
1

EODisplayGroup

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: EOInterface/EODisplayGroup.h

Class at a Glance

Purpose
An EODisplayGroup collects an array of objects from an EODataSource, and works with a group of
EOAssociation objects to display and edit the properties of those objects.

Principal Attributes
• Array of objects supplied by an EODataSource
• EOQualifier and EOSortOrderings to filter the objects for display
• Array of selection indexes
• Delegate

Creation
Interface Builder
– init Designated initializer.

Commonly Used Methods
– allObjects Returns all objects in the EODisplayGroup.
– displayedObjects Returns the subset of all objects made available for display.
– selectedObjects Returns the selected objects.
– setQualifier: Sets a filter that limits the objects displayed.
– setSortOrdering: Sets the ordering used to sort the objects.
– updateDisplayedObjects Filters, sorts, and redisplays the objects.
– insertObjectAtIndex: Creates a new object and inserts it into the EODataSource.

2

Class Description

An EODisplayGroup is the basic user interface manager for an Enterprise Objects Framework application.
It collects objects from an EODataSource, filters and sorts them, and maintains a selection in the filtered
subset. It interacts with user interface objects and other display objects through EOAssociations, which bind
the values of objects to various aspects of the display objects.

An EODisplayGroup manipulates its EODataSource by sending it fetchObjects, insertObject:, and other
messages, and registers itself as an editor and message handler of the EODataSource’s EOEditingContext.
The EOEditingContext allows the EODisplayGroup to intercede in certain operations, as described in the
EOEditors and EOMessageHandlers informal protocol specifications. EODisplayGroup implements all the
methods of these informal protocols; see the descriptions for editingContextWillSaveChanges:,
editorHasChangesForEditingContext:, and editingContext:presentErrorMessage: for more
information.

Most of an EODisplayGroup’s interactions are with its associations, its EODataSource, and its
EOEditingContext. See the EOAssociation, EODataSource, and EOEditingContext class specifications for
more information on these interactions.

Creating an EODisplayGroup

You create most EODisplayGroups in Interface Builder, by dragging an entity icon from the EOModeler
application, which creates an EODisplayGroup with an EODatabaseDataSource, or by dragging an
EODisplayGroup with no EODataSource from the EOPalette. EODisplayGroups with EODataSources
operate independent of other EODisplayGroups, while those without EODataSources must be set up in a
master-detail association with another EODisplayGroup. See Chapter 4, “Creating an Enterprise Objects
Framework Project” in the Enterprise Objects Framework Developer’s Guide for more information on
setting up EODisplayGroups in Interface Builder.

To create an EODisplayGroup programmatically, simply initialize it and set its EODataSource:

EODataSource *myDataSource; /* Assume this exists. */

EODisplayGroup *myDisplayGroup;

myDisplayGroup = [[EODisplayGroup alloc] init];

[myDisplayGroup setDataSource:myDataSource];

After creating the EODisplayGroup, you can add associations as described in the EOAssociation class
specification under “Setting up an Association Programmatically.”

Getting Objects

Since an EODisplayGroup isn’t much use without objects to manage, the first thing you do with an
EODisplayGroup is send it a fetch message. You can use the basic fetch method; the fetch: action method,
which can be invoked by a control in the EODisplayGroup’s nib file; or, you can configure the

3

EODisplayGroup in Interface Builder to fetch automatically when its nib file is loaded. These methods all
ask the EODisplayGroup’s EODataSource to fetch from its persistent store with a fetchObjects message.

Filtering and Sorting

An EODisplayGroup’s fetched objects are available through its allObjects method. These objects are
treated only as candidates for display, however. The array of objects actually displayed is filtered and sorted
by the EODisplayGroup’s delegate, or by a qualifier and sort ordering array. You set the qualifier and sort
orderings using the setQualifier: and setSortOrdering: methods. The displayedObjects method returns
this filtered and sorted array; index arguments to other EODisplayGroup methods are defined in terms of
this array.

If the EODisplayGroup has a delegate that responds to displayGroup:displayArrayForObjects: , it
invokes this method rather than using its own qualifier and sort ordering array. The delegate is then
responsible for filtering the objects and returning a sorted array. If the delegate only needs to perform one
of these steps, it can get the qualifier or sort orderings from the EODisplayGroup and apply either itself using
the NSArray methods filteredArrayUsingQualifier: and sortedArrayUsingKeyOrderArray: , which are
added by the control layer.

If you change the qualifier or sort ordering, or alter the delegate in a way that changes how it filters and sorts
the EODisplayGroup’s objects, you can send updateDisplayedObjects to the EODisplayGroup to get it to
refilter and resort its objects. Note that this doesn’t cause the EODisplayGroup to refetch.

Changing and Examining the Selection

An EODisplayGroup keeps a selection in terms of indexes into the array of displayed objects.
EOAssociations that display values for multiple objects are responsible for updating the selection in their
EODisplayGroups according to user actions on their display objects. This is typically done with the
setSelectionIndexes: method. Other methods available for indirect manipulation of the selection are the
action methods selectNext: and selectPrevious:, as well as selectObjectsIdenticalTo: and
selectObjectsIdenticalTo:selectFirstOnNoMatch:.

To get the selection, you can use the selectionIndexes method, which returns an array of NSNumbers, or
selectedObjects, which returns an array containing the selected objects themselves. Another method,
selectedObject, returns the first selected object if there is one.

The Delegate

EODisplayGroup offers a number of methods for its delegate to implement; if the delegate does, it invokes
them as appropriate. Besides the aforementioned displayGroup:displayArrayForObjects: , there are
methods that inform the delegate that the EODisplayGroup has fetched, created an object (or failed to create
one), inserted or deleted an object, changed the selection, or set a value for a property. There are also
methods that request permission from the delegate to perform most of these same actions. The delegate can

4

return YES to permit the action or NO to deny it. See each method’s description, at the end of this class
specification, for more information.

Methods for Use by EOAssociations

While most of your application code interacts with objects directly, EODisplayGroup also defines methods
for its associations to access properties of individual objects without having to know anything about which
methods they implement. Accessing properties through the EODisplayGroup offers associations the benefit
of automatic validation, as well.

Associations access objects by index into the displayed objects array, or by id.
valueForObjectAtIndex:key: returns the value of a named property for the object at a given index, and
setValue:forObjectAtIndex:key: sets it. Similarly, valueForKey:object: and
setValue:forObject:key:access the objects by id. EOAssociations can also get and set values for the first
object in the selection using selectedObjectValueForKey: and setSelectedObjectValue:forKey:.

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

Method Types

Creating instances – init

Configuring behavior – setFetchesOnLoad:
– fetchesOnLoad
– setSelectsFirstObjectAfterFetch:
– selectsFirstObjectAfterFetch
– setUsesOptimisticRefresh:
– usesOptimisticRefresh
– setValidatesChangesImmediately:
– validatesChangesImmediately

Setting the data source – setDataSource:
– dataSource

Setting the qualifier and sort ordering
– setQualifier:
– qualifier
– setSortOrdering:
– sortOrdering

5

Managing queries – qualifierFromQueryValues
– setEqualToQueryValues:
– equalToQueryValues
– setGreaterThanQueryValues:
– greaterThanQueryValues
– setLessThanQueryValues:
– lessThanQueryValues
– qualifyDisplayGroup
– qualifyDisplayGroup:
– qualifyDataSource
– qualifyDataSource:
– enterQueryMode:
– inQueryMode
– setInQueryMode:
– enabledToSetSelectedObjectValueForKey:

Fetching objects from the data source
– fetch
– fetch:

Getting the objects – allObjects
– displayedObjects

Updating display of values – redisplay
– updateDisplayedObjects

Setting the objects – setObjectArray:

Changing the selection – setSelectionIndexes:
– selectObjectsIdenticalTo:
– selectObjectsIdenticalTo:selectFirstOnNoMatch:
– selectObject:
– clearSelection
– selectNext
– selectNext:
– selectPrevious
– selectPrevious:

Examining the selection – selectionIndexes
– selectedObject
– selectedObjects

Inserting and deleting objects – insertObject:atIndex:
– insertObjectAtIndex:
– insert:
– deleteObjectAtIndex:
– deleteSelection
– delete:

6

Adding keys – setLocalKeys:
– localKeys

Getting the associations – observingAssociations

Setting the delegate – setDelegate:
– delegate

Changing values from associations – setSelectedObjectValue:forKey:
– selectedObjectValueForKey:
– setValue:forObject:key:
– valueForKey:object:
– setValue:forObjectAtIndex:key:
– valueForObjectAtIndex:key:

Editing by associations – associationDidBeginEditing:
– association:failedToValidateValue:forKey:object:errorDescription:
– associationDidEndEditing:
– editingAssociation
– endEditing

Querying changes for associations – contentsChanged
– selectionChanged
– updatedObjectIndex

Interacting with the EOEditingContext
– editorHasChangesForEditingContext:
– editingContextWillSaveChanges:
– editingContext:presentErrorMessage:

Instance Methods

allObjects
– (NSArray *)allObjects

Returns all of the objects collected by the receiver.

See also: – displayedObjects, – fetch

7

association:failedToValidateValue:forKey:object:errorDescription:
– (BOOL)association:(EOAssociation *)anAssociation

failedToValidateValue:(NSString *)value
forKey: (NSString *)key
object:(id)anObject
errorDescription: (NSString *)errorDescription

Invoked by anAssociation from its shouldEndEditingForAspect:invalidInput:errorDescription:...
method to let the receiver handle a validation error. This method opens an attention panel with
errorDescription as the message and returns NO.

See also: – displayGroup:shouldDisplayAlertWithTitle:message: (Methods Implemented By the
Delegate)

associationDidBeginEditing:
– (void)associationDidBeginEditing:(EOAssociation *)anAssociation

Invoked by anAssociation when its display object begins editing to record that EOAssociation as the editing
association.

See also: – editingAssociation, –associationDidEndEditing:, –endEditing,
– association:failedToValidateValue:forKey:object:errorDescription:

associationDidEndEditing:
– (void)associationDidEndEditing:(EOAssociation *)anAssociation

Invoked by anAssociation to clear the editing association. If anAssociation is the receiver’s editing
association, clears the editing association. Otherwise does nothing.

See also: – editingAssociation, –associationDidBeginEditing:, –endEditing,
– association:failedToValidateValue:forKey:object:errorDescription:

clearSelection
– (BOOL)clearSelection

Invokes setSelectionIndexes: to clear the selection, returning YES on success and NO on failure.

8

contentsChanged
– (BOOL)contentsChanged

Returns YES if the receiver’s array of objects has changed and not all observers have been notified, NO
otherwise. EOAssociations use this in their subjectChanged methods to determine what they need to
update.

See also: – selectionChanged, –updatedObjectIndex

dataSource
– (EODataSource *)dataSource

Returns the receiver’s EODataSource.

See also: – setDataSource:

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

delete:
– (void)delete:(id)sender

This action method invokes deleteSelection.

See also: – deleteObjectAtIndex:

deleteObjectAtIndex:
– (BOOL)deleteObjectAtIndex:(unsigned int)index

Attempts to delete the object at index, returning YES if successful and NO if not. Checks with the delegate
using displayGroup:shouldDeleteObject:. If the delegate returns NO, this method fails and returns NO.
If successful, sends the delegate a displayGroup:didDeleteObject: message.

This method performs the delete by sending deleteObject: to the EODataSource. If that message raises an
exception, this method fails and returns NO.

See also: – deleteSelection, –delete:

9

deleteSelection
– (BOOL)deleteSelection

Attempts to delete the selected objects, returning YES if successful and NO if not.

See also: – deleteObjectAtIndex:, –delete:

displayedObjects
– (NSArray *)displayedObjects

Returns the objects that should be displayed or otherwise made available to the user, as filtered by the
receiver’s delegate or by its qualifier and sort ordering.

See also: – allObjects, –updateDisplayedObjects,
– displayGroup:displayArrayForObjects: (Methods Implemented By the Delegate),
– qualifier , –sortOrdering

editingAssociation
– (EOAssociation *)editingAssociation

Returns the EOAssociation editing a value if there is one, NO if there isn’t.

See also: – associationDidBeginEditing:, –associationDidEndEditing:

editingContext:presentErrorMessage:
– (void)editingContext:(EOEditingContext *)anEditingContext

presentErrorMessage:(NSString *)errorMessage

Invoked by anEditingContext as part of the EOMessageHandlers informal protocol, this method calls
NSRunAlertPanel() with no title, errorMessage as the message to display, and an OK button.

editingContextWillSaveChanges:
– (void)editingContextWillSaveChanges:(EOEditingContext *)anEditingContext

Invoked by anEditingContext in its saveChanges method as part of the EOEditors informal protocol, this
method allows the EODisplayGroup to prohibit a save operation. EODisplayGroup’s implementation of this
method invokes endEditing, and raises an NSInternalInconsistencyException if it returns NO. Thus, if
there’s an association that refuses to end editing, anEditingContext doesn’t save changes.

10

editorHasChangesForEditingContext:
– (BOOL)editorHasChangesForEditingContext:(EOEditingContext *)anEditingContext

Invoked by anEditingContext as part of the EOEditors informal protocol, this method returns NO if any
association is editing, YES otherwise.

See also: – editingAssociation, –associationDidBeginEditing:, –associationDidEndEditing:

enabledToSetSelectedObjectValueForKey:
– (BOOL)enabledToSetSelectedObjectValueForKey:(NSString *)key

Returns YES to indicate that a single value association (such as an EOControlAssociation for a
NSTextField) should be enabled for setting key, NO otherwise. Normally this is the case if the receiver has
a selected object. However, if key is a special query key (for example, “@query=.name”), then the control
should be enabled even without a selected object.

endEditing
– (BOOL)endEditing

Attempts to end any editing taking place. If there’s no editing association or if the editing association
responds YES to an endEditing message, returns YES. Otherwise returns NO.

See also: – editingAssociation

enterQueryMode:
– (void)enterQueryMode:(id)sender

This action method invokes setInQueryMode: with an argument of YES.

See also: – inQueryMode

equalToQueryValues
– (NSDictionary *)equalToQueryValues

Returns the receiver’s dictionary of equalTo query values. This dictionary is typically manipulated by
associations bound to keys of the form @query=.propertyName. The qualifierFromQueryValues method
uses this dictionary along with the lessThan and greaterThan dictionaries to construct qualifiers.

See also: – setEqualToQueryValues:, –greaterThanQueryValues, – lessThanQueryValues,

11

fetch
– (BOOL)fetch

Attempts to fetch objects from the EODataSource, returning YES on success and NO on failure.

Before fetching, invokes endEditing and sends displayGroupShouldFetch: to the delegate, returning NO
if either of these methods does. If both return YES, sends a fetchObjects message to the receiver’s
EODataSource to replace the object array, and if successful sends the delegate a
displayGroup:didFetchObjects: message.

See also: – fetch:

fetch:
– (void)fetch:(id)sender

This action method invokes fetch.

fetchesOnLoad
– (BOOL)fetchesOnLoad

Returns YES if the receiver fetches automatically after being loaded from a nib file, NO if it must be told
explicitly to fetch. The default is NO. You can set this behavior in Interface Builder using the Inspector
panel.

See also: – fetch, – fetch:, –setFetchesOnLoad:

greaterThanQueryValues
– (NSDictionary *)greaterThanQueryValues

Returns the receiver’s dictionary of greaterThan query values. This dictionary is typically manipulated by
associations bound to keys of the form @query>.propertyName. The qualifierFromQueryValues method
uses this dictionary along with the lessThan and equalTo dictionaries to construct qualifiers.

See also: – setGreaterThanQueryValues:, – lessThanQueryValues, –equalToQueryValues

12

init
– (id)init

Initializes a newly allocated EODisplayGroup. The new EODisplayGroup then needs to have an
EODataSource set with setDataSource:. This is the designated initializer for the EODisplayGroup class.
Returns self.

See also: – bindAspect:displayGroup:key: (EOAssociation)

inQueryMode
– (BOOL)inQueryMode

Returns YES to indicate that the receiver is in query mode, NO otherwise. In query mode, controls in the
user interface that normally display values become empty, allowing users to type queries directly into them
(this is also known as a “Query By Example” interface). In effect, the receiver’s “displayedObjects” are
replaced with an empty equalTo query values dictionary. When qualifyDisplayGroup or
qualifyDataSource is subsequently invoked, the query is performed and the display reverts to displaying
values—this time, the objects returned by the query.

See also: – setInQueryMode:, –enterQueryMode:

insert:
– (void)insert:(id)sender

This action method invokes insertObjectAtIndex: with an index just past the first index in the selection,
or 0 if there’s no selection.

See also: – insertObject:atIndex:

insertObject:atIndex:
– (void)insertObject:(id)anObject atIndex:(unsigned int)index

Inserts anObject into the receiver’s EODataSource and displayed objects at index, if possible. This method
checks with the delegate before actually inserting, using displayGroup:shouldInsertObject:atIndex: . If
the delegate refuses, anObject isn’t inserted. After successfully inserting the object, this method informs
the delegate with a displayGroup:didInsertObject: message, and selects the newly inserted object.

Raises an NSRangeException if index is out of bounds.

See also: – insertObjectAtIndex: , – insert:

13

insertObjectAtIndex:
– (id)insertObjectAtIndex: (unsigned int)anIndex

Asks the receiver’s EODataSource to create a new object by sending it a createObject message, then inserts
the new object using insertObject:atIndex: . If a new object can’t be created, this method sends the
delegate a displayGroup:createObjectFailedForDataSource: message or, if the delegate doesn’t
respond, opens an attention panel to inform the user of the error.

See also: – insert:

lessThanQueryValues
– (NSDictionary *)lessThanQueryValues

Returns the receiver’s dictionary of lessThan query values. This dictionary is typically manipulated by
associations bound to keys of the form @query<.propertyName. The qualifierFromQueryValues method
uses this dictionary along with the greaterThan and equalTo dictionaries to construct qualifiers.

See also: – setLessThanQueryValues:, –greaterThanQueryValues, –equalToQueryValues

localKeys
– (NSArray *)localKeys

Returns the additional keys that EOAssociations can be bound to. An EODisplayGroup’s basic keys are
typically those of the attributes and relationships of its objects, as defined by their EOClassDescription
through an EOEntity in the model. Local keys are typically used to form associations with key paths, with
arbitrary methods of objects, or with properties of objects not associated with an EOEntity. Interface
Builder allows the user to add and remove local keys in the EODisplayGroup Attributes Inspector panel.

See also: – setLocalKeys:

observingAssociations
– (NSArray *)observingAssociations

Returns all EOAssociations that observe the receiver’s objects.

See also: + observersForObject:(EOObserverCenter)

14

qualifier
– (EOQualifier *)qualifier

Returns the receiver’s qualifier, which it uses to filter its array of objects for display when the delegate
doesn’t do so itself.

See also: – updateDisplayedObjects, –displayedObjects, –setQualifier:

qualifierFromQueryValues
– (EOQualifier *)qualifierFromQueryValues

Builds a qualifier constructed from entries in the three query dictionaries: equalTo, greaterThan, and
lessThan. These, in turn, are typically manipulated by associations bound to keys of the form
@query=.firstName, @query>.budget, @query<.budget.

See also: – qualifyDisplayGroup , –qualifyDataSource

qualifyDisplayGroup
– (void)qualifyDisplayGroup

Takes the result of qualifierFromQueryValues and applies to the receiver using setQualifier:. The method
updateDisplayedObjects is invoked to refresh the display. If the receiver is in query mode, query mode is
exited.

See also: – qualifyDataSource

qualifyDisplayGroup:
– (void)qualifyDisplayGroup: (id)sender

This action method invokes qualifyDisplayGroup: .

qualifyDataSource
– (void)qualifyDataSource

Takes the result of qualifierFromQueryValues and applies to the receiver's data source. The receiver then
sends itself a fetch message. If the receiver is in query mode, query mode is exited. This method differs
from qualifyDisplayGroup as follows: whereas qualifyDisplayGroup performs in-memory filtering of
already fetched objects, qualifyDataSource triggers a new qualified fetch against the database.

See also: – qualifyDisplayGroup

15

qualifyDataSource:
– (void)qualifyDataSource:(id)sender
This action method invokes qualifyDataSource.

redisplay
– (void)redisplay

Notifies all observing associations to redisplay their values.

See also: – observingAssociations

selectedObject
– (id)selectedObject

Returns the first selected object in the displayed objects array, or nil if there’s no such object.

See also: – displayedObjects, –selectionIndexes, –selectedObjects

selectedObjects
– (NSArray *)selectedObjects

Returns the objects selected in the receiver’s displayed objects array.

See also: – displayedObjects, –selectionIndexes, –selectedObject

selectedObjectValueForKey:
– (id)selectedObjectValueForKey:(NSString *)key

Returns the value corresponding to key for the first selected object in the receiver’s displayed objects array,
or nil if exactly one object isn’t selected.

See also: – valueForKey:object:

16

selectionChanged
– (BOOL)selectionChanged

Returns YES if the selection has changed and not all observers have been notified, NO otherwise.
EOAssociations use this in their subjectChanged methods to determine what they need to update.

See also: – contentsChanged

selectionIndexes
– (NSArray *)selectionIndexes

Returns the indexes of the receiver’s selected objects as NSNumbers, in terms of its displayed objects array.

See also: – displayedObjects, –selectedObjects, –selectedObject, –setSelectionIndexes:

selectNext
– (BOOL)selectNext

Attempts to select the object just after the currently selected one, returning YES if successful and NO if not.
The selection is altered in this way:

• If there are no objects, does nothing and returns NO.

• If there’s no selection, selects the object at index zero and returns YES.

• If the first selected object is the last object in the displayed objects array, selects the first object and returns
YES.

• Otherwise selects the object after the first selected object.

See also: – selectPrevious, –selectNext:, –setSelectionIndexes:

selectNext:
– (void)selectNext:(id)sender

This action method invokes selectNext.

See also: – selectPrevious:, –setSelectionIndexes:

17

selectObject:
– (BOOL)selectObject:(id)object

Returns YES to indicate that the receiver has found and selected object, NO if it can’t find a match for object
(in which case it clears the selection). The selection is performed on the receiver’s displayedObjects, not
allObjects.

selectObjectsIdenticalTo:
– (BOOL)selectObjectsIdenticalTo:(NSArray *)objects

Attempts to select the objects in the receiver’s displayed objects array whose ids are equal to those of
objects, returning YES if successful and NO otherwise.

See also: – setSelectionIndexes:, –selectObjectsIdenticalTo:selectFirstOnNoMatch:

selectObjectsIdenticalTo:selectFirstOnNoMatch:
– (BOOL)selectObjectsIdenticalTo:(NSArray *)objects selectFirstOnNoMatch:(BOOL)flag

Selects the objects in the receiver’s displayed objects array whose ids are equal to those of objects, returning
YES if successful and NO otherwise. If no objects in the displayed objects array match objects and flag is
YES, attempts to select the first object in the displayed objects array.

See also: – setSelectionIndexes:, –selectObjectsIdenticalTo:

selectPrevious
– (BOOL)selectPrevious

Attempts to select the object just before the presently selected one, returning YES if successful and NO if
not. The selection is altered in this way:

• If there are no objects, does nothing and returns NO.

• If there’s no selection, selects the object at index zero and returns YES.

• If the first selected object is at index zero, selects the last object and returns YES.

• Otherwise selects the object before the first selected object.

See also: – selectNext, –selectPrevious:, – redisplay

18

selectPrevious:
– (void)selectPrevious:(id)sender

This action method invokes selectPrevious.

See also: – selectNext:, – redisplay

selectsFirstObjectAfterFetch
– (BOOL)selectsFirstObjectAfterFetch

Returns YES if the receiver automatically selects its first displayed object after a fetch if there was no
selection, NO if it leaves an empty selection as-is.

EODisplayGroups by default do select the first object after a fetch when there was no previous selection.

See also: – displayedObjects, – fetch, –selectsFirstObjectAfterFetch

setDataSource:
– (void)setDataSource:(EODataSource *)aDataSource

Sets the receiver’s EODataSource to aDataSource. In the process, it performs these actions:

• Unregisters self as an editor and message handler for the previous EODataSource’s EOEditingContext,
if necessary, and registers self with aDataSource’s EOEditingContext. If the new EOEditingContext
already has a message handler, however, the receiver doesn’t assume that role.

• Registers self for EOObjectsChangedInEditingContextNotification and
EOInvalidatedAllObjectsInStoreNotification from the new EOEditingContext.

• Clears the receiver’s array of objects.

• Sends displayGroupDidChangeDataSource: to the delegate if there is one.

See also: – dataSource

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject, without retaining it.

See also: – delegate

19

setEqualToQueryValues:
– (void)setEqualToQueryValues:(NSDictionary *)values

Sets to values the receiver's dictionary of equalTo query values. The qualifierFromQueryValues method
uses this dictionary along with the lessThan and greaterThan dictionaries to construct qualifiers.

See also: – equalToQueryValues, –setLessThanQueryValues:, –setGreaterThanQueryValues:

setFetchesOnLoad:
– (void)setFetchesOnLoad:(BOOL)flag

Controls whether the receiver automatically fetches its objects after being loaded from a nib file. If flag is
YES it does; if flag is NO the receiver must be told explicitly to fetch. The default is NO. You can also set
this behavior in Interface Builder using the Inspector panel.

See also: – fetch, – fetch:, – fetchesOnLoad

setGreaterThanQueryValues:
– (void)setGreaterThanQueryValues:(NSDictionary *)values

Sets to values the receiver's dictionary of greaterThan query values. The qualifierFromQueryValues
method uses this dictionary along with the lessThan and equalTo dictionaries to construct qualifiers.

See also: – greaterThanQueryValues, –setLessThanQueryValues:, –setEqualToQueryValues:

setInQueryMode:
– (void)setInQueryMode:(BOOL)flag

Sets according to flag whether the receiver is in query mode. For more discussion of query mode, see the
method description for inQueryMode.

See also: – enterQueryMode:

setLessThanQueryValues:
– (void)setLessThanQueryValues:(NSDictionary *)values

Sets to values the receiver's dictionary of lessThan query values. The qualifierFromQueryValues method
uses this dictionary along with the greaterThan and equalTo dictionaries to construct qualifiers.

See also: – lessThanQueryValues, –setGreaterThanQueryValues:, –setEqualToQueryValues:

20

setLocalKeys:
– (void)setLocalKeys:(NSArray *)keys

Sets the additional keys to which EOAssociations can be bound to keys. Interface Builder allows the user
to add and remove local keys in the EODisplayGroup Attributes Inspector panel. See localKeys for more
information.

setObjectArray:
– (void)setObjectArray: (NSArray *)objects

Sets the receiver’s objects to objects, regardless of what its EODataSource provides. This method doesn’t
affect the EODataSource’s objects at all; specifically, it results in neither inserts or deletes of objects in the
EODataSource. objects should contain objects with the same property names or methods as those accessed
by the receiver. This method is used by fetch to set the array of fetched objects; you should rarely need to
invoke it directly.

After setting the object array, this method restores as much of the original selection as possible by invoking
selectObjectsIdenticalTo:selectFirstOnNoMatch:. If there’s no match and the receiver selects after
fetching, then the first object is selected.

See also: – allObjects, –displayedObjects, –selectsFirstObjectAfterFetch

setQualifier:
– (void)setQualifier:(EOQualifier *)aQualifier

Sets the receiver’s qualifier to aQualifier. This qualifier is used to filter the receiver’s array of objects for
display when the delegate doesn’t do so itself. Use updateDisplayedObjects to apply the qualifier.

If the receiver’s delegate responds to displayGroup:displayArrayForObjects: , that method is used
instead of the qualifier to filter the objects.

See also: + qualifierWithQualifierFormat: (EOQualifier class of the control layer),
– updateDisplayedObjects, –displayedObjects, –qualifier , –qualifierFromQueryValues

setSelectedObjectValue:forKey:
– (BOOL)setSelectedObjectValue:(id)value forKey: (NSString *)key

Invokes setValue:forObject:key: with the first selected object, returning YES if successful and NO
otherwise. This method should be invoked only by EOAssociation objects to propagate changes from
display objects.

See also: – setValue:forObjectAtIndex:key: , –valueForKey:object:

21

setSelectionIndexes:
– (BOOL)setSelectionIndexes:(NSArray *)indexes

Selects the objects at indexes in the receiver’s array if possible, returning YES if successful and NO if not
(in which case the selection remains unaltered). indexes is an array of NSNumbers. This method is the
primitive method for altering the selection; all other such methods invoke this one to make the change.

This method invokes endEditing to wrap up any changes being made by the user. If endEditing returns
NO, this method fails and returns NO. This method then checks the delegate with a
displayGroup:shouldChangeSelectionToIndexes: message. If the delegate returns NO, this method also
fails and returns NO. If the receiver successfully changes the selection, its observers each receive a
subjectChanged message.

See also: – allObjects

setSelectsFirstObjectAfterFetch:
– (void)setSelectsFirstObjectAfterFetch:(BOOL)flag

Controls whether the receiver automatically selects its first displayed object after a fetch when there were
no selected objects before the fetch. If flag is YES it does; if flag is NO then no objects are selected.

EODisplayGroups by default do select the first object after a fetch when there was no previous selection.

See also: – displayedObjects, – fetch, –selectsFirstObjectAfterFetch

setSortOrdering:
– (void)setSortOrdering:(NSArray *)orderings

Sets the EOSortOrdering objects that updateDisplayedObjects uses to sort the displayed objects to
orderings. Use updateDisplayedObjects to apply the sort orderings.

If the receiver’s delegate responds to displayGroup:displayArrayForObjects: , that method is used
instead of the sort orderings to order the objects.

See also: + sortOrderingWithKey:selector: (EOSortOrdering class of the control layer),
– displayedObjects, –sortOrdering

setUsesOptimisticRefresh:
– (void)setUsesOptimisticRefresh:(BOOL)flag

Controls how the receiver redisplays on changes to objects. If flag is YES it redisplays only when elements
of its displayed objects array change; if flag is NO it redisplays on any change in its EOEditingContext.
Because changes to other objects can affect the displayed objects (through flattened attributes or custom

22

methods, for example), EODisplayGroups by default use the more pessimistic refresh technique of
redisplaying on any change in the EOEditingContext. If you know that none of the EOAssociations for a
particular EODisplayGroup display derived values, you can turn on optimistic refresh to reduce redisplay
time.

The default is NO. You can also change this setting in Interface Builder’s Inspector panel using the Refresh
All check box.

See also: – usesOptimisticRefresh

setValidatesChangesImmediately:
– (void)setValidatesChangesImmediately:(BOOL)flag

Controls the receiver’s behavior on encountering a validation error. Whenever an EODisplayGroup sets a
value in an object, it sends the object a validateValue:forKey: message, allowing the object to coerce the
value’s type to a more appropriate one or to return an exception indicating that the value isn’t valid. If this
method is invoked with a flag of YES, the receiver immediately presents an attention panel indicating the
validation error. If this method is invoked with a flag of NO, the receiver leaves validation errors to be
handled when changes are saved.

EODisplayGroups by default don’t validate changes immediately.

See also: – saveChanges(EOEditingContext), –validatesChangesImmediately

setValue:forObject:key:
– (BOOL)setValue:(id)value

forObject: (id)anObject
key:(NSString *)key

Sets a property of anObject, identified by key, to value. Returns YES if successful and NO otherwise. If a
new value is set, sends the delegate a displayGroup:didSetValue:forObject:key: message.

This method should be invoked only by EOAssociation objects to propagate changes from display objects.
Other application code should interact with the objects directly.

If the receiver validates changes immediately, it sends anObject a validateValue:forKey: message,
returning NO if the object refuses to validate value. Otherwise, validation errors are checked by the
EOEditingContext when it attempts to save changes.

See also: – setValue:forObjectAtIndex:key: , –setSelectedObjectValue:forKey:,
– valueForKey:object:, –validatesChangesImmediately

23

setValue:forObjectAtIndex:key:
– (BOOL)setValue:(id)value

forObjectAtIndex: (unsigned int)index
key:(NSString *)key

Invokes setValue:forObject:key: with the object at index, returning YES if successful and NO otherwise.
This method should be invoked only by EOAssociation objects to propagate changes from display objects.

See also: – setSelectedObjectValue:forKey:,– valueForObjectAtIndex:key:

sortOrdering
– (NSArray *)sortOrdering

Returns an array of EOSortOrdering objects that updateDisplayedObjects uses to sort the displayed
objects, as returned by the displayedObjects method.

See also: – setSortOrdering:

updateDisplayedObjects
– (void)updateDisplayedObjects

Recalculates the receiver’s displayed objects array and redisplays. If the delegate responds to
displayGroup:displayArrayForObjects: , it’s sent this message and the returned array is set as the
EODisplayGroup’s displayed object. Otherwise, the receiver applies its qualifier and sort ordering to its
array of objects. In either case, any objects that were selected before remain selected in the new displayed
objects array.

See also: – redisplay, –allObjects, –displayedObjects, –selectedObjects, –qualifier , –sortOrdering

updatedObjectIndex
– (int)updatedObjectIndex

Returns the index in the displayed objects array of the most recently updated object, or –1 if more than one
object has changed. The return value is meaningful only when contentsChanged returns YES.
Associations can use this method to optimize redisplay of their user interface objects.

24

usesOptimisticRefresh
– (BOOL)usesOptimisticRefresh

Returns YES if the receiver redisplays only when elements of its displayed objects array change, NO if it
redisplays on any change in its EOEditingContext. Because changes to other objects can affect the
displayed objects (through flattened attributes or custom methods, for example), EODisplayGroups by
default use the more pessimistic refresh technique of redisplaying on any change in the EOEditingContext.
If you know that none of the EOAssociations for a particular EODisplayGroup display derived values, you
can turn on optimistic refresh to reduce redisplay time.

The default is NO. You can change this setting in Interface Builder’s Inspector panel using the Refresh All
check box.

See also: – setUsesOptimisticRefresh:

validatesChangesImmediately
– (BOOL)validatesChangesImmediately

Returns YES if the receiver immediately handles validation errors, or leaves them for the EOEditingContext
to handle when saving changes. See setValidatesChangesImmediately: for more information.

EODisplayGroups by default don’t validate changes immediately.

valueForKey:object:
– (id)valueForKey:(NSString *)key object:(id)anObject

Returns anObject’s value for the property identified by key.

See also: – valueForObjectAtIndex:key:

valueForObjectAtIndex:key:
– (id)valueForObjectAtIndex: (unsigned int)index key:(NSString *)key

Returns the value of the object at index for the property identified by key.

See also: – valueForKey:object:

25

Methods Implemented By the Delegate

displayGroup:createObjectFailedForDataSource:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup

createObjectFailedForDataSource:(id)aDataSource

Invoked from insertObjectAtIndex: to inform the delegate that aDisplayGroup has failed to create a new
object for aDataSource. If the delegate doesn’t implement this method, the EODisplayGroup instead runs
an alert panel to inform the user of the failure.

displayGroupDidChangeDataSource:
– (void)displayGroupDidChangeDataSource:(EODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s EODataSource has changed.

displayGroup:didDeleteObject:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup didDeleteObject:(id)anObject

Informs the delegate that aDisplayGroup has deleted anObject.

displayGroup:didFetchObjects:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup didFetchObjects:(NSArray *)objects

Informs the delegate that aDisplayGroup has fetched objects.

displayGroup:didInsertObject:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup didInsertObject: (id)anObject

Informs the delegate that aDisplayGroup has inserted anObject.

displayGroup:didSetValue:forObject:key:
– (void)displayGroup:(EODisplayGroup *)aDisplayGroup

didSetValue:(id)value
forObject: (id)anObject
key:(NSString *)key

Informs the delegate that aDisplayGroup has altered a property value of anObject. key identifies the
property, and value is its new value.

26

displayGroup:displayArrayForObjects:
– (NSArray *)displayGroup:(EODisplayGroup *)aDisplayGroup

displayArrayForObjects: (NSArray *)objects

Invoked from updateDisplayedObjects, this method allows the delegate to filter and sort aDisplayGroup’s
array of objects to limit which ones get displayed. objects contains all of aDisplayGroup’s objects. The
delegate should filter any objects that shouldn’t be shown and sort the remainder, returning a new array
containing this group of objects. You can use the added NSArray methods filteredArrayUsingQualifier:
and sortedArrayUsingKeyOrderArray: to create the new array.

If the delegate doesn’t implement this method, the EODisplayGroup uses its own qualifier and sort ordering
to update its displayed objects array.

See also: – sortOrdering , –qualifier , –displayedObjects

displayGroup:shouldChangeSelectionToIndexes:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldChangeSelectionToIndexes:(NSArray *)newIndexes

Allows the delegate to prevent a change in selection by aDisplayGroup. newIndexes is the proposed new
selection, an array of NSNumbers. If the delegate returns YES, the selection changes; if the delegate returns
NO, the selection remains as it is.

displayGroup:shouldDeleteObject:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup shouldDeleteObject:(id)anObject

Allows the delegate to prevent aDisplayGroup from deleting anObject. If the delegate returns YES,
anObject is deleted; if the delegate returns NO, the deletion is abandoned.

displayGroup:shouldDisplayAlertWithTitle:message:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldDisplayAlertWithTitle: (NSString *)title
message:(NSString *)message

Allows the delegate to prevent aDisplayGroup from displaying an attention panel with title and message.
The delegate can return YES to allow aDisplayGroup to display the panel, or NO to prevent it from doing
so (perhaps displaying a different attention panel).

27

displayGroup:shouldInsertObject:atIndex:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldInsertObject:(id)anObject
atIndex:(unsigned int)anIndex

Allows the delegate to prevent aDisplayGroup from inserting anObject at anIndex. If the delegate returns
YES, anObject is inserted; if the delegate returns NO, the insertion is abandoned.

displayGroup:shouldRedisplayForChangesInEditingContext:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldRedisplayForEditingContextChangeNotification:(NSNotification *)aNotification

Invoked whenever aDisplayGroup receives an EOObjectsChangedInEditingContextNotification, this
method allows the delegate to suppress redisplay based on the nature of the change that has occurred. If the
delegate returns YES, aDisplayGroup redisplays; if it returns NO, aDisplayGroup doesn’t. aNotification
indicates the EOEditingContext that has changed, as well as which objects have changed and how. See the
EOEditingContext class specification for information on EOObjectsChangedInEditingContextNotification.

See also: – redisplay

displayGroup:shouldRefetchForInvalidatedAllObjectsNotification:
– (BOOL)displayGroup:(EODisplayGroup *)aDisplayGroup

shouldRefetchForInvalidatedAllObjectsNotification:(NSNotification *)aNotification

Invoked whenever aDisplayGroup receives an EOInvalidatedAllObjectsInStoreNotification, this method
allows the delegate to suppress refetching of the invalidated objects. If the delegate returns YES,
aDisplayGroup immediately refetches its objects. If the delegate returns NO, aDisplayGroup doesn’t
immediately fetch, instead delaying until absolutely necessary. aNotification is an NSNotification. See the
EOObjectStore and EOEditingContext class specifications for information on this notification.

displayGroupDidChangeSelection:
– (void)displayGroupDidChangeSelection:(EODisplayGroup *)aDisplayGroup

Informs the delegate that aDisplayGroup’s selection has changed.

28

displayGroupShouldFetch:
– (BOOL)displayGroupShouldFetch:(EODisplayGroup *)aDisplayGroup

Allows the delegate to prevent aDisplayGroup from fetching. If the delegate returns YES, aDisplayGroup
performs the fetch; if the delegate returns NO, aDisplayGroup abandons the fetch.

