
1

 

EOObjectStore

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOControl/EOObjectStore.h

Class Description

EOObjectStore is an abstract class defining the interface for an “intelligent” repository of objects, whether 
one based on external data or one that manages objects entirely in memory. An EOObjectStore is 
responsible for constructing and registering objects, servicing object faults, and saving changes made to 
objects. EOEditingContext is the principal subclass used for managing objects in memory—in fact, the 
primary purpose of the EOObjectStore interface is to service EOEditingContexts, not to define a completely 
general interface. The access layer’s EODatabaseContext class, a subclass of EOObjectStore, provides 
objects from relational databases. EODatabaseContexts, and other EOObjectStores based on external data, 
are often shared by several EOEditingContexts.

An EOObjectStore identifies its objects in two ways: by id for identification within a specific 
EOEditingContext, and by EOGlobalID for universal identification of the same record among multiple 
stores. EOObjectStores perform uniquing of their objects based on EOGlobalIDs, and use the IDs to 
coordinate changes among separate EOObjectStores—both within and, potentially, across applications—
and between nested stores (as illustrated in the EOEditingContext class specification).

For external repositories, an EOObjectStore may delay actually fetching an object’s data, instead creating 
an EOFault as a placeholder. When an EOFault is accessed (sent a message), it triggers its EOObjectStore 
to fetch its data and transform it into an instance of the appropriate object class. This preserves both the 
object’s id and its EOGlobalID, while saving the cost of fetching data that may not be used. EOFaults are 
typically created for the destinations of relationships for objects that are explicitly fetched. See the EOFault 
and EOFaultHandler class specifications for more information.

Subclasses of EOObjectStore

As noted above, EOEditingContext is the principal subclass of EOObjectStore, used for managing objects 
in memory. For stores based on external data, there are several subclasses. EOCooperatingObjectStore 
defines stores that work together to manage data from several distinct sources (such as different databases). 
EODatabaseContext is actually a subclass of this class. A group of EOCooperatingObjectStores is managed 
by another subclass of EOObjectStore, called EOObjectStoreCoordinator. If you’re defining a subclass of 
EOObjectStore, it’s probably one based on an external data repository, and it should therefore inherit from 
EOCooperatingObjectStore so as to work well with an EOObjectStoreCoordinator—though this isn’t 
required.



2

A subclass of EOObjectStore must implement all of its methods. The default method implementations raise 
exceptions.

Method Types

Initializing objects – initializeObject:withGlobalID:

Getting objects – objectsWithFetchSpecification:editingContext:
– objectsForSourceGlobalID:relationshipName:editingContext:

Getting faults – faultForGlobalID:editingContext:
– arrayFaultWithSourceGlobalID:relationshipName:editingContext:
– refaultObject:withGlobalID:editingContext:

Locking objects – lockObjectWithGlobalID:editingContext:
– isObjectLockedWithGlobalID:editingContext:

Saving changes to objects – saveChangesInEditingContext:

Invalidating objects – invalidateAllObjects
– invalidateObjectsWithGlobalIDs:

Instance Methods

arrayFaultWithSourceGlobalID:relationshipName:editingContext:
– (NSArray *)arrayFaultWithSourceGlobalID: (EOGlobalID *)globalID

relationshipName:(NSString *)relationshipName
editingContext:(EOEditingContext *)anEditingContext

Implemented by subclasses to return the destination objects for a to-many relationship, whether as real 
instances or as an EOFault. globalID identifies the source object for the relationship (which doesn’t 
necessarily exist in memory yet), and relationshipName is the name of the relationship. The object 
identified by globalID and the destination objects for the relationship all belong to anEditingContext.

If you implement this method to return an EOFault, you must define an EOFaultHandler subclass that stores 
globalID and relationshipName, using them to fetch the objects in a later 
objectsForSourceGlobalID:relationshipName:editingContext: message and that turns the EOFault into 
an NSArray containing those objects. See the EOFaultHandler and EOFault class specifications for more 
information on faults.

See the EOEditingContext and EODatabaseContext class specifications for more information on how this 
method works in concrete subclasses.

See also: – faultForGlobalID:editingContext:



3

 

faultForGlobalID:editingContext:
– (id)faultForGlobalID: (EOGlobalID *)globalID 

editingContext:(EOEditingContext *)anEditingContext

If the receiver is anEditingContext and the object associated with globalID is already registered in 
anEditingContext, returns that object. Otherwise creates a to-one fault, registers it in anEditingContext, and 
returns the fault. This method is always directed first at anEditingContext, which forwards the message to 
its parent object store if needed to create a fault.

If you implement this method to return an EOFault, you must define an EOFaultHandler subclass that stores 
globalID, uses it to fetch the object and turn the EOFault into that object, and initialize the object with 
EOObjectStore’s initializeObject:withGlobalID: . See the EOFaultHandler and EOFault class 
specifications for more information on faults.

See the EOEditingContext and EODatabaseContext class specifications for more information on how this 
method works in concrete subclasses.

See also: – arrayFaultWithSourceGlobalID:relationshipName:editingContext: , 
– recordObject:globalID: (EOEditingContext)

initializeObject:withGlobalID:
– (void)initializeObject: (id)anObject

withGlobalID: (EOGlobalID *)globalID
editingContext:(EOEditingContext *)anEditingContext

Implemented by subclasses to set anObject’s properties, as obtained for globalID. This method is typically 
invoked after anObject has been creating using EOClassDescription’s 
createInstanceWithEditingContext:globalID:zone: and NSObject’s 
initWithEditingContext:classDescription:globalID: , and after a fault has been fired.

See also: – initWithEditingContext:classDescription:globalID: (NSObject Additions), 
– awakeFromInsertionInEditingContext: (NSObject Additions), 
– awakeFromFetchInEditingContext: (NSObject Additions)

invalidateAllObjects
– (void)invalidateAllObjects

Discards the values of all objects held by the receiver and turns them into EOFaults. This causes all locks 
to be dropped and any transaction to be rolled back. The next time any object is accessed, its data is fetched 
anew. Any child object stores are also notified that the objects are no longer valid. See the 
EOEditingContext class specification for more information on how this method works in concrete 
subclasses.



4

This method should also post an EOInvalidatedAllObjectsInStoreNotification.

See also: – invalidateObjectsWithGlobalIDs: , – refaultObject:withGlobalID:editingContext:

invalidateObjectsWithGlobalIDs:
– (void)invalidateObjectsWithGlobalIDs: (NSArray *)globalIDs

Signals that the objects identified by the EOGlobalIDs in globalIDs should no longer be considered valid 
and that they should be turned into EOFaults. This causes data for each object to be refetched the next time 
it’s accessed. Any child object stores are also notified that the objects are no longer valid.

See also: – invalidateAllObjects, – refaultObject:withGlobalID:editingContext:

isObjectLockedWithGlobalID:editingContext:
– (BOOL)isObjectLockedWithGlobalID: (EOGlobalID *)globalID 

editingContext:(EOEditingContext *)anEditingContext

Returns YES if the object identified by globalID is locked, NO if it isn’t. See the EODatabaseContext class 
specification for more information on how this method works in concrete subclasses.

lockObjectWithGlobalID:editingContext:
– (void)lockObjectWithGlobalID: (EOGlobalID *)globalID 

editingContext:(EOEditingContext *)anEditingContext

Locks the object identified by globalID. See the EODatabaseContext class specification for more 
information on how this method works in concrete subclasses.

objectsForSourceGlobalID:relationshipName:editingContext:
– (NSArray *)objectsForSourceGlobalID:(EOGlobalID *)globalID

relationshipName:(NSString *)relationshipName
editingContext:(EOEditingContext *)anEditingContext

Returns the destination objects for a to-many relationship. This method is used by an array fault previously 
constructed using arrayFaultWithSourceGlobalID:relationshipName:editingContext: . globalID 
identifies the source object for the relationship (which doesn’t necessarily exist in memory yet), and 
relationshipName is the name of the relationship. The object identified by globalID and the destination 
objects for the relationship all belong to anEditingContext.

See the EOEditingContext and EODatabaseContext class specifications for more information on how this 
method works in concrete subclasses.



5

 

objectsWithFetchSpecification:editingContext:
– (NSArray *)objectsWithFetchSpecification:(EOFetchSpecification *)aFetchSpecification 

editingContext:(EOEditingContext *)anEditingContext

Fetches objects from an external store according to the criteria specified by fetchSpecification and returns 
them in an NSArray for inclusion in anEditingContext. If one of these objects is already present in memory, 
this method doesn’t overwrite its values with the new values from the database. Raises an exception if an 
error occurs.

See the EOEditingContext and EODatabaseContext class specifications for more information on how this 
method works in concrete subclasses.

refaultObject:withGlobalID:editingContext:
– (void)refaultObject: (id)anObject

withGlobalID: (EOGlobalID *)globalID
editingContext:(EOEditingContext *)anEditingContext

Turns anObject into an EOFault, identified by globalID in anEditingContext. This method should be used 
with caution since refaulting an object doesn’t remove the object snapshot from the undo stack. Objects that 
have been inserted but not saved, or that have been deleted, shouldn’t be refaulted.

saveChangesInEditingContext:
– (void)saveChangesInEditingContext:(EOEditingContext *)anEditingContext

Saves any changes in anEditingContext to the receiver’s repository. Sends insertedObjects, 
deletedObjects, and updatedObjects messages to anEditingContext and applies the changes to the 
receiver’s data repository as appropriate. For example, EODatabaseContext implements this method to send 
operations to an EOAdaptor for making the changes in a database.

Notifications

EOInvalidatedAllObjectsInStoreNotification

Posted whenever an EOObjectStore receives an invalidateAllObjects message. The notification contains:

Notification Object The EOObjectStore that received the invalidateAllObjects message.

Userinfo None



6

EOObjectsChangedInStoreNotification

Posted whenever an EOObjectStore observes changes to its objects. The notification contains:

Notification Object The EOObjectStore that observed the change.

Userinfo

Key Value

updated An NSArray of EOGlobalIDs for objects whose properties have
changed. A receiving EOEditingContext typically responds by
refaulting its corresponding objects.

inserted An NSArray of EOGlobalIDs for objects that have been inserted
into the EOObjectStore.

deleted An NSArray of EOGlobalIDs for objects that have been deleted
from the EOObjectStore.

invalidated An NSArray of EOGlobalIDs for objects that have been turned
into EOFaults.


