
1

EOAdaptorChannel

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOAdaptorChannel.h

Class at a Glanceÿ

Purpose
EOAdaptorChannel is an abstract class that defines how an Enterprise Objects Framework application performs
operations on a database server. Concrete subclasses of EOAdaptorChannel override many of its methods in
terms of the client libraries for a specific RDBMS. You typically don’t interact with adaptor channels directly;
rather, the Enterprise Objects Framework creates instances of a concrete adaptor channel subclass automatically
and handles all the necessary interactions with those instances. If you’re not creating a concrete adaptor channel
subclass, there aren’t very many methods you need to use, and you’ll rarely invoke them directly.

Principle Attributes
• Adaptor context
• Delegate

Creation
Other framework classes create them. Adaptor channels are generally created automatically.
– createAdaptorChannel (EOAdaptorContext) Creates an adaptor channel and assigns its context.

Commonly Used Methods
– openChannel Opens the channel so it can perform database operations.
– closeChannel Close the channel.
– selectAttributes:fetchSpecification:lock:entity: Selects rows matching the specified qualifier.
– fetchRowWithZone: Fetches a row resulting from the last select...,

executeStoredProcedure..., or evaluateExpression:.
– insertRow:forEntity: Inserts the specified row.
– updateValues:inRowDescribedByQualifier:entity: Updates the row described by the specified qualifier.
– deleteRowDescribedByQualifier:entity: Deletes the row described by the specified qualifier.
– executeStoredProcedure:withValues: Performs the specified stored procedure.
– evaluateExpression: Sends the specified expression to the database.

2

– performAdaptorOperation: Performs an adaptor operation by invoking the
EOAdaptorChannel method appropriate for performing
the specified operation.

Class Description

EOAdaptorChannel is an abstract class that provides concrete subclasses with a structure for performing
database operations. A concrete subclass of EOAdaptorContext provides database-specific method
implementations and represents an independent communication channel to the database server to which its
EOAdaptor object is connected. You never interact with instances of the EOAdaptorChannel class, rather
your Enterprise Objects Framework applications use instances of concrete subclasses that are written to
interface with a specific database or other persistent storage system. To create an instance of a concrete
EOAdaptorChannel subclass, you send a createAdaptorChannel message to an instance of the
corresponding EOAdaptorContext subclass. You rarely create adaptor channels yourself. They are
generally created automatically by other framework objects.

You use an adaptor channel to manipulate rows (records) by selecting, fetching, inserting, deleting, and
updating them. An adaptor channel also gives you access to some of the metadata on the server, such as
what stored procedures exist, what tables exist, and what their basic attributes and relationships are.

All of an adaptor channel’s operations take place within the context of transactions controlled or tracked by
its EOAdaptorContext. An adaptor context may manage several channels (though not all can), but a channel
is associated with only one context.

Connecting to the Database

Before you can begin a transaction or perform a database operation, you need to form a connection to the
database server. An EOAdaptorContext holds the connection, but it isn’t actually formed until one of the
context’s channels is opened. Using the EOAdaptorChannel method openChannel, you prepare the adaptor
channel, its adaptor context, and its adaptor to communicate with the database server. If the adaptor channel
is the first of a context’s channels to be opened, preparing to communicate entails creating a database
connection. Whether or not a channel’s adaptor context is holding a database connection, you can’t use an
adaptor channel to interact with the server until you open the channel.

When you’re done performing operations, you close an adaptor channel by sending a closeChannel
message to the channel. An adaptor channel’s context can have many channels. The connection to the
database isn’t actually closed until the last open channel is closed.

3

Performing Database Operations

An adaptor channel operates on database rows represented by NSDictionary objects. The keys of the
dictionary represent the names of attributes (columns), the values for those keys are the values for the
attributes. It’s important to note that the table and column names in the database server are not the same as
the entity and attribute names that the Enterprise Objects Framework uses (though an application can set
them to be identical).

Once you’ve set up a suite of adaptor objects, opened the adaptor channel, and begun a transaction, you can
use the adaptor channel to operate on data in the server. To insert a new row for a particular entity, for
example, you create a dictionary object containing all the key-value pairs for the entity’s properties, and
send the channel an insertRow:forEntity: message.

The other database operations—delete and update—require an EOQualifier object to specify which rows to
affect. An EOQualifier describes specific rows for a single entity based on the values of properties; for
example, rows whose salary attribute is greater than 40,000. See the EOQualifier class specification for
more information on creating qualifiers.

Fetching rows with an adaptor channel is a two-stage process. First, you select the rows with a
selectAttributes:fetchSpecification:lock:entity: message. This establishes one or more result sets of
records to be fetched. If the selection succeeds, you then send fetchRowWithZone: messages to retrieve
individual rows until there are no more. This code template displays the highlights of the process:

EOAdaptorChannel *myChannel; /* Assume this exists. */

EOEntity *employeeEntity; /* Assume this exists. */

EOFetchSpecification *myFetchSpec; /* Assume this exists. */

NSDictionary *theRow;

NS_DURING

if (![myChannel isOpen]) {

 [myChannel openChannel];

}

[myChannel selectAttributes:[employeeEntity attributes]

 fetchSpecification:myFetchSpec

 lock:NO

 entity:employeeEntity];

while (theRow = [myChannel fetchRowWithZone:NULL]) {

 /* Process theRow. */

}

NS_HANDLER

 /* Handle the exception. */

NS_ENDHANDLER

4

The adaptor layer classes—EOAdaptor, EOAdaptorContext, and EOAdaptorChannel—notify you when an
error occurs by raising an exception, particularly when the error can occur in the database server. Therefore,
the openChannel, selectAttributes:fetchSpecification:lock:entity:, and fetchRowWithZone: messages
above can all raise exceptions if an error occurs. The code between the NS_HANDLER and
NS_ENDHANDLER macros should find out what exception was raised and handle it appropriately. See the
NSException class specification for more information on handling exceptions.

After you open the adaptor channel and begin a transaction, you use the method
selectAttributes:fetchSpecification:lock:entity: to select records in preparation for fetching. This method
requires you to specify the attributes you’re interested in and a fetch specification. You can ask the EOEntity
object that represents a table for any of its attributes by name, or you can ask it for all its attributes as the
excerpt does above. The fetchSpecification: argument is an EOFetchSpecification object that provides a
qualifier, a fetch order, and other specifications for the select. See the EOFetchSpecification class
specification for more information on creating fetch specifications. Once you’ve selected a set of records,
you use a loop to fetch each one individually with fetchRowWithZone:.

Getting Basic Schema Information

You can use the adaptor-level objects without loading an EOModel file by having the adaptor channel read
a minimal model from the database server’s system dictionary. To build such a model you use the “describe”
methods:

– describeTableNames
– describeModelWithTableNames:
– describeStoredProcedureNames

describeTableNames reads and returns an array of table names from the database.
describeModelWithTableNames: constructs a default model out of the database’s metadata, and assigns
the adaptor name and connection dictionary to the new model. You generally invoke
describeModelWithTableNames: with the array of table names (or a subset) returned from
describeTableNames. addStoredProceduresNamed:toModel: reads an array of stored procedure names
from the database.

Sending SQL Statements Directly to the Server

An EOAdaptorChannel allows you to send SQL directly to the database server with its
evaluateExpression: method. This gives you access to database-specific features not made available by the
adaptor channel itself, but can cause state changes on the server that aren’t noted by objects in your
application. If you cause state changes in evaluating SQL, you’re responsible for notifying the appropriate
objects of the changes; the classes of the Enterprise Objects Framework that are affected by evaluation of
SQL typically describe the kinds of notifications they require.

If the expression you evaluate returns results, you fetch them with the method fetchRowWithZone: as you
would had you used selectAttributes:fetchSpecification:lock:entity:. If your adaptor doesn’t have a
model set, you can use describeResults to determine the attributes selected by the expression. Even if you

5

perform the selection by sending raw SQL to the server, this method returns usable attributes that allow you
to fetch rows. The code snippet below outlines the steps:

EOAdaptorChannel *channel; /* Assume this exists and it’s open */

NSString *sqlString; /* Assume this exists */

EOAdaptor *adaptor;

EOSQLExpression *expression;

adaptor = [[channel adaptorContext] adaptor];

expression = [[adaptor expressionClass] expressionForString:sqlString];

NS_DURING

NSMutableArray *array = [NSMutableArray array];

NSDictionary *row;

[channel evaluateExpression:expression];

do {

[channel setAttributesToFetch:[channel describeResults]];

while (row = [channel fetchRowWithZone:nil]) {

 /* Process the row. */

}

} while ([channel isFetchInProgress]); /* Loop to process the next result set. */

[[myChannel adaptorContext] commitTransaction];

NS_HANDLER

/* Handle the exception. */

NS_ENDHANDLER

Some expressions may return multiple result sets in which rows have different types and numbers of
attributes. fetchRowWithZone: returns nil if there are no more rows in the current result set, but there may
be more result sets to fetch from. The while statement containing the isFetchInProgress message ensures
that the code will continue fetching through all result sets. When a select statement results in multiple result
sets, you must set the channel’s attributesToFetch so it knows how to construct the fetched row. The
attributes returned from describeResults are appropriate for use with setAttributesToFetch:.

EOAdaptorChannel also provides a method for executing stored procedures:
executeStoredProcedure:withValues:. Similar to evaluateExpression:, you can fetch rows resulting from
a stored procedure using fetchRowWithZone:. In addition, you can get stored procedure return values and
in/out parameters with the method returnValuesForLastStoredProcedureInvocation.

Notifying the Adaptor Channel’s Delegate

You can assign a delegate to an adaptor channel. The EOAdaptorChannel sends certain messages directly
to the delegate, and the delegate responds to these messages on the channel’s behalf. Many of the adaptor

6

channel methods notify the channel’s delegate before and after an operation is performed. Some delegate
methods, such as adaptorChannel:shouldEvaluateExpression:, let the delegate determine whether the
channel should perform an operation. Others, such as adaptorChannel:didEvaluateExpression:, are
simply notifications that an operation has occurred. The delegate has an opportunity to respond by
implementing the delegate methods. If the delegate wants to intervene, it implements
adaptorChannel:shouldEvaluateExpression:. If it simply wants notification when a transaction has
begun, it implements adaptorChannel:didEvaluateExpression:.

Creating an EOAdaptorContext Subclass

EOAdaptorContext provides many default method implementations that are sufficient for concrete
subclasses:

– adaptorContext
– delegate
– deleteRowDescribedByQualifier:entity:
– isDebugEnabled
– lockRowComparingAttributes:entity:qualifier:snapshot:
– performAdaptorOperation:
– performAdaptorOperations:
– updateValues:inRowDescribedByQualifier:entity:

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

– dictionaryWithObjects:forAttributes:zone:
– initWithAdaptorContext:
– setDebugEnabled:
– setDelegate:

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a message to super.

The remaining EOAdaptorChannel methods must be overridden by concrete subclasses in terms of the
persistent storage system to which it interfaces:

– attributesToFetch
– cancelFetch
– closeChannel
– deleteRowsDescribedByQualifier:entity:
– describeModelWithTableNames:
– describeResults
– describeStoredProcedureNames
– describeTableNames
– evaluateExpression:
– executeStoredProcedure:withValues:

7

– fetchRowWithZone:
– insertRow:forEntity:
– isFetchInProgress
– isOpen
– openChannel
– primaryKeyForNewRowWithEntity:
– returnValuesForLastStoredProcedureInvocation
– selectAttributes:fetchSpecification:lock:entity:
– setAttributesToFetch:
– updateValues:inRowsDescribedByQualifier:entity:

Method Types

Creating an EOAdaptorChannel – initWithAdaptorContext:

Getting the adaptor context – adaptorContext

Opening and closing a channel – openChannel
– closeChannel
– isOpen

Modifying rows – insertRow:forEntity:
– updateValues:inRowDescribedByQualifier:entity:
– updateValues:inRowsDescribedByQualifier:entity:
– deleteRowDescribedByQualifier:entity:
– deleteRowsDescribedByQualifier:entity:

Fetching rows – selectAttributes:fetchSpecification:lock:entity:
– describeResults
– setAttributesToFetch:
– attributesToFetch
– fetchRowWithZone:
– dictionaryWithObjects:forAttributes:zone:
– cancelFetch
– isFetchInProgress

Invoking stored procedures – executeStoredProcedure:withValues:
– returnValuesForLastStoredProcedureInvocation

Assigning primary keys – primaryKeyForNewRowWithEntity:

Sending SQL to the server – evaluateExpression:

Batch processing operations – performAdaptorOperation:
– performAdaptorOperations:

8

Getting schema information – describeTableNames
– describeStoredProcedureNames
– addStoredProceduresNamed:toModel:
– describeModelWithTableNames:

Debugging – setDebugEnabled:
– isDebugEnabled

Setting the delegate – delegate
– setDelegate:

Instance Methods

adaptorContext
– (EOAdaptorContext *)adaptorContext

Returns the receiver’s EOAdaptorContext. A subclass of EOAdaptorChannel doesn’t need to override this
method.

See also: – initWithAdaptorContext:

addStoredProceduresNamed:toModel:
– (void)addStoredProceduresNamed:(NSArray *)storedProcedureNames

toModel:(EOModel *)model

Overridden by subclasses to add storedProcedureNames to model. This method is used in conjunction with
describeStoredProcedureNames to build a default model in EOModeler. Raises an exception if an error
occurs.

attributesToFetch
– (NSArray *)attributesToFetch

Implemented by subclasses to return the set of attributes to retrieve with fetchRowWithZone:. An adaptor
channel subclass should override this method without invoking EOAdaptorChannel’s implementation.

See also: – setAttributesToFetch:

9

cancelFetch
– (void)cancelFetch

Implemented by subclasses to clear all result sets established by the last
selectAttributes:fetchSpecification:lock:entity:, executeStoredProcedure:withValues:, or
evaluateExpression: message and terminate the current fetch, so that isFetchInProgress returns NO.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

closeChannel
– (void)closeChannel

Implemented by subclasses to close the EOAdaptorChannel so that it can’t perform operations with the
server. Any fetch in progress is canceled. If the receiver is the last open channel in an adaptor context and
if the channel’s adaptor context has outstanding transactions, closing the channel has server-dependent
results: some database servers roll back all outstanding transactions but others do nothing. Regardless of
whether outstanding transactions are rolled back, this method has the side effect of closing the receiver’s
adaptor context’s connection with the database if the receiver is its adaptor context’s last open channel.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – cancelFetch, – transactionNestingLevel (EOAdaptorContext)

delegate
– (id)delegate

Returns the receiver’s delegate. A subclass of EOAdaptorChannel doesn’t need to override this method.

See also: – setDelegate:

deleteRowDescribedByQualifier:entity:
– (void)deleteRowDescribedByQualifier:(EOQualifier *)qualifier entity: (EOEntity *)entity

Deletes the row described by qualifier. Invokes deleteRowsDescribedByQualifier:entity: and raises an
exception unless exactly one row is deleted. A subclass of EOAdaptorChannel doesn’t need to override this
method.

10

deleteRowsDescribedByQualifier:entity:
– (unsigned)deleteRowsDescribedByQualifier:(EOQualifier *)qualifier entity: (EOEntity *)entity

Implemented by subclasses to delete the rows described by qualifier and return the number of rows deleted.
Raises an exception on failure. Some possible reasons for failure are:

• The adaptor channel isn’t open
• The adaptor channel is in an invalid state (for example, it’s fetching).
• An error occurs in the database server

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – deleteRowDescribedByQualifier:entity:, – isOpen, – isFetchInProgress,
– transactionNestingLevel (EOAdaptorContext)

describeModelWithTableNames:
– (EOModel *)describeModelWithTableNames:(NSArray *)tableNames

Overridden by subclasses to create and return a default model containing entities for the tables specified in
tableNames. Assigns the adaptor name and connection dictionary to the new model. This method is
typically used in conjunction with describeTableNames and describeStoredProcedureNames.

EOAdaptorChannel’s implementation does nothing. An adaptor channel subclass should override this
method to create a default model from the database’s metadata.

describeResults
– (NSArray *)describeResults

Implemented by subclasses to return an array of EOAttributes describing the properties available in the
current result set, as determined by selectAttributes:describedByQualifier:fetchOrder:lock:,
executeStoredProcedure:withValues:, or a statement evaluated by evaluateExpression:.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

describeStoredProcedureNames
– (NSArray *)describeStoredProcedureNames

Overridden by subclasses to read and return an array of stored procedure names from the database. This
method is used in conjunction with addStoredProceduresNamed:toModel: to build a default model in
EOModeler. Raises an exception if an error occurs.

11

describeTableNames
– (NSArray *)describeTableNames

Overridden by subclasses to read and return an array of table names from the database. This method in
conjunction with describeModelWithTableNames: is used to build a default model.

EOAdaptorChannel’s implementation simply returns nil . An adaptor channel subclass should override this
method to construct an array of table names from database metadata.

dictionaryWithObjects:forAttributes:zone:
– (NSMutableDictionary *)dictionaryWithObjects: (id *)objects

forAttributes: (NSArray *)attributes
zone:(NSZone *)zone

Used by EOAdaptorChannel subclasses to create dictionaries that can be returned from
fetchRowWithZone:. Use of this method is optional but strongly recommended; it enables performance
optimizations. A subclass of EOAdaptorChannel shouldn’t override it.

evaluateExpression:
– (void)evaluateExpression:(EOSQLExpression *)expression

Implemented by subclasses to send expression to the database server for evaluation, beginning a transaction
first and committing it after evaluation if a transaction isn’t already in progress. Raises an exception if an
error occurs. An EOAdaptorChannel uses this method to send SQL expressions to the database.

If expression results in a select operation being performed, you can fetch the results as you would if you
had sent a selectAttributes:fetchSpecification:lock:entity:. Use the method setAttributesToFetch: at the
completion of one result set, before you begin fetching the next.

evaluateExpression: invokes the delegate methods adaptorChannel:shouldEvaluateExpression: and
adaptorChannel:didEvaluateExpression:.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework never invoke evaluateExpression:
directly. Thus, adaptors for data stores that don’t naturally support an expression language (for example,
flat file adaptors) don’t need to implement this method to work with the Framework.

See also: – fetchRowWithZone:

12

executeStoredProcedure:withValues:
– (void)executeStoredProcedure:(EOStoredProcedure *)storedProcedure

withValues:(NSDictionary *)values

Implemented by subclasses to execute storedProcedure. Any arguments to the stored procedure are in
values. Use fetchRowWithZone: to get result rows and
returnValuesForLastStoredProcedureInvocation to get return arguments and result status, if any. Raises
an exception if an error occurs.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation. Note, however, that the upper layers of the Framework never invoke
executeStoredProcedure:withValues: directly. Thus, adaptors for data stores that don’t support stored
procedures (for example, flat file adaptors) don’t need to implement this method to work with the
Framework

fetchRowWithZone:
– (NSMutableDictionary *)fetchRowWithZone:(NSZone *)zone

Implemented by subclasses to fetch the next row from the result set of the last
selectAttributes:fetchSpecification:lock:entity:, executeStoredProcedure:withValues:, or
evaluateExpression: message sent to the receiver. Returns values for the receiver’s attributesToFetch.
When there are no more rows in the current result set, this method returns nil , and invokes the delegate
method adaptorChannelDidChangeResultSet: if there are more results sets. When there are no more
rows or result sets, this method returns nil , ends the fetch, and invokes
adaptorChannelDidFinishFetching:. isFetchInProgress returns YES until the fetch is canceled or until
this method exhausts all result sets and returns nil . This method also invoke the delegate methods
adaptorChannelWillFetchRow: and adaptorChannel:didFetchRow:. Raises an exception if an error
occurs.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – setAttributesToFetch:

initWithAdaptorContext:
– initWithAdaptorContext: (EOAdaptorContext *)adaptorContext

The designated initializer for the EOAdaptorChannel class, this method is overridden by subclasses to
initialize a newly allocated EOAdaptorChannel subclass and retain adaptorContext. Returns self.

You never invoke this method directly unless you are implementing a concrete adaptor context. It is invoked
automatically from createAdaptorChannel—the EOAdaptorContext method you use to create a new
adaptor channel.

13

A subclass of EOAdaptorChannel doesn’t need to override this method, but may override it to perform
additional initialization. A subclass that does override this method must incorporate the superclass’s version
through a message to super.

See also: – adaptorContext

insertRow:forEntity:
– (void)insertRow:(NSDictionary *)row forEntity: (EOEntity *)entity

Implemented by subclasses to insert the values of row into the table in the database that corresponds to
entity. row is an NSDictionary whose keys are attribute names and whose values are the values to insert.
Raises an exception on failure. Some possible reasons for failure are:

• The user logged in to the database doesn’t have permission to insert a new row.
• The adaptor channel is in an invalid state (for example, fetching).
• The row fails to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

isDebugEnabled
– (BOOL)isDebugEnabled

Returns YES if the adaptor channel logs evaluated SQL and other useful information to the console (or to
the standard error stream), NO if not. A subclass of EOAdaptorChannel doesn’t need to override this
method.

See also: – setDebugEnabled:, –setDebugEnabled: (EOAdaptorContext)

isFetchInProgress
– (BOOL)isFetchInProgress

Implemented by subclasses to return YES if the receiver is fetching, NO otherwise. An adaptor channel is
fetching if:

• It’s been sent a successful selectAttributes:describedByQualifier:fetchOrder:lock: message.
• A stored procedure that returns rows has been successfully executed using

executeStoredProcedure:withValues:.
• An expression sent through evaluateExpression: resulted in a select operation being performed.

An adaptor channel stops fetching when there are no more records to fetch or when it’s sent a cancelFetch
message.

14

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – fetchRowWithZone:

isOpen
– (BOOL)isOpen

Implemented by subclasses to return YES if the channel has been opened with openChannel, NO if not.
An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – closeChannel

lockRowComparingAttributes:entity:qualifier:snapshot:
– (void)lockRowComparingAttributes: (NSArray *)attributes

entity:(EOEntity *)entity
qualifier: (EOQualifier *)qualifier
snapshot:(NSDictionary *)snapshot

Attempts to lock a row in the database by selecting it with locking on. The lock operation succeeds if a
select statement generated with qualifier retrieves exactly one row and the values in the row match the
values in snapshot.

lockRowComparingAttributes:entity:qualifier:snapshot: invokes
selectAttributes:fetchSpecification:lock:entity: with attributes as the attributes to select, a fetch
specification built from qualifier, locking on, and entity as the entity. If the select returns no rows or more
than one row, the method raises an EOGeneralAdaptorException. It also raises an
EOGeneralAdaptorException if the values in the returned row don't match the corresponding values in
snapshot.

The Framework uses this method whenever it needs to lock a row. When the Framework invokes it, qualifier
specifies the primary key of the row to be locked and attributes used for locking to be compared in the
database server. If any of the values specified in qualifier are different from the values in the database row,
the select operation will not retrieve or lock the row. When this happens, the row to be locked has been
updated in the database since it was last retrieved, and it isn't safe to update it.

Some attributes (such as BLOB types) can't be compared in the database. attributes should specify any such
attributes. (If the row doesn't contain any such attributes, attributes can be nil .) If qualifier generates a select
statement that returns and locks a single row, this method performs an in-memory comparison between the
value in the retrieved row and the value in snapshot for each attribute in attributes. Therefore, snapshot must
contain an entry for each attribute in attributes. In addition, it must contain an entry for the row's primary
key.

15

Note: snapshot's values are the values last fetched from the database for the attributes.

A subclass of EOAdaptorChannel doesn't need to override this method.

openChannel
– (void)openChannel

Implemented by subclasses to put the channel and both its context and adaptor into a state where they are
ready to perform database operations. Raises an exception if an error occurs. An adaptor channel subclass
should override this method without invoking EOAdaptorChannel’s implementation.

See also: – isOpen, –closeChannel

performAdaptorOperation:
– (void)performAdaptorOperation: (EOAdaptorOperation *)adaptorOperation

Performs adaptorOperation by invoking the adaptor channel method appropriate for performing the
specified operation. For example, if the adaptor operator for adaptorOperation is
EOAdaptorInsertOperator, this method invokes insertRow:forEntity: using information in
adaptorOperation to supply the arguments. Raises an exception if an error occurs.

A subclass of EOAdaptorChannel doesn’t need to override this method.

See also: – performAdaptorOperations:

performAdaptorOperations:
– (void)performAdaptorOperations: (NSArray *)adaptorOperations

Performs adaptor operations by invoking performAdaptorOperation: with each EOAdaptorOperation
object in the array adaptorOperations. An adaptor channel subclass may be able to override this method to
take advantage of database-specific batch processing capabilities. Invokes the delegate methods
adaptorChannel:willPerformOperations: and adaptorChannel:didPerformOperations:exception:.

This message raises an exception if an error occurs. The exception’s userInfo dictionary contains these
keys:

• EOAdaptorOperationsKey

Corresponds to the array of adaptor operations that’s being executed.

• EOFailedAdaptorOperationKey

Corresponds to the particular adaptor operation that failed.

16

• EOAdaptorFailureKey

If present, offers additional information on the type of error that occurred. Currently, the only possible
value for this key is EOAdaptorOptimisticLockingFailure, which indicates that an update or lock
operation failed because the row found in the database did not match the snapshot taken when the row
was last fetched into the application.

A subclass of EOAdaptorChannel doesn’t need to override the performAdaptorOperations: method.

primaryKeyForNewRowWithEntity:
– (NSDictionary *)primaryKeyForNewRowWithEntity: (EOEntity *)entity

Overridden by subclasses to return a primary key for a new row in the database table that corresponds to
entity. If information in entity specifies an adaptor-specific means to assign a new primary key (for example,
a sequence name or stored procedure), then this method returns a new primary key. Otherwise, if the key is
a simple integer, the method tries to fetch a new primary key from the database using an adaptor-specific
scheme. Otherwise, returns nil . EOAdaptorChannel’s implementation returns nil . See your adaptor
channel’s documentation for information on how it generates primary keys.

A subclass of EOAdaptorChannel must override this method.

returnValuesForLastStoredProcedureInvocation
– (NSDictionary *)returnValuesForLastStoredProcedureInvocation

Implemented by subclasses to return stored procedure parameter and return values. Used in conjunction
with executeStoredProcedure:withValues:. The dictionary returned by this method has entries whose
keys are stored procedure parameter names and whose values are the parameter values. The dictionary also
contains a special entry for the stored procedures return value with the key “returnValue”. Returns an empty
dictionary for stored procedures that have void return types. Returns nil if the stored procedure has results
to fetch. In this case, you must use fetchRowWithZone: until there are no more results to fetch before the
return value will be available.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

17

selectAttributes:fetchSpecification:lock:entity:
– (void)selectAttributes:(NSArray *)attributes

fetchSpecification:(EOFetchSpecification *)fetchSpecification
lock:(BOOL)flag
entity: (EOEntity *)entity

Implemented by subclasses to select attributes in rows matching the qualifier in fetchSpecification and set
the receiver’s attributes to fetch. The selected rows compose one or more result sets, each row of which will
be returned by subsequent fetchRowWithZone: messages according to fetchSpecification’s sort orderings.
If flag is YES, the rows are locked if possible so that no other user can modify them (the lock specification
in fetchSpecification is ignored). Raises an exception if an error occurs. Some possible reasons for failure
are:

• The adaptor channel is in an invalid state (for example, fetching).
• The database failed to lock the specified rows.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – setAttributesToFetch:

setAttributesToFetch:
– (void)setAttributesToFetch:(NSArray *)attributes

Implemented by subclasses to change the set of attributes used to describe the fetch data in the middle of a
select. This method is normally invoked after evaluateExpression: but before the first call to
fetchRowWithZone:. This is especially useful for database systems that may return non-rectangular result
sets (like Sybase). This method raises if invoked when there is no fetch in progress.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – attributesToFetch, –selectAttributes:fetchSpecification:lock:entity:

setDebugEnabled:
– (void)setDebugEnabled:(BOOL)flag

Enables debugging in the receiver and all its channels. If debugEnabled is YES, enables debugging;
otherwise, disables debugging. When debugging is enabled, the adaptor channel logs evaluated SQL and
other useful debugging information to the console (or to the standard error stream). The information
provided may vary from adaptor to adaptor and may change from release to release.

18

A subclass of EOAdaptorContext doesn’t need to override this method. A subclass that does override it
must incorporate the superclass’s version through a message to super.

See also: – isDebugEnabled, –setDebugEnabled: (EOAdaptorContext)

setDelegate:
– (void)setDelegate:(id)delegate

Sets the adaptor channel’s delegate to delegate. The receiver does not retain delegate. A subclass of
EOAdaptorContext doesn’t need to override this method. A subclass that does override it must incorporate
the superclass’s version through a message to super.

See also: – delegate

updateValues:inRowDescribedByQualifier:entity:
– (void)updateValues:(NSDictionary *)values

inRowDescribedByQualifier:(EOQualifier *)qualifier
entity: (EOEntity *)entity

Updates the row described by qualifier. Invokes updateValues:inRowsDescribedByQualifier:entity: and
raises an exception unless exactly one row is updated.

A subclass of EOAdaptorContext doesn’t need to override this method.

updateValues:inRowsDescribedByQualifier:entity:
– (unsigned)updateValues:(NSDictionary *)values

inRowsDescribedByQualifier:(EOQualifier *)qualifier
entity: (EOEntity *)entity

Implemented by subclasses to update the rows described by qualifier with the values in values. values is an
NSDictionary whose keys are attribute names and whose values are the new values for those attributes (the
dictionary need only contain entries for the attributes being changed). Returns the number of updated rows.
Raises an exception if an error occurs. Some possible reasons for failure are:

• The user logged in to the database doesn’t have permission to update.
• The adaptor channel is in an invalid state (for example, fetching).
• The new values fail to satisfy a constraint defined in the database server.

An adaptor channel subclass should override this method without invoking EOAdaptorChannel’s
implementation.

See also: – updateValues:inRowDescribedByQualifier:entity:

19

Methods Implemented By the Delegate

adaptorChannelDidChangeResultSet:
– (void)adaptorChannelDidChangeResultSet:(id)channel

Invoked from fetchRowWithZone: when a select operation resulted in multiple result sets. This method
tells the delegate that the next invocation of fetchRowWithZone: will fetch from the next result set. This
method is invoked when fetchRowWithZone: returns nil and there are still result sets left to fetch. The
delegate can invoke setAttributesToFetch: to prepare for fetching the new rows.

adaptorChannel:didEvaluateExpression:
– (void)adaptorChannel:(id)channel

didEvaluateExpression:(EOSQLExpression *)expression

Invoked from evaluateExpression: to tell the delegate that a query language expression has been evaluated
by the database server.

adaptorChannel:didExecuteStoredProcedure:withValues:
– (void)adaptorChannel:(id)channel

didExecuteStoredProcedure:(EOStoredProcedure *)procedure
withValues:(NSDictionary *)values

Invoked from executeStoredProcedure:withValues: after the procedure is executed successfully.

adaptorChannel:didFetchRow:
– (void)adaptorChannel:(id)channel didFetchRow:(NSMutableDictionary *)row

Invoked from fetchRowWithZone: after a row is fetched successfully. This method is not invoked if an
exception occurs during the fetch or if the same returns nil because there are no more rows in the current
result set. The delegate may modify row, which will be returned from fetchRowWithZone:.

adaptorChannelDidFinishFetching:
– (void)adaptorChannelDidFinishFetching:(id)channel

Invoked from fetchRowWithZone: to tell the delegate that fetching is finished for the current select
operation. This method is invoked when a fetch ends in fetchRowWithZone: because there are no more
result sets.

20

adaptorChannel:didPerformOperations:exception:
– (NSException *)adaptorChannel:(id)channel

didPerformOperations:(NSArray *)operations
exception:(NSException *)exception

Invoked from performAdaptorOperations: . exception is nil if no exception was raised while operations
were performed. Otherwise, exception is the raised exception. The delegate can return the same or a
different exception, which is re-raised by performAdaptorOperations: , or it can return nil to prevent the
adaptor channel from raising an exception.

adaptorChannel:didSelectAttributes:fetchSpecification:lock:entity:
– (void)adaptorChannel:(id)channel

didSelectAttributes:(NSArray *)attributes
fetchSpecification:(EOFetchSpecification *)fetchSpecification
lock:(BOOL)flag
entity:(EOEntity *)entity

Invoked from selectAttributes:fetchSpecification:lock:entity: to tell the delegate that rows have been
selected in the database server.

adaptorChannelShouldConstructStoredProcedureReturnValues:
– (NSDictionary *)adaptorChannelShouldConstructStoredProcedureReturnValues:(id)channel

Invoked from returnValuesForLastStoredProcedureInvocation to tell the delegate that channel is
constructing return values for the last stored procedure evaluated. If the delegate returns a value other than
nil , that value will be returned immediately from returnValuesForLastStoredProcedureInvocation.

adaptorChannel:shouldEvaluateExpression:
– (BOOL)adaptorChannel:(id)channel

shouldEvaluateExpression:(EOSQLExpression *)expression

Invoked from evaluateExpression: to tell the delegate that channel is sending an expression to the database
server. The delegate returns YES to permit the adaptor channel to send expression to the server. If the
delegate returns NO, the adaptor channel does not send the expression and returns immediately. When the
delegate returns NO, the adaptor channel expects that the implementor of the delegate has done the work
that evaluateExpression: would have done. The delegate can create a new EOSQLExpression and send the
expression itself before returning NO.

21

adaptorChannel:shouldExecuteStoredProcedure:withValues:
– (NSDictionary *)adaptorChannel:(id)channel

shouldExecuteStoredProcedure:(EOStoredProcedure *)procedure
withValues:(NSDictionary *)values

Invoked from executeStoredProcedure:withValues: to tell the delegate that channel is executing a stored
procedure. If the delegate returns a value other than nil , that value is used as the arguments to the stored
procedure instead of values.

adaptorChannel:shouldReturnValuesForStoredProcedure:
– (NSDictionary *)adaptorChannel:(id)channel

shouldReturnValuesForStoredProcedure:(NSDictionary *)returnValues

Invoked from returnValuesForLastStoredProcedureInvocation to tell the delegate that channel is
returning values for a stored procedure. If the delegate returns a value other than nil , that value is returned
from returnValuesForLastStoredProcedureInvocation instead of returnValues.

adaptorChannel:shouldSelectAttributes:fetchSpecification:lock:entity:
– (BOOL)adaptorChannel:(id)channel

shouldSelectAttributes:(NSArray *)attributes
fetchSpecification:(EOFetchSpecification *)fetchSpecification
lock:(BOOL)flag
entity:(EOEntity *)entity

Invoked from selectAttributes:fetchSpecification:lock:entity: to ask the delegate whether a select
operation should be performed. The delegate should not modify fetchSpecification. Instead, if the delegate
wants to perform a different select it should invoke selectAttributes:fetchSpecification:lock:entity: itself
with a new fetch specification, and return NO (indicating that the adaptor channel should not perform the
select itself).

adaptorChannelWillFetchRow:
– (void)adaptorChannelWillFetchRow:(id)channel

Invoked from fetchRowWithZone: to tell the delegate that a single row will be fetched. The delegate can
determine the attributes used by the fetch by sending attributesToFetch to channel, and can change the set
of attributes to fetch by sending setAttributesToFetch: to channel. The adaptor channel performs the actual
fetch.

22

adaptorChannel:willPerformOperations:
– (NSArray *)adaptorChannel:(id)channel willPerformOperations: (NSArray *)operations

Invoked from performAdaptorOperations: to tell the delegate that channel is performing the
EOAdaptorOperations in operations. The delegate may return operations or a different NSArray for the
adaptor channel to perform. If the delegate returns nil , the adaptor channel does not perform the operations
and returns from the method immediately.

