
1

EOObserverCenter

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOControl/EOObserver.h

Class Description

EOObserverCenter and related classes form an efficient, specialized mechanism for notification of changes
to objects. Observable objects invoke the willChange method before altering their state, which causes all
registered observers to receive an objectWillChange: message. The entire observation mechanism is
defined by four classes and a protocol: EOObserverCenter, EODelayedObserverQueue,
EODelayedObserver, EOObserverProxy, and EOObserving. EOObserverCenter is the central manager of
change notification. It records all observers and the objects they observe, and distributes the
objectWillChange: message defined by the EOObserving protocol. The other three classes add to the basic
observation mechanism. EODelayedObserverQueue alters the basic, synchronous change notification
mechanism by offering different priority levels, which allows observers to specify the order in which they’re
notified of changes. EODelayedObserver is an abstract superclass for objects that observe other objects
(such as the Interface layer’s EOAssociation classes). Finally, EOObserverProxy is a subclass of
EODelayedObserver that forwards change messages to a target object, allowing objects that don’t inherit
from EODelayedObserver to take advantage of this mechanism.

The major observer in Enterprise Objects Framework is EOEditingContext, which implements its
objectWillChange: method to record a snapshot for the object about to change, register undo operations
in an EOUndoManager, and record the changes needed to update objects in its EOObjectStore. Because
some of these actions—such as examining the object’s new state—can only be performed after the object
has changed, an EOEditingContext sets up a delayed message to itself, which it gets at the end of the run
loop. Observers that only need to examine an object after it has changed can use the delayed observer
mechanism, described in the EODelayedObserver and EODelayedObserverQueue class specifications.

Registering an Observer

Objects that directly observe others must adopt the EOObserving protocol, which consists of the single
method objectWillChange:. To register an object as an observer, invoke EOObserverCenter’s
addObserver:forObject: with the observer and the object to be observed. Once this is done, any time the
object invokes its willChange method, the observer is sent an objectWillChange: message informing it of
the pending change. You can also register an observer to be notified when any object changes using
addOmniscientObserver:. This can be useful in certain situations, but as it’s very costly to deal out

2

frequent change notifications, you should use omniscient observers sparingly. To unregister either kind of
observer, simply use the corresponding remove... method.

Change Notification

Objects that are about to change invoke willChange, a method that the Framework adds to NSObject. This
method invokes EOObserverCenter’s notifyObserversObjectWillChange:, which sends an
objectWillChange: message to all observers registered for the object that’s changing, as well as to any
omniscient observers. notifyObserversObjectWillChange: optimizes the process by suppressing
redundant objectWillChange: messages when the same object invokes willChange several times in a row
(as often happens when multiple properties are changed). Change notification is immediate, and takes place
before the object’s state changes. If you need to compare the object’s state before and after the change, you
must arrange to examine the new state at the end of the run loop.

You can suppress change notification when necessary, using the suppressObserverNotification and
enableObserverNotification methods. While notification is suppressed, neither regular nor omniscient
observers are informed of changes. These methods nest, so you can invoke suppressObserverNotification
multiple times, and notification isn’t reenabled until a matching number of enableObserverNotification
message have been sent.

Method Types

Registering and unregistering observers
+ addObserver:forObject:
+ removeObserver:forObject:
+ addOmniscientObserver:
+ removeOmniscientObserver:

Notifying observers of change + notifyObserversObjectWillChange:

Getting observers + observersForObject:
+ observerForObject:ofClass:

Suppressing change notification + suppressObserverNotification
+ enableObserverNotification
+ observerNotificationSuppressCount

3

Class Methods

addObserver:forObject:
+ (void)addObserver:(id <EOObserving>)anObserver forObject: (id)anObject

Records anObserver to be notified with an objectWillChange: message when anObject changes.

See also: + notifyObserversObjectWillChange:, + removeObserver:forObject:,
+ observersForObject:

addOmniscientObserver:
+ (void)addOmniscientObserver:(id <EOObserving>)anObserver

Records anObserver to be notified with an objectWillChange: message when any object changes. This can
cause significant performance degradation, and so should be used with care. The ominiscient observer must
be prepared to receive the objectWillChange: message with a nil argument.

See also: + notifyObserversObjectWillChange:, + addObserver:forObject:,
+ removeOmniscientObserver:

enableObserverNotification
+ (void)enableObserverNotification

Counters a prior suppressObserverNotification message. When no such messages remain in effect, the
notifyObserversObjectWillChange: method is reenabled. Raises an NSInternalInconsistencyException
if not paired with a prior suppressObserverNotification message.

See also: + observerNotificationSuppressCount

notifyObserversObjectWillChange:
+ (void)notifyObserversObjectWillChange:(id)anObject

Unless change notification is suppressed, sends an objectWillChange: to all observers registered for
anObject with that object as the argument, and sends that message to all omniscient observers as well. If
invoked several times in a row with the same object, only the first invocation has any effect, since
subsequent change notifications are redundant.

If an observer wants to ensure that it receives notification the next time the last object to change changes
again, it should use the statement:

[EOObserverCenter notifyObserversObjectWillChange:nil];

See also: + suppressObserverNotification, + addObserver:forObject:, + addOmniscientObserver:

4

observerForObject:ofClass:
+ (id)observerForObject:(id)anObject ofClass:(Class)aClass

Returns an observer for anObject that’s a kind of aClass. If more than one observer of anObject is a kind
of aClass, the specific observer returned is undetermined. You can use observersForObject: instead to get
all observers and examine their class membership.

observerNotificationSuppressCount
+ (unsigned int)observerNotificationSuppressCount

Returns the number of suppressObserverNotification messages in effect.

See also: + suppressObserverNotification, + enableObserverNotification

observersForObject:
+ (NSArray *)observersForObject:(id)anObject

Returns all observers of anObject.

See also: + observerForObject:ofClass:

removeObserver:forObject:
+ (void)removeObserver:(id <EOObserving>)anObserver forObject: (id)anObject

Removes anObserver as an observer of anObject.

See also: + notifyObserversObjectWillChange:, + addObserver:forObject:, + observersForObject:

removeOmniscientObserver:
+ (void)removeOmniscientObserver:(id <EOObserving>)anObserver

Unregisters anObserver as an observer of all objects. This can cause significant performance degradation,
and so should be used with care.

See also: + notifyObserversObjectWillChange:, + removeObserver:forObject:,
+ addOmniscientObserver:

5

suppressObserverNotification
+ (void)suppressObserverNotification

Disables the notifyObserversObjectWillChange: method, so that no change notifications are sent. This
method can be invoked multiple times; enableObserverNotification must then be invoked an equal
number of times to reenable change notification.

See also: + observerNotificationSuppressCount

