
1

 

EOObjectStoreCoordinator

Inherits From: EOObjectStore : NSObject

Conforms To: NSObject (NSObject) 

Declared In: EOControl/EOObjectStoreCoordinator.h 

Class Description 

EOObjectStoreCoordinator provides the abstraction of a single object store by directing one or more 
EOCooperatingObjectStores in managing objects from distinct data respositories.

EOObjectStore Methods

EOObjectStoreCoordinator overrides the following EOObjectStore methods:

objectsWithFetchSpecification:editingContext:
objectsForSourceGlobalID:relationshipName:editingContext:
propertiesForObjectWithGlobalID:editingContext:
faultForGlobalID:editingContext:
arrayFaultWithSourceGlobalID:relationshipName:editingContext:
refaultObject:withGlobalID:editingContext:
saveChangesInEditingContext:
invalidateAllObjects
invalidateObjectWithGlobalID:

With the exception of saveChangesInEditingContext:, EOObjectStoreCoordinator’s implementation of 
these methods simply forwards the message to an EOCooperatingObjectStore or stores. The message 
invalidateAllObjects is forwarded to all EOCooperatingObjectStores. The rest of the messages are 
forwarded to the appropriate EOCooperatingObjectStore, based on which store responds YES to the 
messages ownsGlobalID:, ownsObject:, and handlesFetchSpecification: (which message is used to 
determine EOCooperatingObjectStore responsibility depends on the context). The EOObjectStore methods 
listed above aren’t documented in this class specification (except for saveChangesInEditingContext:)—
for descriptions of them, see the EOObjectStore and EODatabaseContext class specifications

For the method saveChangesInEditingContext:, the EOObjectStoreCoordinator guides its 
EOCooperatingObjectStores through a multi-pass save protocol in which each EOCooperatingObjectStore 
saves its own changes and forwards remaining changes to other EOCooperatingObjectStores. For example, 
if in its recordChangesInEditingContext: method one EOCooperatingObjectStore notices the removal of 
an object from an “owning” relationship but that object belongs to another EOCooperatingObjectStore, it 



2

informs the other store by sending the EOObjectStoreCoordinator a forwardUpdateForObject:changes: 
message. For a more details, see the method description for saveChangesInEditingContext:.

Note: Although it manages objects from multiple repositories, EOObjectStoreCoordinator doesn’t 
absolutely guarantee consistent updates when saving changes across object stores. If your application 
requires guaranteed distributed transactions, you can either provide your own solution by creating a 
subclass of EOObjectStoreCoordinator that integrates with a TP monitor, use a database server with 
built-in distributed transaction support, or design your application to write to only one object store 
per save operation (though it may read from multiple object stores). For more discussion of this 
subject, see the method description for saveChangesInEditingContext:.

Method Types 

Initializing instances – init

Setting the default coordinator + setDefaultCoordinator:
+ defaultCoordinator

Managing EOCooperatingObjectStores
– addCooperatingObjectStore:
– removeCooperatingObjectStore:
– cooperatingObjectStores

Saving changes – saveChangesInEditingContext:

Communication between EOCooperatingObjectStores
– forwardUpdateForObject:changes:
– valuesForKeys:object:

Returning EOCooperatingObjectStores
– objectStoreForGlobalID:
– objectStoreForFetchSpecification:
– objectStoreForObject:

Getting the userInfo dictionary – userInfo
– setUserInfo:

Class Methods 

defaultCoordinator
+ (id)defaultCoordinator  

Returns a shared instance of EOObjectStoreCoordinator.



3

 

setDefaultCoordinator:
+ (void)setDefaultCoordinator:(EOObjectStoreCoordinator *)coordinator 

Sets a shared instance EOObjectStoreCoordinator.

Instance Methods

addCooperatingObjectStore:
– (void)addCooperatingObjectStore:(EOCooperatingObjectStore *)store 

Adds store to the list of EOCooperatingObjectStores that need to be queried and notified about changes to 
enterprise objects. Posts the notification EOCooperatingStoreWasAdded.

See also:  – removeCooperatingObjectStore:, –cooperatingObjectStores 

cooperatingObjectStores
– (NSArray *)cooperatingObjectStores 

Returns the receiver’s EOCooperatingObjectStores. 

See also:  – addCooperatingObjectStore:, – removeCooperatingObjectStore: 

forwardUpdateForObject:changes:
– (void)forwardUpdateForObject: (id)object changes:(NSDictionary *)changes 

Tells the receiver to forward a message from an EOCooperatingObjectStore to another store informing it 
that changes need to be made to object. For example, inserting an object in a relationship property of one 
EOCooperatingObjectStore might require changing a foreign key property in an object owned by another 
EOCooperatingObjectStore.

This method first locates the EOCooperatingObjectStore that’s responsible for applying the changes, and 
then it sends the store the message recordUpdateForObject:changes:.

See also: – recordUpdateForObject:changes: (EOCooperatingObjectStore)

init
– init  

Initializes a newly allocated EOObjectStoreCoordinator and returns self. This is the designated initializer 
for the EOObjectStoreCoordinator class.



4

objectStoreForFetchSpecification :

– (EOCooperatingObjectStore *)objectStoreForFetchSpecification:
(EOFetchSpecification *)fetchSpecification 

Returns the EOCooperatingObjectStore responsible for fetching objects with fetchSpecification. Returns 
nil  if no EOCooperatingObjectStore can be found that responds YES to handlesFetchSpecification:.

See also:  – objectStoreForGlobalID:, –objectStoreForObject: 

objectStoreForGlobalID :

– (EOCooperatingObjectStore *)objectStoreForGlobalID:(EOGlobalID *)globalID 

Returns the EOCooperatingObjectStore for the object identified by globalID. Returns nil  if no 
EOCooperatingObjectStore can be found that responds YES to ownsGlobalID:.

See also:  – objectStoreForFetchSpecification:, –objectStoreForObject: 

objectStoreForObject:
– (EOCooperatingObjectStore *)objectStoreForObject:(id)object 

Returns the EOCooperatingObjectStore that owns object. Returns nil  if no EOCooperatingObjectStore can 
be found that responds YES to ownsObject:. 

See also:  – objectStoreForFetchSpecification:, –objectStoreForGlobalID: 

removeCooperatingObjectStore:
– (void)removeCooperatingObjectStore:(EOCooperatingObjectStore *)store 

Removes store from the list of EOCooperatingObjectStores that need to be queried and notified about 
changes to enterprise objects. Posts the notification EOCooperatingStoreWasRemoved.

See also:  – addCooperatingObjectStore:, –cooperatingObjectStores

saveChangesInEditingContext:
– (void)saveChangesInEditingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method saveChangesInEditingContext: to save the changes made in 
anEditingContext. This message is sent by an EOEditingContext to an EOObjectStoreCoordinator to 
commit changes. When an EOObjectStoreCoordinator receives this message, it guides its 
EOCooperatingObjectStores through a multi-pass save protocol in which each EOCooperatingObjectStore 



5

 

saves its own changes and forwards remaining changes to other EOCooperatingObjectStores. When this 
method is invoked, the following sequence of events occurs:

1. The receiver sends each of its EOCooperatingObjectStores the message 
prepareForSaveWithCoordinator:editingContext:, which informs them that a multi-pass save operation is 
beginning. When the EOCooperatingObjectStore is an EODatabaseContext, it takes this opportunity to 
generate primary keys for any new objects in the EOEditingContext.

2. The receiver sends each of its EOCooperatingObjectStores the message recordChangesInEditingContext, 
which prompts them to examine the changed objects in the EOEditingContext, record any operations that need 
to be performed, and notify the receiver of any changes that need to be forwarded to other 
EOCooperatingObjectStores. For example, if in its recordChangesInEditingContext: method one 
EOCooperatingObjectStore notices the removal of an object from an “owning” relationship but that object 
belongs to another EOCooperatingObjectStore, it informs the other store by sending the 
EOObjectStoreCoordinator a forwardUpdateForObject:changes: message. 

3. The receiver sends each of its EOCooperatingObjectStores the message performChanges. This tells the stores 
to transmit their changes to their underlying databases. When the EOCooperatingObjectStore is an 
EODatabaseContext, it responds to this message by taking the EODatabaseOperations that were constructed 
in the previous step, constructing EOAdaptorOperations from them, and giving the EOAdaptorOperations to 
an available EOAdaptorChannel for execution.

4. If performChanges fails for any of the EOCooperatingObjectStores, all stores are sent the message 
rollbackChanges.

5. If performChanges succeeds for all EOCooperatingObjectStores, the receiver sends them the message 
commitChanges, which has the effect of telling the adaptor to commit the changes. 

If commitChanges fails for a particular EOCooperatingObjectStore, that EOCooperatingObjectStore and all 
subsequent ones are sent the message rollbackChanges. However, the EOCooperatingObjectStores that have 
already committed their changes do not roll back. In other words, the EOObjectStoreCoordinator doesn't 
perform the two-phase commit protocol necessary to guarantee consistent distributed update.

This method raises an exception if an error occurs.

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs.

See also: – userInfo



6

userInfo
– (NSDictionary *)userInfo 

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: – setUserInfo:

valuesForKeys:object:
– (NSDictionary *)valuesForKeys:(NSArray *)keys object:(id)object 

Communicates with the appropriate EOCooperatingObjectStore to get the values identified by keys for 
object, so that it can then forward them on to another EOCooperatingObjectStore. 
EOCooperatingObjectStores can hold values for an object that augment the properties in the object. For 
instance, an EODatabaseContext stores foreign key information for the objects it owns. These foreign keys 
may well not be defined as properties of the object. Other EODatabaseContexts can find out the object’s 
foreign keys by sending the EODatabaseContext that owns the object a valuesForKeys:object: message 
(through the EOObjectStoreCoordinator). 

Notifications 

The following notifications are declared and posted by EOObjectStoreCoordinator.

EOCooperatingObjectStoreWasAdded

Notification Object The EOObjectStoreCoordinator.

userInfo Dictionary None.

When an EOObjectStoreCoordinator receives an addCooperatingObjectStore: message and adds an 
EOCooperatingObjectStore to its list, it posts EOCooperatingStoreWasAdded to notify observers.

EOCooperatingObjectStoreWasRemoved

Notification Object The EOObjectStoreCoordinator.

userInfo Dictionary None.

When an EOObjectStoreCoordinator receives a removeCooperatingObjectStore: message and removes 
an EOCooperatingObjectStore from its list, it posts EOCooperatingStoreWasRemoved to notify observers.

EOCooperatingObjectStoreNeeded

Notification Object The EOObjectStoreCoordinator.



7

 

userInfo Dictionary One of the following:
globalID (globalID for operation)
fetch specification (fetch specification for operation)
object (object for operation)

Posted when an EOObjectStoreCoordinator receives a request that it can’t service with any of its currently 
registered EOCooperatingObjectStores. The observer can call back to the coordinator to register an 
appropriate EOCooperatingObjectStore based on the information in the userInfo dictionary.


