
1

EOEditingContext

Inherits From: EOObjectStore : NSObject

Conforms To: EOObserving

Declared In: EOControl/EOEditingContext.h

Class at a Glanceÿ

Purpose

EOEditingContext manages a graph of enterprise objects in an application; this object graph represents an
internally consistent view of one or more external stores.

Principal Attributes
• The set of enterprise objects managed by the EOEditingContext
• The EOEditingContext’s parent EOObjectStore
• The set of EOEditor objects managed by the EOEditingContext
• The EOEditingContext’s message handler

Creation
– initWithParentObjectStore: Designated initializer.

Commonly Used Methods
– objectsWithFetchSpecification: Fetches objects from an external store.
– insertObject: Registers a new object to be inserted into the parent EOObjectStore.
– deleteObject: Registers that an object should be removed from the parent

EOObjectStore when changes are saved.
– lockObject: Attempts to lock an object in the external store.
– hasChanges Returns YES if any of the receiver’s enterprise objects have been

modified.
– saveChanges Commits changes made in the receiver to the parent EOObjectStore.
– revert Removes everything from the undo stack, discards all insertions and

deletions, and restores updated objects to their original values.
– objectForGlobalID: Given a globalID, returns its associated object.

2

– globalIDForObject: Given an object, returns its globalID.
– setDelegate: Sets the receiver’s delegate.
– delegate Returns the receiver’s delegate.
– parentObjectStore Returns the receiver’s parent EOObjectStore.
– rootObjectStore Returns the receiver’s root EOObjectStore.

Class Description

EOEditingContext represents a single “object space” or document in an application. Its primary
responsibility is managing a graph of enterprise objects. This object graph is a group of related business
objects that represent an internally consistent view of one or more external stores.

All objects fetched from an external store are registered in an EOEditingContext along with a global
identifier (EOGlobalID) that’s used to uniquely identify each object to the external store. The
EOEditingContext is responsible for watching for changes in its objects (using the EOObserving protocol)
and recording snapshots for object-based undo. A single enterprise object instance exists in one and only
one EOEditingContext, but multiple copies of an object can exist in different EOEditingContexts. Thus
object uniquing is scoped to a particular EOEditingContext.

Other Classes that Participate in Object Graph Management

EOEditingContext works in conjunction with other classes to manage the object graph. Two other classes
that play a significant role in object graph management are EOUndoManager and EOObserverCenter.
EOUndoManager is a general-purpose undo stack. As a client of EOUndoManager, EOEditingContext
registers undo events for all changes made the enterprise objects that it watches.

The other class that plays a significant role in object graph management is EOObserverCenter.
EOObserverCenter provides a notification mechanism for an observing object to find out when another
object is about to change its state. “Observable” objects (typically all enterprise objects) are responsible for
invoking [self willChange] prior to altering their state (in a “set” method, for instance). Objects
(such as instances of EOEditingContext) can add themselves as observers to the objects they care about in
the EOObserverCenter. They will then receive objectWillChange: notification whenever an observed
object invokes [self willChange] .

3

Using EOEditingContexts in Different Configurations

The fundamental relationship an EOEditingContext has is to its parent EOObjectStore, which creates the
object graph the EOEditingContext monitors. EOObjectStore is an abstract class that defines a source and
sink of objects for an EOEditingContext. The EOObjectStore is responsible for constructing and registering
objects, servicing object faults, and committing changes made in an EOEditingContext.

You can augment the basic configuration of an EOEditingContext and its parent EOObjectStore in several
different ways. For example, multiple EOEditingContexts can share the same EOObjectStore, one
EOEditingContext can act as an EOObjectStore for another, and so on. The most commonly used scenarios
are described in the following sections.

Peer EOEditingContexts

One or more “peer” EOEditingContexts can share a single EOObjectStore (Figure 1). Each
EOEditingContext has its own object graph, so for example, a given Employee row in a database can have
separate object instances in each EOEditingContext. Changes to an object in one EOEditingContext don’t
affect the corresponding object in another EOEditingContext until all changes are successfully committed
to the shared object store. At that time the objects in all EOEditingContexts are synchronized with the
committed changes. This arrangement is useful when an application allows the user to edit multiple
independent “documents.”

Figure 1 Peer EOEditingContexts

Nested EOEditingContexts

EOEditingContext is a subclass of EOObjectStore, which gives its instances the ability to act as
EOObjectStores for other EOEditingContexts. In other words, EOEditingContexts can be nested (Figure
2), thereby allowing a user to make edits to an object graph in one EOEditingContext and then discard or
commit those changes to another object graph (which, in turn, may commit them to an external store). This
is useful in a “drill down” style of user interface where changes in a nested dialog can be okayed
(committed) or canceled (rolled back) to the previous panel.

EOEditing
Context

EOEditing
Context

object store object store

EOObjectStore

4

Figure 2 Nested EOEditingContexts

When an object is fetched into a nested EOEditingContext, it incorporates any uncommitted changes that
were made to it in its parent EOEditingContext. For example, suppose that in one panel you have a list of
employees that allows you to edit salaries, and that the panel includes a button to display a nested panel
where you can edit detail information. If you edit the salary in the parent panel, you see the modified salary
in the nested panel, not the old (committed) salary from the database. Thus, conceptually, nested
EOEditingContexts fetch through their parents.

EOEditingContext overrides several of EOObjectStore’s methods:

– arrayFaultWithSourceGlobalID:relationshipName:editingContext:
– faultForGlobalID:editingContext:
– invalidateAllObjects
– invalidateObjectsWithGlobalIDs:
– objectsForSourceGlobalID:relationshipName:editingContext:
– objectsWithFetchSpecification:editingContext:
– refaultObject:withGlobalID:editingContext:
– saveChangesInEditingContext:

These methods are generally used when an EOEditingContext acts as an EOObjectStore for another
EOEditingContext. For more information, see the individual method descriptions. For information on
setting up this configuration for interfaces loaded from nib files, see the method description for
setDefaultParentObjectStore:.

EOObjectStore

object store

EOEditing
Context

EOEditing
Context

object store

5

Getting Data from Multiple Sources

An EOEditingContext’s object graph can contain objects from more than one external store (Figure 3). In
this scenario, the object store is an EOObjectStoreCoordinator, which provides the abstraction of a single
object store by redirecting operations to one or more EOCooperatingObjectStores.

Figure 3 An EOEditingContext Containing Objects from Multiple Sources

In writing an application, it’s likely that you’ll use combinations of the different scenarios described in the
above sections.

Fetching Objects

The most common way to explicitly fetch objects from an external store in an Enterprise Objects
Framework application is to use EOEditingContext’s objectsWithFetchSpecification: method. This
method takes a fetch specification and returns an NSArray of objects. A fetch specification includes the
name of the entity for which you want to fetch objects, the qualifier (query) you want to use in the fetch,
and the sort order in which you want the objects returned (if any). For example, the following code excerpt
uses objectsWithFetchSpecification: to fetch default values for rental terms from the database:

EOFetchSpecification *fetchSpec;

NSArray *results;

fetchSpec = [EOFetchSpecification

fetchSpecificationWithEntityName:@"RentalTerms"

qualifier:[EOQualifier qualifierWithQualifierFormat:@"rentalTermID = 1"]

sortOrderings:nil];

results = [editingContext objectsWithFetchSpecification:fetchSpec];

EODatabase
Context

EODatabase
Context

EOObjectStore
Coordinator

EOEditing
Context

object store

6

Managing Changes in Your Application

EOEditingContext provides several methods for managing the changes made to objects in your application.
You can use these methods to get information about objects that have changed, to selectively undo and redo
changes, and to discard all changes made to objects before these changes are committed to the database.
These methods are described in the following sections.

Getting Information About Changed Objects

An EOEditingContext maintains information about three different kinds of changes to objects in its object
graph: insertions, deletions, and updates. After these changes have been made and before they’re committed
to the database, you can find out which objects have changes in each of these categories by using the
insertedObjects, deletedObjects, and updatedObjects methods. Each method returns an NSArray
containing the objects that have been inserted, deleted, and updated, respectively. The hasChanges method
returns YES or NO to indicate whether any of the objects in the object graph have been inserted, deleted,
or updated.

Undo and Redo

EOEditingContext includes the undo:, redo, and revert: methods for managing changes to objects in the
object graph. undo: asks the EOEditingContext’s EOUndoManager to reverse the latest changes to objects
in the object graph. redo: asks the EOUndoManager to reverse the latest undo operation. revert clears the
undo stack, discards all insertions and deletions, and restores updated objects to their last committed (saved)
values.

Refetching the Object Graph

You can use the refetch method to replace the values cached in memory (that is, in the object graph) with
new values fetched from the database.

If you just want to discard uncommitted changes but you still want to maintain the values cached in memory,
you should use revert instead.

Saving Changes

The saveChanges method commits changes made to objects in the object graph to an external store. When
you save changes, EOEditingContext’s lists of inserted, updated, and deleted objects are flushed.

Upon a successful save operation, the EOEditingContext’s parent EOObjectStore broadcasts an
EOObjectsChangedInStoreNotification. Peers of the saved EOEditingContext receive this notification and
respond by synchronizing their objects with the committed versions.

7

Using EOEditingContext to Archive Custom Objects in Web Objects Framework

In WebObjects, applications that use the Enterprise Objects Framework must enlist the help of the
EOEditingContext to archive enterprise objects. The primary reason is so that the EOEditingContext can
keep track, from one transaction to the next, of the objects it manages. But using an EOEditingContext for
archiving also benefits your application in these other ways:

• During archiving, an EOEditingContext stores only as much information about its enterprise objects as
is needed to reconstitute the object graph at a later time. For example, unmodified objects are stored as
simple references (by globalID) that will allow the EOEditingContext to recreate the object from the
database. Thus, your application can store state very efficiently by letting an EOEditingContext archive
your enterprise objects.

• During unarchiving, an EOEditingContext can recreate individual objects in the graph only as they are
needed by the application. This approach can significantly improve application performance.

An enterprise object (like any other object that uses the OpenStep archiving scheme) makes itself available
for archiving by declaring that it conforms to the NSCoding protocol and by implementing the protocol’s
two methods, encodeWithCoder: and initWithCoder: . It implements these methods like this:

- (void)encodeWithCoder:(NSCoder *)aCoder {

[EOEditingContext encodeObject:self withCoder:aCoder];

}

- (id)initWithCoder:(NSCoder *)aDecoder {

[EOEditingContext initObject:self withCoder:aDecoder];

return self;

}

The enterprise object simply passes on responsibility for archiving and unarchiving itself to the
EOEditingContext class, by invoking the encodeObject:withCoder: and initObject:withCoder: class
methods and passing a reference to itself (self) as one of the arguments. The EOEditingContext takes care
of the rest. For more discussion of encodeWithCoder: and initWithCoder: , see the NSCoding protocol
specification in the Foundation Framework.

EOEditingContext includes two additional methods that affect the archiving and unarchiving of objects:
setUsesContextRelativeEncoding: and usesContextRelativeEncoding. When you use context relative
encoding, it means that enterprise objects that archive themselves using the EOEditingContext
encodeObject:withCoder: method archive their current state (that is, all of their class properties) only if
they (the objects) are marked as inserted or updated in the EOEditingContext. Otherwise, they archive just
their globalID’s since their state matches what's stored in the database and can be retrieved from there. If
usesContextRelativeEncoding returns NO, it means the current state will always be archived, even if the
enterprise object is unmodified. The default is NO for OpenStep applications, and YES for WebObjects
applications.

8

Adopted Protocols

 EOObserving – objectWillChange:

Method Types

Initializing an EOEditingContext – initWithParentObjectStore:

Fetching objects – objectsWithFetchSpecification:

Nested EOEditingContext support – objectsWithFetchSpecification:editingContext:
– objectsForSourceGlobalID:relationshipName:editingContext:
– arrayFaultWithSourceGlobalID:relationshipName:editingContext:
– faultForGlobalID:editingContext:
– saveChangesInEditingContext:
– refaultObject:withGlobalID:editingContext:
– invalidateObjectsWithGlobalIDs:
– initializeObject:withGlobalID:editingContext:

Committing or discarding changes – saveChanges
– saveChanges:
– tryToSaveChanges
– refaultObjects
– refault:
– refetch:
– revert
– revert:
– invalidateAllObjects

Object registration and snapshotting – forgetObject:
– recordObject:globalID:
– committedSnapshotForObject:
– currentEventSnapshotForObject:
– objectForGlobalID:
– registeredObjects
– globalIDForObject:

Locking objects – lockObject:
– lockObjectWithGlobalID:editingContext:
– isObjectLockedWithGlobalID:
– setLocksObjectsBeforeFirstModification:
– locksObjectsBeforeFirstModification

9

Registering changes – deleteObject:
– insertObject:
– insertObject:withGlobalID:
– objectWillChange:
– processRecentChanges

Checking changes – deletedObjects
– insertedObjects
– updatedObjects
– hasChanges

Undo – redo:
– undo:
– undoManager
– setUndoManager:

Deletion and Validation Behavior – setPropagatesDeletesAtEndOfEvent:
– propagatesDeletesAtEndOfEvent
– setStopsValidationAfterFirstError:
– stopsValidationAfterFirstError

Unarchiving from nib + defaultParentObjectStore
+ setDefaultParentObjectStore:
+ setSubstitutionEditingContext:
+ substitutionEditingContext

Returning related object stores – parentObjectStore
– rootObjectStore

Managing editors – editors
– addEditor:
– removeEditor:

Setting the delegate – setDelegate:
– delegate

Setting the message handler – setMessageHandler:
– messageHandler

Invalidating objects – setInvalidatesObjectsWhenFreed:
– invalidatesObjectsWhenFreed

Archiving and unarchiving objects + encodeObject:withCoder:
+ initObject:withCoder:
+ setUsesContextRelativeEncoding:
+ usesContextRelativeEncoding

10

Class Methods

encodeObject:withCoder:
+ (void)encodeObject:(id)object withCoder: (NSCoder *)encoder

Invoked by an enterprise object object to ask the EOEditingContext to encode object using encoder. For
more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web Objects
Framework” in the Class Description.

See also: + initObject:withCoder: , + setUsesContextRelativeEncoding:,
+ usesContextRelativeEncoding

defaultParentObjectStore
+ (EOObjectStore *)defaultParentObjectStore

Returns the default parent EOObjectStore. Normally this is the EOObjectStoreCoordinator returned from
the invocation [EOObjectStoreCoordinator defaultCoordinator] .

See also: + setDefaultParentObjectStore:

initObject:withCoder:
+ (id)initObject: (id)object withCoder: (NSCoder *)decoder

Invoked by an enterprise object object to ask the EOEditingContext to initialize object from data in decoder.
For more discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web
Objects Framework” in the Class Description.

See also: + encodeObject:withCoder:, + setUsesContextRelativeEncoding:,
+ usesContextRelativeEncoding

setDefaultParentObjectStore:
+ (void)setDefaultParentObjectStore:(EOObjectStore *)store

Sets to store an EOEditingContext’s default parent EOObjectStore. You use this method before loading a
nib file to change the default parent EOObjectStores of the EOEditingContexts in the nib file. The object
you supply for store can be a different EOObjectStoreCoordinator or another EOEditingContext (if you’re
using a nested EOEditingContext).

See also: + defaultParentObjectStore

11

setSubstitutionEditingContext:
+ (void)setSubstitutionEditingContext:(EOEditingContext *)anEditingContext

Sets to anEditingContext an EOEditingContext you want to substitute for the one specified in a nib file
you’re about to load. Using this method causes all of the connections in your nib file to be redirected to
anEditingContext. This can be useful when you want an interface loaded from a second nib file to use an
existing EOEditingContext.

See also: + substitutionEditingContext

setUsesContextRelativeEncoding:
+ (void)setUsesContextRelativeEncoding:(BOOL)flag

Sets according to flag whether an EOEditingContext uses context-relative encoding. For more discussion
of this subject, see “Using EOEditingContext to Archive Custom Objects in Web Objects Framework” in
the Class Description.

See also: + usesContextRelativeEncoding, + encodeObject:withCoder:, + initObject:withCoder:

substitutionEditingContext
+ (EOEditingContext *)substitutionEditingContext

Returns the substitution EOEditingContext if one has been specified. Otherwise returns nil .

See also: + setSubstitutionEditingContext:

usesContextRelativeEncoding
+ (BOOL)usesContextRelativeEncoding

Returns YES to indicate that the EOEditingContext uses context relative encoding, NO otherwise. For more
discussion of this subject, see “Using EOEditingContext to Archive Custom Objects in Web Objects
Framework” in the Class Description.

See also: + setUsesContextRelativeEncoding:, + encodeObject:withCoder:, + initObject:withCoder:

12

Instance Methods

addEditor:
– (void)addEditor: (id)editor

Adds to the receiver the EOEditor editor. For more explanation, see the method description for editors and
the EOEditors informal protocol specification.

See also: – editors, – removeEditor:

arrayFaultWithSourceGlobalID:relationshipName:editingContext:
– (NSArray *)arrayFaultWithSourceGlobalID: (EOGlobalID *)globalID

relationshipName:(NSString *)name
editingContext:(EOEditingContext *)anEditingContext

Overrides EOObjectStore’s arrayFaultWithSourceGlobalID:relationshipName:editingContext:
method. When a parent EOEditingContext receives this on behalf of a child EOEditingContext and the
EOGlobalID globalID identifies a newly inserted object in the parent, the parent returns a copy of its
object’s relationship NSArray with the member objects translated into objects in the child
EOEditingContext. Otherwise, the EOEditingContext propagates this message to its parent EOObjectStore.

committedSnapshotForObject:
– (NSDictionary *)committedSnapshotForObject:(id)object

Returns an NSDictionary containing a snapshot of object that reflects its committed values (that is, its
values as they were last committed to the database). In other words, this snapshot represents the state of the
object before any modifications were made to it. The snapshot is updated to the newest object state after a
save.

See also: – currentEventSnapshotForObject:

currentEventSnapshotForObject:
– (NSDictionary *)currentEventSnapshotForObject:(id)object

Returns an NSDictionary containing a snapshot of object that reflects its state as it was at the beginning of
the current event loop. After the end of the current event, this snapshot is updated to hold the modified state
of the object.

See also: – committedSnapshotForObject:

13

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

deleteObject:
– (void)deleteObject:(id)object

Specifies that object should be removed from the receiver’s parent EOObjectStore when changes are
committed. At that time, the object will be removed from the uniquing tables.

See also: – deletedObjects

deletedObjects
– (NSArray *)deletedObjects

Returns the objects that have been deleted from the receiver’s object graph.

See also: – updatedObjects, – insertedObjects

editors
– (NSArray *)editors

Returns the receiver’s editors. Editors are special-purpose delegate objects that may contain uncommitted
changes that need to be validated and applied to enterprise objects before the EOEditingContext saves
changes. For example, EODisplayGroups register themselves as editors with the EOEditingContext of their
data sources so that they can save any changes in the key text field. For more information, see the EOEditors
informal protocol specification and the EODisplayGroup class specification.

See also: – addEditor: , – removeEditor:

faultForGlobalID:editingContext:
– (id)faultForGlobalID: (EOGlobalID *)globalID

editingContext:(EOEditingContext *)anEditingContext

Overrides EOObjectStore’s faultForGlobalID:editingContext: method. If the object associated with the
EOGlobalID globalID is already registered in the receiver, returns that object. Otherwise passes a request
to the receiver’s parent EOObjectStore to create a to-one fault.

14

For example, suppose you want the department object whose deptID has a particular value. The most
efficient way to get it is to look it up by its global ID using faultForGlobalID:editingContext: :

EOEntity *entity = [[EOModelGroup defaultGroup] entityNamed:entityName];

EOGlobalID *gid = [entity globalIDForRow:[NSDictionary

 dictionaryWithObjectsAndKeys:deptIdentifier, @"deptID", nil]];

return [editingContext faultForGlobalID:gid editingContext:editingContext];

If the object is already registered in the EOEditingContext, this code returns it (without going to the
database). If not, a fault for this object is created, and when you touch the fault the object is fetched.

When a parent EOEditingContext is sent faultForGlobalID:editingContext: on behalf of a child
EOEditingContext and globalID identifies a newly inserted object in the parent, the parent registers a copy
of the object in the child. Otherwise, the EOEditingContext propagates this message to its parent
EOObjectStore.

For more information on faults, see the EOObjectStore, EODatabaseContext, EOFault and EOFaultHandler
class specifications.

forgetObject:
– (void)forgetObject:(id)object

Removes object from the uniquing tables and causes the receiver to remove itself as the object’s observer.
This method is invoked whenever an object being observed by an EOEditingContext is deallocated. You
generally should not invoke this method yourself.

globalIDForObject:
– (EOGlobalID *)globalIDForObject: object

Returns the EOGlobalID for object. All objects fetched from an external store are registered in an
EOEditingContext along with a global identifier (EOGlobalID) that’s used to uniquely identify each object
to the external store. If object hasn’t been registered in the EOEditingContext (that is, if no match is found),
this method returns nil . Objects are registered in an EOEditingContext using the insertObject: method, or,
when fetching, with recordObject:globalID: .

See also: – objectForGlobalID:

hasChanges
– (BOOL)hasChanges

Returns YES if any of the objects in the receiver’s object graph have been modified—that is, if any objects
have been inserted, deleted, or updated.

15

initWithParentObjectStore:
– initWithParentObjectStore: (EOObjectStore *)anObjectStore

Initializes the receiver with anObjectStore as its parent EOObjectStore. Returns self. This method is the
designated initializer for EOEditingContext. For more discussion of parent EOObjectStores, see “Using
EOEditingContexts in Different Configurations” in the class description.

initializeObject:withGlobalID:editingContext:
– (void)initializeObject: (id)object withGlobalID: (EOGlobalID *)globalID

editingContext:(EOEditingContext *)anEditingContext

Overrides EOObjectStore’s initializeObject:withGlobalID:editingContext: to build the properties for
the object identified by globalID. When a parent EOEditingContext receives this on behalf of a child
EOEditingContext (as represented by anEditingContext), and the globalID identifies an object instantiated
in the parent, the parent returns properties extracted from its object and translated into the child’s context.
This ensures that a nested context “inherits” modified values from its parent EOEditingContext. If the
receiver doesn’t have object, the request is fowarded the receiver’s parent EOObjectStore.

insertObject:
– (void)insertObject:(id)object

Registers object to be inserted in the receiver’s parent EOObjectStore the next time changes are saved. In
the meantime, object is registered in the receiver with a temporary globalID.

See also: – insertedObjects, –deletedObjects, – insertObject:withGlobalID:

insertObject:withGlobalID:
– (void)insertObject:object withGlobalID: (EOGlobalID *)globalID

Registers a new object identified by globalID that should be inserted in the parent EOObjectStore when
changes are saved. globalID must respond YES to isTemporary. When the external store commits object,
it re-records it with the appropriate permanent globalID.

See also: – insertObject:

16

insertedObjects
– (NSArray *)insertedObjects

Returns the objects that have been inserted into the receiver’s object graph.

See also: – deletedObjects, – updatedObjects

invalidateAllObjects
– (void)invalidateAllObjects

Overrides the EOObjectStore method invalidateAllObjects to discard the values of objects cached in
memory and refault them. This method sends the message invalidateAllObjectsWithGlobalIDs: to the
parent object store with the globalIDs of all of the objects cached in the receiver. To flush the entire
application’s cache of all values fetched from an external store, use a statement such as the following:

[[editingContext rootObjectStore] invalidateAllObjects];

See also: – refetch:

invalidateObjectsWithGlobalIDs:
– (void)invalidateObjectsWithGlobalIDs: (NSArray *)globalIDs

Overrides the EOObjectStore method invalidateObjectsWithGlobalIDs: to signal to the parent
EOObjectStore that the objects identified by globalIDs should no longer be considered valid and that they
should be refaulted. This message is propagated to any underlying EOObjectStore, resulting in a refetch the
next time the objects are accessed. Any child EOObjectStores are notified that the objects are no longer
valid.

invalidatesObjectsWhenFreed
– (BOOL)invalidatesObjectsWhenFreed

Returns YES to indicate that the receiver invalidates all of the objects registered with it when the receiver
is deallocated, NO otherwise. The default is YES. For more discussion of this topic, see the method
description for setInvalidatesObjectsWhenFreed:.

17

isObjectLockedWithGlobalID:
– (BOOL)isObjectLockedWithGlobalID: (EOGlobalID *)globalID

Returns YES if the object identified by globalID is locked, NO otherwise. This method works by
forwarding the message isObjectLockedWithGlobalID: to its parent EOObjectStore.

See also: – lockObject:, – lockObjectWithGlobalID:editingContext: ,
– locksObjectsBeforeFirstModification, –setLocksObjectsBeforeFirstModification:

lockObject:
– (void)lockObject:(id)anObject

Attempts to lock anObject in the external store. This method works by invoking
lockObjectWithGlobalID:editingContext: . Raises an NSInvalidArgumentException if it can’t find the
globalID for anObject to pass to lockObjectWithGlobalID:editingContext: .

See also: – isObjectLockedWithGlobalID: , – lockObjectWithGlobalID:editingContext: ,
– locksObjectsBeforeFirstModification, –setLocksObjectsBeforeFirstModification:

lockObjectWithGlobalID:editingContext:
– (void)lockObjectWithGlobalID: (EOGlobalID *)globalID

Overrides the EOObjectStore method lockObjectWithGlobalID:editingContext: to attempt to lock the
object identified by globalID in the external store. Raises an NSInternalInconsistencyException if unable
to obtain the lock. This method works by forwarding the message
lockObjectWithGlobalID:editingContext: to its parent EOObjectStore.

See also: – lockObject:, – isObjectLockedWithGlobalID: , – locksObjectsBeforeFirstModification,
– setLocksObjectsBeforeFirstModification:

locksObjectsBeforeFirstModification
– (BOOL)locksObjectsBeforeFirstModification

Returns YES if the receiver invokes [self lockObject:object] to lock object in the external store
the first time object is modified.

See also: – setLocksObjectsBeforeFirstModification:, – isObjectLockedWithGlobalID: ,
– lockObject:, – lockObjectWithGlobalID:editingContext:

18

messageHandler
– (id)messageHandler

Returns the EOEditingContext’s message handler. A message handler is a special-purpose delegate
responsible for presenting errors to the user. Typically, an EODisplayGroup registers itself as the message
handler for its EOEditingContext. For more information, see the EOMessageHandelers informal protocol
specification.

See also: – setMessageHandler:

objectForGlobalID:
– (id)objectForGlobalID: (EOGlobalID *)globalID

Returns the object identified by globalID, or nil if no object has been registered in the EOEditingContext
with globalID.

See also: – globalIDForObject:

objectsForSourceGlobalID:relationshipName:editingContext:
– (NSArray *)objectsForSourceGlobalID:(EOGlobalID *)globalID

relationshipName:(NSString *)name
editingContext:(EOEditingContext *)anEditingContext

Overrides EOObjectStore’s objectsForSourceGlobalID:relationshipName:editingContext: method to
service a to-many fault for a relationship named name. When a parent EOEditingContext receives this on
behalf of a child EOEditingContext and globalID matches an object instantiated in the parent, the parent
returns a copy of its relationship NSArray and translates its objects into the child’s EOEditingContext. This
ensures that a nested EOEditingContext “inherits” modified values from its parent EOEditingContext. If the
receiving EOEditingContext does not have the specified object or if the parent’s relationship property is still
an EOFault, the request is fowarded to its parent EOObjectStore.

objectsWithFetchSpecification:
– (NSArray *)objectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification

Invokes objectsWithFetchSpecification:editingContext: with self as the EOEditingContext and returns
the result.

19

objectsWithFetchSpecification:editingContext:
– (NSArray *)objectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification

editingContext:(EOEditingContext *)anEditingContext

Overrides EOObjectStore’s objectsWithFetchSpecification:editingContext: method to fetch objects
from an external store according to the criteria specified by fetchSpecification and return them in an
NSArray. If one of these objects is already present in memory, this method doesn’t overwrite its values with
the new values from the database. This method raises an exception if an error occurs; the error message
indicates the nature of the problem.

When an EOEditingContext receives this message, it forwards the message to its EOObjectStore (typically
an EOObjectStoreCoordinator). Based on the entity name in fetchSpecification, the
EOObjectStoreCoordinator in turn forwards the request to the appropriate EODatabaseContext. The
EODatabaseContext then obtains an EODatabaseChannel and performs the fetch, registering all fetched
objects in anEditingContext.

objectWillChange:
– (void)objectWillChange:(id)object

This method is automatically invoked when any of the objects registered in the receiver invokes [self
willChange] . This method is EOEditingContext’s implementation of the EOObserving protocol.

parentObjectStore
– (EOObjectStore *)parentObjectStore

Returns the EOObjectStore from which the receiver fetches and to which it saves objects.

processRecentChanges
– (void)processRecentChanges

Forces the receiver to process pending insertions, deletions, and updates. Normally, when objects are
changed, the processing of the changes is deferred until the end of the current event. At that point, an
EOEditingContext moves objects to the inserted, updated, and deleted lists, delete propagation is
performed, undos are registered, and EOObjectsChangedInStoreNotification and
EOObjectsChangedInEditingContextNotification are posted (usually causing the user interface to update).
You can use this method to explicitly force changes to be processed. An EOEditingContext automatically
invokes this method on itself before performing certain operations such as saveChanges.

20

propagatesDeletesAtEndOfEvent
– (BOOL)propagatesDeletesAtEndOfEvent

Returns YES if the receiver propagates deletes at the end of the event in which a change was made, NO if
it propagates deletes only right before saving changes. The default is YES.

See also: – setPropagatesDeletesAtEndOfEvent:

recordObject:globalID:
– (void)recordObject:(id)object globalID: (EOGlobalID *)globalID

Makes the receiver aware of an object identified by globalID existing in its parent EOObjectStore.
EOObjectStores (such as EODatabaseContext) usually invoke this method for each object fetched. When
it receives this message, the receiver enters the object in its uniquing table and registers itself as an observer
of the object.

redo:
– (void)redo:(id)sender

This action method forwards a redo message to the receiver’s EOUndoManager, asking it to reverse the
latest undo operation applied to objects in the object graph.

See also: – undo:

refault:
– (void)refault: (id)sender

This action method simply invokes refaultObjects.

refaultObjects
– (void)refaultObjects

Refaults all objects that haven’t been inserted, deleted, or updated.

21

refaultObject:withGlobalID:editingContext:
– (void)refaultObject: (id)anObject

withGlobalID: (EOGlobalID *)globalID
editingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method refaultObject:withGlobalID:editingContext: to refault the
enterprise object object identified by globalID in anEditingContext. This method should be used with
caution since refaulting an object does not remove the object snapshot from the undo stack. Objects that
have been newly inserted or deleted should not be refaulted.

refetch:
– (void)refetch:(id)sender

This action method tells the EOEditingContext to refetch. It does so by invoking the invalidateAllObjects
method. This has the effect of discarding the values of objects cached in memory and refetching them from
the external store. When an EOEditingContext receives this message, it propagates the message down the
object store hierarchy. EODatabaseContexts discard their snapshots for invalidated objects and broadcast
an EOObjectsChangedInStoreNotification.

The final effect of this method is to refault all objects currently in memory. This refaulting in turn releases
all objects not retained by your application or by an EODisplayGroup.

If you just want to discard uncommitted changes but you don’t want to sacrifice the values cached in
memory, use the EOEditingContext revert method, which reverses all changes and clears the undo stack.

registeredObjects
– (NSArray *)registeredObjects

Returns the enterprise objects managed by the receiver.

removeEditor:
– (void)removeEditor:(id)editor

Unregisters editor from the receiver. For more discussion of EOEditors, see the editors method description
and the EOEditors informal protocol specification.

See also: – addEditor:

22

revert
– (void)revert

Removes everything from the undo stack, discards all insertions and deletions, and restores updated objects
to their last committed values. Does not refetch from the database. Note that revert doesn’t automatically
cause EODisplayGroups to refetch. EODisplayGroups that allow insertion and deletion of objects need to
be explicitly synchronized whenever this method is invoked on their EOEditingContext.

revert:
– (void)revert: (id)sender

 This action method simply invokes revert.

rootObjectStore
– (EOObjectStore *)rootObjectStore

Returns the non-EOEditingContext EOObjectStore at the base of the EOObjectStore hierarchy (usually an
EOObjectStoreCoordinator).

saveChanges
– (void)saveChanges

Commits changes made in the receiver to its parent EOObjectStore by sending it the message
saveChangesInEditingContext:. If the parent is an EOObjectStore Coordinator, it guides its
EODatabaseContexts through a multi-pass save operation (see the EOObjectStoreCoordinator class
specification for more information). If no message handler or delegate is available and a database error
occurs, an exception is raised; the error message indicates the nature of the problem.

saveChanges:
– (void)saveChanges:(id)sender

This action method simply invokes saveChanges.

23

saveChangesInEditingContext:
– (void)saveChangesInEditingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method saveChangesInEditingContext: to tell the receiver’s
EOObjectStore to accept changes from a child EOEditingContext. This method shouldn’t be invoked
directly. It’s invoked by a nested EOEditingContext when it’s committing changes to a parent
EOEditingContext. The receiving parent EOEditingContext incorporates all changes from the nested
EOEditingContext into its own copies of the objects, but it doesn’t immediately save those changes to the
database. If the parent itself is later sent saveChanges, it propagates any changes received from the child
along with any other changes to its parent EOObjectStore. Raises an exception if an error occurs; the error
message indicates the nature of the problem.

setDelegate:
– (void)setDelegate:(id)anObject

 Set the receiver’s delegate to be anObject, without retaining it.

See also: – delegate

setInvalidatesObjectsWhenFreed:

– (void)setInvalidatesObjectsWhenFreed:(BOOL)flag

Sets according to flag whether the receiver invalidates all of the objects registered with it when the receiver
is deallocated. Sends clearProperties to all of its objects, thereby breaking any retain cycles between
objects that would prevent them from being freed. “Invalidating” objects refers to leaving them in a state in
which sending them any message other than dealloc or release raises an exception. The default is YES.

See also: – invalidatesObjectsWhenFreed

setLocksObjectsBeforeFirstModification:
– (void)setLocksObjectsBeforeFirstModification:(BOOL)flag

Sets according to flag whether the receiver invokes [self lockObject:object] to lock object in
the external store the first time object is modified. The default is NO. If flag is YES, an exception will be
raised if a lock can’t be obtained when object invokes willChange.

See also: – locksObjectsBeforeFirstModification

24

setMessageHandler:
– (void)setMessageHandler:(id)handler

Set the receiver’s message handler to be handler.

See also: – messageHandler

setPropagatesDeletesAtEndOfEvent:
– (void)setPropagatesDeletesAtEndOfEvent:(BOOL)flag

Sets according to flag whether the receiver propagates deletes at the end of the event in which a change was
made, or only just before saving changes.

If flag is YES, deleting an enterprise object triggers delete propagation at the end of the event in which the
deletion occurred (this is the default behavior). If flag is NO, delete propagation isn’t performed until
saveChanges: is invoked.

You can delete enterprise objects explicitly by using the deleteObject: method or implicitly by removing
the enterprise object from an owning relationship. Delete propagation uses the delete rules in the
EOClassDescription to determine whether objects related to the deleted object should also be deleted (for
more information, see the EOClassDescription class specification). If delete propagation fails (that is, if an
enterprise object refuses to be deleted—possibly due to a deny rule), all changes made during the event are
rolled back.

See also: – propagatesDeletesAtEndOfEvent

setStopsValidationAfterFirstError:
– (void)setStopsValidationAfterFirstError: (BOOL)flag

Sets according to flag whether the receiver stops validating after the first error is encountered, or continues
for all objects (validation typically occurs during a save operation). The default is YES. Setting it to NO is
useful if the delegate implements editingContext:shouldPresentException: to handle the presentation of
aggregate exceptions.

See also: – stopsValidationAfterFirstError

setUndoManager:
– (void)setUndoManager:(EOUndoManager *)undoManager

Sets the receiver’s EOUndoManager to undoManager.

See also: – undoManager

25

stopsValidationAfterFirstError
– (BOOL)stopsValidationAfterFirstError

Returns YES to indicate that the receiver should stop validating after it encounters the first error, or NO to
indicate that it should continue for all objects.

See also: – setStopsValidationAfterFirstError:

tryToSaveChanges
– (NSException *)tryToSaveChanges

Invokes the saveChanges method, and catches and returns any exceptions that are raised. This method is
primarily for use with WebScript (the Web Objects Framework scripting language), since unlike
Objective-C, WebScript isn’t able to catch exceptions.

undo:
– (void)undo:(id)sender

This action method forwards an undo message to the receiver’s EOUndoManager, asking it to reverse the
latest uncommitted changes applied to objects in the object graph.

See also: – redo:

undoManager
– (EOUndoManager *)undoManager

Returns the receiver’s EOUndoManager.

See also: – setUndoManager:

updatedObjects
– (NSArray *)updatedObjects

Returns the objects in the receiver’s object graph that have been updated.

See also: – deletedObjects, – insertedObjects

26

Methods Implemented By the Delegate

editingContext:shouldFetchObjectsDescribedByFetchSpecification:
(NSArray *)editingContext:(EOEditingContext *)editingContext

shouldFetchObjectsDescribedByFetchSpecification:(EOFetchSpecification
*) fetchSpecification

Invoked from objectsWithFetchSpecification:editingContext:. If the delegate has appropriate results
cached it can return them and the fetch will be bypassed. Returning nil causes the fetch to be propagated to
the parent object store.

editingContext:shouldPresentException:
– (BOOL)editingContext:(EOEditingContext *)anEditingContext

shouldPresentException:(NSException *)exception

Sent whenever an exception is caught by an EOEditingContext. If the delegate returns NO, exception is
ignored. Otherwise exception is passed to the message handler for further processing.

See also: – messageHandler

editingContextShouldValidateChanges:
– (BOOL)editingContextShouldValidateChanges:(EOEditingContext *)anEditingContext

Sent when an EOEditingContext receives a saveChanges message. If the delegate returns NO, changes are
saved without first performing validation. This method can be useful if the delegate wants to provide its own
validation mechanism.

editingContext:shouldInvalidateObject:globalID:
– (BOOL)editingContext:(EOEditingContext *)anEditingContext

shouldInvalidateObject:(id)object
globalID: (EOGlobalID *)globalID

Sent when an object identified by globalID has been explicitly invalidated. If the delegate returns NO, the
invalidation is refused. This allows the delegate to selectively override object invalidations.

See also: – invalidateAllObjects, – revert

27

editingContextShouldUndoUserActionsAfterFailure:
– (BOOL)editingContextShouldUndoUserActionsAfterFailure:(EOEditingContext

*)anEditingContext

Sent when a validation error occurs while processing a processRecentChanges message. If the delegate
returns NO, it disables the automatic undoing of user actions after validation has resulted in an error.

By default, if a user attempts to perform an action that results in a validation failure (such as deleting a
department object that has a delete rule stating that the department can’t be deleted if it contains
employees), the user’s action is immediately rolled back. However, if this delegate method returns NO, the
user action is allowed to stand (though attempting to save the changes to the database without solving the
validation error will still result in a failure). Returning NO gives the user an opportunity to correct the
validation problem so that the operation can proceed (for example, the user might delete all of the
department’s employees so that the department itself can be deleted).

editingContextWillSaveChanges:
– (void)editingContextWillSaveChanges:(EOEditingContext *)editingContext

Sent when an EOEditingContext receives a saveChanges message. The delegate can raise an exception to
abort the save operation.

Notifications

The following notifications are declared (except where otherwise noted) and posted by EOEditingContext.

EOObjectsChangedInStoreNotification

Notification Object The EOEditingContext

userInfo Dictionary

28

Key Value

updated An NSArray of EOGlobalIDs for objects whose properties have
changed. A receiving EOEditingContext typically responds by
refaulting the objects.

inserted An NSArray of EOGlobalIDs for objects that have been inserted
into the EOObjectStore.

deleted An NSArray of EOGlobalIDs for objects that have been deleted
from the EOObjectStore.

invalidated An NSArray of EOGlobalIDs for objects that have been turned
into EOFaults. Invalidated objects are those for which the
cached view can should no longer be trusted. Invalidated objects

 should be refaulted so that they are refetched when they’re next
 examined.

This notification is broadcast whenever objectWillChange observer notifications are processed, which
is usually as the end of the event in which the changes occurred. See the EOObjectStore class
specification for more information on EOObjectsChangedInStoreNotification.

EOObjectsChangedInEditingContextNotification

Notification Object The EOEditingContext

userInfo Dictionary

Key Value

updated An NSArray containing the changed objects

deleted An NSArray containing the deleted objects

inserted An NSArray containing the inserted objects

invalidated An NSArray containing invalidated objects.

This notification is broadcast whenever changes are made in an EOEditingContext.
EOObjectsChangedInEditingContextNotification is similar to EOObjectsChangedInStoreNotification,
except that it contains objects rather than global ID’s. EODisplayGroups listen for this notification to
redisplay their contents.

EOEditingContextDidSaveChangesNotification

Notification Object The EOEditingContext

userInfo Dictionary

29

Key Value

updated An NSArray containing the changed objects

deleted An NSArray containing the deleted objects

inserted An NSArray containing the inserted objects

This notification is broadcast after changes are saved to the EOEditingContext’s parent EOObjectStore.

EOInvalidatedAllObjectsInStoreNotification

Notification Object The EOEditingContext

userInfo Dictionary None.

This notification is broadcast whenever an EOEditingContext is invalidating all its objects. When an
EOEditingContext receives this notification from its parent EOObjectStore, it clears its lists of inserted,
updated, and deleted objects, and resets its undo stack. EODisplayGroups listen for this notification to
refetch their contents. See the EOObjectStore class specification for more information on this notification.

