
1

EOAdaptorContext

Inherits From: NSObject

Declared In: EOAccess/EOAdaptorContext.h

Class at a Glance

Purpose
EOAdaptorContext is an abstract class that defines transaction handling in Enterprise Objects Framework
applications. You typically don’t interact with EOAdaptorContext API directly; rather, a concrete adaptor context
subclass inherits from EOAdaptorContext and overrides many of its methods, which are invoked automatically
by the Enterprise Objects Framework. If you’re not creating a concrete adaptor context subclass, there aren’t very
many methods you need to use, and you’ll rarely invoke them directly.

Principle Attributes
• Array of adaptor channels • Delegate
• Adaptor

Creation
Other framework classes Adaptor context instances are generally created automatically.
– createAdaptorContext (EOAdaptor) Creates an adaptor context and assigns its adaptor.

Commonly Used Methods
– beginTransaction Begins a transaction in the database server.
– commitTransaction Commits the last transaction begun.
– rollbackTransaction Rolls back the last transaction begun.
– setDebugEnabled: Enables debugging in all the adaptor context’s channels.

2

Class Description

EOAdaptorContext is an abstract class that provides concrete subclasses with a structure for handling
database transactions. A concrete subclass of EOAdaptorContext provides database-specific method
implementations and represents a single transaction scope (logical user) on the database server to which its
EOAdaptor object is connected. You never interact with instances of the EOAdaptorContext class, rather
your Enterprise Objects Framework applications use instances of concrete subclasses that are written to
work with a specific database or other persistent storage system. To create an instance of a concrete
EOAdaptorContext subclass, you send a createAdaptorContext message to an instance of the
corresponding EOAdaptor subclass. You rarely create adaptor contexts yourself. They are generally created
automatically by other framework objects.

If a database server supports multiple concurrent transaction sessions, an adaptor context’s EOAdaptor may
have several contexts. An EOAdaptorContext may in turn have several EOAdaptorChannels, which handle
actual access to the data on the server. An EOAdaptorContext by default has no EOAdaptorChannels; to
create a new channel send your EOAdaptorContext a createAdaptorChannel message.

Note: When you use multiple EOAdaptorContexts, you can have several database server transactions in
progress simultaneously. You should be aware of the issues involved in concurrent access if you do
this.

Controlling Transactions

EOAdaptorContext defines a simple set of methods for explicitly controlling transactions:
beginTransaction, commitTransaction, and rollbackTransaction. Each of these messages confirms the
requested action with the adaptor context’s delegate, then performs the action if possible.

There’s also a set of methods for notifying an adaptor context that a transaction has been started, committed,
or rolled back without using the begin-, commit-, or rollbackTransaction methods. For example, if you
invoke a stored procedure in the server that begins a transaction, you need to notify the adaptor context that
a transaction has been started. Use the following methods to keep an adaptor context synchronized with the
state of the database server: transactionDidBegin, transactionDidCommit, and
transactionDidRollback. These methods post notifications.

The Adaptor Context’s Delegate and Notifications

You can assign a delegate to an adaptor context. The delegate responds to certain messages on behalf of the
context. An EOAdaptorContext sends these messages directly to its delegate. The transaction-controlling
methods—beginTransaction, commitTransaction, and rollbackTransaction—notify the adaptor
context’s delegate before and after a transaction operation is performed. Some delegate methods, such as
adaptorContextShouldBegin:, let the delegate determine whether the context should perform an
operation. Others, such as adaptorContextDidBegin:, are simply notifications that an operation has
occurred. The delegate has an opportunity to respond by implementing the delegate methods. If the delegate
wants to intervene, it implements adaptorContextShouldBegin:. If it simply wants notification when a
transaction has begun, it implements adaptorContextDidBegin:.

3

EOAdaptorContext also posts notifications to the application’s default notification center. Any object may
register to receive one or more of the notifications posted by an adaptor context by sending the message
addObserver:selector:name:object: to the default notification center (an instance of the
NSNotificationCenter class). For more information on notifications, see the NSNotificationCenter class
specification in the Foundation Framework Reference.

Creating an EOAdaptorContext Subclass

EOAdaptorContext provides many default method implementations that are sufficient for concrete
subclasses. In fact, the following methods establish structure and conventions that other Enterprise Objects
Framework classes depend on and should never be overridden:

+ setDebugEnabledDefault:
– transactionDidBegin
– transactionDidCommit
– transactionDidRollback
– transactionNestingLevel

Other methods require database-specific implementations that can be provided only by a concrete adaptor
context subclass. A subclass must override the following methods in terms of the persistent storage system
to which it interfaces:

– beginTransaction
– canNestTransactions
– commitTransaction
– createAdaptorChannel
– rollbackTransaction

Method Types

Creating an EOAdaptorContext – initWithAdaptor:

Getting the adaptor – adaptor

Creating adaptor channels – createAdaptorChannel
– channels

Checking connection status – hasOpenChannels
– hasBusyChannels

4

Controlling transactions – beginTransaction
– commitTransaction
– rollbackTransaction
– transactionDidBegin
– transactionDidCommit
– transactionDidRollback
– canNestTransactions
– transactionNestingLevel

Debugging + setDebugEnabledDefault:
+ debugEnabledDefault
– setDebugEnabled:
– isDebugEnabled

Setting the delegate – delegate
– setDelegate:

Class Methods

debugEnabledDefault
+ (BOOL)debugEnabledDefault

Returns YES if new adaptor context instances have debugging enabled by default, NO otherwise. By
default, adaptor contexts have debugging enabled if the user default EOAdaptorDebugEnabled is YES. (For
more information on user defaults, see the NSUserDefaults class specification in the Foundation
Framework Reference.) You can override the user default using the class method
setDebugEnabledDefault:, or you can set debugging behavior for a specific instance with the instance
method setDebugEnabled:.

setDebugEnabledDefault:
+ (void)setDebugEnabledDefault:(BOOL)flag

Sets default debugging behavior for new instances of EOAdaptorContext. If flag is YES, debugging is
enabled for new instances. If flag is NO, debugging is disabled. Use the instance method setDebugEnabled:
to enable debugging for a specific adaptor context.

See also: + debugEnabledDefault, – isDebugEnabled

5

Instance Methods

adaptor
– (EOAdaptor *)adaptor

Returns the receiver’s EOAdaptor.

See also: – initWithAdaptor:

beginTransaction
– (void)beginTransaction

Implemented by subclasses to attempt to begin a new transaction, nested within the current one if nested
transactions are supported. Invokes the delegate method adaptorContextShouldBegin: before beginning
the transaction. If the transaction is begun successfully, sends self a transactionDidBegin message and
invokes the delegate method adaptorContextDidBegin:. Raises if the attempt is unsuccessful. Some
possible reasons for failure are:

• A connection to the database hasn’t been established.
• Nested transactions aren’t supported, and a transaction is already in progress.
• A fetch is in progress.
• The delegate refuses.
• The database server fails to begin a transaction.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: – commitTransaction, – rollbackTransaction, –canNestTransactions,
– transactionNestingLevel

canNestTransactions
– (BOOL)canNestTransactions

Implemented by subclasses to return YES if the database server and the adaptor context can nest
transactions, NO otherwise. An adaptor context subclass should override this method without invoking
EOAdaptorContext’s implementation.

See also: – transactionNestingLevel

6

channels
– (NSArray *)channels

Returns an array of channels created by this context. Specific adaptors have different limits on the
maximum number of channels a context can have.

See also: – createAdaptorChannel

commitTransaction
– (void)commitTransaction

Implemented by subclasses to attempt to commit the last transaction begun. Invokes the delegate method
adaptorContextShouldCommit: before committing the transaction. If the transaction is committed
successfully, sends self a transactionDidCommit message and invokes the delegate method
adaptorContextDidCommit: . Raises if the attempt is unsuccessful. Some possible reasons for failure are:

• A transaction is not in progress.
• Fetches are in progress.
• The delegate refuses.
• The database server fails to commit (and may rollback).

In the first three cases, the transaction is not rolled back. In the fourth, it depends on the concrete subclass.
Some concrete adaptor contexts roll back after the database server fails to commit a transaction and others
don’t; see your adaptor context’s documentation for more information.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: – beginTransaction, – transactionDidCommit, –hasBusyChannels

createAdaptorChannel
– (EOAdaptorChannel *)createAdaptorChannel

Implemented by subclasses to create and return a new EOAdaptorChannel, or nil if a new channel cannot
be created. Initializes the new channel by sending it initWithAdaptorContext:self . The newly created
channel retains its context. A newly created adaptor context has no channels. Specific adaptors have
different limits on the maximum number of channels a context can have, and createAdaptorChannel may
fail if a newly created channel will exceed the limits.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: – channels

7

delegate
– delegate

Returns the adaptor context’s delegate.

See also: – setDelegate:

hasBusyChannels
– (BOOL)hasBusyChannels

Returns YES if any of the receiver’s channels have outstanding operations (that is, have a fetch in progress),
NO otherwise.

See also: – isFetchInProgress (EOAdaptorChannel)

hasOpenChannels
– (BOOL)hasOpenChannels

Returns YES if any of the receiver’s channels are open, NO otherwise.

See also: – openChannel (EOAdaptorChannel), –isOpen (EOAdaptorChannel)

initWithAdaptor:
– initWithAdaptor: (EOAdaptor *)adaptor

The designated initializer for the EOAdaptorContext class, this method is overridden by subclasses to
initialize a newly allocated EOAdaptorContext subclass and retain adaptor. Returns self.

You never invoke this method directly. You must use the EOAdaptor method createAdaptorContext to
create a new adaptor context.

See also: – adaptor

isDebugEnabled
– (BOOL)isDebugEnabled

Returns YES if debugging is enabled in the receiver, NO otherwise.

See also: – setDebugEnabled:, + debugEnabledDefault, + setDebugEnabledDefault:

8

rollbackTransaction
– (void)rollbackTransaction

Implemented by subclasses to attempt to roll back the last transaction begun. Invokes the delegate method
adaptorContextShouldRollback: before rolling back the transaction. If the transaction is begun
successfully, sends self a transactionDidRollback message and invokes the delegate method
adaptorContextDidRollback:. Raises if the attempt is unsuccessful. Some possible reasons for failure are:

• A transaction is not in progress.
• Fetches are in progress.
• The delegate refuses.
• The database server fails to rollback.

An adaptor context subclass should override this method without invoking EOAdaptorContext’s
implementation.

See also: – beginTransaction, –commitTransaction

setDebugEnabled:
– (void)setDebugEnabled:(BOOL)debugEnabled

Enables debugging in the receiver and all its channels. If debugEnabled is YES, enables debugging;
otherwise, disables debugging.

See also: – setDebugEnabled: (EOAdaptorChannel), –isDebugEnabled, + setDebugEnabledDefault:,
– channels

setDelegate:
– (void)setDelegate:delegate

Sets the receiver’s delegate and all the receiver’s channels to delegate. The receiver does not retain delegate.

See also: – delegate, –channels

transactionDidBegin
– (void)transactionDidBegin

Informs the adaptor context that a transaction has begun in the database server, so the receiver can update
its state to reflect this fact and send an EOAdaptorContextBeginTransactionNotification. This method is
invoked from beginTransaction after a transaction has successfully been started. Your application should
invoke this method whenever it begins a transaction other than by sending a beginTransaction message (for
example, by using EOAdaptorChannel’s evaluateExpression:).

9

transactionDidCommit
– (void)transactionDidCommit

Informs the adaptor context that a transaction has committed in the database server, so the receiver can
update its state to reflect this fact and send an EOAdaptorContextCommitTransactionNotification. This
method is invoked from commitTransaction after a transaction has successfully committed. Your
application should invoke this method whenever it commits a transaction other than by sending a
commitTransaction message (for example, by using EOAdaptorChannel’s evaluateExpression:).

transactionDidRollback
– (void)transactionDidRollback

Informs the adaptor context that a transaction has rolled back in the database server, so the receiver can
update its state to reflect this fact and send an EOAdaptorContextRollbackTransactionNotification. This
method is invoked from rollbackTransaction after a transaction has successfully been rolled back. Your
application should invoke this method whenever it rolls back a transaction other than by sending a
rollbackTransaction message (for example, by using EOAdaptorChannel’s evaluateExpression:).

transactionNestingLevel
– (unsigned)transactionNestingLevel

Returns the number of transactions in progress. If the database server and the adaptor support nested
transactions, this number may be greater than 1.

See also: – canNestTransactions

Notifications

EOAdaptorContextBeginTransactionNotification

Sent from transactionDidBegin to tell observers that a transaction has begun. The notification contains:

Notification Object The notifying EOAdaptorContext object

Userinfo None

10

EOAdaptorContextCommitTransactionNotification

Sent from transactionDidCommit to tell observers that a transaction has been committed. The notification
contains:

Notification Object The notifying EOAdaptorContext object

Userinfo None

EOAdaptorContextRollbackTransactionNotification

Sent from transactionDidRollback to tell observers that a transaction has been rolled back. The
notification contains:

Notification Object The notifying EOAdaptorContext object

Userinfo None

Methods Implemented By the Delegate

adaptorContextDidBegin:
– (void)adaptorContextDidBegin:context

Invoked from beginTransaction to tell the delegate that a transaction has begun.

adaptorContextDidCommit:
– (void)adaptorContextDidCommit:context

Invoked from commitTransaction to tell the delegate that a transaction has been committed.

adaptorContextDidRollback:
– (void)adaptorContextDidRollback:context

Invoked from rollbackTransaction to tell the delegate that a transaction has been rolled back.

11

adaptorContextShouldBegin:
– (BOOL)adaptorContextShouldBegin:context

Invoked from beginTransaction to tell the delegate that context is beginning a transaction. If this method
returns NO, the adaptor context does not begin a transaction. Return YES to allow the adaptor context to
begin a transaction.

adaptorContextShouldCommit:
– (BOOL)adaptorContextShouldCommit:context

Invoked from commitTransaction to tell the delegate that context is committing a transaction. If this
method returns NO, the adaptor context does not commit the transaction. Return YES to allow the adaptor
context to commit.

adaptorContextShouldRollback:
– (BOOL)adaptorContextShouldRollback:context

Invoked from rollbackTransaction to tell the delegate that context is rolling back a transaction. If this
method returns NO, the adaptor context does not roll back the transaction. Return YES to allow the adaptor
context to roll back.

