
1

EOFault

Inherits From: none(EOFault is a root class)

Declared In: EOControl/EOFault.h

Class Description

EOFault and EOFaultHandler form a general mechanism for substituting placeholder objects that convert
themselves into regular objects. An EOFault is most commonly used by the Access Layer to represent an
object not yet fetched from the database, but that must nonetheless exist as an instance in the application—
typically because it’s the destination of a relationship. EOFault is a completely general class; there’s no
need to create subclasses to customize fault handling. Instead, you create subclasses of EOFaultHandler to
accommodate different means of converting faults into regular objects.

The faulting mechanism provides for continuity of an object’s id even when that object’s state isn’t yet
available. An EOFault simply holds the place for an ultimate “real” object, handling all methods that it can
without causing the state to be loaded. When an EOFault receives a message that it can’t handle, it calls
upon its EOFaultHandler to fire it, converting it into a “real” object. This often involves accessing the
external, persistent state of the object.

Creating an EOFault

Rather than allocating and initializing an EOFault, you turn an existing object into one using EOFault’s
makeObjectIntoFault:withHandler: class method. When you do so, you must provide an
EOFaultHandler that will later help the fault to fire. makeObjectIntoFault:withHandler: preserves the id
of the original object, overlaying its isa pointer with that of the EOFault class and slipping the
EOFaultHandler among its instance variables. Once this is done, the original object is an EOFault that will
fire when accessed.

The EOFaultHandler should be considered completely private property of the EOFault once you’ve created
it. You should neither retain the EOFaultHandler or send it any other messages, instead dealing exclusively
with the newly created EOFault or the EOFault class itself.

2

EOFault Behavior

EOFault implements many basic object methods in a manner that doesn’t cause the receiver to fire. The
following methods all behave as though normal for the original object:

– retain – isMemberOfClass:
– release – conformsToProtocol:
– autorelease – isProxy
– retainCount – methodSignatureForSelector:
– class – respondsToSelector:
– superclass – zone
– isKindOfClass: – doesNotRecognizeSelector:

doesNotRecognizeSelector: is a special case here, in that it’s only invoked if the selector in question isn’t
found for the original class. Normally, methods not implemented by EOFault, but implemented by the
original class, cause the receiver to fire as described below.

These methods don’t cause the receiver to fire, but also don’t hide the presence of the EOFault class:

– description – descriptionWithLocale:
– descriptionWithIndent: – descriptionWithLocale:indent:
– eoDescription – eoShallowDescription

The following common methods, along with any others not explicitly mentioned in this section, do cause
the receiving EOFault to fire.

– dealloc
– self
– forwardInvocation:

When an EOFault receives one of these messages, it fires in one of a few different ways. dealloc invokes
the clearFault: class method to revert the receiver back to its original state, then reinvokes dealloc to clean
up instance variables and deallocate the object. The other methods all send a special message,
completeInitializationOfObject: , to the EOFaultHandler to transform the EOFault into a regular object,
possibly different from its original state. In addition, forwardInvocation: sends a
shouldPerformInvocation: to the EOFaultHandler first, which allows it to perform the method itself
without causing the EOFault to be transformed. If the EOFaultHandler returns YES, though, the EOFault
then sends it a completeInitializationOfObject: message.

Examining an EOFault

Three additional EOFault methods allow you to explicitly check whether an object is an EOFault without
causing it to fire, and to get its original class and EOFaultHandler if it is an EOFault. These methods are:

+ isFault:
+ targetClassForFault:
+ handlerForFault:

3

You can use these methods to base some decisions on whether an object is an EOFault, though you should
rarely need to do so.

Method Types

Creating and examining faults + makeObjectIntoFault:withHandler:
+ isFault:
+ clearFault:
+ handlerForFault:
+ targetClassForFault:
+ respondsToSelector:

Checking class information – class
– isKindOfClass:
– isMemberOfClass:
– respondsToSelector:
– conformsToProtocol:
– methodSignatureForSelector:

Run-time support – forwardInvocation:
– doesNotRecognizeSelector:

Getting a fault’s description – description
– descriptionWithIndent:
– descriptionWithLocale:
– descriptionWithLocale:indent:
– eoDescription
– eoShallowDescription

Reference-counting – retain
– release
– retainCount
– autorelease
– dealloc

Miscellaneous object methods – self
– isProxy
– superclass
– zone

4

Class Methods

clearFault:
+ (void)clearFault:(id)aFault

Restores aFault to its status prior to the makeObjectInfoFault:withHandler: message that created it.
Raises an NSInvalidArgumentException if aFault isn’t an EOFault.

You rarely use this method. Faults typically fire automatically when accessed, using EOFaultHandler’s
completeInitializationOfObject: method. See the EOFaultHandler class specification for more
information.

handlerForFault:
+ (EOFaultHandler *)handlerForFault: (id)aFault

Returns the EOFaultHandler that will help aFault to fire. Returns nil if aFault isn’t an EOFault.

isFault:
+ (BOOL)isFault:(id)anObject

Returns YES if anObject is an EOFault, NO otherwise.

makeObjectIntoFault:withHandler:
+ (void)makeObjectIntoFault:(id)anObject withHandler: (EOFaultHandler *)aFaultHandler

Converts anObject into an EOFault, assigning aFaultHandler as the object that stores its original state and
later converts the EOFault back into a normal object (typically by fetching data from an external repository).
The new EOFault becomes the owner of aFaultHandler; you shouldn’t assign it to another object.

respondsToSelector:
+ (BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the receiving class responds to aSelector, NO otherwise.

5

targetClassForFault:
+ (Class)targetClassForFault:(id)aFault

Returns the original class of the object that was turned into aFault, or nil if aFault isn’t an EOFault. When
the EOFault fires, it’s guaranteed to be an instance of this class or possibly of a subclass. To get the actual
class, you must send a class message to the EOFault, which may fire to determine its actual class
membership.

Instance Methods

autorelease
– (id)autorelease

Performs as NSObject’s autorelease method.

class
– (Class)class

Returns the class of the object that the receiving EOFault will become. This may cause the EOFault to fire
in order to determine its actual class membership.

See also: – classForFault: (EOFaultHandler), +targetClassForFault:

conformsToProtocol:
– (BOOL)conformsToProtocol:(Protocol *)aProtocol

Returns YES if the object that the receiving EOFault will become conforms to aProtocol, NO if it doesn’t.
This may cause the EOFault to fire in order to determine its actual class membership.

See also: – conformsToProtocol:forFault: (EOFaultHandler)

dealloc
– (void)dealloc

Invokes the clearFault: class method to revert the receiving EOFault to its original class membership and
state, then reinvokes dealloc.

6

description
– (NSString *)description

Sends descriptionForObject: to the receiver’s EOFaultHandler and returns the result.

descriptionWithIndent:
– (NSString *)descriptionWithIndent: (unsigned int)indentLevel

Invokes description and returns the result.

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale

Invokes description and returns the result.

descriptionWithLocale:indent:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale indent:(unsigned)indentLevel

Invokes description and returns the result.

doesNotRecognizeSelector:
– (void)doesNotRecognizeSelector:(SEL)aSelector

Raises an NSInvalidArgumentException.

eoDescription
– (NSString *)eoDescription

Invokes description and returns the result.

See also: – eoDescription(NSObject Additions)

7

eoShallowDescription
– (NSString *)eoShallowDescription

Invokes description and returns the result.

See also: – eoShallowDescription(NSObject Additions)

forwardInvocation:
– (void)forwardInvocation: (NSInvocation *)anInvocation

Causes the receiving EOFault to fire, if allowed by its EOFaultHandler, and forward anInvocation to its new
incarnation. Sends a shouldPerformInvocation: to the receiver’s EOFaultHandler first, giving it a chance
to bypass the conversion. If the EOFaultHandler returns NO, returns immediately. If it returns YES, sends
a completeInitializationOfObject: message to the EOFaultHandler with self as the argument. Once the
receiver has fired it invokes anInvocation.

isKindOfClass:
– (BOOL)isKindOfClass:(Class)aClass

Returns YES if aClass is the class, or a superclass, of the object that the receiving EOFault will become,
NO otherwise. This may cause the EOFault to fire in order to determine its actual class membership.

See also: – isMemberOfClass:, – isKindOfClass:forFault: (EOFaultHandler)

isMemberOfClass:
– (BOOL)isMemberOfClass:(Class)aClass

Returns YES if aClass is the class of the object that the receiving EOFault will become, NO otherwise. This
may cause the EOFault to fire in order to determine its actual class membership.

See also: – isKindOfClass:, – isMemberOfClass:forFault: (EOFaultHandler)

isProxy
– (BOOL)isProxy

Returns NO.

8

methodSignatureForSelector:
– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Returns a method signature for aSelector for the object that the receiving EOFault will become, or nil if one
can’t be found. This may cause the EOFault to fire in order to determine its actual class membership.

See also: – methodSignatureForSelector:forFault: (EOFaultHandler)

release
– (void)release

Performs as NSObject’s release method.

respondsToSelector:
– (BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the object that the receiving EOFault will become responds to aSelector, NO otherwise. This
may cause the EOFault to fire in order to determine its actual class membership.

See also: – respondsToSelector:forFault:(EOFaultHandler)

retain
– (id)retain

Performs as NSObject’s retain method.

retainCount
– (unsigned int)retainCount

Performs as NSObject’s retainCount method.

self
– (id)self

Fires the receiver and returns self. This is the recommended way to simply fire an EOFault.

9

superclass
– (Class)superclass

Returns the superclass of the object that the receiving EOFault will become. This may cause the EOFault
to fire in order to determine its actual class membership.

See also: – classForFault: (EOFaultHandler)

zone
– (NSZone *)zone

Performs as NSObject’s zone method.

