
1

EODatabaseChannel

Inherits From: NSObject

Declared In: EOAccess/EODatabaseChannel.h

Class Description

An EODatabaseChannel represents an independent communication channel to the database server its
EODatabase object is connected to, and fetches records as instances of enterprise object classes specified
in its EODatabase’s EOModel. EODatabaseContexts use EODatabaseChannels to perform fetches and to
lock rows in the database. All of these EODatabase... objects are used automatically by EOEditingContexts
and other components of Enterprise Objects Framework. You rarely need to interact with them directly.

Fetching Objects

If you need to fetch objects directly using an EODatabaseChannel, you do so by issuing a
selectObjectsWithFetchSpecification:editingContext: message to select them, followed by a while loop
in which you fetch each individual object. This excerpt fetches Employee objects whose salary is greater
than 40,000, in no particular order:

EODatabaseChannel *myChannel; /* Assume this exists. */

EOEditingContext *editingContext; /* Assume this exists. */

EOQualifier *salaryQualifier;

EOFetchSpecification *fetchSpec;

salaryQualifier = [EOQualifier qualifierWithQualifierFormat:@"salary > 40000"];

fetchSpec = [EOFetchSpecification fetchSpecificationWithEntityName:@"Employee"

 qualifier:salaryQualifier sortOrderings:nil];

[myChannel selectObjectsWithFetchSpecification:fetchSpec

 editingContext:editingContext];

while (eo = [myChannel fetchObject]) {

 /* Process the fetched eo. */

}

This excerpt first builds an EOFetchSpecification for the Employee entity, using an EOQualifier that
matches salaries above 40,000. The selectObjectsWithFetchSpecification:editingContext: causes all
rows in the database matching the qualifier to be selected, and the fetchObject messages retrieve objects
for those rows in the order indicated by the EOFetchSpecification. Since this example doesn’t use sort
orderings, the objects’ order is undetermined.

2

Method Types

Creating instances – initWithDatabaseContext:

Getting cooperating objects – adaptorChannel
– databaseContext

Fetching objects – selectObjectsWithFetchSpecification:editingContext:
– isFetchInProgress
– fetchObject
– cancelFetch

Setting internal fetch state – setCurrentEntity:
– setCurrentEditingContext:
– setIsLocking:
– isLocking
– setIsRefreshingObjects:
– isRefreshingObjects

Setting the delegate – setDelegate:
– delegate

Class Methods

adaptorChannel
– (EOAdaptorChannel *)adaptorChannel

Returns the EOAdaptorChannel used by the receiver for communication with the database server.

cancelFetch
– (void)cancelFetch

Cancels any fetch in progress.

See also: – isFetchInProgress, –selectObjectsWithFetchSpecification:editingContext:, – fetchObject

databaseContext
– (EODatabaseContext *)databaseContext

Returns the EODatabaseContext that controls transactions for the receiver.

3

delegate
– (id)delegate

Returns the receiver’s delegate. An EODatabaseChannel shares the delegate of its EODatabaseContext. See
the EODatabaseContext class specification for the delegate methods you can implement.

See also: – setDelegate:

fetchObject
– (id)fetchObject

Fetches and returns the next object in the result set produced by a
selectObjectsWithFetchSpecification:editingContext: message; returns nil if there are no more objects
in the current result set or if an error occurs. This method uses the receiver’s EOAdaptorChannel to fetch a
row, records a snapshot with the EODatabaseContext if necessary, and creates an enterprise object from the
row if the object doesn’t already exist. The new object is sent an awakeFromFetchInEditingContext:
message to allow it to finish setting up its state.

If no snapshot exists for the fetched object, the receiver sends its EODatabase a
recordSnapshot:forGlobalID: message to record one. If a snapshot already exists (because the object was
previously fetched), the receiver checks whether it should overwrite the old snapshot with the new one. It
does so by asking the delegate with a
databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID:databaseChannel: method.
If the delegate doesn’t respond to this method, the EODatabaseChannel overwrites the snapshot if it’s
locking or refreshing fetched objects. Further, if the EODatabaseChannel is refreshing fetched objects, it
posts an EOObjectsChangedInStoreNotification on behalf of its EODatabaseContext (which causes any
EOEditingContext using that EODatabaseContext to update its enterprise object with the values recorded
in the new snapshot).

See the EODatabaseContext class specification for information on locking and update strategies, and the
EOFetchSpecification class specification for information on refreshing fetched objects.

See also: – cancelFetch, – isFetchInProgress, – isLocking, – isRefreshingObjects

initWithDatabaseContext:
– initWithDatabaseContext:(EODatabaseContext *)aDatabaseContext

Initializes a newly allocated EODatabaseChannel with aDatabaseContext as the EODatabaseContext it
works in. The new EODatabaseChannel retains aDatabaseContext, and creates an EOAdaptorChannel to
communicate with the database server.

This is the designated initializer for the EODatabaseChannel class. Returns self, or nil if no more channels
can be associated with aDatabaseContext.

4

isFetchInProgress
– (BOOL)isFetchInProgress

Returns YES if the receiver is fetching, NO otherwise. An EODatabaseChannel is fetching if it’s been sent
a successful selectObjectsWithFetchSpecification:editingContext: message. An EODatabaseChannel
stops fetching when there are no more objects to fetch or when it’s sent a cancelFetch message.

isLocking
– (BOOL)isLocking

Returns YES if the receiver is locking the objects selected, as determined by its EODatabaseContext’s
update strategy or the EOFetchSpecification used to perform the select. Returns NO otherwise. This method
always returns NO when no fetch is in progress.

See also: – locksObjects(EOFetchSpecification), –setIsLocking:

isRefreshingObjects
– (BOOL)isRefreshingObjects

Returns YES if the receiver overwrites existing snapshots with fetched values and causes the current
EOEditingContext to overwrite existing enterprise objects with those values as well. Returns NO otherwise.
This behavior is controlled by the EOFetchSpecification used in a
selectObjectsWithFetchSpecification:editingContext: message.

See also: – refreshesRefetchedObjects(EOFetchSpecification), –fetchObject,
– setIsRefreshingObjects:

selectObjectsWithFetchSpecification:editingContext:
– (void)selectObjectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification

editingContext:(EOEditingContext *)anEditingContext

Selects objects described by fetchSpecification so that they’ll be fetched into anEditingContext. The selected
objects compose one or more result sets, each object of which will be returned by subsequent fetchObject
messages in the order prescribed by fetchSpecification’s EOSortOrderings.

Raises an exception if an error occurs; the particular exception depends on the specific error, and is
indicated in the exception’s description. Some possible reasons for failure are:

• fetchSpecification is invalid.
• The receiver’s EODatabaseContext has no transaction in progress.
• The delegate disallows the select operation.
• The receiver’s EOAdaptorChannel fails to perform the select operation.

5

This method invokes the delegate methods
databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:,
databaseContext:shouldUsePessimisticLockWithFetchSpecification:databaseChannel:, and
databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:. See their descriptions in
the EODatabaseContext class specification for more information.

See also: – fetchObject

setCurrentEditingContext:
– (void)setCurrentEditingContext:(EOEditingContext *)anEditingContext

Sets the EOEditingContext that’s made the owner of fetched objects to anEditingContext. This method is
automatically invoked by selectObjectsWithFetchSpecification:editingContext:. You should never
invoke it directly.

See also: – setCurrentEntity:

setCurrentEntity:
– (void)setCurrentEntity: (EOEntity *)anEntity

Sets the EOEntity used when fetching enterprise objects to anEntity. Subsequent fetchObject messages
during a fetch operation create an object of the class associated with anEntity. This method is invoked
automatically by selectObjectsWithFetchSpecification:editingContext:.You should never need to invoke
it directly.

See also: – setCurrentEditingContext:

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject. An EODatabaseChannel shares the delegate of its
EODatabaseContext; you should never invoke this method directly. See the EODatabaseContext class
specification for the delegate methods you can implement.

See also: – delegate

6

setIsLocking:
– (void)setIsLocking:(BOOL)flag

Records whether the receiver locks the records it selects. An EODatabaseChannel modifies its interaction
with the database server and its snapshotting behavior based on this setting. If flag is YES the
EODatabaseChannel modifies its fetching behavior to lock objects; if flag is NO it simply fetches them.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecification:editingContext: message. You might invoke this method directly
if evaluating SQL directly with EOAdaptorChannel’s evaluateExpression: method.

See also: – locksObjects(EOFetchSpecification), –setIsLocking:

setIsRefreshingObjects:
– (void)setIsRefreshingObjects:(BOOL)flag

Records whether the receiver causes existing snapshots and enterprise objects to be overwritten with
fetched values. If flag is YES the receiver overwrites existing snapshots with fetched values and posts an
EOObjectsChangedInStoreNotification on behalf of its EODatabaseContext (which typically causes the an
existing object’s EOEditingContext to replace its values with the new ones). If flag is NO, the receiver relies
on the delegate to determine whether snapshots should be overwritten, and doesn’t cause enterprise objects
to be overwritten.

An EODatabaseChannel automatically sets this flag according to the fetch specification used in a
selectObjectsWithFetchSpecification:editingContext: message. You might invoke this method directly
if evaluating SQL directly with EOAdaptorChannel’s evaluateExpression: method.

See also: – refreshesRefetchedObjects(EOFetchSpecification)

