsetsockopt().

The Arguments

The arguments tosend() andrecv() are:

• socket is, for datagrams and stream client sockets, the local socket token. In other
words, when a datagram or stream client wants to send or receive data, it passes its
own socket token as the first argument. The recipient of asend(), or the sender of a
recv() is, for these sockets, well-known: Its the socket that’s identified by the
previousconnect() call.

For a stream listener,socket is the “accept socket” that was previously returned by
anaccept() call. A stream listener can send and receive data from more than one
client at the same time (or, at least, in rapid succession).

• buf is a pointer to the data that’s being sent, or is used to hold a copy of the data that
was received.

• size is the allocated size ofbuf, in bytes.

• flags is currently unused. For now, set it to 0.

Other Functions Network Sockets

26 – The Network Kit

A successfulsend() returns the number of bytes that were send; a successfulrecv() returns
the number of bytes that were received. If asend() or recv() fails, it returns less-than-zero
and setserrno to a descriptive constant:

errno Value Meaning

EWOULDBLOCK The call would block on a non-blocking socket
(recv() only).

EINTR The local socket was interrupted.

ECONNRESET The remote socket disappeared (send() only).

ENOTCONN The socket isn’t connected.

EBADF Thesocket argument is invalid.

EADDRINUSE The interface specified in the previous connect is busy
(datagram sockets only).

-1 All other errors.

sendto(), recvfrom()
int sendto(int socket,

char *buf,
int size,
int flags,
 struct sockaddr *to,
int tolen)

int recvfrom(int socket,
char *buf,
int size,
int flags,
 struct sockaddr *from,
int *fromlen)

These functions are used by datagram sockets (only) to send and receive messages. The
functions encode all the information that’s needed to find the recipient or the sender of the
desired message, so you don’t need to callconnect() before invoking these functions.
However, a datagram socket that wants to receive message must first callbind() (in order
to fix itself to an interface that can be specified in a remote socket’ssendto() call).

The four initial arguments to these function are similar to those forsend() andrecv(); the
additional arguments are the interface specifications:

• For sendto(), theto argument is a sockaddr_in structure pointer (cast as a pointer to
a sockaddr structure) that specifies the interface of the remote socket that you’re
sending to. Thetolen argument is the size of theto argument.

Network Sockets Other Functions

The Network Kit –27

• For recvfrom(), thefrom argument returns the interface for the remote socket that
sent the message thatrecvfrom() received.*fromlen is set to the size of thefrom
structure. As always, the interface structure is asockaddr_in cast as a pointer to a
sockaddr.

sendto() never blocks. recvfrom(), on the other hand, will block until a message arrives,
unless you set the socket to be non-blocking through thesetsockopt() function.

You can “broadcast” a message to all interfaces that can be found by settingsendto()’s
target address toINADDR_BROADCAST.

As an alternative to these functions, you can call connect() on a datagram socket and then
call send() and recv(). Theconnect() call caches the interface information provided in its
arguments, and uses this information the subsequent send() andrecv() calls to “fake” the
analogoussendto() andrecvfrom() invocations. For sending, the implication is obvious:
The target of the send() is the interface supplied in theconnect(). The implication for
receiving bears description: When youconnect() and then callrecv() on a datagram
socket, the socket will only accept messages from the interface given in theconnect()
call.

You can mixsendto()/recvfrom() calls with send()/recv(). In other words, connecting a
datagram socket doesn’t prevent you from callingsendto() andrecvfrom().

A successfulsendto() returns the number of bytes that were send; a successfulrecvfrom()
returns the number of bytes that were received. If asendto() or recvfrom() calls fails,
less-than-zero is returned and errno is set to a descriptive constant:

errno Value Meaning

EWOULDBLOCK The call would block on a non-blocking socket
(recvfrom() only).

EINTR The local socket was interrupted.

EBADF Thesocket argument is invalid.

EADDRNOTAVAIL The specified interface is unrecognized.

-1 All other errors.

setsockopt()
int setsockopt(int socket, int level, int option, char *data, unsigned intsize)

setsockopt() lets you set certain “options” that are associated with a socket. Currently, the
Network Kit only recognizes one option: It lets you declare a socket to be blocking or
non-blocking. A blocking socket will block in a recv() or recvfrom() call if there’s no data
to retrieve. A non-blocking socket returns immediately, even if it comes back
empty-handed.

Note that a socket’s blocking state appliesonly to recv() andrecvfrom() calls.

Other Functions Network Sockets

28 – The Network Kit

The function’s arguments are:

• socket is the socket that you’re attempting to affect.

• level is a constant that indicates where the option is enforced. Currently,level
should always beSOL_SOCKET.

• option is a constant that represents the option you’re interested in. The only option
constant that does anything right now isSO_NONBLOCK. (Two other constants—
SO_REUSEADDR andSO_DEBUG—are recognized, but they aren’t currently
implement.)

• data points to a buffer that’s used to toggle or otherwise inform the option. For the
SO_NONBLOCK option (and other boolean options), you fill the buffer with zeroes if
you want to turn the option off (the socket will block), and non-zeros if you want to
turn it on (the socket won’t block). In the case of a boolean option, a single byte of
zero/non-zero will do.

• size is the size of thedata buffer.

The function returns 0 if successful; otherwise, it returns less-than-zero and sets errno to a
descriptive constant:

errno Value Meaning

ENOPROTOOPT Unrecognizedlevel or option argument.

EBADF Thesocket argument is invalid.

-1 All other errors.

Keep in mind that attempting to set theSO_REUSEADDR or SO_DEBUG option won’t
generate an error, but neither will it do anything.

The Network Kit –29

The Mail Daemon

Declared in: <net/E-Mail.h>

Overview

Every Be machine has a mail daemon; this is a local process that’s responsible for
retrieving mail from and sending mail to a mail server. The mail server that the daemon
talks to is a networking application that’s either part of your Internet Service Provider’s
services, or that’s running on a local “mail repository” machine. The functions described
in this section tell you how to manage the mail daemon’s connection with the mail
server—how to tell the daemon which mail server to talk to, how to command the daemon
to send and retrieve mail, how to automate mail retrieval, and so on.

All the functions that are described here (but one) are promoted to user-land through the
E-mail preferences application (the one exception is theforward_mail() function). Indeed,
the operations that these functions perform are rightly regarded as belonging to the user.
The only reason that you would need to call the daemon functions—with the exceptions of
forward_mail() and, possibly,check_for_mail()—is if you want to build your own E-mail
preferences application. (forward_mail() andcheck_for_mail() could legitimately be
worked into a mail-reading or -composing application.)

The architecture of the E-mail message itself isn’t discussed here; for such information
see “Mail Messages (BMailMessage)” on page 37.

The Mail Daemon and the Mail Server

The mail daemon can talk to two different mail servers:

• ThePost Office Protocol (“POP”) server manages individual mail accounts. When
the Be mail daemon wants to retrieve mail that’s been sent to a user, it must tell the
mail server which POP account it’s retrieving mail for.

• TheSimple Mail Transfer Protocol (“SMTP”) server manages mail that’s being sent
out into the world (and that will, eventually, find its way to a POP server).

The POP and the SMTP servers are identified by their hosts’ names (in other words, the
names of the machines on which the servers are running). The mail daemon can only talk
to one POP and one SMTP server at a time, but can talk to the two of them simultaneously.
Typically—nearly exclusively—the POP and SMTP servers reside on the same machine,
and so are identified by the same name.

Overview The Mail Daemon

30 – The Network Kit

To set the identities of the POP and SMTP mail servers, you fill in the fields of a
mail_account structure and pass the structure to theset_mail_account() function. As the
name of the structure implies,mail_account encodes more than just the names of the
servers’ hosts. It also identifies a specific user’s POP mail account; the complete
definition of the structure is this:

typedef struct
{

char pop_name[B_MAX_USER_NAME_LENGTH];
char pop_password[B_MAX_USER_NAME_LENGTH];
char pop_host[B_MAX_HOST_NAME_LENGTH];
char smtp_host[B_MAX_HOST_NAME_LENGTH];

} mail_account;

The POP user information that’s stored in themail_account structure (in other words, the
pop_name andpop_password fields) is used only for the POP server; it has no
significance for the SMTP server.

Sending and Retrieving Mail

Messages that are retrieved (from the mail server) by the mail daemon are stored in the
database, from whence they are plucked and displayed by a mail-reading application (a
“mail reader”; Be supplies a simple mail reader called BeMail). Similarly, messages that
the user composes (in a mail composition application) and sends are placed in the database
until the mail daemon comes along and passes them on to the mail server.

Sending and retrieving mail is the mail daemon’s most important function. Both actions
(server-to-database and database-to-server transmission) are performed through the
check_for_mail() function. This is the mail daemon’s fundamental “do something”
function. All other function either prime the daemon

Other Mail Daemon Features

The other mail structures and functions define the other features that are provided by the
mail daemon. These features are:

• A mail delivery schedule. Themail_schedule structure (passed through the
set_mail_schedule() function) lets you tell the daemon how often and during which
periods (week days only, every day, and so on) it should automatically check for
newly arrived mail and send newly composed mail. Technically, the mail schedule
tells the daemon how often to invokecheck_for_mail().

• Mail notification. Themail_notification structure (passed through the
set_mail_notification() function) lets you tell the daemon how you would like it to
tap you on the shoulder when it has new mail for you to read. Would you like it to
display an alert panel? Squawk at you? Both?

The Mail Daemon Functions

The Network Kit –31

• A settable mail reader. Theset_mail_reader() function lets you identify the
application that you would like to use to read in-coming mail. (Be provides a
default mail reader/composition program called BeMail.)

• Mail forwarding. Theforward_mail() function lets you re-send in-coming mail to
some other account.

All of these features (less mail-forwarding) can also be set by the user through the E-mail
preferences panel.

Functions

check_for_mail()
long check_for_mail(long *incoming_count)

Sends and retrieves mail. More specifically, this functions asks the mail daemon to
retrieve in-coming messages from the POP server and send out-going messages to the
SMTP server. The number of POP messages that were retrieved is returned, by reference,
in the argument. If you don’t need to know the in-coming count, you can (and should)
passNULL as theincoming_count argument; the function is (potentially) much faster if you
ignore the count in this manner.

If the mail world is unruffled, the function returnsB_NO_ERROR; otherwise, it returns one
of the following:

• B_MAIL_NO_DEMON. The mail demon isn’t running.
• B_MAIL_UNKNOWN_HOST. The named POP or SMTP mail server can’t be found.
• B_MAIL_ACCESS_ERROR. The connection to the POP or SMTP mail server failed.
• B_MAIL_UNKNOWN_USER. The POP server doesn’t recognize the user name.
• B_MAIL_WRONG_PASSWORD. The POP server doesn’t recognize the password.

In the cases where a name or password is unrecognized (B_MAIL_UNKNOWN_HOST,
...UNKNOWN_USER, and...WRONG_PASSWORD), the (mis)information is taken from the
mail_account structure that was passed to the daemon in the most recent
set_mail_account() call. Note that the validity of themail_account information isn’t
checked when you set the structure—it’s only checked when you actually attempt to use
the information (as, for example, here).

Functions The Mail Daemon

32 – The Network Kit

forward_mail()
long forward_mail(BRecord *msg,

char *recipients,
bool reset_sender= TRUE,
boolqueue= TRUE)

Forwards the mail message represented bymsg to the list of users given byrecipients.
msg is a BRecord object that encapsulates a single in-coming mail message. The user
account names listed inrecipients must be separated from each other by whitespace and/or
commas; the entire list must beNULL-terminated. Both of these entities (the BRecord-as-
mail-message, and the recipients list) are further explained in “Mail Messages
(BMailMessage)” on page 37.

If reset_sender is TRUE, the sender of the forwarded message is reset to be the current
recipient; otherwise the sender is left as is. For example, if Anton sends a message to
Bertrand and Bertrand forwards the message to Camille withreset_sender set toTRUE, the
message that Camille receives will appear to have been sent by Bertrand; if set toFALSE, it
will appear to have been sent by Anton.

Thequeue argument determines whether the messages is sent now (TRUE) or queued for
later transmission (FALSE). If you send the message now, all other out-going and in-
coming mail messages are transmitted as a matter of course (sending now is like calling
check_for_mail()). If the message is queued, it waits for the daemon to perform its
automatic check, or for the next explicitcheck_for_mail() call.

set_mail_account(), get_mail_account()
long set_mail_account(mail_account *account, boolsave= TRUE)
long get_mail_account(mail_account *account)

set_mail_account() function lets you set the identities of the POP and SMTP mail servers
that you want the mail daemon to use, and lets you set the (user-specific) POP account that
the daemon should monitor (when it looks for in-coming mail). All this information is set
by filling in the fields of themail_account structure which you pass as the first argument
to the function. The structure is defined as

typedef struct
{

char pop_name[B_MAX_USER_NAME_LENGTH];
char pop_password[B_MAX_USER_NAME_LENGTH];
char pop_host[B_MAX_HOST_NAME_LENGTH];
char smtp_host[B_MAX_HOST_NAME_LENGTH];

} mail_account;

• pop_name andpop_password areNULL-terminated strings (with a maximum
length of 32 characters) that identify the user account on the POP server. The
account must already exist; you can’t create a new POP account simply by filling a
mail_account structure and passing it throughset_mail_account(). Creating a POP
account is the responsibility of the Internet Service Provider.

The Mail Daemon Functions

The Network Kit –33

• pop_host is aNULL-terminated string (64 characters, max) that names the machine
on which resides the POP server, andsmtp_host is a similarly constructed string
that names the SMTP server’s machine. Normally, the servers are run on the same
machine. Again, you can’t make up a name here; you have to get the host names
from the Internet Service Provider.

Thesave argument sets the persistence of the mail account:

• If you save, this account will be used for all subsequent transactions with the mail
servers, and also becomes thedefault mail account. In this role, the account
information is remembered when you restart your computer (or otherwise kill and
restart the mail daemon).

• If you don’t save, this account will be used for subsequent transactions, but will be
forgotten when you shut down.

You can set the default mail account even if the mail daemon isn’t running. Currently, the
set_mail_account() function always returnsB_NO_ERROR.

get_mail_account() returns, by reference in its argument, a copy of the mail account
information that the daemon is currently set to use. If the daemon isn’t running, this
function returns the default mail account. In this case, the function returns
B_MAIL_NO_DAEMON, otherwise it returnsB_NO_ERROR.

Note that the validity of themail_account that you pass toset_mail_account() or that’s
copied into theget_mail_account() argument isn’t checked by these functions. The mail
account is only checked when you actually attempt to use the information; in other words,
when you attempt to send or retrieve mail.

set_mail_notification(), get_mail_notification()
long set_mail_notification(mail_notification *notification, boolsave= TRUE)
long get_mail_notification(mail_notification *notification)

set_mail_notification() establishes how you would like to be notified when new mail
arrives. There are two notification signals: the mail alert panel and the system beep. You
encode your preference by setting the fields of the argumentmail_notification structure:

typedef struct
{

bool alert;
bool beep;

} mail_notification;

Thesave argument, ifTRUE, registers the notification setting as the default—in other
words, the daemon will remember it when you shutdown the computer. This function
always returnsB_NO_ERROR.

get_mail_notification() returns, by reference, a copy of themail_notification structure
that’s currently being used by the mail daemon. If the daemon isn’t running, the function

Functions The Mail Daemon

34 – The Network Kit

hands you the default notification setting, and returns (directly)B_MAIL_NO_DAEMON;
otherwise it returnsB_NO_ERROR.

set_mail_reader(), get_mail_reader()
long set_mail_reader(ulongreader_sig, boolsave= TRUE)
long get_mail_reader(ulong *reader_sig)

set_mail_reader() tells the system which application to launch (or find) to display newly-
arrived mail. The application is identified by its signature. Thesave argument, ifTRUE,
registers the reader signature as the default—in other words, the daemon will remember it
when you shutdown the computer. This function always returnsB_NO_ERROR; note that
the function doesn’t check to make sure that the argument identifies an actual application.

get_mail_reader() returns, by reference, the signature of the application that the mail
daemon is currently using (or will next use) to display mail. If the daemon isn’t running,
the function hands you the default reader, and returns (directly)B_MAIL_NO_DAEMON;
otherwise it returnsB_NO_ERROR.

In the absence of any other provision, the mail daemon uses the Be mail reader, BeMail
(signature ‘MAIL’).

set_mail_schedule(), get_mail_schedule()
long set_mail_schedule(mail_schedule *schedule, boolsave= TRUE)
long get_mail_schedule(mail_schedule *schedule)

set_mail_schedule() lets you tell the mail daemon during what days and hours it should
automatically check for new mail, and how often it should check. You encode this
information by filling in the fields of the argumentmail_schedule structure:

typedef struct
{

long days;
long interval;
long start_time;
long end_time;

} mail_schedule;

• days is a constant that encodes the range of days. It can be one ofB_CHECK_DAILY,
B_CHECK_WEEKDAYS, or B_CHECK_NEVER. The first two should be obvious; setting
thedays field toB_CHECK_NEVER turns off the daemon’s automatic mail-checking
capability (and the other fields of the structure are ignored).

• start_time andend_time define the range of minutes, within the candidate days, that
the daemon checks for mail. For example, if you want the daemon to check for mail
only between 8 am and 6 pm, you would setstart_time to 480 (8 hours * 60 minutes)
andend_time to 1080 (18 hours * 60 minutes). Ifstart_time andend_time are the
same, then the daemon works around the clock.

The Mail Daemon Functions

The Network Kit –35

• interval is the frequency, in minutes, at which the mail daemon checks for mail. For
example, setting interval to 15 means that the daemon will automatically check for
new mail (and send out any unsent, recently composed messages) every 15 minutes
(within the range of minutes of the candidate days, as set in the other fields).

Functions The Mail Daemon

36 – The Network Kit

The Network Kit –37

Mail Messages (BMailMessage)

Derived from: public BObject

Declared in: <net/E-mail.h>

Overview

When the mail daemon retrieves new mail from the mail server, it stores the retrieved
messages in the boot volume’s database, creating a single record (a “mail record”) for each
message. A mail-reading program can then pull the mail record out of the database (as a
BRecord object) and display its contents.

Similarly, when the user composes new mail (on the BeBox) and submits the message for
sending, the message-composing application adds the message (again, encapsulated in a
mail record) to the database where it waits for the daemon to pick it up and send it to the
mail server. The scheme looks something like this:

If you’re writing a mail-reading or mail-writing application, then all you really need to
know is the definition of the table to which the mail message records conform. With this
knowledge, you can retrieve (“fetch”) and parse in-coming messages, and create and
submit (to the database) out-going messages. The mail message table is called “E-mail”,
and is described in “The E-Mail Table” on page 43.

The Network Kit also supplies a BMailMessage class that acts as a convenient wrapper
around mail records.

Mail Server

Be
Bo

x

Mail Daemon

Boot Volume

Mail
Reader

Mail
Writer

Database

Creating a Mail Reader Mail Messages (BMailMessage)

38 – The Network Kit

The following sections give you a “mail message” tutorial; we’ll step through the database
and mail message operations that you need to create a generic mail application. If you’re
already comfortable with database programming (and understand SMTP and POP), you
can skip the tutorial and head straight for the “E-mail” and BMailMessage specifications.

 Creating a Mail Reader

The design of a Be mail reader should follows this outline:

1. Ask the mail daemon to retrieve mail from the mail server.
2. Get the newly retrieved mail messages from the database.
3. Display the contents of the mail messages.

Throughout the following step-by-step explanations, we’ll give both the general approach
and also look at what BeMail does.

(Note that this tutorial is incomplete.)

Asking the Daemon to Get New Mail

There are a couple of ways to ask the mail daemon to retrieve newly arrived mail from
the mail server:

• You can ask it explicitly by calling check_for_mail()
• You can wait for the mail schedule’s automatic invocation ofcheck_for_mail().

You probably want to do both of these: You should provide a means for the user to ask
that mail be retrieved right now, while also allowing the schedule to do its thing.
check_for_mail() andset_mail_schedule(), which declares the periodicity of automatic
mail retrieval, are described in “The Mail Daemon” on page 29. As explained there, the
mail schedule “belongs” to the user; its default presentation is through the E-Mail
preferences application.

BeMail doesn’t actually do anything about retrieving mail. It relies on the mail schedule,
and on the mail daemon’s “E-Mail Status” alert panel, which provides a “Check Now”
button (as in “check for mail now”).

Getting Messages from the Database

When new mail arrives, the mail daemon creates a database record to hold each new
message, and then commits the records to the database. The table that a mail record
conforms to is named “E-Mail”. This table is kept in the database that corresponds to the
boot volume. As a demonstration of these principles, the following example function
counts the number of mail messages that currently reside in the database:

Mail Messages (BMailMessage) Creating a Mail Reader

The Network Kit –39

#include <Database.h>
#include <Table.h>
#include <Volume.h>
#include <Query.h>

long count_all_email()
{

BVolume bootVol = boot_volume();
BDatabase *bootDb = boolVol.Database();
BTable *emailTable = bootDb->FindTable("E-Mail");
BQuery *emailQuery = new BQuery();
long result=0;

if (emailTable != NULL) {
emailQuery->AddTable(emailTable);
emailQuery->PushOp(B_ALL);
emailQuery->Fetch();
result = emailQuery->CountRecordIDs();

}
delete emailQuery;
return result;

}

Obviously, this example requires some knowledge of how the database works. You can
mosey on over to the Storage Kit documentation for the Tolstoy version, or you can read
between the lines of the following:

As mentioned above, the mail daemon transforms mail messages into “E-Mail”
conforming records, and then “commits” (in database lingo) these records to the boot
volume’s database. The first few lines of the example assemble the suspects: The boot
volume, the database from the boot volume, and the “E-Mail” table from the boot
database. If the table is found, then we construct a “query”—this is the vehicle that will let
us retrieve our records. The query is told which table to look in and which records in that
table to look for. This is done throughAddTable(emailTable) and thePushOp(B_ALL)
calls; in other words, we tell the query to look for all records in the “E-Mail” table. Then
we tell the query to “fetch,” or go out and actually get the records. Technically, it doesn’t
actually get records (this would be inefficient); instead, it gets record ID numbers. We
count the record ID numbers that it has retrieved (theCountRecordIDs() call) and return
the count.

The Example Refined—E-Mail Status

For the purposes of a mail reader—in other words, an application that wants to display
messages that are received from the mail server—retrievingall mail messages isn’t
quite right. The “E-Mail” table is used to store both in-coming and out-going messages.
So we have to fix our query to only count in-coming messages.

The in-coming/out-going nature of a particular message is stored as a string in the “Status”
field of the “E-Mail” table. The mail daemon understands three states: “New”,
“Pending”, and “Sent” (a fourth state, “Read”, is used by the BeMail application; we’ll get

Creating a Mail Reader Mail Messages (BMailMessage)

40 – The Network Kit

to it later). We’re only interested in “New” messages, so we change our query
accordingly:

long count_incoming_email()
{

/* declarations as above */

if (emailTable != NULL) {
emailQuery->AddTable(emailTable);

emailQuery->PushField("Status");
emailQuery->PushString("New");
emailQuery->PushOp(B_EQ);

emailQuery->Fetch();
result = emailQuery->CountRecordIDs();

}
delete emailQuery;
return result;

}

Here we’ve replaced thePushOp(B_ALL) call with a more refined predicate. Again, you
can turn to the Storage Kit (the BQuery class, specifically) for the full story on query
predicates. Briefly, predicates are expressed in RPN (“Reverse Polish Notation”).
According to RPN, the operands of an operation are “pushed” first, followed by the
operator. The evaluation of an operation becomes a valid operand for another operation.
The series of “pushes” in the example expresses the boolean evaluation

(status == "New")

In other words, we’re going to fetch all records (again, record IDs) that have a “Status”
field value of “New”.

Let the Browser do the Work

There’s one other way to identify mail records: Let the Browser do it. When you
“launch” the Browser-defined Mailbox, a query that looks a lot like the one we created
above is formed and fetched. The result of the query, the list of found record ID
numbers, is turned into a list of BRecord objects that are symbolically listed in the
Mailbox window. If the user double-clicks on one of the record icons, the mail daemon
passes the record’srecord_ref to the user-defined “mail reader.” By default, the mail
reader is BeMail. The user can select a different reader (yours) by dropping the reader’s
icon in the appropriate “icon well” in the E-Mail preferences panel. You can set the
reader identity programmatically through theset_mail_reader() function, although, as
with all E-Mail preferences, it’s nicer to let the user make the decision.

A mail reader application needs to be able “catch” the refs that are passed to it. It does this
in its implementation ofMessageReceived(). A simple implementation would look for
the message typeB_REFS_RECEIVED. The rest of this thought is left as an exercise for the
mind reader.

Mail Messages (BMailMessage) Creating a Mail Reader

The Network Kit –41

Creating BMailMessage Objects

So far, we’ve determined where we have to go to find in-coming messages, and counted
the messages that we found there, but we haven’t actually retrieved the messages
themselves. Here, we complete our message-retrieving example by fetching record IDs
(as before) and then constructing a BRecord for each ID. Having done that, we pass the
BRecord to the BMailMessage constructor. In the example, we’ll add each
BMailMessage to a BList (which is passed in to the function):

#include <E-mail.h>
/* and the others */

long get_new_email(BList *list)
{

BRecord *emailRecord;
BMailMessage *newMail;
long count;
record_id rec_id;

/* and the others */

if (emailTable != NULL) {
emailQuery->AddTable(emailTable);

emailQuery->PushField("Status");
emailQuery->PushString("New");
emailQuery->PushOp(B_EQ);

emailQuery->Fetch();
result = emailQuery->CountRecordIDs();

for (count=0; count < result; count++) {
rec_id = emailQuery->RecordIdAt(count);
emailRecord = new BRecord(bootDb, rec_id);
newMail = new BMailMessage(emailRecord);
list->AddItem(newMail);
delete emailRecord;

}
delete EmailQuery;
return result;

}

In thefor loop, we step through the query’s “record ID” list, creating a BRecord for each
ID. To construct a BRecord from a record ID, you need to pass the appropriate BDatabase
object; this is because record ID numbers are only valid within a specific database.
Having gotten a BRecord, we pass the object to the BMailMessage constructor; the
BMailMessage object copies all the data from the record into itself, such that the BRecord
is no longer needed. The BRecord object can (and, unless you have something up your
sleeve, should) be deleted after the BMailMessage object is constructed.

When our example function returns, the argument BList will contain all the
BMailMessage objects that we constructed, and the function will return the number of
messages directly (as before). Note that we should be a bit pickier about checking for

Creating a Mail Reader Mail Messages (BMailMessage)

42 – The Network Kit

errors; you will, no doubt, correct this oversight in your own mail reader. Also—and here
we’re just being fussy—keep in mind that by adding the BMailMessages to a BList, we
have implied that the BList is now responsible for these objects. More precisely, the entity
that calledget_new_mail() must delete the contents of the list when it’s done doing
whatever it does.

Displaying the Contents of a Message

The BMailMessage class provides a convenient object cover for mail records. By using
BMailMessage objects, you avoid most of the fuss of parsing database records.

When you construct a BMailMessage to represent an in-coming (or otherwise existing)
mail message, the contents of the message are copied into the object’s “fields.”
BMailMessage fields are similar to table fields in that they represent named categories of
data. The fields that are defined by the BMailMessage class approximate those of the “E-
Mail” table; however, you can add new fields that have no complement in the table—
adding a field to a BMailMessage object won’t extend the “E-Mail” table definition.

TheFindField() member function retrieves the data that’s stored for a particular field
within a BMailMessage object. The full protocol goes something like this:

long FindField(const char *field_name, void **data, long *length, long index=0)

The function works as you would expect: You pass in a field name, and the function
points *data at the contents of that field. The length of the data (in bytes) is returned in
length. The final argument (index) is used to disambiguate between fields that have the
same name (the exact value ofindex has no meaning other than ordinal position).

To useFindField() properly, you have to know the names of the fields that you can expect
to find there. The BMailMessage class defines a number of field names and provides
constants to cover them:

Field Name Constant

“To: ” B_MAIL_TO
“Cc: ” B_MAIL_CC
“Bcc: ” B_MAIL_BCC
“From: ” B_MAIL_FROM
“Date: ” B_MAIL_DATE
“Reply: ” B_MAIL_REPLY
“Subject: ” B_MAIL_SUBJECT
“Priority: ” B_MAIL_PRIORITY
“Content” B_MAIL_CONTENT

Each of the defined fields stores some number of bytes of “raw” (untyped) data. When
you callFindField(), the function points the second argument (data) to the raw data for the
named field, and returns the number of bytes of data in the third argument (length).

Mail Messages (BMailMessage) The E-Mail Table

The Network Kit –43

A particular field (i.e. a field with a particular name) can store more than one entry. The
final argument toFindField() (the argument namedindex) can be used to distinguish
between multiple entries in the same field.

(Here the master died. We’ll complete this tutorial and post it on the Be Web site very
soon.)

The E-Mail Table

The “E-Mail” database table defines records that hold mail messages. The fields in the
table mimic the information that’s found in an SMTP or POP mail message header. (See
“The Mail Daemon” on page 29 for more information on SMTP and POP). The table’s
fields are:

• “Status” takes a string that describes the “seen it” state of the message. The mail
daemon sets newly arrived in-coming messages to be “New”. Out-going messages
must have a status of “Pending” (this cues the daemon to send the message). After it
has sent a message, the daemon sets the status to “Sent”. Beyond these three states,
an application is free to invent and use its own—for example, BeMail uses “Read”
to mean a message that used to be “New”, but which the user has already looked at.

• “Priority” is an integer (along) that rates the message’s urgency.

• “From” is a string that names the sender of the message.

• “Subject” is a string that describes the topic of the letter.

• “Reply” is a string that gives the e-mail name to which a response to this message
should be sent.

• “When” is adouble that encodes the date and time at which this message was sent.

• “Enclosures” is an integer count of the number of MIME enclosures that the
message contains.

• “header” is the unaltered POP header from a received message; if you’re creating
mail records yourself (as opposed to using the BMailMessage class), you should
construct an SMTP header and add it to this field.

• “content” as a string is the unaltered content of the message.

• “content_file” as a record ID is used if the size of the content threatens to broach the
maximum size of a record. In this case, the content is written to a file, and
“content_file” gives the ID of that file.

• “enclosures” is a list of attributes (the field itself is typed as raw data) that describe
the individual MIME enclosures. There are three attributes per enclosure: a
record_ref that gives the location of the enclosure, stored as a file; aNULL-

Constructor and Destructor Mail Messages (BMailMessage)

44 – The Network Kit

terminated string that gives the MIME type, and aNULL-terminated MIME subtype
string.

• “mail_flags” is a long that encodes the message-is-pending and save-after-sending
states of the message. If the message is waiting to go out, the “mail_flags” value is
B_MAIL_PENDING; if it should be saved after it’s sent, thenB_MAIL_SAVE is added in.
After the message is sent, the record is destroyed if “mail_flags” doesn’t include
B_MAIL_SAVE, otherwise the “mail_flags” valued is set toB_MAIL_SENT. In all other
cases—if the message is in-coming, for example—“mail_flags” is 0.

Constructor and Destructor

BMailMessage()
BMailMessage(void)
BMailMessage(BRecord *record)
BMailMessage(BMailMessage *mail_message)

Creates and returns a new BMailMessage object.

The first version creates an empty, “abstract” message: The object doesn’t correspond to
the second creates an object that acts as a cover for the given BRecord, and the third
creates a copy (more or less) of its argument.

~BMailMessage()
virtual ~BMailMessage(void)

Destroys the BMailMessage, even if the object’s fields are “dirty.” For example, let’s say
you create a new BMailMessage with the intention of sending a message. You start to edit
the object—perhaps you fill in the “To: ” field—but then you delete the object. The
message that you were composing isn’t sent. In other words, the BMailMessage object
doesn’t try to second-guess your intentions: When you destroy the object, it lies down and
dies without whining about it.

Mail Messages (BMailMessage) Member Functions

The Network Kit –45

Member Functions

CountFields(), GetFieldName(), FindField()
long CountFields(char *name= NULL)

long GetFieldName(char **field_name, long index)

long FindField(char *field_name,
void **data,
long *length,
long index = 0)

These functions are used to step through and inspect the fields in a BMailMessage object.
A field is identified, primarily, by its name. However, a field can have more than one
entry, so a secondary identifier (an index) is also necessary. Through the combination of a
field name and an index, you can identify and retrieve a specific piece of data. The names
of the “standard” mail fields are listed in theSetField() description.

CountFields() returns the entry count for the named field. If the name argument isNULL,
the function returns the number of uniquely named fields in the object. Note that theNULL
argument version doesn’t necessarily return a count ofall fields. For example, if a
BMailMessage contains twoB_MAIL_TO fields (only), the call

CountFields(B_MAIL_TO);

will return 2, while the call

CountFields();

will return 1.

GetFieldName() returns, by reference in the field_nameargument, the name of the field
that occupies theindex’th place in the object’s list of uniquely named fields. Ifindex is
out-of-bounds, the function returns (directly)B_BAD_INDEX; otherwise, it returns
B_NO_ERROR.

FindField() return the data that lies in the field that’s identified byfield_name. If the object
contains more than one entry, you can use the index argument to differentiate them. The
data that’s found is returned by reference through*data; the*length value returns the
amount of data (in bytes) that*data is pointing to. It’s not a great idea to alter the pointed-
to data, but as long as you don’t exceed the existing length you’ll probably get away with
it.

If field_name doesn’t identify an existing field (in this object),B_MAIL_UNKNOWN_FIELD is
returned; if the index is out-of-bounds,B_BAD_INDEX is returned. Otherwise,
B_NO_ERROR is your reward.

See also: SetField()

Member Functions Mail Messages (BMailMessage)

46 – The Network Kit

Ref()
record_refRef(void)

Returns therecord_ref structure that identifies the record that lies behind this
BMailMessage object. Not every object corresponds to a record. In general, an in-coming
message (a BMailMessages that was constructed from a BRecord object) will have a ref,
but an out-going message won’t have a ref until the message is actually sent. As always
when dealing with refs, you mustn’t assume that the ref that’s returned here is actually
valid—the record may have been removed since the BMailMessage object was
constructed (or since the message was sent).

Send()
long Send(boolqueue = TRUE, boolsave= TRUE)

Creates a record for this BMailMessage object, fills in the object’s fields as appropriate for
an out-going message in SMTP format, and then adds the record to the “E-Mail” table. If
queue is TRUE, the record lies in the database until the mail daemon comes along of its own
accord; ifqueue is FALSE, the mail daemon is told to send the message (and all other
queued messages) right now. The BMailMessage’s internal status (as returned byStatus())
is setB_MAIL_QUEUED if queue isTRUE.

If save isTRUE, the record that holds the message remains in the database after the mail
daemon has done its job. Otherwise, the record is destroyed after the message is sent.

The mail record’s status is set to “Pending” by this function; when the mail daemon picks
up the message, it (the daemon) will destroy the record (if it’s not being saved), or change
the status to “Sent”.

If the BMailMessage doesn’t appear to have any recipients, theSend() function returns
B_MAIL_NO_RECIPIENT and the message isn’t sent. Ifqueue is FALSE, the function sends
the message and returns the value returned by its (automatic) invocation of
check_for_mail(). If the message is queued, the function returnsB_NO_ERROR.

SetField(), RemoveField()
void SetField(char *field_name,

void *data,
long length,
boolappend= FALSE)

long RemoveField(char *field_name, long index= 0)

These functions add and remove fields (or field entries) from the object.

SetField() adds a field namedfield_name. Thedata andlength arguments point to and
describe the length of the data that you want the field to contain (the length is given in
bytes). The final argument,append, states whether you want the data to be added (as a

Mail Messages (BMailMessage) Member Functions

The Network Kit –47

separate entry) to the data that already exists under the same name. Ifappend is FALSE, the
new data (the data that you’re passing in this function call) becomes the field’s only entry;
if it’s TRUE, and the field already exists, the “old” data isn’t clobbered, and the field’s
“entry count” is increased by one.

RemoveField() removes the data that corresponds to the given field name. If the field
contains more than one entry, you can selectively remove a specific entry through the use
of theindex argument. Iffield_name doesn’t identify an existing field (in this object),
B_MAIL_UNKNOWN_FIELD is returned; if the index is out-of-bounds,B_BAD_INDEX is
returned. Otherwise,B_NO_ERROR is returned.

The field names that are defined by the class are:

Field Name Constant

“To: ” B_MAIL_TO
“Cc: ” B_MAIL_CC
“Bcc: ” B_MAIL_BCC
“From: ” B_MAIL_FROM
“Date: ” B_MAIL_DATE
“Reply: ” B_MAIL_REPLY
“Subject: ” B_MAIL_SUBJECT
“Priority: ” B_MAIL_PRIORITY
“Content” B_MAIL_CONTENT

See also: FindField()

SetEnclosure(), GetEnclosure(), RemoveEnclosure(),
CountEnclosures()

void SetEnclosure(record_ref *ref,
const char *mime_type,
const char *mime_subtype)

 longGetEnclosure(record_ref **ref,
char **mime_type,
char **mime_subtype,
long index= 0);

 longRemoveEnclosure(record_ref *ref)

 longCountEnclosures(void)

These functions deal with a BMailMessage’s “enclosures.” An enclosure is a separate file
that’s included in the mail message. Enclosures are identified by index only—unlike a
BMailMessage’s fields, enclosures don’t have names. Every enclosure is tagged with a
MIME typifier. The MIME typifier is a human-readable string in the form “type/subtype”
that attempts to describe the data that the enclosure contains. As shown in the protocol
above, the BMailMessage class breaks the two MIME components apart so they can be set
(or retrieved) separately.

Member Functions Mail Messages (BMailMessage)

48 – The Network Kit

SetEnclosure() adds an enclosure to the object. Theref argument locates the enclosure’s
data; currently, the refs that you add may only refer to files. The other two arguments let
you tag the enclosure with MIME type and subtype strings. (Note that BeMail currently
tags all out-going enclosures as “application/befile”.)

GetEnclosure() returns, by reference through *ref, a pointer to the ref that represents the
object’sindex’th enclosure. The enclosure’s MIME type strings are pointed to by
*mime_type and *mime_subtype. The MIME strings that the arguments point to areNULL-
terminated for you. If index is out-of-boundsB_BAD_INDEX is returned (this includes the
no-enclosure case). Otherwise,B_NO_ERROR is returned.

RemoveEnclosure() removes the enclosure that’s identified by the argument. Ifref doesn’t
identify an existing enclosure, this function returnsB_BAD_INDEX (look for the error return
to change in a subsequent release). Otherwise, it returnsB_NO_ERROR.

CountEnclosures() returns the number of enclosures that are currently contained in the
object.

Status()
long Status(void)

Every BMailMessage has an internal state (that mustn’t be confused with its record’s
status field) that tells whether the record that represents the object is currently queued to be
sent. If it is, the status isB_MAIL_QUEUED, otherwise it’sB_MAIL_NOT_QUEUED.

acrobat/12_SupportKit.pdf

The Support Kit –1

12 The Support Kit

Introduction . 3

Class Information . 5
Information . 5
Safe Casting . 6

Debugging Tools . 9
TheDEBUG Compiler Variable 9
The Debug Flag . 9
Macros . .10

BList .13
Overview .13
Constructor and Destructor .13
Member Functions. .14
Operators .18

BLocker . .19
Overview .19
Constructor and Destructor .20
Member Functions. .21

BObject . .23
Overview .23
Constructor and Destructor .23

BStopWatch. .25
Overview .25
Constructor and Destructor .26

Functions, Constants, and Defined Types 27
Functions and Macros . .27
Constants .29
Defined Types .30

2 – The Support Kit

Error Codes . .33
General Error Codes . .33
Application Kit Error Codes. 34
Debugger Error Codes . .34
Kernel Kit Error Codes .34
Media Kit Error Codes .35

The Support Kit –3

12 The Support Kit

The Support Kit contains classes and utilities that any application can take advantage of—
regardless of what kind of application it is or what it does. Among other things, it
includes:

• The root BObject class
• The BList class
• A system for getting class information at run time
• Debugging tools including the BStopWatch class
• Common defined types, macros, and error codes

4 – The Support Kit

The Support Kit –5

Class Information

Declared in: <support/ClassInfo.h>

The class-information system is a set of macros that you use to discover information about
an object’s class, and cast an object to pose as an instance of some other class.

Information

An object can supply three kinds of information about itself:

• What the name of its class is,
• Whether it’s an instance of a particular class, and
• Whether its class derives from some other class (or perhapsis the other class).

These three capabilities are embodied in the following macros,

const char *class_name(object)

bool is_instance_of(object, class)

bool is_kind_of(object, class)

whereobject is a pointer to any type of object andclass is a class designator—it’snot a
string name (for example, you would useBView, not “BView”).

Theclass_name() macro returns the name of the object’s class.is_instance_of() returns
TRUE if object is an instance ofclass, andFALSE otherwise.is_kind_of() returnsTRUE if
object is an instance of a class that inherits fromclass or an instance ofclass itself, and
FALSE if not.

For example, given this slice of the inheritance hierarchy from the Interface Kit,

and code like this that creates an instance of the BButton class,

BButton *anObject = new BButton(...);

these three macros would work as follows:

BView

BControl BButton

BMenu

Safe Casting Class Information

6 – The Support Kit

• Theclass_name() macro would return the string “BButton”:

const char *s = class_name(anObject);

• The is_instance_of() macro would returnTRUE only if theclass passed to it is
BButton. In the following example, it would returnFALSE, and the message would
not be printed. Even though BButton inherits from BView, the object is an instance
of the BButton class, not BView:

if (is_instance_of(anObject, BView))
 printf("The object is an instance of BView.\n");

• The is_kind_of() macro would returnTRUE if class is BButton or any class that
BButton inherits from. In the following example, it would returnTRUE and the
message would be printed. A BButton is a kind of BView:

if (is_kind_of(anObject, BView))
 printf("The object is a kind of BView.\n");

Note that class names are not passed as strings.

Safe Casting

An object whose class participates in the class-information system will permit itself to be
cast to that class or to any class that it inherits from. The agent for this kind of “safe
casting” is the following macro,

class *cast_as(object, class)

whereobject is an object pointer andclass is a class designator.

cast_as() returns a pointer toobject cast as a pointer to an object ofclass, provided that
object is a kind ofclass—that is, provided that it’s an instance of a class that inherits from
class or is an instance ofclass itself. If not,object cannot be safely cast as pointer toclass,
socast_as() returnsNULL.

This macro is most useful when you have a pointer to a generic object and you want to
treat it as a pointer to a more specific class.

Suppose, for example, that you retrieve a BWindow from a BView:

BWindow *window = myView->Window();

Class Information Safe Casting

The Support Kit –7

Furthermore, let’s say that you suspect that the object that was returned is really an
instance of a BWindow-derived class called MyWindow. If it is, you want to cast the
object to be a MyWindow pointer. Thecast_as() macro accomplishes this in one step:

MyWindow *mine;

if (mine = cast_as(window, MyWindow))
 /* mine is cast as a MyWindow object. */
else
 /* mine is set to NULL. */

Safe Casting Class Information

8 – The Support Kit

The Support Kit –9

Debugging Tools

Declared in: <support/Debug.h>

The Support Kit provides a set of macros that help you debug your application. These
tools let you print information to standard output or to the serial port, and conditionally
enter the debugger.

To enable the Support Kit’s debugging tools you have to do two things:

• Compile your code with theDEBUG compiler variable defined
• Turn on the debug flag in your code through theSET_DEBUG_ENABLED() macro

These two acts represent, respectively, a compile time and a run time decision about the
effectiveness of the debugging tools. The compile time decision overrides the run time
decision: Turning on the debug flag (SET_DEBUG_ENABLED(TRUE)) has no affect if the
DEBUG variable isn’t defined.

The DEBUG Compiler Variable

Defining theDEBUG compiler variable can be done by adding the following line to your
makefile:

USER_DEBUG_C_FLAGS := -DDEBUG

(The MetroWerks IDE will undoubtedly supply a means for setting theDEBUG variable
through its interface. Check your local papers.)

When you’re through debugging your application, simply remove theDEBUG definition
and all of the debugging macros will be compiled away—you don’t have to actually go
into the code and remove the macros or comment them out.

The Debug Flag

TheSET_DEBUG_ENABLED() macro turns on (or off) the debug flag. When you call a
debugging tool, the state of the debugger flag is checked; if it’s turned on, the tool does
what it’s designed to do (and, in with some tools, you could end up in the debugger). If the
flag is off, the tool is ignored.

Macros Debugging Tools

10 – The Support Kit

Note: The debug flag is on by default. If you want to (initially, at least) turn it off, you
should callSET_DEBUG_ENABLED(FALSE) as one of your first acts inmain().

The run time aspect of the debug flag is particularly convenient if your application is large
and you want to concentrate on certain sections of the code. Note, however, that the scope
of the flag is application-wide. You can’t, for example, disable the debugging tools across
an object’s member functions by simply calling SET_DEBUG_ENABLED(FALSE) in the
object’s constructor.

Macros

DEBUGGER(), ASSERT()
 DEBUGGER(var_args)
ASSERT(condition)

These macros cause your program to enter the debugger: DEBUGGER() always enters the
debugger,ASSERT() enters ifcondition (which can be any normal C or C++ expression)
evaluates toFALSE.

DEBUGGER() takes aprintf()-style variable-length argument that must be wrapped inside a
second set of parentheses; for example:

DEBUGGER(("What time is it? %f\n", system_time()));

The argument is evaluated and printed in the debugger’s shell.

If ASSERT() enters the debugger, the following message is printed:

Assert failed: File: filename , Line: number . condition

Note thatASSERT()’s argument needn’t be wrapped in a second set of parentheses.

HEAP_STATS()
HEAP_STATS()

Prints, to standard out, a message that gives statistics about your application’s memory
heap. The message appears in this format:

Heap Size: size bytes
Used blocks: count (size bytes)
Free blocks: count (size bytes)

Debugging Tools Macros

The Support Kit –11

PRINT(), SERIAL_PRINT()
PRINT(var_args)
SERIAL_PRINT(var_args)

These macros print the message given byvar_args. The argument takes the variable
argument form of aprintf() call and must be wrapped inside a second set of parenthesis; for
example:

PRINT(("The time is %f\n", system_time()));

PRINT() sends the message to standard out;SERIAL_PRINT() to serial port 4 (the bottom-most
serial port on the back of the computer).

PRINT_OBJECT()
PRINT_OBJECT(object)

Prints information about the argumentobject (which must be a pointer to a C++ object) by
calling the object’sPrintToStream() function. The macro doesn’t check to make sure that
object actually implements the function, so you should use this macro with care.

Object information is always printed to standard out (there isn’t a serial port version of the
call).

SET_DEBUG_ENABLED(), IS_DEBUG_ENABLED()
SET_DEBUG_ENABLED(flag)
IS_DEBUG_ENABLED(void)

TheSET_DEBUG_ENABLED() macro sets the state of the run time debug flag: ATRUE
argument turns it on,FALSE turns it off. The utility of the other debugging macros depends
on the state of the debug flag: When the flag is on, the macros work; when it’s off, they’re
ignored. The debug flag is set toTRUE by default.

The debug flag is only meaningful if your code was compiled with theDEBUG compiler
variable defined. Without the variable definition, the flag is alwaysFALSE.

 IS_DEBUG_ENABLED() returns the current state of the debug flag.

TRACE(), SERIAL_TRACE()
TRACE(void)
SERIAL_TRACE(void)

These macros print the name of the source code file that contains the currently executing
code (in other words, the file that contains theTRACE() call itself), the line number of the
code, and thethread_id of the calling thread. The information is printed in this form:

Macros Debugging Tools

12 – The Support Kit

 File: filename , Line: number , Thread: id

TRACE() sends the message to standard out;SERIAL_TRACE() to serial port 4 (the bottom-
most serial port on the back of the computer).

The Support Kit –13

BList

Derived from: public BObject

Declared in: <support/List.h>

Overview

A BList object is a compact, ordered list of data pointers. BList objects can contain
pointers to any type of data, including—and especially—objects.

Items in a BList are identified by their ordinal position, or index, starting with index 0.
Indices are neither arbitrary nor permanent. If, for example, you insert an item into the
middle of a list, the indices of the items at the tail of the list are incremented (by one).
Similarly, removing an item decrements the indices of the following items.

A BList stores its items as typevoid *, so it’s necessary to cast an item to the correct type
when you retrieve it. For example, items retrieved from a list of BBitmap objects must be
cast as BBitmap pointers:

BBitmap *theImage = (BBitmap *)myList->ItemAt(anIndex);

Note: There’s nothing to prevent you from adding aNULL pointer to a BList. However,
functions that retrieve items from the list (such asItemAt()) returnNULL when the
requested item can’t be found. Thus, you can’t distinguish between a validNULL item and
an invalid attempt to access an item that isn’t there.

Constructor and Destructor

BList()
BList(longblockSize = 20)
BList(const BList&anotherList)

Initializes the BList by allocating enough memory to holdblockSize items. As the list
grows and shrinks, additional memory is allocated and freed in blocks of the same size.

The copy constructor creates an independent list of data pointers, but it doesn’t copy the
pointed-to data. For example:

BList *newList = new BList(oldList);

Member Functions BList

14 – The Support Kit

Here, the contents ofoldList andnewList—the actual data pointers—are separate and
independent. Adding, removing, or reordering items inoldList won’t affect the number or
order of items innewList. But if you modify the data that an item inoldList points to, the
modification will be seen through the analogous item innewList.

The block size of a BList that’s created through the copy constructor is the same as that of
the original BList.

~BList()
virtual ~BList(void)

Frees the list of data pointers, but doesn’t free the data that they point to. To destroy the
data, you need to free each item in an appropriate manner. For example, objects that were
allocated with thenew operator should be freed withdelete:

void *anItem;
for (long i = 0; anItem = myList->ItemAt(i); i++)
 delete anItem;
delete myList;

See also: MakeEmpty()

Member Functions

AddItem()
bool AddItem(void *item, long index)
inline boolAddItem(void *item)

Adds an item to the BList atindex—or, if no index is supplied, at the end of the list. If
necessary, additional memory is allocated to accommodate the new item.

Adding an item never removes an item already in the list. If the item is added at an index
that’s already occupied, items currently in the list are bumped down one slot to make
room.

If index is out-of-range (greater than the current item count, or less than zero), the function
fails and returnsFALSE. Otherwise it returnsTRUE.

BList Member Functions

The Support Kit –15

AddList()
bool AddList(BList * list, long index)
bool AddList(BList * list)

Adds the contents of another BList to this BList. The items from the other BList are
inserted atindex—or, if no index is given, they’re appended to the end of the list. If the
index is out-of-range, the function fails and returnsFALSE. If successful, it returnsTRUE.

See also: AddItem()

CountItems()
inline longCountItems(void) const

Returns the number of items currently in the list.

DoForEach()
void DoForEach(bool (*func)(void *))
void DoForEach(bool (*func)(void *, void *), void *arg2)

Calls thefunc function once for each item in the BList. Items are visited in order,
beginning with the first one in the list (index 0) and ending with the last. If a call tofunc
returnsTRUE, the iteration is stopped, even if some items have not yet been visited.

func must be a function that takes one or two arguments. The first argument is the
currently-considered item from the list; the second argument, iffunc requires one, is
passed toDoForEach() asarg2.

FirstItem()
inline void *FirstItem(void) const

Returns the first item in the list, orNULL if the list is empty. This function doesn’t remove
the item from the list.

See also: LastItem(), ItemAt()

HasItem()
inline boolHasItem(void *item) const

ReturnsTRUE if item is in the list, andFALSE if not.

Member Functions BList

16 – The Support Kit

IndexOf()
long IndexOf(void *item) const

Returns the ordinal position ofitem in the list, orB_ERROR if item isn’t in the list. If the
item is in the list more than once, the index returned will be the position of its first
occurrence.

IsEmpty()
inline boolIsEmpty(void) const

ReturnsTRUE if the list is empty (if it contains no items), andFALSE otherwise.

See also: MakeEmpty()

ItemAt()
inline void *ItemAt(long index) const

Returns the item atindex, or NULL if the index is out-of-range. This function doesn’t
remove the item from the list.

See also: Items(), FirstItem(), LastItem()

Items()
inline void *Items(void) const

Returns a pointer to the BList’s list. You can index directly into the list if you’re certain
that the index is in-range:

myType item = (myType)Items()[index];

Although the practice is discouraged, you can also step through the list of items by
incrementing the list pointer that’s returned byItems(). Be aware that the list isn’t null-
terminated—you have to detect the end of the list by some other means. The simplest
method is to count items:

void *ptr = myList->Items();

for (long i = myList->ItemCount(); i > 0; i--)
{
 . . .
 *ptr++;
}

You shouldnever use the list pointer to change the number of items in the list.

See also: DoForEach(), SortItems()

BList Member Functions

The Support Kit –17

LastItem()
inline void *LastItem(void) const

Returns the last item in the list without removing it. If the list is empty, this function
returnsNULL.

See also: RemoveLastItem(), FirstItem()

MakeEmpty()
void MakeEmpty(void)

Empties the BList of all its items, without freeing the data that they point to.

See also: IsEmpty(), RemoveItem()

RemoveItem()
bool RemoveItem(void *item)
void *RemoveItem(long index)

Removes an item from the list. If passed anitem, the function looks for the item in the list,
removes it, and returnsTRUE. If it can’t find the item, it returnsFALSE. If the item is in the
list more than once, this function removes only its first occurrence.

If passed anindex, the function removes the item at that index and returns it. If there’s no
item at the index, it returnsNULL.

The list is compacted after an item is removed. Because of this, you mustn’t try to empty
a list (or a range within a list) by removing items at monotonically increasing indices. You
should either start with the highest index and move towards the head of the list, or remove
at the same index (the lowest in the range) some number of times. As an example of the
latter, the following code removes the first five items in the list:

for (long i = 0; i <= 4; i++)
myList->RemoveItem(0);

See also: MakeEmpty()

SortItems()
void *SortItems(int (*compareFunc)(const void *, const void *))

Rearranges the items in the list. The items are sorted using thecompareFunc comparison
function passed as an argument. This function should take two items as arguments. It
should return a negative number if the first item should be ordered before the second, a

Operators BList

18 – The Support Kit

positive number if the second should be ordered before the first, and 0 if the two items
should be ordered equivalently.

See also: Items()

Operators

= (assignment)
BList& operator =(const BList&)

Copies the contents of one BList object into another:

BList newList = oldList;

After the assignment, each object has its own independent copy of list data; destroying one
of the objects won’t affect the other.

Only the items in the list are copied, not the data they point to.

The Support Kit –19

BLocker

Derived from: public BObject

Declared in: <support/Locker.h>

Overview

The BLocker class provides a locking mechanism that protects a section of code. The
code that you want to protect should be placed between BLocker’sLock() andUnlock()
calls:

BLocker *aLock = new BLocker();

...
aLock->Lock();
/* Protected code goes here. */
aLock->Unlock();

This disposition of calls guarantees that only one thread at a time will pass through the
lock. After a thread has locked the BLocker object, subsequent attempts to lock by other
threads are blocked until the first thread callsUnlock().

BLocker keeps track of its lock’s “owner”—the thread that’s currently betweenLock() and
Unlock() calls. It lets the lock owner make nested calls to Lock() without blocking.
Because of this, you can wrap a BLocker’s lock around a series of functions that might,
themselves, lock the same BLocker object.

For example, let’s say you have a class called BadDog that’s declared thus:

class MyObject : public BObject
{
public:

void DoThis();
void DoThat();
void DoThisAndThat();

private:
 BLocker lock;
};

And let’s implement the member functions as shown below:

void BadDog::DoThis()
{

lock.Lock();

Constructor and Destructor BLocker

20 – The Support Kit

/* Do this here. */
lock.Unlock();

}

void BadDog::DoThat()
{

lock.Lock();
/* Do that here. */
lock.Unlock();

}

void BadDog::DoThisAndThat()
{

lock.Lock();
DoThis();
DoThat();
lock.Unlock();

}

Notice thatDoThisAndThat() wraps the lock around its calls toDoThis() andDoThat(), both
of which contain locks as well. A thread that gets past theLock() call in DoThisAndThat()
will be consider the lock’s owner, and so it won’t block when it calls the nestedLock()
calls that it runs into in DoThis() andDoThat().

Keep in mind that nestedLock() calls must be balanced by equally-nestedUnlock() calls.

Constructor and Destructor

BLocker()
BLocker(void)

BLocker(const char *name)

Sets up the object. The optional name is purely for diagnostics and debugging.

~BLocker()
virtual ~BLocker(void)

Deletes the object. If there are any threads blocked waiting to lock the object, they’re
immediately unblocked.

BLocker Member Functions

The Support Kit –21

Member Functions

IsLocked()
inline boolIsLocked(void) const

Checks to see whether the calling thread is the thread that currently owns the lock. If it is,
IsLocked() returnsTRUE. If it’s not, IsLocked() returnsFALSE

Lock(), Unlock()
void Lock(void)

void Unlock(void)

These functions lock and unlock the BLocker.

Lock() attempts to lock the BLocker and set the lock’s owner to the calling thread. The
function doesn’t return until it has succeeded. While the BLocker is locked, non-owner
calls toLock() will block. The owner, on the other hand, can make additional, nested calls
to Lock() without blocking.

Unlock() releases one level of nested locks and returns immediately. When the BLocker
is completely unlocked—when all nestedLock() calls have been matched by calls to
Unlock()—the lock’s owner is “unset”, allowing some other thread to lock the BLocker. If
there are threads blocked inLock() calls when the lock is released, the thread that’s been
waiting the longest acquires the lock.

Although you’re not prevented from doing so, it’s not good form to callUnlock() from a
thread that doesn’t own the lock. For debugging purposes, you can callIsLocked() before
calling Unlock() to make sure this doesn’t happen in your code.

See also: LockOwner()

LockOwner()
inline thread_idLockOwner(void) const

Returns the thread that currently owns the lock, or –1 if the BLocker isn’t currently
locked.

See also: Lock()

Member Functions BLocker

22 – The Support Kit

The Support Kit –23

BObject

Derived from: none

Declared in: <support/Object.h>

Overview

BObject is the root class of the inheritance hierarchy. All Be classes (with just a handful
of significant exceptions) are derived from it.

The primary reason for a single, shared base class is to provide common functionality to
all objects. Currently, the BObject class is empty (except for its constructor and
destructor), so there’s no significant functionality to report. Subsequent releases will
probably introduce new functions to the class; in anticipation of this, it’s suggested that the
classes you design derive from BObject (if no other Be class is a fit base).

In addition, when all objects are derived from BObject, the class can provide a generic
type classification (BObject *) that simply means “an object.” This can be a useful
substitute for typevoid *.

Constructor and Destructor

BObject()
BObject(void)

Does nothing. Because the BObject class has no data members to initialize, the BObject
constructor is empty.

~BObject()
virtual ~BObject(void)

Does nothing. Because the BObject class doesn’t declare any data members, the BObject
destructor has nothing to free.

Constructor and Destructor BObject

24 – The Support Kit

The Support Kit –25

BStopWatch

Derived from: public BObject

Declared in: <support/StopWatch.h>

Overview

The BStopWatch class is a debugging tool that you can use to time the execution of
portions of your code. The class has no member functions or (public) member data.
When a BStopWatch object is constructed, it starts its internal timer. When it’s deleted it
stops the timer and prints the elapsed time to standard out in this format:

StopWatch “name”: f usecs.

Wherename is the name that you gave to the object when you constructed it, andf is the
elapsed time in microseconds reckoned to one decimal place.

For example ...

#include <StopWatch.h>
...
BStopWatch *myWatch = new BStopWatch("Timer 0");
/* The code you want to time goes here. */
delete myWatch;
...

... would produce, on standard out, a message that goes something like this:

StopWatch "Timer 0": 492416.3 usecs.

This would indicate that the timed code took about half a second to execute—remember,
you’re looking at microseconds.

BStopWatch objects are handy little critters. They’re particularly useful if you want to get
a general idea of where your cycles are going. But you shouldn’t rely on them for
painfully accurate measurements.

Important: Unlike the other debugging tools defined by the Support Kit, there’s no run-
time toggle to control a BStopWatch. Make sure you remove your BStopWatch objects
after you’re done debugging your code.

Constructor and Destructor BStopWatch

26 – The Support Kit

Constructor and Destructor

BStopWatch()
BStopWatch(const char *name)

Creates a BStopWatch object, names it name, and starts its internal timer.

~BStopWatch()
virtual ~BStopWatch(void)

Stops the object’s timer, spits out a timing message to standard out, and then destroys the
object and everything it believes in.

The Support Kit –27

Functions, Constants, and
Defined Types

This section lists the Support Kit’s general-purpose functions (including function-like
macros), constants, and defined types. These elements are used throughout the Be
application-programming interface.

Not listed here are constants that are used as error codes. These are listed in “Error
Codes” on page 33.

Functions and Macros

atomic_add(), atomic_and(), atomic_or()
long atomic_add(long *atomic_variable, longadd_value)
long atomic_and(long *atomic_variable, longand_value)
long atomic_or(long *atomic_variable, longor_value)

These functions perform the named operations (addition, bitwise AND, or bitwise OR) on
the value found inatomic_variable, thus:

*atomic_variable += add_value
*atomic_variable &= and_value
*atomic_variable |= or_value

The functions return the previous value of*atomic_variable (in other words, they return
the value thatatomic_variable pointed to before the operation was performed).

The significance of these functions is that they’re guaranteed to beatomic: If two threads
attempt to access the same atomic variable at the same time (through these functions), one
of the two threads will be made to wait until the other thread has completed the operation
and updated theatomic_variable value.

Functions and Macros Functions, Constants, and Defined Types

28 – The Support Kit

class_name(), is_instance_of(), is_kind_of(), cast_as()
class_name(object)
is_instance_of(object, class)
is_kind_of(object, class)
cast_as(object, class)

These macros are part of the class information mechanism. In all cases,object is a pointer
to an object, and class is a class designator (such as, literally,BView or BFile) andnot a
string (not “BView” or “BFile”).

class_name() returns a pointer to the name ofobject’s class.

is_instance_of() returnsTRUE if object is a direct instance of class.

is_kind_of() returnsTRUE if object is an instance of class, or if it inherits from class.

cast_as() if object is a kind of class (in theis_kind_of() sense), then cast_as() returns a
pointer to object cast as an instance of class. Otherwise it returnsNULL.

min(), max()
<support/SupportDefs.h>

min(a, b)
max(a, b)

These macros compare two integers or floating-point numbers.min() returns the lesser of
the two (orb if they’re equal);max() returns the greater of the two (ora if they’re equal).

read_16_swap(), read_32_swap(), write_16_swap(), write_32_swap()
shortread_16_swap(short *address)
long read_32_swap(long *address)

void write_16_swap(short *address, shortvalue)
void write_32_swap(long *address, longvalue)

Theread... functions read a 16- or 32-bit value fromaddress, reverse the order of the
bytes in the value, and return the swapped value directly.

Thewrite... functions swap the bytes invalue and write the swapped value toaddress.

Functions, Constants, and Defined Types Constants

The Support Kit –29

real_time_clock(), set_real_time_clock(), time_zone(),
set_time_zone()

long real_time_clock(void)
void set_real_time_clock(longseconds)

long time_zone(void)
void set_time_zone(longseconds)

These functions measure and set time in seconds:

• real_time_clock() returns a measure of the number of seconds that have elapsed
since the beginning of January 1st, 1970.time_zone() is a time-zone based offset,
in seconds, that you can add to the value returned byreal_time_clock() to get a
notion of the actual (current) time of day.

• set_real_time_clock() andset_time_zone() set the values for the system’s clock and
time zone variables.

Warning: Thetime_zone() andset_time_zone() functions are currently unimplemented.
If you call them, you will crash.

These functions aren’t intended for scrupulously accurate measurement.

See also: system_time() in the Kernel Kit

write_16_swap() see read_16_swap()

write_32_swap() see read_16_swap()

Constants

Boolean Constants
<support/SupportDefs.h>

Defined constant Value

FALSE 0
TRUE 1

These constants are used as values forbool variables (thebool type is listed in the next
section).

Defined Types Functions, Constants, and Defined Types

30 – The Support Kit

Empty String
<support/SupportDefs.h>

const char *B_EMPTY_STRING

This constant provides a global pointer to an empty string (“”).

NULL and NIL
<support/SupportDefs.h>

Defined constant Value

NIL 0
NULL 0

These constants represent “empty” values. They’re synonyms that can be used
interchangeably.

Defined Types

bool
<support/SupportDefs.h>

typedef unsigned charbool

This is the Be version of the basic boolean type. TheTRUE andFALSE constants (listed
above) are defined as boolean values.

Fumction Pointers
<support/SupportDefs.h>

typedef int (*B_PFI)()
typedef long (*B_PFL)()
typedef void (*B_PFV)()

These types are pointers to functions that returnint, long, andvoid values respectively.

Unsigned Integers
<support/SupportDefs.h>

typedef unsigned charuchar
typedef unsigned intuint

Functions, Constants, and Defined Types Defined Types

The Support Kit –31

typedef unsigned longulong
typedef unsigned shortushort

These type names are defined as convenient shorthands for the standard unsigned types.

Volatile Integers
<support/SupportDefs.h>

typedef volatile charvchar
typedef volatile intvint
typedef volatile longvlong
typedef volatile shortvshort

These type names are defined as shorthands for declaring volatile data.

Volatile and Unsigned Integers
<support/SupportDefs.h>

typedef volatile unsigned charvuchar
typedef volatile unsigned intvuint
typedef volatile unsigned longvulong
typedef volatile unsigned shortvushort

These type names are defined as shorthands for specifying an integral data type to be both
unsigned and volatile.

Defined Types Functions, Constants, and Defined Types

32 – The Support Kit

The Support Kit –33

Error Codes

Error codes are returned by various functions to indicate the success or to describe the
failure of a requested operation. All Be error constants except forB_NO_ERROR are
negative integers; any function that returns an error code can thus be generally tested for
success or failure by the following:

if (funcCall() < B_NO_ERROR)
/* failure */

else
/* success */

Furthermore, all constants (exceptB_NO_ERROR andB_ERROR) are less than or equal to the
value of theB_ERRORS_END constant. If you want to define your own negative-valued
error codes, you should begin with the value (B_ERRORS_END + 1) and work your way
toward 0.

General Error Codes

<support/Errors.h>

Error Code Meaning

B_NO_MEMORY There’s not enough memory for the operation.
B_IO_ERROR A general input/output error occurred.
B_PERMISSION_DENIED The operation isn’t allowed.

B_FILE_ERROR A file error occurred.
B_FILE_NOT_FOUND The specified file doesn’t exist.

B_BAD_INDEX The index is out of range.
B_BAD_VALUE An illegal value was passed to the function.
B_MISMATCHED_VALUES Conflicting values were passed to the function.
B_BAD_TYPE An illegal argument type was named or passed.

B_NAME_NOT_FOUND There’s no match for the specified name.
B_NAME_IN_USE The requested (unique) name is already used.

B_TIMED_OUT Time expired before the operation was finished.
B_INTERRUPTED A signal interrupted the operation.

B_ERROR = –1 This is a convenient catchall for general errors.
B_NO_ERROR = 0 Everything’s OK.

B_ERRORS_END Marks the end of all Be-defined error codes.

Application Kit Error Codes Error Codes

34 – The Support Kit

Application Kit Error Codes

<support/Errors.h>

Error Code Meaning

B_DUPLICATE_REPLY A previous reply message has already been sent.
B_BAD_REPLY The reply message is inappropriate and can’t be sent
B_BAD_HANDLER The designated message handler isn’t valid.

B_MESSAGE_TO_SELF A thread is trying to send a message to itself.
B_ALREADY_RUNNING The application can’t be launched again.
B_LAUNCH_FAILED The attempt to launch the application failed.

These constants are defined for the messaging classes of the Application Kit. The
messaging system also makes use of some of the general errors and kernel errors described
above.

See also: BMessage::Error() andBMessenger::Error()

Debugger Error Codes

<support/Errors.h>

Error Code

B_DEBUGGER_ALREADY_INSTALLED

This constant signals that the debugger has already been installed for a particular team and
can’t be installed again.

Kernel Kit Error Codes

<support/Errors.h>

Error Code Meaning

B_BAD_THREAD_ID Specified thread identifier (thread_id) is invalid.
B_BAD_THREAD_STATE The thread is in the wrong state for the operation.
B_NO_MORE_THREADS All thread identifiers are currently taken.

B_BAD_TEAM_ID Specified team identifier (team_id) is invalid.
B_NO_MORE_TEAMS All team identifiers are currently taken.

B_BAD_PORT_ID Specified port identifier (port_id) is invalid.
B_NO_MORE_PORTS All port identifiers have been taken.

B_BAD_SEM_ID Semaphore identifier (sem_id) is invalid.
B_NO_MORE_SEMS All semaphores are currently taken.

Error Codes Media Kit Error Codes

The Support Kit –35

B_BAD_IMAGE_ID Specified image identifier (image_id)is inavlid.

These error codes are returned by functions in the Kernel Kit, and occasionally by
functions defined in higher level kits.

Media Kit Error Codes

<support/Errors.h>

Error Code Meaning

B_STREAM_NOT_FOUND The attempt to locate the stream failed.
B_SERVER_NOT_FOUND The attempt to locate the server failed.
B_RESOURCE_NOT_FOUND The attempt to locate the resource failed.
B_RESOURCE_UNAVAILABLE Permission to access the resource was denied.
B_BAD_SUBSCRIBER The BSubscriber is invalid.
B_SUBSCRIBER_NOT_ENTERED The BSubscriber hasn’t entered the stream.
B_BUFFER_NOT_AVAILABLE The attempt to acquire the buffer failed.

These error codes are defined for the Media Kit. See the classes and functions in that kit
for an explanation of how they’re used.

Media Kit Error Codes Error Codes

36 – The Support Kit

acrobat/A_Msg.pdf

Message Protocols –1

A. Message Protocols

System Messages . 3
System Management Messages 3

B_HANDLERS_REQUESTED 4
B_QUIT_REQUESTED 4

Application Messages. 4
B_ABOUT_REQUESTED 4
B_ACTIVATE . 5
B_APP_ACTIVATED 5
B_ARGV_RECEIVED 5
B_PANEL_CLOSED 5
B_PULSE . 6
B_QUIT_REQUESTED 6
B_READY_TO_RUN. 6
B_REFS_RECEIVED 6

Interface Messages . 7
B_KEY_DOWN . 7
B_KEY_UP . 9
B_MINIMIZE . 9
B_MOUSE_DOWN 9
B_MOUSE_MOVED 10
B_MOUSE_UP .11
B_PANEL_CLOSED12
B_PULSE . .12
B_QUIT_REQUESTED13
B_SAVE_REQUESTED13
B_SCREEN_CHANGED. 14
B_VALUE_CHANGED 14
B_VIEW_MOVED 14
B_VIEW_RESIZED. 15
B_WINDOW_ACTIVATED. 15
B_WINDOW_MOVED 16
B_WINDOW_RESIZED 16
B_WORKSPACE_ACTIVATED16
B_WORKSPACES_CHANGED 17
B_ZOOM .17

2 – Message Protocols

Standard Messages .18
Reply Messages . .18

B_HANDLERS_INFO 18
B_MESSAGE_NOT_UNDERSTOOD18
B_NO_REPLY. .19

Editing Messages .19
B_CUT, B_COPY, andB_PASTE19
B_SIMPLE_DATA19

Interapplication Messages . .20

Message Protocols –3

A. Message Protocols

This appendix details the formats for all public messages produced and understood by Be
system software. The list includes all system messages, all other messages that might find
their way to your application (for example, through a drag and drop operation), and all
messages that you can deliver to a Be application or a Be-defined class.

For information on the messaging system, see “Messaging” inThe Application Kit
chapter.

System Messages

Messages that are dispatched and handled in a message-specific manner are known as
system messages. For the most part, these are messages that the system produces and that
applications are expected to respond to (by implementing a hook function matched to the
message), but some are messages that applications must produce themselves. They fall
into three categories:

• System-management messages can be delivered to any BLooper,
• Application messages are consigned to the BApplication object, and
• Interface messages are reported to BWindow objects.

For information on the place of system messages in the messaging system, see “System
Messages” in the introduction toThe Application Kit chapter.

System Management Messages

System management messages are concerned with running the messaging system. The
BLooper class in the Application Kit declares hook functions for two such messages. (See
also “System Management Messages” on page 15 ofThe Application Kit chapter.)

System Messages

4 – Message Protocols

B_HANDLERS_REQUESTED

This message asks a target BHandler to supply BMessenger objects as proxies for other
BHandlers. The BLooper dispatches it by calling the target’sHandlersRequested()
function; the target should respond with aB_HANDLERS_INFO reply.

TheHandlersRequested() functions implemented in the Application and Interface Kits
look for the following data entries in the message. See those functions for details.

Data name Type code Description

“index” B_LONG_TYPE An index into a list of BHandlers kept by
the target BHandler.

“name” B_STRING_TYPE The name of a BHandler.

“class” B_STRING_TYPE The name of a class derived from
BHandler or “BHandler” itself.

Since applications initiateB_HANDLERS_REQUESTED messages, they are free to use
whatever protocols prove useful for requesting BHandler proxies. The data entries listed
above are simply those that the Be-defined functions expect.

B_QUIT_REQUESTED

This message contains no data. It simply asks a BLooper to quit its message loop and
destroy itself. The Blooper dispatches the message by calling its ownQuitRequested()
function.

This message is reinterpreted by the BApplication object to mean a request to quit the
application and by a BWindow object to mean a request to close the window. It’s
therefore also listed under “Application Messages” and “Interface Messages” below.

Application Messages

Application messages concern the application as a whole, rather than one specific window
or thread. They’re all received and handled by the BApplication object. See “Application
Messages” on page 16 in the introduction toThe Application Kit chapter for information
on when they’re produced and how they should be handled.

B_ABOUT_REQUESTED

This message contains no data entries. It requests the BApplication object to put a
window on-screen with information about the application. Applications should produce it
when the user chooses the “About . . .” item in the main menu. The BApplication object
dispatches the message by calling its ownAboutRequested() function.

System Messages

Message Protocols –5

B_ACTIVATE

This message contains no data entries. It instructs the application to make itself the active
application. The BApplication object dispatches it by callingActivate(), defined in the
BApplication class.

B_APP_ACTIVATED

This message informs the application that it has become the active application, or that it
has ceded that status to another application. The BApplication object dispatches the
message by callingAppActivated().

It contains one data entry:

Data name Type code Description

“active” B_BOOL_TYPE TRUE if the application has just become
the active application, andFALSE if it just
gave up that status.

B_ARGV_RECEIVED

This message passes the BApplication object command-line strings, typically ones the
user typed in a shell. The BApplication object dispatches it by callingArgvReceived().

The message has the two expected data entries for command-line arguments:

Data name Type code Description

“argc” B_LONG_TYPE The number of items in the “argv” array.
This will be the same number that
BMessage::GetInfo() for “argv” would
report.

“argv” B_STRING_TYPE The command-line strings. Each
argument is stored as an independent
item under the “argv” name—that is,
there’s an array of data items, each of
typechar *, rather than a single item of
typechar **.

B_PANEL_CLOSED

This message notifies the application that the file panel has been removed from the screen.
The BApplication object dispatches it by callingFilePanelClosed().

System Messages

6 – Message Protocols

The message has these data entries:

Data name Type code Description

“frame” B_RECT_TYPE The frame rectangle of the panel at the
time it was closed. (The user may have
resized it and relocated it on-screen.)
The rectangle is recorded in screen
coordinates.

“directory” B_REF_TYPE A record_ref reference to the last
directory displayed in the panel.

“marked” B_STRING_TYPE The item that was selected in the Filters
list when the panel closed.

“canceled” B_BOOL_TYPE TRUE if the panel was closed because the
user operated the “Cancel” button and
FALSE otherwise.

B_PULSE

This message contains no data entries. It’s posted at regularly spaced intervals as a kind of
timing mechanism. The BApplication object dispatches it by calling thePulse() function
declared in the BApplication class.

B_QUIT_REQUESTED

This message contains no data entries. Its dispatching (by callingQuitRequested()) is
defined in the BLooper class. When it gets the message, the BApplication object
interprets it to be a request to shut the entire application down, not just one thread. It
consequently promulgates similar messages to all BWindow objects.

B_READY_TO_RUN

This message contains no data entries. It’s delivered to the BApplication object to mark
the application’s readiness to accept message input after being launched. The
BApplication object dispatches it by callingReadyToRun().

B_REFS_RECEIVED

This message passes the application one or more references to database records. It’s
typically produced by the Browser when the user chooses some files for the application to
open. The BApplication object dispatches it by callingRefsReceived().

System Messages

Message Protocols –7

The message has one data entry, which might be an array of more than one item:

Data name Type code Description

“refs” B_REF_TYPE One or morerecord_ref items referring
to database records. Typically, the
records are for documents the
application is expected to open.

B_REFS_RECEIVED messages can also be dragged to and from Browser windows.

Interface Messages

Interface messages inform BWindow objects and their BViews about activity in the user
interface. Unlike application messages, most of which consist only of a command
constant, most interface messages contain data entries describing an event. They’re all
delivered to a BWindow object, which dispatches some to itself but most to its BViews.

See “Interface Messages” on page 41 inThe Interface Kit chapter for a discussion of the
events these messages report.

B_KEY_DOWN

This message reports that the user pressed a character key on the keyboard. It’s dispatched
by calling theKeyDown() function of the target BView, generally the window’s focus
view. Most keys produce repeatedB_KEY_DOWN messages—as long as the user keeps
holding the key down and doesn’t press another key.

Each message contains the following data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the key went down, as measured
in microseconds from the time the
machine was last booted.

“key” B_LONG_TYPE The code for the key that was pressed.

“modifiers” B_LONG_TYPE A mask that identifies which modifier
keys the user was holding down and
which keyboard locks were on at the
time of the event.

“char” B_LONG_TYPE The character that’s generated by the
combination of the key and modifiers.

System Messages

8 – Message Protocols

“states” B_UCHAR_TYPE A bitfield that records the state of all
keys and keyboard locks at the time of
the event. Although declared as
B_UCHAR_TYPE, this is actually an array
of 16 bytes.

For most applications, the “char” code is sufficient to distinguish one sort of user action on
the keyboard from another. It reflects both the key that was pressed and the effect that the
modifiers have on the resulting character. For example, if the Shift key is down when the
user presses theA key, or if Caps Lock is on, the “char” produced will be uppercase ‘A’
rather than lowercase ‘a’. If the Control key is down, it will be theB_HOME character. A
section ofThe Interface Kit chapter, “Keyboard Information” on page 47, discusses the
mapping of keys to characters in more detail.

The “modifiers” mask explicitly identifies which modifier keys the user is holding down
and which keyboard locks are on at the time of the event. The mask is formed from the
following constants, which are explained under “Modifier Keys” on page 51 in the
introduction toThe Interface Kit chapter.

B_SHIFT_KEY B_COMMAND_KEY B_CAPS_LOCK
B_LEFT_SHIFT_KEY B_LEFT_COMMAND_KEY B_SCROLL_LOCK
B_RIGHT_SHIFT_KEY B_RIGHT_COMMAND_KEY B_NUM_LOCK

B_CONTROL_KEY B_OPTION_KEY
B_LEFT_CONTROL_KEY B_LEFT_OPTION_KEY B_MENU_KEY
B_RIGHT_CONTROL_KEY B_RIGHT_OPTION_KEY

The mask is empty if no keyboard locks are on and none of the modifiers keys are being
held down.

The “key” code is an arbitrarily assigned number that identifies which character key the
user pressed. All keys on the keyboard, including modifier keys, have key codes (but only
character keys produce key-down events). The codes for the keys on a standard keyboard
are shown in the “Key Codes” section on page 48 inThe Interface Kit chapter.

The “states” bitfield captures the state of all keys and keyboard locks at the time of the
key-down event. (At other times, you can obtain the same information through BView’s
GetKeys() function.)

Although it’s declared asB_UCHAR_TYPE, the bitfield is really an array of 16 bytes,

uchar states[16];

with one bit standing for each key on the keyboard. For most keys, the bit records whether
the key is up or down. However, the bits corresponding to keys that toggle keyboard locks
record the current state of the lock. To learn how to read the “states” array, see “Key
States” on page 56 inThe Interface Kit chapter.

System Messages

Message Protocols –9

B_KEY_UP

< Key-up messages are not currently reported. >

B_MINIMIZE

This message instructs a BWindow to “minimize” itself—to replace the window on-screen
with a small token—or to remove the token and restore the full window. The message is
produced when the user double-clicks the window tab or the window token and is
dispatched by calling the BWindow’sMinimize() function.

It contains the following data:

Data name Type code Description

“when” B_DOUBLE_TYPE When the user acted, as measured in
microseconds from the time the machine
was last booted.

“minimize” B_BOOL_TYPE A flag that’sTRUE if the window should
be minimized to a token representation,
andFALSE if it should be restored to the
screen from its minimized state.

B_MOUSE_DOWN

This message reports that the user pressed a mouse button while the cursor was over the
content area of a window. It’s produced only for the first button the user presses—that is,
only if no other mouse buttons are down at the time. The BWindow dispatches it by
calling the target BView’sMouseDown() function.

The message contains the following information:

Data name Type code Description

“when” B_DOUBLE_TYPE When the mouse button went down, as
measured in microseconds from the time
the machine was last booted.

“where” B_POINT_TYPE Where the cursor was located when the
user pressed the mouse button, expressed
in the coordinate system of the target
BView—the view where the cursor was
located at the time of the event.

“modifiers” B_LONG_TYPE A mask that identifies which modifier
keys were down and which keyboard
locks were on when the user pressed the
mouse button.

System Messages

10 – Message Protocols

“buttons” B_LONG_TYPE A mask that identifies which mouse
button went down.

“clicks” B_LONG_TYPE An integer that counts the sequence of
mouse-down events for multiple clicks.
It will be 1 for a single-click, 2 for a
double-click, 3 for a triple-click, and so
on.

The “modifiers” mask is the same as for key-down events and is described under
“Modifier Keys” on page 51 inThe Interface Kit chapter.

The “buttons” mask identifies mouse buttons by their roles in the user interface. It may be
formed from one or more of the following constants:

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

Because a mouse-down event is reported only for the first button that goes down, the mask
will usually contain just one constant.

The “clicks” integer counts clicks. It’s incremented each time the user presses the mouse
button within a specified interval of the previous mouse-down event, and is reset to 1 if the
event falls outside that interval. The interval is a user preference that can be set with the
Mouse preferences application.

Note that the only test for a multiple-click is one of timing between mouse-down events.
There is no position test—whether the cursor is still in the vicinity of where it was at the
time of the previous event. It’s left to applications to impose such a test where
appropriate.

B_MOUSE_MOVED

This message is produced when the user moves the cursor into, within, or out of a window.
Each message captures a small portion of that movement. Messages aren’t produced if the
cursor isn’t over a window or isn’t moving. The BWindow dispatches each message by
calling theMouseMoved() function of every BView the cursor touched in its path from its
last reported location.

The message contains the following data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the event occurred, as measured in
microseconds from the time the machine
was last booted.

System Messages

Message Protocols –11

“where” B_POINT_TYPE The new location of the cursor, where it
has moved to, expressed in window
coordinates.

“area” B_LONG_TYPE The area of the window where the cursor
is now located.

“buttons” B_LONG_TYPE Which mouse buttons, if any, are down.

The “area” constant records which part of the window the cursor is over. It will be one of
the following constants:

B_CONTENT_AREA The cursor is over the content area of the window.

B_CLOSE_AREA The cursor is over the close button in the title tab.

B_ZOOM_AREA The cursor is over the zoom button in the title tab.

B_TITLE_AREA The cursor is inside the title tab, but not over either the
close button or zoom button.

B_RESIZE_AREA The cursor is over the area in the right bottom corner
where the window can be resized.

B_MINIMIZE_AREA < Currently unused. >

B_UNKNOWN_AREA It’s unknown where the cursor is, probably because it just
left the window.

The “buttons” mask is formed from one or more of the following constants:

B_PRIMARY_MOUSE_BUTTON
B_SECONDARY_MOUSE_BUTTON
B_TERTIARY_MOUSE_BUTTON

If no buttons are down, the mask is 0.

B_MOUSE_UP

This message reports that the user released a mouse button. It’s produced only for the last
button the user releases—that is, only if no other mouse button remains down. The
BWindow does not dispatch this message.

The message contains the following data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the mouse button went up again,
as measured in microseconds from the
time the machine was last booted.

System Messages

12 – Message Protocols

“where” B_POINT_TYPE Where the cursor was located when the
user released the mouse button,
expressed in the coordinate system of the
target BView—the view where the
cursor was located when the button went
up.

“modifiers” B_LONG_TYPE A mask that identifies which of the
modifier keys were down and which
keyboard locks were in effect when the
user released the mouse button.

The “modifiers” mask is the same as for key-down events and is described under
“Modifier Keys” on page 51 inThe Interface Kit chapter.

B_PANEL_CLOSED

This message is delivered to the BWindow when the application or the user closes the save
panel associated with the window. The BWindow dispatches it by calling its own
SavePanelClosed() function.

The message contains the following data entries:

Data name Type code Description

“frame” B_RECT_TYPE The frame rectangle of the save panel at
the time the panel was closed. (The user
may have resized it and relocated it on-
screen before it was closed.) The
rectangle is specified in the screen
coordinate system.

“directory” B_REF_TYPE A record_ref reference to the last
directory displayed in the panel.

“canceled” B_BOOL_TYPE An indication of whether or not the panel
was closed by user. It’sTRUE if the user
closed the panel by operating the
“Cancel” button andFALSE otherwise.

B_PULSE

This message serves as a simple timing mechanism. It’s posted at regularly spaced
intervals and is dispatched by calling thePulse() function of every BView that wants to
participate.

System Messages

Message Protocols –13

The message typically lacks any data entries, but may contain this one:

Data name Type code Description

“when” B_DOUBLE_TYPE When the event occurred, as measured in
microseconds from the time the machine
was last booted.

B_QUIT_REQUESTED

This message is interpreted by a BWindow object as a request to close the window. It’s
dispatched by callingQuitRequested(), which is generally implemented by application
classes derived from BWindow.

When the Application Server produces the message (for example, when the user clicks the
window’s close button), it adds the following data entry:

Data name Type code Description

“when” B_DOUBLE_TYPE When the event occurred, as measured in
microseconds from the time the machine
was last booted.

However, this information is not crucial to the interpretation of the event. You don’t need
to add it toB_QUIT_REQUESTED messages that are posted in application code.

B_SAVE_REQUESTED

This message is delivered to a BWindow when the user operates the save panel to request
that a document be saved. It has the following data entries:

Data name Type code Description

“directory” B_REF_TYPE A record_ref reference to the directory
where the document should be saved.

“name” B_STRING_TYPE The name of the file in which the
document should be saved.

These entries are added to all messages reporting save-requested events. Generally, the
message hasB_SAVE_REQUESTED as itswhat data member. However, you can define a
custom message to report the event, one with another constant and additional data entries.

If the command constant isB_SAVE_REQUESTED, the message is dispatched by calling the
BWindow’s SaveRequested() function; otherwise, it’s not treated as a system message.
SeeRunSavePanel() in the BWindow class of the Interface Kit.

System Messages

14 – Message Protocols

B_SCREEN_CHANGED

This message reports that the screen configuration has changed. The BWindow dispatches
it by calling its ownScreenChanged() function.

The message contains these data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the screen changed, as measured
in microseconds from the time the
machine was last booted.

“frame” B_RECT_TYPE A rectangle with the same dimensions as
the pixel grid the screen displays.

“mode” B_LONG_TYPE The color space of the screen—currently
B_COLOR_8_BIT or B_RGB_32_BIT.

B_VALUE_CHANGED

This message reports that the Application Server changed a value associated with a scroll
bar—something that will happen repeatedly as the user drags the scroll knob and presses
the scroll buttons. The BWindow dispatches it by calling the BScrollBar object’s
ValueChanged() function.

The message has these data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the value changed, as measured in
microseconds from the time the machine
was last booted.

“value” B_LONG_TYPE The new value of the object.

B_VIEW_MOVED

This message reports that a view moved within its parent’s coordinate system. Repeated
messages may be produced if the movement is caused by the user resizing the window,
which in turn resizes the parent view. The BWindow dispatches each one by calling its
FrameMoved() function.

The message contains the following data:

Data name Type code Description

“when” B_DOUBLE_TYPE When the view moved, as measured in
microseconds from the time the machine
was last booted.

System Messages

Message Protocols –15

“where” B_POINT_TYPE The new location of the left top corner of
the view’s frame rectangle, expressed in
the coordinate system of its parent.

B_VIEW_RESIZED

This message reports that a view has been resized. Repeated messages are produced if the
resizing is an automatic consequence of the window being resized. The BWindow
dispatches each one by calling itsFrameResized() function.

The message holds the following data.

Data name Type code Description

“when” B_DOUBLE_TYPE When the view was resized, as measured
in microseconds from the time the
machine was last booted.

“width” B_LONG_TYPE The new width of the view’s frame
rectangle.

“height” B_LONG_TYPE The new height of the view’s frame
rectangle.

“where” B_POINT_TYPE The new location of the left top corner of
the view’s frame rectangle, expressed in
the coordinate system of its parent. (A
“where” entry is present only if the view
was moved while being resized.)

The message has a “where” entry only if resizing the view also served to move it. The
new location of the view would first be reported in aB_VIEW_MOVED BMessage.

B_WINDOW_ACTIVATED

This message reports that the window has become the active window or has relinquished
that status. The BWindow dispatches the message by calling itsWindowActivated()
function, which notifies every BView with a similar function call.

The message contains two data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the window’s status changed, as
measured in microseconds from the time
the machine was last booted.

System Messages

16 – Message Protocols

“active” B_BOOL_TYPE A flag that records the new status of the
window. It’s TRUE if the window has
become the active window, andFALSE if
it is giving up that status.

B_WINDOW_MOVED

This message reports that the window has been moved in the screen coordinate system.
Repeated messages are generated when the user drags a window. The BWindow
dispatches each one by calling itsWindowMoved() function.

The message has the following entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the window moved, as measured
in microseconds from the time the
machine was last booted.

“where” B_POINT_TYPE The new location of the left top corner of
the window’s content area, expressed in
screen coordinates.

B_WINDOW_RESIZED

This message reports that the window has been resized. It’s generated repeatedly as the
user moves a window border. The BWindow dispatches each message by calling
WindowResized().

The message holds these data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the window was resized, as
measured in microseconds from the time
the machine was last booted.

“width” B_LONG_TYPE The new width of the window’s content
area.

“height” B_LONG_TYPE The new height of the window’s content
area.

B_WORKSPACE_ACTIVATED

This message reports that the active workspace has changed. It’s delivered to all
BWindow objects associated with the workspace that was previously active and with the
one just activated. Each BWindow dispatches the message by calling its own
WorkspaceActivated() function.

System Messages

Message Protocols –17

The message contains the following data:

Data name Type code Description

“when” B_DOUBLE_TYPE When the workspace was activated or
deactivated, as measured in
microseconds from the time the machine
was last booted.

“workspace” B_LONG_TYPE The workspace that’s the subject of the
message.

“active” B_BOOL_TYPE A flag that records the new status of the
workspace—TRUE if it has become the
active workspace, andFALSE if it has
ceased being the active workspace.

B_WORKSPACES_CHANGED

This message informs a BWindow object that the set of workspaces with which it is
associated has changed. The BWindow dispatches the message by calling its own
WorkspacesChanged() function.

The message has three data entries:

Data name Type code Description

“when” B_DOUBLE_TYPE When the set of workspaces associated
with the window changed, as measured
in microseconds from the time the
machine was last booted.

“old” B_LONG_TYPE The set of workspaces where the
window could appear before the change.

“new” B_LONG_TYPE The set of workspaces where the
window can appear after the change.

B_ZOOM

This message instructs the BWindow object to zoom the on-screen window to a larger
size—or to return it to its normal size. The message is produced when the user operates
the zoom button in the window’s title tab. The BWindow dispatches it by callingZoom(),
declared in the BWindow class.

Standard Messages

18 – Message Protocols

The message has just one data entry:

Data name Type code Description

“when” B_DOUBLE_TYPE When the zoom button was clicked, as
measured in microseconds from the time
the machine was last booted.

Standard Messages

The software kits produce a few standard messages that aren’t system messages—that
aren’t matched to a specific hook function. They’re classified below as:

• Messages that are sent as replies, sometimes automatically, to other messages, and
• Messages that convey editing instructions.

Reply Messages

The following three messages are sent as replies to other messages.

B_HANDLERS_INFO

The variousHandlersRequested() functions implemented in the Application and Interface
Kits send this message as a reply to aB_HANDLERS_REQUESTED system message, which
requests BMessenger proxies for BHandler objects. The reply message will contain one
of two possible data entries:

Data name Type code Description

“handlers” B_MESSENGER_TYPE An array of one or more BMessenger
objects corresponding to the BHandlers
specified in theB_HANDLERS_REQUESTED
message.

“error” B_LONG_TYPE An error code explaining why there is no
“handlers” array.

B_MESSAGE_NOT_UNDERSTOOD

This message doesn’t contain any data entries. It’s sent as a reply to messages that the
receiving thread’s chain of BHandlers does not recognize. SeeMessageReceived() in the
BHandler class.

Standard Messages

Message Protocols –19

B_NO_REPLY

This message doesn’t contain any data entries. It’s sent as a default reply to another
message when the original message is about to be deleted. The default reply is sent only if
a synchronous reply is expected and none has been sent. See theSendReply() function in
the BMessage class.

Editing Messages

A handful of messages pass editable data or give an instruction to edit currently selected
data. Because BTextViews are the only kit-defined objects that know how to display
editable data, they’re the only ones who can respond to these messages.

B_CUT, B_COPY, and B_PASTE

A BWindow posts these messages to its focus view (or to itself, if none of its views is
currently in focus) when the user presses the Command-x, Command-c, and Command-v
shortcuts. It puts only one data entry in the message:

Data name Type code Description

“when” B_DOUBLE_TYPE When the user pressed the keyboard
shortcut, as measured in microseconds
from the time the machine was last
booted.

BTextView objects respond to these messages. See the BTextView class in the Interface
Kit for details.

B_SIMPLE_DATA

This message is a package for a single data element. It can theoretically contain any type
of data, but only two entries are currently understood:

Data name Type code Description

“text” B_ASCII_TYPE A null-terminated string of characters.

“char” B_LONG_TYPE A single character.

A BTextView object can put this message together for a drag-and-drop operation, and can
understand the message when it’s dropped on or targeted to the view. When it produces
the message, it puts the text that’s currently selected into a “text” data entry, as described
above. It understands the message with either a “text” or a “char” data entry; it inserts the
characters at the current selection.

Interapplication Messages

20 – Message Protocols

Interapplication Messages

The messages that a user drags and drops on a view might have their source in any
application, including applications that come with the Be Operating System. Currently,
the Browser is the only source for a published, public message. It will probably be a
common source, since it permits users to drag representations of database records. The
message in which the Browser packages the dragged information is identical to one that
reports a refs-received event. It has a single entry named “refs” containing one or more
record_ref (B_REF_TYPE) items andB_REFS_RECEIVED as the command constant. See
“B_REFS_RECEIVED” above.

acrobat/B_AppAPI.pdf

Application APIs –1

B. Application APIs

You can extend some Be applications by providing them with add-on modules, which they
will load and integrate into the set of features they provide for the user. Currently, the
Browser is the only Be application with a public API for add-on extensions.

The Browser

The Browser can accept add-on modules that deal with database records and that can be
invoked from menu items to carry out discrete tasks. The modules should be compiled as
on-add images (described inThe Kernel Kit chapter), and should be placed in the
/system/add-ons/Browser directory.

The Browser will create an item for its Add-Ons menu with the same name as the add-on
file. If the name ends in a hyphen plus one character, that character will be the keyboard
shortcut for the item. For example, if the file is

/system/add-ons/Browser/Recede in Time-r

the Browser will add a “Recede in Time” item to its Add-Ons menu and assign it
Command-r as a keyboard shortcut. The shortcut should not conflict with any that the
Browser already uses.

The Browser loads the add-on module whenever the user operates the item. The add-on
must provide the Browser with a single entry point, a function namedprocess_refs(). It
has the following syntax:

void process_refs(record_refdirectory, BMessage *message, void *data)

Thedirectory is a reference to the directory the Browser is currently displaying in the
active window. Themessage is a standardB_REFS_RECEIVED BMessage. It has a “refs”
entry withrecord_refs for all the items in the directory that are currently selected. The
data argument is unused at present; ignore it.

After it loads the add-on image, the Browser creates a thread for it and calls its
process_refs() function in that thread. Whenprocess_refs() returns, the Browser unloads
the image. The add-on should make sure that any additional threads that it spawned are
destroyed before it returns—especially any windows it displayed to the user.

The Browser

2 – Application APIs

< The Browser invokesprocess_refs() each time the user operates the menu item. If the
user operates the item a second time before the first invocation ofprocess_refs() returns,
two instances of the function will be executing, each in its own thread. Unfortunately,
when either instance returns, the Browser will unload the add-on image, leading to
predictable undesired consequences. This is a known bug that will be repaired in a future
release. >

To compile the add-on image, follow the directions for shared libraries in the Metrowerks
CodeWarrior manual. In summary, you should specify the following options to the linker:

• –G, to tell the linker to produce an add-on image.

• –export pragma, to tell it that your source code has#pragma directives exporting
theprocess_refs() symbol. Then surround the definition of the function with
directives that turn exporting on and off:

#pragma export on
void process_refs(record_ref dir, BMessage *msg, void *data)
{
 . . .
}
#pragma export off

This gives the Browser the access it needs to call the function.

You can link the module against the system library; you shouldn’t link it against the
Browser.

Once compiled, place the module in the/system/add-ons/Browser directory, as discussed
above. This is the only place the Browser looks for modules to load.

acrobat/C_GUI.pdf

User Interface Guidelines –1

C. User Interface
Guidelines

< The user interface guidelines are forthcoming and will be posted on the Be web site
when ready. >

2 – User Interface Guidelines

