
1

EODelayedObserverQueue

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOControl/EOObserver.h

Class Description

EODelayedObserverQueue collects change notifications for observers of multiple objects and notifies them
of the changes en masse during the application’s run loop, according to their individual priorities. This style
of notification is particularly useful for coalescing and prioritizing multiple changes; the Interface layer’s
EOAssociation classes use it extensively to update the user interface, for example. Instead of being told that
an object will change, an EODelayedObserver is told that it did change, with a subjectChanged message,
as described in the EODelayedObserver class specification. Delayed observation is thus not useful for
comparing old and new states, but only for examining the new state.

The motivation for a delayed change notification mechanism arises mainly from issues in observing
multiple objects. Any single change to an observed object typically requires the observer to update some
state or perform an action. When many such objects change, it makes no sense to recalculate the new state
and perform the action for each object. EODelayedObserverQueue allows these changes to be collected into
a single notification. It further orders change notifications according to priorities, allowing observers to be
updated in sequence according to dependencies among them. For example, an EOMasterDetailAssociation,
which must update its detail EODisplayGroup according to the selection in the master before any redisplay
occurs, has an earlier priority than the default for EOAssociations. This prevents regular EOAssociations
from redisplaying old values and then displaying the new values after the EOMasterDetailAssociation
updates.

Enqueuing a Delayed Observer

The enqueueObserver: method records an EODelayedObserver for later change notification. However,
enqueuing is usually performed automatically by an EODelayedObserver in its objectWillChange:
method. Hence, it’s typically enough that an object being observed invoke willChange as needed. An
EODisplayGroup, for example, does this (among many other things) on receiving an
objectsChangedInEditingContext: message from its EOEditingContext.

Although you can create individual EODelayedObserverQueues using alloc and init , you typically use the
single instance provided by the defaultObserverQueue class method. Using separate queues bypasses the
prioritization mechanism (described below), which may cause problems between the objects using the
separate queues. If you do use separate queues, your EODelayedObserver subclasses should record a

2

designated EODelayedObserverQueue that they always use, and implement observerQueue to return that
object.

If you need to remove an enqueued observer, you can do so using the dequeueObserver: method.
EODelayedObserver also defines the discardPendingNotification method, which removes the receiver
from its designated queue. This is useful in an object’s implementation of dealloc, for example, to prevent
a change notification being sent to it.

Change Notification

The actual process of change notification is initiated by the enqueueObserver: messages that line
observers up to receive notifications. Regardless of how many times enqueueObserver: is invoked for a
particular observer, that observer is only put in the queue once. The first observer enqueued during the run
loop also triggers the EODelayedObserverQueue to set up a delayed invocation of
notifyObserversUpToPriority: , which causes it to receive that message at the end of the run loop.
EODelayedObserver sets up this delayed invocation in NSDefaultRunLoopMode, but you can change that
using setRunLoopModes:.

notifyObserversUpToPriority: cycles through the queue of EODelayedObservers in priority order, from
EOObserverPriorityFirst to the priority given, sending each observer a subjectChanged message. Each
time, it returns to the earliest priority (rather than continuing through the queue) in case the message
resulted in another EODelayedObserver with a earlier priority being enqueued. This guarantees an optimal
delivery of change notifications.

Observer Proxies

It may not always be possible for a custom observer class to inherit from EODelayedObserver. To aid such
objects in participating in delayed change notifications, the Framework defines the EOObserverProxy class,
which implements its subjectChanged method to invoke an action method of your custom object. You
create an EOObserverProxy using the initWithTarget:action:priority: method, which records the “real”
observer, the action method to invoke, and the priority at which the EOObserverProxy should be enqueued.
Then, instead of registering the custom object as an observer of objects, you register the proxy (using
EOObserverCenter’s addObserver:forObject:). When it receives an objectWillChange: message, it
enqueues itself for delayed change notification, receives the subjectChanged message from the
EODelayedObserverQueue, and then sends the action message to the “real” observer.

Method Types

Creating instances – init

Getting the default queue + defaultObserverQueue

Enqueuing and dequeuing observers – enqueueObserver:
– dequeueObserver:

3

Sending change notifications – notifyObserversUpToPriority:

Configuring notification behavior – setRunLoopModes:
– runLoopModes

Class Methods

defaultObserverQueue
+ (EODelayedObserverQueue *)defaultObserverQueue

Returns the EODelayedObserverQueue that EODelayedObservers use by default.

Instance Methods

dequeueObserver:
– (void)dequeueObserver:(EODelayedObserver *)anObserver

Removes anObserver from the receiver.

See also: – enqueueObserver:

enqueueObserver:
– (void)enqueueObserver:(EODelayedObserver *)anObserver

Records anObserver to be sent a subjectChanged message. If anObserver’s priority is
EOObserverPriorityImmediate it’s immediately sent the message and not enqueued. Otherwise it’s sent the
message the next time notifyObserversUpToPriority: is invoked with a priority later than or equal to
anObserver’s. Does nothing if anObserver is already recorded.

The first time this method is invoked during the run loop with an observer whose priority isn’t
EOObserverPriorityImmediate, it registers the receiver to be sent a notifyObserversUpToPriority:
message at the end of the run loop, using EOFlushDelayedObserversRunLoopOrdering and the receiver’s
run loop modes. This causes enqueued observers up to a priority of EOObserverPrioritySixth to be notified
automatically during each pass of the run loop.

This method does not retain anObserver. When anObserver is deallocated, it should invoke
dequeueObserver: to remove itself from the queue.

See also: – dequeueObserver:, –priority (EODelayedObserver),
– discardPendingNotification(EODelayedObserver), –runLoopModes,
– performSelector:target:argument:order:modes: (NSRunLoop class of the Foundation Kit)

4

init
– (id)init

Initializes a newly allocated EODelayedObserverQueue with NSDefaultRunLoopMode as its only run loop
mode. This is the designated initializer for the EODelayedObserverQueue class. Returns self.

notifyObserversUpToPriority:
– (void)notifyObserversUpToPriority: (EOObserverPriority)priority

Sends subjectChanged messages to all of the receiver’s enqueued observers whose priority is priority or
earlier. This method cycles through the receiver’s enqueued observers in priority order, sending each a
subjectChanged message and then returning to the very beginning of the queue, in case another observer
with an earlier priority was enqueued as a result of the message.

EODelayedObserverQueue invokes this method automatically as needed during the run loop, with a
priority of EOObserverPrioritySixth.

See also: – enqueueObserver:, –priority (EODelayedObserver)

runLoopModes
– (NSArray *)runLoopModes

Returns the receiver’s run loop modes.

See also: – setRunLoopModes:

setRunLoopModes:
– (void)setRunLoopModes:(NSArray *)modes

Sets the receiver’s run loop modes to modes.

See also: – runLoopModes

