
1

 

EOCooperatingObjectStore

Inherits From: EOObjectStore : NSObject 

Conforms To: NSObject (NSObject) 

Declared In: EOControl/EOObjectStoreCoordinator.h 

Class Description 

EOCooperatingObjectStore is an abstract class that defines the basic interface for object stores that work 
together to manage data from several distinct data repositories. The interaction between 
EOCooperatingObjectStores is managed by another class, EOObjectStoreCoordinator. The 
EOObjectStoreCoordinator communicates changes to its EOCooperatingObjectStores by handing them an 
EOEditingContext. Each EOCooperatingObjectStore examines the modified objects in the 
EOEditingContext and determines if it’s responsible for handling the changes. When an 
EOCooperatingObjectStore has changes that need to be handled by another store, it communicates the 
changes to the other store back through the EOObjectStoreCoordinator.

For relational databases, Enterprise Objects Framework provides a concrete subclass of 
EOCooperatingObjectStore, EODatabaseContext. The EODatabaseContext class represents a single 
connection to a database server. EODatabaseContext fetches and saves objects on behalf of one or more 
EOEditingContexts. However, EODatabaseContext and EOEditingContext don’t interact with each other 
directly—an EOObjectStoreCoordinator acts as a mediator between them.

EODatabase
Context

EOObjectStore
Coordinator

EODatabase
Context

EOEditing
Context

EOEditing
Context

EOEditing
Context



2

Method Types 

Committing or discarding changes – commitChanges
– performChanges
– rollbackChanges
– prepareForSaveWithCoordinator:editingContext:
– recordChangesInEditingContext
– recordUpdateForObject:changes:

Returning information about objects – valuesForKeys:object:

Determining if the EOCooperatingObjectStore is responsible for a particular operation
– ownsObject:
– ownsGlobalID:
– handlesFetchSpecification:

Instance Methods 

commitChanges
– (void)commitChanges 

Overridden by subclasses to commit the transaction. Raises an exception if an error occurs; the error 
message indicates the nature of the problem.   

See also: – performChanges, –commitChanges, 
– saveChangesInEditingContext: (EOObjectStoreCoordinator)

handlesFetchSpecification:
– (BOOL)handlesFetchSpecification:(EOFetchSpecification *)fetchSpecification 

Overridden by subclasses to return YES if the receiver is responsible for fetching the objects described by 
fetchSpecification. For example, EODatabaseContext determines whether it’s responsible based on 
fetchSpecification’s entity name.

See also:  – ownsGlobalID:, –ownsObject: 



3

 

ownsGlobalID :

– (BOOL)ownsGlobalID:(EOGlobalID *)globalID 

Overridden by subclasses to return YES if the receiver is responsible for fetching and saving the object 
identified by globalID. For example, EODatabaseContext determines whether it’s responsible based on the 
entity associated with globalID.

See also:  – handlesFetchSpecification:, –ownsObject: 

ownsObject:

– (BOOL)ownsObject:(id)object 

Overridden by subclasses to return YES if the receiver is responsible for fetching and saving object. For 
example, EODatabaseContext determines whether it’s responsible based on the entity associated with 
object.

See also:  – ownsGlobalID:, –handlesFetchSpecification: 

performChanges
– (void)performChanges 

Overridden by subclasses to transmit changes to the receiver’s underlying database. Raises an exception if 
an error occurs; the error message indicates the nature of the problem.

See also: – commitChanges, – rollbackChanges, 
– saveChangesInEditingContext: (EOObjectStoreCoordinator)

prepareForSaveWithCoordinator:editingContext:
– (void)prepareForSaveWithCoordinator:(EOObjectStoreCoordinator *)coordinator 

editingContext:(EOEditingContext *)context 

Overridden by subclasses to notify the receiver that a multi-store save operation is beginning. For example, 
the receiver might prepare primary keys for newly inserted objects so that they can be handed out to other 
EOCooperatingObjectStores upon request. The receiver should be prepared to receive the messages 
recordChangesInEditingContext: and recordUpdateForObject:changes:.

After performing these methods, the receiver should be prepared to receive the possible messages 
performChanges and then commitChanges or rollbackChanges. 



4

recordChangesInEditingContext
– (void)recordChangesInEditingContext 

Overridden by subclasses to instruct the receiver to examine the changed objects in the receiver’s 
EOEditingContext, record any operations that need to be performed, and notify the receiver’s 
EOObjectStoreCoordinator of any changes that need to be forwarded to other EOCooperatingObjectStores. 

See also:  – prepareForSaveWithCoordinator:editingContext:, – recordUpdateForObject:changes: 

recordUpdateForObject:changes:
– (void)recordUpdateForObject:(id)object changes:(NSDictionary *)changes 

Overridden by subclasses to communicate from one EOCooperatingObjectStore to another (through the 
EOObjectStoreCoordinator) that changes need to be made to an object. For example, an insert of an object 
in a relationship property might require changing a foreign key property in an object owned by another 
EOCooperatingObjectStore. This method is primarily used to manipulate relationships.

See also:  – prepareForSaveWithCoordinator:editingContext:, – recordChangesInEditingContext 

rollbackChanges
– (void)rollbackChanges 

Overridden by subclasses to roll back changes to the underlying database. Raises one of several possible 
exceptions if an error occurs; the error message should indicate the nature of the problem.

See also:  – commitChanges, –performChanges, 
– saveChangesInEditingContext: (EOObjectStoreCoordinator)

valuesForKeys:object:
– (NSDictionary *)valuesForKeys:(NSArray *)keys object:(id)object 

Overridden by subclasses to return values (as identified by keys) held by the receiver that augment 
properties in object. For instance, an EODatabaseContext stores foreign keys for the objects it owns (and 
primary keys for new objects). These foreign and primary keys may well not be defined as properties of the 
object. Other EODatabaseContexts can find out these keys by sending the EODatabaseContext that owns 
the object a valuesForKeys:object: message. Note that you use this for properties that are not stored in the 
object, so using key-value coding directly on the object won’t always work.


