
1

EOClassDescription

Inherits From: NSObject

Declared In: EOControl/EOClassDescription.h

Class Description

The EOClassDescription class provides a mechanism for extending classes by giving them access to
metadata not available in the Objective-C run-time system. This is achieved as follows:

• EOClassDescription provides a bridge between enterprise objects and the metadata contained in an
external source of information, such as an EOModel. It defines a standard interface for accessing the
information in an external source. It also manages the registration of EOClassDescription objects in your
application.

• Enterprise Objects Framework extends NSObject by adding several EOClassDescription-related
methods to it. An enterprise object class can either provide its own implementation of these methods or
it can accept the default implementations. These methods enable an enterprise object to take advantage
of behaviors defined by the Framework, such as undo and validation. This is discussed in more detail in
the section “Using EOClassDescription.”

Enterprise Objects Framework implements a default subclass of EOClassDescription,
EOEntityClassDescription. EOEntityClassDescription extends the behavior of enterprise objects by
deriving information about them (such as NULL constraints and referential integrity rules) from an
associated model file.

How Does It Work?

As noted above, Enterprise Objects Framework implements a default subclass of EOClassDescription,
EOEntityClassDescription. In the typical scenario in which an enterprise object has a corresponding model
file, a particular operation (such as validating a value) results in the broadcast of an
EOClassDescriptionNeeded notification. When an EOModel object receives this notification it registers the
metadata (class description) for the EOEntity on which the enterprise object is based.

An enterprise object takes advantage of the metadata registered for it by using the
EOClassDescription-related methods that the Framework adds to NSObject. Primary among these methods
is classDescription, which returns the class description associated with the enterprise object. Through this
class description the enterprise object has access to all of the information relating to its entity in an
EOModel file.

In addition to methods that return information based on an enterprise object’s class description, the
EOClassDescription-related methods that the Framework adds to NSObject include methods that are

2

automatically invoked when a particular operation occurs. These include validation methods and methods
that are invoked whenever an enterprise object is inserted or fetched.

All of this comes together in your running application. When a user tries to perform a particular operation
on an enterprise object (such as attempting to delete it), the EOEditingContext sends these validation
messages to your enterprise object, which in turn (by default) forwards them to its EOClassDescription.
Based on the result, the operation is either accepted or refused. For example, referential integrity constraints
in your model might state that you can’t delete an department object that has employees. If a user attempts
to delete a department that has employees, an exception is returned and the deletion is refused.

Using EOClassDescription

For the most part, you don’t need to programmatically interact with EOClassDescription. It extends the
behavior of your enterprise objects transparently. However, there are two cases in which you do need to
programmatically interact with it:

• When you override EOClassDescription-related NSObject methods in an enterprise object class

These methods are used to perform validation and to intervene when enterprise objects based on
EOModels are created and fetched. For objects that don’t have EOModels, you can override a different
set of NSObject methods; this is described in more detail in the section “Working with Objects That
Don’t Have EOModels."

• When you create a subclass of EOClassDescription

Overriding Methods in an Enterprise Object

As described above, Enterprise Objects Framework adds several EOClassDescription-related methods to
NSObject. It’s common for enterprise object classes to override the following methods to either perform
validation, to assign default values (awakeFromInsertionInEditingContext:), or to provide additional
initialization to newly fetched objects (awakeFromFetchInEditingContext:):

validateValue:forKey:
validateForSave
validateForDelete
validateForInsert
validateForUpdate
awakeFromInsertionInEditingContext:
awakeFromFetchInEditingContext:

For example, an enterprise object class can implement a validateForSave method that checks the values of
salary and jobLevel properties before allowing the values to be saved to the database:

- (NSException *)validateForSave

{

if (salary > 1500 && jobLevel < 2)

3

return [NSException validationExceptionWithFormat:

@"The salary is too high for that position!"];

// pass the check on to the EOClassDescription

return [super validateForSave];

}

For more discussion of this subject, see the chapter “Designing Enterprise Objects” in the Enterprise
Objects Framework Developer’s Guide, and the class specification “Extensions to NSObject.”

Working with Objects That Don’t Have EOModels

Although an EOModel is the most common source of an EOClassDescription for a class, it isn’t the only
one. Objects that don’t have an EOModel can implement EOClassDescription methods directly as instance
methods, and the rest of the Framework will treat them just as it does enterprise objects that have this
information provided by an external EOModel.

There are a few reasons you might want to do this. First of all, if your object implements the methods
entityName, attributeKeys, toOneRelationshipKeys, and toManyRelationshipKeys,
EOEditingContexts can snapshot the object and thereby provide undo for it.

For example, the following code excerpt shows an implementation of attributeKeys for a Circle class:

- (NSArray *)attributeKeys {

 static NSArray *array = nil;

 if (!array)

 array = [[NSArray alloc] initWithObjects:@"radius", @"x",

 @"y", @"color", nil];

 return array;

}

Secondly, you might want to implement EOClassDescription’s validation or referential integrity methods
to add these features to your classes.

Implementing EOClassDescription methods on a per-class basis in this way is a good alternative to creating
a subclass of EOClassDescription.

Creating a Subclass of EOClassDescription

You create a subclass of EOClassDescription when you want to use an external source of information other
than an EOModel to extend your objects. Another possible scenario is if you’ve added information to an
EOModel (such as in its user dictionary) and you want that information to become part of your class
description—in that case, you’d probably want to create a subclass of EOEntityClassDescription.

When you create a subclass of EOClassDescription, you only need to implement the methods that have
significance for your subclass.

If you’re using an external source of information other than an EOModel, you need to decide how to register
class descriptions, which you do by invoking the method registerClassDescription:forClass:. You can

4

either invoke registerClassDescription:forClass: in response to an EOClassDescriptionNeeded
notification, or you can invoke it at the time you initialize your application (in other words, you can register
all potential class descriptions ahead of time). The default implementation in Enterprise Objects Framework
is based on responding to an EOClassDescriptionNeeded notification. When EOModel objects receive this
notification, they supply a class description for the specified class by invoking
registerClassDescription:forClass:.

EOEntityClassDescription

There are only three methods in EOClassDescription have meaningful implementations (that is, that don’t
either return nil or simply return): invalidateClassDescriptionCache,
registerClassDescription:forClass:, and propagateDeleteForObject:editingContext:. The default
behavior of the rest of the methods in Enterprise Objects Framework comes from the implementation in the
EOClassDescription subclass EOEntityClassDescription. For more information, see the
EOEntityClassDescription class specification.

Method Types

Managing EOClassDescriptions + invalidateClassDescriptionCache
+ registerClassDescription:forClass:

Getting EOClassDescriptions + classDescriptionForClass:
+ classDescriptionForEntityName:

Allocating new object instances – createInstanceWithEditingContext:globalID:zone:

Propagating delete – propagateDeleteForObject:editingContext:

Returning information from the EOClassDescription
– entityName
– attributeKeys
– classDescriptionForDestinationKey:
– toManyRelationshipKeys
– toOneRelationshipKeys
– inverseForRelationshipKey:
– ownsDestinationObjectsForRelationshipKey:
– deleteRuleForRelationshipKey:

Performing validation – validateObjectForDelete:
– validateObjectForSave:
– validateValue:forKey:

5

Providing default characteristics for key display
– defaultFormatterForKey:
– displayNameForKey:

Handling newly inserted and newly fetched objects
– awakeObject:fromFetchInEditingContext:
– awakeObject:fromInsertionInEditingContext:

Class Methods

aggregateExceptionWithExceptions:
+ (NSException *)aggregateExceptionWithExceptions:(NSArray *)subexceptions

Returns an NSException with the same name, reason, and userInfo dictionary of the first exception in the
subexceptions array, but with the userInfo dictionary augmented with the list of subexceptions under the
key EOAdditionalExceptionsKey.

See also: – exceptionAddingEntriesToUserInfo:

classDescriptionForClass:
+ (EOClassDescription *)classDescriptionForClass:(Class)aClass

Invoked by the default implementation of the NSObject method classDescription to return the
EOClassDescription for aClass. It’s generally not safe to use this method directly—for example, individual
EOGenericRecord instances can have different class descriptions.

classDescriptionForEntityName:
+ (EOClassDescription *)classDescriptionForEntityName:(NSString *)entityName

Returns the EOClassDescription registered under entityName.

invalidateClassDescriptionCache
+ (void)invalidateClassDescriptionCache

Flushes the class description cache. Because the EOModel objects in an application supply and register
EOClassDescriptions on demand, the cache continues to be repopulated as needed after you invalidate it.

You’d use this method when a provider of EOClassDescriptions (such as an EOModel) has newly become
available, or is about to go away. However, you should rarely need to directly invoke this method unless
you’re using an external source of information other than an EOModel.

6

registerClassDescription:forClass:
+ (void)registerClassDescription:(EOClassDescription *)description forClass:(Class)class

Registers an EOClassDescription object for class in the EOClassDescription cache. You should rarely need
to directly invoke this method unless you’re using an external source of information other than an
EOModel.

Instance Methods

attributeKeys
– (NSArray *)attributeKeys

Overridden by subclasses to return an array of keys for attributes of the object. Attributes contain data (such
as NSNumbers and NSStrings), as opposed to pointers to other enterprise objects. EOClassDescription’s
implementation of this method returns nil .

See also: – entityName, – toOneRelationshipKeys, – toManyRelationshipKeys

awakeObject:fromFetchInEditingContext:
– (void)awakeObject:(id)object

fromFetchInEditingContext: (EOEditingContext *)anEditingContext

Overridden by subclasses to perform standard post-fetch initialization for object in anEditingContext.
EOClassDescription’s implementation of this method does nothing.

awakeObject:fromInsertionInEditingContext:
– (void)awakeObject:(id)object

fromInsertionInEditingContext: (EOEditingContext *)anEditingContext

Assigns empty arrays to to-many relationship properties of newly inserted enterprise objects. Can be
overridden by subclasses to propagate inserts for the newly inserted object in anEditingContext. More
specifically, if object has a relationship (or relationships) that propagates the object’s primary key and if no
object yet exists at the destination of that relationship, subclasses should create the new object at the
destination of the relationship.

7

classDescriptionForDestinationKey:
– (EOClassDescription *)classDescriptionForDestinationKey:(NSString *)detailKey

Overridden by subclasses to return the class description for objects at the destination of the relationship
identified by detailKey. For example, the statement:

[project classDescriptionForDestinationKey:@"leader"]

might return the class description for the Employee class. EOClassDescription’s implementation of this
method returns nil .

createInstanceWithEditingContext:globalID:zone:
– (id)createInstanceWithEditingContext:(EOEditingContext *)anEditingContext

globalID: (EOGlobalID *)globalID zone:(NSZone *)zone

Overridden by subclasses to allocate an object of the appropriate class in anEditingContext, with globalID,
in zone. If the object responds to initWithEditingContext:classDescription:globalID subclasses should
invoke that method, otherwise they should invoke init . Implementations of this method should return an
autoreleased object. Enterprise Objects Framework uses this method to allocate new instances of objects
when fetching existing enterprise objects or inserting new ones in an EODisplayGroup.
EOClassDescription’s implementation of this method returns nil .

defaultFormatterForKey:
– (NSFormatter *)defaultFormatterForKey: (NSString *)key

Returns the default NSFormatter to use when parsing values for assignment to key. EOClassDescription’s
implementation returns nil . EOEntityClassDescription’s implementation returns an NSFormatter based on
the Objective-C data type specified for key in the associated model file.

deleteRuleForRelationshipKey:
– (EODeleteRule)deleteRuleForRelationshipKey:(NSString *)relationshipKey

Overridden by subclasses to return a delete rule indicating how to treat the destination of the given
relationship when the receiving object is deleted. For example, the class description for an Invoice object
might return EODeleteRuleCascade for the relationship lineItems, because when an Invoice is removed
from an external store, its line items should be removed also. EOClassDescription’s implementation of this
method returns the delete rule EODeleteRuleNullify. In the common case, the delete rule for an enterprise
object is defined in its EOModel.

8

displayNameForKey:
– (NSString *)displayNameForKey:(NSString *)key

Returns the default string to use in the user interface when displaying key. By convention, lowercase words
are capitalized (for example, “revenue” becomes “Revenue”), and spaces are inserted into words with
mixed case (for example, “firstName” becomes “First Name”).

entityName
– (NSString *)entityName

Overridden by subclasses to return a unique type name for objects of this class. EOEntityClassDescription
returns its EOEntity’s name. EOClassDescription’s implementation of this method returns nil .

See also: – attributeKeys, – toOneRelationshipKeys, – toManyRelationshipKeys

exceptionAddingEntriesToUserInfo:
– (NSException *)exceptionAddingEntriesToUserInfo:(NSDictionary *)additions

Returns an NSException whose userInfo dictionary has been augmented with the object and property
information contained in additions. When exceptions are raised by certain validation methods such as
validateValue:forKey: , this method is sent to the exception to add object and property information to the
exception’s userInfo dictionary. This information is stored in the userInfo dictionary under the keys
EOValidatedObjectUserInfoKey and EOValidatedPropertyUserInfoKey, respectively. The exception that’s
returned by this method has the same class with the same name and reason as the original exception; the
only difference is the augmented userInfo dictionary.

inverseForRelationshipKey:
– (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey

Overridden by subclasses to return the name of the relationship pointing back at the receiver from the
destination of the relationship specified by relationshipKey. For example, suppose an Employee object has
a relationship called department to a Department object, and Department has a relationship called
employees back to Employee. The statement:

[employee inverseForRelationshipKey:@"department"]

returns the string “employees”.

EOClassDescription's implementation of this method returns nil .

9

ownsDestinationObjectsForRelationshipKey:
– (BOOL)ownsDestinationObjectsForRelationshipKey:(NSString *)relationshipKey

Overridden by subclasses to return YES or NO to indicate whether the objects at the destination of the
relationship specified by relationshipKey should be deleted if they are removed from the relationship (and
not transferred to the corresponding relationship of another object). For example, an Invoice object owns
its line items. If a LineItem object is removed from an Invoice it should be deleted since it can’t exist outside
of an Invoice. EOClassDescription's implementation of this method returns NO. In the common case, this
behavior for an enterprise object is defined in its EOModel.

propagateDeleteForObject:editingContext:
– (void)propagateDeleteForObject:(id)object

editingContext:(EOEditingContext *)anEditingContext

Propagates a delete operation for object in anEditingContext, according to the delete rules specified in the
object’s EOModel. This method is invoked whenever a delete operation needs to be propagated, as indicated
by the delete rule specified for the EOEntity’s relationship key.

See also: – deleteRuleForRelationshipKey:

toManyRelationshipKeys
– (NSArray *)toManyRelationshipKeys

Overridden by subclasses to return the keys for the to-many relationship properties of the receiver. To-many
relationship properties contain arrays of pointers to other enterprise objects. EOClassDescription's
implementation of this method returns nil .

See also: – entityName, – toOneRelationshipKeys, –attributeKeys

toOneRelationshipKeys
– (NSArray *)toOneRelationshipKeys

Overridden by subclasses to return the keys for the to-one relationship properties of the receiver. To-one
relationship properties are pointers to other enterprise objects. EOClassDescription's implementation of this
method returns nil .

See also: – entityName, – toManyRelationshipKeys, –attributeKeys

10

validateObjectForDelete:
– (NSException *)validateObjectForDelete:(id)object

Overridden by subclasses to determine whether it’s permissible to delete the object. Subclasses should
return nil if the delete operation should proceed, or an unevaluated exception containing a user-presentable
(localized) error message if not. EOClassDescription's implementation of this method returns nil .

validateObjectForSave:
– (NSException *)validateObjectForSave:(id)object

Overridden by subclasses to determine whether the values being saved for the object are acceptable.
Subclasses should return nil if the values are acceptable and the save operation should therefore proceed,
or an unevaluated exception containing a user-presentable (localized) error message if not.
EOClassDescription's implementation of this method returns nil .

validateValue:forKey:
– (NSException *)validateValue:(id *)valueP forKey: (NSString *)key

Overridden by subclasses to validate the value pointed to by valueP. Subclasses should return nil if the value
is acceptable, or an unevaluated exception containing a user-presentable (localized) error message if not.
Implementations can replace *valueP with a converted value (for example, an EOAttribute might convert
an NSString to an NSNumber). EOClassDescription's implementation of this method returns nil .

11

Notifications

The following notification is declared by EOClassDescription and posted by enterprise objects in your
application.

EOClassDescriptionNeededForClassNotification

Notification Object Enterprise object class

userInfo Dictionary None

One of the EOClassDescription-related methods that Enterprise Objects Framework adds to NSObject to
extend the behavior of enterprise objects is classDescription. The first time an enterprise object receives a
classDescription message (for example, when changes to the object are being saved to the database), it
posts EOClassDescriptionNeededForClassNotification to notify observers (by default, the associated
EOModel object) that a class description is needed. The observer then locates the appropriate class
description and registers it in the application.

EOClassDescriptionNeededForEntityNameNotification

Notification Object Entity name

userInfo Dictionary None

When classDescriptionForEntityName: is invoked for a previously unregistered entity name, this
notification is broadcast with the requested entity name as the object of the notification.

