
1

EOAdaptor

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOAdaptor.h

Class at a Glance

Purpose
EOAdaptor is an abstract class that defines how an Enterprise Objects Framework application connects to a
database server. Concrete subclasses of EOAdaptor override many of its methods in terms of the client libraries
for a specific RDBMS. You typically don’t interact with adaptor objects directly; rather, the Enterprise Objects
Framework creates instances of a concrete adaptor subclass automatically and handles all the necessary

2

interactions with those instances. If you’re not defining a concrete adaptor subclass, there aren’t very many
methods you need to use, and you’ll rarely invoke them directly.

Principle Attributes
• Dictionary of connection information • Login panel
• Array of adaptor contexts • Expression class

Creation
Other Framework classes create them. Adaptor instances are generally created automatically.
+ adaptorWithModel: Creates a new adaptor with the adaptor name in the

specified model.
+ adaptorWithName: Creates a new adaptor with the specified name.

Commonly Used Methods
– assertConnectionDictionaryIsValid Verifies that the adaptor can connect with its connection

information.
– runLoginPanel Runs the login panel without affecting the connection

dictionary.
– runLoginPanelAndValidateConnectionDictionary Runs the login panel until the user enters valid connection

information or cancels the panel.
– setConnectionDictionary: Sets the connection dictionary.

Class Description

EOAdaptor is an abstract class that provides concrete subclasses with a structure for connecting to a
database. A concrete subclass of EOAdaptor provides database-specific method implementations and
represents a single database server. You never interact with instances of the EOAdaptor class, but you use
its class methods, adaptorWithName: and adaptorWithModel: , to create instances of a concrete
subclass. The EOAdaptor class defines the methods that find and load adaptors from bundles. However, you
rarely interact with a concrete subclass of EOAdaptor either. Generally, adaptors are automatically created
and used by other classes in the Enterprise Objects Framework.

An EOAdaptor can manage several EOAdaptorContexts, each of which represents a transaction scope on
the database server. An EOAdaptorContext can in turn manage several EOAdaptorChannels, each of which
handles actual access to the data on the server. A newly created adaptor has no adaptor contexts; to create
a new context send your adaptor a createAdaptorContext message. An adaptor for a particular database

3

may support a limited number of contexts per adaptor object or channels per context, but an application is
guaranteed at least one of each.

An EOAdaptorContext retains its adaptor when created and an EOAdaptorChannel retains its context, so
when you create a set of these objects, you need only retain the channel for all objects to remain valid.

Creating an Adaptor and Connecting To The Server

You normally create an adaptor with an existing EOModel object, which in turn is usually defined with the
EOModeler application (see the EOModel class specification for information on loading a model file). The
EOModel contains the name of the adaptor bundle it needs, and also contains database connection
information so that an application can connect immediately without requiring the user to type a password.

The connection information consists of all the values, such as user name and password, needed to connect
to the database server. It’s stored in a dictionary whose keys identify the information the server expects, and
whose values are the values that the adaptor will try when connecting. Each adaptor uses different keys; see
your adaptor’s documentation for keys it uses.

You can create a connection dictionary and assign it to your adaptor with the setConnectionDictionary:
method, or you can have the adaptor run a login panel to get the information from the user. When you ask
an adaptor to validate its connection dictionary with the
runLoginPanelAndValidateConnectionDictionary message, it briefly forms a connection to confirm that
the server will accept the values entered by the user. An adaptor doesn’t form a lasting connection to the
database server until one of its channels receives an openChannel message.

The following code excerpt shows one way to set up a suite of adaptor objects, given a model that’s already
loaded:

EOModel *myModel; /* Assume this exists. */

EOAdaptor *myAdaptor;

EOAdaptorContext *myContext;

EOAdaptorChannel *myChannel;

myAdaptor = [EOAdaptor adaptorWithModel:myModel];

myContext = [myAdaptor createAdaptorContext];

myChannel = [[myContext createAdaptorChannel] retain];

NS_DURING

 [myAdaptor assertConnectionDictionaryIsValid];

NS_HANDLER

 if ([myAdaptor runLoginPanelAndValidateConnectionDictionary] == NO) {

 /* Handle user canceling login panel... */

 }

NS_ENDHANDLER

[myChannel openChannel]

4

The assertConnectionDictionaryIsValid invocation verifies that the adaptor has the information needed
to log in to the server. This method raises an exception if it’s unable to connect to the database server. Thus,
it’s invoked within an exception handling domain bracketed by NS_DURING and NS_HANDLER macros
(see the NSException class specification for information on handling exceptions). If the connection
dictionary contains invalid information (for example, it’s common to leave the user name and password
unspecified in the model file), assertConnectionDictionaryIsValid raises an exception. As a result, the
local exception handler (bracketed by NS_HANDLER and NS_ENDHANDLER macros) invokes
runLoginPanelAndValidateConnectionDictionary to allow the user to enter the necessary connection
information. The invocation of openChannel at the end of the excerpt causes the application to form a
connection to the database.

Creating an EOAdaptor Subclass

Enterprise Objects Framework provides concrete adaptors for three standard relational database
management systems—Informix, Oracle, and Sybase—as well as a concrete adaptor for ODBC-compliant
databases. You may want to create a subclass of one of these adaptors to extend its behavior, or you may
want to create a concrete EOAdaptor subclass for a different database or persistent storage system.
EOAdaptor provides many default method implementations that are sufficient for concrete subclasses:

+ assignExternalInfoForEntireModel:
– connectionDictionary
– contexts
– databaseEncoding
– delegate
– hasOpenChannels
– name

The following methods establish structure and conventions that other Enterprise Objects Framework classes
depend on and should be overridden with caution:

+ adaptorWithModel:
+ adaptorWithName:
+ setExpressionClassName:adaptorClassName:
+ sharedLoginPanelInstance
– initWithName:
– expressionClass
– runLoginPanel
– runLoginPanelAndValidateConnectionDictionary
– setConnectionDictionary:
– setDelegate:

If you override any of the above methods, your implementations should incorporate the superclass’s
implementation through a message to super.

5

The remaining EOAdaptor methods must be overridden by concrete adaptor subclasses in terms of the
persistent storage system with which it interacts:

+ assignExternalInfoForAttribute:
+ assignExternalInfoForEntity:
+ externalTypesWithModel:
+ internalTypeForExternalType:model:
– assertConnectionDictionaryIsValid
– createAdaptorContext
– defaultExpressionClass
– fetchedValueForDataValue:attribute:
– fetchedValueForDateValue:attribute:
– fetchedValueForNumberValue:attribute:
– fetchedValueForStringValue:attribute:
– fetchedValueForValue:attribute:
– isValidQualifierType:model:

Method Types

Creating an EOAdaptor + adaptorWithName:
+ adaptorWithModel:
– initWithName:

Getting an adaptor’s name – name

Getting the names of all available adaptors
+ availableAdaptorNames

Setting connection information – assertConnectionDictionaryIsValid
– connectionDictionary
– setConnectionDictionary:
– runLoginPanelAndValidateConnectionDictionary
– runLoginPanel
– databaseEncoding

Performing database-specific transformations on values
– fetchedValueForValue:attribute:
– fetchedValueForDataValue:attribute:
– fetchedValueForDateValue:attribute:
– fetchedValueForNumberValue:attribute:
– fetchedValueForStringValue:attribute:

6

Servicing models – canServiceModel:
+ internalTypeForExternalType:model:
+ externalTypesWithModel:
+ assignExternalInfoForEntireModel:
+ assignExternalInfoForEntity:
+ assignExternalInfoForAttribute:
– isValidQualifierType:model:

Creating adaptor contexts – createAdaptorContext
– contexts

Checking connection status – hasOpenChannels

Setting a default expression class + setExpressionClassName:adaptorClassName:
– expressionClass
– defaultExpressionClass

Accessing an adaptor’s login panel + sharedLoginPanelInstance
– runLoginPanelAndValidateConnectionDictionary
– runLoginPanel

Setting the delegate – delegate
– setDelegate:

Class Methods

adaptorWithModel:
+(id)adaptorWithModel: (EOModel *)model

Creates and returns a new adaptor by extracting the adaptor name from model, sending adaptorWithName:
to self, and assigning model’s connection dictionary to the new adaptor. Raises an
NSInvalidArgumentException if model is nil or if model’s adaptor name is nil .

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – adaptorName (EOModel), –setConnectionDictionary:

adaptorWithName:
+ (id)adaptorWithName:(NSString *)name

Creates and returns a new adaptor, loading it from the framework named name if necessary and sending it
an initWithName: message. For example, this code excerpt creates an adaptor from a framework named
AcmeEOAdaptor.framework:

7

EOAdaptor *myAdaptor = [EOAdaptor adaptorWithName:@"Acme"];

Searches application's main bundle, ~/Library/Frameworks , LocalLibrary/Frameworks , and
NextLibrary/Frameworks for the first framework whose base filename (that is, the filename without the
“.framework” extension) corresponds to name. Raises an NSInvalidArgumentException if name is nil .

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

assignExternalInfoForAttribute:
+ (void)assignExternalInfoForAttribute: (EOAttribute *)attribute

Overridden by adaptor subclasses to assign database-specific characteristics to attribute. EOAdaptor’s
implementation assigns a column name based on the attribute name. For example,
assignExternalInfoForAttribute: assigns the column name “FIRST_NAME” to an attribute named
“firstName”. The method makes no changes if attribute is derived.

A subclass of EOAdaptor should override this method to assign an external type using internal type,
precision, and length information.

See also: + assignExternalInfoForEntireModel:

assignExternalInfoForEntireModel:
+ (void)assignExternalInfoForEntireModel: (EOModel *)model

Assigns database-specific characteristics to model by invoking assignExternalInfoForEntity: for each
entity in model and assignExternalInfoForAttribute: for all attributes.

A subclass of EOAdaptor doesn’t need to override this method.

assignExternalInfoForEntity:
+ (void)assignExternalInfoForEntity: (EOEntity *)entity

Overridden by adaptor subclasses to assign database-specific characteristics to entity. EOAdaptor’s
implementation does nothing. An adaptor subclass should override this method to assign database-specific
characteristics, if any.

See also: + assignExternalInfoForEntireModel:

8

availableAdaptorNames
+ (NSArray *)availableAdaptorNames

Returns an array containing the names of all available adaptors, as found by searching the paths returned
by NSStandardLibraryPaths().

externalTypesWithModel:
+ (NSArray *)externalTypesWithModel:(EOModel *)model

Implemented by subclasses to return the database types (such as a Sybase “varchar” or an Oracle
“NUMBER”) for use with this adaptor. An adaptor subclass should override this method without invoking
EOAdaptor’s implementation.

internalTypeForExternalType:model:
+ (NSString *)internalTypeForExternalType: (NSString *)extType model:(EOModel *)model

Implemented by subclasses to return the name of the Objective-C class used to represent values stored in
the database as extType. An adaptor subclass should override this method without invoking EOAdaptor’s
implementation.

setExpressionClassName:adaptorClassName:
+ (void)setExpressionClassName:(NSString *)sqlExpressionClassName

adaptorClassName:(NSString *)adaptorClassName

Sets the expression class for instances of the class named adaptorClassName to sqlExpressionClassName.
If sqlExpressionClassName is nil , restores the expression class to the default. Raises an
NSInvalidArgumentException if adaptorClassName is nil .

Use this method to substitute a subclass of EOSQLExpression for the expression class provided by the
adaptor. For example, the default expression class for the Oracle adaptor is OracleSQLExpression. The
following statement substitutes the class named MySQLExpression:

[EOAdaptor setExpressionClassName:@"MySQLExpression" adaptorClassName:@"Oracle"];

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – defaultExpressionClass

9

sharedLoginPanelInstance
+ (EOLoginPanel *)sharedLoginPanelInstance

Returns the receiver’s login panel in applications that have a graphical user interface. Returns nil if the
message expression [NSApp sharedApplication] evaluates to nil . Otherwise, looks for the bundle named
“LoginPanel” in the resources for the adaptor framework, loads the bundle, and returns an instance of the
bundle’s principal class (see the NSBundle class specification for information on loading bundles). The
returned object is used to implement runLoginPanelAndValidateConnectionDictionary and
runLoginPanel.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

Instance Methods

assertConnectionDictionaryIsValid
– (void)assertConnectionDictionaryIsValid

Implemented by subclasses to verify that the adaptor can connect to the database server with its connection
dictionary. Briefly forms a connection to the server to validate the connection dictionary and then closes the
connection. Raises an EOGeneralAdaptorException if the connection dictionary contains invalid
information.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: – setConnectionDictionary:, – runLoginPanel,
– runLoginPanelAndValidateConnectionDictionary

canServiceModel:
– (BOOL)canServiceModel:(EOModel *)model

Returns YES if the receiver can service model, NO otherwise. EOAdaptor’s implementation returns YES if
the receiver’s connection dictionary is equal to model’s connection dictionary as determined by
NSDictionary’s isEqual: method.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

10

connectionDictionary
– (NSDictionary *)connectionDictionary

Returns the receiver’s connection dictionary, or nil if the adaptor doesn’t have one. See the class description
for information on connection dictionaries.

A subclass of EOAdaptor doesn’t need to override this method.

See also: – setConnectionDictionary:

contexts
– (NSArray *)contexts

Returns the adaptor contexts created by the receiver, or nil if no adaptor contexts have been created. A
subclass of EOAdaptor doesn’t need to override this method.

See also: – createAdaptorContext

createAdaptorContext
– (EOAdaptorContext *)createAdaptorContext

Implemented by subclasses to create and return a new EOAdaptorContext, or nil if a new context can’t be
created.The new context retains the receiver. A newly created EOAdaptor has no contexts.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: – contexts, – initWithAdaptor: (EOAdaptorContext)

databaseEncoding
– (NSStringEncoding)databaseEncoding

Returns the string encoding used to encode and decode database strings. An adaptor’s database encoding is
stored in the connection dictionary with the key “databaseEncoding”. If the connection dictionary doesn’t
have an entry for the database encoding, the default C string encoding is used. This method raises if the
receiver’s database encoding isn’t valid.

A database system stores strings in a particular character set. The Framework needs to know what character
set the database system uses so it can encode and decode strings coming from and going to the database
server. The string encoding returned from this method specifies the character set the Framework uses.

A subclass of EOAdaptor doesn’t need to override this method.

See also: – availableStringEncodings (NSString), – defaultCStringEncoding (NSString)

11

defaultExpressionClass
– (Class)defaultExpressionClass

Implemented by subclasses to return the subclass of EOSQLExpression used as the default expression class
for the adaptor. You wouldn’t ordinarily invoke this method directly. It’s invoked automatically to determine
which class should be used to represent query language expressions.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

See also: + setExpressionClassName:adaptorClassName:

delegate
– (id)delegate

Returns the receiver’s delegate or nil if a delegate has not been assigned. A subclass of EOAdaptor doesn’t
need to override this method.

See also: – setDelegate:

expressionClass
– (Class)expressionClass

Returns the subclass of EOSQLExpression used by the receiver for query language expressions. Returns
the expression class assigned using the class method setExpressionClassName:adaptorClassName:. If no
class has been set for the receiver’s class, this method determines the expression class by sending
defaultExpressionClass to self.

You wouldn’t ordinarily invoke this method directly. It’s invoked automatically to determine which class
should be used to represent query language expressions.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

fetchedValueForDataValue:attribute:
– (NSData *)fetchedValueForDataValue:(NSData *)value attribute: (EOAttribute *)attribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. EOAdaptor’s implementation
returns value unchanged. An adaptor subclass should override this method if the adaptor’s database
performs transformations on binary types, such as BLOBs.

See also: – fetchedValueForValue:attribute:

12

fetchedValueForDateValue:attribute:
– (NSCalendarDate *)fetchedValueForDateValue:(NSCalendarDate *)value

attribute: (EOAttribute *)attribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. EOAdaptor’s implementation
returns value unchanged. An adaptor subclass should override this method to convert or format date values.
For example, a concrete adaptor subclass could set value’s millisecond value to 0.

See also: – fetchedValueForValue:attribute:

fetchedValueForNumberValue:attribute:
– (NSNumber *)fetchedValueForNumberValue:(NSNumber *)value

attribute: (EOAttribute *)attribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. EOAdaptor’s implementation
returns value unchanged. An adaptor subclass should override this method to convert or format numeric
values. For example, a concrete adaptor subclass should probably round value according to the precision
and scale attribute.

See also: – fetchedValueForValue:attribute:

fetchedValueForStringValue:attribute:
– (NSString*)fetchedValueForStringValue:(NSString *)value attribute: (EOAttribute *)attribute

Overridden by subclasses to return the value that the receiver’s database server would ultimately store for
value if it was inserted or updated in the column described by attribute. EOAdaptor’s implementation trims
trailing spaces and returns nil for zero-length strings. An adaptor subclass should override this method to
perform any additional conversion or formatting on string values. For example, a concrete adaptor subclass
could trim trailing spaces.

See also: – fetchedValueForValue:attribute:

fetchedValueForValue:attribute:
– (id)fetchedValueForValue:(id)value attribute: (EOAttribute *)attribute

Returns the value that the receiver’s database server would ultimately store for value if it was inserted or
updated in the column described by attribute. The Framework uses this method to keep enterprise object
snapshots in sync with database values. For example, assume that a product’s price is marked down 15%.
If the product’s original price is 5.25, the sale price is 5.25*.85, or 4.4625. When the Framework updates

13

the product’s price, the database server truncates the price to 4.46 (assuming the scale of the database’s price
column is 2). Before performing the update, the Framework sends the adaptor a
fetchedValueForValue:attribute: message with the value 4.4625. The adaptor performs the
database-specific transformation and returns 4.46. The Framework assigns the truncated value to the
product object and to the product object’s snapshot, and proceeds with the update.

An adaptor subclass can override this method or one of the datatype-specific fetchedValue... methods.
EOAdaptor’s implementation invokes one of the datatype-specific methods depending on value’s class. If
value is not a string, number, date, or data object (that is, an instance of NSString, NSNumber, NSDate,
NSData, or any of their subclasses), fetchedValueForValue:attribute: returns value unchanged.

This method invokes the delegate method adaptor:fetchedValueForValue:attribute: .

See also: – fetchedValueForDataValue:attribute:, – fetchedValueForDateValue:attribute:,
– fetchedValueForNumberValue:attribute:, – fetchedValueForStringValue:attribute:

hasOpenChannels
– (BOOL)hasOpenChannels

Returns YES if any of the receiver’s contexts have open channels, NO otherwise. A subclass of EOAdaptor
doesn’t need to override this method.

See also: – hasOpenChannels (EOAdaptorContext)

initWithName:
– (id)initWithName: (NSString *)name

The designated initializer for the EOAdaptor class, this method is overridden by adaptor subclasses to
initialize a newly allocated EOAdaptor subclass with name. name is usually derived from the base filename
(that is, the filename without the “.framework” extension) of the framework from which the adaptor is
loaded. For example, an adaptor named “Acme” is loaded from the framework
AcmeEOAdaptor.framework. Returns self.

Never invoke this method directly. It is invoked automatically from adaptorWithName: and
adaptorWithModel: —EOAdaptor class methods you use to create a new adaptor.

A subclass of EOAdaptor doesn’t need to override this method, but may override it to perform additional
initialization. A subclass that does override this method must incorporate the superclass’s version through
a message to super.

14

isValidQualifierType:model:
– (BOOL)isValidQualifierType: (NSString *)typeName model:(EOModel *)model

Implemented by subclasses to return YES if an attribute of type typeName can be used in a qualifier (a SQL
WHERE clause) sent to the database server, or NO otherwise. typeName is the name of a type as required
by the database server, such as a Sybase “varchar” or an Oracle “NUMBER”.

An adaptor subclass must override this method without invoking EOAdaptor’s implementation.

name
– (NSString *)name

Returns the adaptor’s name; this is usually the base filename of the framework from which the adaptor was
loaded. For example, if an adaptor was loaded from a framework named AcmeEOAdaptor.framework, this
method returns “Acme”.

A subclass of EOAdaptor doesn't need to override this method.

See also: + adaptorWithName:, – initWithName:

runLoginPanel
– (NSDictionary *)runLoginPanel

Runs the adaptor’s login panel by sending a runPanelForAdaptor:validate: message to the adaptor’s login
panel object with the validate flag NO. Returns connection information entered in the panel without
affecting the adaptor’s connection dictionary. The connection dictionary returned isn’t validated by this
method.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – runLoginPanelAndValidateConnectionDictionary, –setConnectionDictionary:,
– assertConnectionDictionaryIsValid, + sharedLoginPanelInstance

runLoginPanelAndValidateConnectionDictionary
– (BOOL)runLoginPanelAndValidateConnectionDictionary

Runs the adaptor’s login panel by sending a runPanelForAdaptor:validate: message to the adaptor’s login
panel object with the validate flag YES. Returns YES if the user enters valid connection information, or NO
if the user cancels the panel.

15

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – runLoginPanel, –setConnectionDictionary:, –assertConnectionDictionaryIsValid,
+ sharedLoginPanelInstance

setConnectionDictionary:
– (void)setConnectionDictionary:(NSDictionary *)dictionary

Sets the adaptor’s connection dictionary to dictionary, which must be a property list (containing only
NSString, NSData, NSDictionary, or NSArray objects). See the class description for information on
connection dictionaries. Raises an NSInvalidArgumentException if there are any open channels—you can’t
change connection information while the adaptor is connected.

A subclass of EOAdaptor doesn’t need to override this method. A subclass that does override this method
must incorporate the superclass’s version through a message to super.

See also: – connectionDictionary, –hasOpenChannels, –assertConnectionDictionaryIsValid,
– runLoginPanelAndValidateConnectionDictionary,
– runPanelForAdaptor:validate: (EOLoginPanel)

setDelegate:
– (void)setDelegate:(id)delegate

Sets the adaptor’s delegate to delegate. The receiver does not retain delegate. A subclass of EOAdaptor
doesn’t need to override this method. A subclass that does override this method must incorporate the
superclass’s version through a message to super.

See also: – delegate

Methods Implemented By the Delegate

adaptor:fetchedValueForValue:attribute:
– (id)adaptor:(EOAdaptor *)adaptor

fetchedValueForValue:(id)value
forAttribute: (EOAttribute *)attribute

Invoked from fetchedValueForValue:attribute: to allow the delegate to perform a database-specific
transformation on value. The delegate should return the value that the adaptor’s database server would
ultimately store for value if it was inserted or updated in the column described by attribute.

16

Ordinarily, fetchedValueForValue:attribute: invokes one of the type-specific fetchedValue... methods
depending on the type of value. If you implement this delegate method, fetchedValueForValue:attribute:
does not invoke the other fetchedValue... methods. It simply invokes your delegate method and returns the
value returned from it. Therefore, an implementation of adaptor:fetchedValueForValue:attribute: must
handle values of all types.

