
1

 

EOModelGroup

Inherits From: NSObject 

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOModelGroup.h 

Class Description 

An EOModelGroup represents an aggregation of related models (see the EOModel class specification for 
more information on models). When a model in the group needs to resolve a foreign relationship to another 
model, it looks for that model in its group.

The default EOModelGroup contains all models for an application, as well as any frameworks the 
application references. The entity name space among all of these models is global; consequently, the same 
entity name shouldn’t appear in any two of the models. All cross-model information is represented in the 
models by entity name only. Binding the entity name to an actual entity is done at run-time within the 
EOModelGroup.

In the majority of applications, the default EOModelGroup should be sufficient. However, if your particular 
application requires different model grouping semantics, you can create your own EOModelGroup 
instance, add the appropriate models, and then use that instance to replace the default EOModelGroup.

Accessing Models Within a Model Group

Each model lives within a group and can form connections to other models in its group. A model can find 
a related model using the statement:

[[self modelGroup] modelNamed:name];

A data source can locate a model using the statement:

[[EOModelGroup defaultModelGroup] modelNamed:name];

Putting models with identical names in separate groups allows you to load two models with the same name 
into EOModeler.

Assigning EOModelGroup Delegates

Your EOModelGroup object should have a delegate which can influence how it finds and loads models. 
EOModelGroup’s class object has its own delegate in addition to the delegate you assign to instances of the 
EOModelGroup class. The class delegate implements a single method—defaultModelGroup—while the 



2

instance delegate can implement the remaining methods listed in the “Methods Implemented By the 
Delegate” section. Note that the following delegate methods are set on EOModelGroup, rather than 
EOEntity, to provide a single point in the code where you can alter the database-to-objects mapping:

entity:relationshipForRow:relationship:
subEntityForEntity:primaryKey:isFinal:
entity:failedToLookupClassNamed:
entity:classForObjectWithGlobalID:

Method Types

Getting the models in a group – addModel:
– modelNamed:
– modelNames
– models
– modelWithPath:
– removeModel:

Getting the default group + defaultGroup
+ setDefaultGroup:

Constructing a global model group + globalModelGroup

Searching a group for an entity – entityNamed:

Searching a group for an object – entityForObject:

Loading all of a group’s objects – loadAllModelObjects

Assigning a delegate + delegate
– delegate
+ setDelegate:
– setDelegate:

Class Methods 

defaultGroup
+ (EOModelGroup *)defaultGroup 

Returns the default EOModelGroup. Unless you’ve either specified a default model group with 
setDefaultGroup: or implemented the defaultModelGroup class delegate method to return a non-nil  
value, this method is equivalent to globalModelGroup.

See also: + delegate



3

 

delegate
+ (id)delegate 

Returns the EOModelGroup’s class delegate. This delegate optionally implements the defaultModelGroup 
method (see “Methods Implemented By the Delegate,” below, for more information).

See also: + setDelegate

globalModelGroup
+ (EOModelGroup *)globalModelGroup 

Returns an EOModelGroup composed of all models in the resource directory of the main bundle, as well 
as all bundles and frameworks loaded into the application.

See also: + defaultGroup

setDefaultGroup:
+ (void)setDefaultGroup:(EOModelGroup *)group 

Sets the default EOModelGroup normally returned by defaultGroup to group.

See also: + setDelegate:

setDelegate:
+ (void)setDelegate:(id)anObject 

Sets to anObject the EOModelGroup’s class delegate. The class delegate is optional; if allows you to 
implement the defaultModelGroup method (see “Methods Implemented By the Delegate,” below, for more 
information).

See also: + delegate, + setDefaultGroup:

Instance Methods

addModel:
– (void)addModel:(EOModel *)model 

Adds model to the receiver. If the receiver already contains an EOModel with the same name as model, the 
existing EOModel is released and model takes its place.

See also: – models, – removeModel:



4

delegate
– (id)delegate 

Returns the receiver’s delegate.

See also: – setDelegate:

entityForObject:
– (EOEntity *)entityForObject:(id) object

Returns the EOEntity associated with object from any of the models in the receiver that handle object, or 
nil  if none of the entities in the receiver handles object.

entityNamed:
– (EOEntity *)entityNamed:(NSString *)entityName 

Searches each of the EOModels in the receiver for the entity specified by entityName, and returns the entity 
if found. Returns nil  if it is unable to find the specified entity.

loadAllModelObjects
– (void)loadAllModelObjects 

Sends loadAllModelObjects to each of the receiver’s EOModels, thereby loading any EOEntities, 
EOAttributes, EORelationships, and EOStoredProcedures that haven’t yet been loaded from each of the 
EOModels in the receiver.

See also: – loadAllModelObjects (EOModel) 

modelNamed:
– (EOModel *)modelNamed:(NSString *)modelName 

Returns the EOModel named modelName if it’s part of the receiver, or nil  if the receiver doesn’t contain an 
EOModel with the specified name.

See also: – modelNames, –models



5

 

modelNames
– (NSArray *)modelNames 

Returns an array containing the names of all of the EOModels in the receiver, or an empty array if the 
receiver contains no EOModels. The order of the model names in the array isn’t defined.

See also: – modelNamed:, –models

modelWithPath:
– (EOModel *)modelWithPath:(NSString *)path 

If the receiver contains an EOModel whose path (as determined by sending path to the EOModel object) 
is equal to path, that EOModel is returned. Otherwise, returns nil . NSString’s isEqual: method is used to 
compare the paths, and each path is standardized (with stringByStandardizingPath) before comparison.

See also: – modelNamed:, –path (EOModel)

models
– (NSArray *)models 

Returns an array containing the receiver’s EOModels, or an empty array if the receiver contains no 
EOModels. The order of the models in the array isn’t defined.

See also: – modelNamed:, –modelNames

removeModel:
– (void)removeModel:(EOModel *)aModel 

Removes aModel from the receiver, and unbinds any connections to aModel from other EOModels in the 
receiver. Posts an EOModelInvalidatedNotification to the default notification center after removing aModel 
from the receiver.

See also: – addModel:, –models

setDelegate:
– (void)setDelegate:(id)anObject 

Sets the receiver’s delegate to anObject.

See also: – delegate



6

Methods Implemented By the Delegate

defaultModelGroup
– (EOModelGroup *)defaultModelGroup

If implemented by the class delegate, this method should return the EOModelGroup to be returned in 
response to the message defaultModelGroup. If this delegate method returns nil , EOModelGroup’s 
defaultModelGroup class method will simply pass on the return value from EOModelGroup’s 
globalModelGroup class method.

Note: This is the only method implemented by the class delegate.

See also: + delegate, + setDelegate:

modelGroup:entityNamed:
– (EOModel *)modelGroup:(EOModelGroup *)group entityNamed:(NSString *)name

If implemented by the delegate, this method should search the group for the entity named name and return 
the entity’s EOModel. Return nil  if name is not an entity in group.

entity:relationshipForRow:relationship:
– (EORelationship *)entity:(EOEntity *)entity relationshipForRow:(NSDictionary *)row 

relationship:(EORelationship *)relationship

Invoked when relationships are instantiated for a newly fetched object. The delegate can use the information 
in row to determine which entity the target enterprise object should be associated with, and replace the 
relationship appropriately.

subEntityForEntity:primaryKey:isFinal:
– (EOEntity *)subEntityForEntity: (EOEntity *)entity primaryKey: (NSDictionary 

*)primaryKeisFinal:(BOOL *)flag

Allows the delegate to fine-tune inheritance by indicating from which sub-entity an object should be fetched 
based on its primaryKey. The entity returned must be a sub-entity of entity. If the delegate knows that the 
object should be fetched from the returned entity and not one of its sub-entities, it should set flag to YES. 



7

 

entity:failedToLookupClassNamed:
– (Class)entity:(EOEntity *)entity failedToLookupClassNamed:(NSString *)className

Invoked when the class name specified for entity cannot be found at run-time. The delegate can take action 
(such as loading a bundle) to provide entity with a class corresponding to className. If the delegate cannot 
provide anything, or if there is no delegate, EOGenericRecord is used.

entity:classForObjectWithGlobalID:
– (Class)entity:(EOEntity *)entity classForObjectWithGlobalID:(EOGlobalID *)globalID

Used to fine-tune inheritance. The delegate can use globalID to determine a subclass to be used in place of 
the one specified in entity.

relationship:failedToLookupDestinationNamed:
– (EOEntity *)relationship:(EORelationship *)relationship 

failedToLookupDestinationNamed:(NSString *)entityName

Invoked when loading relationship and the destination entityName specified in the model file cannot be 
found in the model group. This most often occurs when a model references entities in another model file 
that can’t be found. If the delegate doesn’t implement this method, an exception is raised. If the delegate 
does implement this method, the method’s return value is set as the destination entity. if the delegate returns 
nil , the destination entity is set to nil .

Notifications

EOModelGroup declares and posts the following notification.

EOModelInvalidatedNotification
Notification Object The invalidated model.

This notification is sent out by an EOModelGroup when an EOModel is removed from group. This 
notification is sent, for instance, inside Interface Builder when the user has saved changes to a model in 
EOModeler and the objects in Interface Builder must be brought back in sync. The old model is flushed and 
receivers of the notification (like data sources) can invoke modelNamed: to re-fetch their models.


