
 

The Foundation Framework

 

Framework:

 

NextLibrary/Frameworks/Foundation.framework

 

Header File Directories:

 

NextLibrary/Frameworks/Foundation.framework/Headers

 

Introduction

 

The Foundation Framework defines a base layer of Objective-C classes for OpenStep. In addition to 
providing a set of useful primitive object classes, it introduces several paradigms that define functionality 
not covered by the Objective-C language. The Foundation Framework is designed with these goals in 
mind:

• Provide a small set of basic utility classes

• Make software development easier by introducing consistent conventions for things such as 
deallocation

• Support Unicode strings, object persistence, and object distribution

• Provide a level of OS independence, to enhance portability

The Foundation Framework includes the root object class, classes representing basic data types such as 
strings and byte arrays, collection classes for storing other objects, classes representing system 
information such as dates, and classes representing communication ports. See XREF for a list of those 
classes that make up the Foundation Framework.

The Foundation Framework introduces several paradigms to avoid confusion in common situations, and 
to introduce a level of consistency across class hierarchies. This is done with some standard policies, such 
as that for object ownership (that is, who is responsible for disposing of objects), and with abstract classes 
like NSEnumerator. These new paradigms reduce the number of special and exceptional cases in API and 
allow you to code more efficiently by reusing the same mechanisms with various kinds of objects.



 

2

The Foundation Framework

 

Foundation Framework Classes

 

The OpenStep class hierarchy is rooted in the Foundation Framework’s NSObject class (see Figure 1). The 
remainder of the Foundation Framework consists of several related groups of classes as well as a few 
individual classes. Many of the groups form what are called class clusters–abstract classes that work as 
umbrella interfaces to a versatile set of private subclasses. NSString and NSMutableString, for example, 
act as brokers for instances of various private subclasses optimized for different kinds of storage needs. 
Depending on the method you use to create a string, an instance of the appropriate optimized class will be 
returned to you.



 

3

 The Foundation Framework

Figure 1 

 

The Foundation Framework class hierarchy 

NSObject

NSArray

NSAssertionHandler

NSBundle
NSCharacterSet

NSCoder
NSConditionLock
NSConnection

NSData
NSDate
NSDecimalNumberHandler

NSDeserializer
NSDictionary

NSDistributedLock
NSEnumerator
NSException

NSHost
NSInvocation

NSLock
NSMethodSignature
NSNotification

NSNotificationCenter
NSNotificationQueue

NSRecursiveLock
NSRunLoop

NSScanner
NSSerializer

NSSet
NSString

NSThread

NSTimeZone
NSTimer

NSUserDefaults

NSProcessInfo

NSPPL
NSPort

NSPortMessage
NSPortNameServer

NSPosixFileDescriptor

NSValue

NSMutableArray

NSMutableCharacterSet

NSArchiver

NSPortCoder

NSUnarchiver

NSMutableData
NSCalendarDate

NSMutableDictionary

NSDirectoryEnumerator

NSMutableSet NSCountedSet

NSNumber NSDecimalNumber

NSMutableString

NSTimeZoneDetail

NSAttributedString
NSAutoreleasePool

NSMutableAttributedString

NSFileHandle

NSFileManager

NSFormatter NSDateFormatter
NSNumberFormatter

NSPipe

NSTask

NSProtocolChecker



 

4

The Foundation Framework

 

Many of these classes have closely related functionality:

•

 

Data storage

 

. NSData and NSString provide object-oriented storage for arrays of bytes. NSValue and 
NSNumber provide object-oriented storage for arrays of simple C data values. NSArray, NSDictionary, 
NSPPL, and NSSet provide storage for Objective-C objects of any class.

•

 

Text and strings

 

. NSCharacterSet represents various groupings of characters which are used by the 
NSString and NSScanner classes. The NSString classes represent text strings and provide methods for 
searching, combining, and comparing strings. An NSScanner object is used to scan numbers and words 
from an NSString object.

•

 

Dates and times

 

. The NSDate and NSTimeZone classes store times and dates. They offer methods for 
calculating date and time differences, for displaying dates and times in many formats, and for adjusting 
times and dates based on location in the world.

•

 

Application coordination and timing

 

. NSNotification, NSNotificationCenter, and 
NSNotificationQueue provide systems that an object can use to notify all interested observers of changes 
that occur. You can use a NSTimer object to send a message to another object at specific intervals.

•

 

Object creation and disposal

 

. NSAutoreleasePools are used to implement the delayed-release feature 
of the Foundation Framework.

•

 

Object distribution and persistence

 

. The data that an object contains can be represented in an 
architecture-independent way using NSSerializer. The NSCoder and its subclasses take this process a 
step further by allowing class information to be stored along with the data. The resulting representations 
are used for archiving and for object distribution.

•

 

Operating system services

 

. Several classes are designed to insulate you from the idiosynccracies of 
various operating systems. NSFileManager provides a consistent interface for file operations (creating, 
renaming, deleting, and so on). NSThread and NSProcessInfo let you create multi-threaded applications 
and query the environment in which an application runs.



 

1

 Classes: NSArchiver

 

NSArchiver

 

Inherits From:

 

 NSCoder : NSObject

 

Conforms To:

 

NSObject (NSObject) 

 

Declared In:

 

Foundation/NSArchiver.h

Class at a GlanceClass at a Glance

 

Purpose

 

An NSArchiver encodes objects into a format that can be written to a file. The archiving process traverses a set 
of interconnected objects, making sure to encode each one only once.

 

Principal Attributes

 

• An NSMutableData object containing the encoded data

 

Creation

 

– initForWritingWithMutableData:

 

Commonly Used Methods

 

Class Description 

 

NSArchiver, a concrete subclass of NSCoder, provides a way to encode Objective-C objects into an 
architecture-independent format that can be stored in a file. When you archive a set of objects, the class 
information and instance variables for each object are written to the archive. NSArchiver’s companion 
class, NSUnarchiver, decodes the data in an archive and creates a set of objects equivalent to the original set.

 

+ archiveRootObject:ToFile: Archives a graph of objects to a file.

+ archivedDataWithRootObject: Archives a graph of objects into an NSMutableData object.



 

2

 

NSArchiver stores the archive data in a mutable-data object (NSMutableData). After encoding the objects, 
you can have the NSArchiver object write this mutable-data object immediately to a file, or you can retrieve 
the mutable-data object for some other use.

 

Archiving a Graph of Objects

 

The easiest way to archive an object is to invoke a single class method—either 

 

archiveRootObject:toFile: 

 

or 

 

archivedDataWithRootObject:

 

, depending on whether you want the encoded data to be stored in a file 
immediately. These convenience methods create a temporary NSArchiver and send it an 

 

encodeRootObject: 

 

message—you need do no more. However, if you want to customize the archiving 
process (for example, by substituting certain classes for others), you must instead create an instance of 
NSArchiver yourself, configure it as desired, and send it an 

 

encodeRootObject: 

 

message explicitly.

The “root object” that you specify as the argument to any of these three methods indicates the starting point 
for archiving. The NSArchiver commences archiving by invoking the root object’s 

 

encodeWithCoder: 

 

method. That method typically encodes the root object’s instance variables, which isn’t necessarily a 
straightforward process—the instance variables can themselves be other objects that respond to 

 

encodeWithCoder:

 

, and so on, yielding a possibly complex graph of objects that need to be archived.

The fact that many objects contain references to other objects poses two problems for archiving. The first 
is redundancy. An object graph isn’t necessarily a simple tree structure. Two objects can contain references 
to each other, for example, creating a cycle. To address this problem, NSArchiver overrides NSCoder’s 

 

encodeRootObject:

 

 method to keep track of all the objects encountered while traversing the graph. The 
first time an object is encountered, the object is encoded normally. On subsequent occurances of the same 
object, a reference to the original object is encoded instead of the object itself. 

The second problem is that it’s not always appropriate to archive the entire graph. To use an example from 
the Application Kit, when you archive an NSView as the root object, its subviews should be archived, but 
not its superview. In this case, the superview is considered an extraneous part of the graph. To solve this 
dilemma, NSArchiver implements conditional archiving, overriding the minimal 

 

encodeConditionalObject:

 

 method that’s inherited from NSCoder.

 

 

 

A class’s

 

 encodeWithCoder: 

 

method 
can invoke

 

 encodeConditionalObject:

 

 to archive inessential object instance variables. The NSArchiver 
doesn’t actually archive a conditionally encoded object unless some other object in the graph encodes it 
unconditionally (using one of the other 

 

encode...Object:

 

 methods declared by NSCoder). When everything 
is unarchived, all original references to the conditionally encoded object are properly restored as references 
to the single unarchived object. For example, an NSView encodes its superview with 

 

encodeConditionalObject:

 

, because it doesn’t own the superview but does need to preserve its connection 
to it if some other object archives the superview. 

In contrast, 

 

encodeObject:

 

 unconditionally instructs an object to encode itself. This method is most often 
used in a class’s 

 

encodeWithCoder:

 

 method for instance variables that are intrinsic to the receiver and 
essential for proper functioning. 

All the objects to be placed in a single archive must be interconnected members of a single graph. In other 
words, there can only be one root object per archive. The only recommended way to archive objects is to 



 

3

 Classes: NSArchiver

 

send an NSArchiver a single 

 

encodeRootObject: 

 

message, whether directly, or indirectly by invoking 

 

archiveRootObject:toFile: 

 

or 

 

archivedDataWithRootObject:

 

.

 

 

 

Don’t try to add data to the archive by 
invoking any of NSCoder’s other 

 

encode... 

 

methods, except from within the 

 

encodeWithCoder: 

 

method 
of each object that’s part of the graph. (These 

 

encodeWithCoder: 

 

methods are invoked automatically when 
you encode the root object.)

To extract an object graph from an archive, use the NSUnarchiver class method 

 

unarchiveObjectWithFile:

 

 
or 

 

unarchiveObjectWithData:

 

, assigning the return value to the desired root object.

 

Archiving other Data Types

 

It’s possible to create an archive that doesn’t contain any objects. To archive other data types, invoke 

 

encodeValueOfObjCType:

 

 directly for each data item to be archived, instead of using 

 

encodeRootObject:

 

.

 

 

 

When you create an archive in this way, the corresponding unarchiving code must follow exactly the same 
sequence of data types.

This approach shouldn’t be used to archive objects. Use 

 

encodeRootObject:

 

 instead, to avoid the problems 
mentioned in the previous section and to simplify unarchiving

 

.

 

An NSSerializer provides another means to store data in an architecture-independent format. See the 
NSSerializer class specification for more information.

 

Superclass Methods to Avoid

 

NSArchiver’s superclass, NSCoder, supplies methods for both encoding and decoding. However, 
only the encoding methods are applicable to NSArchiver—don’t send an NSArchiver any 

 

decode...

 

 messages. 
(Similarly, don’t send

 

 encode...

 

 messages to an NSUnarchiver.) 

 

Method Types

 

Initializing an NSArchiver
– initForWritingWithMutableData:

Archiving data
+ archivedDataWithRootObject:
+ archiveRootObject:toFile:
– encodeRootObject:
– encodeConditionalObject:

Getting the archived data
– archiverData



 

4

 

Substituting classes or objects
– classNameEncodedForTrueClassName:
– encodeClassName:intoClassName:
– replaceObject:withObject:

 

Class Methods 

archiveRootObject:toFile:

 

+ (BOOL)

 

archiveRootObject:

 

(id)

 

rootObject 

 

toFile:

 

(NSString *)

 

path

 

 

Creates a temporary instance of NSArchiver and archives

 

 rootObject

 

 by encoding it into a data object. Once 
the object has been encoded, this method writes the resulting data object to the file 

 

path

 

. This convenience 
method invokes 

 

archivedDataWithRootObject:

 

 to get the encoded data, and then sends that data object 
the message 

 

writeToFile:atomically:

 

, using 

 

path

 

 for the first argument and YES for the second. Returns 
YES upon success.

 

See also:

 

+ archivedDataWithRootObject:

 

, 

 

– writeToFile:atomically:

 

 (NSData)

 

archivedDataWithRootObject:

 

+ (NSData *)

 

archivedDataWithRootObject:

 

(id)

 

rootObject

 

 

Returns a data object containing the encoded form of the object graph whose root object is 

 

rootObject

 

. This 
method invokes 

 

initForWritingWithMutableData:

 

 and 

 

encodeRootObject:

 

 to create a temporary 
archiver that encodes the object graph.

 

See also:

 

– initForWritingWithMutableData:

 

, 

 

– encodeRootObject

 

:

 

Instance Methods

archiverData

 

– (NSMutableData *)

 

archiverData

 

 

Returns the archived data. The returned data object is the same one that was specified as the argument to 

 

initForWritingWithMutableData:

 

. It contains whatever data has been encoded thus far by invocations of 
the various encoding methods. It’s safest not to invoke this method until after 

 

encodeRootObject:

 

 has 
returned. In other words, although it’s possible for a class to invoke this method from within its 

 

encodeWithCoder:

 

 method, that method must not alter the data.



 

5

 Classes: NSArchiver

 

classNameEncodedForTrueClassName:

 

– (NSString *)

 

classNameEncodedForTrueClassName:

 

(NSString *)

 

trueName

 

 

Returns the class name used to archive instances of the class 

 

trueName

 

. 

 

See also:

 

 

 

– 

 

encodeClassName:intoClassName: 

 

encodeClassName:intoClassName:

 

– (void)

 

encodeClassName:

 

(NSString *)

 

trueName 

 

intoClassName:

 

(NSString *)

 

inArchiveName

 

 

Encodes a substitute name

 

 

 

for the class named 

 

trueName

 

. Any subsequently encountered objects of class 

 

trueName

 

 will be archived as instances of class 

 

inArchiveName

 

. It’s safest not to invoke this method during 
the archiving process (that is, within an 

 

encodeWithCoder:

 

 method). Instead, invoke it before 

 

encodeRootObject:

 

.

 

See also:

 

– 

 

classNameEncodedForTrueClassName:

 

encodeConditionalObject:

 

– (void)

 

encodeConditionalObject:

 

(id)

 

object

 

 

Archives 

 

object

 

 conditionally. This method overrides the superclass implementation to allow 

 

object

 

 to be 
encoded only if it’s also encoded unconditionally by another object in the object graph. Conditional 
encoding lets you encode one part of a graph detached from the rest. (See the class description for more 
information.)

This method should be invoked only from within an 

 

encodeWithCoder: 

 

method. If 

 

object

 

 is 

 

nil

 

, the 
NSArchiver encodes it unconditionally as 

 

nil

 

. This method raises an NSInvalidArgumentException if no 
root object has been encoded.

 

encodeRootObject:

 

– (void)

 

encodeRootObject:

 

(id)

 

rootObject

 

 

Archives 

 

rootObject

 

 along with all the objects it’s connected to. If any object is encountered more than once 
while traversing the graph, it’s encoded only once, but the multiple references to it are stored. (See the 
discussion of object graphs in the class description.) 

This message must not be sent more than once to a given NSArchiver; an NSInvalidArgumentException is 
raised if a root object has already been encoded. Therefore, don’t attempt to reuse an NSArchiver; instead, 
create a new one. To encode multiple object graphs, use distinct NSArchivers.



 

6

 

initForWritingWithMutableData:
– (id)initForWritingWithMutableData: (NSMutableData *)data 

Initializes an archiver, encoding stream and version information into data. Raises an 
NSInvalidArgumentException if data is nil .

See also: – archiverData

replaceObject:withObject:
– (void)replaceObject:(id)object withObject: (id)newObject

Causes the NSArchiver to treat subsequent requests to encode object as though they were requests to encode 
newObject. Both object and newObject must be valid objects.



1

 Classes: NSArray Class Cluster

c NSArray Class Cluster

Class Cluster Description

The NSArray class clusters manage arrays of objects. The cluster’s two public classes, NSArray and 
NSMutableArray, declare the programmatic interface for static and dynamic arrays, respectively. 

The objects you create using these classes are referred to as arrays. Because of the nature of class clusters, 
arrays are not actual instances of the NSArray or NSMutableArray classes but of one of their private 
subclasses. Although an array’s class is private, its interface is public, as declared by these abstract 
superclasses, NSArray and NSMutableArray.

Generally, you instantiate an array by sending one of the array... messages to either the NSArray or 
NSMutableArray class object. These methods return an array containing the elements you pass in as 
arguments. (Note that arrays can’t contain nil .) In general, objects that you add to an array aren’t copied; 
rather, each object receives a retain message before its id is added to the array. When an object is removed 
from an array, it’s sent a release message.

The NSArray class adopts the NSCopying and NSMutableCopying protocols, making it convenient to 
convert an array of one type to the other.



2

i NSArray

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject) 

Declared In: Foundation/NSArray.h



3

 Classes: NSArray Class Cluster

Class at a GlanceClass at a Glance

Purpose
An NSArray stores an immutable array of objects.

Principal Attributes
• A count of the number of objects in the array.
• The set of objects contained in the array.

Creation

Commonly Used Methods

Primitive Methods
– count
– objectAtIndex:

Class Description

NSArray declares the programmatic interface to an object that manages an unchanging array of objects. 
NSArray’s two primitive methods—count and objectAtIndex:—provide the basis for all other methods in 

+ array Returns an empty array.

+ arrayWithArray: Returns an array containing the elements from another array.

+ arrayWithContentsOfFile: Returns an array initialized from the contents of a file.

+ arrayWithObject: Returns an array containing a single object.

+ arrayWithObjects: Returns an array containing multiple objects.

+ arrayWithObjects:count: Returns an array containing a specified number of objects.

– count: Returns the number of objects currently in the array.

– objectAtIndex: Returns the object located at the specified index.



4

its interface. The count method returns the number of elements in the array. objectAtIndex: gives you 
access to the array elements by index, with index values starting at 0. 

The methods objectEnumerator and reverseObjectEnumerator also grant sequential access to the 
elements of the array, differing only in the direction of travel through the elements. These methods are 
provided so that arrays can be traversed in a manner similar to that used for objects of other collection 
classes such as NSDictionary. See the objectEnumerator method description for a code excerpt that shows 
how to use these methods to access the elements of an array.

NSArray provides methods for querying the elements of the array. indexOfObject: searches the array for 
the object that matches its argument. To determine whether the search is successful, each element of the 
array is sent an isEqual: message, as declared in the NSObject protocol. Another method, 
indexOfObjectIdenticalTo: , is provided for the less common case of determining whether a specific object 
is present in the array. indexOfObjectIdenticalTo:  tests each element in the array to see whether its id 
matches that of the argument.

NSArray’s makeObjectsPerformSelector: and makeObjectsPerformSelector:withObject: methods let 
you send messages to all objects in the array. To act on the array as a whole, a variety of other methods are 
defined. You can create a sorted version of the array (sortedArrayUsingSelector: and 
sortedArrayUsingFunction:context:), extract a subset of the array (subarrayWithRange:), or 
concatenate the elements of an array of NSStrings into a single string (componentsJoinedByString:). In 
addition, you can compare two arrays using the isEqualToArray:  and firstObjectCommonWithArray:  
methods. Finally, you can create new arrays that contain the objects in an existing array and one or more 
additional objects with arrayByAddingObject:  and arrayByAddingObjectsFromArray: .

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

NSMutableCopying
– mutableCopyWithZone:



5

 Classes: NSArray Class Cluster

Method Types

Creating an array
+ allocWithZone:
+ array
+ arrayWithArray:
+ arrayWithContentsOfFile:
+ arrayWithObject:
+ arrayWithObjects:
+ arrayWithObjects:count:
– initWithArray:
– initWithContentsOfFile:
– initWithObjects:
– initWithObjects:count:

Querying the array
– containsObject:
– count 
– getObjects:
– getObjects:range:
– indexOfObject:
– indexOfObject:inRange:
– indexOfObjectIdenticalTo:
– indexOfObjectIdenticalTo:inRange:
– lastObject
– objectAtIndex: 
– objectEnumerator
– reverseObjectEnumerator

Sending messages to elements
– makeObjectsPerformSelector:
– makeObjectsPerformSelector:withObject:

Comparing arrays
– firstObjectCommonWithArray:
– isEqualToArray:

Deriving new arrays
– arrayByAddingObject:
– arrayByAddingObjectsFromArray:
– sortedArrayHint
– sortedArrayUsingFunction:context:
– sortedArrayUsingFunction:context:hint:
– sortedArrayUsingSelector:
– subarrayWithRange:



6

Working with string elements
– componentsJoinedByString:
– pathsMatchingExtensions:

Creating a description of the array
– description
– descriptionWithLocale:
– descriptionWithLocale:indent:
– writeToFile:atomically:

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized array in the specified zone. If the receiver is the NSArray class object, 
an instance of an immutable private subclass is returned; otherwise, an object of the receiver’s class is 
returned. 

Typically, you create temporary arrays using the array... class methods, not the allocWithZone: and init... 
methods. Note that it’s your responsibility to free objects created with the allocWithZone: method.

array
+ (id)array

Creates and returns an empty array. This method is used by mutable subclasses of NSArray.

See also: + arrayWithObject: , + arrayWithObjects:

arrayWithArray:
+ (id)arrayWithArray: (NSArray *)anArray

Creates and returns an array containing the objects in anArray.

See also: + arrayWithObjects: , – initWithObjects:



7

 Classes: NSArray Class Cluster

arrayWithContentsOfFile:
+ (id)arrayWithContentsOfFile: (NSString *)aPath

Creates and returns an array containing the contents of the file specified by aPath. The file identified by 
aPath must contain a string representation produced by the writeToFile:atomically:  method. In addition, 
the array representation must contain only property list objects (NSString, NSData, NSArray, or 
NSDictionary objects).

Returns nil  if the file can’t be opened or if the contents of the file can’t be parsed into an array.

See also: – writeToFile:atomically:

arrayWithObject:
+ (id)arrayWithObject: (id)anObject

Creates and returns an array containing the single element anObject.

See also: + array, + arrayWithObjects:

arrayWithObjects:
+ (id)arrayWithObjects: (id)firstObj, ...

Creates and returns an array containing the objects in the argument list. The argument list is a 
comma-separated list of objects ending with nil . 

This code example creates an array containing three different types of elements (assuming aPath exists):

NSArray *myArray;

NSData *someData = [NSData dataWithContentsOfFile:aPath]; 

NSValue *aValue = [NSNumber numberWithInt:5]; 

NSString *aString = @"a string";

myArray = [NSArray arrayWithObjects:someData, aValue, aString, nil];

See also: + array, + arrayWithObject:

arrayWithObjects:count:
+ (id)arrayWithObjects: (id *)objects count:(unsigned)count

Creates and returns an array containing count objects from objects.

See also: – getObjects:, – getObjects:range:



8

Instance Methods

arrayByAddingObject:
– (NSArray *)arrayByAddingObject: (id)anObject

Returns a new array that is a copy of the receiver with anObject added to the end. Since anObject is added 
to the array, it receives a retain message. If anObject is nil , an NSInvalidArgumentException is raised.

See also: – addObject: (NSMutableArray)

arrayByAddingObjectsFromArray:
– (NSArray *)arrayByAddingObjectsFromArray: (NSArray *)otherArray

Returns a new array that is a copy of the receiver with the objects contained in otherArray added to the end.

See also: – addObjectsFromArray:  (NSMutableArray)

componentsJoinedByString:
– (NSString *)componentsJoinedByString:(NSString *)separator

Constructs and returns an NSString that is the result of interposing separator between the elements of the 
receiver’s array. For example, this code excerpt writes the path /System/Developer to the console: 

NSArray *pathArray = [NSArray arrayWithObjects:@"System", @"Developer", nil];

NSLog("The path is /%@.\n", [pathArray componentsJoinedByString:@"/"]);

Each element of the receiver’s array must be an NSString or an error occurs. If the receiver has no elements, 
an NSString representing an empty string is returned.

See also: – componentsSeparatedByString: (NSString)

containsObject:
– (BOOL)containsObject:(id)anObject

Returns YES if anObject is present in the array. This method determines whether an object is present in the 
array by sending an isEqual: message to each of the array’s objects (and passing anObject as the parameter 
to each isEqual: message).

See also: – indexOfObject:, – indexOfObjectIdenticalTo: , – isEqual: (NSObject)



9

 Classes: NSArray Class Cluster

count
– (unsigned int)count

Returns the number of objects currently in the array.

See also: – objectAtIndex:

description
@protocol NSObject
– (NSString *)description

Returns a string that represents the contents of the receiver, formatted as a property list.

See also: – descriptionWithLocale:, – descriptionWithLocale:indent:

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale

Returns a string that represents the contents of the receiver, formatted as a property list. locale specifies 
options used for formatting each of the receiver’s elements (where recognized); specify nil  if you don’t 
want the elements formatted.

For a description of how locale is applied to each element in the receiving array, see 
descriptionWithLocale:indent: .

See also: – description, – descriptionWithLocale:indent:

descriptionWithLocale:indent:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale indent:(unsigned int)level

Returns a string that represents the contents of the receiver, formatted as a property list. locale specifies 
options used for formatting each of the receiver’s elements; specify nil  if you don’t want the elements 
formatted. level allows you to specify a level of indent, to make the output more readable: set level to 0 to 
use four spaces to indent, or 1 to indent the output with a tab character.

The returned NSString contains the string representations of each of the receiver’s elements, in order, from 
first to last. To obtain the string representation of a given element, descriptionWithLocale:indent:  
proceeds as follows:

• If the element is an NSString, it is used as is.

• If the element responds to descriptionWithLocale:indent: , that method is invoked to obtain the 
element’s string representation.



10

• If the element responds to descriptionWithLocale:, that method is invoked to obtain the element’s string 
representation.

• If none of the above conditions are met, the element’s string representation is obtained by invoking its 
description method.

See also: – description, – descriptionWithLocale:

firstObjectCommonWithArray:
– (id)firstObjectCommonWithArray: (NSArray *)otherArray

Returns the first object contained in the receiver that’s equal to an object in otherArray. If no such object is 
found, this method returns nil . This method uses isEqual: to check for object equality. 

See also: – containsObject:, – isEqual: (NSObject)

getObjects:
– (void)getObjects:(id *)aBuffer

Copies the objects contained in the receiver to aBuffer.

See also: + arrayWithObjects:count:

getObjects:range:
– (void)getObjects:(id *)aBuffer range:(NSRange)aRange

Copies the objects contained in the receiver that fall within the specified range to aBuffer.

See also: + arrayWithObjects:count:

hash
@protocol NSObject
– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For an array, hash 
returns the number of elements in the array. If two arrays are equal (as determined by the isEqual: method), 
they will have the same hash value.

See also: – isEqual: (NSObject)



11

 Classes: NSArray Class Cluster

indexOfObject:
– (unsigned int)indexOfObject:(id)anObject

Searches the receiver for anObject and returns the lowest index whose corresponding array value is equal 
to anObject. Objects are considered equal if they have the same id or if isEqual: returns YES. If none of 
the objects in the receiver are equal to anObject, indexOfObject: returns NSNotFound.

See also: – containsObject:, – indexOfObjectIdenticalTo: , – isEqual: (NSObject)

indexOfObject:inRange:
– (unsigned)indexOfObject:(id)anObject inRange:(NSRange)aRange

Searches the specified range within the receiver for anObject and returns the lowest index whose 
corresponding array value is equal to anObject. Objects are considered equal if they have the same id or if 
isEqual: returns YES. If none of the objects in the specified range are equal to anObject, indexOfObject: 
returns NSNotFound.

See also: – containsObject:, – indexOfObjectIdenticalTo: , – isEqual: (NSObject)

indexOfObjectIdenticalTo:
– (unsigned int)indexOfObjectIdenticalTo: (id)anObject

Searches the receiver for anObject (testing for equality by comparing object ids) and returns the lowest 
index whose corresponding array value is equal to anObject. If none of the objects in the receiver are equal 
to anObject, indexOfObject: returns NSNotFound.

See also: – containsObject:, – indexOfObject:, – isEqual: (NSObject)

indexOfObjectIdenticalTo:inRange:
– (unsigned)indexOfObjectIdenticalTo: (id)anObject inRange:(NSRange)aRange

Searches the specified range within the receiver for anObject (testing for equality by comparing object ids) 
and returns the lowest index whose corresponding array value is equal to anObject. If none of the objects 
in the specified range are equal to anObject, indexOfObject: returns NSNotFound.

See also: – containsObject:, – indexOfObject:, – isEqual: (NSObject)



12

initWithArray:
– (id)initWithArray: (NSArray *)anArray

Initializes a newly allocated array by placing in it the objects contained in array. Each object in array 
receives a retain message as it’s added to the array. After an immutable array has been initialized in this 
way, it can’t be modified. Returns self.

See also: + arrayWithObject: , – initWithObjects:

initWithContentsOfFile:
– (id)initWithContentsOfFile: (NSString *)aPath

Initializes a newly allocated array with the contents of the file specified by aPath. The file identified by 
aPath must contain a string representation produced by the writeToFile:atomically:  method. In addition, 
the array representation must contain only property list objects (NSString, NSData, NSArray, or 
NSDictionary objects).

Returns self if the receiver is successfully initialized, or nil  if the file can’t be opened or if the contents of 
the file can’t be parsed into an array.

See also: – writeToFile:atomically:

initWithObjects:
– (id)initWithObjects: (id)firstObj, ...

Initializes a newly allocated array by placing in it the objects in the argument list. This list is a 
comma-separated list of objects ending with nil . Objects are retained as they’re added to the array. After an 
immutable array has been initialized in this way, it can’t be modified. Returns self.

See also: – initWithObjects:count: , + arrayWithObjects: , – initWithArray:

initWithObjects:count:
– (id)initWithObjects: (id *)objects count:(unsigned int)count

Initializes a newly allocated array by placing in it count objects from the objects array. Each object in the 
objects array receives a retain message as it’s added to the array. After an immutable array has been 
initialized in this way, it can’t be modified. Returns self.

See also: – initWithObjects: , + arrayWithObjects: , – initWithArray:



13

 Classes: NSArray Class Cluster

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return value indicates 
that the receiver and anObject are both instances of classes that inherit from NSArray and that they both 
contain the same objects (as determined by the isEqualToArray:  method).

See also: – isEqualToArray:

isEqualToArray:
– (BOOL)isEqualToArray: (NSArray *)otherArray

Compares the receiving array to otherArray. If the contents of otherArray are equal to the contents of the 
receiver, this method returns YES. If not, it returns NO.

Two arrays have equal contents if they each hold the same number of objects and objects at a given index 
in each array satisfy the isEqual: test.

See also:  – isEqual: (NSObject)

lastObject
– (id)lastObject

Returns the object in the array with the highest index value. If the array is empty, lastObject returns nil . 

See also: – removeLastObject (NSMutableArray)

makeObjectsPerformSelector:
– (void)makeObjectsPerformSelector:(SEL)aSelector

Sends the aSelector message to each object in the array, starting with the first object and continuing through 
the array to the last object. The aSelector method must be one that takes no arguments. It shouldn’t have the 
side effect of modifying the receiving array. The messages are sent using the 
makeObjectsPerformSelector:withObject: method. 

See also: – makeObjectsPerformSelector:withObject:



14

makeObjectsPerformSelector:withObject:
– (void)makeObjectsPerformSelector:(SEL)aSelector withObject: (id)anObject

Sends the aSelector message to each object in the array, starting with the first object and continuing through 
the array to the last object. The message is sent each time with anObject as an argument, so the aSelector 
method must be one that takes a single argument of type id. The aSelector method shouldn’t, as a side effect, 
modify the receiving array. The messages are sent using the performSelector:withObject:  method 
declared in the NSObject protocol. 

See also: – makeObjectsPerformSelector:

objectAtIndex:
– (id)objectAtIndex: (unsigned int)index

Returns the object located at index. If index is beyond the end of the array (that is, if index is greater than or 
equal to the value returned by count), an NSRangeException is raised.

See also: – count

objectEnumerator
– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each object in the array, in order, starting with the element 
at index 0, as in:

NSEnumerator *enumerator = [myArray objectEnumerator];

id anObject;

while ((anObject = [enumerator nextObject])) {

/*  code to act on each element as it is returned */

}

When this method is used with mutable subclasses of NSArray, your code shouldn’t modify the array 
during enumeration.

See also: – reverseObjectEnumerator, – nextObject (NSEnumerator)

pathsMatchingExtensions:
– (NSArray *)pathsMatchingExtensions:(NSArray *)filterTypes

Returns a new array that contains those string objects in the receiver that have a filename extension (as 
determined by NSString’s pathExtension method) that matches one of the extensions in filterTypes. 
filterTypes should be an array of NSStrings, each of which identifies a filename extension to be matched 



15

 Classes: NSArray Class Cluster

(such as “tiff” or “eps”). Filenames that don’t have an extension aren’t included in the result. This method 
can be used to identify those files with a particular extension (or set of extensions) within a directory.

reverseObjectEnumerator
– (NSEnumerator *)reverseObjectEnumerator

Returns an enumerator object that lets you access each object in the array, in order, from the element at the 
highest index down to the element at index 0. Your code shouldn’t modify the array during enumeration. 

See also: – objectEnumerator, – nextObject (NSEnumerator)

sortedArrayHint
– (NSData *)sortedArrayHint

Analyzes the receiver and returns a “hint” that speeds the sorting of the array when the hint is supplied to 
sortedArrayUsingFunction:context:hint: .

sortedArrayUsingFunction:context:
– (NSArray *)sortedArrayUsingFunction:(int(*)(id, id, void *))comparator context:(void *)context

Returns a new array that lists the receiver’s elements in ascending order as defined by the comparison 
function comparator. The new array contains references to the receiver’s elements, not copies of them. The 
retain count is incremented for each element in the receiving array.

The comparison function is used to compare two elements at a time and should return 
NSOrderedAscending if the first element is smaller than the second, NSOrderedDescending if the first 
element is larger than the second, and NSOrderedSame if the elements are equal. Each time the comparison 
function is called, it’s passed context as its third argument. This allows the comparison to be based on some 
outside parameter, such as whether character sorting is case-sensitive or case-insensitive.

Given anArray (an array of NSNumber objects) and a comparison function of this type:



16

int intSort(id num1, id num2, void *context)

{

int v1 = [num1 intValue];

int v2 = [num2 intValue];

if (v1 < v2)

return NSOrderedAscending;

else if (v1 > v2)

return NSOrderedDescending;

else

return NSOrderedSame;

}

A sorted version of anArray is created in this way:

NSArray *sortedArray;

sortedArray = [anArray sortedArrayUsingFunction:intSort context:NULL];

See also: – sortedArrayUsingSelector:

sortedArrayUsingFunction:context:hint:
– (NSArray *)sortedArrayUsingFunction:(int (*)(id, id, void *))compare context:(void *)context 

hint: (NSData *)hint

Similar to sortedArrayUsingFunction:context:, except that it uses the supplied hint to speed the sorting 
process. To obtain an appropriate hint, use sortedArrayHint . When you know that the array is nearly 
sorted, this method is faster than sortedArrayUsingFunction:context:.

sortedArrayUsingSelector:
– (NSArray *)sortedArrayUsingSelector:(SEL)comparator

Returns an array that lists the receiver’s elements in ascending order, as determined by the comparison 
method specified by the selector comparator. The new array contains references to the receiver’s elements, 
not copies of them. The retain count is incremented for each element in the receiving array.

The comparator message is sent to each object in the array, and has as its single argument another object 
in the array. The comparator method is used to compare two elements at a time and should return 
NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending if the receiver is 
larger than the argument, and NSOrderedSame if they are equal.

For example, an array of NSStrings can be sorted by using the compare: method declared in the NSString 
class. Assuming anArray exists, a sorted version of the array can be created in this way:

NSArray *sortedArray = [anArray sortedArrayUsingSelector:@selector(compare:)];

See also: – sortedArrayUsingFunction:context:



17

 Classes: NSArray Class Cluster

subarrayWithRange:
– (NSArray *)subarrayWithRange:(NSRange)range

Returns a new array containing the receiver’s elements that fall within the limits specified by range. If range 
isn’t within the receiver’s range of elements, an NSRangeException is raised. Each object receives a retain 
message as it’s added to the array.

For example, the following code example creates an array containing the elements found in the first half of 
wholeArray (assuming that wholeArray exists).

NSArray *halfArray;

NSRange theRange;

theRange.location = 0;

theRange.length = [wholeArray count] / 2;

halfArray = [wholeArray subarrayWithRange:theRange];

writeToFile:atomically:
– (BOOL)writeToFile: (NSString *)path atomically:(BOOL)flag

Writes the contents of the receiver to the file specified by path. If the receiver’s contents are all property list 
objects (NSString, NSData, NSArray, or NSDictionary objects), the file written by this method can be used 
to initialize a new array with the class method arrayWithContentsOfFile:  or the instance method 
initWithContentsOfFile: .

If flag is YES, the array is written to an auxiliary file, and then the auxiliary file is renamed to path. If flag 
is NO, the array is written directly to path. The YES option guarantees that path, if it exists at all, won’t be 
corrupted even if the system should crash during writing.

If path contains a tilde (~) character, you must expand it with stringByExpandingTildeInPath:  before 
invoking this method.

This method returns YES if the file is written successfully, and NO otherwise.

See also: – initWithContentsOfFile:



18

i NSMutableArray

Inherits From: NSArray : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSArray) 
NSObject (NSObject) 

Declared In: Foundation/NSArray.h



19

 Classes: NSArray Class Cluster

Class at a GlanceClass at a Glance

Purpose
An NSMutableArray stores a modifiable array of objects. 

Principal Attributes
• A count of the number of objects in the array.
• The set of objects contained in the array.

Creation

Commonly Used Methods

Primitive Methods
– addObject:
– replaceObjectAtIndex:withObject:
– removeLastObject

Class Description

The NSMutableArray class declares the programmatic interface to objects that manage a modifiable array 
of objects. This class adds insertion and deletion operations to the basic array-handling behavior inherited 
from NSArray. 

NSMutableArray methods are conceptually based on these three primitive methods:

• addObject:

+ arrayWithCapacity:
An empty array with enough allocated memory to hold a specified number of 
objects

– insertObject:atIndex: Inserts an object at a specified index.

– removeObject: Removes all occurrences of an object.

– removeObjectAtIndex: Removes the object at a given index.

– replaceObjectAtIndex:withObject: Replaces the object at a given index.



20

• replaceObjectAtIndex:withObject:
• removeLastObject

The other methods in its interface provide convenient ways of inserting an object into a specific slot in the 
array and removing an object based on its identity or position in the array.

When an object is removed from a mutable array, it receives a release message. If there are no further 
references to the object, the object is deallocated. Note that if your program keeps a reference to such an 
object, the reference will become invalid unless you remember to send the object a retain message before 
it’s removed from the array. For example, if anObject isn’t retained before removing it from the array, the 
third statement below could result in a run-time error:

id anObject = [[anArray objectAtIndex:0] retain];

[anArray removeObjectAtIndex:0];

[anObject someMessage];

A Note for Those Creating Subclasses of NSMutableArray

Although conceptually the NSMutableArray class has three primitive methods, two others also access the 
array’s data directly. These methods are:

• insertObject:atIndex:
• removeObjectAtIndex:

These methods could be implemented using the primitives listed above but doing so would incur 
unnecessary overhead. For instance, objects would receive retain and release messages as they were shifted 
to accommodate the insertion or deletion of an element. 

Method Types

Creating an NSMutableArray
+ arrayWithCapacity:
– initWithCapacity:

Adding and replacing objects
– addObject: 
– addObjectsFromArray:
– insertObject:atIndex:
– replaceObjectAtIndex:withObject:
– replaceObjectsInRange:withObjectsFromArray:
– replaceObjectsInRange:withObjectsFromArray:range:
– setArray:



21

 Classes: NSArray Class Cluster

Removing objects
– removeAllObjects
– removeLastObject 
– removeObject:
– removeObject:inRange:
– removeObjectAtIndex:
– removeObjectIdenticalTo:
– removeObjectIdenticalTo:inRange:
– removeObjectsFromIndices:numIndices:
– removeObjectsInArray:
– removeObjectsInRange:

Rearranging objects
– sortUsingFunction:context:
– sortUsingSelector:

Class Methods

arrayWithCapacity:
+ (id)arrayWithCapacity: (unsigned int)numItems

Creates and returns an NSMutableArray, giving it enough allocated memory to hold numItems objects. 
NSMutableArrays expand as needed, so numItems simply establishes the object’s initial capacity. 

See also: – initWithCapacity:

Instance Methods

addObject:
– (void)addObject:(id)anObject

Inserts anObject at the end of the receiver. The object receives a retain message as it’s added to the array. 
If anObject is nil , an NSInvalidArgumentException is raised.

See also: – addObjectsFromArray: , – removeObject:, – setArray:

addObjectsFromArray:
– (void)addObjectsFromArray: (NSArray *)otherArray

Adds the objects contained in otherArray to the end of the receiver’s array of objects.

See also: – setArray:, – removeObject:



22

initWithCapacity:
– (id)initWithCapacity: (unsigned int)numItems

Initializes a newly allocated array, giving it enough memory to hold numItems objects. Mutable arrays 
expand as needed, so numItems simply establishes the object’s initial capacity. Returns self.

See also: + arrayWithCapacity:

insertObject:atIndex:
– (void)insertObject:(id)anObject atIndex:(unsigned int)index

Inserts anObject into the receiver at index. If index is already occupied, the objects at index and beyond are 
shifted down one slot to make room. index cannot be greater than the number of elements in the array. 
anObject receives a retain message as it’s added to the array. This method raises an 
NSInvalidArgumentException if anObject is nil  and raises an NSRangeException if index is greater than 
the number of elements in the array.

Note that NSArrays are not like C arrays. That is, even though you do an “initWithCapacity:,” the specified 
capacity is regarded as a “hint”; the actual size of the array is still 0. Because of this, you can only insert 
new objects in ascending order—with no gaps. Once you add two objects, the array's size is 2, so you can 
add objects at indexes 0, 1, or 2. Index 3 is illegal and out of bounds; if you try to add an object at index 3 
(when the size of the array is 2), NSMutableArray raises an exception.

See also: – removeObjectAtIndex:

removeAllObjects
– (void)removeAllObjects

Empties the receiver of all its elements. Each removed object is sent a release message.

See also: – removeObject:, – removeLastObject, – removeObjectAtIndex:, 
– removeObjectIdenticalTo:

removeLastObject
– (void)removeLastObject

Removes the object with the highest-valued index in the array and sends it a release message. 
removeLastObject raises an NSRangeException if there are no objects in the array.

See also: – removeAllObjects, – removeObject:, – removeObjectAtIndex:, 
– removeObjectIdenticalTo:



23

 Classes: NSArray Class Cluster

removeObject:
– (void)removeObject:(id)anObject

Removes all occurrences of anObject in the array. This method uses indexOfObject: to locate matches and 
then removes them by using removeObjectAtIndex:. Thus, matches are determined on the basis of an 
object’s response to the isEqual: message.

See also: – removeAllObjects, – removeLastObject, – removeObjectAtIndex:, 
– removeObjectIdenticalTo:, – removeObjectsInArray:

removeObject:inRange:
– (void)removeObject:(id)anObject inRange:(NSRange)aRange

Removes all occurrences of anObject within the specified range in the array. Matches are determined on 
the basis of an object’s response to the isEqual: message and by comparing ids.

See also: – removeAllObjects, – removeLastObject, – removeObjectAtIndex:, 
– removeObjectIdenticalTo:, – removeObjectsInArray:

removeObjectAtIndex:
– (void)removeObjectAtIndex:(unsigned int)index

Removes the object at index and moves all elements beyond index up one slot to fill the gap. The removed 
object receives a release message. This method raises an NSRangeException if index is beyond the end of 
the array.

See also: – insertObject:atIndex:, – removeAllObjects, – removeLastObject, – removeObject:, 
– removeObjectIdenticalTo:, – removeObjectsFromIndices:numIndices:

removeObjectIdenticalTo:
– (void)removeObjectIdenticalTo:(id)anObject

Removes all occurrences of anObject in the array. This method uses the indexOfObjectIdenticalTo:  
method to locate matches and then removes them by using removeObjectAtIndex:. Thus, matches are 
determined on the basis of an object’s id.

See also: – removeAllObjects, – removeLastObject, – removeObject:, – removeObjectAtIndex:



24

removeObjectIdenticalTo:inRange:
– (void)removeObjectIdenticalTo:(id)anObject inRange:(NSRange)aRange

Removes all occurrences of anObject within the specified range in the array. Matches are determined by 
comparing object ids.

See also: – removeAllObjects, – removeLastObject, – removeObject:, – removeObjectAtIndex:

removeObjectsFromIndices:numIndices:
– (void)removeObjectsFromIndices:(unsigned int *)indices numIndices:(unsigned int)count

This method is similar to removeObjectAtIndex:, but allows you to efficiently remove multiple objects 
with a single operation. count indicates the number of objects to be removed, while indices points to the 
first in a list of indexes. Note that if you sort the list of indexes in ascending order, you will improve the 
speed of this operation.

This method does not distribute and therefore should be used sparingly.

See also: – insertObject:atIndex: , – removeObjectAtIndex:, – removeObjectsInRange:

removeObjectsInArray:
– (void)removeObjectsInArray: (NSArray *)otherArray

This method is similar to removeObject:, but allows you to efficiently remove large sets of objects with a 
single operation. It assumes that all elements in otherArray—which are the objects to be removed—respond 
to hash and isEqual:.

This method does not distribute and therefore should be used sparingly.

See also: – removeAllObjects, – removeObjectIdenticalTo:

removeObjectsInRange:
– (void)removeObjectsInRange:(NSRange)aRange

Removes each of the objects within the specified range in the receiver using removeObjectAtIndex:.

replaceObjectAtIndex:withObject:
– (void)replaceObjectAtIndex:(unsigned int)index withObject: (id)anObject

Replaces the object at index with anObject. anObject receives a retain message as it’s added to the array, 
and the previous object at index receives a release message. This method raises an 



25

 Classes: NSArray Class Cluster

NSInvalidArgumentException if anObject is nil  and raises an NSRangeException if index is beyond the 
end of the array.

See also: – insertObject:atIndex: , – removeObjectAtIndex:

replaceObjectsInRange:withObjectsFromArray:
– (void)replaceObjectsInRange:(NSRange)aRange withObjectsFromArray:

(NSArray *)otherArray

Replaces the objects in the receiver specified by aRange with all of the objects from otherArray. If 
otherArray has fewer objects than are specified by aRange, the extra objects in the receiver are removed. If 
otherArray has more objects than are specified by aRange, the extra objects from otherArray are inserted 
into the receiver.

See also: – insertObject:atIndex: , – removeObjectAtIndex:, – replaceObjectAtIndex:withObject:

replaceObjectsInRange:withObjectsFromArray:range:
– (void)replaceObjectsInRange:(NSRange)aRange withObjectsFromArray:

(NSArray *)otherArray range:(NSRange)otherRange

Replaces the objects in the receiver specified by aRange with the objects in otherArray specified by 
otherRange. aRange and otherRange don’t have to be equal; if aRange is greater than otherRange, the extra 
objects in the receiver are removed. If otherRange is greater than aRange, the extra objects from otherArray 
are inserted into the receiver.

See also: – insertObject:atIndex: , – removeObjectAtIndex:, – replaceObjectAtIndex:withObject:

setArray:
– (void)setArray: (NSArray *)otherArray

Sets the receiver’s elements to those in otherArray. Shortens the receiver, if necessary, so that it contains no 
more than the number of elements in otherArray. Replaces existing elements in the receiver with the 
elements in otherArray, releasing those objects that are being replaced and retaining those objects that are 
replacing them. Finally, if there are more elements in otherArray than there are in the receiver, the additional 
items are then added (and retain is sent to each object as it is added to the receiver).

See also: – addObjectsFromArray:, – replaceObjectAtIndex:withObject:



26

sortUsingFunction:context:
– (void)sortUsingFunction:(int (*)(id, id, void *))compare context:(void *)context

Sorts the receiver’s elements in ascending order as defined by the comparison function compare. The 
comparison function is used to compare two elements at a time and should return NSOrderedAscending if 
the first element is smaller than the second, NSOrderedDescending if the first element is larger than the 
second, and NSOrderedSame if the elements are equal. Each time the comparison function is called, it’s 
passed context as its third argument. This allows the comparison to be based on some outside parameter, 
such as whether character sorting is case-sensitive or case-insensitive.

See also: – sortUsingSelector:, – sortedArrayUsingFunction:context: (NSArray)

sortUsingSelector:
– (void)sortUsingSelector:(SEL)comparator

Sorts the receiver’s elements in ascending order, as determined by the comparison method specified by the 
selector comparator. The comparator message is sent to each object in the array, and has as its single 
argument another object in the array. The comparator method is used to compare two elements at a time 
and should return NSOrderedAscending if the receiver is smaller than the argument, 
NSOrderedDescending if the receiver is larger than the argument, and NSOrderedSame if they are equal.

See also: – sortUsingFunction:context:, – sortedArrayUsingSelector: (NSArray)



1

 Classes: NSAssertionHandler

NSAssertionHandler

Inherits From: NSObject 

Conforms To: NSObject (NSObject) 

Declared In: Foundation/NSException.h 

Class Description 

NSAssertionHandler objects are automatically created to handle false assertions. Assertion macros are used 
to evaluate a condition and, if the condition evaluates to false, the macros pass a string to an 
NSAssertionHandler object describing the failure. Each thread has its own NSAssertionHandler object. 
When invoked, an NSAssertionHandler prints an error message that includes the method and class (or 
function) containing the assertion, and raises an NSInternalInconsistencyException.

You use an assortment of macros to evaluate a condition—these macros serve as a front end to 
NSAssertionHandler. These macros fall into two categories: those you use in Objective-C methods, and 
those you use in C functions. For example, NSAssert() is for use within methods and NSCAssert() is for 
use within functions. Each macro has two arguments: the condition, an expression that evaluates to true or 
false, and the NSString describing the failure. Other macros are available if more arguments are needed for 
a printf() -style description. For example, NSAssert1() is used within methods if an additional argument is 
needed as in:

NSAssert1((0 <= component) && (component <= 255),

@"Value %i out of range!", component);

For more details on these macros see NSAssert().

You create assertions only using the above macros—you rarely need to invoke NSAssertionHandler 
methods directly. The macros for use inside methods and functions will send handleFailureInMethod:
object:file:lineNumber:description:... and handleFailureInFunction:file:lineNumber:description:...  
messages respectively to the current assertion handler. The assertion handler for the current thread is 
obtained using the currentHandler  class method.

Assertions are not compiled into code if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.

Using a Custom Assertion Handler

In some cases, you might want to define your own assertion handler to print error messages to a different 
error console or to raise custom exceptions, instead of the generic NSInternalInconsistencyException. To 
implement these features, you must define a subclass of NSAssertionHandler and override its 



2

handleFailureInMethod:object:file:lineNumber:description:...  and handleFailureInFunction:file:
lineNumber:description:... methods to handle assertions in methods and functions, respectively.

To add your assertion handler to a thread, you must add the assertion handler to the thread’s attributes 
dictionary. Use the thread’s threadDictionary  method to retrieve the dictionary. Add your 
assertion-handler object to the dictionary using the key “NSAssertionHandler”.

Typically, you should add your assertion handler to the thread dictionary immediately after creating the 
thread. However, a default assertion handler is not created until an assertion macro is encountered and you 
can always replace the existing assertion handler in the thread dictionary. If your assertion handler already 
exists in the thread dictionary, it is used in place of the default assertion handler.

Method Types

Getting the thread’s handler
+ currentHandler

Handling assertion failures
– handleFailureInFunction:file:lineNumber:description:
– handleFailureInMethod:object:file:lineNumber:description:

Class Methods 

currentHandler
+ (NSAssertionHandler *)currentHandler  

Returns the NSAssertionHandler object associated with the current thread. If no assertion handler is 
associated with the current thread, this method creates one and assigns it to the thread.

Instance Methods

handleFailureInFunction:file:lineNumber:description:
– (void)handleFailureInFunction: (NSString *)functionName

file:(NSString *)fileName
lineNumber:(int)line
description:(NSString *)format,... 

Logs an error message (using NSLog()) that includes the name of the function functionName, the name of 
the file fileName, and the line number line. Raises NSInternalInconsistencyException.



3

 Classes: NSAssertionHandler

handleFailureInMethod:object:file:lineNumber:description:
– (void)handleFailureInMethod: (SEL)selector

object:(id)object
file:(NSString *)fileName
lineNumber:(int)line
description:(NSString *)format,... 

Logs an error message (using NSLog()) that includes the selector, object’s class name, the name of the file 
fileName, and the line number line. Raises NSInternalInconsistencyException.



1

 Classes: NSAttributedString Class Cluster

cNSAttributedString Class Cluster

Class Cluster Description

NSAttributedString objects manage character strings and associated sets of attributes (for example, font and 
kerning) that apply to individual characters or ranges of characters in the string. An association of characters 
and their attributes is called an attributed string. The cluster’s two public classes, NSAttributedString and 
NSMutableAttributedString, declare the programmatic interface for read-only attributed strings and 
modifiable attributed strings, respectively. The Foundation Kit defines only the basic functionality for 
attributed strings; the remainder of the classes’ interfaces is actually defined by the Application Kit. The 
Application Kit also uses a subclass of NSMutableAttributedString, called NSTextStorage, to provide the 
storage for NeXT’s extended text-handling system.

Note: NSAttributedString is not a subclass of NSString. It contains a string object to which it applies 
attributes. This protects users of attributed strings from ambiguities caused by the semantic 
differences between simple and attributed string. For example, equality can’t be simply defined 
between an NSString and an attributed string.

Because of the nature of class clusters, attributed string objects are not actual instances of the 
NSAttributedString or NSMutableAttributedString classes, but are instances of one of their private concrete 
subclasses. Although an attributed string object’s class is private, its interface is public, as declared by these 
abstract superclasses, NSAttributedString and NSMutableAttributedString. The attributed string classes 
adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert an attributed 
string from one type to the other.

You create an NSAttributedString object by using one of initWithString: , initWithString:attributes: , or 
initWithAttributedString: . These methods initialize an attributed string with data you provide. The 
Application Kit also provides methods for creating attributed strings from RTF data.

An attributed string provides basic access to its contents with the string and attributesAtIndex:
effectiveRange: methods, which yield characters and attributes, respectively. These two primitive methods 
are used by the other access methods to retrieve attributes individually by name, by functional group (font 
or ruler attributes, for example), and so on.

The attribute values assigned to an attributed string become the property of that string, and shouldn’t be 
modified in any way by other objects. Doing so can render inconsistent the attributed string’s internal state. 
Always use NSMutableAttributedString’s setAttributes:range: and related methods to change attribute 
values.

For more information on using attributed strings, see the Application Kit’s specification for this class 
cluster.



2

NSAttributedString

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSAttributedString.h

Class Description

The NSAttributedString class declares the programmatic interface to an object that manages an immutable 
attributed string. NSAttributedString’s two primitive methods provide the basis for all the other methods in 
the class. The primitive string method returns the NSString object to which attributes are applied. The 
primitive attributesAtIndex:effectiveRange: method returns an NSDictionary containing the attribute 
names and values for characters around a specified index.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

NSMutableCopying
– mutableCopyWithZone:

Method Types

Creating an NSAttributedString
– initWithString:
– initWithAttributedString:
– initWithString:attributes:



3

 Classes: NSAttributedString Class Cluster

Retrieving character information
– string
– length

Retrieving attribute information
– attributesAtIndex:effectiveRange:
– attributesAtIndex:longestEffectiveRange:inRange:
– attribute:atIndex:effectiveRange:
– attribute:atIndex:longestEffectiveRange:inRange:

Comparing attributed strings
– isEqualToAttributedString:

Extracting a substring
– attributedSubstringFromRange:

Instance Methods

attribute:atIndex:effectiveRange:
– (id)attribute: (NSString *)attributeName

atIndex:(unsigned int)index
effectiveRange:(NSRange *)aRange

Returns the value for the attribute named attributeName of the character at index, or nil  if there is no such 
attribute. If the named attribute exists at index and aRange is non-NULL, it’s filled with a range over which 
the named attribute’s value applies. If the named attribute doesn’t exist at index and aRange is non-NULL, 
aRange is filled instead with the range over which the attribute doesn’t exist. This range isn’t necessarily 
the maximum range covered by attributeName, and its extent is implementation-dependent. If you need the 
maximum range, use attribute:atIndex:longestEffectiveRange:inRange:.

Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

See also: – attributesAtIndex:effectiveRange:

attribute:atIndex:longestEffectiveRange:inRange:
– (id)attribute: (NSString *)attributeName

atIndex:(unsigned int)index
longestEffectiveRange:(NSRange *)aRange
inRange:(NSRange)rangeLimit

Returns the value for the attribute named attributeName of the character at index, or nil  if there is no such 
attribute. If the named attribute exists at index and aRange is non-NULL, it’s filled with the full range over 
which the value of the named attribute is the same as that at index, clipped to rangeLimit. If the named 



4

attribute doesn’t exist at index and aRange is non-NULL, aRange is filled instead with the full range over 
which the attribute doesn’t exist, clipped to rangeLimit.

Raises an NSRangeException if index or any part of rangeLimit lies beyond the end of the receiver’s 
characters.

If you don’t need the longest effective range, it’s far more efficient to use the attribute:atIndex:
effectiveRange: method to retrieve the attribute value.

See also: – attributesAtIndex:longestEffectiveRange:inRange:

attributedSubstringFromRange:
– (NSAttributedString *)attributedSubstringFromRange:(NSRange)aRange

Returns an NSAttributedString object consisting of the characters and attributes within aRange in the 
receiver. Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s 
characters.

attributesAtIndex:effectiveRange:
– (NSDictionary *)attributesAtIndex: (unsigned int)index effectiveRange:(NSRange *)aRange

Returns the attributes for the character at index. If aRange is non-NULL it’s filled with the range over which 
the attributes and values apply. This range isn’t necessarily the maximum range covered, and its extent is 
implementation-dependent. If you need the maximum range, use attributesAtIndex:
longestEffectiveRange:inRange:.

Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

See also: – attribute:atIndex:effectiveRange:

attributesAtIndex:longestEffectiveRange:inRange:
– (NSDictionary *)attributesAtIndex: (unsigned int)index

longestEffectiveRange:(NSRange *)aRange
inRange:(NSRange)rangeLimit

Returns the attributes for the character at index. If aRange is non-NULL, it’s filled with the maximum range 
over which the attributes and values are the same as those at index, clipped to rangeLimit.

Raises an NSRangeException if index or any part of rangeLimit lies beyond the end of the receiver’s 
characters.



5

 Classes: NSAttributedString Class Cluster

If you don’t need the range information, it’s far more efficient to use the attributesAtIndex:
effectiveRange: method to retrieve the attribute value.

See also: – attribute:atIndex:longestEffectiveRange:inRange:

initWithAttributedString:
– (id)initWithAttributedString: (NSAttributedString *)attributedString

Initializes a newly allocated NSAttributedString object with the characters and attributes of 
attributedString. Returns self.

See also: – initWithRTF:documentAttributes:  (NSAttributedString Additions in the Application Kit)

initWithString:
– (id)initWithString: (NSString *)aString

Initializes a newly allocated NSAttributedString object with the characters of aString and with no attribute 
information. Returns self.

See also: – initWithRTF:documentAttributes:  (NSAttributedString Additions in the Application Kit)

initWithString:attributes:
– (id)initWithString: (NSString *)aString attributes: (NSDictionary *)attributes

Initializes a newly allocated NSAttributedString object with the characters of aString and the attributes of 
attributes. Returns self.

See also: – initWithRTF:documentAttributes:  (NSAttributedString Additions in the Application Kit)

isEqualToAttributedString:
– (BOOL)isEqualToAttributedString: (NSAttributedString *)otherString

Returns YES if the receiver is equal to otherString. Attributed strings must match in both characters and 
attributes to be equal.



6

length
– (unsigned int)length

Returns the length of the receiver’s string object.

See also: – length (NSString), – size (NSAttributedString Additions in the Application Kit)

string
– (NSString *)string

Returns the character contents of the receiver as an NSString object. This method doesn’t strip out 
attachment characters; use NSText’s string method to extract just the linguistically significant characters.

This primitive method must guarantee efficient access to an attributed string’s characters; subclasses should 
implement it to execute in O(1) time.



7

 Classes: NSAttributedString Class Cluster

NSMutableAttributedString

Inherits From: NSAttributedString : NSObject

Conforms To: NSCoding (NSAttributedString)
NSCopying (NSAttributedString)
NSMutableCopying (NSAttributedString)
NSObject (NSObject)

Declared In: Foundation/NSAttributedString.h

Class Description

NSMutableAttributedString declares the programmatic interface to objects that manage mutable attributed 
strings. You can add and remove characters (raw strings) and attributes separately, or together as attributed 
strings. When working with the Application Kit, you must also clean up changed attributes using the various 
fix... methods. See the Application Kit’s specification for this class cluster for more information on fixing 
attributes.

NSMutableAttributedString adds two primitive methods to those of NSAttributedString. These primitive 
methods provide the basis for all the other methods in its class. The primitive replaceCharactersInRange:
withString:  method replaces a range of characters with those from a string, leaving all attribute information 
outside that range intact. The primitive setAttributes:range: method sets attributes and values for a given 
range of characters, replacing any previous attributes and values for that range.

Method Types

Retrieving character information
– mutableString

Changing characters
– replaceCharactersInRange:withString:
– deleteCharactersInRange:

Changing attributes
– setAttributes:range:
– addAttribute:value:range:
– addAttributes:range:
– removeAttribute:range:



8

Changing characters and attributes
– appendAttributedString:
– insertAttributedString:atIndex:
– replaceCharactersInRange:withAttributedString:
– setAttributedString:

Grouping changes
– beginEditing
– endEditing

Instance Methods

addAttribute:value:range:
– (void)addAttribute: (NSString *)name

value:(id)value
range:(NSRange)aRange

Adds an attribute with the given name and value to the characters in aRange. Raises an 
NSInvalidArgumentException if name or value is nil , and an NSRangeException if any part of aRange lies 
beyond the end of the receiver’s characters.

See also: – addAttributes:range: , – removeAttribute:range:

addAttributes:range:
– (void)addAttributes: (NSDictionary *)attributes range:(NSRange)aRange

Adds the collection of attributes in attributes to the characters in aRange. Raises an 
NSInvalidArgumentException if attributes is nil  and an NSRangeException if any part of aRange lies 
beyond the end of the receiver’s characters.

See also: – addAttribute:value:range: , – removeAttribute:range:

appendAttributedString:
– (void)appendAttributedString: (NSAttributedString *)attributedString

Adds the characters and attributes of attributedString to the end of the receiver.

See also: – insertAttributedString:atIndex: , + attributedStringWithAttachment:  (NSAttributedString 
Additions in the Application Kit)



9

 Classes: NSAttributedString Class Cluster

beginEditing
– (void)beginEditing

Overridden by subclasses to buffer or optimize a series of changes to the receiver’s characters or attributes, 
until it receives a matching endEditing message, upon which it can consolidate changes and notify any 
observers that it has changed. You can nest pairs of beginEditing and endEditing messages.

deleteCharactersInRange:
– (void)deleteCharactersInRange:(NSRange)aRange

Deletes the characters in aRange along with their associated attributes. Raises an NSRangeException if any 
part of aRange lies beyond the end of the receiver’s characters.

See also: – replaceCharactersInRange:withAttributedString: , – replaceCharactersInRange:
withString:

endEditing
– (void)endEditing

Overridden by subclasses to consolidate changes made since a previous beginEditing message and to 
notify any observers of the changes. NSMutableAttributedString’s implementation does nothing. 
NSTextStorage, for example, overrides this method to invoke fixAttributesInRange:  and to inform its 
NSLayoutManagers that they need to re-lay the text.

See also: – processEditing (NSTextStorage class in the Application Kit)

insertAttributedString:atIndex:
– (void)insertAttributedString: (NSAttributedString *)attributedString atIndex:(unsigned int)index

Inserts the characters and attributes of attributedString into the receiver, so that the new characters and 
attributes begin at index and the existing characters and attributes from index to the end are shifted by the 
length of attributedString. Raises an NSRangeException if index lies beyond the end of the receiver’s 
characters.

See also: – appendAttributedString: , + attributedStringWithAttachment:  (NSAttributedString 
Additions in the Application Kit)



10

mutableString
– (NSMutableString *)mutableString

Returns the character contents of the receiver as an NSMutableString object. The receiver tracks changes 
to this string and keeps its attribute mappings up to date.

See also: – replaceCharactersInRange:withString:

removeAttribute:range:
– (void)removeAttribute: (NSString *)name range:(NSRange)aRange

Removes the attribute named name from the characters in aRange. Raises an NSRangeException if any part 
of aRange lies beyond the end of the receiver’s characters.

See also: – addAttribute:value:range: , – addAttributes:range:

replaceCharactersInRange:withAttributedString:
– (void)replaceCharactersInRange:(NSRange)aRange withAttributedString:

(NSAttributedString *)attributedString

Replaces the characters and attributes in aRange with the characters and attributes of attributedString. 
Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – insertAttributedString:atIndex:

replaceCharactersInRange:withString:
– (void)replaceCharactersInRange:(NSRange)aRange withString: (NSString *)aString

Replaces the characters in aRange with the characters of aString. The new characters inherit the attributes 
of the first replaced character from aRange. Where the length of aRange is zero, the new characters inherit 
the attributes of the character preceding aRange if it has any, otherwise of the character following aRange.

Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – deleteCharactersInRange:



11

 Classes: NSAttributedString Class Cluster

setAttributedString:
– (void)setAttributedString: (NSAttributedString *)attributedString

Replaces the receiver’s entire contents with the characters and attributes of attributedString.

See also: – appendAttributedString:

setAttributes:range:
– (void)setAttributes:(NSDictionary *)attributes range:(NSRange)aRange

Sets the attributes for the characters in aRange to attributes. These new attributes replace any attributes 
previously associated with the characters in aRange. Raises an NSRangeException if any part of aRange 
lies beyond the end of the receiver’s characters.

See also: – addAttributes:range:, – removeAttribute:range:



1

 Classes: NSAutoreleasePool

NSAutoreleasePool

Inherits From: NSObject

Conforms To: NSObject (NSObject) 

Declared In: Foundation/NSAutoreleasePool.h 

Class Description 

The NSAutoreleasePool class is used to implement the Foundation Kit’s autorelease mechanism.  An 
NSAutoreleasePool object simply contains objects that have received an autorelease message, and when 
deallocated sends a release message to each of those objects. An object can be put into the same pool several 
times, and receives a release message for each time it was put into the pool.  Thus, sending autorelease 
instead of release to an object extends the lifetime of that object until the pool itself is released or longer if 
the object is retained. This class specification contains information on fine-tuning your application’s 
handling of autorelease pools; see “Object Ownership and Automatic Disposal” in the Programming Topics 
documentation for general information on using the autorelease mechanism.

You create an NSAutoreleasePool with the usual alloc and init  messages, and dispose of it with release (an 
exception will be raised if you send autorelease or retain to an autorelease pool).  An autorelease pool 
should always be released in the same context (invocation of a method or function, or body of a loop) that 
it was created. When a thread terminates, it automatically releases all of the autorelease pools associated 
with itself.

Autorelease pools can be nested, so you can include them in any function or method. For example,  a main() 
function may create an autorelease pool and call another function that creates another autorelease pool. Or 
a single method might have an autorelease pool for an outer loop, and another autorelease pool for an inner 
loop. Each thread in a program maintains autorelease pools on a stack; the most recently created (and 
unreleased) autorelease pool is the top pool on the stack. The ability to nest autorelease pools is a definite 
advantage, but there are side effects when exceptions occur (see “Implications of Nested Autorelease 
Pools”).

NSAutoreleasePools are automatically created and destroyed in applications based on the Application Kit, 
so your code normally doesn’t have to worry about them.  (The Application Kit creates a pool at the 
beginning of the event loop and releases it at the end). There are two cases, though, where you might wish 
to create and destroy your own autorelease pools.  If you’re writing a program that’s not based on the 
Application Kit, such as a command-line tool, there’s no built-in support for autorelease pools; you must 
create and destroy them yourself.  Also, if you write a loop that creates many temporary objects, you might 
wish to create an NSAutoreleasePool inside the loop to dispose of those objects before the next iteration.

Enabling the autorelease mechanism in a program that’s not based on the Application Kit is easy.  Many 
programs have a top-level loop where they do most of their work.  To enable the autorelease mechanism 



2

you create an NSAutoreleasePool at the beginning of this loop and release it at the end.  An autorelease 
message sent in the body of the loop automatically puts its receiver into this pool.  

Your main() function might look like this:

void main()

{

NSArray *args = [[NSProcessInfo processInfo] arguments];

unsigned count, limit = [args count];

for (count = 1; count < limit; count++){

NSAutoreleasePool *pool =[[NSAutoreleasePool alloc] init];

NSString *fileContents;

NSString *fileName;

fileName = [args objectAtIndex:count];

fileContents = [[NSString alloc] initWithContentsOfFile:fileName];

[fileContents autorelease];

/* Process the file, creating and autoreleasing more objects. */

[pool release];

}

/* Do whatever cleanup is needed. */

exit (EXIT_SUCCESS);

}

This program processes files passed in on the command line. The for  loop processes one file at a time. An 
NSAutoreleasePool is created at the beginning of this loop and released at the end. Therefore, any object 
sent an autorelease message inside the for  loop, such as fileContents, is added to pool, and when pool is 
released at the end of the loop those objects are also released.

Similarly, NSAutoreleasePools can be created inside any loop, even in a program based on the Application 
Kit, that creates and releases many objects during each iteration.

Implications of Nested Autorelease Pools

It’s common to speak of autorelease pools as being nested because of the enclosure evident in code;  for 
instance, you can have an autorelease pool in an outer loop that contains an inner loop with its own 
autorelease pool. But you can also think of nested autorelease pools as being on a stack, with the "inmost" 
autorelease pool being on top of the stack. As noted earlier, this is actually how nested autorelease pools are 
implemented: Each thread (NSThread) in a program maintains a stack of autorelease pools. When you 
create an autorelease pool, it is pushed onto the top of the current thread’s stack. Autoreleased objects—that 
is, objects which have received an autorelease message or which are added through the addObject: class 
method—are always put in the autorelease pool at the top of the stack. 



3

 Classes: NSAutoreleasePool

Released autorelease pools, if not on the top of the stack, will cause all (unreleased) autorelease pools above 
them on the stack to be released, along with all their objects. If you neglect to send release to an autorelease 
pool when you’re finished with it (something not recommended), it will be released when one of the 
autorelease pools in which it nests is released.

This behavior has implications for exceptional conditions. If an exception occurs, and the thread suddenly 
transfers out of the current context, the pool associated with that context is released. However, if that pool 
is not the top pool on the thread’s stack, all the pools above the released pool are also released (releasing all 
their objects in the process). The top autorelease pool on the thread’s stack then becomes the pool previously 
underneath the released pool associated with the exceptional condition. Because of this behavior, exception 
handlers do not need to release objects that were sent autorelease. Neither is it necessary or even desireable 
for an exception handler to send release to its autorelease pool, unless the handler is re-raising the 
exception.

Guaranteeing the Foundation Ownership Policy

By creating an NSAutoreleasePool instead of simply releasing objects, you extend the lifetime of temporary 
objects to the lifetime of that pool.  After an NSAutoreleasePool is deallocated, you should regard any 
object that was autoreleased while that pool was active as “disposed of”, and not send a message to that 
object or return it to the invoker of your method. 

If you must use a temporary object beyond an autorelease context, you can do so by sending a retain 
message to the object within the context and then send it autorelease after the pool has been released as in:

– findMatchingObject:anObject

{

id match = nil;

while (match == nil) {

NSAutoreleasePool *subpool = [[NSAutoreleasePool alloc] init];

/* Do a search that creates a lot of temporary objects. */

match = [self expensiveSearchForObject:anObject];

if (match != nil) 

[match retain]; /* Keep match around. */

[subpool release];

}

return [match autorelease];   /* Let match go and return it. */

}

By sending retain to match while subpool is in effect and sending autorelease to it after subpool has been 
released, match is effectively moved from subpool to the pool that was previously active.  This extends the 
lifetime of match and allows it to receive messages outside the loop and be returned to the invoker of 
findMatchingObject: .



4

Class Methods 

addObject:
+ (void)addObject:(id)anObject 

Adds anObject to the active autorelease pool in the current thread, so that it will be sent a release message 
when the pool itself is deallocated.  The same object may be added several times to the active pool and will 
receive a release message for each time it was added. Normally you don’t invoke this method directly—
send autorelease to anObject instead.

See also: – addObject:

Instance Methods

addObject:
– (void)addObject:(id)anObject 

Adds anObject to the receiver, so that it will be sent a release message when the receiver is deallocated. 
The same object may be added several times to the same pool and will receive a release message for each 
time it was added. Normally you don’t invoke this method directly—send autorelease to anObject instead.

See also:  + addObject:



1

 Classes: NSBundle

NSBundle

Inherits From:  NSObject 

Conforms To:  NSObject (NSObject) 

Declared In:  Foundation/NSBundle.h 

Class at a GlanceClass at a Glance

Purpose
An NSBundle represents a location in the file system that groups code and resources that can be used in a 
program. NSBundles locate program resources, dynamically load executable code, and assist in localization. You 



2

build a bundle in Project Builder using one of these project types: Application, Framework, Loadable Bundle, 
Palette.

Principal Attribute
• Directory path

Creation

Commonly Used Methods

Class Description 

An NSBundle is an object that corresponds to a directory where related resources—including executable 
code—are stored. The directory, in essence, “bundles” a set of resources used by an application into 
convenient chunks, and the NSBundle object makes those resources available to the application. NSBundle 
can find requested resources in the directory and can dynamically load executable code. The term bundle 
refers both to the object and to the directory it represents.

Bundles are useful in a variety of contexts. Since bundles combine executable code with the resources used 
by that code, they facilitate installation and localization. NSBundles are also used to locate specific 
resources, to obtain localized strings, to load code dynamically, and to determine which classes are loaded.

Each resource in a bundle usually resides in its own file. Bundled resources include such things as:

• Executable code
• Images—TIFF or EPS images used by an application’s user interface 

– initWithPath: (designated initializer)

+ mainBundle Returns the NSBundle for the application wrapper.

+ bundleForClass: Returns the NSBundle in which the class is implemented.

+ bundleWithPath: Returns the NSBundle at a location in the file system.

– localizedStringForKey:value:table: Returns a localized version of a string.

– pathForResource:ofType: Returns the path for the specified resource.

– principalClass Returns the principal class, dynamically loading code if needed.



3

 Classes: NSBundle

• Sounds
• Localized character strings
• Nib files—Interface Builder files describing user-interface objects and their relationships 

The Project Builder application defines four types of projects that build bundles as file packages. A file 
package is a directory that the Workspace Manager presents to users as if it were a simple file; the contents 
of the directory are hidden. The four types of Project Builder bundles are:

• Application . The application wrapper is a bundle that contains the resources needed to launch the 
application, including the application executable. This bundle is also known as the main bundle. Its 
extension is “.app”.

• Framework. A framework is a directory containing a dynamic shared library and all the resources that 
go with that library, such as header files, images, and documentation. Its extension is “.framework”.

• Loadable Bundle. Like an application, a loadable bundle usually contains executable code and 
associated resources. Loadable bundles differ from applications and frameworks because they must be 
explicitly loaded into a running application. (See “Loadable Bundles,” below for more information.) The 
extension of a loadable bundle is conventionally “.bundle” but can be something else (for example, 
“.preference”).

• Palette. A palette is a type of loadable bundle specialized for Interface Builder. It contains custom 
user-interface objects and compiled code that are loaded into an Interface Builder palette.

For all types of bundles, the executable-code file of a bundle (of which there can be only one) is in the 
immediate bundle directory and takes the same name as the bundle, minus the extension. Bundles also 
encode (as a property list) the important attributes of the bundle, such as the main nib file name, executable 
name, document extensions, and so forth. You can access these attributes with NSBundle’s infoDictionary  
method, which returns the file’s contents as an NSDictionary.

You shouldn’t attempt to create an NSBundle subclass since the designated initializer, initWithPath: , 
might substitute another NSBundle for self.

The Main Bundle

Every application has at least one bundle—its main bundle—which is the “.app” directory where its 
executable file is located. This file is loaded into memory when the application is launched. It includes at 
least the main() function and other code necessary to start up the application. You obtain an NSBundle 
object corresponding to the main bundle with the class method mainBundle.

Framework Bundles

Frameworks are bundles that package dynamic shared libraries along with the nib files, images, and other 
resources that support the executable code and with the header files and documentation that describe the 
associated APIs. As long as your applications are dynamically linked with frameworks, you should have 
little need to do anything explicitly with those frameworks thereafter; in a running application, the 



4

framework code is automatically loaded, as needed. You can however, get an NSBundle object associated 
with a framework by invoking the class method bundleForClass: specifying, as the argument, a class that’s 
defined in the framework. 

Loadable Bundles and Dynamic Loading

An application can be organized into any number of other bundles in addition to the main bundle and the 
bundles of linked-in frameworks. Although these loadable bundles usually reside inside the application file 
package, they can be located anywhere in the file system. Each loadable-bundle directory—by convention, 
with a “.bundle” extension—is represented in the application by a separate NSBundle object. Through this 
object the application can dynamically load the code and resources in the bundle when it needs them. For 
example, an application for managing PostScript printers may have a bundle full of PostScript code to be 
downloaded to printers. 

The executable code files in loadable bundles hold class (and category) definitions that the NSBundle object 
can dynamically load while the application runs. When asked for a certain class (through the invocation of 
classNamed: or principalClass), the NSBundle loads the object file that contains the class definition (if 
it’s not already loaded) and returns the class object; it also loads other classes and categories that are stored 
in the file. 

The major advantage of bundles is application extensibility. A set of bundled classes often supports a small 
collection of objects that can be integrated into the larger object network already in place. (NEXTSTEP 
Preferences is one example of this.) The linkage is established through an instance of the principal class. 
This object might have methods to return other objects that the application can talk to, but typically all 
messages from the application to the subnetwork are funneled through the one instance.

Since each bundle can have only one executable file, that file should be kept free of localizable content. 
Anything that needs to be localized should be segregated into separate resource files and stored in 
localized-resource subdirectories.

Note: To create a loadable bundle—a bundle with dynamically loadable code—without using Project 
Builder, use the ld(1) -bundle flag on the cc command line.

Localized Resources

If an application is to be used in more than one part of the world, its resources may need to be customized, 
or “localized,” for language, country, or cultural region. An application may need, for example, to have 
separate Japanese, English, French, Hindu, and Swedish versions of the character strings that label menu 
commands.

Resource files specific to a particular language are grouped together in a subdirectory of the bundle 
directory. The subdirectory has the name of the language (in English) followed by a “.lproj” extension (for 
“language project”). The application mentioned above, for example, would have Japanese.lproj, 
English.lproj , French.lproj , Hindi.lproj , and Swedish.lproj subdirectories. Each “.lproj” subdirectory in 
a bundle has the same set of files; all versions of a resource file must have the same name. Thus, Hello.snd 



5

 Classes: NSBundle

in French.lproj  should be the French counterpart to the Swedish Hello.snd in Swedish.lproj, and so on. If 
a resource doesn’t need to be localized at all, it’s stored in the bundle directory itself, not in the “.lproj” 
subdirectories.

The user determines which set of localized resources will actually be used by the application. NSBundle 
objects rely on the language preferences set by the user in the Preferences application. Preferences lets users 
order a list of available languages so that the most preferred language is first, the second most preferred 
language is second, and so on.

When an NSBundle is asked for a resource file, it provides the path to the resource that best matches the 
user’s language preferences. For details, see the descriptions of pathForResource:ofType:inDirectory and 
pathForResource:ofType:.

How NSBundles Locate Resources

A bundle's resources are typically stored in a directory named Resources within the bundle directory. 
Within the Resources directory are non-localized resources and localized resource directories 
(English.lproj , Swedish.lproj, and so on). Generally, when an NSBundle looks for resources, it starts at 
the top, in a non-localized location, and searches “downward” toward the localized directories.

For example, suppose you want to find a resource with name “Main” and type “nib”. NSBundle searches 
the Resource directory at the “top” non-localized level for the file “Main.nib”. If it doesn’t find the file 
there, NSBundle then searches each of the language subdirectories in the user's preferred order of 
languages. By this scheme, the localized version of a resource that also exists at the top level will not be 
found, but the non-localized one will be. For this reason, you should place all non-localized resources in 
the top level of Resources, and you shouldn’t put any localized resources there.

When it finds a resource, an NSBundle checks if a resource of the name “Main-$(PLATFORM_OS)” of type 
“nib” exists. $(PLATFORM_OS) represents the make variable of the same name, and takes on the same 
values that the make variable takes on at compile time. For example, on Windows, during a project build, 
“$(PLATFORM_OS)” in the Makefile.postamble will yield the value "winnt". When “Main.nib” is found 
in a directory, the NSBundle also sees if “Main-winnt.nib” exists in that same directory. If it does, the 
NSBundle returns the path to the platform-specific resource; if it does not, it returns the path to “Main.nib”. 
Note that for “Main-winnt.nib” to be found, a file named “Main.nib” must exist in the same directory 
(including language-specific resource directories). You typically give one platform-general version of a 
resource the name without this $(PLATFORM_OS) suffix, and give the platform-specific versions of the 
resource extended names. The values that $(PLATFORM_OS) can take are currently "winnt" (on 
OPENSTEP for Windows), "nextstep" (on OPENSTEP for MACH), "hpux"(on PDO for HP-UX), and 
"solaris" (on PDO for Solaris).

Another way to accommodate platform-specific resources is to use the inDirectory:  parameter of 
NSBundle’s resource-searching methods. The inDirectory:  parameter is intended for locating resources of 
a common type or purpose that are put in a single directory; for example, all images could be put into a 
directory called “Images” within the Resource directory. (However, note that the Application Kit's 
imageNamed: class method in NSImage does not support searching arbitrary directories for images.) You 



6

can thus use specialized resource subdirectories and the inDirectory:  parameter to manage 
platform-specific resources. This is not "automatic" functionality, however, since it requires the developer 
to specify the name of the platform-specific directory as well as replicate the required resources and 
language projects within that directory. The $(PLATFORM_OS) mechanism is simpler to use, particularly 
if the number of platform-specific resources is small.

Application Kit Additions to NSBundle

The Application Kit defines three categories of NSBundle: one for locating image resources, one for 
loading nib files, and one for accessing context help. The methods in these categories become part of the 
NSBundle class only for those applications that use the Application Kit. For details, see the 
NSBundleAdditions specification in the Application Kit reference documentation.

Method Types 

Initializing an NSBundle
– initWithPath:

Getting an NSBundle
+ bundleForClass:
+ bundleWithPath:
+ mainBundle
+ allBundles
+ allFrameworks

Getting a bundled class
– classNamed:
– principalClass

Finding a resource
+ pathForResource:ofType:inDirectory:
– pathForResource:ofType:
– pathForResource:ofType:inDirectory:
– pathsForResourcesOfType:inDirectory:
– resourcePath

Getting the bundle directory
– bundlePath

Getting bundle information
– infoDictionary

Managing localized resources
– localizedStringForKey:value:table:



7

 Classes: NSBundle

Loading a bundle’s code
– load

Class Methods

allBundles
+ (NSArray *)allBundles

Returns an array of all the application’s non-framework bundles. This includes the main bundle and all 
bundles that have been dynamically created but doesn’t contain any bundles that represent frameworks.

allFrameworks
+ (NSArray *)allFrameworks

Returns an array of all of the application’s bundles that represent frameworks. This includes frameworks 
which are linked into an application when the application is built and bundles for frameworks which have 
been dynamically created.

bundleForClass:
+ (NSBundle *)bundleForClass:(Class)aClass 

Returns the NSBundle that dynamically loaded aClass (a loadable bundle), the NSBundle for the 
framework in which aClass is defined, or the main bundle object if aClass was not dynamically loaded or 
is not defined in a framework. 

See also: + mainBundle, + bundleWithPath:

bundleWithPath:
+ (NSBundle *)bundleWithPath: (NSString *)path 

Returns an NSBundle that corresponds to the specified directory path or nil  if path does not identify an 
accessible bundle directory. This method allocates and initializes the returned object if it doesn’t already 
exist.   

See also: + mainBundle, + bundleForClass:



8

mainBundle
+ (NSBundle *)mainBundle 

Returns an NSBundle that corresponds to the directory where the application executable is located or nil  if 
this executable is not located in a accessible bundle directory. This method allocates and initializes the 
returned NSBundle if it doesn’t already exist.

In general, the main bundle corresponds to an application file package or application wrapper: a directory 
that bears the name of the application and is marked by a “.app” extension.

See also: + bundleForClass:, + bundleWithPath:

pathForResource:ofType:inDirectory:
+ (NSString *)pathForResource:(NSString *)name

ofType:(NSString *)extension
inDirectory: (NSString *)bundlePath

Returns the full pathname for the resource identified by name, having the specified file name extension, and 
residing in the directory bundlePath; returns nil  if no matching resource file exists in the bundle. The 
argument bundlePath must be a valid bundle directory. The argument extension can be an empty string or 
nil ; in either case the pathname returned is the first one encountered with name, regardless of the extension. 
If bundlePath is specified, the method searches in this order:

bundlePath/Resources/name.extension
bundlePath/Resources/<language.lproj>/name.extension
bundlePath/name.extension
bundlePath/<language.lproj>/name.extension

The order of language directories searched corresponds to the user’s preferences.

See also: – localizedStringForKey:value:table:, – pathForResource:ofType:, – pathForResource:
ofType:inDirectory: , – pathsForResourcesOfType:inDirectory:

Instance Methods

bundlePath
– (NSString *)bundlePath 

Returns the full pathname of the receiver’s bundle directory.



9

 Classes: NSBundle

classNamed:
– (Class)classNamed:(NSString *)className 

Returns the class named className. If the bundle’s executable code is not yet loaded, this method 
dynamically loads it into memory. The method returns nil  if className isn’t one of the classes associated 
with the receiver or if there is an error in loading the executable code containing the class implementation. 
Classes (and categories) are loaded from just one file within the bundle directory; this code file has the same 
name as the directory, but without the extension (“.bundle,” “.app,” “.framework”). As a side-effect of code 
loading, the receiver posts NSBundleNotification for each class and category loaded; see “Notifications,” 
below for details. 

The following example loads a bundle’s executable code containing the class “FaxWatcher.”

- (void)loadBundle:(id)sender

{

Class exampleClass;

id newInstance;

NSString *str = @"/me/Projects/BundleExample/BundleExample.bundle";

NSBundle *bundleToLoad = [NSBundle bundleWithPath:str];

if (exampleClass = [bundleToLoad classNamed:@”FaxWatcher”]) {

newInstance = [[exampleClass alloc] init];

// [newInstance doSomething];

}

}

See also: – principalClass, – load

infoDictionary
– (NSDictionary *)infoDictionary

Returns a dictionary that contains information about the receiver. This information is extracted from the 
property list (Info.plist ) associated with the bundle. The returned dictionary is empty if no Info.plist  can 
be found. Common keys for accessing the values of the dictionary are NSExecutable, NSExtensions, 
NSIcon, NSMainNibFile, and NSPrincipalClass. 

See also: – principalClass

initWithPath:
– (id)initWithPath: (NSString *)fullPath 

Returns an NSBundle corresponding to the directory fullPath. This method initializes and returns a new 
instance only if there is no existing NSBundle associated with fullPath, in which case it deallocates self and 
returns the existing object. fullPath must be a full pathname for a directory; if it contains any symbolic links, 



10

they must be resolvable. If the directory doesn’t exist or the user doesn’t have access to it, this method 
returns nil . 

It’s not necessary to allocate and initialize an instance for the main bundle; use the mainBundle class 
method to get this instance. You can also use the bundleWithPath:  class method to obtain a bundle 
identified by its directory path.

See also: + bundleForClass:

load
– (BOOL)load

Dynamically loads the bundle’s executable code into a running program, if the code has not already been 
loaded. A bundle attempts to load its code—if it has any—only once. Returns YES if the method 
successfully loaded the bundle’s code or if the code had already been loaded. Returns NO if the method 
failed to load the code.

Note: You don’t need to load a bundle’s executable code to search the bundle’s resources.

See also: – classNamed:, – principalClass

localizedStringForKey:value:table:
– (NSString *)localizedStringForKey:(NSString *)key 

value:(NSString *)value 
table:(NSString *)tableName 

Returns a localized version of the string designated by key in table tableName. The argument tableName 
specifies the receiver’s string table to search. If tableName is nil  or is an empty string, the method attempts 
to use the table in Localizable.strings. The value argument specifies the value to return if key is nil  or if a 
localized string for key can’t be found in the table. If value is nil  or an empty string, and a localized string 
is not found in the table, the method returns key. If key and value are both nil , the method returns the empty 
string.

Note: Using the user default NSShowNonLocalizedStrings, you can alter the behavior of 
localizedStringForKey:value:table: to log a message when the method can’t find a localized string. 
If you set this default to YES (in the global domain or in the application’s domain), then when the 
method can’t find a localized string in the table, it logs a message to the console and capitalizes key 
before returning it.

The following example cycles through a static array of keys when a button is clicked, gets the value for each 
key from a strings table named Buttons.strings, and sets the button title with the returned value.



11

 Classes: NSBundle

- (void)changeTitle:(id)sender

{

static int keyIndex = 0;

NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];

NSString *locString = [thisBundle

localizedStringForKey:assortedKeys[keyIndex++] 

value:@"" table:@"Buttons"];

[sender setTitle:locString];

if (keyIndex == MAXSTRINGS) keyIndex=0;

}

See also: – pathForResource:ofType:, – pathForResource:ofType:inDirectory:, 
– pathsForResourcesOfType:inDirectory:, + pathForResource:ofType:inDirectory:

pathForResource:ofType:
– (NSString *)pathForResource:(NSString *)name ofType:(NSString *)extension

Returns the full pathname for the resource identified by name and having the specified file extension. If the 
extension argument is nil  or an empty string (@“”), the resource sought is identified by name, with no 
extension. The method first looks for a non-localized resource in the immediate bundle directory; if the 
resource is not there, it looks for the resource in the language-specific “.lproj” directory (the local language 
is determined by user defaults).

The following code fragment gets the path to a localized sound, creates an Sound instance from it, and plays 
the sound.

NSString *soundPath;

Sound *thisSound;

NSBundle *thisBundle = [NSBundle bundleForClass:[self class]];

if (soundPath = [thisBundle pathForResource:@"Hello" ofType:@"snd"]) {

thisSound = [[[Sound alloc] initFromSoundfile:soundPath] autorelease];

[thisSound play];

}

See also: – localizedStringForKey:value:table:, – pathForResource:ofType:inDirectory:, 
– pathsForResourcesOfType:inDirectory:, + pathForResource:ofType:inDirectory:



12

pathForResource:ofType:inDirectory:
– (NSString *)pathForResource:(NSString *)name 

ofType:(NSString *)extension 
inDirectory: (NSString *)bundlePath 

Returns the full pathname for the resource identified by name, having the specified file name extension, and 
residing in the directory bundlePath; returns nil  if no matching resource file exists in the bundle. The 
argument bundlePath must be a valid bundle directory or nil . The argument extension can be an empty 
string or nil ; in either case the pathname returned is the first one encountered with name, regardless of the 
extension. If bundlePath is specified, the method searches in this order:

<main bundle path>/Resources/bundlePath/name.extension
<main bundle path>/Resources/bundlePath/<language.lproj>/name.extension
<main bundle path>/bundlePath/name.extension
<main bundle path>/bundlePath/<language.lproj>/name.extension

The order of language directories searched corresponds to the user’s preferences. If bundlePath is nil , the 
same search order as described above is followed, minus bundlePath.

See also: – localizedStringForKey:value:table:, – pathForResource:ofType:, 
– pathsForResourcesOfType:inDirectory:, + pathForResource:ofType:inDirectory:

pathsForResourcesOfType:inDirectory:
– (NSArray *)pathsForResourcesOfType:(NSString *)extension 

inDirectory: (NSString *)bundlePath 

Returns an array containing pathnames for all bundle resources having the specified file name extension and 
residing in the directory bundlePath; returns an empty array if no matching resource files are found. This 
method provides a means for dynamically discovering bundle resources. The argument bundlePath must be 
a valid bundle directory or nil . The extension argument can be an empty string or nil ; if you specify either 
of these for extension, however, all bundle resources are returned. Although there is no guaranteed search 
order, all of the following directories will be searched:

<main bundle path>/Resources/bundlePath/name.extension
<main bundle path>/Resources/bundlePath/<language.lproj>/name.extension
<main bundle path>/bundlePath/name.extension
<main bundle path>/bundlePath/<language.lproj>/name.extension

The language directories searched corresponds to the user’s preferences. If bundlePath is nil , the same 
search order as described above is followed, minus bundlePath.

See also: – localizedStringForKey:value:table:, – pathForResource:ofType:, – pathForResource:
ofType:inDirectory: , + pathForResource:ofType:inDirectory:



13

 Classes: NSBundle

principalClass
– (Class)principalClass 

Returns the NSBundle’s principal class after ensuring that the code containing the definition of that class is 
dynamically loaded. If the NSBundle encounters errors in loading or if it can’t find the executable code file 
in the bundle directory, it returns nil . The principal class typically controls all the other classes in the 
bundle; it should mediate between those classes and classes external to the bundle. Classes (and categories) 
are loaded from just one file within the bundle directory. NSBundle obtains the name of the code file to load 
from the dictionary returned from infoDictionary , using “NSExecutable” as the key. The NSBundle 
determines its principal class in one of two ways:

• It first looks in its own information dictionary, which extracts the information encoded in the bundle’s 
property list (Info.plist ). NSBundle obtains the principal class from the dictionary using the key 
NSPrincipalClass. For non-loadable bundles (applications and frameworks), if the principal class is not 
specified in the property list, the method returns nil . 

• If the principal class is not specified in the information dictionary, NSBundle identifies the first class 
loaded as the principal class. When several classes are linked into a dynamically loadable file, the default 
principal class is the first one listed on the ld command line. In the following example, Reporter would 
be the principal class:

ld -o myBundle -r Reporter.o NotePad.o QueryList.o

Note: The order of classes in Project Builder’s project browser is the order in which they will be linked. To 
designate the principal class, Control-drag the file containing its implementation to the top of the list.

As a side-effect of code loading, the receiver posts NSBundleDidLoadNotification after each class and 
category is loaded; see “Notifications,” below for details. 

The following method obtains a bundle by specifying its path (bundleWithPath: ), then loads the bundle 
with principalClass and uses the returned class object to allocate and initialize an instance of that class.

- (void)loadBundle:(id)sender

{

Class exampleClass;

id newInstance;

NSString *path = @"/tmp/Projects/BundleExample/BundleExample.bundle";

NSBundle *bundleToLoad = [NSBundle bundleWithPath:path];

if (exampleClass = [bundleToLoad principalClass]) {

newInstance = [[exampleClass alloc] init];

[newInstance doSomething];

}

}

See also: – classNamed:, – infoDictionary , – load



14

resourcePath
– (NSString *)resourcePath

Returns the full pathname of the receiving bundle’s subdirectory containing resources.

See also: – bundlePath

Notifications

The following notification is declared and posted by NSBundle. 

NSBundleDidLoadNotification

This notification contains a notification object and a userInfo dictionary. The notification object is the 
NSBundle that dynamically loads classes. The userInfo dictionary contains these keys and values:

NSBundle posts NSBundleDidLoadNotification to notify observers which classes have been dynamically 
loaded. When a request is made to an NSBundle for a class (classNamed: or principalClass), the bundle 
dynamically loads the executable code file that contain the class implementation and all other class 
definitions contained in the file. After the module is loaded, the NSBundle posts a notification with a 
userInfo dictionary containing all classes that were loaded.

In a typical use of this notification, an object might want to enumerate the userInfo NSArray to check if 
each loaded class conformed to a certain protocol (say, a protocol for a plug-and-play tool set); if a class 
does conform, the object would create an instance of that class and add the instance to another NSArray.

Key Value

NSLoadedClasses
An NSArray containing the names (as NSStrings) of each class that 
was loaded



1

 Classes: NSCalendarDate

NSCalendarDate

Inherits From: NSDate : NSObject

Conforms To: NSCoding, NSCopying (NSDate) 
NSObject (NSObject) 

Declared In: Foundation/NSDate.h 

Class Description 

NSCalendarDate is a public subclass of NSDate that creates concrete date objects for western calendars. 
These objects have time zones and calendar formats as attributes and are especially suited for representing 
and manipulating dates according to western calendrical systems. 

An NSCalendarDate object stores a date as the number of seconds relative to the absolute reference date 
(the first instance of 1 January 2001, GMT). It uses an NSTimeZone object to adjust the visible 
representation of that date to reflect its associated time zone. The time zone object only affects the way the 
date is displayed; it does not affect the value stored. Because the value is stored independent of the time 
zone, you can accurately compare NSCalendarDates with any other NSDate objects or use them to create 
other NSDate objects. It also means that you can track an NSCalendarDate object across different time 
zones; that is, as you can change the NSTimeZone object to see how the particular date is represented in 
that time zone. 

NSCalendarDate provides both class and instance methods for creating objects. Some of these methods 
allow you to initialize NSCalendarDate objects from strings while others create objects from sets of integers 
corresponding the standard time values (months, hours, seconds, and so on). 

To retrieve conventional elements of an NSCalendarDate object, use the …Of… methods. For example, 
dayOfWeek returns a number that indicates the day of the week (0 is Sunday). The monthOfYear method 
returns a number between 1 and 12 that indicates the month.

NSCalendarDate performs date computations based on western calendrical systems, primarily the 
Gregorian. (The algorithms are derived from public domain software described in “Calendrical 
Calculations,” a two-part series by Nachum Dershowitz and Edward M Reingold in Software — Practice 
and Experience). 

The Calendar Format

Each NSCalendarDate object has a calendar format associated with it. This format is a string that contains 
date-conversion specifiers that are very similar to those used in the standard C library function strftime() . 
NSCalendarDate interprets dates that are represented as strings conforming to this format. You can set the 



2

default format for an NSCalendarDate object at initialization time or using the setCalendarFormat: 
method. Several methods allow you to specify formats other than the one bound to the object.

The date conversion specifiers cover a range of date conventions:

Conversion Specifier Description

%% a '%' character

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c shorthand for %X %x, the locale format for date and time

%d day of the month as a decimal number (01-31) 

%e
same as %d but does not print the leading 0 for days 1 
through 9

%F milliseconds as a decimal number (000-999)

%H hour based on a 24-hour clock as a decimal number (00-23) 

%I hour based on a 12-hour clock as a decimal number (01-12)

%j day of the year as a decimal number (001-366) 

%m month as a decimal number (01-12) 

%M minute as a decimal number (00-59) 

%p AM/PM designation for the locale

%S second as a decimal number (00-59) 

%w weekday as a decimal number (0-6), where Sunday is 0

%x date using the date representation for the locale

%X time using the time representation for the locale

%y year without century (00-99) 

%Y year with century (such as 1990)



3

 Classes: NSCalendarDate

NSString Representations for NSCalendarDates

NSCalendarDate provides several description... methods for representing dates as strings. These 
methods—description, descriptionWithLocale:, descriptionWithCalendarFormat: , and 
descriptionWithCalendarFormat:locale:—take an implicit or explicit calendar format. The user’s locale 
information affects the returned string. NSCalendarDate accesses the locale information as an 
NSDictionary. If you use descriptionWithLocale: or descriptioƒnWithCalendarFormat:locale:, you can 
specify a different locale dictionary. The following keys in the locale dictionary affect NSCalendarDates: 

If you subclass NSCalendarDate and override description, you should also override 
descriptionWithLocale:. NSString’s stringWithFormat:  method uses descriptionWithLocale: instead 
of description when you use the %@ conversion specifier to print an NSCalendarDate. That is, this 
message:

[NSString stringWithFormat:@"The current date and time are %@", 

[MyNSCalendarDateSubclass date]]

%Z time zone abbreviation (such as PDT)

%z time zone offset in hours and minutes from GMT (HHMM)

Locale Key Description

NSTimeDateFormatString

Specifies how dates with times are printed, affecting strings 
that use the format specifiers %c, %X, or %x. The default is 
to use abbreviated months and days with a 24 hour clock, as 
in “Sun Jan 01 23:00:00 +6 2001”.

NSAMPMDesignation
Specifies how the morning and afternoon designations are 
printed, affecting strings that use the %p format specifier. The 
default is AM and PM.

NSMonthNameArray
Specifies the names for the months, affecting strings that use 
the %B format specifier.

NSShortMonthNameArray
Specifies the abbreviations for the months, affecting strings 
that use the %b format specifier.

NSWeekDayNameArray
Specifies the names for the days of the week, affecting 
strings that use the %A format specifier.

NSShortWeekDayNameArray
Specifies the abbreviations for the days of the week, affecting 
strings that use the %a format specifier.

Conversion Specifier Description



4

will invoke descriptionWithLocale:. 

Method Types

Creating an NSCalendarDate instance
+ calendarDate
+ dateWithString:calendarFormat:
+ dateWithString:calendarFormat:locale:
+ dateWithYear:month:day:hour:minute:second:timeZone:
– initWithString:
– initWithString:calendarFormat:
– initWithString:calendarFormat:locale:
– initWithYear:month:day:hour:minute:second:timeZone:

Retrieving date elements
– dayOfMonth
– dayOfWeek
– dayOfYear
– hourOfDay
– minuteOfHour
– monthOfYear
– secondOfMinute
– yearOfCommonEra
– dayOfCommonEra

Adjusting a date
– dateByAddingYears:months:days:hours:minutes:seconds: 

Computing date intervals
– years:months:days:hours:minutes:seconds:sinceDate:

Representing dates as NSStrings
– description
– descriptionWithCalendarFormat:
– descriptionWithCalendarFormat:locale:
– descriptionWithLocale:

Getting and setting calendar formats
– setCalendarFormat:
– calendarFormat

Setting time zones
– setTimeZone:



5

 Classes: NSCalendarDate

Class Methods 

calendarDate
+ (id)calendarDate 

Creates and returns an NSCalendarDate initialized to the current date and time.

See also:  + date (NSDate)

dateWithString:calendarFormat:
+ (id)dateWithString: (NSString *)description calendarFormat:(NSString *)format 

Creates and returns an NSCalendarDate initialized with the date specified in the string description. 
NSCalendarDate uses format both to interpret the description string and as the default calendar format for 
this new object. format consists of conversion specifiers similar to those used in strftime() . See the class 
description for a discussion of date conversion specifiers. If description does not match format exactly, this 
method returns nil .

For example, let’s say your company’s convention for dates on correspondence takes the form “Friday, 1 
July 1994, 11:45 AM.” To get an NSCalendarDate object with a temporal value corresponding to this string, 
you would use this statement: 

NSCalendarDate *today = [NSCalendarDate 

dateWithString:@"Friday, 1 July 1994, 11:45 AM" 

calendarFormat:@"%A, %d %B %Y, %I:%M %p"];

If you include a time zone in the description argument, this method verifies it and can substitute an 
alternative time zone. If the method does supply a new time zone, it applies the difference in 
offsets-from-GMT values between the substituted and the original time zone to the NSCalendarDate being 
created.

See also: + dateWithString:calendarFormat:locale:, – calendarFormat, – initWithString:
calendarFormat: 

dateWithString:calendarFormat:locale:
+ (id)dateWithString: (NSString *)description 

calendarFormat:(NSString *)format 
locale:(NSDictionary *)locale 

Creates and returns an NSCalendarDate initialized with the date specified in the string description. 
NSCalendarDate uses format both to interpret the description string and as the default calendar format for 
this new object. format consists of conversion specifiers similar to those used in strftime() . The keys and 
values that represent the locale data in locale are used when parsing the string. See the class description for 



6

a list of the date conversion specifiers and appropriate locale dictionary keys. If description does not match 
format exactly, this method returns nil .

If you include a time zone in the description argument, this method verifies it and can substitute an 
alternative time zone. If the method does supply a new time zone, it applies the difference in 
offsets-from-GMT values between the substituted and the original time zone to the NSCalendarDate being 
created.

See also: + dateWithString:calendarFormat: , – calendarFormat, – initWithString:calendarFormat:
locale: 

dateWithYear:month:day:hour:minute:second:timeZone:
+ (id)dateWithYear: (int)year 

month:(unsigned int)month 
day:(unsigned int)day 
hour: (unsigned int)hour 
minute:(unsigned int)minute 
second:(unsigned int)second 
timeZone:(NSTimeZone *)aTimeZone 

Creates and returns an NSCalendarDate initialized with the specified values for year, month, day, hour, 
minute, and second and the NSTimeZone object. The year value must include the century (for example, 
1995 instead of 95). The other values are the standard ones: 1 through 12 for months, 1 through 31 for days, 
0 through 23 for hours and 0 through 59 for both minutes and seconds. 

The method verifies the time zone aTimeZone and can substitute an alternative time zone. If the method does 
supply a new time zone, it applies the difference in offsets-from-GMT values between the substituted and 
the original time zone to the NSCalendarDate being created.

The following code fragment shows an NSCalendarDate created with a date on the fourth of July, 9 PM, 
Eastern Standard Time (timeZoneWithName: returns the NSTimeZone object that represents the time zone 
with the specified name).

NSCalendarDate *fireworks = [NSCalendarDate dateWithYear:1994 month:7 

day:4 hour:21 minute:0 second:0 

timeZone:[NSTimeZone timeZoneWithName:@"EST"]];

See also: – initWithYear:month:day:hour:minute:second:timeZone:



7

 Classes: NSCalendarDate

Instance Methods

calendarFormat
– (NSString *)calendarFormat 

Returns the receiver’s default calendar format (used when the format is unspecified). You can set this format 
when you create the NSCalendarDate using one of the class methods dateWithString:calendarFormat:  or 
dateWithString:calendarFormat:locale:, or you can change the format using the instance method 
setCalendarFormat:. If you do not specify a default calendar format, NSCalendarDate substitutes its own 
default: an international format of “%Y-%m-%d %H:%M:%S %z” (for example, 1994-01-14 16:45:12 
+0900). See the class description for a discussion of date conversion specifiers.

See also: – description, – descriptionWithLocale: 

dateByAddingYears:months:days:hours:minutes:seconds: 
– (NSCalendarDate *)dateByAddingYears:(int)year 

months:(int)month 
days:(int)day 
hours:(int)hour 
minutes:(int)minute 
seconds:(int)second 

Returns an NSCalendarDate that is updated with the year, month, day, hour, minute, and second offsets 
specified as arguments. The offsets can be positive (future) or negative (past). This method preserves “clock 
time” across changes in Daylight Savings Time zones and leap years. For example, adding one month to an 
NSCalendarDate with a time of 12 noon correctly maintains time at 12 noon.

The following code fragment shows an NSCalendarDate created with a date a week later than an existing 
NSCalendarDate.

NSCalendarDate *now = [NSCalendarDate calendarDate];

NSCalendarDate *nextWeek = [now dateByAddingYears:0 months:0 days:7 hours:0 

minutes:0 seconds:0];

See also: – years:months:days:hours:minutes:seconds:sinceDate: 

dayOfCommonEra
– (int)dayOfCommonEra 

Returns the number of days since the beginning of the Common Era. The base year of the Common Era is 
1 A.C.E. (which is the same as 1 A.D.).

See also: – dayOfMonth , – dayOfWeek, – dayOfYear, – hourOfDay, – minuteOfHour , 
– monthOfYear, – secondOfMinute, – yearOfCommonEra



8

dayOfMonth
– (int)dayOfMonth  

Returns a number that indicates the day of the month (1 through 31) of the receiver.

See also: – dayOfCommonEra, – dayOfWeek, – dayOfYear, – hourOfDay, – minuteOfHour , 
– monthOfYear, – secondOfMinute, – yearOfCommonEra

dayOfWeek
– (int)dayOfWeek 

Returns a number that indicates the day of the week (0 through 6) of the receiver; 0 indicates Sunday.

See also: – dayOfCommonEra, – dayOfMonth , – dayOfYear, – hourOfDay, – minuteOfHour , 
– monthOfYear, – secondOfMinute, – yearOfCommonEra

dayOfYear
– (int)dayOfYear 

Returns a number that indicates the day of the year (1 through 366) of the receiver.

See also: – dayOfCommonEra, – dayOfMonth , – dayOfWeek, – hourOfDay, – minuteOfHour , 
– monthOfYear, – secondOfMinute, – yearOfCommonEra

description
– (NSString *)description 

Returns a string representation of the receiver. The string is formatted as specified by the receiver’s default 
calendar format. You can find out what the default calendar format is using the method calendarFormat. 

Because NSCalendarDate implements descriptionWithLocale:, descriptionWithLocale: is used to print 
the date when you use the %@ conversion specifier. That is, the following statement invokes 
descriptionWithLocale:, not description. 

NSLog(@"The current date and time is %@", [NSCalendarDate date]);

See also: – descriptionWithCalendarFormat: , – descriptionWithCalendarFormat:locale:, 
– descriptionWithLocale:, – setCalendarFormat: 



9

 Classes: NSCalendarDate

descriptionWithCalendarFormat:
– (NSString *)descriptionWithCalendarFormat: (NSString *)format 

Returns a string representation of the receiver. The string is formatted as specified by the conversion 
specifiers in the calendar format string format. The conversion specifiers cover a range of date conventions. 
See the class description for a listing of these specifiers.

This example displays the current date formatted as “Tues 3/1/94 3:30 PM” in a text field:

NSCalendarDate *now = [NSCalendarDate calendarDate];

NSString *datestr = 

[now descriptionWithCalendarFormat:@"%a %m/%d/%y %I:%M %p"];

[dateField setStringValue:datestr];

See also: – description, – descriptionWithCalendarFormat:locale:, – descriptionWithLocale: 

descriptionWithCalendarFormat:locale:
– (NSString *)descriptionWithCalendarFormat: (NSString *)format locale:(NSDictionary *)locale 

Returns a string representation of the receiver. The string is formatted according to the conversion specifiers 
in format and represented according to the locale information in locale. See the class description for a list 
of the date conversion specifiers and appropriate locale dictionary keys.

See also: – description, – descriptionWithCalendarFormat: , – descriptionWithLocale: 

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale 

Returns a string representation of the receiver. The string is formatted as specified by the receiver’s default 
calendar format and represented according to the locale information in locale. You can find out what the 
default calendar format is using the method calendarFormat. See the class description for a list of the 
locale dictionary keys that affect calendar formats.

This method is used to print the NSCalendarDate when the %@ conversion specifier is used. That is, this 
statement invokes descriptionWithLocale:. 

NSLog(@"The current date and time is %@", [NSCalendarDate date]);

See also: – description, – descriptionWithCalendarFormat: , – descriptionWithCalendarFormat:
locale:, – setCalendarFormat: 



10

hourOfDay
– (int)hourOfDay 

Returns the hour value (0 through 23) of the receiver. On Daylight Savings “fall back” days, a value of 1 is 
returned for two consecutive hours, but with a different time zone (the first in daylight savings time and the 
second in standard time).

See also: – dayOfCommonEra, – dayOfMonth , – dayOfWeek, – dayOfYear, – minuteOfHour , 
– monthOfYear, – secondOfMinute, – yearOfCommonEra

initWithString:
– (id)initWithString: (NSString *)description

Returns an NSCalendarDate initialized with the date specified as a string in description. The description 
string must conform to the default calendar format “%Y-%m-%d %H:%M:%S %z” (for example, 
1994-01-14 16:45:12 +0900). If description does not match this format exactly, this method returns nil . See 
the class description for a discussion of date conversion specifiers.

See also: + dateWithString:  (NSDate)

initWithString:calendarFormat:
– (id)initWithString: (NSString *)description calendarFormat:(NSString *)format 

Returns an NSCalendarDate initialized with the date specified as a string in description. This method uses 
format both to interpret the description string and as the default calendar format for this object. format 
consists of conversion specifiers similar to those used in strftime() . See the class description for a listing of 
these specifiers. If description does not match format exactly, this method returns nil .

If you include a time zone in the description argument, this method verifies it and can substitute an 
alternative time zone. If the method does supply a new time zone, it applies the difference in 
offsets-from-GMT values between the substituted and the original time zone to the NSCalendarDate being 
created.

For example, let’s assume you want to initialize an NSCalendarDate object with a string obtained from a 
text field. This date string takes the form “03.21.94 22:00 PST”:

NSCalendarDate *newDate = [[[NSCalendarDate alloc] 

initWithString:[dateField stringValue] 

calendarFormat:@"%m.%d.%y %H:%M %Z"] autorelease];

See also: + dateWithString:calendarFormat:, – calendarFormat 



11

 Classes: NSCalendarDate

initWithString:calendarFormat:locale:
– (id)initWithString: (NSString *)description 

calendarFormat:(NSString *)format 
locale:(NSDictionary *)locale 

Returns an NSCalendarDate initialized with the date specified in the string description. NSCalendarDate 
uses format both to interpret the description string and as the default calendar format for this object. format 
consists of conversion specifiers similar to those used in strftime() . The keys and values that represent the 
locale data from locale are used when parsing the string. See the class description for a list of the date 
conversion specifiers and appropriate locale dictionary keys.

If you include a time zone in the description argument, this method verifies it and can substitute an 
alternative time zone. If the method does supply a new time zone, it applies the difference in 
offsets-from-GMT values between the substituted and the original time zone to the NSCalendarDate being 
created.

If you specify a locale dictionary that has a month name array with more than 12 elements or a day name 
array with more than 7 arguments, initWithString:calendarFormat:locale:  returns nil . 

See also: + dateWithString:calendarFormat:locale:, – calendarFormat 

initWithYear:month:day:hour:minute:second:timeZone:
– (id)initWithYear: (int)year 

month:(unsigned int)month 
day:(unsigned int)day 
hour: (unsigned int)hour 
minute:(unsigned int)minute 
second:(unsigned int)second 
timeZone:(NSTimeZone *)aTimeZone 

Returns an NSCalendarDate initialized with the specified values for year, month, day, hour, minute, and 
second and the NSTimeZone object. The year value must include the century (for example, 1995 instead of 
95). The other values are the standard ones: 1 through 12 for months, 1 through 31 for days, 0 through 23 
for hours and 0 through 59 for both minutes and seconds. 

The method verifies the time zone supplied as an argument and can substitute an alternative time zone. If 
the method does supply a new time zone, it applies the difference in offsets-from-GMT values between the 
substituted and the original time zone to the NSCalendarDate being created.

The following code fragment shows an NSCalendarDate created with a date on the fourth of July, 9 PM, 
Eastern Standard Time (timeZoneWithName: returns the NSTimeZone object that represents the time zone 
with the specified name).



12

NSCalendarDate *fireworks = [[[NSCalendarDate alloc] initWithYear:1994 

month:7 day:4 hour:21 minute:0 second:0 

timeZone:[NSTimeZone timeZoneWithName:@"EST"]] autorelease];

See also: + dateWithYear:month:day:hour:minute:second:timeZone: 

minuteOfHour
– (int)minuteOfHour  

Returns the minutes value (0 through 59) of the receiver.

See also: – dayOfCommonEra, – dayOfMonth , – dayOfWeek, – dayOfYear, – hourOfDay, 
– monthOfYear, – secondOfMinute, – yearOfCommonEra

monthOfYear
– (int)monthOfYear 

Returns a number that indicates the month of the year (1 through 12) of the receiver.

See also: – dayOfCommonEra, – dayOfMonth , – dayOfWeek, – dayOfYear, – hourOfDay, 
– minuteOfHour , – secondOfMinute, – yearOfCommonEra

secondOfMinute
– (int)secondOfMinute 

Returns the seconds value (0 through 59) of the receiver.

See also: – dayOfCommonEra, – dayOfMonth , – dayOfWeek, – dayOfYear, – hourOfDay, 
– minuteOfHour , – monthOfYear, – yearOfCommonEra

setCalendarFormat:
– (void)setCalendarFormat:(NSString *)format 

Sets the default calendar format for the receiver. A calendar format is a string formatted with 
date-conversion specifiers listed in the class description. If you do not specify a calendar format for an 
object, NSCalendarDate substitutes its own default. This is the international format of “%Y-%m-%d %H:
%M:%S %z” (for example, 1994-01-14 16:45:12 +0900). 

See also: – calendarFormat, – description, – descriptionWithLocale:



13

 Classes: NSCalendarDate

setTimeZone:
– (void)setTimeZone:(NSTimeZone *)aTimeZone 

Sets the time zone for the receiver. If you do not specify a time zone for an object at initialization time, 
NSCalendarDate uses the default time zone for the locale. Use this method to set it to another time zone.

See also: – timeZone

timeZone
– (NSTimeZone *)timeZone

Returns the time zone object associated with the receiver. You can set the time zone when you create the 
NSCalendarDate using the class methods dateWithString:calendarFormat:  or dateWithString:
calendarFormat:locale: by including the time zone in the description and format arguments. Or you can 
explicitly set the time zone to an NSTimeZone object using dateWithYear:month:day:hour:minute:
second:timeZone:. If you do not specify a time zone for an object at initialization time, NSCalendarDate 
uses the default time zone for the locale.

See also: – setTimeZone: 

yearOfCommonEra
– (int)yearOfCommonEra 

Returns a number that indicates the year, including the century, of the receiver (for example, 1995). 
The base year of the Common Era is 1 A.C.E. (which is the same as 1 A.D).

See also: – dayOfCommonEra, – dayOfMonth , – dayOfWeek, – dayOfYear, – hourOfDay, 
– minuteOfHour , – monthOfYear, – secondOfMinute

years:months:days:hours:minutes:seconds:sinceDate:
– (void)years:(int *)yearsPointer 

months:(int *)monthsPointer 
days:(int *)daysPointer 
hours:(int *)hoursPointer 
minutes:(int *)minutesPointer 
seconds:(int *)secondsPointer 
sinceDate:(NSCalendarDate *)date 

Computes the calendrical time difference between the receiver and date and returns it in yearsPointer, 
monthsPointer, daysPointer, hoursPointer, minutesPointer, and secondsPointer. You can choose any 
representation you wish for the time difference by passing NULL for the arguments you want to ignore. For 



14

example, the following code fragment computes the difference in months, days, and years between two 
dates:

NSCalendarDate *momsBDay = [NSCalendarDate dateWithYear:1936 

month:1 day:8 hour:7 minute:30 second:0 

timeZone:[NSTimeZone timeZoneWithName:@"EST"]];

NSCalendarDate *dateOfBirth = [NSCalendarDate dateWithYear:1965 

month:12 day:7 hour:17 minute:25 second:0 

timeZone:[NSTimeZone timeZoneWithName:@"EST"]];

int years, months, days; 

[dateOfBirth years:&years months:&months days:&days hours:NULL 

minutes:NULL seconds:NULL sinceDate:momsBDay];

This message returns 29 years, 10 months, and 29 days. If you want to express the years in terms of months, 
you pass NULL for the years argument:

[dateOfBirth years:NULL months:&months days:&days hours:NULL 

minutes:NULL seconds:NULL sinceDate:momsBDay];

This message returns 358 months and 29 days. 

See also: – dateByAddingYears:months:days:hours:minutes:seconds: 



1

 Classes: NSCharacterSet Class Cluster

c NSCharacterSet Class Cluster

Class Cluster Description

An NSCharacterSet object represents a set of Unicode characters. NSString and NSScanner objects use 
NSCharacterSets to group characters together for searching operations, so that they can find any of a 
particular set of characters during a search. The cluster’s two public classes, NSCharacterSet and 
NSMutableCharacterSet, declare the programmatic interface for static and dynamic character sets, 
respectively.

The objects you create using these classes are referred to as character set objects (and when no confusion 
will result, merely as character sets). Because of the nature of class clusters, character set objects aren’t 
actual instances of the NSCharacterSet or NSMutableCharacterSet classes but of one of their private 
subclasses. Although a character set object’s class is private, its interface is public, as declared by these 
abstract superclasses, NSCharacterSet and NSMutableCharacterSet. The character set classes adopt the 
NSCopying and NSMutableCopying protocols, making it convenient to convert a character set of one type 
to the other.

Building a Character Set

NSCharacterSet defines class methods that return commonly used character sets, such as letters (uppercase 
or lowercase), decimal digits, whitespace, and so on. These “standard” character sets are always immutable, 
even if created by sending a message to NSMutableCharacterSet. See ““Standard Character Sets and 
Unicode Definitions”” below for more information on standard character sets.

You can use a standard character set as a starting point for building a custom set by making a mutable copy 
of it and changing that. (You can also start from scratch by creating a mutable character set with alloc and 
init  and adding characters to it.) For example, this fragment creates a character set containing letters, digits, 
and basic punctuation:

NSMutableCharacterSet *workingSet;

NSCharacterSet *finalCharSet;

workingSet = [[NSCharacterSet alphanumericCharacterSet] mutableCopy];

[workingSet addCharactersInString:@";:,."];

finalCharSet = [workingSet copy];

[workingSet release];

For performance reasons (explained in ““Using a Character Set””), always finish by converting the working 
mutable character set into an immutable set. If you need to keep changing the character set after you’ve 
created it, of course, you should just use the mutable set.

If your application frequently uses a custom character set, you’ll want to save its definition in a resource 
file and load that instead of explicitly adding individual characters each time you need to create the set. You 



2

can save a character set by getting its bitmap representation (an NSData object) and saving that object to a 
file:

NSString *filename;    /* Assume this exists. */

NSString *absolutePath;

NSData *charSetRep;

BOOL result;

absolutePath = [filename stringByStandardizingPath];

charSetRep = [finalCharSet bitmapRepresentation];

result = [charSetRep writeToFile:absolutePath atomically:YES];

Character set filenames by convention use the extension .bitmap. If you intend for others to use your 
character set files, you should follow this convention. To read a character set file with a .bitmap extension, 
simply use the characterSetWithContentsOfFile: method.

Using a Character Set

A character set object doesn’t perform any tasks; it simply holds a set of character values to limit operations 
on strings. The NSString and NSScanner classes define methods that take NSCharacterSets as arguments 
to find any of several characters. For example, this code excerpt finds the range of the first uppercase letter 
in myString:

NSString *myString = @"some text in an NSString...";

NSRange letterRange;

letterRange = [myString rangeOfCharacterFromSet:[NSCharacterSet

    uppercaseLetterCharacterSet]];

After this fragment executes, letterRange.location is equal to the index of the first “N” in “NSString” after 
rangeOfCharacterFromSet: is invoked. If the first letter of the string were “S” then letterRange.location 
would be 0.

Because character sets often participate in performance-critical code, you should be aware of the aspects of 
their use that can affect the performance of your application. Mutable character sets are generally much 
more expensive than immutable character sets. They consume more memory and are costly to invert (an 
operation often performed in scanning a string). Because of this, you should follow these guidelines:

• Create as few mutable character sets as possible.

• Cache character sets (in a global dictionary, perhaps) instead of continually recreating them.

• When creating a custom set that doesn’t need to change after creation, make an immutable copy of the 
final character set for actual use, and dispose of the working mutable character set. Alternatively, create 
a character set file as described in ““Building a Character Set”” and store it in your application’s main 
bundle.



3

 Classes: NSCharacterSet Class Cluster

• Similarly, avoid archiving character set objects; store them in character set files instead. Archiving can 
result in a character set being duplicated in different archive files, resulting in wasted disk space and 
duplicates in memory for each separate archive read.

Standard Character Sets and Unicode Definitions

The standard character sets, such as that returned by letterCharacterSet, are formally defined in terms of 
the normative and informative categories established by the Unicode standard, such as Uppercase Letter, 
Combining Mark, and so on. The formal definition of a standard character set is in most cases given as one 
or more of the categories defined in the standard. For example, the set returned by 
lowercaseLetterCharacterSet include all characters in normative category Lowercase Letters, while the 
set returned by letterCharacterSet includes the characters in all of the Letter categories.

Note that the definitions of the categories themselves may change with new versions of the Unicode 
standard. You can download the files that define category membership from http://www.unicode.org/. 



4

i NSCharacterSet

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSCharacterSet class declares the programmatic interface for an object that manages a set of Unicode 
characters (see the NSString class cluster specification for information on Unicode). NSCharacterSet’s 
principal primitive method, characterIsMember:, provides the basis for all other instance methods in its 
interface. A subclass of NSCharacterSet needs only to implement this method, plus 
mutableCopyWithZone:, for proper behavior. For optimal performance, a subclass should also override 
bitmapRepresentation which otherwise works by invoking characterIsMember: for every possible 
Unicode value.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

NSMutableCopying
– mutableCopyWithZone:



5

 Classes: NSCharacterSet Class Cluster

Method Types

Creating a standard character set
+ alphanumericCharacterSet
+ controlCharacterSet
+ decimalDigitCharacterSet
+ decomposableCharacterSet
+ illegalCharacterSet
+ letterCharacterSet
+ lowercaseLetterCharacterSet
+ nonBaseCharacterSet
+ punctuationCharacterSet
+ uppercaseLetterCharacterSet
+ whitespaceAndNewlineCharacterSet
+ whitespaceCharacterSet

Creating a custom character set
+ characterSetWithRange:
+ characterSetWithCharactersInString:
+ characterSetWithBitmapRepresentation:

Opening a character set file
+ characterSetWithContentsOfFile:

Testing set membership
– characterIsMember:

Inverting a character set
– invertedSet

Getting a binary representation
– bitmapRepresentation

Class Methods

alphanumericCharacterSet
+ (NSCharacterSet *)alphanumericCharacterSet

Returns a character set containing the characters in the categories Letters, Marks, and Numbers. Informally, 
this is the set of all characters used as basic units of alphabets, syllabaries, ideographs, and digits.

See also: + letterCharacterSet, + decimalDigitCharacterSet



6

characterSetWithBitmapRepresentation:
+ (NSCharacterSet *)characterSetWithBitmapRepresentation:(NSData *)data

Returns a character set containing characters determined by the bitmap representation data. This method is 
useful for creating a character set object with data from a file or other external data source.

A raw bitmap representation of a character set is a byte array of 216 bits (that is, 8192 bytes). The value of 
the bit at position n represents the presence in the character set of the character with decimal Unicode value 
n. To add a character with decimal Unicode value n to a raw bitmap representation, use a statement such as:

unsigned char bitmapRep[8192];

bitmapRep[n >> 3] |= (((unsigned int)1) << (n & 7));

To remove that character:

bitmapRep[n >> 3] &= ~(((unsigned int)1) << (n & 7));

See also: – bitmapRepresentation, + characterSetWithContentsOfFile:

characterSetWithCharactersInString:
+ (NSCharacterSet *)characterSetWithCharactersInString:(NSString *)aString

Returns a character set containing the characters in aString. Returns an empty character set if aString is 
empty.

characterSetWithContentsOfFile:
+ (NSCharacterSet *)characterSetWithContentsOfFile:(NSString *)path

Returns a character set read from the bitmap representation stored in the file at path, which must end with 
the extension .bitmap. To read a bitmap representation from any file, use NSData’s 
dataWithContentsOfFile: method and pass the result to characterSetWithBitmapRepresentation:.

This method doesn’t perform filename-based uniquing of the character sets it creates. To prevent 
duplication of character sets in memory, cache them and make them available through an API that checks 
whether the requested set has already been loaded.

characterSetWithRange:
+ (NSCharacterSet *)characterSetWithRange:(NSRange)aRange

Returns a character set containing characters whose Unicode values are given by aRange. aRange.location 
is the value of the first character, and aRange.location + aRange.length – 1 is the value of the last. Returns 
an empty character set if aRange.length is 0.



7

 Classes: NSCharacterSet Class Cluster

This code excerpt creates a character set object containing the lowercase English alphabetic characters:

NSRange lcEnglishRange;

NSCharacterSet *lcEnglishLetters;

lcEnglishRange.location = (unsigned int)’a’;

lcEnglishRange.length = 26;

lcEnglishLetters = [NSCharacterSet characterSetWithRange:lcEnglishRange];

controlCharacterSet
+ (NSCharacterSet *)controlCharacterSet

Returns a character set containing the characters in the categories of Control or Format Characters. These 
are specifically the Unicode values U+0000 to U+001F and U+007F to U+009F.

See also: + illegalCharacterSet

decimalDigitCharacterSet
+ (NSCharacterSet *)decimalDigitCharacterSet

Returns a character set containing the characters in the category of Decimal Numbers. Informally, this is 
the set of all characters used to represent the decimal values 0 through 9. These include, for example, the 
decimal digits of the Indic scripts and Arabic.

See also: + alphanumericCharacterSet

decomposableCharacterSet
+ (NSCharacterSet *)decomposableCharacterSet

Returns a character set containing all individual Unicode characters that can also be represented as 
composed character sequences (such as for letters with accents), by the definition of “standard 
decomposition” in version 1.1 of the Unicode character encoding standard. These include compatibility 
characters as well as precomposed characters.

Note: This character set doesn’t currently include the Hangul characters defined in version 2.0 of the 
Unicode standard.

See also: + nonBaseCharacterSet



8

illegalCharacterSet
+ (NSCharacterSet *)illegalCharacterSet

Returns a character set containing values in the category of Non-Characters, or that have not yet been 
defined in version 2.0 of the Unicode standard.

See also: + controlCharacterSet

letterCharacterSet
+ (NSCharacterSet *)letterCharacterSet

Returns a character set containing the characters in the categories Letters and Marks. Informally, this is the 
set of all characters used as letters of alphabets and ideographs.

See also: + alphanumericCharacterSet, + lowercaseLetterCharacterSet, 
+ uppercaseLetterCharacterSet

lowercaseLetterCharacterSet
+ (NSCharacterSet *)lowercaseLetterCharacterSet

Returns a character set containing the characters in the category of Lowercase Letters. Informally, this is 
the set of all characters used as lowercase letters in alphabets which make case distinctions.

See also: + uppercaseLetterCharacterSet, + letterCharacterSet

nonBaseCharacterSet
+ (NSCharacterSet *)nonBaseCharacterSet

Returns a character set containing the characters in the category of Marks. This set is also defined as all 
legal Unicode characters with a non-spacing priority greater than zero. Informally, this is the set of all 
characters used as modifiers of base characters.

See also: + decomposableCharacterSet

punctuationCharacterSet
+ (NSCharacterSet *)punctuationCharacterSet

Returns a character set containing the characters in the category of Punctuation. Informally, this is the set 
of all non-whitespace characters used to separate linguistic units in scripts, such as periods, dashes, 
parentheses, and so on.



9

 Classes: NSCharacterSet Class Cluster

uppercaseLetterCharacterSet
+ (NSCharacterSet *)uppercaseLetterCharacterSet

Returns a character set containing the characters in the category of Uppercase Letters. Informally, this is 
the set of all characters used as uppercase letters in alphabets which make case distinctions.

See also: + lowercaseLetterCharacterSet, + letterCharacterSet

whitespaceAndNewlineCharacterSet
+ (NSCharacterSet *)whitespaceAndNewlineCharacterSet

Returns a character set containing only the whitespace characters space (U+0020) and tab (U+0009) and 
the newline character (U+000A).

See also: + whitespaceCharacterSet

whitespaceCharacterSet
+ (NSCharacterSet *)whitespaceCharacterSet

Returns a character set containing only the in-line whitespace characters space (U+0020) and tab (U+0009). 
This set doesn’t contain the newline or carriage return characters.

See also: + whitespaceAndNewlineCharacterSet

Instance Methods

bitmapRepresentation
– (NSData *)bitmapRepresentation

Returns an NSData object encoding the receiving character set in binary format. This format is suitable for 
saving to a file or otherwise transmitting or archiving.

A raw bitmap representation of a character set is a byte array of 216 bits (that is, 8192 bytes). The value of 
the bit at position n represents the presence in the character set of the character with decimal Unicode value 
n. To test for the presence of a character with decimal Unicode value n in a raw bitmap representation, use 
an expression such as:



10

unsigned char bitmapRep[8192];

if (bitmapRep[n >> 3] & (((unsigned int)1) << (n & 7))) {

    /* Character is present. */

}

See also: + characterSetWithBitmapRepresentation:

characterIsMember:
– (BOOL)characterIsMember:(unichar)aCharacter

Returns YES if aCharacter is in the receiving character set, NO if it isn’t.

invertedSet
– (NSCharacterSet *)invertedSet

Returns a character set containing only characters that don’t exist in the receiver. Inverting an immutable 
character set is much more efficient that inverting a mutable character set.

See also: – invert  (NSMutableCharacterSet)



11

 Classes: NSCharacterSet Class Cluster

i NSMutableCharacterSet

Inherits From: NSCharacterSet : NSObject

Conforms To: NSCoding (NSCharacterSet) 
NSCopying (NSCharacterSet) 
NSMutableCopying (NSCharacterSet) 
NSObject (NSObject)

Declared In: Foundation/NSCharacterSet.h

Class Description

The NSMutableCharacterSet class declares the programmatic interface to objects that manage a modifiable 
set of Unicode characters. You can add or remove characters from a mutable character set as numeric values 
in NSRanges or as character values in strings; combine character sets by union or intersection; and invert a 
character set.

Mutable character sets are less efficient to use than immutable character sets. If you don’t need to change 
a character set after creating it, create an immutable copy with copy and use that.

NSMutableCharacterSet defines no primitive methods. Subclasses must implement all methods declared 
by this class in addition to the primitives of NSCharacterSet. They must also implement 
mutableCopyWithZone:.

Method Types

Adding and removing characters
– addCharactersInRange:
– removeCharactersInRange:
– addCharactersInString:
– removeCharactersInString:

Combining character sets
– formIntersectionWithCharacterSet:
– formUnionWithCharacterSet:

Inverting a character set
– invert



12

Instance Methods

addCharactersInRange:
– (void)addCharactersInRange:(NSRange)aRange

Adds the characters whose integer values are given by aRange to the receiver. aRange.location is the value 
of the first character to add, aRange range.location + aRange.length – 1 is the value of the last. If 
aRange.length is 0 this method has no effect.

See also: – removeCharactersInRange:, – addCharactersInString:

addCharactersInString:
– (void)addCharactersInString:(NSString *)aString

Adds the characters in aString to those in the receiver. This method has no effect if aString is empty.

See also: – removeCharactersInString:, – addCharactersInRange:

formIntersectionWithCharacterSet:
– (void)formIntersectionWithCharacterSet: (NSCharacterSet *)otherSet

Modifies the receiver so that it contains only characters that exist in both the receiver and in otherSet.

See also: – formUnionWithCharacterSet:

formUnionWithCharacterSet:
– (void)formUnionWithCharacterSet: (NSCharacterSet *)otherSet

Modifies the receiver so that it contains all characters that exist in either the receiver or otherSet.

See also: – formIntersectionWithCharacterSet:

invert
– (void)invert

Replaces all of the characters in the receiver with all the characters it didn’t previously contain. Inverting a 
mutable character set, whether by invert  or by invertedSet, is much less efficient that inverting an 
immutable character set with invertedSet.

See also: – invertedSet (NSCharacterSet)



13

 Classes: NSCharacterSet Class Cluster

removeCharactersInRange:
– (void)removeCharactersInRange:(NSRange)aRange

Removes from the receiver the characters whose integer values are given by aRange. aRange.location is the 
value of the first character to remove, and aRange.location + aRange.length – 1 is the value of the last. If 
aRange.length is 0 this method has no effect.

See also: – addCharactersInRange:, – removeCharactersInString:

removeCharactersInString:
– (void)removeCharactersInString:(NSString *)aString

Removes the characters in aString from those in the receiver. This method has no effect if aString is empty.

See also: – addCharactersInString:, – removeCharactersInRange:



1

 Classes: NSCoder

NSCoder

Inherits From: NSObject

Conforms To: NSObject (NSObject) 

Declared In: Foundation/NSCoder.h
Foundation/NSGeometry.h
Foundation/NSCompatibility.h

Class Description

The NSCoder abstract class declares the interface used by concrete subclasses to transfer objects and other 
Objective-C data items between memory and some other format. This capability provides the basis for 
archiving (where objects and data items are stored on disk) and distribution (where objects and data items 
are copied between different processes or threads). The concrete subclasses provided by Foundation for 
these purposes are NSArchiver, NSUnarchiver, and NSPortCoder. Concrete subclasses of NSCoder are 
referred to in general as coder classes, and instances of these classes as coder objects (or simply coders). A 
coder object that can only encode values is referred to as an encoder object, and one that can only decode 
values as a decoder object.

NSCoder operates on id’s, scalars, C arrays, structures, and strings, and on pointers to these types. It does 
not handle types whose implementation varies across platforms, such as union, void *, function pointers, 
and long chains of pointers. It can also operate on user-defined structures as well as pointers to any of these 
data types. A coder object stores object type information along with the data, so an object decoded from a 
stream of bytes is normally of the same class as the object that was originally encoded into the stream. An 
object can change its class when encoded, however; this is described in the NSCoding protocol specification 
under ““Making Substitutions During Coding”.”

Encoding and Decoding Objects and Data Items

To encode or decode an object or data item, you must first create a coder object, then send it a message 
defined by NSCoder or by a concrete subclass to actually encode or decode the item. NSCoder itself defines 
no particular method for creating a coder; this typically varies with the subclass. NSArchiver and 
NSUnarchiver, for example, use initForWritingWithMutableData:  and initForReadingWithData: . 
NSPortCoders are created and used by NSConnection objects; you never create one of these yourself.

To encode an object or data item, use any of the encode... methods, such as encodeRootObject:, 
encodeValueOfObjCType:at:, and so on. This sample code fragment uses the NSArchiver concrete 
subclass of NSCoder to archive a custom object called myMapView:



2

MapView *myMapView;   /* Assume this exists. */

NSMutableData *data

NSArchiver *archiver;

BOOL result;

data = [NSMutableData data];

archiver = [[NSArchiver alloc] initForWritingWithMutableData:data];

[archiver encodeRootObject:myMapView];

result = [data writeToFile:@"/tmp/MapArchive" atomically:YES];

NSArchiver also provides a convenience method for archiving directly to a file, rendering the example 
above as:

result = [NSArchiver archiveRootObject:myMapView toFile:@"/tmp/MapArchive"];

To decode an object or data item, simply use the decode... method corresponding to the original encode... 
method (as given in the individual method descriptions). Matching these is important, as the method 
originally used determines the format of the encoded data. See the NSCoding protocol specification for an 
example.

NSCoder’s interface is quite general. Concrete subclasses aren’t required to properly implement all of 
NSCoder’s methods, and may explicitly restrict themselves to certain types of operations. For example, 
NSArchiver doesn’t implement the decode... methods, and NSUnarchiver doesn’t implement the encode... 
methods.

When to Retain a Decoded Object

You can decode an object value in two ways. The first is explicitly, using the decodeObject method (or any 
decode...Object method). When decoding an object explicitly you must follow the object ownership 
convention, and retain the object returned if you intend to keep it. Otherwise the object is owned by the 
coder and will be released when the coder is released.

The second means of decoding an object is implicitly, using the decodeValueOfObjCType:at: method or 
one of its variants, decodeArrayOfObjCType:count:at:  and decodeValuesOfObjCTypes:. These 
methods fill a value already claimed by the invoker, so you are responsible for releasing decoded object 
values. This behavior can prove useful for optimizing large decoding operations, as it obviates the need for 
sending a retain message to each decoded object.

Managing Object Graphs

Objects frequently contain pointers to other objects, which may in turn contain pointers to other objects. 
When analyzed, a group of objects may contain circular references or one object may be referred to by 
several other objects. In these cases, the objects form an object graph and require special encoding methods 
to preserve the graph structure. NSCoder declares the following methods to manage object graphs: 
encodeRootObject:, encodeObject:, and encodeConditionalObject:. 



3

 Classes: NSCoder

As implemented by a subclass, encodeRootObject: should encode the object and any objects to which it 
refers. It is the responsibility of the overriding encodeRootObject: method to keep track of multiple 
references to objects, thus preserving the structure of any object graphs.

The encodeConditionalObject: method allows an object to be excluded from the encoding process. 
Objects are encoded unconditionally by default, that is, the contents of the object are always encoded. 
Subclasses can implement encodeConditionalObject: to encode an object only if it was encoded 
previously by a call to a method other than encodeConditionalObject:.

NSCoder’s implementations of encodeRootObject: and encodeConditionalObject: simply encode the 
object unconditionally, whether or not it’s already been encoded. A concrete subclass that supports object 
graphs must override these two methods. See the NSArchiver class specification for more information on 
managing object graphs.

Creating a Subclass of NSCoder

If you define a subclass of NSCoder, at a minimum your subclass must override the following methods:

encodeValueOfObjCType:at:
decodeValueOfObjCType:at:
encodeDataObject:
decodeDataObject:
versionForClassName:

In addition, your subclass may override other methods to provide specialized handling for certain situations. 
In particular, you can implement any of the following methods:

(an initialization method)
encodeRootObject:
encodeConditionalObject:
encodeBycopyObject:
encodeByrefObject:
decodeObject
setObjectZone:
objectZone

See the individual method descriptions for more information. See also the NSArchiver class specification 
for an example of a concrete subclass.

Note that encodeObject: and decodeObject are not among the basic methods. They’re defined abstractly 
to invoke encodeValueOfObjCType:at: or decodeValueOfObjCType:at: with an Objective-C type code 
of “@”. Your implementations of the latter two methods must handle this case, invoking the object’s 
encodeWithCoder: or initWithCoder:  method and sending the proper substitution messages (as described 
in the NSCoding protocol specification) to the object before encoding it and after decoding it.

With objects, the object being coded is fully responsible for coding itself. However,a few classes hand this 
responsibility back to the coder object, either for performance reasons or because proper support depends 



4

on more information than the object itself has. The two notable classes in Foundation that do this are 
NSData and NSPort. NSData’s low-level nature makes optimization important. For this reason, an NSData 
object always asks its coder to handle its contents directly using the encodeDataObject: and 
decodeDataObject: methods described in this class specification. Similarly, an NSPort object asks its coder 
to handle it using the encodePortObject: and decodePortObject: methods (which only NSPortCoder 
implements). This is because an NSPort represents information kept in the operating system itself, which 
requires special handling for transmission to another process.

These special cases don’t affect users of coder objects, since the redirection is handled by the classes 
themselves in their NSCoding protocol methods. An implementor of a concrete coder subclass, however, 
must encode NSData and NSPort objects itself, and take care not to send an encodeWithCoder: or 
initWithCoder:  message to the NSData or NSPort object. Failure to do so can result in an infinite loop.

Method Types

Encoding data
– encodeArrayOfObjCType:count:at:
– encodeBycopyObject:
– encodeByrefObject:
– encodeBytes:length:
– encodeConditionalObject:
– encodeDataObject:
– encodeObject:
– encodePropertyList:
– encodePoint:
– encodeRect:
– encodeRootObject:
– encodeSize:
– encodeValueOfObjCType:at:
– encodeValuesOfObjCTypes:

Decoding data
– decodeArrayOfObjCType:count:at:
– decodeBytesWithReturnedLength:
– decodeDataObject
– decodeObject
– decodePropertyList
– decodePoint
– decodeRect
– decodeSize
– decodeValueOfObjCType:at:
– decodeValuesOfObjCTypes:



5

 Classes: NSCoder

Managing zones
– objectZone
– setObjectZone:

Getting version information
– systemVersion
– versionForClassName:

Instance Methods 

decodeArrayOfObjCType:count:at:
– (void)decodeArrayOfObjCType:(const char *)itemType

count:(unsigned int)count
at:(void *)address

Decodes an array of count items, whose Objective-C type is given by itemType. The items are decoded into 
the buffer beginning at address, which must be large enough to contain them all. itemType must contain 
exactly one type code. NSCoder’s implementation invokes decodeValueOfObjCType:at: to decode the 
entire array of items. If you use this method to decode an array of Objective-C objects, you are responsible 
for releasing each object.

This method matches an encodeArrayOfObjCType:count:at:  message used during encoding.

For information on creating an Objective-C type code suitable for itemType, see the Type Encoding section 
in Chapter 3: Objective-C Extensions of Object-Oriented Programming and the Objective-C Language.

See also: – decodeValuesOfObjCTypes:

decodeBytesWithReturnedLength:
– (void *)decodeBytesWithReturnedLength:(unsigned int *)numBytes

Decodes a buffer of data whose types are unspecified. NSCoder’s implementation invokes 
decodeValueOfObjCType:at: to decode the data as a series of bytes, which this method then places into 
a buffer and returns. The buffer’s length is returned by reference in numBytes. If you need the bytes beyond 
the scope of the current autorelease pool, you must copy them.

This method matches an encodeBytes:length: message used during encoding.

See also: – encodeArrayOfObjCType:count:at:



6

decodeDataObject
– (NSData *)decodeDataObject

Must be overridden by subclasses to decode and return an NSData object.

The implementation of your overriding method must match the implementation of your 
encodeDataObject: method. For example, a typical encodeDataObject: method encodes the number of 
bytes of data followed by the bytes themselves. Your override of this method must read the number of bytes, 
create an NSData object of the appropriate size, and decode the bytes into the new NSData object. Your 
overriding method should send an autorelease message to the new NSData object before returning it.

decodeObject
– (id)decodeObject

Decodes an Objective-C object that was previously encoded with any of the encode...Object: methods. 
NSCoder’s implementation invokes decodeValueOfObjCType: to decode the object data.

Subclasses may need to override this method if they override any of the corresponding encode...Object: 
methods. For example, if an object was encoded conditionally using the encodeConditionalObject: 
method, this method needs to check whether the object had actually been encoded. 

See also: – encodeBycopyObject:, – encodeByrefObject:, – encodeObject:

decodePoint
– (NSPoint)decodePoint

Decodes and returns an NSPoint structure that was previously encoded with encodePoint:. Subclasses 
should not override this method.

decodePropertyList
– (id)decodePropertyList

Decodes a property list that was previously encoded with encodePropertyList:. Subclasses should not 
override this method. See the NSPPL class specification for information on property lists. 

decodeRect
– (NSRect)decodeRect

Decodes and returns an NSRect structure that was previously encoded with encodeRect:. Subclasses 
should not override this method.



7

 Classes: NSCoder

decodeSize
– (NSSize)decodeSize

Decodes and returns an NSSize structure that was previously encoded with encodeSize:. Subclasses should 
not override this method.

decodeValueOfObjCType:at:
– (void)decodeValueOfObjCType:(const char *)valueType at:(void *)data

Decodes a single value, whose Objective-C type is given by valueType. valueType must contain exactly one 
type code and the buffer specified by data must be large enough to hold the value corresponding to that type 
code. For information on creating an Objective-C type code suitable for valueType, see the Type Encoding 
section in Chapter 3: Objective-C Extensions of Object-Oriented Programming and the Objective-C 
Language.

Subclasses must override this method and provide an implementation to decode the value. In your 
overriding implementation, decode the value into the buffer beginning at data. If your overriding method is 
capable of decoding an Objective-C object, your method must also retain that object. Clients of this method 
are then responsible for releasing the object.

This method matches an encodeValueOfObjCType:at: message used during encoding.

See also: – decodeArrayOfObjCType:count:at: , – decodeValuesOfObjCTypes:, – decodeObject

decodeValuesOfObjCTypes:
– (void)decodeValuesOfObjCTypes:(const char *)valueTypes, ...

Decodes a series of potentially different Objective-C types. valueTypes is a single string containing any 
number of type codes. The variable arguments to this method consist of one or more pointer arguments, 
each of which specifies the buffer in which to place a single decoded value. For each type code in 
valueTypes, you must specify a corresponding pointer argument whose buffer is large enough to hold the 
decoded value. If you use this method to decode Objective-C objects, you are responsible for releasing 
them.

This method matches an encodeValuesOfObjCTypes: message used during encoding.

NSCoder’s implementation invokes decodeValueOfObjCType:at: to decode individual types. Subclasses 
that implement the decodeValueOfObjCType:at: method do not need to override this method.

For information on creating Objective-C type codes suitable for valueTypes, see the description of the 
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – decodeArrayOfObjCType:count:at:



8

encodeArrayOfObjCType:count:at:
– (void)encodeArrayOfObjCType:(const char *)itemType

count:(unsigned int)count
at:(const void *)address

Encodes an array of count items, whose Objective-C type is given by itemType. The values are encoded from 
the buffer beginning at address. itemType must contain exactly one type code. NSCoder’s implementation 
invokes encodeValueOfObjCType:at: to encode the entire array of items. Subclasses that implement the 
encodeValueOfObjCType:at: method do not need to override this method.

This method must be matched by a subsequent decodeArrayOfObjCType:count:at:  message.

For information on creating an Objective-C type code suitable for itemType, see the description of the 
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – encodeValueOfObjCType:at:, – encodeValuesOfObjCTypes:, – encodeBytes:length:

encodeBycopyObject:
– (void)encodeBycopyObject:(id)object

Can be overridden by subclasses to encode object so that a copy rather than a proxy is created upon 
decoding. NSCoder’s implementation simply invokes encodeObject:.

This method must be matched by a subsequent decodeObject message.

See also: – encodeRootObject:, – encodeConditionalObject:, – encodeByrefObject:

encodeByrefObject:
– (void)encodeByrefObject:(id)object

Can be overridden by subclasses to encode object so that a proxy, rather than a copy, is created upon 
decoding. NSCoder’s implementation simply invokes encodeObject:. 

This method must be matched by a subsequent decodeObject message.

See also: – encodeBycopyObject:, – replacementObjectForPortCoder: (NSObject)

encodeBytes:length:
– (void)encodeBytes:(void *)address length:(unsigned int)numBytes

Encodes a buffer of data whose types are unspecified. The buffer to be encoded begins at address, and its 
length in bytes is given by numBytes.



9

 Classes: NSCoder

This method must be matched by a subsequent decodeBytesWithReturnedLength:numBytes: message.

See also: – encodeArrayOfObjCType:count:at:

encodeConditionalObject:
– (void)encodeConditionalObject:(id)object

Can be overridden by subclasses to conditionally encode object, preserving common references to that 
object. In the overriding method, object should be encoded only if it’s unconditionally encoded elsewhere 
(with any other encode...Object: method).

This method must be matched by a subsequent decodeObject message. Upon decoding, if object was never 
encoded unconditionally, decodeObject returns nil  in place of object. However, if object was encoded 
unconditionally, all references to object must be resolved.

NSCoder’s implementation simply invokes encodeObject:. 

See also: – encodeRootObject:, – encodeObject:, – encodeBycopyObject:, 
– encodeConditionalObject: (NSArchiver)

encodeDataObject:
– (void)encodeDataObject:(NSData *)data

Must be overridden by subclasses to encode the NSData object data. This method must be matched by a 
subsequent decodeDataObject message.

See also: – encodeObject:

encodeObject:
– (void)encodeObject:(id)object

Encodes object. NSCoder’s implementation simply invokes encodeValueOfObjCType:at: to encode the 
object. Subclasses can override this method to encode a reference to object instead of object itself. For 
example, NSArchiver detects duplicate objects and encodes a reference to the original object rather than 
encode the same object twice.

This method must be matched by a subsequent decodeObject message.

See also: – encodeRootObject:, – encodeConditionalObject:, – encodeBycopyObject:



10

encodePoint:
– (void)encodePoint:(NSPoint)point

Encodes point. NSCoder’s implementation invokes encodeValueOfObjCType:at: to encode point. 
Subclasses should not need to override this method.

This method must be matched by a subsequent decodePoint message.

encodePropertyList:
– (void)encodePropertyList:(id)aPropertyList

Encodes a property list. (See the NSPPL class specification for information on property lists.) NSCoder’s 
implementation invokes encodeValueOfObjCType:at: to encode aPropertyList. Subclasses should not 
need to override this method. 

This method must be matched by a subsequent decodePropertyList message.

encodeRect:
– (void)encodeRect:(NSRect)rect

Encodes rect. NSCoder’s implementation invokes encodeValueOfObjCType:at: to encode rect. 
Subclasses should not need to override this method.

 This method must be matched by a subsequent decodeRect message.

encodeRootObject:
– (void)encodeRootObject:(id)rootObject

Can be overridden by subclasses to encode an interconnected group of Objective-C objects, starting with 
rootObject. NSCoder’s implementation simply invokes encodeObject:.

This method must be matched by a subsequent decodeObject message.

See also: – encodeObject:, – encodeConditionalObject:, – encodeBycopyObject:, 
– encodeRootObject: (NSArchiver)

encodeSize:
– (void)encodeSize:(NSSize)size

Encodes size. NSCoder’s implementation invokes encodeValueOfObjCType:at: to encode size. 
Subclasses should not need to override this method.



11

 Classes: NSCoder

This method must be matched by a subsequent decodeSize message.

encodeValueOfObjCType:at:
– (void)encodeValueOfObjCType:(const char *)valueType at:(const void *)address

Must be overridden by subclasses to encode a single value residing at address, whose Objective-C type is 
given by valueType. valueType must contain exactly one type code.

This method must be matched by a subsequent decodeValueOfObjCType:at: message.

For information on creating an Objective-C type code suitable for valueType, see the description of the 
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – encodeArrayOfObjCType:count:at: , – encodeValuesOfObjCTypes:

encodeValuesOfObjCTypes:
– (void)encodeValuesOfObjCTypes:(const char *)valueTypes, ...

Encodes a series of values of potentially differing Objective-C types. valueTypes is a single string 
containing any number of type codes. The variable arguments to this method consist of one or more pointer 
arguments, each of which specifies a buffer containing the value to be encoded. For each type code in 
valueTypes, you must specify a corresponding pointer argument.

This method must be matched by a subsequent decodeValuesOfObjCTypes: message.

NSCoder’s implementation invokes encodeValueOfObjCType:at: to encode individual types. Subclasses 
that implement the encodeValueOfObjCType:at: method do not need to override this method. However, 
subclasses that provide a more efficient approach for encoding a series of values may override this method 
to implement that approach.

For information on creating Objective-C type codes suitable for valueTypes, see the description of the 
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – encodeArrayOfObjCType:count:at: , – encodeValueOfObjCType:at:

objectZone
– (NSZone *)objectZone

Returns the memory zone used to allocate decoded objects. NSCoder’s implementation simply returns the 
default memory zone, as given by NSDefaultMallocZone().



12

Subclasses must override this method and the setObjectZone: method to allow objects to be decoded into 
a zone other than the default zone. In its overriding implementation of this method, your subclass should 
return the current memory zone (if one has been set) or the default zone (if no other zone has been set).

See also:  – setObjectZone:

setObjectZone:
– (void)setObjectZone:(NSZone *)zone

Can be overridden by subclasses to set the memory zone used to allocate decoded objects. NSCoder’s 
implementation of this method does nothing.

Subclasses must override this method and the objectZone method to allow objects to be decoded into a 
zone other than the default zone. In its overriding implementation of this method, your subclass should store 
a reference to the current memory zone.

See also: – objectZone

systemVersion
– (unsigned int)systemVersion 

During encoding, this method should return the system version currently in effect. During decoding, this 
method should return the version that was in effect when the data was encoded.

By default, this method returns the current system version, which is appropriate for encoding but not for 
decoding. Subclasses that implement decoding must override this method to return the system version of 
the data being decoded.

versionForClassName:
– (unsigned int)versionForClassName:(NSString *)className

Must be overridden by subclasses to return the version in effect for the class named className when it was 
encoded. Returns NSNotFound if no class named 



1

 Classes: NSConditionLock

NSConditionLock

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h 

Class Description

The NSConditionLock class defines objects whose locks can be associated with specific, user-defined 
conditions. Using an NSConditionLock object, you can ensure that a thread can acquire a lock only if a 
certain condition is met. Once it has acquired the lock and executed the critical section of code, the thread 
can relinquish the lock and set the associated condition to something new. The conditions themselves are 
arbitrary: You define them as needed for your application.

Typically, you use an NSConditionLock object when threads in your application need to execute in a 
particular order, such as when one thread produces data that another consumes. While the producer is 
executing, the consumer sleeps waiting to acquire a lock that’s conditional upon the producer’s completion 
of its operation. An application can have multiple NSConditionLock objects, each protecting different 
sections of code. It’s safest to create all of the locks before the application becomes multi-threaded, to avoid 
race conditions. If you want to create additional locks after the application becomes multi-threaded, you 
should create the new lock inside a criticial code section that is itself protected by an existing lock. 

The locking and unlocking methods that NSConditionLock objects respond to can be used in any 
combination. For example, you can pair a lock message with unlockWithCondition: , or a 
lockWhenCondition: message with unlock.

The following example shows how the producer-consumer problem might be handled using condition 
locks. Imagine that an application contains a queue of data. A producer thread adds data to the queue, and 
consumer threads extract data from the queue. 

The producer need not wait for a condition, but must wait for the lock to be made available so it can safely 
add data to the queue. For example, a producer could use a lock this way:

id condLock = [[NSConditionLock alloc] initWithCondition:NO_DATA];

[condLock lock];

/* Add data to the queue. */

[condLock unlockWithCondition:HAS_DATA];

Note that in acquiring the lock, the producer sets its condition to the user-defined value NO_DATA. After 
adding data to the queue, the producer relinquishes the lock, setting its condition to HAS_DATA.



2

A consumer thread waits until there’s data available and all other threads are out of locked critical sections. 
In the following code, the consumer sleeps until there is data in the queue and a lock can be acquired:

[condLock lockWhenCondition:HAS_DATA];

/* Remove data from the queue. */

[condLock unlockWithCondition:(isEmpty ? NO_DATA : HAS_DATA)];

The consumer removes some data from the queue and then relinquishes the lock, setting its value to 
NO_DATA or HAS_DATA, depending on whether the queue is now empty.

The NSConditionLock, NSLock, and NSRecursiveLock classes all adopt the NSLocking protocol with 
various features and performance characteristics; see the other class descriptions for more information.

Adopted Protocols

NSLocking
– lock
– unlock

Method Types

Initializing an NSConditionLock
– initWithCondition:

Returning the condition
– condition

Acquiring and releasing a lock
– lockBeforeDate:
– lockWhenCondition:
– lockWhenCondition:beforeDate:
– tryLock
– tryLockWhenCondition:
– unlockWithCondition:

Instance Methods

condition
– (int)condition

Returns the condition that’s associated with the receiver. If no condition has been set, returns 0.



3

 Classes: NSConditionLock

initWithCondition:
– (id)initWithCondition: (int)condition

Initializes a newly allocated NSConditionLock and sets its condition to condition. The value of the condition 
argument is user-defined; see the class description for more information. Returns self.

lockBeforeDate:
– (BOOL)lockBeforeDate:(NSDate *)limit

Attempts to acquire a lock before the date represented by limit. The thread is blocked until the receiver 
acquires the lock or limit is reached. Returns YES if the lock is acquired within the time limit. Returns NO 
if the time limit expires before a lock can be acquired.

The condition associated with the receiver isn’t taken into account in this operation. 

See also: – lockWhenCondition:beforeDate:

lockWhenCondition:
– (void)lockWhenCondition:(int)condition

Attempts to acquire a lock. The receiver’s condition must be equal to condition before the locking operation 
will succeed. This method blocks the thread’s execution until the lock can be acquired.

See also: – lockWhenCondition:beforeDate:, – unlockWithCondition:

lockWhenCondition:beforeDate:
– (BOOL)lockWhenCondition:(int)condition beforeDate:(NSDate *)limit

Attempts to acquire a lock before the date represented by limit. The receiver’s condition must be equal to 
condition before the locking operation will succeed. Returns YES if the lock is acquired within this time 
limit. Returns NO if the time limit expires before a lock can be acquired. This method blocks the thread’s 
execution until the lock can be acquired or limit is reached.

See also: – lockBeforeDate:, – lockWhenCondition:



4

tryLock
– (BOOL)tryLock

Attempts to acquire a lock without regard to the receiver’s condition. Returns immediately with a value of 
YES if successful and NO otherwise.

See also: – tryLockWhenCondition:

tryLockWhenCondition:
– (BOOL)tryLockWhenCondition: (int)condition

Attempts to acquire a lock if condition is true. As part of its implementation, this method invokes 
lockWhenCondition:beforeDate:. Returns immediately, with a value of YES if successful and NO otherwise. 

See also: – tryLock

unlockWithCondition:
– (void)unlockWithCondition: (int)condition

Relinquishes the lock and sets the receiver’s condition to condition.

See also: – lockWhenCondition:



1

 Classes: NSConnection

NSConnection

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSConnection.h

Class Description

NSConnection objects manage communication between objects in different threads or tasks, on a single 
host or over the network. They form the backbone of the distributed objects mechanism, and normally 
operate in the background. You use NSConnection API explicitly when making an object available to other 
applications, when accessing such a vended object, and when altering default communication parameters; 
the rest of the time you simply interact with the distributed objects themselves.

NSConnection objects work in pairs, one in each communicating application or thread. A server application 
has an NSConnection for every client application connected to it, as shown above (the NSConnection 
labeled s is used to form new connections, as described under “Vending an Object” and “Getting a Vended 
Object”). The circles represent NSConnection objects, and the labels indicate the application itself and the 
application it’s connected to. For example, in s/a the s stands for the server and the a stands for client A. If 
a link is formed between clients A and B in this example, two new NSConnection objects get created: a/b 
and b/a.

Note: For Apple’s implementation the small letters represent NSPort objects. The letter on the left indicates 
the receive port, which messages arrive on; the letter on the right indicates the send port, which 
outgoing messages leave through. Similar mechanisms exist for other OpenStep-compliant systems, 
but any API exporting them isn’t part of the OpenStep specification. Subclasses of NSConnection 
that use them (which they typically must do) are therefore not portable among OpenStep 
implementations.

Server

Client A

Client B

a/s

b/s

s/a

s/b

s



2

Under normal circumstances, all distributed objects passed between applications are tied through one pair 
of NSConnection objects. NSConnection objects can’t be shared by separate threads, though, so for 
multithreaded applications a separate NSConnection must be created for each thread. This is shown in here:

Finally, an application can use distributed objects between its own threads to make sending messages 
thread-safe (see the following figure). This is useful for coordinating work with the Application Kit, for 
example.

Vending an Object

To make an object available to other applications, set it up as the root object of an NSConnection and 
register the NSConnection by name on the network. This code fragment vends serverObject:

id serverObject;    /* Assume this exists. */

NSConnection *theConnection;

theConnection = [NSConnection defaultConnection];

[theConnection setRootObject:serverObject];

if ([theConnection registerName:@"server"] == NO) {

/* Handle error. */

}

This fragment takes advantage of the fact that every thread has a default NSConnection object, which can 
be set up as a server. An NSConnection can vend only one object, so the default NSConnection might not 
be available. In this case, you can create additional NSConnections to vend objects with the usual alloc and 
init  methods.

An NSConnection set up this way is called a named NSConnection. A named NSConnection rarely has a 
channel to any other NSConnection (in the illustrations above the named NSConnection is the circle labeled 

Client A

a1/s

a2/s

Thread 1

Thread 2

Server

s/a1

s/a2

s

a1/a2

a2/a1

Thread 1

Thread 2



3

 Classes: NSConnection

s). When a client contacts the server, a new pair of NSConnection objects is created specifically to handle 
communication between the two. The following sections describe this in more detail.

An NSConnection adds itself to the current NSRunLoop when it’s initialized. In an application based on 
the Application Kit, the NSRunLoop is already running, so there’s nothing more to do to vend an object. In 
an application that doesn’t use the NSApplication object, you have to start the NSRunLoop explicitly to 
capture incoming connection requests and messages. This is usually as simple as getting the current thread’s 
NSRunLoop and sending it a run  message:

[[NSRunLoop currentRunLoop] run];

See “Configuring an NSConnection” and the NSRunLoop class description for more information on setting 
NSConnections up to handle requests.

NSConnection *theConnection;

id theProxy;

theConnection = [NSConnection connectionWithRegisteredName:@"server"

host:@"*"];

theProxy = [[theConnection rootProxy] retain];

[theProxy setProtocolForProxy:@protocol(ServerProtocol)];

Getting a Vended Object

An application gets a vended object by creating a proxy, or a stand-in, for that object in its own address 
space. The proxy forwards messages sent to it through its NSConnection back to the vended object. An 
application can get a proxy for a vended object in two ways. First, the 
rootProxyForConnectionWithRegisteredName:host: class method returns the proxy directly:

id theProxy;

theProxy = [[NSConnection

rootProxyForConnectionWithRegisteredName:@"server" host:@"*"]

retain];

[theProxy setProtocolForProxy:@protocol(ServerProtocol)];

This message returns a proxy to the root object of the NSConnection named “server”. The host name of “*” 
indicates that any host on the local subnet with such an NSConnection can be used; you can specify a 
specific host name to restrict the server to an identified host. If the host name is nil  or is empty then only 
the local host is searched for a registered NSConnection.

The invocation of setProtocolForProxy: informs the distributed objects system of the set of messages that 
theProxy responds to. Normally, the first time a particular selector is forwarded by a proxy the 
NSConnection object must confirm the argument and return types with the real object. This can add 
significant overhead to distributed messages. Setting a protocol records this information so that no 
confirmation is needed for the messages in the protocol, and only the message forwarding costs are 
incurred.



4

Another way to get a proxy is to get an NSConnection to the server and then ask for the proxy of its root 
object:

NSConnection *theConnection;

id theProxy;

theConnection = [NSConnection connectionWithRegisteredName:@"server"

host:@"*"];

theProxy = [[theConnection rootProxy] retain];

[theProxy setProtocolForProxy:@protocol(ServerProtocol)];

This is useful if you need to interact with the NSConnection as well as the proxy (note, though, that 
connection isn’t retained in this example).

A named NSConnection spawns a child NSConnection to handle communication between two applications 
(s spawning s/b and s/a in the first figure). Though the child NSConnection doesn’t have a name, it shares 
the root object and other configuration attributes of its parent (but not the delegate). You shouldn’t register 
a child NSConnection with a name or change its root object, but you can change its other attributes, as 
described in the next section.

Forming Connections Between Threads

You can use distributed objects between threads in a single application for thread-safe use of shared objects, 
such as those in the Application Kit. The Application Kit objects run in the main thread, while special 
calculations or other computations run in other threads. You can set up distributed objects between threads 
by registering them under names, but doing so exports the object over the entire network, making them 
available to other applications. This may not be desirable.

Instead of registering your distributed objects, you can manually set up NSConnections that are linked to 
each other with NSPorts using the connectionWithReceivePort:sendPort: message. In the main 
(Application Kit) thread, you create an NSConnection with two NSPorts, then switch them to create another 
NSConnection in a separate thread. Suppose you have an application that uses a Calculator object to 
perform intensive calculations. It might make sense to have this object run in a separate thread and 
communicate through an NSConnection. In the following example, the initial work of setting up a 
Calculator object is done in the NSApplication delegate’s applicationDidFinishLaunching:  method:



5

 Classes: NSConnection

- (void)applicationDidFinishLaunching:(NSNotification *)note

{

NSPort *port1;

NSPort *port2;

NSArray *portArray;

port1 = [NSPort port];

port2 = [NSPort port];

kitConnection = [[NSConnection alloc] initWithReceivePort:port1 sendPort:port2];

[kitConnection setRootObject:self];

/* Ports switched here. */

portArray = [NSArray arrayWithObjects:port2, port1, nil];

[NSThread detachNewThreadSelector:@selector(connectWithPorts:)

toTarget:[Calculator class] withObject:portArray];

return;

}

The delegate creates kitConnection, which is an instance variable, and sets itself up as the root object so 
that the Calculator object can find it. To set up the server thread, the delegate packages the NSPorts in an 
NSArray (note that they’re in reverse order) and creates a Calculator object in a separate thread by invoking 
detachNewThreadSelector:toTarget:withObject:. This message starts the new thread by sending 
connectWithPorts: to the Calculator class, which creates the Calculator object that the application uses as 
an internal server and connects that object to the application delegate:



6

+ (void)connectWithPorts:(NSArray *)portArray

{

NSAutoreleasePool *pool;

NSConnection *serverConnection;

Calculator *serverObject;

pool = [[NSAutoreleasePool alloc] init];

serverConnection = [NSConnection

connectionWithReceivePort:[portArray objectAtIndex:0]

sendPort:[portArray objectAtIndex:1]];

serverObject = [[self alloc] init];

[(id)[serverConnection rootProxy] setServer:serverObject];

[serverObject release];

[[NSRunLoop currentRunLoop] run];

[pool release];

[NSThread exit];

return;

}

connectWithPorts: is responsible for creating the server object and connecting it to the client thread. This 
method first creates an NSAutoreleasePool to prevent objects from being leaked if the NSThread ever exits. 
It then creates serverConnection using the two NSPorts from kitConnection, and proceeds to set up the 
server object. Once this is done, it passes the server object back to the client with a setServer: message. 
Finally, it starts the NSRunLoop for its thread. If the NSRunLoop ever stops, the NSAutoreleasePool is 
cleaned up and the NSThread is made to exit.

The application delegate’s setServer: message simply sets the protocol and stores the server object:

- (void)setServer:(id)anObject

{

[anObject setProtocolForProxy:@protocol(CalculatorMethods)];

calculator = (id <CalculatorMethods>)[anObject retain];

return;

}

Because anObject arrived through the NSConnections set up between threads, it’s really a proxy to the 
serverObject created in connectWithPorts: above.

Configuring an NSConnection

You can control some factors of distributed objects communication by configuring NSConnection objects. 
You can set timeouts to limit the amount of time an NSConnection will wait on a remote message, set the 
mode it awaits requests and responses on, and control how an NSConnection manages multiple remote 



7

 Classes: NSConnection

messages. In addition to these parameter settings, you can change an NSConnection’s registered name or 
root object for dynamic alteration of your distributed application.

An NSConnection uses two kinds of timeouts, one for outgoing messages and one for replies. An outgoing 
network message may take some time to send. Once it goes out, there’s usually a delay before any return 
value arrives. If either of these operations exceeds its timeout, the NSConnection raises an 
NSPortTimeoutException. You can set the values for these timeouts with the setRequestTimeout: and 
setReplyTimeout: messages, respectively. By default these timeouts are set to the maximum possible value.

NSConnections that vend objects await new connection requests in NSDefaultRunLoopMode (as defined 
by the NSRunLoop class). When an NSConnection sends a remote message out, it awaits the return value 
in NSConnectionReplyMode. You can’t change this mode, but you can use it to set up NSTimers or other 
input mechanisms that need to be processed while awaiting replies to remote messages. Use 
addRequestMode: to add input mechanisms for this mode.

Normally an NSConnection forwards remote messages to their intended recipients as it receives them. If 
your application returns to the run loop or uses distributed objects either directly or indirectly, it can receive 
a remote message while it’s already busy processing another. Suppose a server is processing a remote 
message and sends a message to another application through distributed objects. If another application 
sends a message to the server, its NSConnection immediately forwards it to the intended recipient, even 
though the server is also awaiting a reply on the outgoing message. This behavior can cause problems if a 
remote message causes a lengthy change in the server application’s state that renders it inconsistent for a 
time: Other remote messages may interfere with this state, either getting incorrect results or corrupting the 
state of the server application. You can turn this behavior off with the 
setIndependentConversationQueueing: method, so that only one remote message is allowed to be in effect 
at any time within the NSConnection’s thread. When independent conversation queueing is turned on, the 
NSConnection forwards incoming remote messages only when no other remote messages are being handled 
in its thread. This only affects messages between objects, not requests for new connections; new 
connections can be formed at any time.

Warning: Because independent conversation queueing causes remote messages to block where they 
normally don’t, it can cause deadlock to occur between applications. Use this method only when 
you know the nature of the interaction between two applications. Specifically, note that multiple 
callbacks between the client and server aren’t possible with independent conversation queueing.

One other way to configure a named NSConnection is to change its name or root object. This effectively 
changes the object that applications get using the techniques described in “Getting a Vended Object”, but 
doesn’t change the proxies that other applications have already received. You might use this technique to 
field-upgrade a distributed application with an improved server object class. For example, to install a new 
server process have the old one change its name, perhaps from “Analysis Server” to “Old Analysis Server”. 
This hides it from clients attempting to establish new connections, but allows its root object to serve existing 
connections (when those connections close, the old server process exits). In the meantime, launch the new 
server which claims the name “Analysis Server” so that new requests for analyses contact the updated 
object.



8

The Delegate

An NSConnection can be assigned a delegate, which has two possible responsibilities: approving the 
formation of new connections, and authenticating messages that pass between NSConnections.

When a named NSConnection is contacted by a client and forms a child NSConnection to communicate 
with that client, it sends connection:shouldMakeNewConnection: to its delegate first to approve the new 
connection. If the delegate returns NO the connection is refused. This method is useful for limiting the load 
on a server. It’s also useful for setting the delegate of a child NSConnection (since delegates aren’t shared 
automatically between parent and child).

Portable Distributed Objects adds message authentication to NSConnection’s OpenStep API. Delegates in 
different applications can cooperate to validate the messages passing between them by implementing 
authenticationDataForComponents: and authenticateComponents:withData:. The first method requests 
an authentication stamp for an outgoing message, which is used by the second method to check the validity 
of the message when it’s received.

authenticationDataForComponents: provides the packaged components for an outgoing network 
message in the form of NSData and NSPort objects. The delegate should use only the NSData objects to 
create the authentication stamp, by hashing the data, calculating a checksum, or some other method. The 
stamp should be small enough not to adversely affect network performance. The delegate in the receiving 
application receives an authenticateComponents:withData: message to confirm the message, and should 
recalculate the stamp for the components and compare it with the stamp provided. If it returns YES the 
message is forwarded; if it returns NO, an NSFailedAuthenticationException is raised and a message is 
logged to the console.

Handling NSConnection Errors

NSConnections make use of network resources that can become unavailable at any time. When a server 
machine loses power, for example, the objects on that machine that have been vended to other applications 
simply cease to exist. In such a case, the NSConnections handling those objects invalidate themselves and 
post an NSConnectionDidDieNotification to any observers. This notification allows objects to clean up 
their state as much as possible in the face of an error.

To register for the notification, add an observer to the default NSNotificationCenter:

[[NSNotificationCenter defaultCenter] addObserver:proxyUser

selector:@selector(connectionDidDie:)

name:NSConnectionDidDieNotification

object:serverConnection];

The fragment above registers the proxyUser object to receive a connectionDidDie: message when the 
serverConnection object in the application posts an NSConnectionDidDieNotification. This allows it to 
release any proxies it holds and to handle the error as gracefully as possible. See the NSNotification and 
NSNotificationCenter class specifications for more information on notifications.



9

 Classes: NSConnection

A less serious error is a timeout on a remote message. This can happen for an outgoing message, meaning 
the message was never sent to its recipient, or for a reply to a message successfully sent, meaning either that 
the message failed to reach its recipient or that the reply couldn’t be delivered back to the original sender. 
An application can put an exception handler in place for critical messages, and if a timeout exception is 
raised it can send the message again, check that the server is still running or take whatever other action it 
needs to recover.

Method Types

Getting the default instance
+ defaultConnection

Creating instances
+ connectionWithReceivePort:sendPort:
– initWithReceivePort:sendPort:

Running the connection in a new thread
– runInNewThread

Vending an object
– registerName:
– setRootObject:
– rootObject

Getting a remote object
+ connectionWithRegisteredName:host:
– rootProxy
+ rootProxyForConnectionWithRegisteredName:host:

Getting all NSConnections
+ allConnections

Configuring instances
– setRequestTimeout:
– requestTimeout
– setReplyTimeout:
– replyTimeout
– setIndependentConversationQueueing:
– independentConversationQueueing
– addRequestMode:
– removeRequestMode:
– requestModes
– invalidate



10

Getting ports
– receivePort
– sendPort

Getting statistics
– statistics

Setting the delegate
– setDelegate:
– delegate

Class Methods

allConnections
+ (NSArray *)allConnections

Returns all valid NSConnections in the process.

See also: – isValid

connectionWithReceivePort:sendPort:
+ (NSConnection *)connectionWithReceivePort:(NSPort *)receivePort sendPort:(NSPort *)sendPort

Returns an NSConnection that communicates using receivePort and sendPort. See initWithReceivePort:
sendPort: for more information.

See also: + defaultConnection

connectionWithRegisteredName:host:
+ (NSConnection *)connectionWithRegisteredName:(NSString *)name host:(NSString *)hostName

Returns the NSConnection whose send port links it to the NSConnection registered under name on the host 
named hostName. Returns nil  if no NSConnection can be found for name and hostName. The returned 
NSConnection is a child of the default NSConnection for the current thread (that is, it shares the default 
NSConnection’s receive port).

If hostName is nil  or empty then only the local host is searched for the named NSConnection. If hostName 
is “*” then all hosts on the local subnet are queried for an NSConnection registered under name; where there 
are duplicates the connection is made with an arbitrary host, which is then used for every subsequent request 
from the local host.



11

 Classes: NSConnection

To get the object vended by the NSConnection, use the rootProxy instance method. The 
rootProxyForConnectionWithRegisteredName:host: class method immediately returns this object.

See also: + defaultConnection

currentConversation
+ (id)currentConversation

<< Description forthcoming. >>

defaultConnection
+ (NSConnection *)defaultConnection

Returns the default NSConnection for the current thread, creating it if necessary. The default NSConnection 
uses a single NSPort for both receiving and sending, and is useful only for vending an object; use the 
setRootObject: and registerName: methods to do this.

rootProxyForConnectionWithRegisteredName:host:
+ (NSDistantObject *)rootProxyForConnectionWithRegisteredName:(NSString *)name host:

(NSString *)hostName

Returns a proxy for the root object of the NSConnection registered under name on the host named 
hostName, or nil  if that NSConnection has no root object set. Also returns nil  if no NSConnection can be 
found for name and hostName. The NSConnection of the returned proxy is a child of the default 
NSConnection for the current thread (that is, it shares the default NSConnection’s receive port).

If hostName is nil  or empty then only the local host is searched for the named NSConnection. If hostName 
is “*” then all hosts on the local subnet are queried for an NSConnection registered under name; where there 
are duplicates the connection is made with an arbitrary host, which is then used for every subsequent request 
from the local host.

This method invokes connectionWithRegisteredName:host: and sends the resulting NSConnection object 
a rootProxy message.

See also: – setRootObject:



12

Instance Methods

addRequestMode:
– (void)addRequestMode:(NSString *)mode

Adds mode to the set of run loop input modes that the NSConnection uses for connection requests. The 
default input mode is NSDefaultRunLoopMode. See the NSRunLoop class specification for more 
information on input modes.

See also: – addPort:forMode:  (NSRunLoop)

addRunLoop:
– (void)addRunLoop:(NSRunLoop *)runloop

Adds runloop to the list of run loops the NSConnection monitors and will respond to requests from. This is 
invoked automatically when a request comes in from a new run loop if enableMultipleThreads has been 
set.

See also: – enableMultipleThreads

delegate
– (id)delegate

Returns the NSConnection’s delegate.

See also: – setDelegate:

enableMultipleThreads
– (void)enableMultipleThreads

Configures the NSConnection to automatically allow requests from multiple threads to the remote object, 
without requiring the threads to each maintain their own connection.

independentConversationQueueing
– (BOOL)independentConversationQueueing

Returns YES if the NSConnection handles remote messages atomically, NO otherwise. See “Configuring 
an NSConnection” in the class description for more information on independent conversation queueing.

See also: – setIndependentConversationQueueing:



13

 Classes: NSConnection

initWithReceivePort:sendPort:
– (id)initWithReceivePort: (NSPort *)receivePort sendPort:(NSPort *)sendPort

Initializes a newly created NSConnection with receivePort and sendPort. The new NSConnection adds 
receivePort to the current NSRunLoop with NSDefaultRunLoopMode as the mode. If the application 
doesn’t use an NSApplication object to handle events, it needs to run the NSRunLoop with one of its various 
run... messages. Returns self.

This method posts an NSConnectionDidInitializeNotification once the connection is initialized.

receivePort and sendPort affect initialization as follows:

• If an NSConnection with the same ports already exists, releases the receiver, retains the existing 
NSConnection, and returns it.

• If an NSConnection exists that uses the same ports, but switched in role, then the new NSConnection 
communicates with it. Messages sent to a proxy held by either NSConnection are forwarded through the 
other NSConnection. This rule applies both within and across address spaces.

This behavior is useful for setting up distributed objects connections between threads within an 
application. See “Forming Connections Between Threads” in the class description for more 
information.

• If receivePort is nil , deallocates the receiver and returns nil .

• If sendPort is nil  or if both ports are the same, the NSConnection uses receivePort for both sending and 
receiving, and is useful only for vending an object. Use the registerName: and setRootObject: instance 
methods to vend an object.

• If an NSConnection exists that uses receivePort as both of its ports, it’s treated as the parent of the new 
NSConnection, and its root object and all of its configuration settings are applied to the new 
NSConnection. You should neither register a name for nor set the root object of the new NSConnection. 
See “Configuring an NSConnection” in the class description for more information.

• If receivePort and sendPort are different and neither is shared with another NSConnection, the receiver 
can be used to vend an object as well as to communicate with other NSConnections. However, it has no 
other NSConnection to communicate with until one is set up.

• receivePort can’t be shared by NSConnections in different threads.

This method is the designated initializer for the NSConnection class. Because it isn’t part of the OpenStep 
specification, subclasses of NSConnection aren’t portable among different OpenStep implementations.

See also: + defaultConnection



14

invalidate
– (void)invalidate

Invalidates (but doesn’t release) the receiver. After withdrawing the ports that it has registered with the 
current run loop, invalidate posts an NSConnectionDidDieNotification and then invalidates all remote 
objects and exported local proxies.

See also: – isValid, – removePort:forMode: (NSRunLoop), – requestModes

isValid
– (BOOL)isValid

Returns NO if the NSConnection is known to be invalid, YES otherwise. An NSConnection becomes invalid 
when either of its ports becomes invalid, but only notes that it has become invalid when it tries to send or 
receive a message. When this happens it posts an NSConnectionDidDieNotification to the default 
notification center.

See also: – invalidate, – isValid (NSPort)

localObjects
– (NSArray *)localObjects

<< Description forthcoming. >>

multipleThreadsEnabled
– (BOOL)multipleThreadsEnabled

Returns YES if enableMultipleThreads has ever been invoked.

receivePort
– (NSPort *)receivePort

Returns the NSPort that the NSConnection receives incoming network messages on. You can inspect this 
object for debugging purposes or use it to create another NSConnection, but shouldn’t use it to send or 
receive messages explicitly. Don’t set the delegate of the receive port; it already has a delegate established 
by the NSConnection.

See also: – sendPort, – initWithReceivePort:sendPort:



15

 Classes: NSConnection

registerName:
– (BOOL)registerName:(NSString *)name

Registers the NSConnection under name on the local host, returning YES if successful, NO if not (for 
example, if another NSConnection on the same host is already registered under name). Other 
NSConnections can then contact it using the connectionWithRegisteredName:host: and 
rootProxyForConnectionWithRegisteredName:host: class methods.

If the NSConnection was already registered under a name and this method returns NO, the old name 
remains in effect. If this method is successful, it also unregisters the old name.

To unregister an NSConnection, simply invoke registerName: and supply nil  as the connection name.

See also: – setRootObject:

remoteObjects
– (NSArray *)remoteObjects

<< Description forthcoming. >>

removeRequestMode:
– (void)removeRequestMode:(NSString *)mode

Removes mode from the set of run loop input modes that the NSConnection uses for connection requests. 

See also: – removePort:forMode: (NSRunLoop)

removeRunLoop:
– (void)removeRunLoop:(NSRunLoop *)runloop

<< Description forthcoming. >>

replyTimeout
– (NSTimeInterval)replyTimeout

Returns the timeout interval for replies to outgoing remote messages. If a non-oneway remote message is 
sent and no reply is received by the timeout, an NSPortTimeoutException is raised.

See also: – requestTimeout, – setReplyTimeout:



16

requestModes
– (NSArray *)requestModes

Returns the set of request modes (as an array of NSStrings) that the NSConnection’s receive port is 
registered for with its NSRunLoop.

See also: – addRequestMode:, – addPort:forMode:  (NSRunLoop), – removeRequestMode:

requestTimeout
– (NSTimeInterval)requestTimeout

Returns the timeout interval for outgoing remote messages. If a remote message can’t be sent before the 
timeout, an NSPortTimeoutException is raised.

See also: – replyTimeout, – setRequestTimeout:

rootObject
– (id)rootObject

Returns the object that the NSConnection (or its parent) makes available to other applications or threads, or 
nil  if there is no root object. To get a proxy to this object in another application or thread, invoke the 
rootProxyForConnectionWithRegisteredName:host: class method with the appropriate arguments.

See also: – rootProxy, – setRootObject:

rootProxy
– (NSDistantObject *)rootProxy

Returns the proxy for the root object of NSConnection’s peer in another application or thread. The proxy 
returned can change between invocations if the peer NSConnection’s root object is changed.

Note: If the NSConnection uses separate send and receive ports and has no peer, when you invoke 
rootProxy it will block for the duration of the reply timeout interval, waiting for a reply.

See also: – rootObject



17

 Classes: NSConnection

runInNewThread
– (void)runInNewThread

Creates and starts a new NSThread and then runs the receiving connection in the new thread. If the 
newly-created thread is the first to be detached from the current thread, this method posts the notification 
NSBecomingMultiThreaded with nil to the default notification center. 

sendPort
– (NSPort *)sendPort

Returns the NSPort that the NSConnection sends outgoing network messages through. You can inspect this 
object for debugging purposes or use it to create another NSConnection, but shouldn’t use it to send or 
receive messages explicitly. Don’t set the delegate of the send port; it already has a delegate established by 
the NSConnection.

See also: – receivePort, – initWithReceivePort:sendPort:

setDelegate:
– (void)setDelegate:(id)anObject

Sets the NSConnection’s delegate to anObject. Doesn’t retain anObject.

setIndependentConversationQueueing:
– (void)setIndependentConversationQueueing:(BOOL)flag

Sets whether the NSConnection handles remote messages atomically. The default is NO: An NSConnection 
normally forwards remote message to the intended recipients as they come in. See “Configuring an 
NSConnection” in the class description for more information.

See also: – independentConversationQueueing

setReplyTimeout:
– (void)setReplyTimeout:(NSTimeInterval)seconds

Sets the timeout interval for replies to outgoing remote messages to seconds. If a non-oneway remote 
message is sent and no reply is forthcoming by the timeout, an NSPortTimeoutException is raised. The 
default timeout is the maximum possible value.

See also: – setRequestTimeout:, – replyTimeout



18

setRequestTimeout:
– (void)setRequestTimeout:(NSTimeInterval)seconds

Sets the timeout interval for outgoing remote messages to seconds. If a remote message can’t be sent before 
the timeout, an NSPortTimeoutException is raised. The default timeout is the maximum possible value.

See also: – setReplyTimeout:, – requestTimeout

setRootObject:
– (void)setRootObject:(id)anObject

Sets the object that the NSConnection makes available to other applications or threads to anObject. This 
only affects new connection requests and rootProxy messages to established NSConnections; application 
that have proxies to the old root object can still send messages through it.

See also: – rootObject

statistics
– (NSDictionary *)statistics

Returns an NSDictionary containing various statistics for the NSConnection, such as the number of vended 
objects, the number of requests and replies, and so on. The statistics dictionary should be used only for 
debugging purposes; see the release notes for more information on its contents.

Methods Implemented By the Delegate

authenticateComponents:withData:
– (BOOL)authenticateComponents:(NSArray *)components withData:

(NSData *)authenticationData

Returns YES if the authenticationData provided is valid for components, NO otherwise. components 
contains NSData and NSPort objects belonging to an NSPortMessage object. See the NSPortMessage class 
specification for more information. authenticationData should have been created by the delegate of the peer 
NSConnection with authenticationDataForComponents:.

Use this message for validation of incoming messages. An NSConnection raises an 
NSFailedAuthenticationException on receipt of a remote message that the delegate doesn’t authenticate.



19

 Classes: NSConnection

authenticationDataForComponents:
– (NSData *)authenticationDataForComponents:(NSArray *)components

Returns an NSData object to be used as a authentication stamp for an outgoing message. components 
contains the elements of a network message, in the form of NSPort and NSData objects. The delegate 
should use only the NSData elements to create the authentication stamp. See the NSPortMessage class 
specification for more information on the components.

If authenticationDataForComponents: returns nil , an NSGenericException will be raised. If the delegate 
determines that the message shouldn’t be authenticated, it should return an empty NSData object (you can 
generate an empty NSData object with [NSData data]). The delegate on the other side of the connection 
must then be prepared to accept an empty NSData as the second parameter to authenticateComponents:
withData:  and to handle the situation appropriately.

components will be validated on receipt by the delegate of the peer NSConnection with 
authenticateComponents:withData:.

connection:shouldMakeNewConnection:
– (BOOL)connection:(NSConnection *)parentConnection shouldMakeNewConnection:

(NSConnection *)newConnnection

Returns YES if parentConnection should allow newConnnection to be created and set up, NO if 
parentConnection should refuse and immediately release newConnection. Use this method to limit the 
amount of NSConnections created in your application or to change the parameters of child NSConnections.

makeNewConnection:sender:
– (BOOL)makeNewConnection:(NSConnection *)newConnection

sender:(NSConnection *)parentConnection 

Returns YES if parentConnection should allow newConnnection to be created and set up, NO if 
parentConnection should refuse and immediately release newConnection. Use this method to limit the 
amount of NSConnections created in your application or to change the parameters of child NSConnections.

This delegate method is obsolete, and shouldn’t be used. Use connection:shouldMakeNewConnection: 
instead.



20

Notifications

NSConnectionDidDieNotification

Posted when the NSConnection is deallocated or when it’s notified that its NSPort has become invalid. This 
notification contains a notification object but no userInfo dictionary. The notification object is the 
NSConnection object.

The NSConnection object posting this notification is no longer useful, so all receivers should unregister 
themselves for any notifications involving the NSConnection.

See also: NSPortDidBecomeInvalidNotification (NSPort notification)

NSConnectionDidInitializeNotification

Posted when the NSConnection is initialized using initWithReceivePort:sendPort: (the designated 
initializer for NSConnection). This notification contains a notification object but no userInfo dictionary. The 
notification object is the NSConnection object.

See also: – initWithReceivePort:sendPort: (NSConnection)



1

 Classes: NSCountedSet

NSCountedSet

Inherits From: NSMutableSet : NSSet : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSSet) 
NSObject (NSObject) 

Declared In: Foundation/NSSet.h

Class at a GlanceClass at a Glance

Purpose
An NSCountedSet object stores a modifiable set of objects, where a given object can be included in the set 
multiple times.

Principal Attributes
• The objects that make up the set.
• For each object in the set, a count of the number of times the object is included in the set.

Commonly Used Methods

Class Description

The NSCountedSet class declares the programmatic interface to an object that manages a mutable set of 
objects. NSCountedSet provides support for the mathematical concept of a counted set. A counted set, both 
in its mathematical sense and in the implementation of NSCountedSet, is an unordered collection of 
elements, just as in a regular set, but the elements of the set aren’t necessarily distinct. A counted set is also 
known as a bag.

– addObject: Adds an object to the set.

– removeObject: Removes an object from the set.



2

Each distinct object inserted into an NSCountedSet object has a counter associated with it. NSCountedSet 
keeps track of the number of times objects are inserted and requires that objects be removed the same 
number of times. Thus, there is only one instance of an object in an NSSet even if the object has been added 
to the set multiple times. The NSSet and NSMutableSet classes are provided for static and dynamic sets 
(respectively) whose elements are distinct.

You add or remove objects from a counted set using the addObject: and removeObject: methods. An 
NSCountedSet may be queried using the objectEnumerator method, which provides for traversing 
elements of the set one by one. The countForObject: method returns the number of times the specified 
object has been added to this set.

Method Types

Initializing an NSCountedSet
– initWithArray:
– initWithSet:
– initWithCapacity:

Adding and removing entries
– addObject:
– removeObject:

Accessing the members
– allObjects
– count
– countForObject:
– objectEnumerator

Instance Methods

addObject:
– (void)addObject:(id)anObject

Adds anObject to the receiver if it isn’t already a member. If anObject is already a member, addObject: 
increments the count associated with the object. In either case, anObject is then sent a retain message.

allObjects
– (NSArray *)allObjects

Returns an array containing the set’s members, or an empty array if the set has no members. Each object is 
only represented in the array once—that is, if you add an object to the set more than once, it will appear 



3

 Classes: NSCountedSet

only once in the array that is returned by allObjects. The order of the objects in the array isn’t defined. This 
method invokes objectEnumerator as part of its implementation.

count
– (unsigned int)count

Returns the number of unique members in the set. Objects that are added to the set multiple times are only 
reflected in the count once.

countForObject:
– (unsigned int)countForObject:(id)anObject

Returns the count associated with anObject in the receiver, which can be thought of as the number of 
occurrences of anObject that are present in the set.

initWithArray:
– (id)initWithArray: (NSArray *)anArray

Initializes a newly allocated counted set object with the contents of anArray. Returns self.

See also: – initWithArray: (NSSet), + setWithArray: (NSSet)

initWithCapacity:
– (id)initWithCapacity: (unsigned)numItems

The designated initializer, this method initializes a newly allocated set object, giving it enough memory to 
hold numItems objects.

See also: – initWithCapacity:  (NSMutableSet), + setWithCapacity: (NSMutableSet)

initWithSet:
– (id)initWithSet: (NSSet *)aSet

Initializes a newly allocated counted set object with the contents of aSet. Returns self.

See also: – initWithSet: (NSSet), +setWithSet:(NSSet)



4

objectEnumerator
– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each object in the set, independent of its count. This 
means that if you add a given object to the counted set multiple times, an enumeration of the set will produce 
that object only once.

When this method is used with a counted set, your code shouldn’t modify the set during enumeration. If 
you intend to modify the set, use the allObjects method to create a “snapshot,” then enumerate the snapshot 
and modify the original set.

See also: – nextObject (NSEnumerator)

removeObject:
– (void)removeObject:(id)anObject

If anObject is present in the set, decrements the count associated with it. If the count is decremented to zero, 
anObject is removed from the set and is sent a release message. removeObject: does nothing if anObject 
is not present in the receiver.

See also: – countForObject:



1

 Classes: NSData Class Cluster

c NSData Class Cluster

Class Cluster Description

NSData objects provide an object-oriented wrapper for byte buffers. This enables simple allocated buffers 
(that is, data with no embedded pointers) to take on the behavior of Foundation Kit objects. NSData is 
typically used for data storage. It is also useful in Distributed Objects applications, where data contained in 
NSData objects can be copied or moved between applications. 

NSData objects can be used to wrap data of any size. When the data size is more than a few memory pages, 
NSData uses virtual memory management. NSData can also be used to wrap pre-existing data, regardless 
of how the data was allocated. NSData contains no information about the data itself (such as its type); the 
responsibility for deciding how to use the data lies with the client. In particular, it will not handle byte-order 
swapping when distributed between big-endian and little-endian machines. For typed data, use NSValue.

NSData provides an operating system-independent way to benefit from copy-on-write memory. The 
copy-on-write technique means that when data is copied through a virtual memory copy, an actual copy of 
the data is not made until there is an attempt to modify it.

The cluster’s two public classes, NSData and NSMutableData, declare the programmatic interface for static 
and dynamic NSData objects, respectively. 

The objects you create using these classes are referred to as data objects. Because of the nature of class 
clusters, data objects are not actual instances of the NSData or NSMutableData classes but instead are 
instances of one of their private subclasses. Although a data object’s class is private, its interface is public, 
as declared by these abstract superclasses, NSData and NSMutableData.

Generally, you instantiate a data object by sending one of the data... messages to either the NSData or 
NSMutableData class object. These methods return a data object containing the bytes you pass in as 
arguments. If you use one of the data... methods whose name does not include “NoCopy” (such as 
dataWithBytes:length:), the bytes to be contained by the data object are copied as part of the instantiation 
process, and the data object then contains the copied bytes. When you subsequently release a data object 
that has been instantiated in this manner, the bytes contained by the data object—those that were copied 
during instantiation—are automatically freed. If you instantiate a data object with one of the methods 
whose name includes “NoCopy,” however, (such as dataWithBytesNoCopy:length:) the bytes are not 
copied and are freed when the data object is released.

The NSData classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to 
convert between efficient, read-only data objects and mutable data objects.



2

i NSData

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject) 

Declared In: Foundation/NSData.h
Foundation/NSSerialization.h



3

 Classes: NSData Class Cluster

Class at a GlanceClass at a Glance

Purpose
An NSData object stores immutable data in the form of bytes.

Principal Attributes
• A count of the number of bytes in the data object.
• The sequence of bytes contained in the data object.

Creation

Commonly Used Methods

Primitive Methods
– bytes
– length

+ data Returns an empty data object.

+ dataWithBytes:length: Returns a data object that contains a copy of the specified bytes.

+ dataWithBytesNoCopy:length:
Returns a data object that contains the specified bytes (without 
copying them).

+ dataWithContentsOfFile: Returns a data object initialized with the contents of a file.

+ dataWithContentsOfMappedFile: Returns a data object initialized with the contents of a mapped file.

+ dataWithData:
Returns a data object initialized with the contents of another data 
object.

– bytes Returns a pointer to the data object’s contents.

– getBytes: Copies the data object’s contents into a buffer.

– length Returns the number of bytes contained by the data object.



4

Class Description

The NSData class declares the programmatic interface to an object that contains immutable data in the form 
of bytes. NSData’s two primitive methods—bytes and length—provide the basis for all of the other 
methods in the interface. The bytes method returns a pointer to the bytes contained in the data object. length 
returns the number of bytes contained in the data object. 

NSData provides access methods for copying bytes from a data object into a specified buffer. getBytes 
copies all of the bytes into a buffer, whereas getBytes:length: copies bytes into a buffer of a given length. 
getBytes:range: copies a range of bytes from a starting point within the bytes themselves. You can also 
obtain a data object that contains a subset of the bytes in another data object by using the 
subdataWithRange: method. Or, you can use the description method to return an NSString representation 
of the bytes in a data object.

For determining if two data objects are equal, NSData provides the isEqualToData: method, which does a 
byte-for-byte comparison.

The writeToFile:atomically:  method enables you to write the contents of a data object to a file.

Adopted Protocols

NSCoding
– encodeWithCoder:

– initWithCoder:

NSCopying
– copyWithZone:

NSMutableCopying
– mutableCopyWithZone:



5

 Classes: NSData Class Cluster

Method Types

Creating data objects
+ allocWithZone:
+ data
+ dataWithBytes:length:
+ dataWithBytesNoCopy:length:
+ dataWithContentsOfFile:
+ dataWithContentsOfMappedFile:
+ dataWithData:
+ dataWithStream:
– initWithBytes:length:
– initWithBytesNoCopy:length:
– initWithContentsOfFile:
– initWithContentsOfMappedFile:
– initWithData:
– initWithStream:

Accessing data
– bytes 
– description
– getBytes:
– getBytes:length:
– getBytes:range:
– subdataWithRange:

Deserializing data
– deserializeAlignedBytesLengthAtCursor:
– deserializeBytes:length:atCursor:
– deserializeDataAt:ofObjCType:atCursor:context:
– deserializeIntAtCursor:
– deserializeIntAtIndex:
– deserializeInts:count:atCursor:
– deserializeInts:count:atIndex:

Testing data
– isEqualToData:
– length 

Storing data
– writeToFile:atomically:



6

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized data object in the specified zone. If the receiver is the NSData class 
object, an instance of an appropriate immutable subclass is returned; otherwise, an object of the receiver’s 
class is returned.

Typically, you create temporary data objects using the data... class methods, not the alloc... and init... 
methods.

data
+ (id)data

Creates and returns an empty data object. This method is declared primarily for the use of mutable 
subclasses of NSData.

dataWithBytes:length:
+ (id)dataWithBytes:(const void *)bytes length:(unsigned int)length

Creates and returns a data object containing length bytes copied from the buffer bytes.

See also: + dataWithBytesNoCopy:length:

dataWithBytesNoCopy:length:
+ (id)dataWithBytesNoCopy:(void *)bytes length:(unsigned int)length

Creates and returns a data object that holds length bytes from the buffer bytes.

See also:  + dataWithBytes:length:

dataWithContentsOfFile:
+ (id)dataWithContentsOfFile:(NSString *)path

Creates and returns a data object by reading every byte from the file specified by path.

The following code example creates a data object myData initialized with the contents of myFile.txt . The 
path must be absolute.



7

 Classes: NSData Class Cluster

NSString *thePath = @"/u/smith/myFile.txt";    

NSData *myData = [NSData dataWithContentsOfFile:thePath];

See also: + dataWithContentsOfMappedFile:

dataWithContentsOfMappedFile:
+ (id)dataWithContentsOfMappedFile:(NSString *)path

Creates and returns a data object from the mapped file specified by path. Because of file mapping 
restrictions, this method should only be used if the file is guaranteed to exist for the duration of the data 
object’s existence. It is generally safer to use the dataWithContentsOfFile: method.

This methods assumes that mapped files are available from the underlying operating system. A mapped file 
uses virtual memory techniques to avoid copying pages of the file into memory until they are actually 
needed.

See also: +  dataWithContentsOfFile:

dataWithData:
+ (id)dataWithData: (NSData *)aData

Creates and returns a data object containing the contents of another data object, aData.

dataWithStream:
+ (id)dataWithStream:(NXStream *)stream

Creates and returns a data object containing the contents of stream.

See also: – initWithStream:

Instance Methods

bytes
– (const void *)bytes

Returns a pointer to the data object’s contents. This method returns read-only access to the data.

See also: – description, – getBytes:, – getBytes:length:, – getBytes:range:



8

description
@protocol NSObject
– (NSString *)description

Returns an NSString object that contains a hexadecimal representation of the receiver’s contents in the 
property list format for NSData objects.

See also: – bytes, – getBytes:, – getBytes:length:, – getBytes:range:

deserializeAlignedBytesLengthAtCursor:
– (unsigned int)deserializeAlignedBytesLengthAtCursor:(unsigned *)cursor

Reads a sequence of bytes from the receiver beginning at location cursor and returns them formatted as an 
unsigned integer. On return, cursor is set to the location just past the bytes that were read.

Use this method to read an integer that was serialized using the serializeAlignedBytesLength: method of 
NSMutableData. This method ignores any filler bytes that were serialized by the 
serializeAlignedBytesLength: method.

See also: – deserializeIntAtCursor:, – deserializeIntAtIndex:

deserializeBytes:length:atCursor:
– (void)deserializeBytes:(void *)buffer 

length:(unsigned int)bytes 
atCursor: (unsigned int*)cursor

Reads a sequence of bytes from the receiver beginning at location cursor and places them in buffer. The 
bytes parameter specifies the number of bytes to be read. On return, cursor is set to the location just beyond 
the bytes that were read.

See also: – getBytes:range:

deserializeDataAt:ofObjCType:atCursor:context:
– (void)deserializeDataAt:(void *)data 

ofObjCType: (const char *)type 
atCursor: (unsigned int*)cursor 
context:(id <NSObjCTypeSerializationCallBack>)callback

Reads a sequence of bytes from the receiver beginning at location cursor and places them in data. The bytes 
are formatted according to the Objective-C type code given in type. If type specifies an object, callback is 
used to deserialize the object; in such a case, callback must itself be an object that conforms to the 
NSObjCTypeSerializationCallBack protocol. If type does not specify an object, callback can be nil .



9

 Classes: NSData Class Cluster

For information on on creating an Objective-C type code suitable for type, see the description of the 
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

deserializeIntAtCursor:
– (int)deserializeIntAtCursor: (unsigned int*)cursor

Reads a sequence of bytes from the receiver beginning at location cursor and returns them as an integer 
value. On return, cursor is set to the location just past the bytes that were read.

See also: – deserializeIntAtIndex:, – serializeInt: (NSMutableData)

deserializeIntAtIndex:
– (int)deserializeIntAtIndex:(unsigned int)index

Reads a sequence of bytes from the receiver starting at index and returns them as an integer value.

See also: – getBytes:range:, – serializeInt: (NSMutableData)

deserializeInts:count:atCursor:
– (void)deserializeInts:(int *) intBuffer 

count:(unsigned int)numInts 
atCursor: (unsigned int*)cursor

Reads numInts integers as a sequence of bytes from the receiver and copies them into intBuffer. The bytes 
are read from the receiver beginning at location cursor. On return, cursor is set to the location just past the 
integers that were read.

See also: – getBytes:range:, – deserializeIntAtCursor:, – serializeInts:count: (NSMutableData)

deserializeInts:count:atIndex:
– (void)deserializeInts:(int *) intBuffer 

count:(unsigned int)numInts 
atIndex:(unsigned int)index

Reads numInts integers as a sequence of bytes from the receiver and copies them into intBuffer. The bytes 
are read from the receiver starting at index.

See also: – getBytes:range:, – deserializeIntAtIndex:, – serializeInts:count: (NSMutableData)



10

getBytes:
– (void)getBytes:(void *)buffer

Copies a data object’s contents into buffer.

For example, the following code excerpt initializes a data object myData with the NSString myString. It 
then uses getBytes: to copy the contents of myData into aBuffer.

unsigned char aBuffer[20];

NSString *myString = @"Test string.";

NSData *myData = [NSData dataWithBytes:[myString cString]

length:[myString cStringLength]];

[myData getBytes:aBuffer];

See also: – bytes, – description, – getBytes:length:, – getBytes:range:

getBytes:length:
– (void)getBytes:(void *)buffer length:(unsigned int)length

Copies up to length bytes from the start of the receiver into buffer. 

See also: – bytes, – description, – getBytes:, – getBytes:range:

getBytes:range:
– (void)getBytes:(void *)buffer range:(NSRange)range

Copies the receiver’s contents into buffer, from range that is within the bytes in the object. If range isn’t 
within the receiver’s range of bytes, an NSRangeException is raised.

See also: – bytes, – description, – getBytes:, – getBytes:length:

hash
@protocol NSObject
– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For a data object, 
hash returns the length of the data object. If two data objects are equal (as determined by the isEqual: 
method), they have the same hash value.

See also: – isEqual:



11

 Classes: NSData Class Cluster

initWithBytes:length:
– (id)initWithBytes: (const void *)bytes length:(unsigned int)length

Initializes a newly allocated data object by adding to it length bytes of data copied from the buffer bytes. 
Returns self.

See also:  + dataWithBytes:length:, – initWithBytesNoCopy:length:

initWithBytesNoCopy:length:
– (id)initWithBytesNoCopy: (void *)bytes length:(unsigned int)length

Initializes a newly allocated data object by adding to it length bytes of data from the buffer bytes. Returns 
self.

See also:  + dataWithBytes:length:, – initWithBytes:length:

initWithContentsOfFile:
– (id)initWithContentsOfFile: (NSString *)path

Initializes a newly allocated data object by reading into it the data from the file specified by path. Returns 
self.

See also: + dataWithContentsOfFile:, –  initWithContentsOfMappedFile:

initWithContentsOfMappedFile:
– (id)initWithContentsOfMappedFile: (NSString *)path

Initializes a newly allocated data object by reading into it the mapped file specified by path. Returns self.

See also: + dataWithContentsOfMappedFile:, – initWithContentsOfFile:

initWithData:
– (id)initWithData: (NSData *)data

Initializes a newly allocated data object by placing in it the contents of another data object, data. Returns 
self.



12

initWithStream:
– (id)initWithStream: (NXStream *)stream

Initializes a newly allocated data object by placing in it the contents of stream. Returns self.

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return value indicates 
that the receiver and anObject are both instances of classes that inherit from NSData and that both contain 
the same data (as determined by the isEqualToData: method).

See also: – isEqualToData:

isEqualToData:
– (BOOL)isEqualToData:(NSData *)otherData

Compares the receiving data object to otherData. If the contents of otherData are equal to the contents of 
the receiver, this method returns YES. If not, it returns NO. Two data objects are equal if they hold the same 
number of bytes, and if the bytes at the same position in the objects are the same.

See also: – isEqual:

length
– (unsigned int)length

Returns the number of bytes contained in the receiver.

subdataWithRange:
– (NSData *)subdataWithRange:(NSRange)range

Returns a data object containing a copy of the receiver’s bytes that fall within the limits specified by range. 
If range isn’t within the receiver’s range of bytes, an NSRangeException is raised.

For example, the following code excerpt initializes a data object, data2, to contain a sub-range of data1:



13

 Classes: NSData Class Cluster

NSString *myString = @"ABCDEFG";  

NSRange range = {2, 4};

NSData *data1, *data2; 

data1 = [NSData dataWithBytes:[myString cString]

length:[myString cStringLength]];

data2 = [data1 subdataWithRange:range];

The result of this excerpt is that data2 contains “CDEF”.

writeToFile:atomically:
– (BOOL)writeToFile: (NSString *)path atomically:(BOOL)flag

Writes the bytes in the receiver to the file specified by path. If flag is YES, the data is written to a backup 
file and then, assuming no errors occur, the backup file is renamed to the specified file name. Otherwise, the 
data is written directly to the specified file.

If path contains a tilde (~) character, you must expand it with stringByExpandingTildeInPath:  before 
invoking this method.

YES is returned if the operation succeeded, otherwise NO is returned.



14

i NSMutableData

Inherits From: NSData : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSData) 
NSObject (NSObject) 

Declared In: Foundation/NSData.h
Foundation/NSSerialization.h



15

 Classes: NSData Class Cluster

Class at a GlanceClass at a Glance

Purpose
An NSMutableData object stores mutable data in the form of bytes.

Principal Attributes
• A count of the number of bytes in the mutable data object.
• The sequence of bytes contained in the mutable data object.

Creation

Commonly Used Methods

Primitive Methods
– mutableBytes
– setLength:

Class Description

The NSMutableData class declares the programmatic interface to an object that contains modifiable data in 
the form of bytes. NSMutableData’s two primitive methods—mutableBytes and setLength:—provide the 
basis for all of the other methods in its interface. The mutableBytes method returns a pointer for writing 
into the bytes contained in the mutable data object. setLength: allows you to truncate or extend the length 
of a mutable data object. 

increaseLengthBy: also allows you to change the length of a mutable data object.

+ dataWithCapacity:
Returns an NSMutableData with enough allocated memory to hold a 
specified number of bytes.

+ dataWithLength:
Returns an NSMutableData that contains a specified number of 
zero-filled bytes.

– mutableBytes A pointer to the bytes in the NSMutableData object.

– replaceBytesInRange:withBytes: Replaces a range of bytes in the NSMutableData object.



16

The appendBytes:length: and appendData: methods let you append bytes or the contents of another data 
object to a mutable data object. You can replace a range of bytes in a mutable data object with zeros (using 
the resetBytesInRange: method), or with different bytes (using the replaceBytesInRange:withBytes: 
method). 

Method Types

Creating an NSMutableData
+ allocWithZone:
+ dataWithCapacity:
+ dataWithLength:
– initWithCapacity:
– initWithLength:

Adjusting capacity
– increaseLengthBy:
– setLength: 

Accessing data
– mutableBytes 

Adding data
– appendBytes:length:
– appendData:

Serializing data
– serializeAlignedBytesLength:
– serializeDataAt:ofObjCType:context:
– serializeInt:
– serializeInt:atIndex:
– serializeInts:count:
– serializeInts:count:atIndex:

Modifying data
– replaceBytesInRange:withBytes:
– resetBytesInRange:
– setData:



17

 Classes: NSData Class Cluster

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized data object in the specified zone. If the receiver is the NSMutableData 
class object, an instance of an appropriate subclass is returned; otherwise, an object of the receiver’s class 
is returned.

Typically, you create objects using the data... class methods, not the alloc... and init...  methods. Note that 
it’s your responsibility to release objects created with the alloc... methods.

dataWithCapacity:
+ (id)dataWithCapacity: (unsigned int)aNumItems

Creates and returns an NSMutableData object, initially allocating enough memory to hold aNumItems 
objects. Mutable data objects allocate additional memory as needed, so aNumItems simply establishes the 
object’s initial capacity.

Note: dataWithCapacity:  doesn’t necessarily allocate its memory at the time of method invocation. When 
it does allocate its memory, though, it initially allocates the specified amount.

See also: + dataWithLength: , – initWithCapacity: , – initWithLength:

dataWithLength:
+ (id)dataWithLength: (unsigned int)length

Creates an autoreleased, mutable data object of length bytes, filled with zeros.

See also: + dataWithCapacity: , – initWithCapacity: , – initWithLength:

Instance Methods

appendBytes:length:
– (void)appendBytes:(const void *)bytes length:(unsigned int)length

Appends length bytes to the receiver from the buffer bytes.

This excerpt copies the bytes in data2 into aBuffer, and then appends aBuffer to data1. 



18

NSMutableData *data1, *data2;

NSString *firstString =  @"ABCD"; 

NSString *secondString = @"EFGH"; 

unsigned char *aBuffer;

unsigned len;

data1 = [NSMutableData dataWithBytes:[firstString cString]

length:[firstString cStringLength]];

data2 = [NSMutableData dataWithBytes:[secondString cString]

length:[secondString cStringLength]];

len = [data2 length];

aBuffer = malloc(len);

[data2 getBytes:aBuffer];

[data1 appendBytes:aBuffer length:len];

   The final value of data1 is the series of ASCII characters “ABCDEFGH”.

See also: – appendData:

appendData:
– (void)appendData:(NSData *)otherData

Appends the contents of a data object otherData to the receiver.

See also: – appendBytes:length:

increaseLengthBy:
– (void)increaseLengthBy:(unsigned int)extraLength

Increases the length of the receiver by extraLength. The additional bytes are all set to zero.

See also: – setLength:

initWithCapacity:
– (id)initWithCapacity: (unsigned int)capacity

Initializes a newly allocated mutable data object, giving it enough memory to hold capacity bytes. Sets the 
length of the data object to 0. Returns self.

See also: + dataWithCapacity:, – initWithLength:



19

 Classes: NSData Class Cluster

initWithLength:
– (id)initWithLength: (unsigned int)length

Initializes a newly allocated mutable data object, giving it enough memory to hold length bytes. Fills the 
object with zeros up to length. Returns self.

See also: + dataWithCapacity: , + dataWithLength: , – initWithCapacity:

mutableBytes
– (void *)mutableBytes

Returns a pointer to the receiver’s data.

In the following code example, mutableBytes is used to return a pointer to the bytes in data2. The bytes in 
data2 are then overwritten with the contents of data1.

NSMutableData *data1, *data2;

NSString *myString = @"string for data1"; 

NSString *yourString = @"string for data2"; 

unsigned char *firstBuffer, secondBuffer[20];

/* initialize data1, data2, and secondBuffer... */  

data1 = [NSMutableData dataWithBytes:[myString cString] 

length:[myString length]];

data2 = [NSMutableData dataWithBytes:[yourString cString]

length:[yourString length]];

[data2 getBytes:secondBuffer];

NSLog(@"data2 before: \"%s\"\n", (char *)secondBuffer);

firstBuffer = [data2 mutableBytes];

[data1 getBytes:firstBuffer];

NSLog(@"data1: \"%s\"\n", (char *)firstBuffer);

[data2 getBytes:secondBuffer];

NSLog(@"data2 after: \"%s\"\n", (char *)secondBuffer);

This is the output from the above code example:

Oct  3 15:59:51 [1113] data2 before: "string for data2"

Oct  3 15:59:51 [1113] data1: "string for data1"

Oct  3 15:59:51 [1113] data2 after: "string for data1"



20

replaceBytesInRange:withBytes:
– (void)replaceBytesInRange:(NSRange)range withBytes:(const void *)bytes

Specifies a range within the contents of a mutable data object to be replaced by bytes. If the location of 
range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The receiver is resized to 
accomodate the new bytes, if necessary.

In the following code excerpt, a range of bytes in data1 is replaced by the bytes in data2. 

NSMutableData *data1, *data2;

NSString *myString = @"Liz and John"; 

NSString *yourString = @"Larry"; 

unsigned len;

unsigned char *aBuffer;

NSRange range = {8, [yourString cStringLength]};  

data1 = [NSMutableData dataWithBytes:[myString cString]

length:[myString cStringLength]];

data2 = [NSMutableData dataWithBytes:[yourString cString]

length:[yourString cStringLength]];

len = [data2 length];

aBuffer = malloc(len);

[data2 getBytes:aBuffer];

[data1 replaceBytesInRange:range withBytes:aBuffer];

The contents of data1 changes from “Liz and John” to “Liz and Larry.”

See also: – resetBytesInRange:

resetBytesInRange:
– (void)resetBytesInRange:(NSRange)range

Specifies a range within the contents of a mutable data object to be replaced by zeros. If the location of 
range isn’t within the receiver’s range of bytes, an NSRangeException is raised. The receiver is resized to 
accomodate the new bytes, if necessary.

See also: – replaceBytesInRange:withBytes:

serializeAlignedBytesLength:
– (void)serializeAlignedBytesLength:(unsigned int)length

Appends the bytes of length to the end of the receiver. This method may add extra filler bytes to increase 
the efficiency of deserializing subsequent data. Use of this method is optional; you can invoke serializeInt: 



21

 Classes: NSData Class Cluster

instead. However, if you use this method, you should match its use by invoking 
deserializeAlignedBytesLengthAtCursor: to read the bytes of length later.

serializeDataAt:ofObjCType:context:
– (void)serializeDataAt:(const void *)data 

ofObjCType: (const char *)type 
context:(id <NSObjCTypeSerializationCallBack>)callback

Appends a sequence of bytes, specified by data, to the receiver. The bytes are formatted according to the 
Objective-C type code given in type. If type specifies an object, callback is used to serialize the object 
pointed to by data; in such a case, callback must itself be an object that conforms to the 
NSObjCTypeSerializationCallBack protocol. If type does not specify an object, callback can be nil .

For informationon on creating an Objective-C type code suitable for type, see the description of the 
@encode() compiler directive in Object-Oriented Programming and the Objective-C Language.

See also: – deserializeDataAt:ofObjCType:atCursor:context: (NSData)

serializeInt:
– (void)serializeInt:(int)value

Appends the bytes of value to the end of the receiver.

See also: – serializeAlignedBytesLength:

serializeInt:atIndex:
– (void)serializeInt:(int)value atIndex:(unsigned int)index

Replaces the bytes of an integer at location index in the receiver with the bytes of value. 

See also: – replaceBytesInRange:withBytes:

serializeInts:count:
– (void)serializeInts:(int *) intBuffer count:(unsigned int)numInts

Appends the bytes of numInts integers in intBuffer to the receiver.

See also: – serializeInt:



22

serializeInts:count:atIndex:
– (void)serializeInts:(int *) intBuffer 

count:(unsigned int)numInts 
atIndex:(unsigned int)index

Replaces the bytes of numInts integers currently in the receiver with numInts integers in intBuffer.

See also: – replaceBytesInRange:withBytes:

setData:
– (void)setData:(NSData *)aData

Uses replaceBytesInRange:withBytes: to replace the entire contents of the receiver with the contents of 
aData.

setLength:
– (void)setLength:(unsigned int)length

Extends or truncates a mutable data object to length. If the mutable data object is extended, the additional 
bytes are filled with zero.

See also: – increaseLengthBy:



1

 Classes: NSDate Class Cluster

c NSDate Class Cluster

Class Cluster Description

NSDate objects represent a single point in time. The NSDate cluster’s single public superclass, NSDate, 
declares the programmatic interface for specific and relative time values.

The objects you create using NSDate are referred to as date objects. They are immutable objects. Because 
of the nature of class clusters, objects returned by the NSDate class are not instances of that abstract class 
but of one of its private subclasses. Although a date object’s class is private, its interface is public, as 
declared by the abstract superclass, NSDate. (See the “Class Clusters” programming topic for more 
information on class clusters and creating subclasses within a cluster.) 

Generally, you instantiate a suitable date object by invoking one of the date... class methods.

The date classes adopt the NSCopying and NSCoding protocols.



2

i NSDate

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject) 

Declared In: Foundation/NSDate.h



3

 Classes: NSDate Class Cluster

Class at a GlanceClass at a Glance

Purpose
An NSDate object stores a date and time that can be compared to other dates and times. 

Principal Attributes
• Seconds since absolute reference date (1 January, 2001, GMT)

Creation

Commonly Used Methods

Primitive Method
– timeIntervalSinceReferenceDate

Class Description

NSDate is an abstract class that provides behavior for creating dates, comparing dates, representing dates, 
computing intervals, and similar functionality. It presents a programmatic interface through which suitable 
date objects are requested and returned. Date objects returned from NSDate are lightweight and immutable 
since they represent a invariant point in time. This class is designed to provide the foundation for arbitrary 
calendrical representations. Its subclass NSCalendarDate offers date objects that are suitable for 
representing dates according to western calendrical systems.

+ date Represents the current date and time.

+ dateWithTimeIntervalSinceNow: Represents a date relative to the current date and time.

+ dateWithTimeIntervalSinceReferenceDate: Represents a date relative to the absolute reference date.

– earlierDate: Compares the receiver to the argument and returns the earlier of the two.

– isEqualToDate: Returns YES if the receiver and the argument are equal.

– laterDate: Compares the receiver to the argument and returns the later of the two. 

– timeIntervalSinceNow
Returns the number of seconds difference between the receiver and the 
current date and time.



4

“Date” as used above implies clock time as well. The standard unit of time for date objects is a value typed 
as NSTimeInterval and expressed as seconds. The NSTimeInterval type makes possible a wide and 
fine-grained range of date and time values, giving accuracy within milliseconds for dates 10,000 years 
apart. 

NSDate and its subclasses compute time as seconds relative to an absolute reference date. This reference 
date is the first instant of 1 January, 2001, Greenwich Mean Time (GMT). NSDate converts all date and 
time representations to and from NSTimeInterval values that are relative to this absolute reference date. A 
positive interval relative to a date represents a point in the future, a negative interval represents a time in the 
past.

Note: Rhapsody and supported UNIX systems implement time according to the Network Time Protocol 
(NTP) standard, which is based on Coordinated Universal Time. The current private implementations 
of NSDate follow the NTP standard. However, they do not account for leap seconds and therefore 
are not synchronized with International Atomic Time (the most accurate).

Like various other Foundation classes, NSDate enables you to obtain operating-system functionality (dates 
and times) without depending on operating-system internals. It also provides a basis for the NSRunLoop 
and NSTimer classes, which use concrete date objects to implement local event loops and timers. 

NSDate’s sole primitive method, timeIntervalSinceReferenceDate, provides the basis for all the other 
methods in the NSDate interface. It returns a time value relative to an absolute reference date.

Creating NSDate Objects

Use a date object to store a point in time. If you want to store the current time, use the date class method 
to create the date object. If you want to store some time other than the current time, use one of the 
dateWithTimeInterval...  methods. 

The dateWithTimeInterval...  methods create date objects relative to a particular time, which the method 
name describes. You specify (in seconds) how much more recent or how much more in the past you want 
your date object to be. To specify a date that occurs earlier than the method’s reference date, use a negative 
number of seconds. The code fragment below defines two date objects. tomorrow  is exactly 24 hours from 
the current date and time, and yesterday is exactly 24 hours earlier than the current date and time.

NSTimeInterval secondsPerDay = 24 * 60 * 60;

NSDate *tomorrow = [NSDate 

dateWithTimeIntervalSinceNow:secondsPerDay];

NSDate *yesterday = [NSDate 

dateWithTimeInstervalSinceNow:-secondsPerDay];

To get new date objects with date-and-time values adjusted from existing date objects, use 
addTimeInterval: .



5

 Classes: NSDate Class Cluster

NSTimeInterval secondsPerDay = 24 * 60 * 60;

NSDate *today = [NSDate date];

NSDate *tomorrow, yesterday;

tomorrow = [today addTimeInterval:secondsPerDay];

yesterday = [today addTimeInterval:-secondsPerDay];

NSCalendarDate

The NSDate class cluster provides, for your convenience, a public concrete subclass of NSDate that 
satisfies many requirements for dates and times. This subclass, NSCalendarDate, enables you to represent 
dates as arbitrary strings, to create new date objects from string representations, to extract date and time 
elements from date objects, and to do other calendar-related functions. You can create an NSCalendarDate 
out of your NSDate using the dateWithCalendarFormat:timeZone: method.

Comparing NSDate Objects

To obtain the difference between a date object and another point in time, send a timeInterval...  message to 
the date object. For instance, timeIntervalSinceNow gives you the time, in seconds, between the current 
time and the receiving date object. 

To compare dates, use the isEqualToDate:, compare:, laterDate:, and earlierDate: methods. These 
methods perform exact comparisons, which means they will detect subsecond differences between dates. 
You might want to compare dates with a less fine granularity. For example, you might want to consider two 
dates equal if they are within a minute of each other. If this is the case, use timeIntervalSinceDate: to 
compare the two dates or use NSCalendarDate objects instead. The following code shows how to use 
timeIntervalSinceDate: to see if two dates are within one minute (60 seconds) of each other.

if (fabs([date2 timeIntervalSinceDate:date1]) < 60) ...

NSString Representations for NSDates

To represent your date object as an NSString, use the description... methods. The simplest method, 
description, prints out the date in the format YYYY-MM-DD HH:MM:SS ±HHMM, where ±HHMM 
represents the time zone offset in hours and minutes from GMT. (Adding the offset to the specific time 
yields the equivalent GMT.) To have a specific locale dictionary affect the representation of your NSDate, 
use descriptionWithLocale: instead of description. The following keys in the locale dictionary affect 
NSDates:

Key Description

NSTimeDateFormatString
Specifies how dates with times are printed. The default is to use 
abbreviated months and days with a 24 hour clock, as in “Sun Jan 01 
23:00:00 +6 2001.”



6

Subclassing NSDate

If you want to subclass NSDate to obtain behavior different than that provided by the private subclasses, 
you must do these things:

• Declare a suitable instance variable to hold the date and time value (relative to an absolute reference 
date). 

• Override the timeIntervalSinceReferenceDate instance method to provide the correct date and time 
value based on your instance variable.

• Override initWithTimeIntervalSinceReferenceDate:, the designated initializer method. 

• Override descriptionWithLocale: if you want to affect the way your NSDate subclass is converted to a 
string. When you use the %@ conversion specifier inside of an NSString to convert an NSDate object, 
NSDate’s descriptionWithLocale: method decides how to represent the date. 

Your subclass may use a different reference date than the absolute reference date used by NSDate (the first 
instance of 1 January 2001 GMT). If it does, it must still use the absolute reference date in its 
implementations of the methods timeIntervalSinceReferenceDate and 
initWithTimeIntervalSinceReferenceDate:. That is, the reference date referred to in the titles of these 
methods is the absolute reference date. If you do not use the absolute reference date in these methods, 
comparisons between NSDate objects of your subclass and NSDate objects of a private subclass will not 
work.

Adopted Protocols

NSCopying
– copyWithZone:

NSAMPMDesignation
Specifies how the morning and afternoon designations are printed. The 
default is AM and PM.

NSMonthNameArray Specifies the names for the months.

NSShortMonthNameArray Specifies the abbreviations for the months.

NSWeekDayNameArray Specifies the names for the days of the week.

NSShortWeekDayNameArray Specifies the abbreviations for the days of the week.

Key Description



7

 Classes: NSDate Class Cluster

NSCoding
– encodeWithCoder:
– initWithCoder:

Method Types

Creating an NSDate instance
+ date
+ dateWithTimeIntervalSinceNow:
+ dateWithString:
+ dateWithNaturalLanguageString:
+ dateWithNaturalLanguageString:locale:
+ dateWithTimeIntervalSinceReferenceDate:
+ dateWithTimeIntervalSince1970:
+ distantFuture
+ distantPast
– initWithTimeIntervalSinceNow:
– initWithString:
– initWithTimeInterval:sinceDate:
– init
– initWithTimeIntervalSinceReferenceDate:
– addTimeInterval:

Comparing dates
– isEqualToDate:
– earlierDate:
– laterDate: 
– compare:

Getting time intervals
– timeIntervalSinceDate:
– timeIntervalSinceNow
+ timeIntervalSinceReferenceDate
– timeIntervalSinceReferenceDate
– timeIntervalSince1970

Representing dates as NSStrings
– description 
– descriptionWithLocale:
– descriptionWithCalendarFormat:timeZone:locale:

Converting to an NSCalendarDate object
– dateWithCalendarFormat:timeZone:



8

Class Methods

date
+ (id)date

Creates and returns an NSDate set to the current date and time. This method uses the default initializer 
method for the class, init .

A typical example of using date to get the current date is:

NSDate *today = [NSDate date];

See also:  – init

dateWithNaturalLanguageString:
+ dateWithNaturalLanguageString:(NSString *)string

Creates and returns an NSDate set to the date and time specified by string. The argument string can be a 
colloquial specification of a date, such as “last Tuesday at dinner,” “3pm December 31, 1995,” “12/31/95,” 
or “31/12/95.” In parsing string, this method uses the date and time preferences stored in the user’s defaults 
database. (See dateWithNaturalLanguageString:locale: for a list of the specific items used.) 

See also: + dateWithNaturalLanguageString:locale:

dateWithNaturalLanguageString:locale:
+ dateWithNaturalLanguageString:(NSString *)string locale:(NSDictionary *)localeDictionary

Creates and returns an NSDate set to the date and time specified by string. The argument string can be a 
colloquial specification of a date, such as “last Tuesday at dinner,” “3pm December 31, 1995,” “12/31/95,” 
or “31/12/95.” The keys and values that represent the locale data from localeDictionary are used when 



9

 Classes: NSDate Class Cluster

parsing the string. In addition to the locale keys listed in the class description, these keys are used when 
parsing natural language strings:

See also: + dateWithNaturalLanguageString:

Key Description

NSDateTimeOrdering

Determines how to use ambiguous numbers. Specify this value as a 
permutation of the letters M (month), D (day), Y (year), and H (hour). For 
example, MDYH treats “2/3/95 10” as the 3rd day of February 1995 at 10:
00am, whereas DMYH treats the same value as the 2nd day of March 1995 
at 10:00am. 
If fewer numbers are specified than are needed, the numbers are prioritized 
to satisfy day first, then the month, and then the year. For example, if you 
supply only the value 12, it means the 12th day of this month in this year 
because the day must be specified. If you supply “2 12” it means either 
February 12 or December 2, depending on if the ordering is “MDYH” or 
“DMYH.” 

NSEarlierTimeDesignations
An array of strings that denote a time in the past. These are adjectives that 
modify values from NSYearMonthWeekDesignations. The defaults are “prior,” 
“last,” “past,” and “ago.”

NSHourNameDesignations
Strings that identify the time of day. These strings should be bound to an 
hour. The default is this array of arrays: (0, midnight), (12, noon, lunch), (10, 
morning), (14, afternoon), (19, dinner).

NSLaterTimeDesignations
An array of strings that denote a time in the future. This is an adjective that 
modifies a value from NSYearMonthWeekDesignations. The default is “next.”

NSNextDayDesignations A string that identifies the day after today. The default is “tomorrow.”

NSNextNextDayDesignations A string that identifies the day after tomorrow. The default is “nextday.” 

NSPriorDayDesignations A string that identifies the day before today. The default is “yesterday.”

NSThisDayDesignations A string that identifies what this day is called. The default is “today.”

NSYearMonthWeekDesignations
An array of strings that specify the word for year, month, and week in the 
current locale. The defaults are “year,” “month,” and “week.”



10

dateWithString:
+ (id)dateWithString: (NSString *)aString 

Creates and returns an NSDate with a date and time value specified by the international 
string-representation format: YYYY-MM-DD HH:MM:SS ±HHMM , where ±HHMM is a time zone offset 
in hours and minutes from GMT (for example, “1994-05-23 10:45:32 +0600”). You must specify all fields 
of the format, including the time zone offset, which must have a plus- or minus-sign prefix. 

See also: – initWithString:  

dateWithTimeIntervalSinceNow:
+ (id)dateWithTimeIntervalSinceNow:(NSTimeInterval)seconds

Creates and returns an NSDate set to the specified number of seconds from the current date and time. Use 
a negative argument value to specify a date before the current date. 

See also: – initWithTimeIntervalSinceNow:

dateWithTimeIntervalSince1970:
+ (id)dateWithTimeIntervalSince1970:(NSTimeInterval)seconds

Creates an returns an NSDate set to the specified number of seconds from the reference date 
1 January 1970. Use a negative argument to specify a date before this date. 

This method is useful for creating NSDate objects from time_t values returned by BSD system functions. 

See also: – timeIntervalSince1970

dateWithTimeIntervalSinceReferenceDate:
+ (id)dateWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds

Creates and returns an NSDate set to a specified number of seconds from the absolute reference date (the 
first instant of 1 January 2001, GMT). Use a negative argument to specify a date and time before the 
reference date. 

See also: – initWithTimeIntervalSinceReferenceDate:

distantFuture
+ (id)distantFuture

Creates and returns an NSDate that represents a date in the distant future (in terms of centuries). 



11

 Classes: NSDate Class Cluster

You can pass this value where an NSDate is required to have the date argument essentially ignored. For 
example, the NSWindow method nextEventMatchingMask:untilDate:inMode:dequeue: returns nil  if 
an event specified in the event mask does not happen before the specified date. You can use the object 
returned by distantFuture as the date argument to wait indefinitely for the event to occur.

myEvent = [myWindow nextEventMatchingMask:myEventMask 

untilDate:[NSDate distantFuture] 

inMode:NSDefaultRunLoopMode 

dequeue:YES];

See also: + distantPast

distantPast
+ (id)distantPast

Creates and returns an NSDate that represents a date in the distant past (in terms of centuries). You can use 
this object in your code as a control date, a guaranteed temporal boundary. 

See also: + distantFuture

timeIntervalSinceReferenceDate
+ (NSTimeInterval)timeIntervalSinceReferenceDate 

Returns the interval between the system’s absolute reference date (the first instance of 1 January 2001, 
GMT) and the current date and time. Currently, this value is a negative number.

See also: – timeIntervalSinceReferenceDate, – timeIntervalSinceDate:, – timeIntervalSince1970, 
– timeIntervalSinceNow

Instance Methods

addTimeInterval:
– (id)addTimeInterval: (NSTimeInterval)seconds

Returns an NSDate object that is set to a specified number of seconds relative to the receiver. Use a negative 
value for seconds to have the returned object specify a date before the receiving object. The date returned 
might have a representation different from the receiver’s. 

See also: – initWithTimeInterval:sinceDate: , – timeIntervalSinceDate:



12

compare:
– (NSComparisonResult)compare:(NSDate *)anotherDate

Compares the receiving date to anotherDate, using timeIntervalSinceDate:, and returns a value of type 
NSComparisonResult. If the two dates are exactly equal to each other, this method returns 
NSOrderedSame. If the receiving object in the comparison is more recent than anotherDate, the method 
returns NSOrderedDescending. If it is older, it returns NSOrderedAscending. 

This method detects subsecond differences between dates. If you want to compare dates with a less fine 
granularity, use timeIntervalSinceDate: to compare the two dates or use NSCalendarDate objects instead.

See also: – earlierDate:, – isEqual: (NSObject protocol), – laterDate:

dateWithCalendarFormat:timeZone:
– (NSCalendarDate *)dateWithCalendarFormat:(NSString *)formatString timeZone:

(NSTimeZone *)timeZone

Converts the NSDate to an NSCalendarDate object bound to formatString and the time zone timeZone. If 
you specify nil  for either or both of these arguments, the default format string and time zone are assumed. 
(The default time zone is the one specific to the current locale; the default format string, which is 
“%Y-%m-%d %H:%M:%S %z”, conforms to the international format YYYY-MM-DD HH:MM:SS 
±HHMM.) 



13

 Classes: NSDate Class Cluster

The conversion specifiers for formatString cover a range of date conventions: 

Specifier Description

%% a '%' character

%a abbreviated weekday name

%A full weekday name

%b abbreviated month name

%B full month name

%c shorthand for %X %x, the locale format for date and time

%d day of the month as a decimal number (01-31) 

%e same as %d but does not print the leading 0 for days 1 through 9

%F milliseconds as a decimal number (000 - 999)

%H hour based on a 24-hour clock as a decimal number (00-23) 

%I hour based on a 12-hour clock as a decimal number (01-12) 

%j day of the year as a decimal number (001-366) 

%m month as a decimal number (01-12) 

%M minute as a decimal number (00-59) 

%p AM/PM designation for the locale

%S second as a decimal number (00-61) 

%w weekday as a decimal number (0-6), where Sunday is 0

%x date using the date representation for the locale

%X time using the time representation for the locale

%y year without century (00-99) 

%Y year with century (such as 1990)

%Z time zone abbreviation (such as PDT)

%z time zone offset in hours and minutes from GMT (HHMM)



14

See also: – description, – descriptionWithCalendarFormat:timeZone:locale:, 
– descriptionWithLocale:, + dateWithString:calendarFormat:  (NSCalendarDate)

description
– (NSString *)description

Returns an NSString representing the NSDate object and conforming to the international format 
YYYY-MM-DD HH:MM:SS ±HHMM, where ±HHMM represents the time zone offset in hours and 
minutes from GMT (for example, “1994-05-23 10:45:32 +0600”).

See also: – dateWithCalendarFormat:timeZone:, – descriptionWithCalendarFormat:timeZone:
locale:, – descriptionWithLocale:, – description (NSCalendarDate) 

descriptionWithCalendarFormat:timeZone:locale:
– (NSString *)descriptionWithCalendarFormat: (NSString *)formatString timeZone:

(NSTimeZone *)aTimeZone 
locale:(NSDictionary *)localeDictionary

Returns an NSString representing the NSDate, formatted as specified by the conversion specifiers in 
formatString (see the method description for dateWithCalendarFormat:timeZone: for a list of these). 
Specify the time zone for the date in aTimeZone and specify keys and values representing the locale in 
localeDictionary. (See the class description for a list of the appropriate locale dictionary keys.) If you 
specify nil  for one of these arguments, its default value is assumed. (The default time zone is the one 
specific to the current locale; the default format string, which is “%Y-%m-%d %H:%M:%S %z”, conforms 
to the international format YYYY-MM-DD HH:MM:SS ±HHMM.) 

You could use this method to print the current time as follows:

sprintf(aString, "The current time is %s\n", [[[NSDate date] 

descriptionWithCalendarFormat:@"%H:%M:%S %Z" timeZone:nil 

locale:nil] cString]);

See also: – description, – descriptionWithCalendarFormat:locale: (NSCalendarDate), 
– descriptionWithLocale: 

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)localeDictionary

Returns an NSString representing the NSDate that conforms to the international format YYYY-MM-DD 
HH:MM:SS ±HHMM, where ±HHMM represents the time zone offset in hours and minutes from GMT 



15

 Classes: NSDate Class Cluster

(for example, “1994-05-23 10:45:32 +0600”). Included are the keys and values that represent the locale 
data from localeDictionary (see the class description). 

See also: – description, – descriptionWithCalendarFormat:timeZone:locale:, 
– descriptionWithLocale: (NSCalendarDate)

earlierDate:
– (NSDate *)earlierDate:(NSDate *)anotherDate

Compares the receiver date to anotherDate, using timeIntervalSinceDate:, and returns the earlier of the 
two.

See also: – compare:, – isEqual: (NSObject protocol), – laterDate:

init
– (id)init

When sent to the object returned by alloc or allocWithZone:, this method returns an NSDate initialized to 
the current date and time. This method uses the designated initializer, 
initWithTimeIntervalSinceReferenceDate:. 

See also: + date, – initWithTimeIntervalSinceReferenceDate:

initWithString:
– (id)initWithString: (NSString *)description

Returns an NSDate with a date and time value specified by the international string-representation format: 
YYYY-MM-DD HH:MM:SS ±ΗΗΜΜ, where ±HHMM is a time zone offset in hours and minutes from 
GMT (for example, “1994-05-23 10:45:32 +0600”). You must specify all fields of the format, including the 
time zone offset, which must have a plus- or minus-sign prefix. This method uses the designated initializer, 
initWithTimeIntervalSinceReferenceDate:. 

See also: + dateWithString: , – description, – initWithTimeIntervalSinceReferenceDate:

initWithTimeInterval:sinceDate:
– (id)initWithTimeInterval: (NSTimeInterval)seconds sinceDate:(NSDate *)anotherDate

Returns an NSDate initialized relative to another NSDate by a specified number of seconds (plus or minus). 
This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate:. 

See also: – initWithTimeIntervalSinceReferenceDate: 



16

initWithTimeIntervalSinceNow:
– (id)initWithTimeIntervalSinceNow: (NSTimeInterval)seconds

Returns an NSDate initialized relative to the current date and time by the specified number of seconds (plus 
or minus). This method uses the designated initializer, initWithTimeIntervalSinceReferenceDate:. 

See also: + dateWithTimeIntervalSinceNow:, – initWithTimeIntervalSinceReferenceDate:

initWithTimeIntervalSinceReferenceDate:
– (id)initWithTimeIntervalSinceReferenceDate:(NSTimeInterval)seconds

When sent to the object returned by alloc or allocWithZone:, this method returns an NSDate initialized 
relative to the absolute reference date (the first instant of 1 January 2001, GMT) by the specified number of 
seconds (plus or minus). 

This method is the designated initializer for the NSDate class and is declared primarily for the use of 
subclasses of NSDate. When you subclass NSDate to create a concrete date class, you must override this 
method. 

See also: + dateWithTimeIntervalSinceReferenceDate:

isEqualToDate:
– (BOOL)isEqualToDate:(NSDate *)anotherDate

Returns YES if the two objects compared are NSDate objects and are exactly equal to each other, NO if one 
of the objects is not of the NSDate class or if their date and time values differ. This method detects 
subsecond differences between dates. If you want to compare dates with a less fine granularity, either use 
timeIntervalSinceDate: to compare the two dates or use NSCalendarDate objects instead.

See also: – compare:, – earlierDate:, – isEqual: (NSObject protocol), – laterDate:

laterDate:
– (NSDate *)laterDate:(NSDate *)anotherDate

Compares the receiver to anotherDate, using timeIntervalSinceDate:, and returns the later of the two.

See also: – compare:, – earlierDate:, – isEqual: (NSObject protocol)



17

 Classes: NSDate Class Cluster

timeIntervalSinceDate:
– (NSTimeInterval)timeIntervalSinceDate:(NSDate *)anotherDate

Returns the interval between the receiver and anotherDate. If the receiver is earlier than anotherDate, the 
return value is negative.

See also: – timeIntervalSince1970, – timeIntervalSinceNow, – timeIntervalSinceReferenceDate

timeIntervalSince1970
– (NSTimeInterval)timeIntervalSince1970 

Returns the interval between the receiver and the reference date 1 January 1970. If the receiver is earlier 
than 1 January 1970, the return value is negative.

See also: – timeIntervalSinceDate:, – timeIntervalSinceNow, – timeIntervalSinceReferenceDate

timeIntervalSinceNow
– (NSTimeInterval)timeIntervalSinceNow

Returns the interval between the receiver and the current date and time. If the receiver is earlier than the 
current date and time, the return value is negative.

See also: – timeIntervalSinceDate:, – timeIntervalSince1970, – timeIntervalSinceReferenceDate

timeIntervalSinceReferenceDate
– (NSTimeInterval)timeIntervalSinceReferenceDate

Returns the interval between the receiver and the system’s absolute reference date, 1 January 2001, GMT. 
If the receiver is earlier than the absolute reference date, the return value is negative. 

This is the primitive method for NSDate. If you subclass NSDate, you must override this method with your 
own implementation for it.

See also: – timeIntervalSinceDate:, – timeIntervalSince1970, – timeIntervalSinceNow, 
+ timeIntervalSinceReferenceDate



1

 Classes: NSDateFormatter

NSDateFormatter

Inherits From: NSFormatter : NSObject

Conforms To: NSObject (NSObject)
NSCoding
NSCopying

Declared In: Foundation/NSDateFormatter.h

Class Description 

Instances of NSDateFormatter format the textual representation of cells that contain NSDates (including 
NSCalendarDates), and convert textual representations of dates and times into NSDates. You can express 
the representation of dates and times very flexibly: “Thu 22 Dec 1994” is just as acceptable as “12/22/94”. 
With natural-language processing for dates enabled, users can also express dates colloquially, such as 
“today,” “day after tomorrow,” and “a month from today.” 

To use an NSDateFormatter, allocate an instance of it and initialize it with initWithDateFormat:
allowNaturalLanguage: In the first argument use strftime -style conversion specifiers to compose the 
format string for textual representation. (For more information on these specifiers, see the see the 
description of NSCalendarDate’s dateWithCalendarFormat:timeZone: method.) Then use NSCell's 
setFormatter: method to associate the NSDateFormatter object with a cell. The value of a cell (NSCell) is 
represented by an object, typically an NSDate object in this case. When this value needs to be displayed or 
edited, the cell passes its object to the NSDateFormatter instance, which returns the formatted string. When 
the user enters a string, or when one is programmatically written in a cell (using setStringValue:), the cell 
obtains the equivalent NSDate object from the NSDateFormatter.

NSControl provides delegation methods that permit you to validate cell contents and to handle errors in 
formatting. See the specification of the NSFormatter class for details.

When a cell with a NSDateFormatter is copied, the new cell retains the NSDateFormatter object instead of 
copying it. You remove an NSDateFormatter from a cell by specifying nil  as the argument of setFormatter:
.

Instances of NSDateFormatter are immutable.

Method Types 

Initializing an NSDateFormatter
– initWithDateFormat:allowNaturalLanguage:



2

Determining attributes 
– allowsNaturalLanguage
– dateFormat

Instance Methods

allowsNaturalLanguage
– (BOOL)allowsNaturalLanguage

Returns YES if the NSDateFormatter attempts to process dates entered as a vernacular string (“today,” “day 
before yesterday,” and so on). Returns NO if the NSDateFormatter does not do any natural-language 
processing of these date expressions.

dateFormat
– (NSString *)dateFormat

Returns the date format string used by an NSDateFormatter object. See the description of 
NSCalendarDate’s dateWithCalendarFormat:timeZone: for a list of the conversion specifiers permitted 
in date format strings. 

initWithDateFormat:allowNaturalLanguage:
– (id)initWithDateFormat: (NSString *)format

allowNaturalLanguage:(BOOL)flag

Initializes and returns an NSDateFormatter instance that uses the date format in its conversions. See the 
description of NSCalendarDate’s dateWithCalendarFormat:timeZone: for a list of conversion specifiers 
permitted in date format strings. Set flag to YES if you want the NSDateFormatter to process dates entered 
as expressions in the vernacular (for example, “tomorrow”); NSDateFormatter attempts natural-language 
processing only after it fails to interpret an entered string according to format. The following example 
creates a date formatter with the format string (as example) “Mar 15 1994” and then associates the formatter 
with the cells of a form (contactsForm).

NSDateFormatter *dateFormat = [[NSDateFormatter alloc]

initWithDateFormat:@"%b %d %Y” allowNaturalLanguage:NO];

[[contactsForm cells] makeObjectsPerform:@selector(setFormatter:)

 withObject:dateFormat]



1

 Classes: NSDecimalNumber

NSDecimalNumber

Inherits From: NSNumber : NSValue : NSObject

Conforms To: NSDecimalNumberBehavior
NSObject (NSObject)

Declared In: Foundation/NSDecimalNumber.h

Class Description 

NSDecimalNumber, an immutable subclass of NSNumber, provides an object-oriented wrapper for doing 
base-10 arithmetic. An instance can represent any number that can be expressed as mantissa x 10exponent  
where mantissa is a decimal integer up to 38 digits long, and exponent is an integer between -128 and 127.

In the course of doing arithmetic, a method may produce calculation errors, such as division by zero. It may 
also meet circumstances where it has a choice of ways to round a number off. The way the method acts on 
such occasions is called its “behavior.” 

Behavior is set by methods in the NSDecimalNumberBehaviors protocol. Every NSDecimalNumber 
argument called behavior requires an object that conforms to this protocol. For more on behaviors, see the 
specifications for the NSDecimalNumberBehaviors protocol and the NSDecimalNumberHandler class. 
Also see the defaultBehavior method description, below.

C Interface to Decimal Numbers

The arithmetic and rounding methods of NSDecimalNumber are also accessible through group of ordinary 
C functions, defined in NSDecimal.h. You might consider the C interface if you don’t need to treat 
NSDecimalNumbers as objects—that is, if you don’t need to store them in an object-oriented collection like 
an NSArray or NSDictionary.

You might also consider the C interface if you need maximum efficiency. The C interface is faster and uses 
less memory than the NSDecimalNumber class.

If you need mutability, you can combine the two interfaces. Use functions from the C interface and convert 
their results to NSDecimalNumbers.

The C functions—NSDecimalCompact(), NSDecimalCompare(), NSDecimalRound(), 
NSDecimalNormalize(), NSDecimalAdd(), NSDecimalSubtract(), NSDecimalMultiply() , 
NSDecimalDivide(), NSDecimalPower(), NSDecimalMultiplyByPowerOf10(), NSDecimalString()—
are all documented in the “Functions” chapter of the Foundation Framework Reference.



2

Method Types

Creating an NSDecimalNumber 
+ decimalNumberWithDecimal:
+ decimalNumberWithMantissa:exponent:isNegative:
+ decimalNumberWithString:
+ decimalNumberWithString:locale:
+ one
+ zero
+ notANumber

Initializing an NSDecimalNumber
– initWithDecimal:
– initWithMantissa:exponent:isNegative:
– initWithString:
– initWithString:locale:

Doing arithmetic
– decimalNumberByAdding:
– decimalNumberBySubtracting:
– decimalNumberByMultiplyingBy:
– decimalNumberByDividingBy:
– decimalNumberByRaisingToPower:
– decimalNumberByMultiplyingByPowerOf10:
– decimalNumberByAdding:withBehavior:
– decimalNumberBySubtracting:withBehavior:
– decimalNumberByMultiplyingBy:withBehavior:
– decimalNumberByDividingBy:withBehavior:
– decimalNumberByRaisingToPower:withBehavior:
– decimalNumberByMultiplyingByPowerOf10:withBehavior:

Rounding off
– decimalNumberByRoundingAccordingToBehavior:

Accessing data
– decimalValue
– doubleValue
– descriptionWithLocale:
– objCType

Modifying behavior
+ defaultBehavior
+ setDefaultBehavior:

Comparing NSDecimalNumbers
– compare:



3

 Classes: NSDecimalNumber

Getting the highest and lowest possible NSDecimalNumbers
+ maximumDecimalNumber
+ minimumDecimalNumber

Class Methods

decimalNumberWithDecimal:
+ (NSDecimalNumber *)decimalNumberWithDecimal:(NSDecimal)decimal 

Creates and returns an NSDecimalNumber equivalent to decimal.

decimal is an NSDecimal structure, which you can initialize by hand, or generate using the scanDecimal: 
method from the NSDecimalNumberScanning category of NSScanner, defined in NSDecimalNumber.h.

decimalNumberWithMantissa:exponent:isNegative:
+ (NSDecimalNumber *)decimalNumberWithMantissa:(unsigned long long)mantissa exponent:

(short)exponent isNegative:(BOOL)isNegative 

Creates and returns an NSDecimalNumber equivalent to the number specified by the arguments. 

The arguments express a number in a kind of scientific notation that requires the mantissa to be an integer. 
So, for example, if the number to be represented is 1.23, it is expressed as 123x10-2—mantissa is 123, 
exponent is -2, and isNegative, which refers to the sign of the mantissa, is NO.

decimalNumberWithString:
+ (NSDecimalNumber *)decimalNumberWithString: (NSString *)numericString 

Creates and returns an NSDecimalNumber equivalent to numericString. Besides digits, numericString can 
include an initial “+” or “-,” a single “E” or “e”, to indicate the exponent of a number in scientific notation, 
and a single NSDecimalSeparator to divide the fractional from the integral part of the number.

Whether the NSDecimalSeparator is a period (as in the United States) or a comma (as in France) depends 
on the default locale.

See also: + decimalNumberWithString:locale:



4

decimalNumberWithString:locale:
+ (NSDecimalNumber *)decimalNumberWithString: (NSString *)numericString locale:

(NSDictionary *)locale 

Creates and returns an NSDecimalNumber equivalent to numericString. Besides digits, numericString can 
include an initial “+” or “-,” a single “E” or “e”, to indicate the exponent of a number in scientific notation, 
and a single NSDecimalSeparator to divide the fractional from the integral part of the number.

locale determines whether the NSDecimalSeparator is a period (as in the United States) or a comma (as in 
France).

The following strings show examples of acceptable values for numericString:

• “2500.6” (or “2500,6”, depending on locale)
• “-2500.6” (or “-2500.6”)
• “-2.5006e3” (or “-2,5006e3”)
• “-2.5006E3” (or “-2,5006E3”)

The following are unacceptable:

• “2,500.6”
• “2500 3/5”
• “2.5006x10e3”
• “two thousand five hundred and six tenths”

See also: + decimalNumberWithString:

defaultBehavior
+ (id <NSDecimalNumberBehaviors>)defaultBehavior 

Returns the way that arithmetic methods, like decimalNumberByAdding:, round off and handle error 
conditions. 

By default, the arithmetic methods do not round numbers off. They assume that your need for precision 
does not exceed 38 significant digits. And they raise exceptions when they try to divide by zero, or when 
they produce a number that is too big or small to be represented.

If this default behavior doesn’t suit your application, you should use methods that let you specify the 
behavior, like decimalNumberByAdding:withBehavior. If you find yourself using a particular behavior 
consistently, you can specify a different default behavior with setDefaultBehavior:.



5

 Classes: NSDecimalNumber

maximumDecimalNumber
+ (NSDecimalNumber *)maximumDecimalNumber

Returns the largest possible NSDecimalNumber.

See also: + minimumDecimalNumber

minimumDecimalNumber
+ (NSDecimalNumber *)minimumDecimalNumber

Returns the smallest possible NSDecimalNumber.

See also: + maximumDecimalNumber

notANumber
+ (NSDecimalNumber *)notANumber 

Creates and returns an NSDecimalNumber that specifies no number. Any arithmetic method receiving 
notANumber as an argument returns notANumber.

This value can be a useful way of handling non-numeric data in an input file. It can also be a useful response 
to calculation errors. For more information on calculation errors, see the exceptionDuringOperation:
error:leftOperand:rightOperand:  method description in the NSDecimalNumberBehaviors protocol 
specification.

one
+ (NSDecimalNumber *)one 

Creates and returns an NSDecimalNumber equivalent to the number 1.0. 

See also:  + zero

setDefaultBehavior:
+ (void)setDefaultBehavior:(id <NSDecimalNumberBehaviors>)behavior 

Specifies the way that arithmetic methods, like decimalNumberByAdding:, round off and handle error 
conditions. behavior must conform to the NSDecimalNumberBehaviors protocol.



6

zero
+ (NSDecimalNumber *)zero 

Returns a newly allocated NSDecimalNumber equivalent to the number 0.0.

See also:  + one

Instance Methods

compare:
– (NSComparisonResult)compare:(NSNumber *)decimalNumber

Compares decimalNumber with the receiver. Returns NSOrderedAscending if decimalNumber’s value is 
greater than the receiver’s, NSOrderedSame if they’re equal, and NSOrderedDescending if 
decimalNumber’s value is less than the receiver’s.

decimalNumberByAdding:
– (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber 

Adds decimalNumber to the receiver, and returns the sum, a newly created NSDecimalNumber. This 
method uses the default behavior when handling calculation errors and rounding.

See also: – decimalNumberByAdding:withBehavior:, + defaultBehavior

 decimalNumberByAdding:withBehavior:
– (NSDecimalNumber *)decimalNumberByAdding:(NSDecimalNumber *)decimalNumber 

withBehavior: (id <NSDecimalNumberBehaviors>)behavior 

Adds decimalNumber to the receiver, and returns the sum, a newly created NSDecimalNumber. behavior 
specifies the handling of calculation errors and rounding.

decimalNumberByDividingBy:
– (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber 

Divides the receiver by decimalNumber, and returns the quotient, a newly created NSDecimalNumber. This 
method uses the default behavior when handling calculation errors and rounding.

See also: – decimalNumberByDividingBy:withBehavior: , + defaultBehavior



7

 Classes: NSDecimalNumber

decimalNumberByDividingBy:withBehavior:
– (NSDecimalNumber *)decimalNumberByDividingBy:(NSDecimalNumber *)decimalNumber 

withBehavior: (id <NSDecimalNumberBehaviors>)behavior 

Divides the receiver by decimalNumber, and returns the quotient, a newly created NSDecimalNumber. 
behavior specifies the handling of calculation errors and rounding.

decimalNumberByMultiplyingBy:
– (NSDecimalNumber *)decimalNumberByMultiplyingBy: (NSDecimalNumber *)decimalNumber 

Multiplies the receiver by decimalNumber, and returns the product, a newly created NSDecimalNumber. 
This method uses the default behavior when handling calculation errors and when rounding.

See also: – decimalNumberByMultiplyingBy:withBehavior: , + defaultBehavior

decimalNumberByMultiplyingBy:withBehavior:
– (NSDecimalNumber *)decimalNumberByMultiplyingBy: (NSDecimalNumber *)decimalNumber 

withBehavior: (id <NSDecimalNumberBehaviors>)behavior 

Multiplies the receiver by decimalNumber, and returns the product, a newly created NSDecimalNumber. 
behavior specifies the handling of calculation errors and rounding.

decimalNumberByMultiplyingByPowerOf10:
– (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10: (short)power 

Multiplies the receiver by 10power , and returns the product, a newly created NSDecimalNumber. This 
method uses the default behavior when handling calculation errors and when rounding.

See also: – decimalNumberByMultiplyingByPowerOf10:withBehavior: , + defaultBehavior

decimalNumberByMultiplyingByPowerOf10:withBehavior:
– (NSDecimalNumber *)decimalNumberByMultiplyingByPowerOf10: (short)power withBehavior:

(id <NSDecimalNumberBehaviors>)behavior 

Multiplies the receiver by 10power , and returns the product, a newly created NSDecimalNumber.  behavior 
specifies the handling of calculation errors and rounding.



8

decimalNumberByRaisingToPower:
– (NSDecimalNumber *)decimalNumberByRaisingToPower:(unsigned)power 

Raises the receiver to power, and returns the result, a newly created NSDecimalNumber.  This method uses 
the default behavior when handling calculation errors and when rounding.

See also: – decimalNumberByRaisingToPower:withBehavior:, + defaultBehavior

decimalNumberByRaisingToPower:withBehavior:
– (NSDecimalNumber *)decimalNumberByRaisingToPower:(unsigned)power withBehavior:

(id <NSDecimalNumberBehaviors>)behavior 

Raises the receiver to power, and returns the result, a newly created NSDecimalNumber.  behavior specifies 
the handling of calculation errors and rounding.

decimalNumberByRoundingAccordingToBehavior:
– (NSDecimalNumber *)decimalNumberByRoundingAccordingToBehavior:

(id <NSDecimalNumberBehaviors>)behavior 

Rounds the receiver off in the way specified by behavior, and returns the result, a newly created 
NSDecimalNumber. For a description of the different ways of rounding, see the roundingMode method in 
the NSDecimalNumberHandler class specification.

decimalNumberBySubtracting:
– (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber 

Subtracts decimalNumber from the receiver, and returns the difference, a newly created 
NSDecimalNumber. This method uses the default behavior when handling calculation errors and when 
rounding.

See also: – decimalNumberBySubtracting:withBehavior:, + defaultBehavior

decimalNumberBySubtracting:withBehavior:
– (NSDecimalNumber *)decimalNumberBySubtracting:(NSDecimalNumber *)decimalNumber 

withBehavior: (id <NSDecimalNumberBehaviors>)behavior 

Subtracts decimalNumber from the receiver, and returns the difference, a newly created 
NSDecimalNumber. behavior specifies the handling of calculation errors and rounding.



9

 Classes: NSDecimalNumber

decimalValue
– (NSDecimal)decimalValue 

Returns the receiver’s value, expressed as an NSDecimal structure.

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale

Returns an NSString that represents the contents of the receiver. Whether the separator is a period or a 
comma depends on locale.

doubleValue
– (double)doubleValue

Returns the approximate double value of the receiver.

initWithDecimal:
– (NSDecimalNumber *)initWithDecimal: (NSDecimal)decimal 

Returns an NSDecimalNumber initialized to represent decimal. This method is NSDecimalNumber’s 
designated initializer.

initWithMantissa:exponent:isNegative:
– (NSDecimalNumber *)initWithMantissa: (unsigned long long)mantissa exponent:(short)exponent 

isNegative:(BOOL)isNegative 

Creates and returns an NSDecimalNumber equivalent to the number specified by the arguments. 

The arguments express a number in a type of scientific notation that requires the mantissa to be an integer. 
So, for example, if the number to be represented is 1.23, it is expressed as 123x10-2—mantissa is 123, 
exponent is -2, and isNegative, which refers to the sign of the mantissa, is NO.

initWithString:
– (NSDecimalNumber *)initWithString: (NSString *)numericString

Returns an NSDecimalNumber equivalent to numericString. numericString must be a simple string of 
digits, possibly including a decimal separator. For a listing of acceptable and unacceptable strings, see the 
class method decimalNumberWithString:locale:.



10

initWithString:locale:
– (NSDecimalNumber *)initWithString: (NSString *)numericString locale:(NSDictionary *)locale 

Returns a newly created NSDecimalNumber equivalent to numericString. The interpretation of 
numericString depends on locale.

See also: + decimalNumberWithString:locale:

objCType
– (const char *)objCType

Returns a C string containing the Objective-C type of the data contained in the receiver, which for an 
NSDecimalNumber is always “d” (for double).



1

 Classes: NSDecimalNumberHandler

NSDecimalNumberHandler

Inherits From: NSObject

Conforms To: NSDecimalNumberBehaviors
NSObject (NSObject)

Declared In: Foundation/NSDecimalNumber.h

Class Description 

NSDecimalNumberHandler is a class that adopts the NSDecimalNumberBehaviors protocol. This class 
allows you to set the way an NSDecimalNumber rounds off and handles errors, without having to create a 
custom class. 

You can use an instance of this class as an argument to any of the NSDecimalNumber methods that end 
with the word ...Behavior:. If you don’t think you need special behavior, you probably don’t need this class. 
The odds are that NSDecimalNumber’s default behavior will suit your needs.

For more information, see the NSDecimalNumberBehaviors protocol specification.

Adopted Protocols

 NSDecimalNumberBehaviors
– roundingMode
– scale
– exceptionDuringOperation:error:leftOperand:rightOperand:

Method Types

Creating and initializing an NSDecimalNumberHandler
+ defaultDecimalNumberHandler
+ decimalNumberHandlerWithRoundingMode:scale:

raiseOnExactness:raiseOnOverflow:raiseOnUnderflow:
raiseOnDivideByZero:

Initializing an already-created NSDecimalNumberHandler
– initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:

raiseOnUnderflow:raiseOnDivideByZero:



2

Class Methods

defaultDecimalNumberHandler
+ (id)defaultDecimalNumberHandler

Creates and returns the default instance of NSDecimalNumberHandler. 

This instance does not round numbers off. It assumes that your need for precision does not exceed 38 
significant digits. And it raises an exception when its NSDecimalNumber tries to divide by zero, or when 
its NSDecimalNumber produces a number that is too big or small to be represented. 

decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:
raiseOnOverflow:raiseOnUnderflow:raiseOnDivideByZero:

+ (id)decimalNumberHandlerWithRoundingMode:(NSRoundingMode)roundingMode
 scale:(short)scale
 raiseOnExactness:(BOOL)raiseOnExactness
 raiseOnOverflow:(BOOL)raiseOnOverflow 
raiseOnUnderflow:(BOOL)raiseOnUnderflow 
raiseOnDivideByZero:(BOOL)raiseOnDivideByZero

Creates and returns an NSDecimalNumberHandler with customized behavior. 

scale and roundingMode affect the way the NSDecimalNumberHandler’s NSDecimalNumber rounds off 
its return value. scale sets the number of digits a rounded value should have after its decimal point. 
roundingMode sets the rule by which that NSDecimalNumbers are rounded off; roundingMode has four 
possiblevalues: NSRoundUp, NSRoundDown, NSRoundPlain, and NSRoundBankers.

The raiseOn... arguments determine whether the NSDecimalNumberHandler will raise an exception when 
its NSDecimalNumber notifies it of a certain kind of calculation error. If a raiseOn... argument is YES, 
NSDecimalNumberHandler will raise an exception; if a raiseOn.. argument is NO, NSDecimalNumber 
will ignore the error, and return control to the calling method.

See the NSDecimalNumberBehaviors protocol spectification for a complete explanation of these possible 
behaviors.



3

 Classes: NSDecimalNumberHandler

Instance Methods

initWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:
raiseOnUnderflow:raiseOnDivideByZero:

- (id)initWithRoundingMode: (NSRoundingMode)roundingMode scale:(short)scale
raiseOnExactness:(BOOL)raiseOnExactness 
raiseOnOverflow:(BOOL)raiseOnOverflow
raiseOnUnderflow:(BOOL)raiseOnUnderflow
raiseOnDivideByZero:(BOOL)raiseOnDivideByZero

Initializes a previously-allocated NSDecimalNumberHandler so that it behaves as specified by the 
method’s arguments. For an explanation of these arguments, see the 
decimalNumberHandlerWithRoundingMode:scale:raiseOnExactness:raiseOnOverflow:
raiseOnUnderflow:raiseOnDivideByZero: class method.

Returns self.



1

 Classes: NSDeserializer

NSDeserializer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSSerialization.h

Class Description 

The NSDeserializer class declares methods that convert an abstract representation of a property list (as 
contained in an NSData object) into a graph of property list objects in memory. The NSDeserializer class 
object itself provides these methods; you don’t create instances of NSDeserializer. Options to these 
methods allow you to specify that container objects (arrays or dictionaries) in the resulting graph be mutable 
or immutable; that deserialization begin at the start of the data or from some position within it; or that 
deserialization occur lazily, so that a property list is deserialized only if it is actually going to be accessed. 
See the NSSerializer specification for more information on serialization.

Class Methods

deserializePropertyListFromData:atCursor:mutableContainers:
+ (id)deserializePropertyListFromData:(NSData *)data

atCursor:(unsigned int *)cursor
mutableContainers:(BOOL)mutable 

Returns a property list object corresponding to the abstract representation in data at the location cursor. If 
mutable is YES and the object is a dictionary or an array, the re-composed object is made mutable. Returns 
nil  if the object is not a valid one for property lists.

deserializePropertyListFromData:mutableContainers:
+ (id)deserializePropertyListFromData:(NSData *)serialization mutableContainers:(BOOL)mutable 

Returns a property list object corresponding to the abstract representation in serialization or nil  if 
serialization doesn’t represent a property list. If mutable is YES and the object is a dictionary or an array, 
the re-composed object is made mutable.



2

deserializePropertyListLazilyFromData:atCursor:length:mutableContainers:
+ (id)deserializePropertyListLazilyFromData:(NSData *)data

atCursor: (unsigned int *)cursor
length:(unsigned int)length
mutableContainers:(BOOL)mutable 

Returns a property list from data at location cursor or nil  if data doesn’t represent a property list. The 
deserialization proceeds lazily. That is, if the data at cursor has a length greater than length, a proxy is 
substituted for the actual property list as long as the constituent objects of that property list are not being 
accessed. If mutable is YES and the object is a dictionary or an array, the re-composed object is made 
mutable.



1

 Classes: NSDictionary Class Cluster

c NSDictionary Class Cluster

Class Cluster Description

The NSDictionary and NSMutableDictionary classes declare the programmatic interface for objects that 
store associations of keys and values. You use these classes when you need a convenient and efficient way 
to retrieve data associated with an arbitrary key. 

Because of the nature of class clusters, the objects you create with this interface are not actual instances of 
the NSDictionary or NSMutableDictionary classes. Rather, the instances belong to one of their private 
subclasses. (For convenience, we use the term dictionary to refer to any one of these instances without 
specifying its exact class membership.) Although a dictionary’s class is private, its interface is public, as 
declared by these abstract superclasses, NSDictionary and NSMutableDictionary.

A key-value pair within a dictionary is called an entry. Each entry consists of one object that represents the 
key, and a second object which is that key’s value. Within a dictionary, the keys are unique. That is, no two 
keys in a single dictionary are equal (as determined by isEqual:).

You establish an immutable dictionary’s entries when it’s created, and thereafter the entries can’t be 
modified. A mutable dictionary allows the addition and deletion of entries at any time, automatically 
allocating memory as needed. 

Internally, a dictionary uses a hash table to organize its storage and to provide rapid access to a value given 
the corresponding key. However, the methods defined in this cluster insulate you from the complexities of 
working with hash tables, hashing functions, or the hashed value of keys. The methods described below take 
keys directly, not their hashed form.

Generally, you create a temporary dictionary by sending one of the dictionary... messages to either the 
NSDictionary or NSMutableDictionary class object. These methods return a dictionary containing the 
associations specified as arguments to the method. Methods that add entries to dictionaries—whether as 
part of initialization (for all dictionaries) or during modification (for mutable dictionaries)—copy each key 
argument (keys must conform to the NSCopying protocol) and add the copies to the dictionary. Each 
corresponding value object receives a retain message to ensure that it won’t be deallocated before the 
dictionary is through with it.

The dictionary classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to 
convert a dictionary of one type to the other.



2

i NSDictionary

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject) 

Declared In: Foundation/NSDictionary.h



3

 Classes: NSDictionary Class Cluster

Class at a GlanceClass at a Glance

Purpose
An NSDictionary object stores an immutable set of entries.

Principal Attributes
• A count of the number of entries in the dictionary.
• The set of keys contained in the dictionary.
• The objects that correspond to the keys in the dictionary.

Creation

Commonly Used Methods

Primitive Methods
– count
– objectForKey:
– keyEnumerator

+ dictionary Returns an empty dictionary.

+ dictionaryWithContentsOfFile:
Returns a dictionary initialized from the property list stored in the 
specified file.

+ dictionaryWithDictionary: Returns a dictionary initialized from an existing dictionary.

+ dictionaryWithObject:forKey: Returns a dictionary initialized with a single object and key.

+ dictionaryWithObjects:forKeys: Returns a dictionary of the specified objects and their keys.

+ dictionaryWithObjects:forKeys:count: Returns a dictionary of the specified objects and their keys.

+ dictionaryWithObjectsAndKeys: Returns a dictionary of the specified objects and their keys.

– count Returns the number of objects currently in the dictionary.

– objectForKey: Returns the object that corresponds to the specified key.

– keyEnumerator Returns an enumerator object that lets you access each key in the dictionary.



4

Class Description

The NSDictionary class declares the programmatic interface to objects that manage immutable associations 
of keys and values. NSDictionary’s three primitive methods—count, objectForKey:, and 
keyEnumerator—provide the basis for all of the other methods in its interface. The count method returns 
the number of entries in the dictionary. objectForKey: returns the value associated with a given key. 
keyEnumerator returns an object that lets you iterate through each of the keys in the dictionary.

The other methods declared here operate by invoking one or more of these primitives. The non-primitive 
methods provide convenient ways of accessing multiple entries at once. The description... and 
writeToFile:atomically:  methods cause a dictionary to write a representation of itself to a string or to a 
file, respectively.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

NSMutableCopying
– mutableCopyWithZone:



5

 Classes: NSDictionary Class Cluster

Method Types

Creating dictionaries
+ allocWithZone:
+ dictionary
+ dictionaryWithContentsOfFile:
+ dictionaryWithDictionary:
+ dictionaryWithObject:forKey:
+ dictionaryWithObjects:forKeys:
+ dictionaryWithObjects:forKeys:count:
+ dictionaryWithObjectsAndKeys:
– initWithContentsOfFile:
– initWithDictionary:
– initWithObjects:forKeys:
– initWithObjects:forKeys:count:
– initWithObjectsAndKeys:

Counting entries
– count 

Accessing keys and values
– allKeys
– allKeysForObject:
– allValues
– description
– descriptionInStringsFileFormat
– descriptionWithLocale:
– descriptionWithLocale:indent:
– keyEnumerator 
– keysSortedByValueUsingSelector:
– objectEnumerator
– objectForKey:
– objectsForKeys:notFoundMarker:

Comparing dictionaries
– isEqualToDictionary:

Storing dictionaries
– writeToFile:atomically:



6

Accessing file attributes
– fileGroupOwnerAccountName
– fileModificationDate
– fileOwnerAccountName
– filePosixPermissions
– fileSize
– fileSystemFileNumber
– fileSystemNumber
– fileType

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized dictionary in the specified zone. If the receiver is the NSDictionary 
class object, an instance of an immutable private subclass is returned; otherwise, an object of the receiver’s 
class is returned. 

Typically, you create temporary dictionaries using the dictionary... class methods, not the alloc... and init... 
methods.

dictionary
+ (id)dictionary

Creates and returns an empty dictionary. This method is declared primarily for the use with mutable 
subclasses of NSDictionary.

Note: If you don’t want a temporary object, you can also create an empty dictionary using alloc... and init .

dictionaryWithContentsOfFile:
+ (id)dictionaryWithContentsOfFile: (NSString *)path

Allocates and initializes a dictionary using the keys and values found in path. path can be a full or relative 
pathname. The file identified by path must contain a string representation of a property list whose root 
object is a dictionary. The dictionary must contain only property list objects (NSString, NSData, NSArray, 
or NSDictionary objects).



7

 Classes: NSDictionary Class Cluster

This method returns nil  if there is a file error or if the contents of the file are an invalid representation of a 
dictionary.

See also: – initWithContentsOfFile:

dictionaryWithDictionary:
+ (id)dictionaryWithDictionary: (NSDictionary *)otherDictionary

Creates and returns a dictionary containing the keys and values found in otherDictionary.

See also: – initWithDictionary:

dictionaryWithObject:forKey:
+ (id)dictionaryWithObject: (id)anObject forKey: (id)aKey

Creates and returns a dictionary containing a single object, anObject, for a single key, aKey.

See also: + dictionaryWithObjects:forKeys: , + dictionaryWithObjects:forKeys:count: , 
+ dictionaryWithObjectsAndKeys:

dictionaryWithObjects:forKeys:
+ (id)dictionaryWithObjects: (NSArray *)objects forKeys:(NSArray *)keys

Creates and returns a dictionary containing entries constructed from the contents of objects and keys. This 
method steps through the objects and keys arrays, creating entries in the new dictionary as it goes. Each 
value object receives a retain message before being added to the dictionary. In contrast, each key is copied 
(using copyWithZone:; keys must conform to the NSCopying protocol), and the copy is added to the 
dictionary. An NSInvalidArgumentException is raised if objects and keys don’t have the same number of 
elements.

See also: – initWithObjects:forKeys: , + dictionaryWithObject:forKey: , + dictionaryWithObjects:
forKeys:count:, + dictionaryWithObjectsAndKeys:

dictionaryWithObjects:forKeys:count:
+ (id)dictionaryWithObjects: (id *)objects
     forKeys:(id *)keys
     count:(unsigned int)count

Creates and returns a dictionary containing count objects from the objects array. The objects are associated 
with keys taken from the keys array. For example, this code excerpt creates a dictionary that associates the 
alphabetic characters with their ASCII values:



8

static const int N_ENTRIES = 26;

NSDictionary *asciiDict;

NSString *keyArray[N_ENTRIES];

NSNumber *valueArray[N_ENTRIES];

int i;

for (i = 0; i < N_ENTRIES; i++) {

char charValue = 'a' + i;

keyArray[i] = [NSString stringWithFormat:@"%c", charValue];

valueArray[i] = [NSNumber numberWithChar:charValue];

}

asciiDict = [NSDictionary dictionaryWithObjects:(id *)valueArray 

forKeys:(id *)keyArray count:N_ENTRIES];

See also: – initWithObjects:forKeys:count: , + dictionaryWithObject:forKey: , 
+ dictionaryWithObjects:forKeys: , + dictionaryWithObjectsAndKeys:

dictionaryWithObjectsAndKeys:
+ (id)dictionaryWithObjectsAndKeys: (id)object, (id)key, ...

Creates and returns a dictionary containing entries constructed from the specified set of objects and keys. 
initWithObjectsAndKeys:  takes a variable number of arguments: a null-terminated list of alternating 
objects and keys. If any key is nil , an NSInvalidArgumentException is raised.

This method is similar to initWithObjects:forKeys: , differing only in the way key-value pairs are specified.

See also: – initWithObjectsAndKeys: , + dictionaryWithObject:forKey: , + dictionaryWithObjects:
forKeys:, + dictionaryWithObjects:forKeys:count:

Instance Methods

allKeys
– (NSArray *)allKeys

Returns a new array containing the dictionary’s keys or an empty array if the dictionary has no entries. The 
order of the elements in the array isn’t defined.

See also: – allValues, – allKeysForObject:



9

 Classes: NSDictionary Class Cluster

allKeysForObject:
– (NSArray *)allKeysForObject:(id)anObject

Finds all occurrences of the value anObject in the dictionary and returns a new array with the corresponding 
keys. Each object in the dictionary is sent an isEqual: message to determine if it’s equal to anObject. If no 
object matching anObject is found, this method returns nil .

See also: – allKeys, – keyEnumerator

allValues
– (NSArray *)allValues

Returns a new array containing the dictionary’s values, or an empty array if the dictionary has no entries. 
The order of the values in the array isn’t defined.

See also: – allKeys, – objectEnumerator

count
– (unsigned int)count

Returns the number of entries in the dictionary.

description
@protocol NSObject
– (NSString *)description

Returns a string that represents the contents of the receiver, formatted as a property list. If each key in the 
dictionary responds to compare:, the entries are listed in ascending order, by key. Otherwise, the order in 
which the entries are listed is undefined.

See also: – descriptionWithLocale:, – descriptionWithLocale:indent:

descriptionInStringsFileFormat
– (NSString *)descriptionInStringsFileFormat

Returns a string that represents the contents of the receiver, formatted in .strings file format. The order in 
which the entries are listed is undefined.



10

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale

Returns a string object that represents the contents of the receiver, formatted as a property list. locale 
specifies options used for formatting each of the receiver’s keys and values; specify nil  if you don’t want 
them formatted.

For a description of how locale is applied to each element in the receiver, see descriptionWithLocale:
indent:.

If each key in the dictionary responds to compare:, the entries are listed in ascending order, by key. 
Otherwise, the order in which the entries are listed is undefined.

See also: – description, – descriptionWithLocale:indent:

descriptionWithLocale:indent:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale indent:(unsigned int)level

Returns a string object that represents the contents of the receiver, formatted as a property list. Use locale 
to specify options to be passed to the methods that format each of the receiver’s keys and values; specify 
nil  if you don’t want them formatted. level allows you to specify a level of indent, to make the output more 
readable: set level to 0 to use four spaces to indent, or 1 to indent the output with a tab character.

The returned NSString contains the string representations of each of the receiver’s entries. 
descriptionWithLocale:indent:  obtains the string representation of a given key or value as follows:

• If the object is an NSString, it is used as is.

• If the object responds to descriptionWithLocale:indent: , that method is invoked to obtain the object’s 
string representation.

• If the object responds to descriptionWithLocale:, that method is invoked to obtain the object’s string 
representation.

• If none of the above conditions are met, the object’s string representation is obtained by invoking its 
description method.

If each key in the dictionary responds to compare:, the entries are listed in ascending order, by key. 
Otherwise, the order in which the entries are listed is undefined.

See also: – description, – descriptionWithLocale:



11

 Classes: NSDictionary Class Cluster

fileGroupOwnerAccountName
– (NSString *)fileGroupOwnerAccountName

Returns the object for the key NSFileGroupOwnerAccountName or nil  if the receiver doesn’t have an entry 
for the key.

This and the other file... methods are for use with a dictionary such as those returned from the methods 
fileAttributesAtPath:traverseLink:  (NSFileManager), directoryAttributes  (NSDirectoryEnumerator) 
and fileAttributes  (NSDirectoryEnumerator) that represents the POSIX attributes of a file or directory. 
This method returns the name of the corresponding file’s group.

fileModificationDate
– (NSDate *)fileModificationDate

Returns the object for the key NSFileModificationDate or nil  if the receiver doesn’t have an entry for the 
key.

This and the other file... methods are for use with a dictionary such as those returned from the methods 
fileAttributesAtPath:traverseLink:  (NSFileManager), directoryAttributes  (NSDirectoryEnumerator) 
and fileAttributes  (NSDirectoryEnumerator) that represents the POSIX attributes of a file or directory. 
This method returns the date that the file’s data was last modified.

fileOwnerAccountName
– (NSString *)fileOwnerAccountName

Returns the object for the key NSFileOwnerAccountName or nil  if the receiver doesn’t have an entry for 
the key.

This and the other file... methods are for use with a dictionary such as those returned from the methods 
fileAttributesAtPath:traverseLink:  (NSFileManager), directoryAttributes  (NSDirectoryEnumerator) 
and fileAttributes  (NSDirectoryEnumerator) that represents the POSIX attributes of a file or directory. 
This method returns the account name of the file’s owner.

filePosixPermissions
– (unsigned long)filePosixPermissions

Returns the object for the key NSFilePosixPermissions or nil  if the receiver doesn’t have an entry for the 
key.

This and the other file... methods are for use with a dictionary such as those returned from the methods 
fileAttributesAtPath:traverseLink:  (NSFileManager), directoryAttributes  (NSDirectoryEnumerator) 



12

and fileAttributes  (NSDirectoryEnumerator) that represents the POSIX attributes of a file or directory. 
This method returns the file’s permissions.

fileSize
– (unsigned long long)fileSize

Returns the object for the key NSFileSize or nil  if the receiver doesn’t have an entry for the key.

This and the other file... methods are for use with a dictionary such as those returned from the methods 
fileAttributesAtPath:traverseLink:  (NSFileManager), directoryAttributes  (NSDirectoryEnumerator) 
and fileAttributes  (NSDirectoryEnumerator) that represents the POSIX attributes of a file or directory. 
This method returns the file’s size.

fileSystemFileNumber
– (unsigned long)fileSystemFileNumber

Returns the object for the key NSFileSystemFileNumber or nil  if the receiver doesn’t have an entry for the 
key.

This and the other file... methods are for use with a dictionary such as those returned from the methods 
fileAttributesAtPath:traverseLink:  (NSFileManager), directoryAttributes  (NSDirectoryEnumerator) 
and fileAttributes  (NSDirectoryEnumerator) that represents the POSIX attributes of a file or directory. 
This method returns the file’s inode.

This method is not implemented on Windows platforms. 

fileSystemNumber
– (unsigned long)fileSystemNumber

Returns the object for the key NSFileSystemNumber or nil  if the receiver doesn’t have an entry for the key.

This and the other file... methods are for use with a dictionary such as those returned from the methods 
fileAttributesAtPath:traverseLink:  (NSFileManager), directoryAttributes  (NSDirectoryEnumerator) 
and fileAttributes  (NSDirectoryEnumerator) that represents the POSIX attributes of a file or directory. 
This method returns the ID of the device containing the file.

This method is not implemented on Windows platforms. 



13

 Classes: NSDictionary Class Cluster

fileType
– (NSString *)fileType

Returns the object for the key NSFileType or nil  if the receiver doesn’t have an entry for the key.

This and the other file... methods are for use with a dictionary such as those returned from the methods 
fileAttributesAtPath:traverseLink:  (NSFileManager), directoryAttributes  (NSDirectoryEnumerator) 
and fileAttributes  (NSDirectoryEnumerator) that represents the POSIX attributes of a file or directory. 
This method returns the file’s type, which is one of the following:

hash
@protocol NSObject
– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For a dictionary, 
hash returns the number of entries in the dictionary. If two dictionaries are equal (as determined by the 
isEqual: method), they will have the same hash value.

See also: – isEqual:

initWithContentsOfFile:
– (id)initWithContentsOfFile: (NSString *)path

Initializes a newly allocated dictionary using the keys and values found in path. path can be a full or relative 
pathname. The file identified by path must contain a string representation of a property list whose root 
object is a dictionary. The dictionary must contain only property list objects (NSString, NSData, NSArray, 
or NSDictionary objects).

String Meaning

NSFileTypeUnknown Unknown file type

NSFileTypeCharacterSpecial Character special file

NSFileTypeDirectory Directory

NSFileTypeBlockSpecial Block special file

NSFileTypeRegular Regular file

NSFileTypeSymbolicLink Symbolic link

NSFileTypeSocket Socket



14

After initializing the receiver, this method returns self. However, if the new instance can’t be initialized 
(either because of a file error or because the contents of the file is an invalid representation of a dictionary), 
it’s deallocated and nil  is returned.

See also: + dictionaryWithContentsOfFile:

initWithDictionary:
– (id)initWithDictionary: (NSDictionary *)otherDictionary

Initializes a newly allocated dictionary by placing in it the keys and values contained in otherDictionary. 
Returns self.

See also: + dictionaryWithDictionary:

initWithDictionary:copyItems:
– (id)initWithDictionary:(NSDictionary *) otherDictionary copyItems:(BOOL)flag

Initializes a newly allocated dictionary and, if flag is NO, places in it the objects contained in 
otherDictionary. If flag is YES, the members of otherDictionary are copied, and the copies are added to the 
receiver. (Note that copyWithZone: is used to make the copies. Thus, the receiver's new member objects 
may be immutable, even though their counterparts in otherDictionary were mutable. Also, members must 
conform to the NSCopying protocol.) Returns self.

See also: – initWithDictionary:

initWithObjects:forKeys:
– (id)initWithObjects: (NSArray *)objects forKeys:(NSArray *)keys

Initializes a newly allocated dictionary with entries constructed from the contents of the objects and keys 
arrays. This method steps through the objects and keys arrays, creating entries in the new dictionary as it 
goes. Each value object receives a retain message before being added to the dictionary. In contrast, each 
key object is copied (using copyWithZone:), and the copy is added to the dictionary. An 
NSInvalidArgumentException is raised if the objects and keys arrays do not have the same number of 
elements.

See also: + dictionaryWithObjects:forKeys: , – initWithObjects:forKeys:count: , 
– initWithObjectsAndKeys:



15

 Classes: NSDictionary Class Cluster

initWithObjects:forKeys:count:
– (id)initWithObjects: (id *)objects forKeys:(id *)keys count:(unsigned int)count

Initializes a newly allocated dictionary with count entries. This method steps through the objects and keys 
arrays, creating entries in the new dictionary as it goes. Each value object receives a retain message before 
being added to the dictionary. In contrast, each key object is copied (using copyWithZone:), and the copy 
is added to the dictionary. An NSInvalidArgumentException is raised if a key or value object is nil .

See also: + dictionaryWithObjects:forKeys:count: , – initWithObjects:forKeys: , 
– initWithObjectsAndKeys:

initWithObjectsAndKeys:
– (id)initWithObjectsAndKeys: (id)object, (id)key, ...

Initializes a newly allocated dictionary with entries constructed from the specified set of objects and keys. 
initWithObjectsAndKeys:  takes a variable number of arguments: a null-terminated list of alternating 
objects and keys. If a key is found to be nil , an NSInvalidArgumentException is raised.

This method is similar to initWithObjects:forKeys: , differing only in the way in which the key-value pairs 
are specified.

See also: + dictionaryWithObjectsAndKeys: , – initWithObjects:forKeys: , – initWithObjects:forKeys:
count:

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return value indicates 
that the receiver and anObject are both instances of classes that inherit from NSDictionary and contain the 
same data (as determined by the isEqualToDictionary:  method).

See also: – isEqualToDictionary:

isEqualToDictionary:
– (BOOL)isEqualToDictionary: (NSDictionary *)otherDictionary

Compares the receiving dictionary to otherDictionary. If the contents of otherDictionary are equal to the 
contents of the receiver, this method returns YES. If not, it returns NO.



16

Two dictionaries have equal contents if they each hold the same number of entries and, for a given key, the 
corresponding value objects in each dictionary satisfy the isEqual: test.

See also:  – isEqual: (NSObject)

keyEnumerator
– (NSEnumerator *)keyEnumerator

Returns an enumerator object that lets you access each key in the dictionary:

NSEnumerator *enumerator = [myDictionary keyEnumerator];

id key;

while ((key = [enumerator nextObject])) {

/* code that uses the returned key */ 

}

When this method is used with mutable subclasses of NSDictionary, your code shouldn’t modify the entries 
during enumeration. If you intend to modify the entries, use the allKeys method to create a “snapshot” of 
the dictionary’s keys. Then use this snapshot to traverse the entries, modifying them along the way.

Note that the objectEnumerator method provides a convenient way to access each value in the dictionary.

See also: – allKeys, – allKeysForObject:, – objectEnumerator, – nextObject (NSEnumerator protocol)

keysSortedByValueUsingSelector:
– (NSArray *)keysSortedByValueUsingSelector:(SEL)comparator

Returns an array of the dictionary’s keys, in the order they would be in if the dictionary was sorted by its 
values. Pairs of dictionary values are compared using the comparison method specified by comparator; the 
comparator message is sent to one of the values, and has as its single argument the other value from the 
dictionary.  The comparator method should return NSOrderedAscending if the receiver is smaller than the 
argument, NSOrderedDescending if the receiver is larger than the argument, and NSOrderedSame if they 
are equal.

See also: – allKeys, – sortedArrayUsingSelector: (NSArray)

objectEnumerator
– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each value in the dictionary:



17

 Classes: NSDictionary Class Cluster

NSEnumerator *enumerator = [myDictionary objectEnumerator];

id value;

while ((value = [enumerator nextObject])) {

/* code that acts on the dictionary’s values */ 

}

When this method is used with mutable subclasses of NSDictionary, your code shouldn’t modify the entries 
during enumeration. If you intend to modify the entries, use the allValues method to create a “snapshot” of 
the dictionary’s values. Work from this snapshot to modify the values.

See also: – keyEnumerator, – nextObject (NSEnumerator protocol)

objectForKey:
– (id)objectForKey:(id)aKey

Returns an entry’s value given its key, or nil  if no value is associated with aKey.

See also: – allKeys, – allValues

objectsForKeys:notFoundMarker:
– (NSArray *)objectsForKeys:(NSArray *)keys notFoundMarker: (id)anObject

Returns the set of objects from the receiver that correspond to the specified keys as an NSArray. The objects 
in the returned array and the keys array have a one-for-one correspondence, so that the nth object in the 
returned array corresponds to the nth key in keys. If an object isn’t found in the receiver to correspond to a 
given key, the marker object, specified by anObject, is placed in the corresponding element of the returned 
array.

writeToFile:atomically:
– (BOOL)writeToFile: (NSString *)path

atomically:(BOOL)flag

Writes a textual description of the contents of the dictionary to path. If the receiver’s contents are all 
property list objects (NSString, NSData, NSArray, or NSDictionary objects), the file written by this method 
can be used to initialize a new dictionary with the class method dictionaryWithContentsOfFile:  or the 
instance method initWithContentsOfFile: .

If flag is YES, the dictionary is written to an auxiliary file, and then the auxiliary file is renamed to path. If 
flag is NO, the dictionary is written directly to path. The YES option guarantees that path, if it exists at all, 
won’t be corrupted even if the system should crash during writing. 



18

If path contains a tilde (~) character, you must expand it with stringByExpandingTildeInPath:  before 
invoking this method.

This method returns YES if the file is written successfully, and NO otherwise.



19

 Classes: NSDictionary Class Cluster

i NSMutableDictionary

Inherits From: NSDictionary : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSDictionary) 
NSObject (NSObject) 

Declared In: Foundation/NSDictionary.h



20

Class at a GlanceClass at a Glance

Purpose
An NSDictionary object stores a mutable set of entries.

Principal Attributes
• A count of the number of entries in the dictionary
• The set of keys contained in the dictionary
• The objects that correspond to the keys in the dictionary

Creation

Commonly Used Methods

Primitive Methods
– setObject:forKey:
– removeObjectForKey:

Class Description

The NSMutableDictionary class declares the programmatic interface to objects that manage mutable 
associations of keys and values. With its two efficient primitive methods—setObject:forKey: and 
removeObject:forKey:—this class adds modification operations to the basic operations it inherits from 
NSDictionary.

The other methods declared here operate by invoking one or both of these primitives. The non-primitive 
methods provide convenient ways of adding or removing multiple entries at a time.

When an entry is removed from a mutable dictionary, the key and value objects that make up the entry 
receive release messages. If there are no further references to the objects, they’re deallocated. Note that if 

+ dictionaryWithCapacity:
Returns an empty dictionary with enough allocated space to hold a specified 
number of objects

– removeObjectForKey: Removes the specified entry from the dictionary.

– removeObjectForKeys: Removes multiple entries from the dictionary.



21

 Classes: NSDictionary Class Cluster

your program keeps a reference to such an object, the reference will become invalid unless you remember 
to send the object a retain message before it’s removed from the dictionary. For example, the third 
statement below would result in a run-time error if anObject was not retained before it was removed:

id anObject = [a Dictionary  objectForKey: theKey ] retain];

[ aDictionary  removeObjectForKey: theKey ];

[anObject someMessage];

Method Types

Creating an NSMutableDictionary
+ allocWithZone:
+ dictionaryWithCapacity:
– initWithCapacity:

Adding and removing entries
– addEntriesFromDictionary:
– removeAllObjects
– removeObjectForKey: 
– removeObjectsForKeys:
– setDictionary:
– setObject:forKey: 

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized mutable dictionary in the specified zone. If the receiver is this class, an 
instance of a mutable private subclass is returned; otherwise, an object of the receiver’s class is returned.

Typically, you create temporary dictionaries using the dictionary... class methods, not the alloc... and init... 
methods.

See also: + dictionary  (NSDictionary), + dictionaryWithCapacity: , + dictionaryWithContentsOfFile:
 (NSDictionary), + dictionaryWithObjects:forKeys:  (NSDictionary), 
+ dictionaryWithObjects:forKeys:count: (NSDictionary), 
+ dictionaryWithObjectsAndKeys:  (NSDictionary)



22

dictionaryWithCapacity:
+ (id)dictionaryWithCapacity:(unsigned int) numItems

Creates and returns an mutable dictionary, giving it enough allocated memory to hold numItems entries. 
Mutable dictionaries allocate additional memory as needed, so numItems simply establishes the object’s 
initial capacity.

See also: + dictionary  (NSDictionary), + dictionaryWithContentsOfFile:  (NSDictionary), 
+ dictionaryWithObjects:forKeys:  (NSDictionary), + dictionaryWithObjects:forKeys:count:
 (NSDictionary), + dictionaryWithObjectsAndKeys:  (NSDictionary), – initWithCapacity:

Instance Methods

addEntriesFromDictionary:
– (void)addEntriesFromDictionary: (NSDictionary *)otherDictionary

Adds the entries from otherDictionary to the receiver. Each value object from otherDictionary is sent a 
retain message before being added to the receiver. In contrast, each key object is copied (using 
copyWithZone:; keys must conform to the NSCopying protocol), and the copy is added to the receiver.

If both dictionaries contain the same key, the receiver’s previous value object for that key is sent a release 
message and the new value object takes its place.

See also: – setObject:forKey:

initWithCapacity:
– (id)initWithCapacity: (unsigned int)numItems

Initializes a newly allocated mutable dictionary, allocating enough memory to hold numItems entries. 
Mutable dictionaries allocate additional memory as needed, so numItems simply establishes the object’s 
initial capacity. Returns self.

See also: + dictionaryWithCapacity:

removeAllObjects
– (void)removeAllObjects

Empties the dictionary of its entries. Each key and corresponding value object is sent a release message. 

See also: – removeObjectForKey:, – removeObjectsForKeys:



23

 Classes: NSDictionary Class Cluster

removeObjectForKey:
– (void)removeObjectForKey:(id)aKey

Removes aKey and its associated value object from the dictionary. 

For example, assume you have a, archived dictionary that records the call letters and associated frequencies 
of radio stations. To remove an entry of a defunct station, you could write code similar to the following:

NSMutableDictionary *stations = nil;

stations = [[NSMutableDictionary alloc] 

initWithContentsOfFile:  theArchiveFile ];

[stations removeObjectForKey:@”KIKT”];

See also: – removeAllObjects, – removeObjectsForKeys:

removeObjectsForKeys:
– (void)removeObjectsForKeys:(NSArray *)keyArray

Removes one or more entries from the receiver. The entries are identified by the keys in keyArray.

See also: – removeAllObjects, – removeObjectForKey:

setDictionary:
– (void)setDictionary:(NSDictionary *)otherDictionary

Sets the receiver to entries in otherDictionary. setDictionary does this by removing all entries from the 
receiver (with removeAllObjects) then adding each entry from otherDictionary into the receiver.

setObject:forKey:
– (void)setObject:(id)anObject forKey :(id)aKey

Adds an entry to the receiver, consisting of aKey and its corresponding value object anObject. The value 
object receives a retain message before being added to the dictionary. In contrast, the key is copied (using 
copyWithZone:; keys must conform to the NSCopying protocol), and the copy is added to the dictionary. 
An NSInvalidArgumentException is raised if the key or value object is nil .

If aKey already exists in the receiver, the receiver’s previous value object for that key is sent a release 
message and anObject takes its place.

See also: – removeObjectForKey:



1

 Classes: NSDirectoryEnumerator

NSDirectoryEnumerator 

Inherits From: NSEnumerator : NSObject

Conforms To: NSObject (NSObject)
NSCopying

Declared In: Foundation/NSFileManager.h

Class Description

An NSDirectoryEnumerator object enumerates the contents of a directory, returning the pathnames of all 
files and directories contained within that directory. The pathnames are relative to the directory. This 
enumeration is recursive, including the files of all subdirectories, and it crosses device boundaries. It does 
not resolve symbolic links or attempt to traverse symbolic links that point to directories.

NSDirectoryEnumerator is an abstract class, a cover for a private concrete subclass that is tailored to the 
file system’s directory structure. You cannot directly create an instance of NSDirectoryEnumerator—
instances are returned only by NSFileManager’s enumeratorAtPath: method.

To get the next item from the NSDirectoryEnumerator, invoke the NSEnumerator method nextObject. The 
methods declared by NSDirectoryEnumerator return attributes—both of the parent directory and the 
current file or directory—and allow you to control recursion into subdirectories.

The following example enumerates the contents of a directory and processes files; if, however, it comes 
across RTFD file packages, it skips recursion into them:

NSDirectoryEnumerator *direnum = [[NSFileManager defaultManager]

enumeratorWithPath:@”/Sales/Reports”];

NSString *pname;

while (pname = [direnum nextObject]) {

if ([[pname pathExtension] isEqualToString:@”rtfd”]) {

[direnum skipDescendents]; /* don’t enumerate this directory */

}

else {

/* ...process file here... */

}

}



2

Method Types

Getting attributes
– directoryAttributes
– fileAttributes

Skipping subdirectories
– skipDescendents

Instance Methods

directoryAttributes
– (NSDictionary *)directoryAttributes

Returns an NSDictionary that contains the attributes of the directory at which enumeration started. See the 
description of NSFileManager’s fileAttributesAtPath:traverseLink:  for details on obtaining the 
attributes from the dictionary. 

See also: – createDirectoryAtPath:attributes:  (NSFileManager)

fileAttributes
– (NSDictionary *)fileAttributes

Returns an NSDictionary that contains the attributes of the most recently returned file or subdirectory (as 
referenced by the path name). See the description of NSFileManager’s fileAttributesAtPath:follow:  for 
details on extracting the attributes from the dictionary. 

skipDescendents
– (void)skipDescendents

Causes the NSDirectoryEnumerator to skip recursion into the most recently obtained subdirectory.



1

 Classes: NSDistantObject

NSDistantObject

Inherits From: NSProxy

Conforms To: NSCoding
NSObject (NSProxy)

Declared In: Foundation/NSDistantObject.h

Class Description

NSDistantObject is a concrete subclass of NSProxy that defines proxies for objects in other applications or 
threads. When an NSDistantObject receives a message, in most cases it forwards the message through its 
NSConnection object to the real object in another application, supplying the return value to the sender of 
the message if one is forthcoming, and propagating any exception back to the invoker of the method that 
raised it.

NSDistantObject adds two useful instance methods to those defined by NSProxy. connectionForProxy 
returns the NSConnection that handles the receiver. setProtocolForProxy: establishes the set of methods 
that the real object is known to respond to, saving the network traffic required to determine the argument 
and return types the first time a particular selector is forwarded to the remote proxy.

There are two kinds of NSDistantObject: local proxies and remote proxies. A local proxy is created by an 
NSConnection the first time an object is sent to another application. It’s used by the NSConnection for 
bookkeeping purposes and should be considered private. The local proxy is transmitted over the network 
using the NSCoding protocol to create the remote proxy, which is the object that the other application uses. 
NSDistantObject defines methods for an NSConnection to create instance, but they’re intended only for 
subclasses to override—you should never invoke them directly. Use NSConnection’s 
rootProxyForConnectionWithRegisteredName:host: method, which sets up all the required state for an 
object-proxy pair.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:



2

Method Types

Creating a local proxy
+ proxyWithLocal:connection:
– initWithLocal:connection:

Creating a remote proxy
+ proxyWithTarget:connection:
– initWithTarget:connection:

Getting a proxy’s NSConnection
– connectionForProxy

Setting a proxy’s Protocol
– setProtocolForProxy:

Class Methods

proxyWithLocal:connection:
+ (NSDistantObject *)proxyWithLocal: (id)anObject connection:(NSConnection *)aConnection

Returns a local proxy for anObject and aConnection, creating it if necessary. anObject is an id in the 
receiver’s address space. connection is set as the NSConnection for the returned proxy; other applications 
connect to it using NSConnection’s connectionWithRegisteredName:host: class method.

Local proxies should be considered private to their NSConnections. Only an NSConnection should use this 
method to create them, and your code shouldn’t retain or otherwise use local proxies.

proxyWithTarget:connection:
+ (NSDistantObject *)proxyWithTarget: (id)remoteObject connection:(NSConnection *)aConnection

Returns a remote proxy for remoteObject and aConnection, creating it if necessary. remoteObject is an id in 
another thread or in another application’s address space. aConnection is set as the NSConnection for the 
returned proxy; it should have been created using NSConnection’s connectionWithRegisteredName:host: 
class method.

A remote proxy can’t be used until its NSConnection’s peer has a local proxy representing remoteObject in 
the other application.



3

 Classes: NSDistantObject

Instance Methods

connectionForProxy
– (NSConnection *)connectionForProxy

Returns the NSConnection used by the receiver.

initWithLocal:connection:
– (id)initWithLocal: (id)anObject connection:(NSConnection *)aConnection

Initializes a newly allocated NSDistantObject as a local proxy for anObject, which is an id in the receiver’s 
address space. aConnection is set as the NSConnection for the returned proxy; other applications connect 
to it using NSConnection’s connectionWithRegisteredName:host: class method. If a proxy for anObject 
and aConnection already exists, the receiver is released and the existing proxy is retained and returned.

Local proxies should be considered private to their NSConnections. Only an NSConnection should use this 
method to create them, and your code shouldn’t retain or otherwise use local proxies.

This is the designated initializer for local proxies. Returns self.

initWithTarget:connection:
– (id)initWithTarget: (id)remoteObject connection:(NSConnection *)aConnection

Initializes a newly allocated NSDistantObject as a remote proxy for remoteObject, which is an id in another 
thread or in another application’s address space. aConnection is set as the NSConnection for the returned 
proxy; it should have been created using NSConnection’s connectionWithRegisteredName:host: class 
method. If a proxy for remoteObject and aConnection already exists, the receiver is released and the existing 
proxy is retained and returned.

A remote proxy can’t be used until its NSConnection’s peer has a local proxy representing remoteObject in 
the other application.

This is the designated initializer for remote proxies. Returns self.

setProtocolForProxy:
– (void)setProtocolForProxy:(Protocol *)aProtocol

Sets the methods known to be handled by the receiver to those in aProtocol. Setting a protocol for a remote 
proxy reduces network traffic needed to determine method argument and return types.

In order to encode a message’s arguments for transmission over the network, the types of those arguments 
must be known in advance. When they’re not known, the distributed objects system must send an initial 



4

message just to get those types, doubling the network traffic for every new message sent. Setting a protocol 
alleviates this need for the methods defined by that protocol. You can still send messages that aren’t declared 
in aProtocol; in this case the initial message is sent to determine the types, and then the real message is sent.



1

 Classes: NSDistantObjectRequest

NSDistantObjectRequest

Inherits From: NSObject

Declared In: Foundation/NSConnection.h

Class Description

NSDistantObjectRequest objects are used by the Distributed Objects system to help handle invocations 
between different processes. You should never create NSDistantObjectRequest objects directly. Unless you 
are getting involved with the low-level details of Distributed Objects, there should never be a need to access 
an NSDistantObjectRequest.

Method Types

Getting information about a request
– connection
– invocation

Raising a remote exception
– replyWithException:

Class Methods

Instance Methods

connection
– (NSConnection *)connection

Returns the NSConnection involved in the request.

conversation
– (id)conversation

<<Description forthcoming.>>



2

invocation
– (NSInvocation *)invocation

Returns the NSInvocation for the request.

replyWithException:
– (void)replyWithException: (NSException *)exception

<<Description forthcoming.>>



1

 Classes: NSDistributedLock

NSDistributedLock

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSDistributedLock.h

Class Description

The NSDistributedLock class defines an object that multiple applications on multiple hosts can use to 
restrict access to some shared resource, such as a file.

The lock is implemented by an entry (such as a file or directory) in the file system. For multiple applications 
to use an NSDistributedLock to coordinate their activities, the lock must be writable on a file system 
accessible to all hosts on which the applications might be running.

Use the tryLock  method to attempt to acquire a lock. You should generally use the unlock method to release 
the lock rather than breakLock.

NSDistributedLock doesn’t conform to the NSLocking protocol nor does it have a lock method. The 
protocol’s lock method is intended to block the execution of the thread until successful. For an 
NSDistributedLock object, this could mean polling the file system at some predetermined rate. A better 
solution is to provide the tryLock  method and let you determine the polling frequency that makes sense for 
your application.

Method Types

Creating an NSDistributedLock
+ lockWithPath:
– initWithPath:

Acquiring a lock
– tryLock

Relinquishing a lock
– breakLock
– unlock

Getting lock information
– lockDate



2

Class Methods

lockWithPath:
+ (NSDistributedLock *)lockWithPath: (NSString *)aPath

Returns an NSDistributedLock object initialized to use the file system entry specified by aPath as the 
locking object. For applications to use the lock, this location in the file system must be accessible—and 
writable—to all hosts on which the applications might be running.

All of aPath up to the last component itself must exist. Use NSFileManager to create (and set permissions) 
for any nonexistent intermediate directories.

See also: – initWithPath:

Instance Methods

breakLock
– (void)breakLock

Forces the lock to be relinquished. This method always succeeds unless the lock has been damaged. If 
another process has already unlocked or broken the lock, this method has no effect. You should generally 
use unlock rather than breakLock to relinquish a lock.

Warning: Since breakLock can release another process’s lock, it should be used with great caution.

Even if you break a lock, there’s no guarantee that you will then be able to acquire the lock: Another process 
might get it before your tryLock  is invoked.

Raises NSGenericException if the lock could not be removed.

See also: – unlock

initWithPath:
– (NSDistributedLock *)initWithPath: (NSString *)aPath

Initializes a newly allocated NSDistributedLock object to use the file system entry specified by aPath as the 
lock. For applications to use the lock, this location in the file system must be accessible—and writable—to 
all hosts on which the applications might be running.

All of aPath up to the last component itself must exist. Use NSFileManager to create (and set permissions) 
for any nonexistent intermediate directories.

See also: + lockWithPath:



3

 Classes: NSDistributedLock

lockDate
– (NSDate *)lockDate

Returns the time that the lock occurred. 

This method is potentially useful to applications that want to use an age heuristic to decide if a lock is too 
old and should be broken. Returns nil  if the lock doesn’t exist. 

If the creation date on the lock isn’t the date on which you locked it, you’ve lost the lock: It’s been broken 
since you last checked it.

tryLock
– (BOOL)tryLock

Attempts to acquire the lock. Returns immediately with a value of YES if successful and NO otherwise.

Raises NSGenericException if a file system error occurs.

See also: – unlock

unlock
– (void)unlock

Relinquishes the lock. You should generally use the unlock method rather than breakLock to release a lock.

An NSGenericException is raised if the lock doesn’t already exist.

See also: – breakLock



1

 Classes: NSDistributedNotificationCenter

NSDistributedNotificationCenter

Inherits From: NSNotificationCenter : NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSDistributedNotificationCenter.h

Class at a GlanceClass at a Glance

Purpose
NSDistributedNotificationCenter provides a way for objects that don’t know about each other to communicate 
between tasks. It receives NSNotification objects and broadcasts them to all interested objects.

Principal Attributes
A table of objects that want to receive notifications, the notifications they want to receive, and identifying strings 
they are interested in.

Creation
Each machine has a default distributed notification center. You typically don’t create your own.

Commonly Used Methods

+ defaultCenter Accesses the default notification center.

– addObserver:selector:name:object:
suspensionBehavior:

Registers an object to receive a notification with a specified behavior 
when notification delivery is suspended.

– postNotificationName:object: Creates and posts a notification.

– removeObserver:name:object:
Specifies that an object no longer wants to receive certain 
notifications.



2

Class Description

An NSDistributedNotificationCenter object (or simply, distributed notification center) is a notification 
center that can distributed notifications to tasks other than the one in which the notification was posted.

It notifies all observers of notifications meeting specific criteria. This information is encapsulated in 
NSNotification objects, also known as notifications. Client objects register themselves as observers of 
specific notifications posted by other objects. When an event occurs, an object posts an appropriate 
notification to the distributed notification center. (See the NSNotification class specification for more on 
notifications.) The distributed notification center dispatches a message to each registered observer, passing 
the notification as the sole argument. It is possible for the posting object and the observing object to be the 
same.

Each task has a default distributed notification center that you access with the defaultCenter class method. 
There may be different types of distributed notification centers. Right now there is a single type—
NSLocalNotificationCenterType. This type of distributed notification center handles notifications that can 
be sent between tasks on a single machine. For communication between tasks on different machines, use 
Distributed Objects.

Registering to Receive Notifications

An object registers itself to receive a notification by sending the addObserver:selector:name:object:
suspensionBehavior: method, specifying the message the notification should send, the name of the 
notification it wants to receive, the identifying string to match (the object: argument), and the behavior to 
follow if notification delivery is suspended. Because the posting object and the observer may be in different 
tasks, notifications can’t contain pointers to arbitrary objects. Therefore, NSDistributedNotificationCenter 
requires notifications to use a string as the object: argument. Notification matching is done based on this 
string, rather than an object pointer. You should check the documentation of the object posting the 
notification to see what it uses as its identifying string.

There are four different types of suspension behavior, each useful in different circumstances.

Suspension Behavior Description

NSNotificationSuspensionBehaviorDrop
Drops notifications observed with this behavior 
when the observer suspends notifications.

NSNotificationSuspensionBehaviorCoalesce
Coalesces notifications observed with this behavior, 
such that only the most recent notification is 
delivered when notification delivery is resumed.

NSNotificationSuspensionBehaviorHold
Holds all notifications on the notification server for 
later delivery when notification delivery is resumed.



3

 Classes: NSDistributedNotificationCenter

Suspending Notification Delivery

When a task is no longer interested in receiving notifications immediately, it may suspend notification 
delivery. This is often done when the application is hidden, or is put into the background. You suspend 
notifications by invoking setSuspended: with an argument of YES on the distributed notification center.

While notifications are suspended, the notification server handles notifications destined for the task that 
suspended notification delivery according to the suspension behavior specified by the observers when they 
registered to receive notifications. (See the table above.) When the task unsuspends notification delivery, all 
queued notifications are delivered immediately. Note that a notification destined for an observer that 
registered with NSNotificationSuspensionBehaviorDeliverImmediately will automatically flush the queue 
as it is delivered, causing all queued notifications to be delivered at that time as well.

Posting Notifications for Immediate Delivery

If an object posting a notification wants to ensure that all observers receive the notification immediately (for 
example, if the notification is a warning that a server is about to shut down), it can invoke 
postNotificationName:object:userInfo:deliverImmediately: with a deliverImmediately: argument of 
YES. The notification center will deliver the notification as if the observers had registered with 
NSNotificationSuspensionBehaviorDeliverImmediately.

Method Types

Accessing distributed notification centers
+ defaultCenter
+ notificationCenterForType:

Adding and removing observers
– addObserver:selector:name:object:
– addObserver:selector:name:object:suspensionBehavior:
– removeObserver:name:object:

NSNotificationSuspensionBehaviorDeliverImmediately

Delivers matching notifications immediately. This 
also flushes the queue of undelivered 
notifications—the behavior is as if the receiving 
application had momentarily called setSuspended:  
with an argument of NO, then immediately after all 
notifications are delivered, called setSuspended:  
again with an argument of YES.

Suspension Behavior Description



4

Posting notifications
– postNotification:
– postNotificationName:object:
– postNotificationName:object:userInfo:
– postNotificationName:object:userInfo:deliverImmediately:

Suspending and enabling notification delivery
– setSuspended:
– suspended

Class Methods

defaultCenter
+ (NSNotificationCenter *)defaultCenter

Returns the default distributed notification center, the local notification center for the machine. Calls 
notificationCenterForType: with an argument of NSLocalNotificationCenterType.

notificationCenterForType:
+ (NSDistributedNotificationCenter *)notificationCenterForType:(NSString *)type

Returns the distributed notification center for the specified type. Currently only one type, 
NSLocalNotificationCenterType, is supported.

Instance Methods

addObserver:selector:name:object:
– (void)addObserver:(id)anObserver

selector:(SEL)aSelector
name:(NSString *)notificationName
object:(NSString *)anObject

Registers anObserver to receive notifications with the name notificationName and/or the identifying string 
anObject. 

This method calls addObserver:selector:name:object:suspensionBehavior: with a 
suspensionBehavior: argument of NSNotificationSuspensionBehaviorCoalesce.

See also: – addObserver:selector:name:object:suspensionBehavior:



5

 Classes: NSDistributedNotificationCenter

addObserver:selector:name:object:suspensionBehavior:
– (void)addObserver:(id)anObserver

selector:(SEL)aSelector
name:(NSString *)notificationName
object:(NSString *)anObject 
suspensionBehavior:(NSNotificationSuspensionBehavior)suspensionBehavior

Registers anObserver to receive notifications with the name notificationName and/or the identifying string 
anObject.

When a notification of name notificationName with the identifying string anObject is posted, anObserver 
receives an aSelector message with this notification as the argument. The method for the selector specified 
in aSelector must have one and only one argument. If notificationName is nil , the notification center notifies 
the observer of all notifications with an identifying string matching anObject. If anObject is nil , the 
notification center notifies the observer of all notifications with the name notificationName. The 
suspensionBehavior determines how the notification center handles notifications when notification delivery 
has been suspended. See “Registering to Receive Notifications” in the class description for more 
information.

The notification center does not retain anObserver. Therefore, you should always send removeObserver: 
or removeObserver:name:object: to the notification center before releasing anObserver.

See also: – postNotificationName:object:userInfo:deliverImmediately:

postNotification:
– (void)postNotification:(NSNotification *)notification

Posts notification to the notification center. notification should have a string as its object instance variable, 
so the notification can be delivered in another task. This method invokes postNotificationName:object:
userInfo:deliverImmediately:  with the information contained in notification and a deliverImmediately: 
argument of NO.

See also: – postNotificationName:object:, – postNotificationName:object:userInfo:, 
– postNotificationName:object:userInfo:deliverImmediately:

postNotificationName:object:
– (void)postNotificationName:(NSString *)notificationName 

object:(NSString *)anObject

Creates a notification with the name notificationName, associates it with the string anObject, and posts it to 
the notification center. anObject may be nil .



6

This method invokes postNotificationName:object:userInfo:deliverImmediately: with a userInfo: 
argument of nil  and a deliverImmediately: argument of NO.

See also: – postNotification:

postNotificationName:object:userInfo:
– (void)postNotificationName:(NSString *)notificationName 

object:(NSString *)anObject
userInfo:(NSDictionary *)userInfo

Creates a notification with the name notificationName, associates it with the string anObject and dictionary 
userInfo, and posts it to the notification center. anObject and userInfo may be nil .

This method invokes postNotificationName:object:userInfo:deliverImmediately: with a 
deliverImmediately: argument of NO.

See also: – postNotificationName:object:

postNotificationName:object:userInfo:deliverImmediately:
– (void)postNotificationName:(NSString *)notificationName

object:(NSString *)anObject 
userInfo:(NSDictionary *)userInfo 
deliverImmediately:(BOOL)deliverImmediately

Creates a notification with the name notificationName, associates it with the string anObject and dictionary 
userInfo, and posts it to the notification center with delivery scheduled for deliverImmediately, as supplied 
by the invoker. This method is the preferred method for posting notifications.

The userInfo dictionary is serialized using the NSArchiver class, so it can be passed to another task. In the 
receiving task, it is deserialized using NSUnarchiver. This imposes some restrictions on the objects that can 
be placed in the userInfo dictionary. See the NSArchiver and NSUnarchiver documentation for details.

Posting with deliverImmediately set to NO allows the normal suspension behavior of the observers to take 
place. If deliverImmediately is set to YES, the notification is delivered immediately to all observers, 
regardless of their suspension behavior or suspension state.

See also: – postNotificationName:object:userInfo:, – encodeRootObject: (NSArchiver), 
+ unarchiveObjectWithData: (NSUnarchiver)



7

 Classes: NSDistributedNotificationCenter

removeObserver:name:object:
– (void)removeObserver:(id)anObserver 

name:(NSString *)notificationName
object:(NSString *)anObject

Removes anObserver as the observer of notifications with the name notificationName and identifying string 
anObject from the notification center. Be sure to invoke this method (or removeObserver:) before 
deallocating the observer object.

If anObserver is nil , all objects are removed as observers of notificationName with identifying string 
anObject. If notificationName is nil , anObserver is removed as an observer of all notifications with 
identifying string anObject. If anObject is nil , anObserver is removed as an observer of notificationName 
with any identifying string.

setSuspended:
– (void)setSuspended:(BOOL)suspended

Suspends notification delivery when set to YES, and resumes immediate notification delivery when set to 
NO. Distributed notification centers enable or suspend notification delivery on a per-task basis. When a task 
suspends notification delivery, notifications are delivered according to the suspension behavior of the 
observer. When delivery is not suspended, notifications are always delivered immediately. See “Suspending 
Notification Delivery” in the class introduction for more information.

See also: – addObserver:selector:name:object:suspensionBehavior:, 
– postNotificationName:object:userInfo:deliverImmediately:

suspended
– (BOOL)suspended

Returns YES if the notification center is delivering notifications for this application according to their 
suspension behavior, NO if it is delivering them immediately.



1

 Classes: NSEnumerator

NSEnumerator

Inherits From: NSObject

Conforms To: NSObject (NSObject) 

Declared In: Foundation/NSUtilities.h

Class at a GlanceClass at a Glance

Purpose
An abstract class whose instances enumerate collections of other objects, such as arrays and dictionaries.

Creation
All creation methods are defined in the collection classes such as NSArray and NSDictionary. These methods 
contain the word “Enumerator,” as in NSArray’s objectEnumerator method or NSDictionary’s 
keyEnumerator method.

Commonly Used Methods

Primitive Methods
– nextObject

Class Description

NSEnumerator is a simple abstract class whose subclasses enumerate collections of other objects. 
Collection objects—such as arrays, sets, and dictionaries—provide special NSEnumerator objects with 
which to enumerate their contents. You send nextObject repeatedly to a newly-created NSEnumerator 
object to have it return the next object in the original collection. When the collection is exhausted, nil  is 
returned. You can’t “reset” an enumerator after it’s exhausted its collection. To enumerate a collection again, 
you need a new enumerator.

– nextObject Returns the next object in the collection being enumerated.



2

Collection classes such as NSArray, NSSet, and NSDictionary include methods that return an enumerator 
appropriate to the type of collection. For instance, NSArray has two methods that return an NSEnumerator 
object: objectEnumerator and reverseObjectEnumerator. NSDictionary also has two methods that return 
an NSEnumerator object: keyEnumerator and objectEnumerator. These methods let you enumerate the 
contents of an NSDictionary by key or by value, respectively.

Note: It isn’t safe to modify a mutable collection while enumerating through it.

Like other collection classes, an NSEnumerator retains the collection over which it’s enumerating (unless 
implemented differently by a custom subclass).

Method Types

Getting the objects
– allObjects
– nextObject

Instance Methods

allObjects
– (NSArray *)allObjects

Returns an array of the objects the receiver has yet to enumerate. The array returned by this method does 
not contain objects that have already been enumerated with previous nextObject messages. Invoking this 
method exhausts the enumerator’s collection so that subsequent invocations of nextObject return nil .

nextObject
– (id)nextObject

Returns the next object from the collection being enumerated. When nextObject returns nil , all objects have 
been enumerated. The following code illustrates how this works using NSArray:

NSEnumerator *enumerator = [anArray objectEnumerator];

id object;

while ((object = [enumerator nextObject])) {

// do something with object...

}



1

 Classes: NSException

NSException

Inherits From: NSObject 

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: Foundation/NSException.h

Class Description 

NSException is used to implement exception handling and contains information about an exception. An 
exception is a special condition that interrupts the normal flow of program execution. Each application can 
interrupt the program for different reasons. For example, one application might interpret saving a file in a 
directory that’s write-protected as an exception. In this sense, the exception is equivalent to an error. 
Another application might interpret the user’s keypress (i.e., Control-C) as an exception: an indication that 
a long-running process should be aborted.

Note: The exception handling mechanism uses longjmp to control the flow of execution. Any code written 
for an application that uses exception handling is therefore subject to the restrictions associated with 
this functionality. See your compiler documentation for more information on the longjmp function.

Raising an Exception

Once an exception is detected, it must be propagated to code that will handle it, called the exception handler. 
This entire process of handling an exception is referred to as “raising an exception.” Exceptions are raised 
by instantiating an NSException object and sending it a raise message.

NSException objects provide:

• a name - a short string that is used to uniquely identify the exception.

• a reason - a longer string that contains a “human-readable” reason for the exception.

• userInfo - a dictionary used to supply application-specific data to the exception handler. For example, if 
the return value of a method causes an exception to be raised, you could pass the return value to the 
exception handler through userInfo.

Handling an Exception

Where and how an exception is handled depends on the context where the exception was raised. In general, 
a raise message is sent to an NSException object within the domain of an exception handler. An exception 



2

handler is contained within a control structure created by the macros NS_DURING, NS_HANDLER, and 
NS_ENDHANDLER, as shown in the following illustration.

The section of code between NS_DURING and NS_HANDLER is the exception handling domain; the 
section between NS_HANDLER and NS_ENDHANDLER is the local exception handler. The normal flow 
of program execution is marked by the gray arrow; the code within the local exception handler is executed 
only if an exception is raised. Sending a raise message to an exception object causes program control to 
jump to the first executable line following NS_HANDLER.

Although you can raise an exception directly within the exception handling domain, raise is more often 
invoked indirectly from a method invoked from the domain. No matter how deep in a call sequence the 
exception is raised, execution jumps to the local exception handler (assuming there are no intervening 
exception handlers, as discussed in the next section). In this way, exceptions raised at a low level can be 
caught at a high level.

For example, in the following program excerpt, the local exception handler displays an attention panel after 
detecting an exception having the name MyAppException. The local exception handler has access to the 
raised exception object through a local variable localException.

if (/*error*/) {

NS_HANDLER

NS_ENDHANDLER

NS_DURING

[anException  raise];
}

return;

Method

. . .

. . .

. . .

. . .

. . .

exception handling
domain

local exception
handler



3

 Classes: NSException

NS_DURING

...

if (someError)

[anException raise];

...

NS_HANDLER

if ([[localException name] isEqualToString:MyAppException]) {

NSRunAlertPanel(@"Error Panel", @"%@", @"OK", nil, nil, 

localException);

}

[localException raise]; /* Re-raise the exception. */

NS_ENDHANDLER

You may leave the exception handling domain (the section of code between NS_DURING and 
NS_HANDLER) by:

• Raising an exception.

• Calling NS_VALUERETURN()

• Calling NS_VOIDRETURN

• “Falling off the end”

The above example raises an exception when someError is YES. Alternatively, you can return control to 
the caller from within the exception handling domain by calling either NS_VALUERETURN()  or 
NS_VOIDRETURN. "Falling off the end” is simply the normal path of execution—after all statements in 
the exception handling domain are executed, execution continues on the line following 
NS_ENDHANDLER.

Note: You can’t use goto or return  to exit an exception handling domain—errors will result. Nor can you 
use setjmp() and longjmp() if the jump entails crossing an NS_DURING statement. Since the code 
that your program calls may have exception handling domains within it, avoid using setjmp() and 
longjmp() in your application.

Similarly, you can leave the local exception handler (the section of code between NS_HANDLER and 
NS_ENDHANDLER) by raising an exception or simply "falling off the end". 

Nested Exception Handlers

In the code example above, the same exception, localException, is raised again at the end of the local 
handler, allowing an encompassing exception handler to take some additional action. Exception handlers 
can be nested so that an exception raised in an inner domain can be treated by the local exception handler 
and any number of encompassing exception handlers. The following diagram illustrates the use of nested 
exception handlers, and is discussed in the text that follows.



4

An exception raised within Method3’s domain causes execution to jump to its local exception handler. In a 
typical application, this exception handler checks the object localException to determine the nature of the 
exception. For exception types that it recognizes, the local handler responds and then may send raise to 
localException to pass notification of the exception to the handler above, the handler in Method2. (An 
exception that’s re-raised appears to the next higher handler just as if the initial exception had been raised 
within its own exception handling domain.) Method2’s exception handler does the same and then re-raises 
the exception to Method1’s handler. Finally, Method1’s handler re-raises the exception. Since there’s no 
exception handling domain above Method1, the exception is transferred to the uncaught exception handler 
as described below.

Uncaught Exceptions

If an exception is not caught by any handler, it’s intercepted by the uncaught exception handler, a function 
set by NSSetUncaughtExceptionHandler() and returned by NSGetUncaughtExceptionHandler(). 

The default uncaught exception handler logs a message in the console and exits the program. However, for 
Application Kit programs, the message is logged with the Workspace Manager's console window (if the 
application was launched by the Workspace Manager) or to a Terminal window (if the application was 
launched from the shell). 

NS_HANDLER

NS_ENDHANDLERˇ

NS_DURING

Function2();

[localException raise];

. . .

. . .

. . .

. . .

Method1

Uncaught Exception Handler

return;

. . .

NS_HANDLER

NS_ENDHANDLER

NS_DURING

[... raise];

[localException raise];

. . .

. . .

. . .

. . .

Method3

return;

. . .

NS_HANDLER

NS_ENDHANDLER

NS_DURING

Function3();

[localException raise];

. . .

. . .

. . .

. . .

Method2

return;

. . .



5

 Classes: NSException

You can change the default behavior by changing the uncaught exception handler using 
NSSetUncaughtExceptionHandler().

Predefined Exceptions

Rhapsody predefines a number of exception names. These exception names are defined in NSException.h. 
For example:

• NSGenericException
• NSRangeException
• NSInvalidArgumentException
• NSMallocException

You can catch any of these exceptions from within your exception handler by comparing the exception’s 
name with these predefined names. Note that all predefined exceptions begin with the prefix "NS", so you 
should avoid using the same prefix when creating new exception names.

Adopted Protocols 

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

Method Types 

Creating and raising an NSException
+ exceptionWithName:reason:userInfo:
+ raise:format:
+ raise:format:arguments:
– initWithName:reason:userInfo:
– raise

Querying an NSException
– name
– reason
– userInfo



6

Class Methods

exceptionWithName:reason:userInfo:
+ (NSException *)exceptionWithName:(NSString *)name

reason:(NSString *)reason
userInfo:(NSDictionary *)userInfo 

Creates and returns an exception object using a predefined name, a human-readable reason, and arbitrary 
userInfo.

See also: – initWithName:reason:userInfo:, – name, – reason,  – userInfo

raise:format:
+ (void)raise:(NSString *)name format: (NSString *)format,... 

A convenience method that creates and raises an exception with name name and a reason constructed from 
format and the arguments that follow in the manner of printf() . The user-defined information is nil .

See also: + raise:format:arguments:, – raise

raise:format:arguments:
+ (void)raise:(NSString *)name format: (NSString *)format arguments:(va_list)argList 

Creates and raises an exception with name name and a reason constructed from format and the arguments 
in argList, in the manner of vprintf() . The user-defined information is nil .

See also: + raise:format:, – raise

Instance Methods

description
– (NSString *)description

Overridden to return the receiver’s reason, so that "%@" used in formatted strings produces a meaningful 
description of the exception.

See also: – reason



7

 Classes: NSException

initWithName:reason:userInfo:
– (id)initWithName: (NSString *)name

reason:(NSString *)reason
userInfo:(NSDictionary *)userInfo 

Initializes a newly allocated exception object using the predefined name, human-readable reason, and 
user-defined userInfo. This is the designated initializer.

See also: + exceptionWithName:reason:userInfo:, – name, – reason,  – userInfo

name
– (NSString *)name 

Returns an NSString used to uniquely identify the exception.

See also: + exceptionWithName:reason:userInfo:, – initWithName:reason:userInfo:

raise
– (void)raise 

Raises the exception, causing program flow to jump to the local exception handler. All other methods that 
raise an exception call this method, so set a breakpoint here if you are debugging exceptions.

See also: + raise:format:, + raise:format:arguments:

reason
– (NSString *)reason 

Returns an NSString containing a “human-readable” reason for the exception.

See also: – description, + exceptionWithName:reason:userInfo:, – initWithName:reason:userInfo:

userInfo
– (NSDictionary *)userInfo 

Returns an NSDictionary that contains application-specific data pertaining to the receiver. Returns nil  if no 
application-specific data exists. As an example, if a method’s return value caused the exception to be raised, 
the return value might be available to the exception handler through this method.

See also: + exceptionWithName:reason:userInfo:, – initWithName:reason:userInfo:



1

 Classes: NSFileHandle Class Cluster

c NSFileHandle Class Cluster

Class Cluster Description

NSFileHandle objects provide an object-oriented wrapper for accessing open files or communications 
channels.

The objects you create using this class are called file handle objects. Because of the nature of class clusters, 
file handle objects are not actual instances of the NSFileHandle class but of one of its private subclasses. 
Although a file handle object’s class is private, its interface is public, as declared by the abstract superclass 
NSFileHandle.

Generally, you instantiate a file handle object by sending one of the fileHandle... messages to the 
NSFileHandle class object. These methods return a file handle object pointing to the appropriate file or 
communications channel. As a convenience, NSFileHandle provides class methods that create objects 
representing files and devices in the file system and that return objects representing the standard input, 
standard output, and standard error devices. You can also create file handle objects from file descriptors 
(such as found on BSD systems) using the initWithFileDescriptor:  methods. If you create file handle 
objects with these methods, you "own" the represented descriptor and are responsible for removing it from 
system tables, usually by sending the file handle object a closeFile message .



2

i NSFileHandle

Inherits From: NSObject 

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSFileHandle.h

Class Description 

An NSFileHandle is an object that represents an open file or a communications channel. It enables 
programs to read data from or write data to the represented file or channel. You can use other OpenStep 
methods for reading from and writing to files—NSFileManager’s contentsAtPath: and NSData’s 
writeToFile:atomically:  are but a couple of examples. Why would you use NSFileHandle then? What are 
its advantages?

• NSFileHandle gives you greater control over input/output operations on files. It allows more manipulatve 
operations on and within open files, such as seeking, truncating. and reading and writing at an exact 
position within a file (the file pointer). Other OpenStep methods read or write a file in its entirety; with 
NSFileHandle, you can range over an open file and insert, extract, and delete data.

• The scope of NSFileHandle is not limited to files. It provides the only OpenStep object that can read and 
write to communications channels such as those implemented by sockets, pipes, and devices. 

• NSFileHandle makes possible asynchronous background communication. With it a program can connect 
to, and read from, a socket in a separate thread. (See “Background Inter-Process Communication Using 
Sockets” below for details on how this is done.)

• NSFileHandle enhances application portability. Its API supports I/O operations on file systems on 
Rhapsody (and supported UNIX systems) as well as on certain other file sysrems such as exist on 
Windows NT. Because this API  is closer in semantics to traditional BSD file I/O,  it makes it easier for 
many programmers to port applications.

Note: Instances of NSPipe, a class closely related to NSFileHandle, represent pipes: unidirectional 
interprocess communication channels that are found on both Rhapsody (and supported UNIX 
systems) and on Windows NT. See the NSPipe specification for details.

Background Inter-Process Communication Using Sockets

Sockets are full-duplex communication channels between processes either local to the same host machine 
or where one process is on a remote host. Unlike pipes, in which data goes in one direction only, sockets 
allow processes both to send and receive data. NSFileHandle facilitates communciation over stream-type 



3

 Classes: NSFileHandle Class Cluster

sockets by providing mechanisms run in background threads that accept socket connections and read from 
sockets.

Note: NSFileHandle currently handles only communciation through stream-type sockets. If you want to 
use datagrams or other types of sockets, you must create and manage the connection using native 
system routines.

The process on one end of the communication channel (the server) starts by creating and preparing a socket 
using system routines. These routines vary slightly between BSD and non-BSD systems (such as 
Windows), but consist of the same sequence of steps:

1. Create a stream-type socket of a certain protocol.

2. Bind a name to the socket.

3. Listen for incoming connections to the socket.

Typically the other process (the client) then locates the named socket created by the first process. Instead 
of accepting a connection to the socket by calling the appropriate system routine, the client performs the 
following sequence of steps:

1. It creates an NSFileHandle using the socket identifier as argument to initWithFileDescriptor: . 

2. It adds itself as an observer of NSFileHandleConnectionAcceptedNotification.

3. It sends acceptConnectionInBackgroundAndNotify to this NSFileHandle. This method accepts the 
connection in the background, creates a new NSFileHandle from the new socket descriptor, and posts a 
NSFileHandleConnectionAcceptedNotification. 

4. In a method implemented to respond to this notification, the client extracts the NSFileHandle representing the 
"near" socket of the connection from the notification’s userInfo dictionary; it uses the 
NSFileHandleNotificationFileHandleItem key to do this.

The client can now send data to the other process over the communications channel by sending writeData:  
to the NSFileHandle. (Note that writeData:  can block.) The client can also read data directly from the 
NSFileHandle, but this would cause the process to block until the socket connection was closed, so it is 
usually better to read in the background. To do this, the process must:

5. Add itself as an observer of NSFileHandleReadCompletionNotification or 
NSFileHandleReadToEndOfFileCompletionNotification.

6. Send readInBackgroundAndNotify  or readToEndOfFileInBackgroundAndNotify  to this NSFileHandle. 
The former method sends a notification after each transmission of data; the latter method accumulates data and 
sends a notification only after the sending process shuts down its end of the connection.

7. In a method implemented to respond to either of these notifications, the process extracts the transmitted or 
accumulated data from the notification’s userInfo dictionary by using the NSFileHandleNotificationDataItem 
key.



4

You close the communications channel in both directions by sending closeFile to the NSFileHandle; either 
process can partially or totally close communication across the socket connection with a system-specific 
shutdown command.

Method Types 

Getting an NSFileHandle
+ fileHandleForReadingAtPath:
+ fileHandleForWritingAtPath:
+ fileHandleForUpdatingAtPath:
+ fileHandleWithStandardError
+ fileHandleWithStandardInput
+ fileHandleWithStandardOutput
+ fileHandleWithNullDevice

Creating an NSFileHandle
– initWithFileDescriptor:
– initWithFileDescriptor:closeOnDealloc:

Getting a file descriptor
– fileDescriptor

Reading from an NSFileHandle
– availableData
– readDataToEndOfFile
– readDataOfLength:

Writing to an NSFileHandle
– writeData:

Communicating asynchronously in the background
– acceptConnectionInBackgroundAndNotifyForModes:
– acceptConnectionInBackgroundAndNotify
– readInBackgroundAndNotifyForModes:
– readInBackgroundAndNotify
– readToEndOfFileInBackgroundAndNotifyForModes:
– readToEndOfFileInBackgroundAndNotify

Seeking within a file
– offsetInFile
– seekToEndOfFile
– seekToFileOffset:



5

 Classes: NSFileHandle Class Cluster

Operating on a file
– closeFile
– synchronizeFile
– truncateFileAtOffset:

Class Methods 

 fileHandleForReadingAtPath:
+ fileHandleForReadingAtPath:(NSString *)path

Returns an NSFileHandle initialized for reading the file, device, or named socket at path. The file pointer 
is set to the beginning of the file. The returned object responds only to NSFileHandle read messages. If no 
file exists at path the method returns nil .

See also:  – availableData, – initWithFileDescriptor: , – readDataOfLength:, – readDataToEndOfFile

 fileHandleForUpdatingAtPath:
+ fileHandleForUpdatingAtPath: (NSString *)path

Returns an NSFileHandle initialized for reading and writing to the file, device, or named socket at path. The 
file pointer is set to the beginning of the file. The returned object responds to both NSFileHandle read 
messages and writeData: . If no file exists at path the method returns nil .

See also:  – availableData, – initWithFileDescriptor: , – readDataOfLength:, – readDataToEndOfFile

fileHandleForWritingAtPath:
+ fileHandleForWritingAtPath: (NSString *)path

Returns an NSFileHandle initialized for writing to the file, device, or named socket at path. The file pointer 
is set to the beginning of the file. The returned object responds only to writeData: . If no file exists at path 
the method returns nil .

See also: – initWithFileDescriptor:

fileHandleWithNullDevice
+ fileHandleWithNullDevice

Returns an NSFileHandle assoicated with a null device. You can use null-device NSFileHandles as 
"placeholders" for standard-device NSFileHandles or in collection objects to avoid exceptions and other 
errors resulting from messages being sent to invalid NSFileHandles. Read messages sent to a null-device 



6

NSFileHandle return an end-of-file indicator (an empty NSData) rather than raise an exception. Write 
messages are no-ops whereas fileDescriptor returns an illegal value (as defined by the underlying operating 
system). Other methods are no-ops or return "sensible" values.

See also: – initWithFileDescriptor:

fileHandleWithStandardError
+ fileHandleWithStandardError

Returns the NSFileHandle associated with the standard error file, conventionally a terminal device to which 
error messages are sent. There is one such NSFileHandle per process; it is a shared instance. 

See also: + fileHandleWithNullDevice, – initWithFileDescriptor:

fileHandleWithStandardInput
+ fileHandleWithStandardInput  

Returns an NSFileHandle associated with the standard input file, conventionally a terminal device on which 
the user enters a stream of data. There is one such NSFileHandle per process; it is a shared instance. 

See also: + fileHandleWithNullDevice, – initWithFileDescriptor:

fileHandleWithStandardOutput
+ fileHandleWithStandardOutput  

Returns an NSFileHandle associated with the standard output file, conventionally a terminal device which 
receives a stream of data from a program. There is one such NSFileHandle per process; it is a shared 
instance.

See also: + fileHandleWithNullDevice, – initWithFileDescriptor:

Instance Methods 

acceptConnectionInBackgroundAndNotify
– (void)acceptConnectionInBackgroundAndNotify

Accepts a socket connection (for stream-type sockets only) in the background and creates a NSFileHandle 
for the "near" (client) end of the communcations channel. This method is asynchronous. In a separate "safe" 
thread it accepts a connection, creates an NSFileHandle for the other end of the connection, and returns that 
object to the client by posting a NSFileHandleConnectionAcceptedNotification in the run loop of the client.  



7

 Classes: NSFileHandle Class Cluster

The notification includes as data a userInfo dictionary containing the created NSFileHandle; access this 
object using the NSFileHandleNotificationFileHandleItem key.

The receiver must be created by an initWithFileDescriptor:  message that takes as an argument a 
stream-type socket created by the appropriate system routine. The object that will write data to the returned 
NSFileHandle must add itself as an observer of NSFileHandleConnectionAcceptedNotification.

See also: – enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue), 
– readInBackgroundAndNotify , – readToEndOfFileInBackgroundAndNotify

acceptConnectionInBackgroundAndNotifyForModes:
– (void)acceptConnectionInBackgroundAndNotifyForModes:(NSArray *)modes

Asynchronously accepts a connection with a stream-type socket in the background and returns (in an 
NSFileHandleConnectionAcceptedNotification) an NSFileHandle representing the client side of the 
connection. See acceptConnectionInBackgroundAndNotify for details. The method differs from 
acceptConnectionInBackgroundAndNotify in that modes specifies the run-loop mode (or modes) in 
which NSFileHandleConnectionAcceptedNotification can be posted.

See also: – enqueueNotification:postingStyle:coalesceMask:forModes: (NSNotificationQueue), 
– readInBackgroundAndNotifyForModes: , 
– readToEndOfFileInBackgroundAndNotifyForModes:

availableData
– (NSData *)availableData

If the receiver is a file, returns the data obtained by reading the file from the file pointer to the end of the 
file.  If the receiver is a communications channel, reads up to a buffer of data and returns it (the size of the 
buffer depends on the operating system); if no data is available, the method blocks. Returns an empty 
NSData if the end of file is reached. Raises NSFileHandleOperationException if attempts to determine 
file-handle type fail or if attempts to read from the file or channel fail.

See also: – readDataOfLength:, – readDataToEndOfFile

closeFile
– (void)closeFile

Disallows further access to the represented file or communications channel and signals end of file on 
communications channels that permit writing. The file or communications channel, however, is available 
for other uses. Further read and write messages sent to an NSFileHandle to which closeFile has been sent 
will raise an exception.



8

Note: Sending closeFile to an NSFileHandle does not cause its deallocation; for that, you must send it 
release. Deallocation of an NSFileHandle, on the other hand, deletes its descriptor and closes the 
represented file or channel. Use closeFile when you want to close a file immediately and reclaim the 
descriptor; use release when it’s acceptable to defer this.

fileDescriptor
– (int)fileDescriptor 

Returns the file descriptor associated with the receiver. You can send this message to NSFileHandles 
originating from both file descriptors and file handles and receive a valid file descriptor (unless closeFile 
has been sent to the object, in which case an exception is raised).

See also: – initWithFileDescriptor:

initWithFileDescriptor:
– (id)initWithFileDescriptor: (int)fileDescriptor 

Returns an NSFileHandle initialized with the file descriptor. If the operating system is Windows, the 
method converts the file descriptor to a file handle (WIN32 type HANDLE) and initializes the returned 
object with that as well. You can create an NSFileHandle for a socket on a BSD system by using the result 
of a socket call as descriptor. The object creating an NSFileHandle using this method owns fileDescriptor 
and is responsible for its disposition.

See also: – closeFile

initWithFileDescriptor:closeOnDealloc:
– (id)initWithFileDescriptor: (int)fileDescriptor closeOnDealloc:(BOOL)flag

Same as initWithFileDescriptor: , but flag, if YES, causes the file descriptor to be closed when the receiver 
is deallocated.

See also: – closeFile

offsetInFile
– (unsigned long long)offsetInFile

Returns the position of the file pointer within the file represented by the receiver. Raises an exception if the 
message is sent to an NSFileHandle representing a pipe or socket or if the file descriptor is closed.

See also: – seekToEndOfFile, – seekToFileOffset:



9

 Classes: NSFileHandle Class Cluster

readDataOfLength:
– (NSData *)readDataOfLength:(unsigned int)length

If the receiver is a file, returns the data obtained by reading from the file pointer to length or to the end of 
the file, whichever comes first.  If the receiver is a communications channel, the method reads data from the 
channel up to length. Returns an empty NSData if the file is positioned at the end of the file or if an 
end-of-file indicator is returned on a communications channel. Raises NSFileHandleOperationException if 
attempts to determine file-handle type fail or if attempts to read from the file or channel fail.

See also: – availableData, – readDataToEndOfFile

readDataToEndOfFile
– (NSData *)readDataToEndFile 

Invokes readDataOfLength:, reading up to UNIT_MAX bytes (the maximum value for unsigned integers) 
or, if a communications channel, until an end-of-file indicator is returned.

See also:  – availableData

readInBackgroundAndNotify
– (void)readInBackgroundAndNotify

Performs an asynchronous availableData operation on a file or communications channel and posts an 
NSFileHandleReadCompletionNotification to the client process’ run loop. The length of the data is limited 
to the buffer size of the underlying operating system. The notification includes a userInfo dictionary which 
contains the data read; access this object using the NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of 
NSFileHandleReadCompletionNotification. In communication via stream-type sockets, the receiver is 
often the object returned in the userInfo dictionary of NSFileHandleConnectionAcceptedNotification. 

See also: – acceptConnectionInBackgroundAndNotify, – enqueueNotification:postingStyle:
coalesceMask:forModes: (NSNotificationQueue)

readInBackgroundAndNotifyForModes:
– (void)readInBackgroundAndNotifyForModes: (NSArray *)modes

Performs an asynchronous availableData operation on a file or communications channel and posts an 
NSFileHandleReadCompletionNotification to the client process’ run loop.  See 
readInBackgroundAndNotify  for details. The method differs from readInBackgroundAndNotify  in that 



10

modes specifies the run-loop mode (or modes) in which NSFileHandleReadCompletionNotification can be 
posted.

See also: – acceptConnectionInBackgroundAndNotifyForModes:, – enqueueNotification:
postingStyle:coalesceMask:forModes: (NSNotificationQueue)

readToEndOfFileInBackgroundAndNotify
– (void)readToEndOfFileInBackgroundAndNotify

Performs an asynchronous readToEndOfFile operation on a file or communications channel and posts an 
NSFileHandleReadToEndOfFileCompletionNotification to the client process’ run loop. The notification 
includes a userInfo dictionary which contains the data read; access this object using the 
NSFileHandleNotificationDataItem key.

Any object interested in receiving this data asynchronously must add itself as an observer of 
NSFileHandleReadToEndOfFileCompletionNotification. In communication via stream-type sockets, the 
receiver is often the object returned in the userInfo dictionary of 
NSFileHandleConnectionAcceptedNotification.

See also: – acceptConnectionInBackgroundAndNotify, – enqueueNotification:postingStyle:
coalesceMask:forModes: (NSNotificationQueue)

readToEndOfFileInBackgroundAndNotifyForModes:
– (void)readToEndOfFileInBackgroundAndNotifyForModes: (NSArray *)modes

In a detached "safe" thread, continuously reads data made available across a socket connection and 
accumulates it until the connection is closed; it then notifies observers.  See 
readToEndOfFileInBackgroundAndNotify  for details. The method differs from 
readToEndOfFileInBackgroundAndNotify  in that modes specifies the run-loop mode (or modes) in 
which NSFileHandleReadToEndOfFileCompletionNotification can be posted.

See also: – acceptConnectionInBackgroundAndNotifyForModes:, – enqueueNotification:
postingStyle:coalesceMask:forModes: (NSNotificationQueue)

seekToEndOfFile
– (unsigned long long)seekToEndOfFile

Puts the file pointer at the end of the file referenced by the receiver and returns the new file offset (thus 
yielding the size of the file). Raises an exception if the message is sent to an NSFileHandle representing a 
pipe or socket or if the file descriptor is closed.

See also: – offsetInFile



11

 Classes: NSFileHandle Class Cluster

seekToFileOffset:
– (void)seekToFileOffset:(unsigned long long)offset 

Moves the file pointer to the specified offset within the file represented by the receiver.  Raises an exception 
if the message is sent to an NSFileHandle representing a pipe or socket, if the file descriptor is closed, or if 
any other error occurs in seeking.

See also: – offsetInFile

synchronizeFile
– (void)synchronizeFile

Causes all in-memory data and attributes of the file represented by the receiver to be written to permanent 
storage. This method should be invoked by programs that require the file to always be in a known state.  An 
invocation of this method does not return until memory is flushed; because the way memory is flushed is 
platform-specific, consult the documentation for your operating system.

truncateFileAtOffset:
– (void)truncateFileAtOffset: (unsigned long long)offset 

Truncates or extends the file represented by the receiver to offset within the file and puts the file pointer at 
that position. It the file is extended, the added characters are null bytes.

waitForDataInBackgroundAndNotify
– (void)waitForDataInBackgroundAndNotify

Checks to see if data is available in a background thread. When the data becomes available, the thread 
notifies all observers with NSFileHandleDataAvailableNotification. After the notification has been posted, 
the thread is terminated. 

See also: – waitForDataInBackgroundAndNotifyForModes:

waitForDataInBackgroundAndNotifyForModes:
– (void)waitForDataInBackgroundAndNotifyForModes: (NSArray *)modes

Checks to see if data is available in a background thread. When the data becomes available, the thread 
notifies all observers with NSFileHandleDataAvailableNotification. After the notification has been posted, 



12

the thread is terminated. This method differs from waitForDataInBackgroundAndNotify  in that modes 
specifies the run-loop mode (or modes) in which NSFileHandleDataAvailableNotification can be posted.

See also: – waitForDataInBackgroundAndNotify

writeData:
– (void)writeData: (NSData *)data 

Synchronously writes data to the file, device, pipe, or socket represented by the receiver. If the receiver is 
a file, writing takes place at the file pointer’s current position. After it writes the data, the method advances 
the file pointer by the number of bytes written. Raises an exception if the file descriptor is closed or is not 
valid, if the receiver represents an unconnected pipe or socket end point, if no free space is left on the file 
system, or if any other writing error occurs.

See also: – availableData, – readDataOfLength:, – readDataToEndOfFile

Notifications

NSFileHandle posts several notifications related to asynchronous background I/O operations. They are set 
to post when the run loop of the thread that started the asynchronous operation is idle and for a specified 
set of run-loop modes (see userInfo dictionary).

NSFileHandleConnectionAcceptedNotification

This notification contains a notification object and a userInfo dictionary. The notification object is the 
NSFileHandle that sent the notification. The userInfo dictionary contains these keys and values:

To cause the posting of this notification, you must send either acceptConnectionInBackgroundAndNotify 
or acceptConnectionInBackgroundAndNotifyForModes: to an NSFileHandle representing a server 
stream-type socket. This notification is posted when NSFileHandle establishes a socket connection between 
two processes, creates an NSFileHandle for one end of the connection, and makes this object available to 
observers by putting it in the userInfo dictionary. 

Key Value 

NSFileHandleNotificationFileHandleItem
The NSFileHandle representing the "near" end of a socket 
connection.

NSFileHandleNotificationMonitorModes
An NSArray containing the run-loop modes in which the 
notification can be posted.



13

 Classes: NSFileHandle Class Cluster

NSFileHandleDataAvailableNotification

This notification contains a notification object and no userInfo dictionary. The notification object is the 
NSFileHandle that sent the notification. 

To cause the posting of this notification, you must send either waitForDataInBackgroundAndNotify  or 
waitForDataInBackgroundAndNotifyForModes:  to an appropriate NSFileHandle. This notification is 
posted when the background thread determines that data is currently available for reading in a file or at a 
communications channel. The observers can then issue the appropriate messages to begin reading the data.

NSFileHandleReadCompletionNotification

This notification contains a notification object and a userInfo dictionary. The notification object is the 
NSFileHandle that sent the notification. The userInfo dictionary contains these keys and values:

To cause the posting of this notification, you must send either readInBackgroundAndNotify  or 
readInBackgroundAndNotifyForModes:  to an appropriate NSFileHandle. This notification is posted 
when the background thread reads the data currently available in a file or at a communications channel. It 
makes the data available to observers by putting it in the userInfo dictionary.

NSFileHandleReadToEndOfFileCompletionNotification

This notification contains a notification object and a userInfo dictionary. The notification object is the 
NSFileHandle that sent the notification. The userInfo dictionary contains these keys and values:

Key Value 

NSFileHandleNotificationDataItem
An NSData containing the available data read from a socket 
connection.

NSFileHandleNotificationMonitorModes
An NSArray containing the run-loop modes in which the 
notification can be posted.

Key Value 

NSFileHandleNotificationDataItem
An NSData containing the available data read from a socket 
connection.

NSFileHandleNotificationMonitorModes
An NSArray containing the run-loop modes in which the 
notification can be posted.



14

To cause the posting of this notification, you must send either readToEndOfFileInBackgroundAndNotify  
or readToEndOfFileInBackgroundAndNotifyForModes:  to an appropriate NSFileHandle. This 
notification is posted when the background thread reads all data in the file or, if a communications channel, 
until the other process signals end of data. It makes the data available to observers by putting it in the 
userInfo dictionary. 



1

 Classes: NSFileManager

NSFileManager 

Inherits From: NSObject 

Conforms To: NSObject (NSObject)
NSCopying

Declared In: Foundation/NSFileManager.h

Class Description 

NSFileManager enables you to perform many generic file-system operations. With it you can:

• Create directories and files.
• Extract the contents of files (as NSData objects).
• Change your current working location in the file system.
• Copy, move, and link files and directories.
• Remove files, links, and directories.
• Determine the attributes of a file, a directory, or the file system.
• Set the attributes of a file or directory.
• Make and evaluate symbolic links.
• Determine the contents of directories.
• Compare files and directories for equality.

Besides offering a useful range of generic functionality, the NSFileManager API insulates an application 
from the underlying file system. An important part of this insulation is the encoding of file names (in, for 
example, Unicode, ISO Latin1, and ASCII). This insulating layer makes it easier to port the application 
between operating systems with different file systems. There is a default NSFileManager object for the file 
system; this object responds to all messages that request a operation on the associated file system.

The pathnames specified as arguments to NSFileManager methods can be absolute or relative to the current 
directory (which you can determine with currentDirectoryPath  and set with 
changeCurrentDirectoryPath:). However, pathnames cannot include wildcard characters.

Note: On file systems on Rhapsody and supported UNIX systems, an absolute pathname starts with the root 
directory of the file system, represented by a slash (/), and ends with the file or directory that the 
pathname identifies. A relative pathname is relative to the current directory, the directory in which 
you are working and in which saved files are currently stored (if no pathname is specified). Relative 
pathnames start with a subdirectory of the current directory—without an initial slash—and end with 
the name of the file or directory that the pathname identifies. 



2

Broken Links

Constructing a pathname to a file does not guarantee that the file exists at that path. Specifying a path results 
in one of the following possibilities:

• A file exists at that path
• A link to a file exists at that path
• A broken link exists at that path
• No file exists at that path

If the pathname specifies a valid file or link, you can obtain information about the file using the methods of 
this class. If the pathname specifies a broken link, you can still use fileAttributesAtPath:traverseLink:  to 
obtain attributes for the link itself (by specifying NO for the traverseLink argument). However, the methods 
fileExistsAtPath: and fileAttributesAtPath:traverseLink:  (with YES specified for the traverseLink 
argument) return nil  when the pathname specifies a broken link. Other methods return appropriate errors; 
see the method descriptions for specific information. Regardless of whether a link is broken or valid, the 
link still appears in directory listings. 

Path Utilities

NSFileManager methods are commonly used together with path-utility methods implemented as a category 
on NSString. These methods extract the components of a path (directory, file name, and extension), create 
paths from those components, “translate” path separators for the given platform, clean up paths containing 
symbolic links and redundant slashes, and perform similar tasks. Where your code manipulates strings that 
are part of file-system paths, it should use these methods. See the specification of the NSString class cluster 
for details.

Method Types 

Getting the default manager
+ defaultManager

Directory operations
– changeCurrentDirectoryPath:
– createDirectoryAtPath:attributes:
– currentDirectoryPath

File operations
– copyPath:toPath:handler:
– createFileAtPath:contents:attributes:
– movePath:toPath:handler:
– linkPath:toPath:handler:
– removeFileAtPath:handler:



3

 Classes: NSFileManager

Getting and comparing file contents
– contentsAtPath:
– contentsEqualAtPath:andPath:

Detemining access to files
– fileExistsAtPath:
– fileExistsAtPath:isDirectory:
– isReadableFileAtPath:
– isWritableFileAtPath:
– isExecutableFileAtPath:
– isDeletableFileAtPath:

Getting and setting attributes
– fileAttributesAtPath:traverseLink:
– fileSystemAttributesAtPath:
– changeFileAttributes:atPath:

Discovering directory contents
– directoryContentsAtPath:
– enumeratorAtPath:
– subpathsAtPath:

Symbolic-link operations
– createSymbolicLinkAtPath:pathContent:
– pathContentOfSymbolicLinkAtPath:

Converting file-system representations
– fileSystemRepresentationWithPath:
– stringWithFileSystemRepresentation:length:

Class Methods 

defaultManager
+ (NSFileManager *)defaultManager

Returns the default NSFileManager object for the file system. You invoke all NSFileManager instance 
methods with this object as the receiver.



4

Instance Methods

changeCurrentDirectoryPath:
– (BOOL)changeCurrentDirectoryPath:(NSString *)path 

Changes the path of the current directory to path and returns YES if successful, NO if not successful. All 
relative pathnames refer implicitly to the current working directory. The current working directory is stored 
per task.

See also: – currentDirectoryPath , – fileExistsAtPath:isDirectory: , – directoryContentsAtPath:, 
– createDirectoryAtPath:attributes:

changeFileAttributes:atPath:
– (BOOL)changeFileAttributes:(NSDictionary *)attributes atPath:(NSString *)path 

Changes the attributes of the file or directory specified by path. Attributes that you can change are the 
owner, the group, file permissions, and the modification date. As in the POSIX standard, the application 
must either own the file or directory or must be running as superuser for attribute changes to take effect. 
The method attempts to make all changes specified in attributes and ignores any rejection of an attempted 
modification. If all changes succeed, it returns YES. If any change fails, the method returns NO, but it is 
undefined whether any changes actually occured.

Some useful global keys for identifying object values in the attributes dictionary are:

The NSFilePosixPermissions value must be initialized with the code representing the POSIX 
file-permissions bit pattern.

You can change single attributes or any combination of attributes; you need not specify keys for all four 
attributes. 

See also: – fileAttributesAtPath:traverseLink:

Key Value Type

NSFileModificationDate NSDate

NSFilePosixPermissions NSNumber



5

 Classes: NSFileManager

contentsAtPath:
– (NSData *)contentsAtPath:(NSString *)path 

Returns the contents of the file specified in path as an NSData object. If path specifies a directory, or if some 
other error occurs, this method returns nil .

See also: – contentsEqualAtPath:andPath:, – createFileAtPath:contents:attributes:

contentsEqualAtPath:andPath:
– (BOOL)contentsEqualAtPath:(NSString *)path1 andPath:(NSString *)path2 

Compares the file or directory specified in path1 with that specified in path2 and returns YES if they have 
the same contents. If path1 and path2 are directories, the contents are the list of files and subdirectories each 
contain; contents of subdirectories are also compared. If the contents differ, this method returns NO. For 
files, this method checks to see if they’re the same file, then compares their size, and finally compares their 
contents. It does not traverse symbolic links, but compares the links themselves.

See also: – contentsAtPath: 

copyPath:toPath:handler:
– (BOOL)copyPath:(NSString *)source 

toPath:(NSString *)destination 
handler:handler 

Copies the directory or file specified in path source to a different location in the file system identified by 
pathname destination. If source is a file, the method creates a file at destination that holds the exact contents 
of the original file (this includes BSD special files). If source is a directory, the method creates a new 
directory at destination and recursively populates it with duplicates of the files and directories contained in 
source, preserving all links. The file specified in source must exist, while destination must not exist prior 
to the operation. When a file is being copied, the destination path must end in a file name; there is no 
implicit adoption of the source file name. Symbolic links are not traversed but are themselves copied.

If the copy operation is successful, the method returns YES. If the operation is not successful, but the 
callback handler of fileManager:shouldProceedAfterError:  returns YES (see below), copyPath:toPath:
handler: also returns YES. Otherwise this copy method returns NO. The method also attempts to make the 
attributes of the directory or file at destination identical to source, but ignores any failure at this attempt.

The argument handler identifies an object that responds to the callback messages fileManager:
willProcessPath: and fileManager:shouldProceedAfterError:  (see “Methods Implemented by the 
CallbackHandler,” below). This callback mechanism is similar to delegation. NSFileManager sends the first 
message when it begins a copy, move, remove, or link operation. It sends the second message when it 
encounters any error in processing. You can specify nil  for handler if no object responds to the callback 
messages; if you specify nil  and an error occurs, the method automatically returns NO.



6

This code fragment verifies that the file to be copied exists and then copies that file to the user’s 
~/Library/Reports  directory:

NSString *source = @"/tmp/quarterly_report.rtf";

NSString *destination = [[NSHomeDirectory()

stringByAppendingPathComponent:@"Library"]

stringByAppendingPathComponent:@"Reports"];

NSFileManager *manager = [NSFileManager defaultManager];

if ([manager fileExistsAtPath:source])

[manager copyPath:source toPath:destination handler:nil];

See also: – linkPath:toPath:handler: , – movePath:toPath:handler:, – fileManager:
shouldProceedAfterError: , – removeFileAtPath:handler:, – fileManager:willProcessPath:

createDirectoryAtPath:attributes:
– (BOOL)createDirectoryAtPath:(NSString *)path 

attributes: (NSDictionary *)attributes

Creates a directory (without contents) at path that has the specified attributes. Returns YES upon success 
or NO upon failure. The directory to be created must not yet exist, however, its parent directory must exist. 
The file attributes that you can set are owner and group numbers, file permissions, and modification date. 
If you specify nil  for attributes, default values for these attributes are set (particularly write access for 
creator and read access for others). The following table lists the global constants used as keys in the 
attributes NSDictionary and the types of the associated values:

See also: – changeCurrentDirectoryPath:, – changeFileAttributes:atPath:, – createFileAtPath:
contents:attributes:, – currentDirectoryPath

Key Value Type

NSFileModificationDate NSDate

NSFileOwnerAccountNumber NSNumber

NSFileGroupOwnerAccountNumber NSNumber

NSFilePosixPermissions NSNumber



7

 Classes: NSFileManager

createFileAtPath:contents:attributes:
– (BOOL)createFileAtPath:(NSString *)path

contents:(NSData *)contents
attributes: (NSDictionary *)attributes

Creates a file at path that contains contents and has the specified file attributes. Returns YES upon success 
or NO upon failure. The file attributes that you can set are owner and group numbers, file permissions, and 
modification date. If you specify nil  for attributes, the file is given a default set of attributes. The following 
table summarizes the keys and types to associate with values in the NSDictionary attributes.

See also: – contentsAtPath:, – changeFileAttributes:atPath:, – fileAttributesAtPath:traverseLink:

createSymbolicLinkAtPath:pathContent:
– (BOOL)createSymbolicLinkAtPath:(NSString *)path 

pathContent:(NSString *)otherPath 

Creates a symbolic link identified by path that refers to the location otherPath in the file system. Returns 
YES if the operation is successful and NO if it is not successful. The method returns NO if a file, directory, 
or symbolic link identical to path already exists.

See also: – pathContentOfSymbolicLinkAtPath:, – linkPath:toPath:handler:

currentDirectoryPath
– (NSString *)currentDirectoryPath  

Returns the path of the program’s current directory. The string returned by this method is initialized to the 
current working directory, and can thereafter be changed by invoking changeCurrentDirectoryPath:. If 
the program’s current working directory isn’t accessible, this method returns nil .

Key Value Type

NSFileModificationDate NSDate

NSFileOwnerAccountNumber NSNumber

NSFileGroupOwnerAccountNumber NSNumber

NSFilePosixPermissions NSNumber



8

Relative pathnames refer implictly to the current directory. For example, if the current directory is /tmp, 
and the relative pathname reports/info.txt  is specified, the resulting full pathname is /tmp/reports/info.txt . 

See also: – createDirectoryAtPath:attributes:

directoryContentsAtPath:
– (NSArray *)directoryContentsAtPath:(NSString *)path 

Searches the contents of the directory specified by path and returns an array of strings identifying the 
directories and files (including symbolic links) contained in path. The search is shallow and therefore does 
not return the contents of any subdirectories. This returned array does not contain strings for the current 
directory (“.”) or parent directory (“..”) and does not traverse symbolic links. This method returns nil  if the 
directory specified at path does not exist or there is some other error accessing it. It returns an empty array 
if the directory exists, but has no contents.

The following example, generated by NSArray’s description method, shows the results when this method 
is invoked on the directory /System/Developer. 

Source, 

Makefiles, 

ProjectTypes, 

Applications, 

Java, 

PBBundles, 

Apps, 

Demos, 

Headers, 

Examples

See also: – currentDirectoryPath , – fileExistsAtPath:isDirectory: , – enumeratorAtPath:, 
– subpathsAtPath:

enumeratorAtPath:
– (NSDirectoryEnumerator *)enumeratorAtPath:(NSString *)path 

Creates and returns an autoreleased NSDirectoryEnumerator object that enumerates the contents of the 
directory specified at path.Because the enumeration is deep, that is, it lists the contents of all subdirectories, 
this enumerator object is useful for preforming actions that involve large file-system subtrees. If the method 
is passed a directory on which another filesystem is mounted (a mount point), it traverses the mount point. 
If handed a symbolic link, it evaluates the link and returns an enumerator for the file or directory the link 
points to. If the link can not be evaluated, the method returns nil. If path is a filename, the method returns 
an enumerator object that enumerates no files—the first call to nextObject will return nil.



9

 Classes: NSFileManager

This code fragment enumerates the subdirectories and files under /MyAccount/Documents and processes 
all files with an extension of .doc:

NSString *file;

NSDirectoryEnumerator *enumerator = [[NSFileManager defaultManager]

enumeratorAtPath:@"/MyAccount/Documents"];

while (file = [enumerator nextObject]) {

if ([[file pathExtension] isEqualToString:@"doc"])

[self scanDocument:file];

}

The NSDirectoryEnumerator class has methods for obtaining the attributes of the existing path and of the 
parent directory, and for skipping descendents of the existing path.

See also: – currentDirectoryPath , – fileExistsAtPath:isDirectory: , – directoryContentsAtPath:, 
– subpathsAtPath:

fileAttributesAtPath:traverseLink:
– (NSDictionary *)fileAttributesAtPath: (NSString *)path traverseLink: (BOOL)flag 

Returns an NSDictionary containing various objects that represent the POSIX attributes of the file specified 
at path. You access these objects using the keys:

The possible values for the NSFileType key are:

Key Value Type

NSFileSize (in bytes) NSNumber 

NSFileModificationDate NSDate

NSFileOwnerAccountName NSString

NSFileGroupOwnerAccountName NSString

NSFileReferenceCount (number of hard links) NSNumber 

NSFileIdentifier NSNumber

NSFileDeviceIdentifier NSNumber

NSFilePosixPermissions NSNumber

NSFileType NSString



10

• NSFileTypeDirectory
• NSFileTypeRegular
• NSFileTypeSymbolicLink
• NSFileTypeSocket
• NSFileTypeCharacterSpecial
• NSFileTypeBlockSpecial
• NSFileTypeUnknown

If flag is YES and path is a symbolic link, the attributes of the linked-to file are returned; if the link points 
to a non-existant file, this method returns nil . If flag is NO, the attributes of the symbolic link are returned. 

This piece of code gets several attributes of a file and logs them.

NSNumber *fsize, *refs, *owner;

NSDate *moddate;

NSDictonary *fattrs = 

[manager fileAttributesAtPath:@"/tmp/List" traverseLink:YES];

if (!fattrs) {

NSLog(@"Path is incorrect!");

return;

}

if (fsize = [fattrs objectForKey:NSFileSize])

NSLog(@"File size: %d\n", [fsize intValue]);

if (refs = [fattrs objectForKey:NSFileReferenceCount])

NSLog(@"Ref Count: %d\n", [refs intValue]);

if (moddate = [fattrs objectForKey:NSFileModificationDate])

NSLog(@"Modif Date: %@\n", [moddate description]);

As a convenience, NSDictionary provides a set of methods (declared as a category in NSFileManager.h) 
for quickly and efficiently obtaining attribute information from the returned NSDictionary: 
fileGroupOwnerAccountName, fileModificationDate, fileOwnerAccountName, filePosixPermissions, 
fileSize, fileSystemFileNumber, fileSystemNumber, and fileType. For example, you could rewrite the last 
statement in the code example above as:

if (moddate = [fattrs fileModificationDate])

NSLog(@"Modif Date: %@\n", [moddate description]);

See also: – changeFileAttributes:atPath:



11

 Classes: NSFileManager

fileExistsAtPath:
– (BOOL)fileExistsAtPath:(NSString *)path 

Returns YES if the file specified in path exists, or NO if it does not. If path specfies a symbolic link, this 
method traverses the link and returns YES or NO based on the existence of the file at the link destination. 

See also: – fileExistsAtPath:isDirectory:

fileExistsAtPath:isDirectory:
– (BOOL)fileExistsAtPath:(NSString *)path isDirectory: (BOOL *)isDirectory 

Returns whether the file specified in path exists. If you want to determine if path is a directory, specify the 
address of a boolean variable for isDirectory; the method indirectly returns YES if path is a directory. The 
method traverses final symbolic links.

This example gets an NSArray that identifies the fonts in /System/Library/Fonts:

NSArray *subpaths;

BOOL isDir;

NSString *fontPath = @"/System/Library/Fonts";

NSFileManager *manager = [NSFileManager defaultManager];

if ([manager fileExistsAtPath:fontPath isDirectory:&isDir] && isDir)

subpaths = [manager subpathsAtPath:fontPath];

See also: – fileExistsAtPath:

fileSystemAttributesAtPath:
– (NSDictionary *)fileSystemAttributesAtPath:(NSString *)path 

Returns an NSDictionary containing objects that represent attributes of the mounted file system; path is any 
pathname within the mounted file system. You access the attribute objects in the NSDictionary using these 
global constants as keys:

Key Value Type

NSFileSystemSize (in an appropriate unit, usually bytes NSNumber 

NSFileSystemFreeSize (in an appropriate unit, usually bytes NSNumber

NSFileSystemNodes NSNumber

NSFileSystemFreeNodes NSNumber

NSFileSystemNumber NSNumber



12

The following code example checks to see if there’s sufficient space on the file system before adding a new 
file to it:

const char *data = [[customerRec description] cString];

NSData *contents = [NSData dataWithBytes:data length:sizeof(data)];

NSFileManager *manager = [NSFileManager defaultManager];

NSDictionary *fsattrs = 

[manager fileSystemAttributesAtPath:@"/Net/sales/misc"];

if ([[fsattrs objectForKey:NSFileSystemFreeSize] unsignedIntValue] > 

[contents length]) 

[manager createFileAtPath:@"/Net/sales/misc/custrec.rtf"

contents:contents attributes:nil];

See also:  – fileAttributesAtPath:traverseLink: , – changeFileAttributes:atPath:

fileSystemRepresentationWithPath:
– (const char *)fileSystemRepresentationWithPath:(NSString *)path 

Returns a C-string representation of path that properly encodes Unicode strings for use by the file system. 
If you need the C string beyond the scope of your autorelease pool, you should copy it. This method raises 
an exception upon error. Use this method if your code calls system routines that expect C-string path 
arguments.

See also:  – stringWithFileSystemRepresentation:length:

isDeletableFileAtPath:
– (BOOL)isDeletableFileAtPath:(NSString *)path 

Returns YES if the invoking object appears able to delete the directory or file specified in path and NO if it 
cannot. To be deletable, either the parent directory of path must be writable or its owner must be the same 
as the owner of the application process. If path is a directory, every item contained in path must be 
deletable. This method does not traverse symbolic links.

isExecutableFileAtPath:
– (BOOL)isExecutableFileAtPath:(NSString *)path 

Returns YES if the underlying operating system appears able to execute the file specified in path and NO if 
it cannot. This method traverses symbolic links.



13

 Classes: NSFileManager

isReadableFileAtPath:
– (BOOL)isReadableFileAtPath:(NSString *)path 

Returns YES if the invoking object appears able to read the file specified in path and NO if it cannot. This 
method traverses symbolic links.

isWritableFileAtPath:
– (BOOL)isWritableFileAtPath: (NSString *)path 

Returns YES if the invoking object appears able to write to the file specified in path and NO if it cannot. 
This method traverses symbolic links.

linkPath:toPath:handler:
– (BOOL)linkPath: (NSString *)source 

toPath:(NSString *)destination
handler:handler 

If pathname source identifies a file, this method hard-links the file specified in destination to it. If 
destination is a directory, this method creates a file in destination with the same basename (final path 
element) as source, hard-linked to source.

If source is a directory or symbolic link, this method copies it to destination instead of creating a hard link. 
The file, link, or directory specified in source must exist, while destination must not yet exist. The 
destination path must end in a file name; there is no implicit adoption of the source file name. Symbolic 
links in source are not traversed. 

If the link operation is successful, linkPath:toPath:handler:  returns YES. If the operation is not 
successful, but the handler method fileManager:shouldProceedAfterError:  returns YES, the method 
also returns YES. Otherwise it returns NO. 

The argument handler identifies an object that responds to the callback messages fileManager:
willProcessPath: and fileManager:shouldProceedAfterError:  (see “Methods Implemented by the 
Callback Handler,” below). This callback mechanism is similar to delegation. NSFileManager sends the 
first message when it begins a copy, move, remove, or link operation. It sends the second message when it 
encounters any error in processing. You can specify nil  for handler if no object responds to the callback 
messages; if you specify nil  and an error occurs, the method automatically returns NO.

This code fragment verifies the pathname typed in a text field (imageFileField) and then links the file to 
the user’s ~/Library/Images directory:



14

NSString *imageFile = [imageFileField stringValue];

NSString *destination = [[NSHomeDirectory()

stringByAppendingPathComponent:@"Library"]

stringByAppendingPathComponent:@"Images"];

NSFileManager *manager = [NSFileManager defaultManager];

if ([manager fileExistsAtPath:source])

[manager linkPath:source toPath:destination handler:self];

See also: – copyPath:toPath:handler:, – createSymbolicLinkAtPath:pathContent:, – movePath:
toPath:handler:, – fileManager:shouldProceedAfterError:, – removeFileAtPath:handler:, 
– fileManager:willProcessPath:

movePath:toPath:handler:
– (BOOL)movePath:(NSString *)source 

toPath:(NSString *)destination 
handler:handler 

Moves the directory or file specified in path source to a different location in the file system identified by the 
pathname destination. If source is a file, the method creates a file at destination that holds the exact contents 
of the original file (including BSD special files) and then deletes the original file. If source is a directory, 
movePath:toPath:handler: creates a new directory at destination and recursively populates it with 
duplicates of the files and directories contained in source; it then deletes the old directory and its contents. 
The file specified in source must exist, while destination must not yet exist. The destination path must end 
in a file name; there is no implicit adoption of the source file name. Symbolic links are not traversed; 
however, links are preserved.

If the move operation is successful, the method returns YES. If the operation is not successful, but the 
handler method fileManager:shouldProceedAfterError:  returns YES, movePath:toPath:handler: also 
returns YES; otherwise it returns NO. If a failure in a move operation occurs, the pre-existing path or the 
new path remains intact, but not both.

The argument handler identifies an object that responds to the callback messages fileManager:
willProcessPath: and fileManager:shouldProceedAfterError:  (see “Methods Implemented by the 
Callback Handler,” below). This callback mechanism is similar to delegation. NSFileManager sends the 
first message when it begins a copy, move, remove, or link operation. It sends the second message when it 
encounters any error in processing. You can specify nil  for handler if no object responds to the callback 
messages; if you specify nil  and an error occurs, the method automatically returns NO.

See also: – copyPath:toPath:handler:, – linkPath:toPath:handler: , – removeFileAtPath:handler:, 
– fileManager:shouldProceedAfterError: , – fileManager:willProcessPath:



15

 Classes: NSFileManager

pathContentOfSymbolicLinkAtPath:
– (NSString *)pathContentOfSymbolicLinkAtPath: (NSString *)cStringPath 

Returns the actual path of the directory or file that the symbolic link cStringPath refers to. Returns nil  upon 
failure. 

See also: – createSymbolicLinkAtPath:pathContent:

removeFileAtPath:handler:
– (BOOL)removeFileAtPath:(NSString *)path handler:handler

Deletes the file, link, or directory (including, recusively, all subdirectories, files and links in the directory) 
identified by path. If the removal operation is successful, removeFileAtPath:handler: returns YES. If the 
operation is not successful, but the handler method fileManager:shouldProceedAfterError:  returns YES, 
removeFileAtPath:handler: also returns YES; otherwise it returns NO. 

The argument handler identifies an object that responds to the callback messages fileManager:
willProcessPath: and fileManager:shouldProceedAfterError:  (see “Methods Implemented by the 
Callback Handler,” below). This callback mechanism is similar to delegation. NSFileManager sends the 
first message when it begins a copy, move, remove, or link operation. It sends the second message when it 
encounters any error in processing. You can specify nil  for handler if no object responds to the callback 
messages; if you specify nil  and an error occurs, the method automatically returns NO.

Since the removal of directory contents is so thorough and final, be careful when using this method. Do not 
specify “.” or “..” for path; this will raise the exception NSInvalidArgumentException. This method does 
not traverse symbolic links.  

See also: – copyPath:toPath:handler:, – linkPath:toPath:handler: ,  – movePath:toPath:handler:, 
– fileManager:shouldProceedAfterError: , – fileManager:willProcessPath:

stringWithFileSystemRepresentation:length:
– (NSString *)stringWithFileSystemRepresentation:(const char *)string

length:(unsigned int)len 

Returns an NSString object converted from a C-string representation of a path name in the current file 
system (string). Use this method if your code receives paths as C-strings from system routines.

See also:  – fileSystemRepresentationWithPath:



16

subpathsAtPath:
– (NSArray *)subpathsAtPath:(NSString *)path 

Returns an NSArray that lists (as NSStrings) the contents of the directory identified by path. This list of 
directory contents goes very deep and hence is very useful for large file-system subtrees. The method skips 
“.” and “..”. If path is a symbolic link, subpathsAtPath: traverses the link. The method returns nil  if it 
cannot get the device of the linked-to file.

Here is a sample fragment of what subpathsAtPath: returns (as the output of NSArray’s description 
method) when path is /System/Developer:

Examples/Foundation/ForwardInvocation/PB.project, 

Examples/Foundation/ForwardInvocation/Makefile,

Examples/Foundation/ForwardInvocation/TargetProxy.h, 

Examples/Foundation/ForwardInvocation/TargetProxy.m, 

Examples/Foundation/ForwardInvocation/ForwardInvocation_main.m, 

Examples/Foundation/MultiThreadedDO, 

Examples/Foundation/MultiThreadedDO/PB.project, 

Examples/Foundation/MultiThreadedDO/Makefile, 

Examples/Foundation/MultiThreadedDO/ThreadSafeQueue.h, 

Examples/Foundation/MultiThreadedDO/ThreadSafeQueue.m, 

Examples/Foundation/MultiThreadedDO/MultiThreadedDO_main.m, 

Notice that this method reveals every element of the subtree at path, including the contents of file packages 
(such as applications, nib files, and RTFD files). This code fragment gets the contents of 
/System/Library/Fonts after verifying that the directory exists:

BOOL isDir=NO;

NSArray *subpaths;

NSString *fontPath = @"/System/Library/Fonts";

NSFileManager *manager = [NSFileManager defaultManager];

if ([manager fileExistsAtPath:fontPath isDirectory:&isDir] && isDir)

subpaths = [manager subpathsAtPath:fontPath];

See also: – directoryContentsAtPath:, – enumeratorAtPath:

Methods Implemented By the Delegate

The methods described in this section are methods to be implemented by the callback handler passed to 
several methods of NSFileManager. 



17

 Classes: NSFileManager

fileManager:shouldProceedAfterError:
– (BOOL)fileManager:(NSFileManager *)manager 

shouldProceedAfterError: (NSDictionary *)errorInfo

NSFileManager sends this message for each error it encounters when copying, moving, removing, or 
linking files or directories. The NSDictionary object errorInfo contains two or three pieces of information 
(all NSStrings) related to the error:

Return YES if the operation (which is often continuous within a loop) should proceed and NO if it should 
not; the Boolean value is passed back to the invoker of copyPath:toPath:handler:, movePath:toPath:
handler:, removeFileAtPath:handler: or linkPath:toPath:handler: . If an error occurs and your handler 
has not implemented this method, the invoking method automatically returns NO.

The following implementation of fileManager:shouldProceedAfterError:  displays the error string in an 
attention panel and leaves it to the user whether to proceed or stop:

-(BOOL)fileManager:(NSFileManager *)manager 

shouldProceedAfterError:(NSDictionary *)errorDict

{

int result;

result = NSRunAlertPanel(@"Gumby App", @"File operation error:

%@ with file: %@", @"Proceed", @"Stop", NULL, 

[errorDict objectForKey:@"Error"], 

[errorDict objectForKey:@"Path"]);

if (result == NSAlertDefaultReturn)

return YES;

else

return NO;

}

See also: – fileManager:willProcessPath:

Key Value

@"Path"
The path related to the error (usually the 
source path)

@"Error" A description of the error

@"ToPath" The destination path (not all errors)



18

fileManager:willProcessPath:
-(BOOL)fileManager:(NSFileManager *)manager

willProcessPath:(NSString *)path

NSFileManager sends this message immediately before attempting to move, copy, or rename path or before 
attempting to link to path. You can implement this method in your delegate to monitor file operations. The 
return value is ignored.



1

 Classes: NSFormatter

NSFormatter

Inherits From: NSObject 

Conforms To: NSObject (NSObject)
NSCoding
NSCopying

Declared In: Foundation/NSFormatter.h 

Class Description 

NSFormatter is an abstract class that declares an interface for objects that format the textual representation 
of cell contents. The Foundation framework provides two concrete subclasses of NSFormatter to generate 
these objects: NSNumberFormatter and NSDateFormatter. 

Cells, which are instances of NSCell and its subclasses, can have any arbitrary object as their content. 
However, when cells are to be displayed or edited, they must convert this object to an NSString. If no 
formatting object is associated with a cell, the cell displays its content by invoking the localized description 
method of the object it contains. But if the cell has a formatting object, the cell invokes this object’s 
stringForObjectValue:  method to obtain the correctly formatted string. Conversely, when the user enters 
text into a cell, the cell needs to convert the text to the underlying object; formatting objects handle this 
conversion as well.

To use a formatting object, you must create an instance of NSNumberFormatter, NSDateFormatter, or a 
custom NSFormatter subclass and associate the object with a cell. The cell invokes the formatting behavior 
of this instance every time it needs to display its object or have it edited, and every time it needs to convert 
a textual representation to its object. See the class description of NSDateFormatter for the details of using 
formatting objects.

Instances of NSFormatter subclasses are immutable. In addition, when a cell with a formatter object  is 
copied, the new cell retains the formatter object instead of copying it.

Note: NSCell provides two methods that operate almost the same as instances of NSNumberFormatter. 
One method, setEntryType:, takes a constant that specifies  a typical numeric format (integer, float, 
positive float, double, and so on). With isEntryAcceptable:, you can ask a cell for the type of value 
it expects. Another method, setFloatingPointFormat:left:right: , allows you to specify the digits 
that appear to the left and right of the decimal point. See the NSCell specification for further details.

Delegation Methods for Error Handling

NSControl  has delegation methods for handling errors returned in implementations of NSFormatter’s 
objectValue:forString:errorDescription:  and isPartialStringValid:newEditingString:



2

errorDescription:. These delegation methods are, respectively, control:didFailToFormatString:
errorDescription:  and control:didFailToValidatePartialString:errorDescription: .

Making a Subclass of NSFormatter

There are many possibilities for custom subclasses of NSFormatter. You might find use for a custom 
formatter of telephone numbers, or a custom formatter of part numbers.

To subclass NSFormatter, you must, at the least, override the two primitive methods 
stringForObjectValue:  and getObjectValue:forString:errorDescription: . In the first method you 
convert the cell’s object to a string representation; in the second method you convert the string to the object 
associated with the cell. 

Implement attributedStringForObjectValue:withDefaultAttributes:  in addition to 
stringForObjectValue:  when the display string has attributes associated with it. For example, if you want 
negative financial amounts to appear in red, you would return a string with an attribute of red text. In 
attributedStringForObjectValue:withDefaultAttributes:  get the non-attributed NSString by invoking 
stringForObjectValue:  and then apply the proper attributes to that NSString.

If the string for editing is different than the string for display—for example, the display version of a 
currency field should show a dollar sign but the editing version shouldn’t—implement 
editingStringForObjectValue:  in addition to stringForObjectValue: .

The method isPartialStringValid:newEditingString:errorDescription:  allows you to edit the textual 
contents of a cell at each key press or to prevent entry of invalid characters. You might apply this on-the-fly 
editing to things like telephone numbers or social security numbers; the person entering data only needs to 
enter the number since the formatter automatically inserts the separator characters. 

Method Types 

Textual representation of cell content
– stringForObjectValue:
– attributedStringForObjectValue:withDefaultAttributes:
– editingStringForObjectValue:

Object equivalent to textual representation
– getObjectValue:forString:errorDescription:

Dynamic cell editing
– isPartialStringValid:newEditingString:errorDescription:



3

 Classes: NSFormatter

Instance Methods

attributedStringForObjectValue:withDefaultAttributes:
– (NSAttributedString *)attributedStringForObjectValue: (id)anObject

withDefaultAttributes: (NSDictionary *)attributes

The default implementation returns nil  to indicate that the formatter object does not provide an attributed 
string. In a subclass implementation, return an NSAttributedString if the string for display should have 
some attributes. For instance, you might want negative values in a financial application to appear in red text. 
Invoke your implementation of stringForObjectValue:  to get the non-attributed string. Then create an 
NSAttributedString with it. The default attributes for text in the cell is passed in with attributes; use this 
NSDictionary to reset the attributes of the string when a change in value warrants it (for example, a negative 
value becomes positive). For information on creating attributed strings, see the specification for the 
NSAttributedString class.

See also:  – editingStringForObjectValue:

editingStringForObjectValue:
– (NSString *)editingStringForObjectValue: (id)anObject

The default implementation of this method invokes stringForObjectValue: . When implementing a 
subclass, override this method only when the string that users see and the string that they edit are different. 
In your implementation, return an NSString that is used for editing, following the logic recommended for 
implementing stringForObjectValue:  (see below). As an example, you would implement this method if 
you want the dollar signs in displayed strings removed for editing. 

See also:  – attributedStringForObjectValue:withDefaultAttributes:

getObjectValue:forString:errorDescription:
– (BOOL)getObjectValue:(id *)anObject

forString: (NSString *)string
errorDescription: (NSString **)error

The default implementation of this method raises an exception. In your subclass implementation, return by 
reference the object anObject after creating it from the string passed in. Return YES if the conversion from 
string to cell-content object was successful and NO if any error prevented the conversion. If you return NO, 
also return by indirection a localized user-presentable NSString (in error) that explains the reason why the 
conversion failed; the delegate (if any) of the NSControl managing the cell can then respond to the failure 
in control:didFailToFormatString:errorDescription: . However, if error is NULL, the sender is not 
interested in the error description, and you should not attempt to assign one.



4

The following implementation example (which is paired with the stringForObjectValue: example below) 
converts an NSString representation of a dollar amount that includes the dollar sign; it uses an NSScanner 
to convert this amount to a float after stripping out the initial dollar sign. 

- (BOOL)getObjectValue:(id *)obj forString:(NSString *)string errorDescription:(NSString 

**)error

{

float floatResult;

NSScanner *scanner;

BOOL retval = NO;

NSString *err = nil;

scanner = [NSScanner scannerWithString:string];

if ([string hasPrefix:@"$"]) [scanner setScanLocation:1];    

if ([scanner scanFloat:&floatResult] 

&& ([scanner scanLocation] == [string length] )) {

if (obj) {

*obj = [NSNumber numberWithFloat:floatResult];

{

retval = YES;

}

}else {

err = NSLocalizedString(@"Couldn't convert to float");

}

}

if (error) {

*error = err;

}

 return retval;

}

See also: – stringForObjectValue:

isPartialStringValid:newEditingString:errorDescription:
– (BOOL)isPartialStringValid: (NSString *)partialString

newEditingString: (NSString **)newString
errorDescription: (NSString **)error

Since this method is invoked at each key press in the cell, it permits editing or evaluation of cell text as it 
is typed. The text as currently typed (partialString) is passed in. Evaluate this text according to the context, 
edit the text if necessary, and return by reference any edited NSString in newString. Return YES if 
partialString is acceptable and NO if partialString is unacceptable. If you return NO and newString is nil , 
partialString minus the last character typed is displayed. If you return NO, you can also return by 
indirection an NSString (in error) that explains the reason why the validation failed; the delegate (if any) 



5

 Classes: NSFormatter

of the NSControl managing the cell can then respond to the failure in control:
didFailToValidatePartialString:errorDescription: .

stringForObjectValue:
– (NSString *)stringForObjectValue: (id)anObject

The default implementation of this method raises an exception. When subclassing, return the NSString that 
textually represents the cell’s object for display and—if editingStringForObjectValue:  is 
unimplemented—for editing. First test the passed-in object to see if it’s of the correct class. If it isn’t, return 
nil ; but if it is of the right class return a properly formatted and, if necessary, localized string. (See the 
specification of the NSString class for formatting and localizing details.)

The following implementation (which is paired with the getObjectValue: forString: errorDescription: 
example above) prefixes a two-digit float representation with a dollar sign: 

- (NSString *)stringForObjectValue:(id)anObject

{

if (![anObject isKindOfClass:[NSNumber class]]) {

return nil;

}

return [NSString stringWithFormat:@"$%.2f", [anObject floatValue]];

}

See also: – attributedStringForObjectValue:withDefaultAttributes: , – editingStringForObjectValue: , 
– getObjectValue:forString:errorDescription: 



1

 Classes: NSHost

NSHost

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSHost.h

Class Description

An NSHost object holds network name and address information for a host. You use this class to get the 
current host’s name and address and to look up other hosts by name or by address. 

To create an NSHost, use the currentHost, hostWithAddress:, or hostWithName: class methods (don’t 
use alloc and init ). These methods use available network administration services (such as NetInfo or the 
Domain Name Service) to discover all names and addresses for the host requested. They don’t attempt to 
contact the host itself, however. This avoids untimely delays due to a host being unavailable, but it may 
result in incomplete information about the host.

An NSHost instance contains all of the network addresses and names discovered for a given host by the 
network administration services. Each NSHost typically contains one unique address, but it may have more 
than one name. If an NSHost has more than one name, the additional names are variations on the same 
name, typically the basic host name plus the fully qualified domain name. For example, with a host name 
“sales” in the domain “anycorp.com”, an NSHost can hold both the names “sales” and 
“sales.anycorp.com”.

The NSHost class maintains a cache of previously created instances so that requests for an existing NSHost 
return that object instead of creating a new one. Use the setHostCacheEnabled: method to turn the cache 
off, forcing lookup of hosts as they’re requested. You can also use the flushHostCache method to clear the 
cache of its entries so that subsequent requests look up the host information and create new instances.

Method Types

Creating an NSHost
+ currentHost
+ hostWithAddress:
+ hostWithName:



2

Getting host names and addresses
– address
– addresses
– name
– names

Comparing instances
– isEqualToHost:

Controlling the cache
+ setHostCacheEnabled:
+ isHostCacheEnabled
+ flushHostCache

Class Methods

currentHost
+ (NSHost *)currentHost

Returns an NSHost representing the host that the process is running on.

See also: + hostWithAddress:, + hostWithName:

flushHostCache
+ (void)flushHostCache

Releases the cache of existing NSHost instances so that subsequent requests for NSHost objects create new 
instances. NSHost instances that were retained before this method was invoked remain valid. 

See also: + isHostCacheEnabled, + setHostCacheEnabled:

hostWithAddress:
+ (NSHost *)hostWithAddress:(NSString *)address

Returns the NSHost that has the Internet address address. If caching is turned on and the cache already 
contains an NSHost with address, returns that object. Otherwise, this method creates a new instance and 
returns it. address should be an NSString containing an Internet address in decimal notation, such as 
“127.0.0.1”.

See also: + hostWithName:, + setHostCacheEnabled:



3

 Classes: NSHost

hostWithName:
+ (NSHost *)hostWithName:(NSString *)name

Returns the NSHost named name. If caching is turned on and the cache already contains an NSHost with 
name, returns that object. Otherwise, this method creates a new instance and returns it. name can be either 
a simple host name, such as “sales”, or a fully qualified domain name, such as “sales.anycorp.com”.

See also: + hostWithAddress:, + setHostCacheEnabled:

isHostCacheEnabled
+ (BOOL)isHostCacheEnabled

Returns YES if the NSHost class checks the cache before creating new instances, NO if it always creates 
new instances.

See also: + setHostCacheEnabled:, + flushHostCache

setHostCacheEnabled:
+ (void)setHostCacheEnabled:(BOOL)flag

Sets whether the NSHost class caches instances as it creates them to avoid creating duplicate instances. If 
flag is YES, the NSHost class checks the cache before creating new instances. If flag is NO, it always creates 
new instances. Caching is turned on by default.

This method doesn’t flush the cache. If you turn caching off and then back on, new requests for hosts use 
what was in the cache at the time caching was turned off. However, NSHost instances created while caching 
is turned off aren’t entered into the cache.

See also: + isHostCacheEnabled, + flushHostCache

Instance Methods

address
– (NSString *)address

Returns an arbitrary Internet address of the receiver as a decimal NSString—for example, “192.42.172.1”.

See also: – addresses, – name



4

addresses
– (NSArray *)addresses

Returns all of the Internet addresses of the receiver as decimal NSStrings—for example, “192.42.172.1”.

See also: – address, – names

isEqualToHost:
– (BOOL)isEqualToHost:(NSHost *)aHost

Returns YES if the receiver represents the same host as aHost, NO otherwise. Two NSHost objects represent 
the same host if they share at least one address.

See also: – addresses

name
– (NSString *)name

Returns an arbitrary name for the receiver. This name can be a fully qualified domain name such as 
“sales.anycorp.com” or a simple host name such as “sales”.

See also: – address, – names

names
– (NSArray *)names

Returns all of the names for the receiver as NSStrings. Host names can be fully qualified domain names, 
such as “sales.anycorp.com”, or simple host names, such as “sales”.

See also: – addresses, – name



1

 Classes: NSInvocation

NSInvocation 

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: Foundation/NSInvocation.h 

Class Description

An NSInvocation is an Objective-C message rendered static, an action turned into an object. NSInvocation 
objects are used to store and forward messages between objects and between applications, primarily by 
NSTimers and the distributed objects system. An NSInvocation contains all the elements of an Objective-C 
message: a target, a selector, arguments, and the return value. Each of these elements can be set directly, 
and the return value is set automatically when the NSInvocation is dispatched.

An NSInvocation can be repeatedly dispatched to different targets; its arguments can be modified between 
dispatch for varying results; even its selector can be changed to another with the same method signature 
(argument and return types). This makes it useful for repeating messages with many arguments and 
variations; rather than retyping a slightly different expression for each message, you modify the 
NSInvocation as needed each time before dispatching it to a new target.

Creating an NSInvocation requires several steps. Consider this method of the custom class MyCalendar:

– (BOOL)updateAppointmentsForDate:(NSDate *)aDate

updateAppointmentsForDate: takes an NSDate as its only argument, and returns YES or NO depending 
on whether the appointments could be updated without conflicts. The following code fragment sets up an 
NSInvocation for it:

SEL theSelector;

NSMethodSignature *aSignature;

NSInvocation *anInvocation;

theSelector = @selector(updateAppointmentsForDate:);

aSignature = [MyCalendar instanceMethodSignatureForSelector:theSelector]

anInvocation = [NSInvocation invocationWithMethodSignature:aSignature];

[anInvocation setSelector:theSelector];

The first two lines get the NSMethodSignature for the updateAppointmentsForDate: method. The last two 
lines actually create the NSInvocation and set its selector. Note that the selector can be set to any selector 
matching the signature of updateAppointmentsForDate:. Any of these methods can be used with 
anInvocation:



2

– (BOOL)clearAppointmentsForDate:(NSDate *)aDate
– (BOOL)isAvailableOnDate:(NSDate *)aDate
– (BOOL)setMeetingTime:(NSDate *)aDate

Before being dispatched, anInvocation must have its target and arguments set:

MyCalendar *userDatebook;    /* Assume this exists. */

NSDate *todaysDate;          /* Assume this exists. */

[anInvocation setTarget:userDatebook];

[anInvocation setArgument:&todaysDate atIndex:2];

setArgument:atIndex: sets the specified argument to the value supplied. Every method has two hidden 
arguments, the target and selector (whose indices are 0 and 1), so the first argument that needs to be set is 
actually at index 2. In this case, todaysDate will be the NSDate argument to 
updateAppointmentsForDate:.

To dispatch the NSInvocation, send an invoke or invokeWithTarget:  message. invoke only produces a 
result if the NSInvocation has a target set. Once dispatched, the NSInvocation contains the return value of 
the message, which getReturnValue: produces:

BOOL result;

[anInvocation invoke];

[anInvocation getReturnValue:&result];

Saving NSInvocations for Later Use

Because an NSInvocation doesn’t always need to retain its arguments, by default it doesn’t do so. This can 
cause object arguments as well as the target to become invalid if they’re automatically released. If you plan 
to cache an NSInvocation or dispatch it repeatedly during the execution of your application, you should 
send it a retainArguments message. This method retains the target and all object arguments, and copies C 
strings so that they’re not lost because another object frees them.

Using NSInvocations with NSTimers

Suppose the NSInvocation created above is being used in a time-management application that allows 
multiple users to set appointments for others, such as group meetings. This application might allow a user’s 
calendar to be automatically updated every few minutes, so that the user always knows what his schedule 
looks like. Such automatic updating can be accomplished by setting up NSTimer objects with 
NSInvocations.

Given the NSInvocation above, this is as simple as invoking one NSTimer method:

[NSTimer scheduledTimerWithInterval:600

invocation:anInvocation

repeats:YES];



3

 Classes: NSInvocation

This line of code sets up an NSTimer to dispatch anInvocation every 10 minutes (600 seconds). Note that 
an NSTimer always instructs its NSInvocation to retain its arguments; thus, you don’t need to send 
retainArguments yourself. See the NSTimer class specification for more information on timers.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

Method Types

Creating instances
+ invocationWithMethodSignature:

Accessing message elements
– setArgument:atIndex:
– getArgument:atIndex:
– setReturnValue:
– getReturnValue:
– setSelector:
– selector
– setTarget:
– target

Managing arguments
– argumentsRetained
– retainArguments

Dispatching an invocation
– invoke
– invokeWithTarget:

Getting the method signature
– methodSignature



4

Class Methods

invocationWithMethodSignature:
+ (NSInvocation *)invocationWithMethodSignature:(NSMethodSignature *)signature

Returns an NSInvocation object able to construct messages using selectors described by signature. The new 
object must have its selector set with setSelector: and its arguments set with setArgument:atIndex: before 
it can be invoked.

Instance Methods

argumentsRetained
– (BOOL)argumentsRetained

Returns YES if the NSInvocation has retained its arguments, NO otherwise.

See also: – retainArguments

getArgument:atIndex:
– (void)getArgument:(void *)buffer atIndex:(int)index

Copies the argument stored at index into the storage pointed to by buffer. Indices 0 and 1 indicate the hidden 
arguments self and _cmd, respectively; these values can be retrieved directly with the target and selector 
methods. Use indices 2 and greater for the arguments normally passed in a message.

buffer must be large enough to accommodate the argument value. This method raises 
NSInvalidArgumentException if index is greater than the actual number of arguments for the selector.

See also: – setArgument:atIndex:, – numberOfArguments (NSMethodSignature)

getReturnValue:
– (void)getReturnValue:(void *)buffer

Copies the invocation’s return value into the storage pointed to by buffer, which should be large enough to 
accommodate the value. Use NSMethodSignature’s methodReturnLength method to determine the size 
needed for buffer :

unsigned int length = [[myInvocation methodSignature] methodReturnLength];

buffer = (void *)malloc(length);

If the NSInvocation has never been invoked the result of this method is undefined.

See also: – setReturnValue:, – methodReturnType (NSMethodSignature)



5

 Classes: NSInvocation

invoke
– (void)invoke

Uses invokeWithTarget:  to send the NSInvocation’s message with arguments to its target. The 
NSInvocation’s target, selector, and argument values must be set before this method is invoked.

See also: – getReturnValue:, – setSelector:, – setTarget:, – setArgument:atIndex:

invokeWithTarget:
– (void)invokeWithTarget: (id)anObject

Sends the NSInvocation’s message with arguments to anObject and sets the return value. Doesn’t set the 
NSInvocation’s target. The NSInvocation’s selector and argument values must be set before this method is 
invoked.

See also: – getReturnValue:, – invoke, – setSelector:, – setTarget:, – setArgument:atIndex:

methodSignature
– (NSMethodSignature *)methodSignature

Returns the invocation’s method signature.

retainArguments
– (void)retainArguments

If the NSInvocation hasn’t already done so, retains the NSInvocation’s target and all object arguments, and 
copies all C string arguments. Before this method is invoked, argumentsRetained returns NO; after, it 
returns YES.

For efficiency, newly created NSInvocations don’t retain or copy their arguments, nor do they retain their 
targets or copy C strings. You should instruct an NSInvocation to retain its arguments if you intend to cache 
it, since the arguments may otherwise be released before the NSInvocation is invoked. NSTimers always 
instruct their NSInvocations to retain their arguments, for example, since there’s usually a delay before an 
NSTimer fires.



6

selector
– (SEL)selector

Returns the NSInvocation’s selector, or 0 if it hasn’t been set.

See also: – setSelector:

setArgument:atIndex:
– (void)setArgument:(void *)buffer atIndex:(int)index

Copies the contents of buffer as the argument at index. Indices 0 and 1 indicate the hidden arguments self 
and _cmd, respectively; these values should be set directly with the setTarget: and setSelector: methods. 
Use indices 2 and greater for the arguments normally passed in a message. The number of bytes copied is 
determined by the argument size.

This method raises NSInvalidArgumentException if the value of index is greater than the actual number of 
arguments for the selector.

See also: – getArgument:atIndex:, – numberOfArguments (NSMethodSignature)

setReturnValue:
– (void)setReturnValue:(void *)buffer

Copies the contents of buffer as the NSInvocation’s return value. This is normally set when you send an 
invoke or invokeWithTarget:  message.

See also: – getReturnValue:, – methodReturnLength (NSMethodSignature), 
– methodReturnType (NSMethodSignature)

setSelector:
– (void)setSelector:(SEL)selector

Sets the NSInvocation’s selector to selector.

See also: – selector



7

 Classes: NSInvocation

setTarget:
– (void)setTarget:(id)anObject

Sets the NSInvocation’s target to anObject. The target is the receiver of the message sent by invoke.

See also: – target, – invokeWithTarget:

target
– (id)target

Returns the NSInvocation’s target, or nil  if the NSInvocation has no target.

See also: – setTarget:



1

 Classes: NSLock

NSLock 

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h 

Class Description

An NSLock object is used to coordinate the operation of multiple threads of execution within the same 
application. An NSLock object can be used to mediate access to an application’s global data or to protect a 
critical section of code, allowing it to run atomically.

An NSLock object represents a lock that can be acquired by only a single thread at a time. While one thread 
holds the lock, any other thread is prevented from doing so until the owner relinquishes the lock. An 
application can have multiple NSLock objects, each protecting different sections of code. It’s safest to 
create all of the locks before the application becomes multi-threaded, to avoid race conditions. If you want 
to create additional locks after the application becomes multi-threaded, you should create the new lock 
inside a criticial code section that is itself protected by an existing lock.

The basic interface to NSLock is declared by the NSLocking protocol, which declares the lock and unlock 
methods. To this base, NSLock adds the tryLock  and lockBeforeDate: methods. Whereas the lock method 
declared in the protocol doesn’t return until it is successful, the methods declared in this class add more 
flexible means of acquiring a lock.

An NSLock could be used to coordinate the updating of a visual display shared by a number of threads 
involved in a single calculation:

BOOL moreToDo = YES;

NSLock *theLock = [[NSLock alloc] init];

...

while (moreToDo) {

/* Do another increment of calculation */

/* until there’s no more to do. */

if ([theLock tryLock]) {

/* Update display used by all threads. */

[theLock unlock];

}

}



2

The NSLock, NSConditionLock, and NSRecursiveLock classes all adopt the NSLocking protocol and offer 
various additional features and performance characteristics. See the NSConditionLock and 
NSRecursiveLock class descriptions for more information.

Adopted Protocols

NSLocking
– lock
– unlock

Method Types

Acquiring a lock
– lockBeforeDate:
– tryLock

Instance Methods

lockBeforeDate:
– (BOOL)lockBeforeDate:(NSDate *)limit

Attempts to acquire a lock before the date represented by limit. The thread is blocked until the receiver 
acquires the lock or limit is reached. Returns YES if the lock is acquired within this time limit. Returns NO 
if the time limit expires before a lock can be acquired.

tryLock
– (BOOL)tryLock

Attempts to acquire a lock. Returns immediately, with a value of YES if successful and NO otherwise.



1

 Classes: NSMethodSignature

NSMethodSignature 

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSMethodSignature.h 

Class Description

An NSMethodSignature records type information for the arguments and return value of a method. It’s used 
to forward messages that the receiving object doesn’t respond to—most notably in the case of distributed 
objects. An NSMethodSignature is typically created using NSObject’s methodSignatureForSelector: 
instance method. It’s then used to create an NSInvocation, which is passed as the argument to a 
forwardInvocation:  message to send the invocation on to whatever other object can handle the message. 
In the default case, NSObject invokes doesNotRecognizeSelector:, which raises an exception. For 
distributed objects, the NSInvocation is encoded using the information in the NSMethodSignature and sent 
to the real object represented by the receiver of the message.

An NSMethodSignature presents its argument types by index with the getArgumentTypeAtIndex: 
method. The hidden arguments for every method, self and _cmd, are at indices 0 and 1 respectively. The 
arguments normally specified in a message invocation follow these. In addition to the argument types, an 
NSMethodSignature offers the total number of arguments with numberOfArguments, the total stack frame 
length occupied by all arguments with frameLength (this varies with hardware architecture), and the length 
and type of the return value with methodReturnLength and methodReturnType. Finally, applications 
using distributed objects can determine if the method is asynchronous with the isOneway method.

For more information about the nature of a method, including the hidden arguments, see Object-Oriented 
Programming and the Objective-C Language.

Method Types

Querying attributes
– frameLength
– getArgumentTypeAtIndex:
– isOneway
– numberOfArguments
– methodReturnLength
– methodReturnType



2

Instance Methods

getArgumentTypeAtIndex:
– (const char *)getArgumentTypeAtIndex:(unsigned int)index

Returns the type encoding for the argument at index. Indices begin with 0. The hidden arguments self (of 
type id) and _cmd (of type SEL) are at indices 0 and 1; method-specific arguments begin at index 2. Raises 
NSInvalidArgumentException if index is too large for the actual number of arguments.

Argument types are given as C strings with Objective-C type encoding. This encoding is 
implementation-specific, so OpenStep applications should use it with caution.

frameLength
– (unsigned int)frameLength

Returns the number of bytes that the arguments, taken together, occupy on the stack. This number varies 
with the hardware architecture the application runs on.

isOneway
– (BOOL)isOneway

Returns YES if the method is asynchronous when invoked through distributed objects. In this case the 
sender of the remote message doesn’t block awaiting a reply. Returns NO otherwise.

methodReturnLength
– (unsigned int)methodReturnLength

Returns the number of bytes required for the return value.

See also: – methodReturnType

methodReturnType
– (char *)methodReturnType

Returns a C string encoding the return type of the method in Objective-C type encoding. This encoding is 
implementation-specific, so OpenStep applications should use it with caution.

See also: – methodReturnLength



3

 Classes: NSMethodSignature

numberOfArguments
– (unsigned int)numberOfArguments

Returns the number of arguments recorded in the NSMethodSignature. This is at least 2, since an 
NSMethodSignature includes the hidden arguments self and _cmd, which are the first two arguments 
passed to every method implementation.



1

 Classes: NSNotification

c NSNotification

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject) 

Declared In: Foundation/NSNotification.h

Class Description

NSNotification objects encapsulate information so that it can be broadcast to other objects by an 
NSNotificationCenter object.

Notifications and their Rationale

The standard way to pass information between objects is message passing—one object invokes the method 
of another object. However, message passing requires that the object sending the message know who the 
receiver is and what messages it responds to. At times, this tight coupling of two objects is undesirable—
most notably because it would join together two otherwise independent subsystems. For these cases, a 
broadcast model is introduced: An object posts a notification, which is dispatched to the appropriate 
observers through an NSNotificationCenter object, or simply notification center. 

An NSNotification object (referred to as a notification) contains a name, an object, and an optional 
dictionary. The name is a tag identifying the notification. The object is any object that the poster of the 
notification wants to send to observers of that notification (typically, it is the object that posted the 
notification). The dictionary stores other related objects if any. 

Any object may post a notification. Other objects can register themselves as observers to receive 
notifications when they are posted. The object posting the notification, the object included in the 
notification, and the observer of the notification may all be different objects or the same object. Objects that 
post notifications need not know anything about the observers. On the other hand, observers need to know 
at least the notification name and keys to the dictionary if provided.

NSNotification objects are immutable objects.

Notification Centers

The notification center manages the sending and receiving of notifications. When an object wants to receive 
a certain notification, it registers itself with the notification center. When an object has a notification to send, 
it sends it to the notification center. When the notification center receives a notification, it passes that 



2

notification along to all objects registered to receive it. (See the NSNotificationCenter class specification 
for more on posting notifications.)

This notification model frees an object from concern about what objects it should send information to. Any 
object may simply post a notification without knowing what objects—if any—are receiving the notification. 
However, objects receiving notifications do need to know at least the notification name if not the type of 
information the notification contains. The notification center takes care of broadcasting notifications to 
registered observers. Another benefit of this model is to allow multiple objects to listen for notifications, 
which would otherwise be cumbersome.

You can create a notification object with the class methods notificationWithName:object:  or 
notificationWithName:object:userInfo: . However, you don’t usually create your own notifications 
directly. The NSNotificationCenter methods postNotificationName:object: and postNotificationName:
object:userInfo: allow you to conveniently post a notification without creating it first. 

Notification and Delegation

Using the notification system is similar to using delegates, but it has these advantages:

• Any number of objects may receive the notification, not just the delegate object. This precludes returning 
a value.

• An object may receive any message you like from the notification center, not just the predefined delegate 
methods. 

• The object posting the notification does not even have to know the observer exists.

NSCopying Protocol

The NSNotification class adopts the NSCopying protocol, making it possible to treat notifications as 
context-independent values that can be copied and reused. You can store a notification for later use or use 
the Distributed Objects system to send a notification to another process. The NSCopying protocol 
essentially allows clients to deal with notifications as first class values that can be copied by collections. 
You can put notifications in an array and send the copy message to that array, which recursively copies every 
item.

Creating Subclasses

You can subclass NSNotification to contain information in addition to the notification name, object, and 
dictionary. This extra data must be agreed upon between notifiers and observers.

NSNotification is actually a class cluster. As such, it provides no storage for the name, object, and userInfo 
values. To subclass NSNotification, you must override the primitive methods name, object, and userInfo. 
Use the init  method as the designated initializer. 



3

 Classes: NSNotification

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

Method Types

Creating a notification
+ notificationWithName:object:
+ notificationWithName:object:userInfo:

Obtaining information about a notification
– name
– object
– userInfo

Class Methods

notificationWithName:object:
+ (id)notificationWithName: (NSString *)aName

object:(id)anObject

Returns a notification object that associates the name aName with the object anObject. 

This method copies aName and retains anObject.

See also: – postNotificationName:object: (NSNotificationCenter)

notificationWithName:object:userInfo:
+ (id)notificationWithName: (NSString *)aName 

object:(id)anObject
userInfo:(NSDictionary *)userInfo

Returns a notification object that associates the name aName with the object anObject and the dictionary of 
arbitrary data, userInfo. The dictionary userInfo may be nil .



4

This method copies aName and retains both anObject and userInfo.

See also: + notificationWithName:object:, – postNotificationName:object:userInfo:
 (NSNotificationCenter)

Instance Methods

name
– (NSString *)name

Returns the name of the notification. Examples of this might be “PortIsInvalid” or “PhoneRinging.” 
Typically, you invoke this method on the notification object passed to your notification-handler method. 
(You specify a notification-handler method when you register to receive the notification.) 

Notification names can be any string. To avoid name collisions, however, you might want to use a prefix 
that’s specific to your application.

object
– (id)object

Returns the object associated with this notification. This is often the object that posted this notification. It 
may be nil .

Typically, you invoke this method on the notification object passed in to your notification-handler method. 
(You specify a notification-handler method when you register to receive the notification.)

For example, suppose you’ve registered an object to receive the message handlePortDeath: when the 
“PortInvalid” notification is posted to the notification center and that handlePortDeath: needs to access the 
object monitoring the port that is now invalid. handlePortDeath: can retrieve that object as shown here:

- (void)handlePortDeath:(NSNotification *)notification

{

...

[self reclaimResourcesForPort:[notification object]];  

...

}

userInfo
– (NSDictionary *)userInfo

Returns the NSDictionary associated with this notification or nil  if there is no such object. The 
NSDictionary stores any additional objects that objects receiving this notification might use. For example 



5

 Classes: NSNotification

in the Application Kit, NSControl objects post the NSControlTextDidChangeNotification whenever the 
field editor (an NSText object) changes text inside the NSControl. This notification provides both the 
NSControl object and the field editor to objects registered to receive it. The field editor is returned when 
you access the dictionary, as shown here:

- (void)controlTextDidBeginEditing:(NSNotification *)notification

{

NSText *fieldEditor = [[notification userInfo] 

objectForKey:@"NSFieldEditor"];/* the field editor */

NSControl *postingObject = [notification object]; 

/* The object that posted the notification. */

...

}



1

 Classes: NSNotificationCenter

NSNotificationCenter

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSNotification.h

Class at a GlanceClass at a Glance

Purpose
NSNotificationCenter provides a way for objects that don’t know about each other to communicate. It receives 
NSNotification objects and broadcasts them to all interested objects.

Principal Attributes
A table of objects that want to receive notifications, the notifications they want to receive, and about which 
objects.

Creation
Each task has a default notification center. You typically don’t create your own.

Commonly Used Methods

Class Description

An NSNotificationCenter object (or simply, notification center) is essentially a notification dispatch table. 
It notifies all observers of notifications meeting specific criteria. This information is encapsulated in 

+ defaultCenter Accesses the default notification center.

– addObserver:selector:name:object: Registers an object to receive a notification.

– postNotificationName:object: Creates and posts a notification.

– removeObserver: Specifies that an object no longer wants to receive notifications.



2

NSNotification objects, also known as notifications. Client objects register themselves as observers of 
specific notifications posted by other objects. When an event occurs, an object posts an appropriate 
notification to the notification center. (See the NSNotification class specification for more on notifications.) 
The notification center dispatches a message to each registered observer, passing the notification as the sole 
argument. It is possible for the posting object and the observing object to be the same. 

Each task has a default notification center that you access with the defaultCenter class method. 

Registering to Receive Notifications

An object registers itself to receive a notification by sending the addObserver:selector:name:object: 
method, specifying the message the notification should send, the name of the notification it wants to receive, 
and about which object. However, the observer need not specify both the name and the object. If it specifies 
only the object, it will receive all notifications containing that object. If the object specifies only a 
notification name, it will receive that notification every time it’s posted, regardless of the object associated 
with it.

It is possible for an observer to register to receive more than one message for the same notification. In such 
a case, the observer will receive all messages it is registered to receive for the notification, but the order in 
which it receives them cannot be determined.

Creating and Posting Notifications

Normally, you create an instance of NSNotification and post it using postNotification:. The methods 
postNotificationName:object: and postNotificationName:object:userInfo: are convenient ways to post 
notifications without having to create an NSNotification first. 

Example

As an example of using the notification center, suppose your program can perform a number of conversions 
on text (for instance, RTF to ASCII). You have defined a class of objects that perform those conversions, 
Converter. Converter objects might be added or removed during program execution. Your program has a 
client object that wants to be notified when converters are added or removed, allowing the application to 
reflect the available services in a pop-up list. The client object would register itself as an observer by 
sending the following messages to the notification center:

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(objectAddedToConverterList:)

name:@"ConverterAdded" object:nil];

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(objectRemovedFromConverterList:)

name:@"ConverterRemoved" object:nil];



3

 Classes: NSNotificationCenter

When a user installs or removes a Converter, the Converter sends one of the following messages to the 
notification center:

[[NSNotificationCenter defaultCenter]

postNotificationName:@"ConverterAdded" object:self];

or

[[NSNotificationCenter defaultCenter]

postNotificationName:@"ConverterRemoved" object:self];

The notification center identifies all observers who are interested in the “ConverterAdded” or 
“ConverterRemoved” notifications by invoking the method they specified in the selector argument of 
addObserver:selector:name:object:. In the case of our example observer, the selectors are 
objectAddedToConverterList: and objectRemovedFromConverterList:. Assume the Converter class has 
an instance method converterName that returns the name of the Converter object. Then the 
objectAddedToConverterList: method might have the following implementation:

- (void)objectAddedToConverterList:(NSNotification *)notification

{

Converter *addedConverter = [notification object];

// Add this to our popup (it will only be added if not there)...

[myPopUpButton addItem:[addedConverter converterName]];

}

The Converters don’t need to know anything about the pop-up list or any other aspect of the user interface 
to your program.

If there are other objects of interest to the observer, place them in the notification’s optional dictionary or 
use postNotificationName:object:userInfo:.

Method Types

Accessing the default center
+ defaultCenter

Adding and removing observers
– addObserver:selector:name:object:
– removeObserver:
– removeObserver:name:object:

Posting notifications
– postNotification:
– postNotificationName:object:
– postNotificationName:object:userInfo:



4

Class Methods

defaultCenter
+ (NSNotificationCenter *)defaultCenter

Returns the current task’s notification center, which is used for system notifications.

Instance Methods

addObserver:selector:name:object:
– (void)addObserver:(id)anObserver

selector:(SEL)aSelector
name:(NSString *)notificationName
object:(id)anObject

Registers anObserver to receive notifications with the name notificationName and/or containing anObject. 
When a notification of name notificationName containing the object anObject is posted, anObserver 
receives an aSelector message with this notification as the argument. The method for the selector specified 
in aSelector must have one and only one argument. If notificationName is nil , the notification center notifies 
the observer of all notifications with an object matching anObject. If anObject is nil , the notification center 
notifies the observer of all notifications with the name notificationName. 

The notification center does not retain anObserver or anObject. Therefore, you should always send 
removeObserver: or removeObserver:name:object: to the notification center before releasing these 
objects.

postNotification:
– (void)postNotification:(NSNotification *)notification

Posts notification to the notification center. You can create notification with the NSNotification class method 
notificationWithName:object:  or notificationWithName:object:userInfo: . An exception is raised if 
notification is nil .

See also: – postNotificationName:object:, – postNotificationName:object:userInfo:

postNotificationName:object:
– (void)postNotificationName:(NSString *)notificationName 

object:(id)anObject

Creates a notification with the name notificationName, associates it with the object anObject, and posts it to 
the notification center. anObject is typically the object that is posting the notification. It may be nil .



5

 Classes: NSNotificationCenter

This method invokes postNotificationName:object:userInfo: with a userInfo: argument of nil .

See also: – postNotification:

postNotificationName:object:userInfo:
– (void)postNotificationName:(NSString *)notificationName 

object:(id)anObject
userInfo:(NSDictionary *)userInfo

Creates a notification with the name notificationName, associates it with the object anObject and dictionary 
userInfo, and posts it to the notification center. This method is the preferred method for posting notifications. 
anObject is typically the object that is posting the notification. It may be nil . userInfo also may be nil .

See also: – postNotificationName:object:

removeObserver:
– (void)removeObserver:(id)anObserver

Removes anObserver from all notification associations in the notification center. Be sure to invoke this 
method (or removeObserver:name:object:) before releasing anObserver or any object specified in 
addObserver:selector:name:object:. 

removeObserver:name:object:
– (void)removeObserver:(id)anObserver 

name:(NSString *)notificationName
object:(id)anObject

Removes anObserver as the observer of notifications with the name notificationName and object anObject 
from the notification center. Be sure to invoke this method (or removeObserver:) before deallocating the 
observer object or any object specified in addObserver:selector:name:object:. 

If anObserver is nil , all objects are removed as observers of notificationName containing anObject. (Recall 
that the object that a notification contains is usually the object that posted the notification.) If 
notificationName is nil , anObserver is removed as an observer of all notifications containing anObject. If 
anObject is nil , anObserver is removed as an observer of notificationName containing any object. For 
example, if you wanted all objects to stop observing notifications containing the object aWindow, you 
would sent this message:

[[NSNotificationCenter defaultCenter] removeObserver:nil name:nil object:aWindow];



1

 Classes: NSNotificationQueue

NSNotificationQueue 

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSNotificationQueue.h

Class Description

NSNotificationQueue objects (or simply, notification queues) act as buffers for notification centers 
(instances of NSNotificationCenter). A notification queue maintains notifications (instances of 
NSNotification) generally in a First In First Out (FIFO) order. When a notification rises to the front of the 
queue, the queue posts it to the notification center, which in turn dispatches the notification to all objects 
registered as observers. 

Every thread has a default notification queue, which is associated with the default notification center for the 
task. You can create your own notification queues and have multiple queues per center and thread. 

Coalescing Notifications

NSNotificationQueue contributes two important features to the Foundation Kit’s notification mechanism: 
the coalescing of notifications and asynchronous posting. Coalescing is a process that removes notifications 
in the queue that are similar to the notification just queued. If the new item is similar to a notification already 
queued, the new one isn’t queued, and all similar notifications (except the first one in the queue) are 
removed. However, you should not depend on this particular coalescing behavior.

You indicate the criteria for similarity by specifying NSNotificationCoalescing constants in the third 
argument of enqueueNotification:postingStyle:coalesceMask:forModes: 

• NSNotificationNoCoalescing. Do not coalesce notifications in the queue.

• NSNotificationCoalescingOnName. Coalesce notifications with the same name.

• NSNotificationCoalescingOnSender. Coalesce notifications with the same object.

You can OR the constants together to specify more than one.

Asynchronously Posting Notifications

With NSNotificationCenter’s postNotification: and its variants, you can post a notification immediately to 
a notification center. However, the invocation of the method is synchronous: Before the posting object can 
resume its thread of execution, it must wait until the notification center dispatches the notification to all 



2

observers and returns. With NSNotificationQueue’s enqueueNotification:postingStyle: and 
enqueueNotification:postingStyle:coalesceMask:forModes:, however, you can post a notification 
asynchronously by putting it on the queue. These methods immediately return to the invoking object after 
putting the notification in the queue.

Posting to a notification queue can occur in one of three different styles. The posting style is an argument 
to both enqueueNotification:... methods:

• NSPostASAP. The notification is posted at the end of the current notification callout or timer.

• NSPostWhenIdle. The notification is posted when the run loop is idle.

• NSPostNow. The notification is posted immediately after coalescing.

Note: See “Enqueuing with Different Posting Styles,” below, for details on and examples of enqueuing 
notifications with the three postingStyle: constants.

What is the difference between enqueuing notifications with NSPostNow and posting notifications (using 
NSNotificationCenter’s postNotification... methods)? Both post notifications immediately (but 
synchronously) to the notification center. The difference is that enqueueNotification:... (with NSPostNow 
as the posting style) coalesces notifications in the queue before posting while postNotification: does not.

enqueueNotification:postingStyle:coalesceMask:forModes: also allows you to control the posting of a 
notification based on the run loop mode. For example, if you specify NSModalPanelRunLoopMode, the 
notification will not be posted unless the current run loop is in NSModalPanelRunLoopMode. See the 
NSRunLoop class specification for more information on run loop modes.

Enqueuing with Different Posting Styles

Any notification queued with the NSPostASAP style is posted to the notification center when the code 
executing in the current run loop callout completes. Callouts can be Application Kit event messages, file 
descriptor changes, timers, or other asynchronous notifications. You typically use the NSPostASAP posting 
style for an expensive resource, such as the Display PostScript server. When many clients draw on the 
window buffer during a callout, it’s expensive to flush the buffer to the Display PostScript server after every 
draw operation. So in this case, each draw... method enqueues some notification such as “FlushTheServer” 
with coalescing on name and object specified, and a posting style of NSPostASAP. As a result, only one of 
those notifications is dispatched at the end of the current callout, and the window buffer is flushed only once.

A notification queued with the NSPostWhenIdle style is posted only when the run loop is in a wait state. In 
this state, there’s nothing in the run loop’s input channels, be it timers or other asynchronous notifications. 
A typical example of queuing with the NSPostWhenIdle style occurs when the user types text, and the 
program displays the size of the text in bytes somewhere. It would be very expensive (and not very useful) 
to update the text field size after each character the user types, especially if the user types quickly. In this 
case, the program queues a notification, such as “ChangeTheDisplayedSize,” with coalescing turned on and 
a posting style of NSPostWhenIdle after each character typed. When the user stops typing, the single 
“ChangeTheDisplayedSize” notification in the queue (due to coalescing) is posted when the run loop is in 



3

 Classes: NSNotificationQueue

a wait state, and the display is updated. Note that a run loop that is about to exit (which occurs when all of 
the input channels have expired) is not in a wait state and thus will not post a notification. 

A notification queued with NSPostNow is posted immediately after coalescing to the notification center. 
You queue a notification with NSPostNow (or post one with NSNotificationCenter’s postNotification:) 
when you do not require asynchronous calling behavior. For many programming situations, synchronous 
behavior is not only allowable but desirable: You want the notification center to return after dispatching so 
you can be sure that observing objects have received the notification. Of course, you should use 
enqueueNotification... with NSPostNow rather than use postNotification: when there are similar 
notifications in the queue that you want to remove through coalescing.

Method Types

Creating and Initializing Notification Queues
+ defaultQueue
– init
– initWithNotificationCenter:

Inserting and Removing Notifications From a Queue
– dequeueNotificationsMatching:coalesceMask:
– enqueueNotification:postingStyle:
– enqueueNotification:postingStyle:coalesceMask:forModes:

Class Methods

defaultQueue
+ (NSNotificationQueue *)defaultQueue

Returns the default NSNotificationQueue object for the current thread. This object always uses the default 
notification center object for the same task.

Instance Methods

dequeueNotificationsMatching:coalesceMask:
– (void)dequeueNotificationsMatching:(NSNotification *)notification

coalesceMask:(unsigned int)coalesceMask

Removes all notifications from the queue that match notification’s attributes as specified by coalesceMask. 
The mask (set using NSNotificationCoalescing constants) can specify notification name, notification 
object, or both.



4

enqueueNotification:postingStyle:
– (void)enqueueNotification:(NSNotification *)notification

postingStyle:(NSPostingStyle)postingStyle

Puts notification in the queue. The queue posts notification to the notification center at the time indicated by 
postingStyle. The notification queue posts in all run loop modes, and it coalesces only notifications in the 
queue that match both the notification’s name and object.

This method invokes enqueueNotification:postingStyle:coalesceMask:forModes:.

enqueueNotification:postingStyle:coalesceMask:forModes:
– (void)enqueueNotification:(NSNotification *)notification

postingStyle:(NSPostingStyle)postingStyle
coalesceMask:(unsigned int)coalesceMask
forModes:(NSArray *)modes

Puts notification in the queue. The queue posts notification to the notification center at the time indicated by 
postingStyle, but only if the run loop is in a mode identified by one of the string objects in the modes array. 
The notification queue coalesces related notifications in the queue as specified by coalesceMask (set using 
NSNotificationCoalescing constants). If modes is nil , all run loop modes are valid for posting.

init
– (id)init

Initializes and returns an NSNotificationQueue that uses the default notification center to post notifications. 
This method invokes initWithNotificationCenter:  with the default notification center as the argument.

initWithNotificationCenter:
– (id)initWithNotificationCenter: (NSNotificationCenter *)notificationCenter

Initializes and returns an NSNotificationQueue that uses the notification center specified in 
notificationCenter to post notifications. This method is the designated initializer.



1

 Classes: NSNumber

NSNumber

Inherits From: NSValue : NSObject

Conforms To: NSCoding (NSValue)
NSCopying (NSValue)
NSObject (NSObject)

Declared In: Foundation/NSValue.h
Foundation/NSDecimalNumber.h

Class at a GlanceClass at a Glance

Purpose
An NSNumber object serves as an object wrapper for C numeric data items, allowing them to be stored in 
collections such as NSArray and NSDictionary objects.

Creation

Commonly Used Methods

Class Description

NSNumber is a subclass of NSValue that offers a value as any C scalar (numeric) type. It defines a set of 
methods specifically for setting and accessing the value as a signed or unsigned char, short int , int , long 

+ numberWithType: Returns an initialized NSNumber of the specified type.

– typeValue Returns the value of an NSNumber as a specific numeric type.

– compare: Compares two NSNumbers.



2

int , long long int, float, or double, or as a BOOL. It also defines a compare: method to determine the 
ordering of two NSNumber objects.

An NSNumber records the numeric type it’s created with, and uses the C rules for numeric conversion when 
comparing NSNumbers of different numeric types and when returning values as C numeric types. See any 
standard C reference for information on type conversion.

Creating a Subclass of NSNumber

As with any class cluster, if you create a subclass of NSNumber, you have to override the primitive methods 
of its superclass, NSValue. Furthermore, there is a restricted set of return values that your implementation 
of the NSValue method objCType can return, in order to take advantage of the abstract implementations of 
the non-primitive methods.  The valid return values are “c”, “C”, “s”, “S”, “i”, “I”, “l”, “L”, “q”, “Q”, “f”, 
and “d”.



3

 Classes: NSNumber

Method Types

Creating an NSNumber
+ numberWithBool:
+ numberWithChar:
+ numberWithDouble:
+ numberWithFloat:
+ numberWithInt:
+ numberWithLong:
+ numberWithLongLong:
+ numberWithShort:
+ numberWithUnsignedChar:
+ numberWithUnsignedInt:
+ numberWithUnsignedLong:
+ numberWithUnsignedLongLong:
+ numberWithUnsignedShort:
– initWithBool:
– initWithChar:
– initWithDouble:
– initWithFloat:
– initWithInt:
– initWithLong:
– initWithLongLong:
– initWithShort:
– initWithUnsignedChar:
– initWithUnsignedInt:
– initWithUnsignedLong:
– initWithUnsignedLongLong:
– initWithUnsignedShort:



4

Accessing numeric values
– boolValue
– charValue
– decimalValue
– descriptionWithLocale:
– description
– doubleValue
– floatValue
– intValue
– longLongValue
– longValue
– shortValue
– stringValue
– unsignedCharValue
– unsignedIntValue
– unsignedLongLongValue
– unsignedLongValue
– unsignedShortValue

Comparing NSNumbers
– compare:
– isEqualToNumber:

Class Methods

numberWithBool:
+ (NSNumber *)numberWithBool: (BOOL)value

Creates and returns an NSNumber containing value, treating it as a BOOL.

numberWithChar:
+ (NSNumber *)numberWithChar: (char)value

Creates and returns an NSNumber containing value, treating it as a signed char.

numberWithDouble:
+ (NSNumber *)numberWithDouble: (double)value

Creates and returns an NSNumber containing value, treating it as a double.



5

 Classes: NSNumber

numberWithFloat:
+ (NSNumber *)numberWithFloat: (float)value

Creates and returns an NSNumber containing value, treating it as a float.

numberWithInt:
+ (NSNumber *)numberWithInt: (int)value

Creates and returns an NSNumber containing value, treating it as a signed int .

numberWithLong:
+ (NSNumber *)numberWithLong: (long int)value

Creates and returns an NSNumber containing value, treating it as a signed long int.

numberWithLongLong:
+ (NSNumber *)numberWithLongLong: (long long int)value

Creates and returns an NSNumber containing value, treating it as a signed long long int.

numberWithShort:
+ (NSNumber *)numberWithShort: (short int)value

Creates and returns an NSNumber containing value, treating it as a signed short int.

numberWithUnsignedChar:
+ (NSNumber *)numberWithUnsignedChar:(unsigned char)value

Creates and returns an NSNumber containing value, treating it as an unsigned char.

numberWithUnsignedInt:
+ (NSNumber *)numberWithUnsignedInt: (unsigned int)value

Creates and returns an NSNumber containing value, treating it as an unsigned int.



6

numberWithUnsignedLong:
+ (NSNumber *)numberWithUnsignedLong:(unsigned long int)value

Creates and returns an NSNumber containing value, treating it as an unsigned long int.

numberWithUnsignedLongLong:
+ (NSNumber *)numberWithUnsignedLongLong:(unsigned long long int)value

Creates and returns an NSNumber containing value, treating it as an unsigned long long int.

numberWithUnsignedShort:
+ (NSNumber *)numberWithUnsignedShort:(unsigned short int)value 

Creates and returns an NSNumber containing value, treating it as an unsigned short int.

Instance Methods

boolValue
– (BOOL)boolValue

Returns the receiver’s value as a BOOL, converting it as necessary.

Note: The value returned by this method isn’t guaranteed to be one of YES or NO. A zero value always 
means NO or false, but any nonzero value should be interpreted as YES or true.

charValue
– (char)charValue

Returns the receiver’s value as a char, converting it as necessary.

compare:
– (NSComparisonResult)compare:(NSNumber *)aNumber

Returns NSOrderedAscending if aNumber’s value is greater than the receiver’s, NSOrderedSame if 
they’re equal, and NSOrderedDescending if aNumber’s value is less than the receiver’s.



7

 Classes: NSNumber

compare: follows the standard C rules for type conversion. For example, if you compare an 
NSNumber that has an integer value with an NSNumber that has a floating point value, the integer 
value is converted to a floating point value for comparison.

decimalValue
– (NSDecimal)decimalValue

Returns the receiver’s value, expressed as an NSDecimal struct. The value returned isn’t guaranteed to 
be exact for float and double values.

description
– (NSString *)description

Overrides the NSObject description method to invoke descriptionWithLocale:. In other words, instead 
printing the name of the receiver’s class and the hexadecimal value of its id like the NSObject 
implementation, returns a string representation of the receiver’s value.

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)aLocale

Returns an NSString that represents the contents of the receiver. For example, if you have an NSNumber 
that has the integer value 522, sending it the descriptionWithLocale: message returns the string “522”. 
aLocale specifies options used for formatting the description; use nil  if you don’t want the description 
formatted.



8

To obtain the string representation, this method invokes NSString’s initWithFormat:locale:  method, 
supplying the format based on the type the NSNumber was created with: 

See also: – stringValue

doubleValue
– (double)doubleValue

Returns the receiver’s value as a double, converting it as necessary.

floatValue
– (float)floatValue

Returns the receiver’s value as a float, converting it as necessary.

Data Type Format Specification

char %i

double %0.16g

float %0.7g

int %i

long %li

long long %li

short %hi

unsigned char %u

unsigned int %u

unsigned long %lu

unsigned long long %lu

unsigned short %hu



9

 Classes: NSNumber

initWithBool:
– (id)initWithBool: (BOOL)value

Initializes a newly allocated NSNumber to contain value, treated as a BOOL.

initWithChar:
– (id)initWithChar: (char)value

Initializes a newly allocated NSNumber to contain value, treated as a signed char.

initWithDouble:
– (id)initWithDouble: (double)value

Initializes a newly allocated NSNumber to contain value, treated as a double.

initWithFloat:
– (id)initWithFloat: (float)value

Initializes a newly allocated NSNumber to contain value, treated as a float.

initWithInt:
– (id)initWithInt: (int)value

Initializes a newly allocated NSNumber to contain value, treated as a signed int .

initWithLong:
– (id)initWithLong: (long int)value

Initializes a newly allocated NSNumber to contain value, treated as a signed long int.

initWithLongLong:
– (id)initWithLongLong: (long long int)value

Initializes a newly allocated NSNumber to contain value, treated as a signed long long int.



10

initWithShort:
– (id)initWithShort: (short int)value

Initializes a newly allocated NSNumber to contain value, treated as a signed short int.

initWithUnsignedChar:
– (id)initWithUnsignedChar: (unsigned char)value

Initializes a newly allocated NSNumber to contain value, treated as an unsigned char.

initWithUnsignedInt:
– (id)initWithUnsignedInt: (unsigned int)value

Initializes a newly allocated NSNumber to contain value, treated as an unsigned int.

initWithUnsignedLong:
– (id)initWithUnsignedLong: (unsigned long int)value

Initializes a newly allocated NSNumber to contain value, treated as an unsigned long int.

initWithUnsignedLongLong:
– (id)initWithUnsignedLongLong: (unsigned long long int)value

Initializes a newly allocated NSNumber to contain value, treated as an unsigned long long int.

initWithUnsignedShort:
– (id)initWithUnsignedShort: (unsigned short int)value

Initializes a newly allocated NSNumber to contain value, treated as an unsigned short int.

intValue
– (int)intValue

Returns the receiver’s value as an int, converting it as necessary.



11

 Classes: NSNumber

isEqualToNumber:
– (BOOL)isEqualToNumber:(NSNumber *)aNumber

Returns YES if the receiver and aNumber are equal, otherwise returns NO. Two NSNumbers are considered 
equal if they have the same ids or if they have equivalent values (as determined by the compare: method).

longLongValue
– (long long int)longLongValue

Returns the receiver’s value as a long long int, converting it as necessary.

longValue
– (long int)longValue

Returns the receiver’s value as a long int, converting it as necessary.

shortValue
– (short int)shortValue

Returns the receiver’s value as a short int, converting it as necessary.

stringValue
– (NSString *)stringValue

Returns the receiver’s value as a human-readable NSString, by invoking descriptionWithLocale: where 
locale is nil.

unsignedCharValue
– (unsigned char)unsignedCharValue

Returns the receiver’s value as an unsigned char, converting it as necessary.

unsignedIntValue
– (unsigned int)unsignedIntValue

Returns the receiver’s value as an unsigned int, converting it as necessary.



12

unsignedLongLongValue
– (unsigned long long int)unsignedLongLongValue

Returns the receiver’s value as an unsigned long long int, converting it as necessary.

unsignedLongValue
– (unsigned long int)unsignedLongValue

Returns the receiver’s value as an unsigned long int, converting it as necessary.

unsignedShortValue
– (unsigned short int)unsignedShortValue

Returns the receiver’s value as an unsigned short int, converting it as necessary.



1

 Classes: NSNumberFormatter

NSNumberFormatter

Inherits From: NSFormatter : NSObject

Conforms To: NSObject (NSObject)
NSCoding
NSCopying

Declared In: Foundation/NSNumberFormatter.h

Class Description 

Instances of NSNumberFormatter format the textual representation of cells that contain 
NSDecimalNumbers and convert textual representations of numeric values into NSDecimalNumbers. The 
representation encompasses integers, floats, and doubles; floats and doubles can be formatted to a specified 
decimal position. NSNumberFormatters can also impose ranges on the numeric values that cells can accept. 

NSControl provides delegation methods that permit you to validate cell contents and to handle errors in 
formatting. See the specification of the NSFormatter class for details.

When a cell with a NSNumberFormatter is copied, the new cell retains the NSNumberFormatter object 
instead of copying it. You remove an NSNumberFormatter from a cell by specifying nil  as the argument of 
NSCell’s setFormatter: method.

Instances of NSNumberFormatter are mutable.

Creating an Instance of NSNumberFormatter

The easiest way to use NSNumberFormatter is to drag a formatter from the palette onto a control in 
Interface Builder. However, if you’re not using Interface Builder to create your user interface or if you 
simply want more fine-grained control over an NSNumberFormatter (for example, to change the text 
attributes of the values displayed), you can create and manipulate instances of the class programmatically.

To create an NSNumberFormatter, allocate an instance of NSNumberFormatter and use one or more of 
NSNumberFormatter’s “set format” methods to set its format. You then use NSCell’s setFormatter: 
method to associate the NSNumberFormatter instance with a cell.

For example, the following code excerpt creates an instance of NSNumberFormatter, sets its formatting for 
positive, zero, and negative values, and applies it to the cell of an NSTextField using NSCell’s 
setFormatter: method:



2

NSNumberFormatter *numberFormatter = 

[[[NSNumberFormatter alloc] init] autorelease];

[numberFormatter setFormat:@"$#,###.00;0.00;($#,##0.00)"];

[[textField cell] setFormatter:numberFormatter];

The value of a cell (NSCell) is represented by an object, which in this case would typically be an 
NSDecimalNumber object. When this value needs to be displayed or edited, the cell passes its object to the 
NSNumberFormatter instance, which returns the formatted string. When the user enters a string, or when a 
string is programmatically written in a cell (using setStringValue:), the cell obtains the equivalent 
NSDecimalNumber object from the NSNumberFormatter.

Using the setFormat: Method

The most common technique for assigning a format to an NSNumberFormatter object is to use the method 
setFormat:, as shown in the preceding section. This method takes as an argument an NSString whose 
contents can be one of the following:

• @“positiveFormat”

For example, @”$###,##0.00” (the syntax of format strings is discussed in the following section).

• @“positiveFormat;negativeFormat”

For example, @”###,##0.00;(###,##0.00)”.

• @“positiveFormat;zeroFormat;negativeFormat”

For example, @”$###,###.00;0.00;($###,##0.00)”. Note that zero formats are treated as string 
constants.

As implied in the above list, you’re only required to specify a format for positive values. If you don’t specify 
a format for negative and zero values, a default format based on the positive value format is used. For 
example, if your positive value format is “#,##0.00”, an input value of “0” will be displayed as “0.00”. 

If you don’t specify a format for negative values, the format specified for positive values is used, preceded 
by a minus sign (-). 

If you specify a separate format for negative values, its separators should be parallel to those specified in 
the positive format string. In NSNumberFormatter, separators are either enabled or disabled for all 
formats—both your negative and positive formats should therefore use the same approach.

As an alternative to using the setFormat: method, you can use the setPositiveFormat: and 
setNegativeFormat: methods.



3

 Classes: NSNumberFormatter

Format String Syntax

Format strings can include the following types of characters:

• Numbers

Format strings can include numeric characters. Wherever you include a number in a format string, 
the number is displayed unless an input character in the same relative position overwrites it. For 
example, suppose you have the positive format string @“9,990.00”, and the value 53.88 is entered 
into a cell to which the format has been applied. The cell would display the value as 9,953.88.

• Separators

Format strings can include the period character (.) as a decimal separator, and comma character (,) 
as a thousand separator. If you want to use different characters as separators, you can set them using 
the setDecimalSeparator: and setThousandSeparator: methods. When you enable localization for 
an NSNumberFormatter object by using the method setLocalizesFormat:, separators are converted 
to characters appropriate to the environment in which the application is running.

• Placeholders

You use the pound sign character (#) to represent numeric characters that will be input by the user. 
For example, suppose you have the positive format @”$#,##0.00”. If the characters 76329 were 
entered into a cell to which the format has been applied, they would be displayed as $76,329.00. 
Strictly speaking, however, you don’t need to use placeholders. The format strings @”,0.00”, 
@”#,#0.00, and @”#,##0.00” are functionally equivalent. In other words, including separator 
characters in a format string signals NSNumberFormatter to use the separators, regardless of whether 
you use (or where you put) placeholders. The placeholder character’s chief virtue lies in its ability 
to make format strings more human-readable, which is especially useful if you’re displaying formats 
in the user interface.

• Spaces

To include a space in a format string, use the underscore character (_). This character inserts a space 
if no numeric character has been input to occupy that position.

• Currency

The dollar sign character ($) is normally treated just like any other character that doesn’t play a 
special role in NSNumberFormatter. However, when you enable localization for an 
NSNumberFormatter object by using the method setLocalizesFormat:, the dollar sign character is 
converted to the currency symbol appropriate for the environment in which the application is 
running.



4

All other characters specified in a format string are displayed as typed. The following table shows examples 
of the how the value 1019.55 is displayed for different positive formats:

Working with Values as Attributed Strings

In NSNumberFormatter, positive, negative, zero, nil , and “not a number” values are NSAttributedStrings. 
NSAttributedString objects manage character strings and associated sets of attributes (for example, font and 
kerning) that apply to individual characters or ranges of characters in the string. An association of characters 
and their attributes is called an attributed string. For more information on NSAttributedString, see the 
NSAttributedString class cluster specification in the Foundation Kit Reference, and the NSAttributedString 
Class Cluster Additions specification in the Application Kit Reference.

Because the values displayed by NSNumberFormatter are attributed strings, you can customize aspects of 
their appearance, such as their color and font. The NSNumberFormatter methods you use to do this are as 
follows:

– textAttributesForPositiveValues
– setTextAttributesForPositiveValues:
– textAttributesForNegativeValues
– setTextAttributesForNegativeValues:
– attributedStringForZero
– setAttributedStringForZero:
– allowsFloats
– setAttributedStringForNil:
– attributedStringForNotANumber
– setAttributedStringForNotANumber:

Using Separators

NSNumberFormatter supports two different kinds of separators: thousand and decimal. By default these 
separators are represented by the comma (,) and period (.) characters respectively, and by default they’re 
disabled. 

All of the following statements have the effect of enabling thousand separators:

Format String Display

@“#,##0.00” 1,019.55

@“$#,##0.00” $1,019.55

@“___,__0.00”  1,019.55



5

 Classes: NSNumberFormatter

// use setFormat:

[numberFormatter setFormat:@"#,###"];

// use setHasThousandSeparators:

[numberFormatter setHasThousandSeparators:YES];

// use setThousandSeparator:

[numberFormatter setThousandSeparator:@"_"];

If you use the statement [numberFormatter setHasThousandSeparators:NO] , it disables 
thousand separators, even if you’ve set them through another means.

Both of the following statements have the effect of enabling decimal separators:

// use setFormat:

[numberFormatter setFormat:@"0.00"];

// use setDecimalSeparator:

[numberFormatter setDecimalSeparator:@"-"];

When you enable or disable separators, it affects both positive and negative formats. Consequently, both 
formats must use the same separator scheme.

You can use the thousandSeparator and decimalSeparator methods to return an NSString containing the 
character the receiver uses to represent each separator. However, this shouldn’t be taken as an indication of 
whether separators are enabled—even when separators are disabled, an NSNumberFormatter still knows 
the characters it uses to represent separators.

Separators must be single characters. If you specify multiple characters in the arguments to 
setThousandSeparator: and setDecimalSeparator:, only the first character is used.

You can’t use the same character to represent thousand and decimal separators.

NSCell Methods for Number Formatting

NSCell provides methods that give you almost the same behavior as instances of NSNumberFormatter. 
Send setEntryType: to a cell to associate it with an NSNumberFormatter object; specify the numeric 
format with one of the constants listed below. The constant is equivalent to an NSNumberFormatter 
initialized with a certain range and a conversion specifier:

Constant Range Specifier

NSIntType MININT, MAXINT %d

NSPositiveIntType 1, MAXINT  %d

NSFloatType -MAXFLOAT, MAXFLOAT  %g



6

Send NSCell’s isEntryAcceptable: to a cell to determine if it can accept a numeric type as indicated by 
one of the above constants. Send NSCell’s setFloatingPointFormat:left:right:  to specify the number of 
digits that appear to the left and right of the decimal point. By invoking this method you do not lose any 
range of values for floats or values set either through setEntryType: or by initializing an 
NSNumberFormatter directly.

Note: The NSNumberFormatter approach is recommended over the NSCell methods because it allows you 
greater freedom in specifying the representation of numbers. However, NSCell’s setEntryType:, 
isEntryAcceptable:, and setFloatingPointFormat:left:right:  are OpenStep-compliant, whereas 
NSNumberFormatter is an extension to OpenStep. 

Method Types

Set formats
– negativeFormat
– setNegativeFormat:
– positiveFormat
– setPositiveFormat:
– format
– setFormat:

Set characteristics for displaying values
– textAttributesForNegativeValues
– setTextAttributesForNegativeValues:
– textAttributesForPositiveValues
– setTextAttributesForPositiveValues:
– attributedStringForZero
– setAttributedStringForZero:
– attributedStringForNil
– setAttributedStringForNil:
– attributedStringForNotANumber
– setAttributedStringForNotANumber:

NSPositiveFloatType MINFLOAT, MAXFLOAT  %g

NSDoubleType -MAXDOUBLE, MAXDOUBLE %g

NSPositiveDoubleType MINDOUBLE, MAXDOUBLE  %g

Constant Range Specifier



7

 Classes: NSNumberFormatter

Set separators
– hasThousandSeparators
– setHasThousandSeparators:
– thousandSeparator
– setThousandSeparator:
– decimalSeparator
– setDecimalSeparator:

Enable localization
– localizesFormat
– setLocalizesFormat:

Set float behavior
– allowsFloats
– setAllowsFloats:

Set rounding behavior
– roundingBehavior
– setRoundingBehavior:

Set minimum and maximum values
– minimum
– setMinimum:
– maximum
– setMaximum:

Instance Methods

allowsFloats
– (BOOL)allowsFloats

Returns YES if the receiver allows as input floating point values (that is, values that include the period 
character (.)), NO otherwise. When this is set to NO, only integer values can be provided as input. The 
default is YES.

See also: – setAllowsFloats:

attributedStringForNil
– (NSAttributedString *)attributedStringForNil

Returns the NSAttributedString used to display nil  values. By default nil  values are displayed as an empty 
string.

See also: – allowsFloats



8

attributedStringForNotANumber
– (NSAttributedString *)attributedStringForNotANumber

Returns the NSAttributedString used to display “not a number” values. By default “not a number” values 
are displayed as the string “NaN”.

See also: – attributedStringForNotANumber

attributedStringForZero
– (NSAttributedString *)attributedStringForZero

Returns the NSAttributedString used to display zero values. By default zero values are displayed according 
to the format specified for positive values; for more discussion of this subject see the section “Creating an 
Instance of NSNumberFormatter” in the Class Description.

See also: – setAttributedStringForZero:

decimalSeparator
– (NSString *)decimalSeparator

Returns an NSString containing the character the receiver uses to represent decimal separators. By default 
this is the period character (.). Note that the return value doesn’t indicate whether decimal separators are 
enabled.

See also: – setDecimalSeparator:

format
– (NSString *)format

Returns an NSString containing the format being used by the receiver.

See also: – setFormat:

hasThousandSeparators
– (BOOL)hasThousandSeparators

Returns YES to indicate that the receiver’s format includes thousand separators, NO otherwise. The default 
is NO.

See also: – setHasThousandSeparators:



9

 Classes: NSNumberFormatter

localizesFormat
– (BOOL)localizesFormat

Returns YES to indicate that the receiver localizes formats, NO otherwise. The default is NO.

See also: – setLocalizesFormat:

maximum
– (NSDecimalNumber *)maximum

Returns the highest number that is allowed as input by the receiver.

See also: – setMaximum:

minimum
– (NSDecimalNumber *)minimum

Returns the lowest number that is allowed as input by the receiver.

See also: – setMinimum:

negativeFormat
– (NSString *)negativeFormat

Returns an NSString containing the format used by the receiver to display negative numbers.

See also: – setNegativeFormat:, – setFormat:

positiveFormat
– (NSString *)positiveFormat

Returns an NSString containing the format used by the receiver to display positive numbers.

See also: – setPositiveFormat:, – setFormat:



10

roundingBehavior
– (NSDecimalNumberHandler *)roundingBehavior

Returns an NSDecimalNumberHandler object to indicate the rounding behavior used by the receiver.

See also: – setRoundingBehavior:

setAllowsFloats:
– (void)setAllowsFloats:(BOOL)flag

Sets according to flag whether the receiver allows as input floating point values (that is, values that include 
the period character (.)). By default, floating point values are allowed as input.

See also: – allowsFloats

setAttributedStringForNil:
– (void)setAttributedStringForNil: (NSAttributedString *)newAttributedString

Sets to newAttributedString the NSAttributedString the receiver uses to display nil  values.

See also: – allowsFloats

setAttributedStringForNotANumber:
– (void)setAttributedStringForNotANumber: (NSAttributedString *)newAttributedString

Sets to newAttributedString the NSAttributedString the receiver uses to display “not a number” values.

See also: – attributedStringForNotANumber

setAttributedStringForZero:
– (void)setAttributedStringForZero: (NSAttributedString *)newAttributedString

Sets to newAttributedString the NSAttributedString the receiver uses to display zero values.

See also: – attributedStringForZero



11

 Classes: NSNumberFormatter

setDecimalSeparator:
– (void)setDecimalSeparator:(NSString *)newSeparator

Sets to newSeparator the character the receiver uses as a decimal separator. If newSeparator contains 
multiple characters, only the first one is used. If you don’t have decimal separators enabled through another 
means (such as setFormat:), using this method enables them.

See also: – decimalSeparator

setFormat:
– (void)setFormat:(NSString *)aFormat

Sets the receiver’s format to the string aFormat. aFormat can consist of one, two, or three parts separated 
by ‘;’. The first part of the string represents the positive format, the second part of the string represents the 
zero value, and the last part of the string represents the negative format. If the string just has two parts, the 
first one becomes the positive format, and the second one becomes the negative format. If the string just has 
one part, it becomes the positive format, and default formats are provided for zero and negative values based 
on the positive format. For more discussion of this subject, see the section “Creating an Instance of 
NSNumberFormatter” in the Class Description.

The following code excerpt shows the three different approaches for setting an NSNumberFormatter 
object’s format using setFormat::

NSNumberFormatter *numberFormatter = 

[[[NSNumberFormatter alloc] init] autorelease];

// specify just positive format

[numberFormatter setFormat:@"$#,##0.00"];

// specify positive and negative formats

[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];

// specify positive, zero, and negative formats

[numberFormatter setFormat:@"$#,###.00;0.00;($#,##0.00)"];

See also: – format

setHasThousandSeparators:
– (void)setHasThousandSeparators:(BOOL)flag

Sets according to flag whether the receiver uses thousand separators. When flag is NO, thousand separators 
are disabled for both positive and negative formats (even if you’ve set them through another means, such 
as setFormat:). When flag is YES, thousand separators are used. In addition to using this method to add 
thousand separators to your format, you can also use it to disable thousand separators if you’ve set them 



12

using another method. The default is NO (though you in effect change this setting to YES when you set 
thousand separators through any means, such as setFormat:).

See also: – hasThousandSeparators

setLocalizesFormat:
– (void)setLocalizesFormat:(BOOL)flag

Sets according to flag whether the dollar sign character ($), decimal separator character (.), and thousand 
separator character (,) are converted to appropriately localized characters as specified by the user’s 
localization preference. While this feature may be useful in certain types of applications, it’s probably more 
likely that you would tie a particular application to a particular currency (that is, that you would “hard-code” 
the currency symbol and separators instead of having them dynamically change based on the user’s 
configuration). The reason for this, of course, is that NSNumberFormatter doesn’t perform currency 
conversions, it just formats numeric data. You wouldn’t want one user interpreting the value “56324” as US 
currency and another user who’s accessing the same data interpreting it as Japanese currency, simply based 
on each user’s localization preferences.

See also: – localizesFormat

setMaximum:
– (void)setMaximum:(NSDecimalNumber *)aMaximum

Sets to aMaximum the highest number the receiver allows as input.

See also: – maximum

setMinimum:
– (void)setMinimum: (NSDecimalNumber *)aMinimum

Sets to aMinimum the lowest number the receiver allows as input.

See also: – setMinimum:

setNegativeFormat:
– (void)setNegativeFormat:(NSString *)aFormat

Sets to aFormat the format the receiver uses to display negative values.

See also: – negativeFormat, – setFormat:



13

 Classes: NSNumberFormatter

setPositiveFormat:
– (void)setPositiveFormat:(NSString *)aFormat

Sets to aFormat the format the receiver uses to display positive values.

See also: – positiveFormat, – setFormat:

setRoundingBehavior:
– (void)setRoundingBehavior:(NSDecimalNumberHandler *)newRoundingBehavior

Sets to newRoundingBehavior the rounding behavior used by the receiver.

See also: – roundingBehavior

setTextAttributesForNegativeValues:
– (void)setTextAttributesForNegativeValues:(NSDictionary *)newAttributes

Sets to newAttributes the text attributes to be used in displaying negative values. For example, this code 
excerpt causes negative values to be displayed in red:

NSNumberFormatter *numberFormatter = 

[[[NSNumberFormatter alloc] init] autorelease];

NSMutableDictionary *newAttrs = [NSMutableDictionary dictionary];

[numberFormatter setFormat:@"$#,##0.00;($#,##0.00)"];

[newAttrs setObject:[NSColor redColor] forKey:@"NSColor"];

[numberFormatter setTextAttributesForNegativeValues:newAttrs];

[[textField cell] setFormatter:numberFormatter];

An even simpler way to cause negative values to be displayed in red is to include the constant [Red]  in 
your format string, for example:

[numberFormatter setFormat:@"$#,##0.00;[Red]($#,##0.00)"];

Note: When you set a value’s text attributes to use color, the color only appears when the value’s cell 
doesn’t have input focus. When the cell has input focus, the value is displayed in standard black.

See also: – textAttributesForNegativeValues



14

setTextAttributesForPositiveValues:
– (void)setTextAttributesForPositiveValues:(NSDictionary *)newAttributes

Sets to newAttributes the text attributes to be used in displaying positive values.

See also: – textAttributesForPositiveValues

setThousandSeparator:
– (void)setThousandSeparator:(NSString *)newSeparator

Sets to newSeparator the character the receiver uses as a thousand separator. If newSeparator contains 
multiple characters, only the first one is used. If you don’t have thousand separators enabled through any 
other means (such as setFormat:), using this method enables them.

See also: – thousandSeparator

textAttributesForNegativeValues
– (NSDictionary *)textAttributesForNegativeValues

Returns an NSDictionary containing the text attributes that have been set for negative values.

See also: – setTextAttributesForNegativeValues:

textAttributesForPositiveValues
– (NSDictionary *)textAttributesForPositiveValues

Returns an NSDictionary containing the text attributes that have been set for positive values.

See also: – setTextAttributesForPositiveValues:

thousandSeparator
– (NSString *)thousandSeparator

Returns an NSString containing the character the receiver uses to represent thousand separators. By default 
this is the comma character (,). Note that the return value doesn’t indicate whether thousand separators are 
enabled.

See also: – setThousandSeparator:



1

 Classes: NSObject

NSObject

Inherits From: none (NSObject is a root class)

Conforms To: NSObject

Declared In: Foundation/NSObject.h

Class at a GlanceClass at a Glance

Purpose
NSObject is the root class of most Objective-C class hierarchies. Through NSObject, objects inherit a basic 
interface to the run-time system and the ability to behave as Objective-C objects.

Principal Attributes
• isa pointer

Creation
+ alloc
+ allocWithZone:
– init (designated initializer)

Class Description

NSObject is the root class of most Objective-C class hierarchies; it has no superclass. From NSObject, other 
classes inherit a basic interface to the run-time system for the Objective-C language, and its instances obtain 
their ability to behave as objects.

NSObject adopts the NSObject protocol. The NSObject protocol allows for multiple root objects. For 
example, NSProxy is another root class—it does not inherit from NSObject but adopts the NSObject 
protocol so that it shares a common interface with other Objective-C objects. Some of the methods 
discussed below are declared by NSObject protocol, not this class.

Among other things, the NSObject class provides inheriting classes with a framework for creating, 
initializing, deallocating, copying, comparing, archiving and distributing objects, for performing methods 
selected at run-time, for querying an object about its methods and its position in the inheritance hierarchy, 



2

and for forwarding messages to other objects. For example, to ask an object what class it belongs to, you’d 
send it a class message. To find out whether it implements a particular method, you’d send it a 
respondsToSelector: message.

The NSObject class is mostly an abstract class; programs use instances of classes that inherit from 
NSObject, but rarely instances of NSObject itself.

Initializing an Object to Its Class

Every object that inherits directly or indirectly from NSObject is connected to the run-time system through 
its isa instance variable. isa identifies the object’s class; it references a structure that’s compiled from the 
class definition. Through isa, an object can find whatever information it needs at run-time—such as its place 
in the inheritance hierarchy, the size and structure of its instance variables, and the location of the method 
implementations it can perform in response to messages.

The installation of the class structure—the initialization of isa—is one of the responsibilities of class 
methods that create (allocate memory for) new instances: alloc, allocWithZone: and new. In other words, 
a small part of instance initialization is taken care of by these creation methods; it’s not left to the methods, 
such as init , that initialize individual objects with their particular characteristics.

Instance and Class Methods

The run-time system treats methods defined in the root class in a special way:

Instance methods defined in a root class can be performed both by instances and by class objects. 

Therefore, all class objects have access to the instance methods defined in the root class. Any class object 
can perform any root instance method, provided it doesn’t have a class method with the same name.

For example, a class object could be sent messages to perform NSObject’s respondsToSelector: and 
performSelector:withObject:  instance methods:

SEL method = @selector(riskAll:);

if ( [MyClass respondsToSelector:method] )

[MyClass performSelector:method withObject:self];

Note that the only instance methods available to a class object are those defined in its root class. In the 
example above, if MyClass had reimplemented either respondsToSelector: or performSelector:
withObject: , those new versions would be available only to instances. The class object for MyClass could 
perform only the versions defined in the NSObject class. (Of course, if MyClass had implemented 
respondsToSelector: or performSelector:withObject:  as class methods rather than instance methods, the 
class would perform those new versions.)



3

 Classes: NSObject

Interface Conventions

The NSObject class defines a number of methods that subclasses are expected to override. Often, 
NSObject’s default implementation simply returns self. Putting these “empty” methods in the NSObject 
class serves two purposes:

• It means that every object can readily respond to certain standard messages, such as init , even if the 
response is to do nothing. It’s not necessary to check (using respondsToSelector:) before sending the 
message.

• It establishes conventions that, when followed by all classes, make object interactions more reliable. 
These conventions are explained in full under the method descriptions.

Adopted Protocols

NSObject
– autorelease
– class
– conformsToProtocol:
– description
– hash
– isEqual:
– isKindOfClass:
– isMemberOfClass:
– isProxy
– performSelector:
– performSelector:withObject:
– performSelector:withObject:withObject:
– release
– respondsToSelector:
– retain
– retainCount
– self
– superclass
– zone

Method Types

Initializing the class
+ initialize
+ load



4

Creating, copying, and deallocating objects
+ new
+ alloc
+ allocWithZone:
– init
– copy
+ copyWithZone:
– mutableCopy
+ mutableCopyWithZone:
– dealloc

Identifying classes
+ class
+ superclass

Comparing objects
– isEqual:
– hash

Testing class functionality
+ instancesRespondToSelector:

Testing protocol conformance
+ conformsToProtocol:

Obtaining method information
– methodForSelector:
+ instanceMethodForSelector:
+ instanceMethodSignatureForSelector:
– methodSignatureForSelector:

Describing objects
+ description
– description

Posing
+ poseAsClass:

Sending messages
– performSelector:withObject:afterDelay:
– performSelector:withObject:afterDelay:inModes:
+ cancelPreviousPerformRequestsWithTarget:

selector:object:

Forwarding messages
– forwardInvocation:

Error handling
– doesNotRecognizeSelector:



5

 Classes: NSObject

Archiving
– awakeAfterUsingCoder:
– classForArchiver
– classForCoder
– classForPortCoder
– replacementObjectForArchiver:
– replacementObjectForCoder:
– replacementObjectForPortCoder:
+ setVersion:
+ version

Class Methods

alloc
+ (id)alloc

Returns a new instance of the receiving class. The isa instance variable of the new instance is initialized to 
a data structure that describes the class; memory for all other instance variables is set to 0. The new instance 
will be allocated from the default zone—use allocWithZone: to specify a particular zone.

An init...  method should be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass alloc] init];

Subclasses shouldn’t override alloc to include initialization code. Instead, class-specific versions of init...  
methods should be implemented for that purpose. Class methods can also be implemented to combine 
allocation and initialization, similar to the new class method.

Note that it’s your responsibility to release objects (with either release or autorelease) returned by alloc... 
methods.

See also: – init

allocWithZone:
+ (id)allocWithZone: (NSZone *)zone

Returns a new instance of the receiving class where memory for the new instance is allocated from zone. 
The isa instance variable of the new instance is initialized to a data structure that describes the class; 
memory for its other instance variables is set to 0. If zone is NULL, the new instance will be allocated from 
the default zone (as returned by NSDefaultMallocZone()).

An init...  method should be used to complete the initialization process. For example:

TheClass *newObject = [[TheClass allocWithZone:someZone] init];



6

Subclasses shouldn’t override allocWithZone: to include any initialization code. Instead, class-specific 
versions of init...  methods should be implemented for that purpose.

When one object creates another, it’s often a good idea to make sure they’re both allocated from the same 
region of memory. The zone method (declared in the NSObject protocol) can be used for this purpose; it 
returns the zone where the receiver is located. For example:

id myCompanion = [[TheClass allocWithZone:[self zone]] init];

Note that it's your responsibility to release objects (with either release or autorelease) returned by alloc... 
methods.

See also: + alloc, – init

cancelPreviousPerformRequestsWithTarget:selector:object:
+ (void)cancelPreviousPerformRequestsWithTarget:(id)aTarget

selector:(SEL)aSelector
object:(id)anArgument

Cancels perform requests previously registered with the performSelector:withObject:afterDelay:  
instance method. All perform requests having the same target aTarget, and argument anArgument, 
(determined using isEqual:), and the same selector aSelector, will be canceled. This method removes 
perform requests only in the current run loop, not all run loops.

class
+ (Class)class

Returns the class object.

Only refer to a class by name when it is the receiver of a message. In all other cases, the class object must 
be obtained through this, or a similar method. For example, here SomeClass is passed as an argument to the 
isKindOfClass: method (declared in the NSObject protocol):

BOOL test = [self isKindOfClass:[SomeClass class]];

See also: – class (NSObject protocol)

conformsToProtocol:
+ (BOOL)conformsToProtocol:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol, NO otherwise.



7

 Classes: NSObject

A class is said to “conform to” a protocol if it adopts the protocol or inherits from another class that adopts 
it. Protocols are adopted by listing them within angle brackets after the interface declaration. For example, 
here MyClass adopts the fictitious AffiliationRequests and Normalization protocols:

@interface MyClass : NSObject <AffiliationRequests, Normalization>

A class also conforms to any protocols that are incorporated in the protocols it adopts or inherits. Protocols 
incorporate other protocols in the same way that classes adopt them. For example, here the 
AffiliationRequests protocol incorporates the Joining protocol:

@protocol AffiliationRequests <Joining>

If a class adopts a protocol that incorporates another protocol, it must also implement all the methods in the 
incorporated protocol or inherit those methods from a class that adopts it. 

This method determines conformance solely on the basis of the formal declarations in header files, as 
illustrated above. It doesn’t check to see whether the methods declared in the protocol are actually 
implemented—that’s the programmer’s responsibility.

The Protocol required as this method’s argument can be specified using the @protocol() directive:

BOOL canJoin = [MyClass conformsToProtocol:@protocol(Joining)];

See also: – conformsToProtocol:

copyWithZone:
+ (id)copyWithZone:(NSZone *)zone

Returns self. This method exists so that class objects can be used in situations where you need an object that 
conforms to the NSCopying protocol. For example, this method lets you use a class object as a key to an 
NSDictionary. You should not override this method.

See also: – copy

description
+ (NSString *)description

Returns an NSString that represents the contents of the receiving class. The debugger’s print-object  
command invokes this method to produce a textual description of an object.

NSObject’s implementation of this method simply prints the name of the class.

See also: – description



8

initialize
+ (void)initialize

Initializes the class before it’s used (before it receives its first message). The run-time system sends an 
initialize  message to each class just before the class, or any class that inherits from it, is sent its first message 
from within the program. Each class receives the initialize  message just once from the run-time system. 
Superclasses will receive this message before subclasses.

For example, if the first message your program sends is this:

[NSApplication new]

the run-time system invokes these three initialize  messages:

[NSObject initialize];

[NSResponder initialize];

[NSApplication initialize];

because NSApplication is a subclass of NSResponder and NSResponder is a subclass of NSObject. All the 
initialize  messages precede the new message.

If your program later begins to use the NSText class,

[NSText instancesRespondToSelector:someSelector]

the run-time system invokes these additional initialize  messages:

[NSView initialize];

[NSText initialize];

because NSText inherits from NSObject, NSResponder, and NSView. The instancesRespondToSelector: 
message is sent only after all these classes are initialized. Note that the initialize  messages to NSObject and 
NSResponder aren’t repeated.

You can implement your own versions of initialize  to provide class-specific initialization as needed. 

Normally the run-time system sends a class just one initialize  message. However, if for some reason an 
application or the run-time system generates additional initialize  messages, it is a good idea to prevent code 
from being invoked more than once:

+ (void)initialize

{

static BOOL tooLate = NO;

if ( !tooLate ) {

/* put initialization code here */

tooLate = YES;

}

}

See also: – init , – class (NSObject protocol)



9

 Classes: NSObject

instanceMethodForSelector:
+ (IMP)instanceMethodForSelector:(SEL)aSelector

Locates and returns the address of the implementation for the aSelector instance method. An error is 
generated if instances of the receiver can’t respond to aSelector messages.

Use this method to ask the class object for the implementation of instance methods only. To ask the class 
for the implementation of a class methods, send the methodForSelector: instance method to the class 
instead.

instanceMethodForSelector:, and the function pointer it returns, are subject to the same constraints as 
those described for methodForSelector:. See methodForSelector: for description of the IMP return value.

instanceMethodSignatureForSelector:
+ (NSMethodSignature *)instanceMethodSignatureForSelector:(SEL)aSelector

Returns an NSMethodSignature object that contains a description of the aSelector class method, or nil  if 
the aSelector class method can’t be found.

See also: – methodSignatureForSelector:

instancesRespondToSelector:
+ (BOOL)instancesRespondToSelector:(SEL)aSelector

Returns YES if instances of the class are capable of responding to aSelector messages, NO otherwise. To 
ask the class whether it, rather than its instances, can respond to a particular message, send the 
respondsToSelector: NSObject protocol instance method to the class instead.

If  aSelector messages are forwarded to other objects, instances of the class will be able to receive those 
messages without error even though this method returns NO.

See also: – forwardInvocation:

load
+(void)load

This method is invoked whenever a class or category is added to the Objective-C runtime; implement this 
method to perform class-specific behavior upon loading. The load message is sent to classes and categories 
that are both dynamically loaded and statically linked, but only if the newly-loaded class or category 
implements a method that can respond. As an example, when Interface Builder loads a palette, the load 
message is sent to each class and category in the palette.



10

load is usually invoked before initialize . It is usually the very first method sent to the class, although this 
isn't guaranteed. The order in which classes are loaded is also not guaranteed, to the point that superclasses 
aren’t even guaranteed to be loaded before all of their subclasses. Because you can’t rely on other classes 
being loaded at the point when your class is sent a load message, you should be extremely careful when 
sending messages to other classes from within your load method.

Due to the amount of uncertainty about the environment at the point that load is invoked, you should avoid 
using load whenever possible. All class-specific initialization should be done in the class’s initialize  
method.

See also: + load (NSProxy)

mutableCopyWithZone:
+ (id)mutableCopyWithZone:(NSZone *)zone

Returns self. This method exists so that class objects can be used in situations where you need an object that 
conforms to the NSMutableCopying protocol. For example, this method lets you use a class object as a key 
to an NSDictionary. You should not override this method.

new
+ (id)new

Allocates a new instance of the receiving class, sends it an init  message, and returns the initialized object.

This method is a combination of alloc and init . Like alloc, it initializes the isa instance variable of the new 
object so that it points to the class data structure. It then invokes the init  method to complete the 
initialization process.

Unlike alloc, new is sometimes reimplemented in subclasses to have it invoke a class-specific initialization 
method. If the init...  method includes arguments, they’re typically reflected in a new... method as well. For 
example:

+ newArg:(int)tag arg:(struct info *)data

{

return [[self alloc] initArg:tag arg:data];

}

However, there’s little point in implementing a new... method if it’s simply a shorthand for alloc and init..., 
as shown above. Often new... methods will do more than just allocation and initialization. In some classes, 
they manage a set of instances, returning the one with the requested properties if it already exists, allocating 
and initializing a new instance only if necessary. For example:



11

 Classes: NSObject

+ newArg:(int)tag arg:(struct info *)data

{

MyClass *theInstance;

if ( theInstance = findTheObjectWithTheTag(tag) )

return theInstance;

return [[self alloc] initArg:tag arg:data];

}

Although it’s appropriate to define new new... methods in this way, the alloc and allocWithZone: methods 
should never be augmented to include initialization code.

poseAsClass:
+ (void)poseAsClass:(Class)aClass

Causes the receiving class to “pose as” its aClass superclass. The receiver takes the place of aClass in the 
inheritance hierarchy; all messages sent to aClass will actually be delivered to the receiver. The receiver 
must be defined as a subclass of aClass. It can’t declare any new instance variables of its own, but it can 
define new methods and override methods defined in aClass. The poseAsClass: message should be sent 
before any messages are sent to aClass and before any instances of aClass are created.

This facility allows you to add methods to an existing class by defining them in a subclass and having the 
subclass substitute for the existing class. The new method definitions will be inherited by all subclasses of 
the superclass. Care should be taken to ensure that this doesn’t generate errors.

A subclass that poses as its superclass still inherits from the superclass. Therefore, none of the functionality 
of the superclass is lost in the substitution. Posing doesn’t alter the definition of either class.

Posing is useful as a debugging tool, but category definitions are a less complicated and more efficient way 
of augmenting existing classes. Posing admits only two possibilities that are absent from categories:

• A method defined by a posing class can override any method defined by its superclass. Methods defined 
in categories can replace methods defined in the class proper, but they cannot reliably replace methods 
defined in other categories. If two categories define the same method, one of the definitions will prevail, 
but there’s no guarantee which one.

• A method defined by a posing class can, through a message to super, incorporate the superclass method 
it overrides. A method defined in a category can replace a method defined elsewhere by the class, but it 
can’t incorporate the method it replaces.



12

setVersion:
+ (void)setVersion:(int)aVersion

Sets the class version number to aVersion. The version number is helpful when instances of the class are to 
be archived and reused later. The default version is 0.

See also: + version

superclass
+ (Class)superclass

Returns the class object for the receiver’s superclass.

See also: + class, – superclass (NSObject protocol)

version
+ (int)version

Returns the version number assigned to the class. If no version has been set, the default is 0. 

Version numbers are needed for decoding or unarchiving, so that older versions of an object can be detected 
and decoded correctly. 

Caution should be taken when obtaining the version from within NSCoding protocol or other methods. Use 
the class name explicitly when getting a class version number:

version = [MyClass version];

Don’t simply send version to the return value of class—a subclass version number may be returned instead.

See also: + setVersion:, – versionForClassName: (NSCoder)

Instance Methods

awakeAfterUsingCoder:
– (id)awakeAfterUsingCoder:(NSCoder *)aDecoder

Overridden by subclasses to substitute another object in place of the object that was decoded and 
subsequently received this message. This method can be used to eliminate redundant objects created by the 
coder. For example, if after decoding an object you discover that an equivalent object already exists, you 
can return the existing object. If a replacement is returned, your overriding method is responsible for 
releasing the receiver. To prevent the accidental use of the receiver after its replacement has been returned, 
you should invoke the receiver’s release method to release the object immediately. 



13

 Classes: NSObject

This method is invoked by NSCoder. NSObject’s implementation simply returns self. 

See also: – classForCoder, – replacementObjectForCoder:, – initWithCoder: (NSCoding protocol)

classForArchiver
– (Class)classForArchiver

Overridden by subclasses to substitute a class other than its own during archiving. For example, the private 
subclasses of a class cluster substitute the name of their public superclass when being archived. This method 
allows specialized behavior for archiving—override classForCoder to add general coding behavior. This 
method is invoked by NSArchiver. NSObject’s implementation returns the object returned by 
classForCoder.

See also: – replacementObjectForArchiver:

classForCoder
– (Class)classForCoder

Overridden by subclasses to substitute a class other than its own during coding. For example, the private 
subclasses of a class cluster substitute the name of their public superclass when being archived. This method 
is invoked by NSCoder. NSObject’s implementation returns the receiver’s class.

See also:  – awakeAfterUsingCoder:, – replacementObjectForCoder:

classForPortCoder
– (Class)classForPortCoder

Overridden by subclasses to substitute a class other than its own for distribution encoding. This method 
allows specialized behavior for distributed objects—override classForCoder to add general coding 
behavior. This method is invoked by NSPortCoder. NSObject’s implementation returns the class returned 
by classForCoder.

See also: – replacementObjectForPortCoder:

copy
– (id)copy

Convenience method for classes that adopt the NSCopying protocol. This method returns the object 
returned by the NSCopying protocol method copyWithZone: where the zone is NULL. An exception is 
raised if there is no implementation for copyWithZone:.



14

NSObject does not itself support the NSCopying protocol. Subclasses must support the protocol and 
implement the copyWithZone: method. A subclass version of the copyWithZone: method should pass the 
message to super unless the subclass descends directly from NSObject, in which case the method must not 
invoke super’s method.

dealloc
– (void)dealloc

Deallocates the memory occupied by the receiver. Subsequent messages to the object will generate an error 
indicating that a message was sent to a deallocated object (provided that the deallocated memory hasn’t 
been reused yet).

You never send a dealloc message directly. Instead, an object’s dealloc method is invoked indirectly 
through the release NSObject protocol method. See the introduction to the Foundation Kit for more details 
on the use of these methods.

Subclasses must implement their own versions of dealloc to allow the deallocation of any additional 
memory consumed by the object—such as dynamically allocated storage for data, or object instance 
variables that are owned by the deallocated object. After performing the class-specific deallocation, the 
subclass method should incorporate superclass versions of dealloc through a message to super:

- (void)dealloc {

[companion release];

NSZoneFree(private, [self zone])

[super dealloc];

}

See also: – autorelease (NSObject protocol), – release (NSObject protocol)

description
@protocol NSObject
– (NSString *)description

Returns a NSString that represents the contents of the receiver. The debugger’s print-object  command 
indirectly invokes this method to produce a textual description of an object. NSObject’s implementation of 
this method simply prints the name of the receiver’s class and the hexadecimal value of its id.

See also: + description



15

 Classes: NSObject

doesNotRecognizeSelector:
– (void)doesNotRecognizeSelector:(SEL)aSelector

Handles aSelector messages that the receiver doesn’t recognize. The run-time system invokes this method 
whenever an object receives an aSelector message that it can’t respond to or forward. This method, in turn, 
raises an NSInvalidArgumentException, and generates an error message.

doesNotRecognizeSelector: messages are generally sent only by the run-time system. However, they can 
be used in program code to prevent a method from being inherited. For example, an NSObject subclass 
might renounce the copy or init  method by reimplementing it to include a doesNotRecognizeSelector: 
message as follows:

- copy

{

[self doesNotRecognizeSelector:_cmd];

}

The _cmd variable identifies the current selector; in this example, it identifies the selector for the copy 
method. This code prevents instances of the subclass from responding to copy messages or superclasses 
from forwarding copy messages—although respondsToSelector: will still report that the receiver has 
access to a copy method.

See also: – forwardInvocation:

forwardInvocation:
– (void)forwardInvocation: (NSInvocation *)anInvocation

Overridden by subclasses to forward messages to other objects. When an object is sent a message for which 
it has no corresponding method, the run-time system gives the receiver an opportunity to delegate the 
message to another receiver. It does this by creating an NSInvocation object representing the message and 
sending the receiver a forwardInvocation:  message containing this NSInvocation as the argument. The 
receiver’s forwardInvocation:  method can then choose to forward the message to another object. (If that 
object can’t respond to the message either, it too will be given a chance to forward it.)

The forwardInvocation:  message thus allows an object to establish relationships with other objects that 
will, for certain messages, act on its behalf. The forwarding object is, in a sense, able to “inherit” some of 
the characteristics of the object it forwards the message to.

An implementation of the forwardInvocation:  method has two tasks:

• To locate an object that can respond to the message encoded in anInvocation. This need not be the same 
object for all messages.

• To send the message to that object using anInvocation. anInvocation will hold the result, and the run-time 
system will extract and deliver this result to the original sender.



16

In the simple case, in which an object forwards messages to just one destination (such as the hypothetical 
friend  instance variable in the example below), a forwardInvocation:  method could be as simple as this:

- (void)forwardInvocation:(NSInvocation *)invocation

{

if ([friend respondsToSelector:[invocation selector]])

[invocation invokeWithTarget:friend];

else

[self doesNotRecognizeSelector:aSelector];

}

The message that’s forwarded must have a fixed number of arguments; variable numbers of arguments (in 
the style of printf()) are not supported.

The return value of the message that’s forwarded is returned to the original sender. All types of return values 
can be delivered to the sender: ids, structures, double-precision floating point numbers. 

Implementations of the forwardInvocation:  method can do more than just forward messages. 
forwardInvocation:  can, for example, be used to consolidate code that responds to a variety of different 
messages, thus avoiding the necessity of having to write a separate method for each selector. A 
forwardInvocation:  method might also involve several other objects in the response to a given message, 
rather than forward it to just one.

To respond to methods that your object does not itself recognize, you must override 
methodSignatureFromSelector: in addition to forwardInvocation: . The mechanism for forwarding 
messages uses information obtained from methodSignatureFromSelector: to create the NSInvocation 
object to be forwarded. Your overriding method must provide an appropriate method signature for the given 
selector, either by preformulating one or by asking another object for one.

NSObject’s implementation of forwardInvocation:  simply invokes the doesNotRecognizeSelector: 
method; it doesn’t forward any messages. Thus, if you choose not to implement forwardInvocation: , 
unrecognized messages will raise an exception. 

hash
@protocol NSObject
– (unsigned)hash

Returns an integer that can be used as a table address in a hash table structure. NSObject’s implementation 
returns a value based on the object’s id. If two objects are equal (as determined by the isEqual: method), 
they must return the same hash value. This last point is particularly important if you define hash in a 
subclass and intend to put instances of that subclass into a collection.



17

 Classes: NSObject

init
– (id)init

Implemented by subclasses to initialize a new object (the receiver) immediately after memory for it has 
been allocated. An init  message is generally coupled with an alloc or allocWithZone: message in the same 
line of code:

TheClass *newObject = [[TheClass alloc] init];

An object isn’t ready to be used until it has been initialized. The version of the init  method defined in the 
NSObject class does no initialization; it simply returns self.

Subclass versions of this method should return the new object (self) after it has been successfully initialized. 
If it can’t be initialized, they should release the object and return nil . In some cases, an init  method might 
release the new object and return a substitute. Programs should therefore always use the object returned by 
init , and not necessarily the one returned by alloc or allocWithZone:, in subsequent code.

Every class must guarantee that the init  method either returns a fully functional instance of the class or 
raises an exception. Typically this means overriding the method to add class-specific initialization code. 
Subclass versions of init  need to incorporate the initialization code for the classes they inherit from, through 
a message to super:

- init

{

if (self = [super init]) {

/* class-specific initialization goes here */

}

return self;

}

Note that the message to super precedes the initialization code added in the method. This ensures that 
initialization proceeds in the order of inheritance.

Subclasses often define init...  methods with additional arguments to allow specific values to be set. The 
more arguments a method has, the more freedom it gives you to determine the character of initialized 
objects. Classes often have a set of init... methods, each with a different number of arguments. For example:

- init;

- initArg:(int)tag;

- initArg:(int)tag arg:(struct info *)data;

The convention is that at least one of these methods, usually the one with the most arguments, includes a 
message to super to incorporate the initialization of classes higher up the hierarchy. This method is called 
the designated initializer for the class. The other init... methods defined in the class directly or indirectly 
invoke the designated initializer through messages to self. In this way, all init... methods are chained 
together. For example:



18

- init

{

return [self initArg:-1];

}

- initArg:(int)tag

{

return [self initArg:tag arg:NULL];

}

- initArg:(int)tag arg:(struct info *)data

{

[super init. . .];

/* class-specific initialization goes here */

}

In this example, the initArg:arg:  method is the designated initializer for the class.

If a subclass does any initialization of its own, it must define its own designated initializer. This method 
should begin by sending a message to super to perform the designated initializer of its superclass. Suppose, 
for example, that the three methods illustrated above are defined in the B class. The C class, a subclass of 
B, might have this designated initializer:

- initArg:(int)tag arg:(struct info *)data arg:anObject

{

[super initArg:tag arg:data];

/* class-specific initialization goes here */

}

If inherited init... methods are to successfully initialize instances of the subclass, they must all be made to 
(directly or indirectly) invoke the new designated initializer. To accomplish this, the subclass is obliged to 
cover (override) only the designated initializer of the superclass. For example, in addition to its designated 
initializer, the C class would also implement this method:

- initArg:(int)tag arg:(struct info *)data

{

return [self initArg:tag arg:data arg:nil];

}

This ensures that all three methods inherited from the B class also work for instances of the C class.

Often the designated initializer of the subclass overrides the designated initializer of the superclass. If so, 
the subclass need only implement the one init... method.

These conventions maintain a direct chain of init... links, and ensure that the new method and all inherited 
init... methods return usable, initialized objects. They also prevent the possibility of an infinite loop wherein 
a subclass method sends a message (to super) to perform a superclass method, which in turn sends a 
message (to self) to perform the subclass method.



19

 Classes: NSObject

This init  method is the designated initializer for the NSObject class. Subclasses that do their own 
initialization should override it, as described above.

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal, NO otherwise. NSObject’s implementation compares 
the id of anObject and the receiver to determine equality. Subclasses can override this method to redefine 
what it means for objects to be equal. For example, a container object might define two containers as equal 
if they contain the same contents. See the NSData, NSDictionary, NSArray, and NSString class 
specifications for examples of the use of this method. Note that equality as defined by this method is not 
necessarily reflexive. For example, A is equal to B, does not imply B is equal to A, especially if B is a 
subclass of A.

methodForSelector:
– (IMP)methodForSelector:(SEL)aSelector

Locates and returns the address of the receiver’s implementation for the aSelector method so that it can be 
called as a function. If the receiver is an instance, aSelector should refer to an instance method; if the 
receiver is a class, it should refer to a class method.

aSelector must be a valid, non-NULL selector. If in doubt, use the respondsToSelector: method to check 
before passing the selector to methodForSelector:.

IMP is defined as a pointer to a function that returns an id and takes a variable number of arguments (in 
addition to the two “hidden” arguments—self and _cmd—that are passed to every method implementation):

typedef id (*IMP)(id, SEL, ...);

This definition serves as a prototype for the function pointer that methodForSelector: returns. It’s sufficient 
for methods that return an object and take object arguments. However, if the aSelector method takes 
different argument types or returns anything but an id, its function counterpart will be inadequately 
prototyped. Lacking a prototype, the compiler will promote floats to doubles and chars to ints, which the 
implementation won’t expect. It will therefore behave differently (and erroneously) when performed as a 
method.

To remedy this situation, it’s necessary to provide your own prototype. In the example below, the 
declaration of the test variable serves to prototype the implementation of the isEqual: method. test is 
defined as a pointer to a function that returns a BOOL and takes an id argument (in addition to the two 
“hidden” arguments). The value returned by methodForSelector: is then similarly cast to be a pointer to 
this same function type:



20

BOOL (*test)(id, SEL, id);

test = (BOOL (*)(id, SEL, id))[target methodForSelector:@selector(isEqual:)];

while ( !test(target, @selector(isEqual:), someObject) ) { 

...

}

In some cases, it might be clearer to define a type (similar to IMP) that can be used both for declaring the 
variable and for casting the function pointer methodForSelector: returns. The example below defines the 
EqualIMP  type for just this purpose:

typedef BOOL (*EqualIMP)(id, SEL, id);

EqualIMP test;

test = (EqualIMP)[target methodForSelector:@selector(isEqual:)];

while ( !test(target, @selector(isEqual:), someObject) ) { 

...

}

Either way, it’s important to cast the return value of methodForSelector: to the appropriate function type. 
It’s not sufficient to simply call the function returned by methodForSelector: and cast the result of that call 
to the desired type. This can result in errors.

The advantage of obtaining a method’s implementation and calling it as a function, is that you can invoke 
the implementation multiple times within a loop, or similar C construct, without the overhead of 
Objective-C messaging.

See also: + instanceMethodForSelector:

methodSignatureForSelector:
– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Returns an NSMethodSignature object that contains a description of the aSelector method, or nil  if the 
aSelector method can’t be found. When the receiver is an instance, aSelector should be an instance method; 
when the receiver is a class, it should be a class method. 

This method is used in the implementation of protocols. This method is also used in situations where an 
NSInvocation object must be created, such as during message forwarding. If your object maintains a 
delegate or is capable of handling messages that it does not directly implement, you should override this 
method to return an appropriate method signature.

See also: + instanceMethodSignatureForSelector:, – forwardInvocation:



21

 Classes: NSObject

mutableCopy
– (id)mutableCopy

Convenience method for classes that adopt the NSMutableCopying protocol. This method just calls the 
NSMutableCopying protocol method mutableCopyWithZone: with the zone as NULL. An exception is 
raised if there is no implementation for mutableCopyWithZone:.

performSelector:withObject:afterDelay:
– (void)performSelector:(SEL)aSelector 

withObject: (id)anArgument 
afterDelay:(NSTimeInterval)delay

Sends an aSelector message to the receiver sometime after delay. This method returns before the aSelector 
message is sent. The aSelector method should not have a significant return value and should take a single 
argument of type id; anArgument will be the argument passed in the message. Note that self and 
anArgument are retained until after the message is sent.

See also: + cancelPreviousPerformRequestsWithTarget:selector:object:

performSelector:withObject:afterDelay:inModes:
– (void)performSelector:(SEL)aSelector 

withObject: (id)anArgument 
afterDelay:(NSTimeInterval)delay
inModes:(NSArray *)modes

Sends an aSelector message to the receiver sometime after delay. This method returns before the aSelector 
message is sent. The aSelector method should not have a significant return value and should take a single 
argument of type id; anArgument will be the argument passed in the message. Note that self and 
anArgument are retained until after the message is sent. 

The inModes parameter contains an array of strings that identify the modes to associate with the timer 
performing the selector. This timer becomes associated with each of the given modes until its invalidate 
method is invoked.

See also: – performSelector:withObject:afterDelay: , – addTimer:forMode:  (NSRunLoop), 
– invalidate (NSTimer)



22

replacementObjectForArchiver:
– (id)replacementObjectForArchiver:(NSArchiver *)anArchiver

Overridden by subclasses to substitute another object for itself during archiving. This method is invoked by 
NSArchiver. NSObject’s implementation returns the object returned by replacementObjectForCoder:.

See also: – classForArchiver

replacementObjectForCoder:
– (id)replacementObjectForCoder:(NSCoder *)aCoder

Overridden by subclasses to substitute another object for itself during encoding. For example, an object 
might encode itself into an archive, but encode a proxy for itself if it’s being encoded for distribution. This 
method is invoked by NSCoder. NSObject’s implementation returns self.

See also: – classForCoder, – awakeAfterUsingCoder:

replacementObjectForPortCoder:
– (id)replacementObjectForPortCoder:(NSPortCoder *)aCoder

Overridden by subclasses to substitute another object or a copy for itself during distribution encoding. This 
method is invoked by NSPortCoder. NSObject’s implementation returns a NSDistantObject for the object 
returned by replacementObjectForCoder:, enabling all objects to be distributed by proxy as the default. 
However, if replacementObjectForCoder: returns nil , NSObject’s implementation will also return nil .

Subclasses that want to be passed by copy instead of by reference must override this method and return self. 
The following example shows how to to support object replacement both by copy and by reference:

- (id)replacementObjectForPortCoder:(NSPortCoder *)encoder {

if ([encoder isByref])

return [NSDistantObject proxyWithLocal:self connection:[encoder connection]];

else

return self;

}

See also: – classForPortCoder



1

 Classes: NSPipe Class Cluster

c NSPipe Class Cluster

Class Cluster Description

NSPipe objects provide an object-oriented interface for accessing pipes. A pipe is a one-way 
communications channel between related processes; one process writes data while the other process reads 
the data.



2

i NSPipe

Inherits From: NSObject 

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSFileHandle.h

Class Description

An NSPipe represents both ends of a pipe and enables communication through the pipe. A pipe is a one-way 
communications channel between related processes; one process writes data while the other process reads 
that data. The data that passes through the pipe is buffered; the size of the buffer is determined by the 
underlying operating system.

Each end point of the pipe is a file descriptor, represented by an NSFileHandle. You thus use NSFileHandle 
messages to read and write pipe data. A “parent” process creates the NSPipe and holds one end of it. It 
creates an NSTask for the other process and, before launching it, passes the other end of the pipe to that 
process; it does this by setting the NSTask’s standard input, standard output, or standard error device to be 
the other NSFileHandle or the NSPipe itself (in the latter case, the type of NSFileHandle—reading or 
writing—is determined by the NSTask “set” method). 

The following example illustrates the above procedure:

- (void)readTaskData:(id)sender

{

NSTask *pipeTask = [[NSTask alloc] init];

NSPipe *newPipe = [NSPipe pipe];

NSFileHandle *readHandle = [newPipe fileHandleForReading];

NSData *inData = nil;

[pipeTask setStandardOutput:newPipe]; // write handle is closed to this process

[pipeTask setLaunchPath:[NSHomeDirectory()

stringByAppendingPathComponent:@"PipeTask.app/PipeTask"]];

[pipeTask launch];

while ((inData = [readHandle availableData]) && [inData length]) {

[inData processData];

}

}

The launched process in this example must get data and write that data, using NSFileHandle’s writeData:
, to its standard output device (obtained NSFileHandle’s fileHandleWithStandardOutput ).



3

 Classes: NSPipe Class Cluster

When the processes have no more data to communicate across the pipe, the writing process should simply 
send closeFile to its NSFileHandle end point. This causes the process with the “read” NSFileHandle to 
receive an empty NSData, signalling end of data. If the “parent” process created the NSPipe with the init  
method, it should then release it.

Method Types

Creating an NSPipe
- init
+ pipe

GettingNSFileHandles for pipe
– fileHandleForReading
– fileHandleForWriting

Class Methods

pipe
+ (id)pipe

Returns an NSPipe that’s been sent autorelease. Because the returned object will be deallocated at the end 
of the current loop, retain the object or, better yet, use the init  method if you intend to keep the object 
beyond that point. Returns nil  if the method encounters errors while attempting to create the pipe or the 
NSFileHandle end points.

Instance Methods

fileHandleForReading
– (NSFileHandle *)fileHandleForReading

Returns an NSFileHandle that accepts messages that read pipe data: availableData, 
readDataToEndOfFile, readDataOfLength:. You don’t need to send closeFile to this object or explicitly 
release after you’re finished using it. This descriptor represented by this object is deleted and the object 
itself is automatically deallocated when the NSPipe is deallocated.



4

fileHandleForWriting
– (NSFileHandle *)fileHandleForWriting

Returns an NSFileHandle for writing to the pipe using NSFileHandle’s writeData: . When you are finished 
writing data to this object, send it closeFile to delete the descriptor, which causes the reading process to 
receive an end-of-data signal (an empty NSData). This object is automatically deallocated when the NSPipe 
is deallocated.

init
– (id)init

Returns an NSPipe. Returns nil  if the method encounters errors while attempting to create the pipe or the 
NSFileHandles that serve as end points of the pipe.

See also: + pipe



1

 Classes: NSPort

NSPort

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: Foundation/NSPort.h

Class Description

An NSPort represents a communication channel to or from another NSPort, which typically resides in a 
different thread or task. The distributed objects system uses NSPort objects to send NSPortMessages back 
and forth. You should implement interapplication communication using distributed objects whenever 
possible, and use NSPorts only when necessary.

An NSPort is essentially the object form of a Mach port. To use NSPorts effectively you should be familiar 
with Mach ports, port access rights, and Mach messages. See the Mach OS documentation for more 
information. When an NSPort receives an NSPortMessage, it forwards the message to its delegate in a 
handleMachMessage: or handlePortMessage: message. The delegate should implement only one of these 
methods to process the incoming message in whatever form desired. handleMachMessage: provides a 
message as a raw Mach message beginning with a msg_header_t structure. handlePortMessage: provides 
a message as an NSPortMessage object, which is an object-oriented wrapper for a Mach message.

NSPort is intended to receive incoming messages that need to be added to an NSRunLoop. See the 
NSRunLoop class specification for more information.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:



2

Method Types

Creating instances
+ port
+ portWithMachPort:
– initWithMachPort:

Getting the Mach port
– machPort

Validation
– invalidate
– isValid

Setting the delegate
– setDelegate:
– delegate

Creating connections
– addConnection:toRunLoop:forMode:
– removeConnection:fromRunLoop:forMode:

Setting information
– sendBeforeDate:components:from:reserved:
– reservedSpaceLength

Class Methods

port
+ (NSPort *)port

Creates and returns a new NSPort object capable of both sending and receiving messages.

portWithMachPort:
+ (NSPort *)portWithMachPort: (int)machPort

Returns an NSPort object that uses the Mach port machPort (which should be of type port_t  cast to int ). 
Creates the NSPort object if necessary. Depending on the access rights for machPort, the new NSPort may 
only be able to send messages.



3

 Classes: NSPort

Instance Methods

addConnection:toRunLoop:forMode:
– (void)addConnection:(NSConnection *)connection 

toRunLoop:(NSRunLoop *)runLoop 
forMode: (NSString *)mode

Adds the receiver to the list of ports monitored by runLoop for the given input mode. You should not call 
this method directly. The method is provided for subclassers who wish to provide their own custom types 
of NSPort. NSConnection calls this method at the appropriate times. See the TCP Transport example in 
/System/Developer/Examples/Foundation for an example implementation.

See also: – addPort:forMode: (NSRunLoop)

delegate
– (id)delegate

Returns the NSPort’s delegate.

See also: – setDelegate:

initWithMachPort:
– (id)initWithMachPort: (int)machPort

Initializes a newly allocated NSPort object to use the Mach port machPort (which should be of type port_t  
cast to int ). Depending on the access rights for machPort, the new NSPort may only be able to send 
messages. If an NSPort with machPort already exists, deallocates the receiver, then retains and returns the 
existing NSPort.

This method is the designated initializer for the NSPort class. Returns self.

invalidate
– (void)invalidate

Marks the NSPort as invalid and posts an NSPortDidBecomeInvalidNotification to the default notification 
center.

See also: – isValid



4

isValid
– (BOOL)isValid

Returns NO if the NSPort is known to be invalid, YES otherwise (an NSPort only notes that it has become 
invalid when it tries to send or receive a message). An NSPort becomes invalid when its underlying 
communication resource, which is operating-system dependent, is closed or damaged.

See also: – invalidate

machPort
– (int)machPort

Returns as an int  the Mach port used by the NSPort. Cast this value to a port_t  when using it with Mach 
system calls.

removeConnection:fromRunLoop:forMode:
– (void)removeConnection:(NSConnection *)connection 

fromRunLoop: (NSRunLoop *)runLoop 
forMode: (NSString *)mode

Removes the receiver from the list of ports monitored by runLoop in the given input mode. You should not 
call this method directly. The method is provided for subclassers who wish to provide their own custom 
types of NSPort. NSConnection calls this method at the appropriate times. See the TCP Transport example 
in /System/Developer/Examples/Foundation for an example implementation.

reservedSpaceLength
– (unsigned int)reservedSpaceLength

Returns the amount of space reserved by the port for sending data. 

sendBeforeDate:components:from:reserved:
(BOOL)sendBeforeDate:(NSDate *)limitDate 

components:(NSMutableArray *)components 
from: (NSPort *)receivePort 
reserved:(unsigned int)headerSpaceReserved

You should not call this method directly. The method is provided for subclassers who wish to provide their 
own custom types of NSPort. NSConnection calls this method at the appropriate times. See the TCP 
Transport example in /System/Developer/Examples/Foundation for an example implementation.



5

 Classes: NSPort

setDelegate:
– (void)setDelegate:(id)anObject

Sets the NSPort’s delegate to anObject. Doesn’t retain anObject.

See also: – delegate

Methods Implemented By the Delegate

handleMachMessage:
– (void)handleMachMessage:(void *)machMessage

Processes machMessage, an incoming Mach message cast as a pointer to void. The delegate should interpret 
this data as a pointer to a Mach message beginning with a msg_header_t structure and should handle the 
message appropriately.

The delegate should implement only one of handleMachMessage: and handlePortMessage:.

handlePortMessage:
– (void)handlePortMessage:(NSPortMessage *)portMessage

Processes portMessage, an incoming message on the NSPort. See the NSPortMessage class specification 
for more information.

The delegate should implement only one of handleMachMessage: and handlePortMessage:.

limitDateForMode:
– (NSDate *)limitDateForMode:(NSString *)mode

Returns the port’s earliest limit date for the given mode. This limit date represents the timeout value for the 
port. 

See also: – limitDateForMode: (NSRunLoop)

Notifications

NSPortDidBecomeInvalidNotification

Posted from the invalidate method, which is invoked when the NSPort is deallocated or when it notices that 
its communication channel has been damaged. This notification contains a notification object but no 
userInfo dictionary. The notification object is the NSPort object that has become invalid.



6

The NSPort object posting this notification is no longer useful, so all receivers should unregister themselves 
for any notifications involving the NSPort. You should ensure that any method that receives this notification 
checks to ee which port became invalid before attempting to do anything. In particular, observers that 
receive all NSPortDidBecomeInvalidNotification’s should be aware that communication with the window 
server is handled through an NSPort. If this port becomes invalid,drawing operations will cause a fatal error.



1

 Classes: NSPortCoder

NSPortCoder

Inherits From: NSCoder : NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSPortCoder.h

Class Description

NSPortCoder is a concrete subclass of NSCoder used in the distributed objects system to transmit object 
proxies (and sometimes objects themselves) between NSConnection objects. An NSPortCoder is always 
created and used by an NSConnection object; your code should never need to explicitly create or use one.

Making Substitutions During Encoding

Like its abstract superclass, NSCoder, NSPortCoder makes use of substitution methods that allow an object 
to encode itself as an instance of another class or to replace another object for itself. An object may need to 
offer a different replacement when being encoded specifically by an NSPortCoder, however, so instead of 
the generic classForCoder: and replacementObjectForCoder: methods, NSPortCoder invokes 
classForPortCoder: and replacementObjectForPortCoder:. Their default implementations in NSObject 
fall back to the generic methods, providing reasonable default behavior. (NSPortCoder doesn’t use a special 
substitution method for decoding; it simply uses awakeAfterUsingCoder: as NSCoder does.)

The generic classForCoder: method is most useful for mapping private subclass hierarchies through a 
public superclass, which (for example) aids the stability of archives when subclasses are private or subject 
to change. Since processes communicating at run time typically use the same version of a class library, this 
mapping is often not needed in distributed objects communication. classForPortCoder: allows an object 
to bypass or override the generic classForCoder: behavior, sending its real class (or simply a different one 
from the generic case) to the communicating process or thread. If you implement a group of classes that 
use the generic classForCoder: method, you should also consider using classForPortCoder: to handle the 
special case of encoding with the distributed objects system.

The generic replacementObjectForCoder: method offers a standard way to substitute a different instance 
at encoding time. replacementObjectForPortCoder: specifically allows for the substitution of proxies 
over a distributed objects connection. The receiver of a replacementObjectForPortCoder: message can 
ask the NSPortCoder whether it should be encoded bycopy or not, and return itself or a proxy as 
appropriate. NSObject’s implementation always returns a proxy, so subclasses that allow bycopy encoding 
should override replacementObjectForPortCoder: to perform at least as this sample does:



2

- (id)replacementObjectForPortCoder:(NSPortCoder *)encoder

{

if ([encoder isBycopy]) return self;

return [super replacementObjectForPortCoder:encoder];

}

If the NSPortCoder returns YES when sent an isBycopy message, this example method returns self, which 
will result in the receiver being sent an encodeWithCoder: message. If the NSPortCoder returns NO, this 
method invokes the superclass’s implementation, which typically returns an NSDistantObject.

Method Types

Creating an NSPortCoder
+ portCoderWithReceivePort:sendPort:components:

Getting the NSConnection
– connection

Encoding NSPort objects
– encodePortObject:
– decodePortObject

Checking for encoding
– isBycopy
– isByref

Dispatching
– dispatch

Class Methods

portCoderWithReceivePort:sendPort:components:
+ portCoderWithReceivePort:(NSPort *)receivePort 

sendPort:(NSPort *)sendPort 
components:(NSArray *)components;

<< Description forthcoming. >>



3

 Classes: NSPortCoder

Instance Methods

connection
– (NSConnection *)connection

Returns the NSConnection object that uses the NSPortCoder. In an object’s encodeWithCoder: method, 
this is the sending (server) NSConnection. In initWithCoder:  this is the receiving (client) NSConnection.

decodePortObject
– (NSPort *)decodePortObject

Decodes and returns an NSPort object that was previously encoded with any of the general 
encode...Object: messages. This method is primarily for use by NSPort objects themselves; you can always 
use decodeObject to decode any object.

NSPort invokes this method in its initWithCoder:  method so that the appropriate kernel information for 
the port can be decoded. A subclass of NSPortCoder shouldn’t decode an NSPort by sending it an 
initWithCoder:  message. See ““Creating a Subclass of NSCoder”” in the NSCoder class specification for 
more informaton.

dispatch
– (void)dispatch

<< Description forthcoming. >>

encodePortObject:
– (void)encodePortObject:(NSPort *)aPort

Encodes aPort so that it can be properly reconstituted in the receiving process or thread. This method is 
primarily for use by NSPort objects themselves; you can always use the general encode...Object: methods 
to encode any object.

NSPort invokes this method in its encodeWithCoder: method so that the appropriate kernel information 
for the port can be encoded. A subclass of NSPortCoder shouldn’t encode an NSPort by sending it an 
encodeWithCoder: message. See ““Creating a Subclass of NSCoder”” in the NSCoder class specification 
for more informaton.



4

isBycopy
– (BOOL)isBycopy

Returns YES if the NSPortCoder is encoding an object bycopy, NO if it expects a proxy. You typically use 
this method in replacementObjectForPortCoder: to decide whether to substitute a proxy. See ““Making 
Substitutions During Encoding”” in the class description for more information.

isByref
– (BOOL)isByref

<< Description forthcoming. >>



1

 Classes: NSPortMessage

NSPortMessage

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSPortMessage.h

Class Description

An NSPortMessage defines a low level, operating-system independent type for interapplication (and 
interthread) messages. NSPortMessages are used primarily by the distributed objects system. You should 
implement interapplication communication using distributed objects whenever possible, and use 
NSPortMessages only when necessary.

An NSPortMessage has three major parts: the send and receive ports, which are NSPorts that link the sender 
of the message to the receiver, and the components, which form the body of the message. The components 
are held as an NSArray of NSData and NSPort objects. NSPortMessage’s sendBeforeDate: message sends 
the components out through the send port; any replies to the message arrive on the receive port. See the 
NSPort class specification for information on handling incoming messages.

An NSPortMessage can be initialized with a Mach message or with a pair of NSPorts and an NSArray of 
components. In either case, an NSPortMessage’s body can contain only the types in the table below. The 
types listed under initWithMachMessage: are converted to the corresponding object type listed under 
initWithSendPort:receivePort:components:. In the distributed objects system the byte/character arrays 
are usually encoded NSInvocations that are being forwarded from a proxy to the corresponding real object.

An NSPortMessage also maintains a message identifier, which can be used to indicate the class of a 
message, such as an Objective-C method invocation, a connection request, an error, and so on. Use the 
setMsgid: and msgid methods to access the identifier.

initWithMachMessage: initWithSendPort:receivePort:components:

port_t NSPort object

MSG_TYPE_BYTE NSData object

MSG_TYPE_CHAR

MSG_TYPE_INTEGER_32



2

Method Types

Creating instances
– initWithMachMessage:
– initWithSendPort:receivePort:components:

Sending the message
– sendBeforeDate:

Getting the components
– components

Getting the ports
– receivePort
– sendPort

Accessing the message ID
– setMsgid:
– msgid

Instance Methods

components
– (NSArray *)components

Returns the data components of the NSPortMessage. See the class description for more information.

initWithMachMessage:
– (id)initWithMachMessage:(void *)buffer

Initializes a newly allocated NSPortMessage with buffer, which is a pointer to a Mach message (beginning 
with a msg_header_t structure) cast as a pointer to void. The send and receive ports, message identifier, 
and components are all extracted from buffer. Returns self.

See the class description for restrictions on the allowable types in the body of the Mach message.



3

 Classes: NSPortMessage

initWithSendPort:receivePort:components:
– (id)initWithSendPort: (NSPort *)sendPort

receivePort:(NSPort *)receivePort
components:(NSArray *)components

Initializes a newly allocated NSPortMessage to send the data in components on sendPort. Replies to the 
message will arrive on receivePort. An NSPortMessage initialized with this method has a message identifier 
of 0. This is the designated initializer for the NSPortMessage Class. Returns self.

components should contain only NSData and NSPort objects, and the contents of the NSData objects should 
be in network byte order.

See also: – setMsgid:

msgid
– (unsigned int)msgid

Returns the identifier for the NSPortMessage. Cooperating applications can use this to define different 
types of messages, such as connection requests, RPCs, errors, and so on.

See also: – setMsgid:

receivePort
– (NSPort *)receivePort

For an outgoing message, returns the NSPort that replies to the NSPortMessage will arrive on. For an 
incoming message, returns the NSPort that the NSPortMessage did arrive on.

See also: – sendPort

sendBeforeDate:
– (BOOL)sendBeforeDate:(NSDate *)aDate

Attempts to send the message before aDate, returning YES if successful, NO otherwise. See the NSPort 
class specification for information on receiving an NSPortMessage.



4

sendPort
– (NSPort *)sendPort

For an outgoing message, returns the NSPort that the NSPortMessage will send itself through when it 
receives a sendBeforeDate: message. For an incoming message, returns the NSPort that replies to the 
NSPortMessage should be sent through.

See also: – receivePort

setMsgid:
– (void)setMsgid:(unsigned int)msgid

Sets the identifier for the NSPortMessage to msgid. Cooperating applications can use this to define different 
types of messages, such as connection requests, RPCs, errors, and so on.

See also: – msgid



1

 Classes: NSPortNameServer

NSPortNameServer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSPortNameServer.h

Class Description

NSPortNameServer provides an object-oriented interface to the port registration service used by the 
distributed objects system. NSConnection objects use it to contact each other and to distribute objects over 
the network; you should rarely need to interact directly with an NSPortNameServer.

You get an NSPortNameServer by using the defaultPortNameServer class method; never allocate and 
initialize an instance directly. With the default server object you can register an NSPort under a given name, 
making it available on the network, and also unregister it so that it can’t be looked up (although other 
applications that have already looked up the NSPort can still use it until it becomes invalid). See the NSPort 
class specification for more information.

Method Types

Getting the server object
+ defaultPortNameServer

Looking ports up
– portForName:
– portForName:onHost:

Registering ports
– registerPort:forName:
– removePortForName:

Class Methods

defaultPortNameServer
+ (id)defaultPortNameServer

Returns the single instance of NSPortNameServer for the application.



2

Instance Methods

portForName:
– (NSPort *)portForName:(NSString *)portName

Looks up and returns the NSPort registered under portName on the local host (by invoking portForName:
onHost: with nil  as the host name). Returns nil  if no such NSPort exists.

See also: – portForName:onHost:

portForName:onHost:
– (NSPort *)portForName:(NSString *)portName onHost:(NSString *)hostName

Looks up and returns the NSPort registered under portName on the host named hostName, which is an 
Internet domain name (for example, “sales.anycorp.com”). Returns nil  if no such NSPort exists.

If hostName is nil  or empty then only the local host is checked for portName. If hostName is “*” then all 
hosts on the local subnet are queried for the requested NSPort; where there are duplicates an arbitrary host’s 
NSPort is returned. That host is then used for every subsequent request by the local host.

registerPort:forName:
– (BOOL)registerPort:(NSPort *)aPort forName:(NSString *)portName

Makes aPort available on the network under portName and the local host’s name (or names). Returns YES 
if successful, NO otherwise (for example, if another NSPort has already been registered under portName). 
An NSPort can be registered under multiple names; if it is, it must be unregistered for each name with 
removePortForName: to make it completely unavailable.

removePortForName:
– (void)removePortForName:(NSString *)portName

Unregisters the NSPort for the name portName on the local host, so that it can no longer be looked up by 
that name. Other applications that already have the NSPort can continue to use it until it becomes invalid.



1

 Classes: NSProcessInfo

NSProcessInfo

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSProcessinfo.h

Class Description

The NSProcessInfo class provides methods to access process-wide information. An NSProcessInfo object 
can return such information as the arguments, environment variables, host name, or process name. The 
processInfo class method returns a shared NSProcessInfo object for the process. For example, the following 
line returns the NSProcessInfo object, which then provides the name of the current process:

NSString *processName = [[NSProcessInfo processInfo] processName];

NSProcessInfo also includes the operatingSystem method, which returns an enum constant identifying the 
operating system on which the process is executing.

Method Types

Getting an NSProcessInfo object
+ processInfo

Returning process information
– arguments
– environment
– hostName
– processName
– globallyUniqueString

Returning the host operating system
– operatingSystem
– operatingSystemName

Specifying a process name
– setProcessName:



2

Class Methods

processInfo
+ (NSProcessInfo *)processInfo

Returns an initialized NSProcessInfo object for the process. An NSProcessInfo object is created the first 
time this method is invoked, and that same object is returned on each subsequent invocation.

Instance Methods

arguments
– (NSArray *)arguments

Returns the command line arguments as an array of NSStrings.

environment
– (NSDictionary *)environment

Returns a dictionary of variables for the environment from which the process was launched. The dictionary 
keys are the environment variable names.

globallyUniqueString
– (NSString *)globallyUniqueString

Returns a globally unique string to identify the process. This method uses the host name, process ID, and a 
time stamp to ensure that the string returned will be unique for the network. This method generates a new 
string each time it is invoked, so it also uses a counter to guarantee that strings created from the same 
process will be unique. 

See also: – processName

hostName
– (NSString *)hostName

Returns the name of the host system.



3

 Classes: NSProcessInfo

operatingSystem
– (unsigned int)operatingSystem

Returns one the contants below to indicate the operating system on which the process is executing:

NSWindowsNTOperatingSystem
NSWindows95OperatingSystem
NSSolarisOperatingSystem
NSHPUXOperatingSystem
NSMACHOperatingSystem
NSSunOSOperatingSystem
NSOSF1OperatingSystem

operatingSystemName
– (NSString *)operatingSystemName

<< Description forthcoming. >>

processName
– (NSString *)processName

Returns the name of the process. This name is used to register Application defaults and is used in error 
messages. It does not uniquely identify the process.

See also: – setProcessName:

setProcessName:
– (void)setProcessName:(NSString *)newName

Sets the name of the process to newName. 

Warning: User defaults and other aspects of the environment might depend on the process name, so be very 
careful if you change it. Setting the process name in this manner is not thread-safe.

See also: – processName



1

 Classes: NSProtocolChecker

NSProtocolChecker

Inherits From: NSObject

Declared In: Foundation/NSProtocolChecker.h

Class Description

The NSProtocolChecker class defines an object that restricts the messages that can be sent to another object 
(referred to as the checker’s delegate). This can be particularly useful when an object with many methods, 
only a few of which ought to be remotely accessible, is made available using the Distributed Objects 
system.

A protocol checker acts as a kind of proxy; when it receives a message that is in its designated protocool, 
it forwards the message to its target, and consequently appears to be the target object itself. However, when 
it receives a message not in its protocol, it raises an NSInvalidArgumentException exception to indicate that 
the message isn’t allowed, whether or not the target object implements the method.

Typically, an object that is to be distributed (yet must restrict messages) creates an NSProtocolChecker for 
itself and returns the checker rather than returning itself in response to any messages. The object might also 
register the checker as the root object of an NSConnection.

The object should be careful about vending references to self; the protocol checker will convert a return 
value of self to indicate the checker rather than the object for any messages that were forwarded by the 
checker, but direct references to the object (bypassing the checker) could be passed around by other objects.

Method Types

Creating a checker
+ protocolCheckerWithTarget:protocol:
– initWithTarget:protocol:

Reimplemented NSObject methods
– forwardInvocation:
– methodDescriptionForSelector:

Getting information
– protocol
– target



2

Class Methods

protocolCheckerWithTarget:protocol:
+ (id)protocolCheckerWithTarget: (NSObject *)anObject protocol:(Protocol *)aProtocol

Allocates and initializes an NSProtocolChecker instance that will forward any messages in the aProtocol 
protocol to anObject, its target. Thus, the checker can be vended in lieu of anObject to restrict the messages 
that can be sent to anObject. Returns the new instance.

Instance Methods

forwardInvocation:
– (void)forwardInvocation: (NSInvocation *)anInvocation

Forwards any message to the delegate if the method is declared in the checker’s protocol; otherwise raises 
an NSInvalidArgumentException.

initWithTarget:protocol:
– (id)initWithTarget: (NSObject *)anObject protocol:(Protocol *)aProtocol

Initializes a newly allocated NSProtocolChecker instance that will forward any messages in the aProtocol 
protocol to anObject, its delegate. Thus, the checker can be vended in lieu of anObject to restrict the 
messages that can be sent to anObject. If anObject is allowed to be freed or dereferenced by clients, the 
free method should be included in aProtocol. Returns the new instance.

methodDescriptionForSelector:
– (struct objc_method_description *)methodDescriptionForSelector:(SEL)aSelector

Returns an Objective C description for a method in the checker’s protocol, or NULL if aSelector isn’t 
declared as an instance method in the protocol.

protocol
– (Protocol *)protocol

Returns the protocol object the checker uses to verify whether a given message should be forwarded to its 
delegate, or the protocol checker should raise an NSInvalidArgumentException.



3

 Classes: NSProtocolChecker

target
– (NSObject *)target

Returns the target of the NSProtocolChecker.



1

 Classes: NSProxy

NSProxy

Inherits From: none (NSProxy is a root class)

Conforms To: NSObject

Declared In: Foundation/NSProxy.h

Class Description

NSProxy is an abstract superclass defining an API for objects that act as stand-ins for other objects or for 
objects that don’t exist yet. Typically, a message to a proxy is forwarded to the real object, or causes the 
proxy to load (or transform itself into) the real object. Subclasses of NSProxy can be used to implement 
transparent distributed messaging (for example, NSDistantObject) or for lazy instantiation of objects that 
are expensive to create.

NSProxy implements the basic methods required of a root class, including those defined in the NSObject 
protocol. However, as an abstract class it doesn’t provide an initialization method, and it raises an exception 
upon receiving any message it doesn’t respond to. A concrete subclass must therefore provide an 
initialization or creation method and override the forwardInvocation:  and methodSignatureForSelector: 
methods to handle messages that it doesn’t implement itself. A subclass’s implementation of 
forwardInvocation:  should do whatever is needed to process the invocation, such as forwarding the 
invocation over the network or loading the real object and passing it the invocation. 
methodSignatureForSelector: is required to provide argument type information for a given message; a 
subclass’s implementation should be able to determine the argument types for the messages it needs to 
forward and should construct an NSMethodSignature accordingly. See the NSDistantObject, NSInvocation, 
and NSMethodSignature class specifications for more information.



2

Adopted Protocols

NSObject
– autorelease
– class
– conformsToProtocol:
– description
– hash
– isEqual:
– isKindOfClass:
– isMemberOfClass:
– isProxy
– performSelector:
– performSelector:withObject:
– performSelector:withObject:withObject:
– release
– respondsToSelector:
– retain
– retainCount
– self
– superclass
– zone

Method Types

Creating instances
+ alloc
+ allocWithZone:

Deallocating instances
– dealloc

Getting the class
+ class

Handling unimplemented methods
– forwardInvocation:
– methodSignatureForSelector:

Getting a description
– description



3

 Classes: NSProxy

Class Methods 

alloc
+ (id)alloc

Returns a new instance of the receiving class, as described in the NSObject class specification under the 
alloc class method.

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Returns a new instance of the receiving class, as described in the NSObject class specification under the 
allocWithZone: class method.

class
+ (Class)class

Returns self. Since this is a class method, it returns the class object.

See also: + class (NSObject), – class (NSObject protocol)

load
+ (void)load

This method is invoked whenever a class or category is added to the Objective-C runtime; implement this 
method to perform class-specific behavior upon loading. It is sent to classes and categories that are both 
dynamically loaded and statically linked, but only if the newly-loaded class or category implements a 
method that can respond. As an example, when Interface Builder loads a palette, the load method is sent to 
each class and category in the palette.

load is usually invoked before initialize . It is usually the very first method sent to the class, although this 
isn’t guaranteed. The order in which classes are loaded is also not guaranteed, to the point that superclasses 
aren’t even guaranteed to be loaded before all of their subclasses. Because you can’t rely on other classes 
being loaded at the point when your class is sent a load message, you should be extremely careful when 
messaging other classes from within your load method.

Warning: Due to the amount of uncertainty about the environment at the point that load is invoked, you 
should avoid using load whenever possible. All class-specific initialization should be done in the 
class’s initialize  method.

See also: + load (NSObject)



4

respondsToSelector:
+ (BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the receiving class responds to aSelector messages, NO otherwise.

Instance Methods

class
@protocol NSObject
– (Class)class

Returns the class of the receiver (not the class of the real object).

conformsToProtocol:
@protocol NSObject
– (BOOL)conformsToProtocol:(Protocol)aProtocol

Uses forwardInvocation:  to send the conformsToProtocol: message to the real object and returns the 
result. Note that NSProxy’s implementation of forwardInvocation:  merely raises an exception.

dealloc
– (void)dealloc

Deallocates the memory occupied by the receiver, as described in the NSObject class specification under 
the dealloc instance method.

description
– (NSString *)description

Returns an NSString containing the real class name and the id of the receiver as a hexadecimal number.

forwardInvocation:
– (void)forwardInvocation: (NSInvocation *)anInvocation

Passes anInvocation on to the real object that the proxy represents. NSProxy’s implementation merely raises 
NSInvalidArgumentException. Override this method in your subclass to handle anInvocation appropriately, 
at the very least by setting its return value.



5

 Classes: NSProxy

For example, if your proxy merely forwards messages to an instance variable named realObject, it can 
implement forwardInvocation:  like this:

– (void)forwardInvocation:(NSInvocation *)anInvocation

{

[anInvocation setTarget:realObject];

[anInvocation invoke];

return;

}

isKindOfClass:
@protocol NSObject
– (BOOL)isKindOfClass:(Class)aClass

Uses forwardInvocation:  to send the isKindOfClass: message to the real object and returns the result. Note 
that NSProxy’s implementation of forwardInvocation:  merely raises an exception.

isMemberOfClass:
@protocol NSObject
– (BOOL)isMemberOfClass:(Class)aClass

Uses forwardInvocation:  to send the isMemberOfClass: message to the real object and returns the result. 
Note that NSProxy’s implementation of forwardInvocation:  merely raises an exception.

isProxy
@protocol NSObject
– (BOOL)isProxy

Returns YES. Subclasses shouldn’t override this method to return NO.

methodSignatureForSelector:
– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

Raises NSInvalidArgumentException. Override this method in your concrete subclass to return a proper 
NSMethodSignature for aSelector and the class that your proxy objects stand in for. Be sure to avoid an 
infinite loop when necessary by checking that aSelector isn’t the selector for this method itself and by not 
sending any message that might invoke this method.

For example, if your proxy merely forwards messages to an instance variable named realObject, it can 
implement methodSignatureForSelector: like this:



6

– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector

{

return [realObject methodSignatureForSelector:aSelector];

}

See also: – methodSignatureForSelector: (NSObject)

respondsToSelector:
@protocol NSObject
– (BOOL)respondsToSelector:(SEL)aSelector

Uses forwardInvocation:  to send the respondsToSelector: message to the real object and returns the result. 
Note that NSProxy’s implementation of forwardInvocation:  merely raises an exception.



1

 Classes: NSRecursiveLock

NSRecursiveLock 

Inherits From: NSObject

Conforms To: NSLocking
NSObject (NSObject)

Declared In: Foundation/NSLock.h 

Class Description

NSRecursiveLock defines a lock that may be acquired multiple times by the same thread without causing a 
deadlock, a situation where a thread is permanently blocked waiting for itself to relinquish a lock. While 
the locking thread has one or more locks, all other threads are prevented from accessing the code protected 
by the lock. Here’s an example where a recursive lock functions properly but other lock types would 
deadlock:

NSRecursiveLock  *theLock = [[NSRecursiveLock alloc] init];

...

[theLock lock];

/* lengthy operations involving global data */

[theLock lock];   /* possibly invoked in a subroutine */

...

[theLock unlock]; /* relinquishes most recent lock */

...

[theLock unlock]; /* relinquishes the first lock */

Unless theLock was an NSRecursiveLock, a deadlock condition would occur at the second lock message 
in the example above.

The NSConditionLock, NSLock, and NSRecursiveLock classes all implement the NSLocking protocol 
with various features and performance characteristics; see the other class descriptions for more information.

Adopted Protocols

NSLocking
– lock
– unlock



2

Method Types

Acquiring a lock
– lockBeforeDate:
– tryLock

Instance Methods

lockBeforeDate:
– (BOOL)lockBeforeDate:(NSDate *)limit

Attempts to acquire a lock before the date represented by limit. Returns YES if the lock is acquired within 
this time limit. Returns NO if the time limit expires before a lock can be acquired.

tryLock
– (BOOL)tryLock

Attempts to acquire a lock. Returns immediately with a value of YES if successful and NO otherwise.



1

 Classes: NSRunLoop

NSRunLoop 

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSRunLoop.h 

Class Description

The NSRunLoop class declares the programmatic interface to objects that manage input sources. An 
NSRunLoop processes input for sources such as mouse and keyboard events from the window system, 
NSPorts, NSTimers, and NSConnections.

In general, your application won’t need to either create or explicitly manage NSRunLoop objects. Each 
thread has an NSRunLoop object automatically created for it. Each process begins with a default thread and 
therefore has a default run loop.

If you do want to perform your own explicit run loop management, you do so by accessing the current 
thread’s run loop (returned by the class method currentRunLoop ). You must specify two things: the input 
sources, which are the objects from which the run loop will receive information, and an input mode, which 
specifies the type of input to be received. The currently defined input modes are:

In addition, the Application Kit defines these modes:

Input mode Description

NSDefaultRunLoopMode
Use this mode to deal with input sources other than NSConnections. 
Defined in the Foundation/NSRunLoop.h  header file. This is the most 
commonly used run loop mode.

NSConnectionReplyMode
Use this mode to indicate NSConnection objects waiting for replies. 
Defined in the Foundation/NSConnection.h  header file. You rarely need 
to use this mode.

Additional input modes Description

NSModalPanelRunLoopMode
Use this mode when waiting for input from a modal panel, such as 
NSSavePanel or NSOpenPanel. Defined in the AppKit/NSApplication.h  
header file. 



2

You associate a list of input sources with each input mode. There are two general types of input sources to 
a run loop: asynchronous (input arrives at unpredictable intervals) and synchronous (input arrives at regular 
intervals). NSPort objects represent asynchronous input sources, and NSTimer objects represent 
synchronous input sources. Each input source has a limit date associated with it. For NSPorts, the limit date 
is a timeout value, after which input from that port is no longer timely. For NSTimers, the limit date 
specifies when the timer should fire. (When a timer fires, it sends a specified message to a specified object, 
and it may be scheduled to fire again later. See the NSTimer class specification for more information.) 

When an NSRunLoop runs, it polls each of the sources for the input mode to determine which one has the 
earliest limit date. During this polling, the input sources may process any input they have queued. Once the 
NSRunLoop determines the earliest limit date for this input mode, it waits for input from the operating 
system until that limit date. If input arrives, it is processed. At that point, the NSRunLoop may either return 
or it may continue, depending on which method was used to run the loop. 

For example:

NSRunLoop *theLoop = [NSRunLoop currentRunLoop];

[theLoop acceptInputForMode:NSDefaultRunLoopMode beforeDate:[theLoop 

limitDateForMode:NSDefaultRunLoopMode]];

The method limitDateForMode:  returns the earliest limit date of all the input sources for the mode 
NSDefaultRunLoopMode. acceptInputForMode:beforeDate: runs the loop until that date, processing any 
input it receives until that time. As a convenience, you can use runMode:beforeDate: instead. It invokes 
acceptInputForMode:beforeDate: and limitDateForMode:  with the mode you supply. 

To continuously run in NSDefaultRunLoopMode, you can use either of the methods run  or runUntilDate:
. To run another mode continuously, invoke runMode:beforeDate: in a loop with a date far in the future:

while ([[NSRunLoop currentRunLoop] runMode:NSModalPanelRunLoopMode 

beforeDate:[NSDate distantFuture]])

;

Note: Regardless of the date you specify in runMode:beforeDate:, a run loop with nothing to do (that is 
no sources from which to receive input) will exit immediately. You must add the input sources to the 
run loop mode before you start the run loop. 

NSEventTrackingRunLoopMode
Use this mode for event tracking loops. Defined in the 
AppKit/NSApplication.h  header file.

Additional input modes Description



3

 Classes: NSRunLoop

Method Types

Accessing the current run loop
+ currentRunLoop
– currentMode
– limitDateForMode:

Adding timers 
– addTimer:forMode:

Managing ports
– addPort: forMode:
– removePort:forMode:

Setting up for server processes
– configureAsServer

Running a loop
– run
– runUntilDate:
– runMode:beforeDate:
– acceptInputForMode:beforeDate:

Sending messages
– performSelector:target:argument:order:modes:
– cancelPerformSelector:target:argument:

Class Methods

currentRunLoop
+ (NSRunLoop *)currentRunLoop

Returns the NSRunLoop for the current thread.

See also: – currentMode

Instance Methods

acceptInputForMode:beforeDate:
– (void)acceptInputForMode:(NSString *)mode beforeDate:(NSDate *)limitDate

Blocks awaiting input from the ports in the port list for the input mode mode until the time specified by 
limitDate. Use the limitDateForMode:  method to calculate limitDate. If input arrives, it is processed using 
the NSPort delegates. This method does not check the timers associated with mode, thus it does not fire 
timers even if their scheduled fire dates have passed.



4

addPort: forMode:
– (void)addPort:(NSPort *)aPort forMode: (NSString *)mode

Adds aPort to be monitored by the receiver in the input mode mode. The receiver maintains a count of the 
number of ports added, and the same number must be removed.

See also: – removePort:forMode:

addTimer:forMode:
– (void)addTimer: (NSTimer *)aTimer

forMode: (NSString *)mode

Registers the timer aTimer with input mode mode. The run loop causes the timer to fire on or after its 
scheduled fire date. Timers have an Objective-C message associated with them. When a timer fires, it sends 
its message to the appropriate object. To remove a timer from a mode, send the invalidate message to the 
timer. 

cancelPerformSelector:target:argument:
– (void)cancelPerformSelector:(SEL)aSelector target:(id)target argument:(id)anArgument 

Cancels the sending of a message previously scheduled using performSelector:target:argument:order:
modes:. The aSelector message with argument anArgument will not be sent to target. 

configureAsServer
- (void)configureAsServer

Performs all necessary configuration to make the run loop suitable for use by a server process. For example, 
on the Microsoft Windows platform, this method adds a port that receives messages from the WIN32 event 
queue. This enables the run loop to notice when the user logs out, allowing the server process to exit 
gracefully. 

currentMode
– (NSString *)currentMode

Returns the current input mode. The current mode is set by limitDateForMode:  and acceptInputForMode:
beforeDate:. 

See also: + currentRunLoop



5

 Classes: NSRunLoop

limitDateForMode:
– (NSDate *)limitDateForMode: (NSString *)mode

Polls mode’s input sources for their limit date (if any) and returns the earliest limit date for this mode. Uses 
the NSPort delegate method limitDateForMode:  to determine the limit dates of ports. Fires timers if their 
limit dates have passed. Polls ports for activities appropriate for mode. Returns nil  if there are no input 
sources for this mode.

performSelector:target:argument:order:modes:
– (void)performSelector:(SEL)aSelector target:(id)target argument:(id)anArgument order:

(unsigned int)order modes:(NSArray *)modes 

Schedules the sending of an aSelector message. The aSelector message will be sent to target with argument 
anArgument after the run loop has completed an iteration in any of the input modes specified in modes. 
order assigns a priority to the messages. If multiple messages are scheduled to be sent, the messages with 
a lower order value are sent before messages with a higher order value. 

This method returns before the aSelector message is sent. The aSelector method should not have a 
significant return value and should take a single argument of type id. The NSRunLoop does not retain the 
target and anArgument objects. 

Use this method is you want multiple messages to be sent after the current event has been processed and 
you want to make sure that these messages are sent in a certain order. 

See also: – cancelPerformSelector:target:argument: 

removePort:forMode:
– (void)removePort:(NSPort *)aPort

forMode: (NSString *)mode

Removes aPort from the list of ports being monitored by the receiver in input mode mode. The receiver 
maintains a count of the ports added, and the same number of ports must be removed. Ports are 
automatically removed from modes if they are detected to be invalid.

See also: – addPort:forMode:



6

run
– (void)run

Runs the loop in NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: until the limit 
dates for all of the input sources have passed.

See also: – runUntilDate:  

runMode:beforeDate:
– (BOOL)runMode: (NSString *)mode

beforeDate:(NSDate *)limitDate

Runs the loop once by invoking acceptInputForMode:beforeDate:, accepting input for mode mode until 
a limit date. The limit date is determined by using the earliest of limitDate and the limit dates set for all input 
sources in this mode. Returns NO without starting the run loop if the limit dates for all of mode’s input 
sources have passed; otherwise returns YES. 

runUntilDate:
– (void)runUntilDate: (NSDate *)limitDate

Runs the loop in NSDefaultRunLoopMode by repeatedly invoking runMode:beforeDate: until limitDate 
or until the limit dates for all of the input sources have passed.

See also: – run  



1

 Classes: NSScanner Class Cluster

c NSScanner Class Cluster

Class Cluster Description

An NSScanner object interprets and converts the characters of an NSString into number and string values. 
You assign the scanner’s string on creating it, and the scanner progresses through the characters of that 
string from beginning to end as you request items. This cluster has a single public class, NSScanner.

The objects you create using this class are referred to as scanner objects (and when no confusion will result, 
merely as scanners). Because of the nature of class clusters, scanner objects aren’t actual instances of the 
NSScanner class but one of its private subclasses. Although a scanner object’s class is private, its interface 
is public, as declared by this abstract superclass, NSScanner. 

Scanning Behavior

Generally, you instantiate a scanner object by invoking the scannerWithString: or 
localizedScannerWithString: class methods. Either method returns a scanner object initialized with the 
string you pass to it. The newly created scanner starts at the beginning of its string, progressing through the 
characters as you request values with scan... methods. You can change the implicit scan location with the 
setScanLocation: method, to re-scan a portion of the string after an error or to skip ahead a certain number 
of characters. Scan operations start at the scan location and advance the scanner to just past the last 
character in the scanned value representation (if any). For example, after scanning an integer from the string 
“137 small cases of bananas”, a scanner’s location will be 3, indicating the space immediately after the 
number.

You can configure a scanner to skip a set of characters with the setCharactersToBeSkipped: method. A 
scanner ignores characters to be skipped at the beginning of any scan operation. Once it finds a scannable 
character, however, it includes all characters matching the request. Scanners skip whitespace and newline 
characters by default. If you continue with the previous example’s string and use scanUpToString:
intoString:  to find the substring before “of”, the scanner skips the space character before the word “small” 
but includes the space before “of” in its result unless you include a space in the search string:

You can also configure a scanner to consider or ignore case using the setCaseSensitive: method. By default 
a scanner ignores case. Note that case is always considered with regard to characters to be skipped. To skip 

Search String Result String

“of” (no space before) “small cases ” (includes the space following)

“ of” (space before) “small cases” (stops before the space)



2

all English vowels, for example, you must set the characters to be skipped to those in the string 
“AEIOUaeiou”.

A scanner bases some of its scanning behavior on a locale, which specifies a language and conventions for 
value representations. NSScanner uses only the locale’s definition for the decimal separator (given by the 
key named NSDecimalSeparator). You can create a scanner with the user’s locale by using 
localizedScannerWithString:, or set the locale explicitly using setLocale:. If you use a method that doesn’t 
specify a locale, the scanner assumes the default locale values. See “Locales” in the “Other Features” 
section of the Foundation Kit documentation for more information on locales.

For an example of using a scanner, suppose you have a string containing lines such as:

Product: Acme Potato Peeler; Cost: 0.98
Product: Chef Pierre Pasta Fork; Cost: 0.75
Product: Chef Pierre Colander; Cost: 1.27

This method scans such a string to extract the product information for each line:

- (BOOL)scanProductString:(NSString *)string

{

NSCharacterSet *semicolonSet;

NSScanner *theScanner;

NSString *PRODUCT = @"Product:";

NSString *COST = @"Cost:";

NSString *productName;

float productCost;

semicolonSet = [NSCharacterSet

characterSetWithCharactersInString:@";"];

theScanner = [NSScanner scannerWithString:string];

while ([theScanner isAtEnd] == NO) {

if ([theScanner scanString:PRODUCT intoString:NULL] &&

[theScanner scanUpToCharactersFromSet:semicolonSet

ntoString:&productName] &&

theScanner scanString:@";" intoString:NULL] &&

[theScanner scanString:COST intoString:NULL] &&

[theScanner scanFloat:&productCost]) {

/* Do something with productName and productCost. */

}

else return NO;

}

return YES;

}



3

 Classes: NSScanner Class Cluster

This method uses alternating scan operations to skip the expected substrings “Product:” and “Cost:”, as well 
as the semicolon, and to read the values for the product name and cost (read as a float for simplicity’s sake). 
It returns NO if an error occurs on any scan operation, and YES if it successfully scans and processes all 
lines. Note that because a scanner skips whitespace and newlines by default, the loop does no special 
processing for them.



4

i NSScanner

Inherits From: NSObject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: Foundation/NSScanner.h
Foundation/NSDecimalNumber.h

Class Description

The NSScanner class declares the programmatic interface for an object that scans values from an NSString 
object. NSScanner’s primitive methods are string and all of the methods listed below under “Configuring 
an NSScanner.” Using an NSScanner is explained in the class cluster description.

Adopted Protocols

NSCopying – copyWithZone:

Method Types

Creating an NSScanner
+ scannerWithString:
+ localizedScannerWithString:
– initWithString:

Getting an NSScanner’s string
– string

Configuring an NSScanner
– setScanLocation:
– scanLocation
– setCaseSensitive:
– caseSensitive
– setCharactersToBeSkipped:
– charactersToBeSkipped
– setLocale:
– locale



5

 Classes: NSScanner Class Cluster

Scanning a string
– scanCharactersFromSet:intoString:
– scanUpToCharactersFromSet:intoString:
– scanDecimal:
– scanDouble:
– scanFloat:
– scanInt:
– scanHexInt:
– scanLongLong:
– scanString:intoString:
– scanUpToString:intoString:
– isAtEnd

Class Methods

localizedScannerWithString:
+ (id)localizedScannerWithString:(NSString *)aString

Returns an NSScanner that scans aString according to the user’s default locale (set with setLocale:). Sets 
the string to scan by invoking initWithString:  with aString. See “Locales” in the “Other Features” section 
of the Foundation Kit documentation for more information on locales.

scannerWithString:
+ (id)scannerWithString:(NSString *)aString

Returns an NSScanner that scans aString. Sets the string to scan by invoking initWithString:  with aString.

Instance Methods

caseSensitive
– (BOOL)caseSensitive

Returns YES if the scanner distinguishes case in the characters it scans, NO otherwise. NSScanners are not 
case sensitive by default. Note that case sensitivity doesn’t apply to the characters to be skipped.

See also: – setCaseSensitive:, – setCharactersToBeSkipped:



6

charactersToBeSkipped
– (NSCharacterSet *)charactersToBeSkipped

Returns a character set containing the characters that the scanner ignores when looking for a scannable 
element. For example, if a scanner ignores spaces and you send it a scanInt: message, it skips spaces until 
it finds a decimal digit or other character. While an element is being scanned, however, no characters are 
skipped. If you scan for something made of characters in the set to be skipped (for example, using scanInt: 
when the set of characters to be skipped is the decimal digits), the result is undefined.

The default set to skip is the whitespace and newline character set.

See also: – setCharactersToBeSkipped:, + whitespaceAndNewlineCharacterSet (NSCharacterSet)

initWithString:
– (id)initWithString: (NSString *)aString

Initializes a newly allocated NSScanner to scan aString from the beginning. Returns self.

See also: + localizedScannerWithString:, + scannerWithString:

isAtEnd
– (BOOL)isAtEnd

Returns YES if the scanner has exhausted all significant characters in its string, NO if there are characters 
left to scan. If only characters from the set to be skipped remain, this method returns YES.

See also: – charactersToBeSkipped

locale
– (NSDictionary *)locale

Returns the scanner’s locale, or nil  if it has none. A scanner’s locale affects the way it interprets numeric 
values from the string. In particular, a scanner uses the locale’s decimal separator to distinguish the integer 
and fractional parts of floating-point representations. A scanner with no locale set uses the default locale 
values.

See “Locales” in the “Other Features” section of the Foundation Kit documentation for more information 
on locales.

See also: – setLocale:



7

 Classes: NSScanner Class Cluster

scanCharactersFromSet:intoString:
– (BOOL)scanCharactersFromSet:(NSCharacterSet *)scanSet

intoString: (NSString **)stringValue

Scans the string as long as characters from scanSet are encountered, accumulating characters into a string 
that’s returned by reference in stringValue. Returns YES if the scanner scans any characters; otherwise 
returns NO.

Invoke this method with NULL as stringValue to simply scan past a given set of characters.

See also: – scanUpToCharactersFromSet:intoString:

scanDecimal:
– (BOOL)scanDecimal:(NSDecimal *)decimalValue

Scans an NSDecimal value if possible, returning it by reference in decimalValue. Returns YES if the scanner 
finds a valid NSDecimal representation, NO otherwise. See the NSDecimalNumber class specification for 
more information.

Invoke this method with NULL as decimalValue to simply scan past an NSDecimal representation.

scanDouble:
– (BOOL)scanDouble:(double *)doubleValue

Scans a double value if possible, returning it by reference in doubleValue. Returns YES if the scanner finds 
a valid floating-point representation, NO otherwise. Returns HUGE_VAL or –HUGE_VAL by reference in 
value on overflow, or 0.0 on underflow. Skips past excess digits in the case of overflow, so that the scanner’s 
position is past the entire floating-point representation.

Invoke this method with NULL as doubleValue to simply scan past a double value representation.

Note: Floating-point representations are assumed to be IEEE compliant.

See also: – doubleValue (NSString)

scanFloat:
– (BOOL)scanFloat:(float *)floatValue

Scans a float value if possible, returning it by reference in floatValue. Returns YES if the scanner finds a 
valid floating-point representation, NO otherwise. Returns HUGE_VAL or –HUGE_VAL by reference in 
floatValue on overflow, or 0.0 on underflow. Skips past excess digits in the case of overflow, so that the 
scanner’s position is past the entire floating-point representation.



8

Invoke this method with NULL as floatValue to simply scan past a float value representation.

Note: Floating-point representations are assumed to be IEEE compliant.

See also: – floatValue (NSString)

scanHexInt:
– (BOOL)scanHexInt:(unsigned int *)intValue

Scans an int  value from a hexadecimal representation if possible, returning it by reference in intValue. The 
hexadecimal integer representation may optionally be preceded by “0x” or “0X”. Returns YES if the 
scanner finds a valid hexadecimal integer representation, NO otherwise. Returns INT_MAX or INT_MIN 
by reference in intValue on overflow. Skips past excess digits in the case of overflow, so that the scanner’s 
position is past the entire hexadecimal representation.

Invoke this method with NULL as intValue to simply scan past a hexadecimal integer representation.

scanInt:
– (BOOL)scanInt:(int *) intValue

Scans an int  value from a decimal representation if possible, returning it by reference in intValue. Returns 
YES if the scanner finds a valid decimal integer representation, NO otherwise. Returns INT_MAX or 
INT_MIN by reference in intValue on overflow. Skips past excess digits in the case of overflow, so that the 
scanner’s position is past the entire decimal representation.

Invoke this method with NULL as intValue to simply scan past a decimal integer representation.

See also: – intValue (NSString)

scanLocation
– (unsigned int)scanLocation

Returns the character position at which the scanner begins its next scanning operation.

See also: – setScanLocation:

scanLongLong:
– (BOOL)scanLongLong:(long long *)longLongValue

Scans a long long int  value from a decimal representation if possible, returning it by reference in value. 
Returns YES if the scanner finds a valid decimal integer representation, NO otherwise. Returns 



9

 Classes: NSScanner Class Cluster

LONG_LONG_MAX or LONG_LONG_MIN by reference in longLongValue on overflow. All overflow 
digits are skipped. Skips past excess digits in the case of overflow, so that the scanner’s position is past the 
entire decimal representation.

Invoke this method with NULL as longLongValue to simply scan past a long decimal integer representation.

scanString:intoString:
– (BOOL)scanString:(NSString *)string

intoString: (NSString **)stringValue

Scans for string, and, if a match is found, returns an equivalent string object by reference in stringValue. 
Returns YES if stringValue matches the characters at the scan location; otherwise returns NO.

Invoke this method with NULL as value to simply scan past a given string.

See also: – scanUpToString:intoString:

scanUpToCharactersFromSet:intoString:
– (BOOL)scanUpToCharactersFromSet:(NSCharacterSet *)stopSet

intoString: (NSString **)stringValue

Scans the string until a character from stopSet is encountered, accumulating characters into a string that’s 
returned by reference in stringValue. Returns YES if the scanner scans any characters; otherwise returns 
NO.

Invoke this method with NULL as stringValue to simply scan up to a given set of characters.

See also: – scanCharactersFromSet:intoString:

scanUpToString:intoString:
– (BOOL)scanUpToString:(NSString *)stopString

intoString: (NSString **)stringValue

Scans the string until stopString is encountered, accumulating characters into a string that’s returned by 
reference in stringValue. Returns YES if the scanner scans any characters; otherwise returns NO.

Invoke this method with NULL as stringValue to simply scan up to a given string.

See also: – scanString:intoString:



10

setCaseSensitive:
– (void)setCaseSensitive:(BOOL)flag

If flag is YES, the scanner will distinguish case when scanning characters. If flag is NO, it will ignore case 
distinctions. NSScanners are by default not case sensitive. Note that case sensitivity doesn’t apply to the 
characters to be skipped.

See also: – caseSensitive, – setCharactersToBeSkipped:

setCharactersToBeSkipped:
– (void)setCharactersToBeSkipped:(NSCharacterSet *)skipSet

Sets the scanner to ignore the characters in skipSet when scanning its string for a value representation. For 
example, if a scanner ignores spaces and you send it a scanInt: message, it skips spaces until it finds a 
decimal digit or other character. While an element is being scanned, however, no characters are skipped. If 
you scan for something made of characters in the set to be skipped (for example, using scanInt: when the 
set of characters to be skipped is the decimal digits), the result is undefined.

The characters to be skipped are treated literally as single values. A scanner doesn’t apply its case sensitivity 
setting to these characters, and doesn’t attempt to match composed character sequences with anything in 
the set of characters to be skipped (though it does match precomposed characters individually). If you want 
to skip all vowels while scanning a string, for example, you can set the characters to be skipped to those in 
the string “AEIOUaeiou” (plus any accented variants with precomposed characters).

The default set of characters to skip is the whitespace and newline character set.

See also: – charactersToBeSkipped, + whitespaceAndNewlineCharacterSet (NSCharacterSet)

setLocale:
– (void)setLocale:(NSDictionary *)aLocale

Sets the scanner’s locale to aLocale. A scanner’s locale affects the way it interprets values from the string. 
In particular, a scanner uses the locale’s decimal separator to distinguish the integer and fractional parts of 
floating-point representations. A new scanner’s locale is by default nil , which causes it to use the default 
locale values.

See “Locales” in the “Other Features” section of the Foundation Kit documentation for more information 
on locales.

See also: – locale



11

 Classes: NSScanner Class Cluster

setScanLocation:
– (void)setScanLocation:(unsigned int)index

Sets the location at which the next scan operation begins to index. This method is useful for backing up to 
re-scan after an error. Raises an NSRangeException if index is beyond the end of the string being scanned.

Rather than setting the scan location directly to skip known sequences of characters, use scanString:
intoString:  or scanCharactersFromSet:intoString:, which allow you to verify that the expected substring 
(or set of characters) is in fact present.

See also: – scanLocation

string
– (NSString *)string

Returns the string that the scanner was created or initialized with.

See also: – locale



1

 Classes: NSSerializer

NSSerializer

Inherits From:  NSObject

Conforms To:  NSObject (NSObject)

Declared In:  Foundation/NSSerialization.h

Class Description 

The NSSerializer class provides a mechanism for creating an abstract representation of a property list. (In 
OpenStep, property lists are defined to be—and to contain—objects of these classes: NSDictionary, 
NSArray, NSString, NSData). The NSSerializer class stores this representation in an NSData object in an 
architecture-independent format, so that property lists can be used with distributed applications. 
NSSerializer’s companion class NSDeserializer declares methods that take the abstract representation and 
recreate the property list in memory.

In contrast to archiving (see the NSArchiver class specification), the serialization process preserves only 
structural information, not class information. Thus, if a property list is serialized and then deserialized, the 
objects in the resulting property list might not be of the same class as the objects in the original property 
list. However, the structure and interrelationships of the data in the resulting property list are identical to 
that in the original, with one possible exception.

The exception is that when an object graph is serialized, the mutability of the containers objects 
(NSDictionary and NSArray objects) is preserved only down to the highest node in the graph that has an 
immutable container. Thus, if an NSArray contains an NSMutableDictionary, the serialized version of this 
object graph would not preserve the mutability of the dictionary or any of the mutable objects it contained. 
Since serialization doesn’t preserve class information or—in some cases—mutability, coding (as 
implemented by NSCoder and NSArchiver) is the preferred way to make object graphs persistent.

The NSSerializer class object provides the interface to the serialization process; you don’t create instances 
of NSSerializer. You might subclass NSSerializer to modify the representation it creates, for example, to 
encrypt the data or add authentication information.

Other types of data besides property lists can be serialized using methods declared by the NSData and 
NSMutableData classes (see serializeDataAt:ofObjCType:context: and deserializeDataAt:ofObjCType:
atCursor:context:), allowing these types to be represented in an architecture-independent format. 
Furthermore, the NSObjCTypeSerializationCallBack protocol allows you to serialize and deserialize 
objects that aren’t property lists.



2

Class Methods 

serializePropertyList:
+ (NSData *)serializePropertyList:(id)aPropertyList 

Creates a data object, serializes aPropertyList into it, and returns the data object. aPropertyList must be a 
kind of NSData, NSString, NSArray, or NSDictionary.

serializePropertyList:intoData:
+ (void)serializePropertyList:(id)aPropertyList intoData:(NSMutableData *)mdata 

Serializes the property list aPropertyList in the mutable data object mdata . aPropertyList must be a kind 
of NSData, NSString, NSArray, or NSDictionary.



1

 Classes: NSSet Class Cluster

c NSSet Class Cluster

Class Cluster Description

The NSSet, NSMutableSet, and NSCountedSet classes declare the programmatic interface for objects that 
store unordered sets of objects.

Because of the nature of class clusters, the objects you create with the NSSet class cluster are not actual 
instances of NSSet or NSMutableSet. Rather, the instances belong to one of their private subclasses. (For 
convenience, we use the term set to refer to any one of these instances without specifying its exact class 
membership.) Although a set’s class is private, its interface is public, as declared by the abstract 
superclasses NSSet and NSMutableSet.Note that NSCountedSet is not part of the class cluster; it is a 
concrete subclass of NSMutableSet.

NSSet declares the programmatic interface for static sets of objects. You establish a static set’s entries when 
it’s created, and thereafter the entries can’t be modified. NSMutableSet, on the other hand, declares a 
programmatic interface for dynamic sets of objects. A dynamic—or mutable—set allows the addition and 
deletion of entries at any time, automatically allocating memory as needed. 

Use sets as an alternative to arrays when the order of elements isn’t important and performance in testing 
whether an object is contained in the set is a consideration—while arrays are ordered, testing for 
membership is slower than with sets.

Objects in a set must respond to the NSObject protocol methods hash and isEqual:. See the NSObject 
protocol for more information.

Note: If mutable objects are stored in a set, either the hash method of the objects shouldn’t depend on the 
internal state of the mutable objects or the mutable objects shouldn’t be modified while they’re in the 
set (note that it can be difficult to know whether or not a given object is in a collection).

Objects added to a set are not copied; rather, each object receives a retain message before it’s added to a set.

Generally, you create a temporary set by sending one of the set… methods to the NSSet class object. These 
methods return an NSSet object containing the elements (if any) you pass in as arguments. The set method 
is a “convenience” method to create an empty mutable set. Newly created instances of NSSet created by 
invoking the allocWithZone: method can be populated with objects using any of the init…  methods. 

The set classes adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert a 
set of one type to the other.



2

i NSSet

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject) 

Declared In: Foundation/NSSet.h



3

 Classes: NSSet Class Cluster

Class at a GlanceClass at a Glance

Purpose
An NSSet object stores an immutable set of objects.

Principal Attributes
• The objects that make up the set.

Creation

Commonly Used Methods

Primitive Methods
– count
– member:
– objectEnumerator

+ set Returns an empty set.

+ setWithArray: Returns a set containing a number of objects from an array.

+ setWithObject: Returns a set containing a single object.

+ setWithObjects: Returns a set containing a number of objects.

+ setWithObjects:count: Returns a set containing a specified number of objects.

+ setWithSet: Returns a set containing a number of objects from another set.

– allObjects Returns an array containing the set’s member objects.

– count Returns the number of objects in the set.

– containsObject: Indicates whether a given object is present in the set.



4

Class Description

The NSSet class declares the programmatic interface to an object that manages an immutable set of objects. 
NSSet provides support for the mathematical concept of a set. A set, both in its mathematical sense and in 
the implementation of NSSet, is an unordered collection of distinct elements. The NSMutableSet and 
NSCountedSet classes are provided for sets whose contents may be altered.

NSSet provides methods for querying the elements of the set. allObjects returns an array containing the 
objects in a set. anyObject returns some object in the set. count returns the number of objects currently in 
the set. member: returns the object in the set that is equal to a specified object. Additionally, the 
intersectsSet: tests for set intersection, isEqualToSet: tests for set equality, and isSubsetOfSet: tests for 
one set being a subset of another.

The objectEnumerator method provides for traversing elements of the set one by one.

NSSet’s makeObjectsPerform: and makeObjectsPerform:withObject: methods provides for sending 
messages to individual objects in the set.

Exceptions

NSSet implements the encodeWithCoder: method, which raises NSInternalInconsistencyException if the 
number of objects enumerated for encoding turns out to be unequal to the number of objects in the set. 

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

NSMutableCopying
– mutableCopyWithZone:



5

 Classes: NSSet Class Cluster

Method Types

Creating a set
+ allocWithZone:
+ set
+ setWithArray:
+ setWithObject:
+ setWithObjects:
– initWithArray:
– initWithObjects:
– initWithObjects:count:
– initWithSet:
– initWithSet:copyItems:

Counting entries
– count 

Accessing the members
– allObjects
– anyObject
– containsObject:
– makeObjectsPerform:
– makeObjectsPerform:withObject:
– member:
– objectEnumerator

Comparing sets
– isSubsetOfSet:
– intersectsSet:
– isEqualToSet:

Describing a set
– description
– descriptionWithLocale:

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized set in the specified zone. If the receiver is the NSSet class object, an 
instance of an immutable private subclass is returned; otherwise, an object of the receiver’s class is returned. 



6

Typically, you create temporary sets using the set... class methods, not the allocWithZone: and init... 
methods. Note that it’s your responsibility to free objects created with the allocWithZone: method.

See also: + set, + setWithObject:, + setWithObjects:, + setWithArray:

set
+ (id)set

Creates and returns an empty set. This method is declared primarily for the use of mutable subclasses of 
NSSet.

See also: + setWithArray: , + setWithObject:, + setWithObjects:

setWithArray:
+ (id)setWithArray: (NSArray *)anArray

Creates and returns a set containing those objects contained within the array anArray.

See also: + set, + setWithObject:, + setWithObjects:

setWithObject:
+ (id)setWithObject:(id)anObject

Creates and returns a set containing a single member, anObject. anObject receives a retain message after 
being added to the set.

See also: + setWithArray: , + set, + setWithObjects:

setWithObjects:
+ (id)setWithObjects:(id)anObject, ...

Creates and returns a set containing the objects in the argument list. The argument list is a comma-separated 
list of objects ending with nil . 

As an example, the following code excerpt creates a set containing three different types of elements 
(assuming aPath exits):



7

 Classes: NSSet Class Cluster

NSSet *mySet;

NSData *someData = [NSData dataWithContentsOfFile:aPath];  

NSValue *aValue = [NSNumber numberWithInt:5]; 

NSString *aString = @”a string”;

mySet = [NSSet setWithObjects:someData, aValue, aString, nil];

See also: + setWithArray: , + set, + setWithObject:

setWithObjects:count:
+ (id)setWithObjects:(id *)objects count:(unsigned int)count

Creates and returns a set containing count objects from the list of objects specified by objects.

setWithSet:
+ (id)setWithArray: (NSSet *)aSet

Creates and returns a set containing those objects contained within the set aSet.

Instance Methods

allObjects
– (NSArray *)allObjects

Returns an array containing the receiver’s members, or an empty array if the receiver has no members. The 
order of the objects in the array isn’t defined.

anyObject
– (id)anyObject

Returns one of the objects in the set (essentially chosen at random), or nil  if the set contains no objects.

See also: – allObjects, – objectEnumerator



8

containsObject:
– (BOOL)containsObject:(id)anObject

Returns YES if anObject is present in the set, NO otherwise.

See also: – member:

count
– (unsigned int)count

Returns the number of members in the set.

description
– (NSString *)description

Returns a string object that represents the contents of the receiver, formatted as a property list.

See also: – descriptionWithLocale:

descriptionWithLocale:
– (NSString *)descriptionWithLocale:(NSDictionary *)locale

Returns a string object that represents the contents of the receiver, formatted as a property list. locale 
specifies options used for formatting each of the receiver’s members, each of which is sent 
descriptionWithLocale:with locale passed along as the sole parameter. (If the receiver’s members do not 
respond to descriptionWithLocale:, this method sends description instead.) If you do not want the 
receiver’s members to be formatted, specify nil  for locale.

See also: – description

hash
@protocol NSObject
– (unsigned int)hash

Returns an unsigned integer that can be used as a table address in a hash table structure. For a set, hash 
returns the number of members in the set. If two sets are equal (as determined by the isEqual: method), 
they will have the same hash value.

See also: – isEqual:



9

 Classes: NSSet Class Cluster

initWithArray:
– (id)initWithArray: (NSArray *)array

Initializes a newly allocated set with the objects that are contained in array. This method steps through 
array, adding members to the new set as it goes. Each object receives a retain message as it is added to the 
set. Returns self.

See also: – initWithObjects: , – initWithObjects:count: , – initWithSet:, – initWithSet:copyItems: , 
+setWithArray:

initWithObjects:
– (id)initWithObjects: (id)anObject...

Initializes a newly allocated set with members taken from the specified list of objects. initWithObjects:  
takes a comma-separated list of objects terminated by nil . Each object receives a retain message as it is 
added to the set. Returns self.

See also: – initWithArray: , – initWithObjects:count: , – initWithSet:, – initWithSet:copyItems: , 
+setWithObjects:

initWithObjects:count:
– (id)initWithObjects: (id *)objects count:(unsigned)count

Initializes a newly allocated set with count members. This method steps through the objects array, creating 
members in the new set as it goes. Each object receives a retain message as it is added to the set. Returns 
self.

See also: – initWithArray: , – initWithObjects: , – initWithSet:, – initWithSet:copyItems:

initWithSet:
– (id)initWithSet: (NSSet *)otherSet

Initializes a newly allocated set by placing in it the objects contained in otherSet. Each object is retained as 
it is added to the receiver. Returns self.

See also: – initWithArray: , – initWithObjects: , – initWithObjects:count: , – initWithSet:copyItems:



10

initWithSet:copyItems:
– (id)initWithSet: (NSSet *)otherSet copyItems:(BOOL)flag

Initializes a newly allocated set and, if flag is NO, places in it the objects contained in otherSet. If flag is 
YES, the members of otherSet are copied, and the copies are added to the receiver. (Note that 
copyWithZone: is invoked in making these copies. Thus, the receiver’s new member objects may be 
immutable, even though their counterparts in otherSet were mutable. Also, members must conform to the 
NSCopying protocol)

This method returns self.

See also: – initWithArray: , – initWithObjects: , – initWithObjects:count: , – initWithSet:

intersectsSet:
– (BOOL)intersectsSet:(NSSet *)otherSet

Returns YES if at least one object in the receiver is also present in otherSet, NO otherwise.

See also:  – isEqualToSet:, – isSubsetOfSet:

isEqual:
@protocol NSObject
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal; otherwise returns NO. A YES return value indicates 
that the receiver and anObject both inherit from NSSet and contain the same contents (as determined by the 
isEqualToSet: method).

See also: – isEqualToSet:

isEqualToSet:
– (BOOL)isEqualToSet:(NSSet *)otherSet

Compares the receiving set to otherSet. If the contents of otherSet are equal to the contents of the receiver, 
this method returns YES. If not, it returns NO.

Two sets have equal contents if they each have the same number of members and if each member of one set 
is present in the other.

See also:  – intersectsSet:, – isEqual: (NSObject protocol), – isSubsetOfSet:



11

 Classes: NSSet Class Cluster

isSubsetOfSet:
– (BOOL)isSubsetOfSet:(NSSet *)otherSet

Returns YES if every object in the receiver is also present in otherSet, NO otherwise.

See also: – intersectsSet:, – isEqualToSet:

makeObjectsPerform:
– (void)makeObjectsPerform:(SEL)aSelector

Sends aSelector to each object in the set. The aSelector method must be one that takes no arguments. It 
shouldn’t have the side effect of modifying this set. The messages are sent using the performSelector: 
method declared in the NSObject protocol. 

See also:  – makeObjectsPerform:withObject:

makeObjectsPerformSelector:
– (void)makeObjectsPerformSelector:(SEL)aSelector

Same as makeObjectsPerform:. 

makeObjectsPerformSelector:withObject:
– (void)makeObjectsPerformSelector:(SEL)aSelector withObject: (id)anObject

Same as makeObjectsPerform:withObject:.

makeObjectsPerform:withObject:
– (void)makeObjectsPerform:(SEL)aSelector withObject: (id)anObject

Sends aSelector to each object in the set. The message is sent each time with anObject as the argument, so 
the aSelector method must be one that takes a single argument of type id. The aSelector method shouldn’t, 
as a side effect, modify this set. The messages are sent using the performSelector:withObject:  method 
declared in the NSObject protocol. 

See also: – makeObjectsPerform:



12

member:
– (id)member:(id)anObject

If anObject is present in the set (as determined by isEqual:), the object in the set is returned. Otherwise, 
member: returns nil .

See also: – containsObject:

objectEnumerator
– (NSEnumerator *)objectEnumerator

Returns an enumerator object that lets you access each object in the set:

NSEnumerator *enumerator = [mySet objectEnumerator];

id value;

while ((value = [enumerator nextObject])) {

/* code that acts on the set’s values */ 

}

When this method is used with mutable subclasses of NSSet, your code shouldn’t modify the set during 
enumeration. If you intend to modify the set, use the allObjects method to create a “snapshot” of the set’s 
members. Enumerate the snapshot, but make your modifications to the original set.

See also: – nextObject (NSEnumerator)



13

 Classes: NSSet Class Cluster

i NSMutableSet

Inherits From: NSSet : NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying (NSSet) 
NSObject (NSObject) 

Declared In: Foundation/NSSet.h

Class at a GlanceClass at a Glance

Purpose
An NSMutableSet object stores a modifiable set of objects.

Principal Attributes
• The objects that make up the set.

Creation

Commonly Used Methods

Primitive Methods
– addObject:
– removeObject:

+ setWithCapacity:
Returns An empty set with enough allocated memory to hold a specified 
number of objects.

– addObject: Adds an object to the set, if it isn’t already a member.

– removeObject: Removes an object from the set.



14

Class Description

The NSMutableSet class declares the programmatic interface to an object that manages a mutable set of 
objects. NSMutableSet provides support for the mathematical concept of a set. A set, both in its 
mathematical sense, and in the NSMutableSet implementation, is an unordered collection of distinct 
elements. The NSCountedSet class, which is a concrete subclass of NSMutableSet, supports mutable sets 
that can contain multiple instances of the same element. The NSSet class supports creating and managing 
immutable sets.

Objects are added to an NSMutableSet with addObject:, which adds a single object to the set; 
addObjectsFromArray: , which adds all objects from a specified array to the set; or with unionSet:, which 
adds all the objects from another set.

Objects are removed from an NSMutableSet using any of the methods intersectSet:, minusSet:, 
removeAllObjects, or removeObject:.

Method Types

Creating an NSMutableSet
+ allocWithZone:
+ setWithCapacity:
– initWithCapacity:

Adding and removing entries
– addObject:
– removeObject:
– removeAllObjects
– addObjectsFromArray:

Combining and recombining sets
– unionSet:
– minusSet:
– intersectSet:
– setSet:

Class Methods

allocWithZone:
+ (id)allocWithZone:(NSZone *)zone

Creates and returns an uninitialized mutable set in the specified zone. If the receiver is the NSMutableSet 
class object, an instance of a mutable private subclass is returned; otherwise, an object of the receiver’s class 
is returned.



15

 Classes: NSSet Class Cluster

Typically, you create temporary sets using the set... class methods, not the allocWithZone: and init... 
methods.

See also: – initWithCapacity: , + set (NSSet), + setWithObjects:count: (NSSet)

setWithCapacity:
+ (id)setWithCapacity:(unsigned)numItems

Creates and returns a mutable set, giving it enough allocated memory to hold numItems members. Mutable 
sets allocate additional memory as needed, so numItems simply establishes the object’s initial capacity.

See also:  – initWithCapacity: , + set (NSSet), + setWithObjects:count: (NSSet)

Instance Methods

addObject:
– (void)addObject:(id)anObject

Adds the specified object to the receiver if it is not already a member. anObject is sent a retain message as 
it is added to the receiver. If anObject is already present in the set, this method has no effect on either the 
set or on anObject.

See also: – addObjectsFromArray: , – unionSet:

addObjectsFromArray:
– (void)addObjectsFromArray: (NSArray *)anArray

Adds each object contained in anArray to the receiver, if that object is not already a member. The new 
member is retained. If a given element of the array is already present in the set, this method has no effect 
on either the set or on the array element.

See also: – addObject:, – unionSet:

initWithCapacity:
– (id)initWithCapacity: (unsigned)numItems

Initializes a newly allocated mutable set, giving it enough allocated memory to hold numItems members. 
Mutable sets allocate additional memory as needed, so numItems simply establishes the object’s initial 
capacity. Returns self.

See also: + setWithCapacity:



16

intersectSet:
– (void)intersectSet:(NSSet *)otherSet

Removes from the receiver each object that isn’t a member of otherSet. Each object that’s removed from 
the receiver is sent a release message.

See also: – removeObject:, – removeAllObjects, – minusSet:

minusSet:
– (void)minusSet:(NSSet *)otherSet

Removes from the receiver each object contained in otherSet that is also present in the receiver. Each object 
that’s successfully removed from the receiver is sent a release message. If any member of otherSet isn’t 
present in the receiving set, this method has no effect on either the receiver or on the otherSet member.

See also: – removeObject:, – removeAllObjects, – intersectSet:

removeAllObjects
– (void)removeAllObjects

Empties the set of all of its members. Each member is sent a release message. 

See also: – removeObject:, – minusSet:, – intersectSet:

removeObject:
– (void)removeObject:(id)anObject

Removes anObject from the set. The removed object is sent a release message if it was a member of the 
receiver.

See also: – removeAllObjects, – minusSet:, – intersectSet:

setSet:
– (void)setSet:(NSSet *)otherSet

Empties the receiver, then adds each object contained in otherSet to the receiver The new member is sent a 
retain message as it is added to the receiver.



17

 Classes: NSSet Class Cluster

unionSet:
– (void)unionSet:(NSSet *)otherSet

Adds each object contained in otherSet to the receiver, if that object is not already a member. The new 
member is sent a retain message as it is added to the receiver. If any member of otherSet is already present 
in the receiver, this method has no effect on either the receiver or on the otherSet member.

See also: – addObject:, – addObjectsFromArray:



1

 Classes: NSString Class Cluster

c NSString Class Cluster

Class Cluster Description

NSString objects represent character strings in OpenStep frameworks. Representing strings as objects 
allows you to use strings wherever you use other objects. It also provides the benefits of encapsulation, so 
that string objects can use whatever encoding and storage is needed for efficiency while simply appearing 
as arrays of characters. The cluster’s two public classes, NSString and NSMutableString, declare the 
programmatic interface for noneditable and editable strings, respectively.

Note: An immutable string is a text string that is defined when it is created and subsequently cannot be 
changed. An immutable string is implemented as array of Unicode characters (in other words, a text 
string). To create and manage an immutable string, use the NSString class. To construct and manage 
a string that can be changed after it has been created, use NSMutableString.

The objects you create using NSString and NSMutableStringare referred to as string objects (or, when no 
confusion will result, merely as strings). The term C string refers to the standard char * type. Because of 
the nature of class clusters, string objects aren’t actual instances of the NSString or NSMutableString 
classes but of one of their private subclasses. Although a string object’s class is private, its interface is 
public, as declared by these abstract superclasses, NSString and NSMutableString. The string classes adopt 
the NSCopying and NSMutableCopying protocols, making it convenient to convert a string of one type to 
the other.

A string object presents itself as an array of Unicode  characters (Unicode is a registered trademark of 
Unicode, Inc.). You can determine how many characters it contains with the length method and can retrieve 
a specific character with the characterAtIndex:  method. These two “primitive” methods provide basic 
access to a string object. Most use of strings, however, is at a higher level, with the strings being treated as 
single entities: You compare strings against one another, search them for substrings, combine them into new 
strings, and so on. If you need to access string objects character-by-character, you must understand the 
Unicode character encoding, specifically issues related to composed character sequences. For details see:

The Unicode Standard:  Worldwide Character Encoding, Version 1.0, Volumes 1 and 2. The Unicode 
Consortium. Addison-Wesley. ISBN 0–201–56788–1 (Volume 1) and 0–201–60845–6 (Volume 2).

Version 2.0, also published by Addison-Wesley, is forthcoming. ISBN 0–201–48345–9. 

Creating and Converting String Objects

NSString provides several means for creating instances, most based around the various character encodings 
it supports. Although string objects always present their own contents as Unicode characters, they can 
convert their contents to and from many other encodings, such as 7-bit ASCII, ISO Latin 1, EUC, and 
Shift-JIS. The availableStringEncodings class method returns the encodings supported. You can specify 
an encoding explicitly when converting a C string to or from a string object, or use the default C string 



2

encoding, which varies from platform to platform and is returned by the defaultCStringEncoding class 
method.

The simplest way to create a string object in source code is to use either the stringWithCString:  class 
method or the initWithCString:  instance method. Each takes a standard null-terminated C string in the 
default C string encoding and produces a string object. As a convenience, the Objective-C language also 
supports the @"..."  construct to create a string object constant from 7-bit ASCII encoding:

NSString *temp = @"/tmp/scratch";

Such an object is created at compile time and exists throughout your program’s execution. The compiler 
makes such object constants unique on a per-module basis, and they’re never deallocated (though you can 
retain and release them as you do any other object).

To get a C string from a string object, use the cString message. This returns a char * in the system’s default 
string encoding, or raises an exception if it can’t convert its contents to that encoding. The C string you 
receive is owned by a temporary object, though, so it will become invalid when automatic deallocation takes 
place. If you want to get a permanent C string, you must create a buffer and use one of the getCString:... 
methods to fill it. You can find out how large the buffer needs to be with the cStringLength method.

Similar methods allow you to create string objects from characters in the Unicode encoding or an arbitrary 
encoding, and to extract data in these encodings. initWithData:encoding:  and dataUsingEncoding: 
perform these conversions from and to NSData objects. You can also read a string directly from a file in the 
Unicode or default C string encoding using the stringWithContentsOfFile:  class method, and write a 
string using writeToFile:atomically: .

Finally, two types of method allow you to build a string from existing string objects. 
localizedStringWithFormat:  and its siblings use a format string as a template into which the values you 
provide (string and other objects, numerics values, and so on) are inserted. The methods 
stringByAppendingString:  and stringByAppendingFormat:  create a new string by adding one string 
after another, in the second case using a format string.

In format strings, a ‘%’ character announces a placeholder for a value, with the characters that follow 
determining the kind of value expected and how to format it. For example, a format string of “%d houses” 
expects an integer value to be substituted for the format expression “%d”. NSString supports the format 
characters defined for the ANSI C function printf() , plus ‘@’ for any object. If the object responds to the 
descriptionWithLocale: message, NSString sends that message to retrieve the text representation, 
otherwise, it sends a description message.

Note: Many compilers perform typecasting of arguments to printf() , so that printing an integer into a %f  
(floating-point) placeholder works as expected. This typecasting doesn’t occur with NSString’s 
formatted methods, so be sure to cast your values explicitly.

Value formatting is affected by the user’s current locale, which is an NSDictionary specifying number, date, 
and other kinds of formats. NSString uses only the locale’s definition for the decimal separator (given by 
the key named NSDecimalSeparator). If you use a method that doesn’t specify a locale, the string assumes 
the default locale. See “Locales” in the “Other Features” section of the Foundation Kit documentation for 
more information on locales.



3

 Classes: NSString Class Cluster

This table summarizes the most common means of creating and converting string objects:

Working with String Objects

The string classes provide methods for finding characters and substrings within strings and for comparing 
one string to another. These methods conform to the Unicode standard for determining whether two 
character sequences are equivalent. The string classes provide comparison methods that handle composed 
character sequences properly, though you do have the option of specifying a literal search when efficiency 
is important and you can guarantee some canonical form for composed character sequences.

The search and comparison methods each come in three variants. The simplest version of each searches or 
compares entire strings. Other variants allow you to alter the way comparison of composed character 
sequences is performed and to specify a specific range of characters within a string to be searched or 
compared. You can specify these options (not all options are available for every method):

Source Creation Method Extraction Method

Default C string encoding stringWithCString: getCString: (or cString)

In code @"..." compiler construct

Unicode encoding stringWithCharacters:length: getCharacters:length:

Arbitrary encoding initWithData:encoding: dataUsingEncoding:

File contents stringWithContentsOfFile: writeToFile:atomically:

Format string localizedStringWithFormat: initWithFormat:locale:

Existing strings stringByAppendingString: stringByAppendingFormat:

Search Option Effect

NSCaseInsensitiveSearch Ignores case distinctions among characters.

NSLiteralSearch

Performs a byte-for-byte comparison. Differing literal sequences (such as 
composed character sequences) that would otherwise be considered 
equivalent are considered not to match. Using this option can speed some 
operations dramatically.

NSBackwardsSearch Performs searching from the end of the range toward the beginning.

NSAnchoredSearch
Performs searching only on characters at the beginning or end of the range. 
No match at the beginning or end means nothing is found, even if a matching 
sequence of characters occurs elsewhere in the string.



4

Note: Search and comparison are currently performed as if the NSLiteralSearch option were specified. As 
the Unicode encoding becomes more widely used, and the need for more flexible comparison 
increases, the default behavior will be changed accordingly.

Substrings are only found if completely contained within the specified range. If you specify a range for a 
search or comparison method and don’t request NSLiteralSearch, the range must not break composed 
character sequences on either end; if it does you could get an incorrect result. (See the method description 
for rangeOfComposedCharacterSequenceAtIndex: for a code sample that adjusts a range to lie on 
character sequence boundaries.)

The basic search and comparison methods are these:

The rangeOfString:... methods search for a substring within the receiver. The 
rangeOfCharacterFromSet:... methods search for individual characters from a supplied set of characters. 
The compare:... methods return the lexical ordering of the receiver and the supplied string. Several other 
methods allow you to determine whether two strings are equal or whether one is the prefix or suffix of 
another, but they don’t have variants that allow you to specify search options or ranges.

In addition to searching and comparing strings, you can combine and divide them in various ways. The 
simplest way to put two strings together is to append one to the other. The stringByAppendingString:  
method returns a string object formed from the receiver and the argument supplied. You can also combine 
several strings according to a template with the initWithFormat: , stringWithFormat:  and 
stringByAppendingFormat:  methods. See “Creating and Converting String Objects” for more 
information.

You can extract substrings from the beginning or end of a string to a particular index, or from a specific 
range, with the substringToIndex:, substringFromIndex:, and substringWithRange: methods. You can 
also split a string into substrings (based on a separator string) with the componentsSeparatedByString: 
method.

Most of the NSString classes’ remaining methods are for conveniences such as changing case, quickly 
extracting numeric values, and working with encodings. There’s also a set of methods for treating strings 

Search methods Comparison methods

rangeOfString: compare:

rangeOfString:options: compare:options:

rangeOfStrings:options:range: compare:options:range:

rangeOfCharacterFromSet:

rangeOfCharacterFromSet:options:

rangeOfCharacterFromSet:options:range:



5

 Classes: NSString Class Cluster

as file system paths, described below in “Manipulating Paths”. An additional class cluster, NSScanner, 
allows you to scan a string object for numeric and string values. Both the NSString and the NSScanner class 
clusters use the NSCharacterSet class cluster for search operations. See the appropriate class specifications 
for more information.

Manipulating Paths

In addition to all the basic methods for working with character strings merely as strings, NSString also 
provides a rich set of methods for manipulating strings as file system paths. A string can extract a path’s 
directory, file name, and extension, expand a tilde expression (such as “~me”) or create one for the user’s 
home directory, and clean up paths containing symbolic links, redundant slashes, and references to “.” 
(current directory) and “..” (parent directory). These methods are listed under “Working with paths” in the 
Method Types section.

NSString represents paths generically with ‘/’ as the path separator and ‘.’ as the extension separator. 
Methods that accept strings as path arguments convert these generic representations to the proper 
system-specific form as needed. On systems with an implicit root directory, absolute paths begin with a path 
separator or with a tilde expression (“~/...” or “~user/...”). On systems that require explicit expression of 
root directories for different devices, such as Microsoft Windows 95, absolute paths begin with the name 
of the device (for example, “C:/Documents/Paper.doc” to represent the actual path “C:
\Documents\Paper.doc”). Where a device must be specified, you can do that yourself—introducing a 
system dependency—or allow the string object to add a default device.



6

i NSString

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: Foundation/NSString.h
Foundation/NSPathUtilities.h

Class Description

The NSString class declares the programmatic interface for an object that manages immutable strings. (An 
immutable string is a text string that is defined when it is created and subsequently cannot be changed. An 
immutable string is implemented as array of Unicode characters (in other words, a text string). To create 
and manage a string that can be changed after it has been created, use NSMutableString.)

The NSString class has two primitive methods—length and characterAtIndex:—that provide the basis for 
all other methods in its interface. The length method returns the total number of Unicode characters in the 
string. characterAtIndex:  gives access to each character in the string by index, with index values starting 
at 0.

NSString declares methods for finding and comparing strings. It also declares methods for reading numeric 
values from strings, for combining strings in various ways, and for converting a string to different forms 
(such as encoding and case changes). General use of these methods is presented in the class cluster 
description under “Working with String Objects”.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

NSMutableCopying
– mutableCopyWithZone:



7

 Classes: NSString Class Cluster

Method Types

Creating temporary strings
+ stringWithCString:
+ stringWithCString:length:
+ stringWithFormat:
+ localizedStringWithFormat:
+ stringWithContentsOfFile:
+ stringWithCharacters:length:
+ string
+ stringWithString:

Initializing newly allocated strings
– initWithCharactersNoCopy:length:freeWhenDone:
– initWithCharacters:length:
– initWithCStringNoCopy:length:freeWhenDone:
– initWithCString:length:
– initWithCString:
– initWithString:
– initWithFormat:
– initWithFormat:arguments:
– initWithFormat:locale:
– initWithFormat:locale:arguments:
– initWithData:encoding:
– initWithContentsOfFile:
– init

Getting a string’s length
– length

Accessing characters
– characterAtIndex:
– getCharacters:
– getCharacters:range:

Combining strings
– stringByAppendingFormat:
– stringByAppendingString:

Dividing strings
– componentsSeparatedByString:
– substringFromIndex:
– substringWithRange:
– substringToIndex:



8

Finding characters and substrings
– rangeOfCharacterFromSet:
– rangeOfCharacterFromSet:options:
– rangeOfCharacterFromSet:options:range:
– rangeOfString:
– rangeOfString:options:
– rangeOfString:options:range:

Determining line ranges
– getLineStart:end:contentsEnd:forRange:
– lineRangeForRange:

Determining composed character sequences
– rangeOfComposedCharacterSequenceAtIndex:

Converting string contents into a property list
– propertyList
– propertyListFromStringsFileFormat

Identifying and comparing strings
– caseInsensitiveCompare:
– compare:
– compare:options:
– compare:options:range:
– hasPrefix:
– hasSuffix:
– isEqualToString:
– hash

Getting a shared prefix
– commonPrefixWithString:options:

Changing case
– capitalizedString
– lowercaseString
– uppercaseString

Getting C strings
– cString
– lossyCString
– cStringLength
– getCString:
– getCString:maxLength:
– getCString:maxLength:range:remainingRange:



9

 Classes: NSString Class Cluster

Getting numeric values
– doubleValue
– floatValue
– intValue

Working with encodings
+ availableStringEncodings
+ defaultCStringEncoding
+ localizedNameOfStringEncoding:
– canBeConvertedToEncoding:
– dataUsingEncoding:
– dataUsingEncoding:allowLossyConversion:
– description
– fastestEncoding
– smallestEncoding

Working with paths
+ pathWithComponents:
– pathComponents
– completePathIntoString:caseSensitive:

matchesIntoArray:filterTypes:
– fileSystemRepresentation
– getFileSystemRepresentation:maxLength:
– isAbsolutePath
– lastPathComponent
– pathExtension
– stringByAbbreviatingWithTildeInPath
– stringByAppendingPathComponent:
– stringByAppendingPathExtension:
– stringByDeletingLastPathComponent
– stringByDeletingPathExtension
– stringByExpandingTildeInPath
– stringByResolvingSymlinksInPath
– stringByStandardizingPath
– stringsByAppendingPaths:

Writing to a file
– writeToFile:atomically:



10

Class Methods

availableStringEncodings
+ (const NSStringEncoding *)availableStringEncodings

Returns a zero-terminated list of the encodings that string objects support in the application’s environment. 
Among the more commonly used are:

NSASCIIStringEncoding
NSNEXTSTEPStringEncoding
NSUnicodeStringEncoding
NSISOLatin1StringEncoding
NSISOLatin2StringEncoding
NSSymbolStringEncoding

See the “Types and Constants” section of the Foundation Kit documentation for a complete list and 
descriptions of supported encodings.

See also: + localizedNameOfStringEncoding:

defaultCStringEncoding
+ (NSStringEncoding)defaultCStringEncoding

Returns the C string encoding assumed for any method accepting a C string as an argument (these methods 
use CString in the keywords for such arguments; for example, stringWithCString: ). The default C string 
encoding is determined from system information, and can’t be changed programmatically for an individual 
process. See the description of NSStringEncoding in the “Types and Constants” section for a full list of 
supported encodings.

localizedNameOfStringEncoding:
+ (NSString *)localizedNameOfStringEncoding:(NSStringEncoding)encoding

Returns a human-readable string giving the name of encoding in the current locale’s language. See 
“Locales” in the “Other Features” section of the Foundation Kit documentation for more information on 
locales.



11

 Classes: NSString Class Cluster

localizedStringWithFormat:
+ (NSString *)localizedStringWithFormat: (NSString *)format, ...

Returns a string created by using format as a template into which the following argument values are 
substituted according to the formatting information of the current locale. For example, this code excerpt 
creates a string from another string and an int :

NSString *myString = [NSString localizedStringWithFormat:@"%@: %d\n",

@"Cost", 32];

The resulting string has the value “Cost: 32\n”.

See “Creating and Converting String Objects” in the class cluster description for more information.

pathWithComponents:
+ (NSString *)pathWithComponents:(NSArray *)components

Returns a string built from the strings in components, by concatenating them with a path separator between 
each pair. To create an absolute path, use a slash mark “/” as the first component. To include a trailing path 
divider, use an empty string as the last component. This method doesn’t clean up the path created; use 
stringByStandardizingPath to resolve empty components, references to the parent directory, and so on.

On systems that require an explicit root device for an absolute path, this method add a default device 
specifier (such as “C:” on Windows systems).

See also: – pathComponents

string
+ (id)string

Returns an empty string.

See also: – init

stringWithCharacters:length:
+ (id)stringWithCharacters: (const unichar *)chars length:(unsigned int)length

Returns a string containing length characters taken from chars, which may not be NULL. This method 
doesn’t stop short at a zero character.

See also: – initWithCharacters:length:



12

stringWithContentsOfFile:
+ (id)stringWithContentsOfFile: (NSString *)path 

Returns a string created by reading characters from the file named by path. If the contents begin with a 
byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode characters; otherwise interprets 
the contents as characters in the default C string encoding. Returns nil  if the file can’t be opened.

See also: – initWithContentsOfFile: , + defaultCStringEncoding

stringWithCString:
+ (id)stringWithCString: (const char *)cString

Returns a string containing derived from the characters in cString, which must end with a zero character 
and which may not be NULL. cString should contain characters in the default C string encoding. If the 
argument passed to stringWithCString  is not a NULL-terminated C string, the results are undefined.

See also: – initWithCString: , + defaultCStringEncoding

stringWithCString:length:
+ (id)stringWithCString: (const char *)cString length:(unsigned int)length

Returns a string containing characters derived from cString, which may not be NULL. cString should 
contain characters in the default C string encoding. This method converts length * sizeof(char) bytes from 
cString, and doesn’t stop short at a zero character.

See also: – initWithCString:length: , + defaultCStringEncoding

stringWithFormat:
+ (id)stringWithFormat: (NSString *)format, ...

Returns a string created in the manner of localizedStringWithFormat: , but using the default locale to 
format numbers. See “Creating and Converting String Objects” in the class cluster description for more 
information.

See also: – initWithFormat:



13

 Classes: NSString Class Cluster

stringWithString:
+ (id)stringWithString: (NSString *)aString

Returns a string created by copying the characters from aString.

See also: – initWithString:

Instance Methods

canBeConvertedToEncoding:
– (BOOL)canBeConvertedToEncoding:(NSStringEncoding)encoding

Returns YES if the receiver can be converted to encoding without loss of information. Returns NO if 
characters would have to be changed or deleted in the process of changing encodings.

If you plan to actually convert a string, the dataUsingEncoding:... methods simply return nil  on failure, so 
you can avoid the overhead of invoking this method yourself by simply trying to convert the string.

See also: – dataUsingEncoding:allowLossyConversion:

capitalizedString
– (NSString *)capitalizedString

Returns a string with the first character from each word in the receiver changed to its corresponding 
uppercase value, and all remaining characters set to their corresponding lowercase values. A “word” here 
is any sequence of characters delimited by spaces, tabs, or line terminators (listed under getLineStart:end:
contentsEnd:forRange:). Other common word delimiters such as hyphens and other punctuation aren’t 
considered, so this method may not generally produce the desired results for multi-word strings.

Case transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the 
originals. See lowercaseString for an example.

See also: – lowercaseString, – uppercaseString

caseInsensitiveCompare:
– (NSComparisonResult)caseInsensitiveCompare:(NSString *)aString

This convenience method invokes compare:options: with NSCaseInsensitiveSearch as the only option.



14

characterAtIndex:
– (unichar)characterAtIndex: (unsigned int)index

Returns the character at the array position given by index. Raises an NSRangeException if index lies beyond 
the end of the string.

See also: – getCharacters:, – getCharacters:range:

commonPrefixWithString:options:
– (NSString *)commonPrefixWithString: (NSString *)aString

options:(unsigned int)mask

Returns a string containing characters that the receiver and aString have in common, starting from the 
beginning of each up to the first characters that aren’t equivalent. The returned string is based on the 
characters of the receiver. For example, if the receiver is “Ma¨dchen” and aString is “Mädchenschule”, the 
string returned is “Ma¨dchen”, not “Mädchen”. The following search options may be specified in mask by 
combining them with the C bitwise OR operator:

NSCaseInsensitiveSearch
NSLiteralSearch

See “Working with String Objects” in the class cluster description for details on these options.

See also: – hasPrefix:

compare:
– (NSComparisonResult)compare:(NSString *)aString

Invokes compare:options: with no options.

See also: – compare:options:range:, – caseInsensitiveCompare:, – isEqualToString:

compare:options:
– (NSComparisonResult)compare:(NSString *)aString options:(unsigned int)mask

Invokes compare:options:range: with mask as the options and the receiver’s full extent as the range.

See also: – caseInsensitiveCompare:, – isEqualToString:



15

 Classes: NSString Class Cluster

compare:options:range:
– (NSComparisonResult)compare:(NSString *)aString

options:(unsigned int)mask
range:(NSRange)aRange

Returns NSOrderedAscending if the substring of the receiver given by aRange precedes aString in lexical 
ordering, NSOrderedSame if the substring of the receiver and aString are equivalent in lexical value, and 
NSOrderedDescending if the substring of the receiver follows aString. You can specify the following 
options in mask by combining them with the C bitwise OR operator:

NSCaseInsensitiveSearch
NSLiteralSearch

See “Working with String Objects” in the class cluster description for details on these options.

Raises an NSRangeException if any part of aRange lies beyond the end of the string.

See also: – caseInsensitiveCompare:, – isEqualToString:

completePathIntoString:caseSensitive:matchesIntoArray:filterTypes:
– (unsigned int)completePathIntoString:(NSString **)outputName

caseSensitive:(BOOL)flag
matchesIntoArray: (NSArray **)outputArray 
filterTypes:(NSArray *)filterTypes

Attempts to perform file- name completion on the receiver, interpreting it as a path in the file system and 
returning by reference in outputName the longest path that matches the receiver. Considers case if flag is 
YES. If outputArray is non-NULL, returns all matching file names in an NSArray given by outputArray. If 
an array of strings is provided in filterTypes, considers only paths whose extensions (not including the 
extension separator) match one of those strings.

Returns 0 if no matches are found and 1 if exactly one match is found. In the case of multiple matches, 
returns the actual number of matching paths if outputArray is provided, or simply a positive value if 
outputArray is NULL. Hence, you can check for the existence of matches without retrieving by passing 
NULL as outputArray 

componentsSeparatedByString:
– (NSArray *)componentsSeparatedByString:(NSString *)separator

Returns an NSArray containing substrings from the receiver that have been divided by separator. The 
substrings in the array appear in the order they did in the receiver. If the string begins or ends with the 
separator, the first or last substring, respectively, is empty. For example, this code excerpt:



16

NSString *list = @"wrenches, hammers, saws";

NSArray *listItems = [list componentsSeparatedByString:@", "];

produces an array with these contents:

If list begins with a comma and space—for example, “, wrenches, hammers, saws”—the array has these 
contents:

If list has no separators—for example, “wrenches”—the array contains the string itself, in this case 
“wrenches”.

See also: – componentsJoinedByString: (NSArray class cluster), – pathComponents

cString
– (const char *)cString

Returns a representation of the receiver as a C string in the default C string encoding. The returned C string 
will be automatically freed just as a returned object would be released; your code should copy the C string 
or use getCString: if it needs to store the C string outside of the autorelease context in which the C string 
is created.

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C string 
encoding without loss of information. Use canBeConvertedToEncoding: if necessary to check whether a 
string can be losslessly converted to the default C string encoding. If it can’t, use lossyCString or 

Index Substring

0 wrenches

1 hammers

2 saws

Index Substring

0 (empty string) 

1 wrenches

2 hammers

3 saws



17

 Classes: NSString Class Cluster

dataUsingEncoding:allowLossyConversion: to get a C string representation with some loss of 
information.

See also: – getCString:, – canBeConvertedToEncoding:, + defaultCStringEncoding, – cStringLength, 
– getCharacters:

cStringLength
– (unsigned int)cStringLength

Returns the length in char-sized units of the receiver’s C string representation in the default C string 
encoding.

Raises 0 if the receiver can’t be represented in the default C string encoding without loss of information. 
You can also use canBeConvertedToEncoding: to check whether a string can be losslessly converted to 
the default C string encoding. If it can’t, use lossyCString to get a C string representation with some loss 
of information, then check its length explicitly using the ANSI function strlen().

See also: – cString, – canBeConvertedToEncoding:, + defaultCStringEncoding, – length

dataUsingEncoding:
– (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

Invokes dataUsingEncoding:allowLossyConversion: with NO as the argument for allowing lossy 
conversion.

dataUsingEncoding:allowLossyConversion:
– (NSData *)dataUsingEncoding:(NSStringEncoding)encoding

allowLossyConversion:(BOOL)flag

Returns an NSData object containing a representation of the receiver in encoding. Returns nil  if flag is NO 
and the receiver can’t be converted without losing some information (such as accents or case). If flag is YES 
and the receiver can’t be converted without losing some information, some characters may be removed or 
altered in conversion. For example, in converting a character from NSUnicodeStringEncoding to 
NSASCIIStringEncoding, the character ‘Á’ becomes ‘A’, losing the accent.

The result of this method, when lossless conversion is made, is the default “plain text” format for encoding 
and is the recommended way to save or transmit a string object.

See also: – canBeConvertedToEncoding:



18

description
@protocol NSObject
– (NSString *)description

Returns self.

doubleValue
– (double)doubleValue

Returns the floating-point value of the receiver’s text as a double, skipping whitespace at the beginning of 
the string. Returns HUGE_VAL or –HUGE_VAL on overflow, 0.0 on underflow. Also returns 0.0 if the 
receiver doesn’t begin with a valid text representation of a floating-point number.

This method uses formatting information stored in the default locale; use an NSScanner for localized 
scanning of numeric values from a string.

See also: – intValue, – floatValue, – scanDouble: (NSScanner)

fastestEncoding
– (NSStringEncoding)fastestEncoding

Returns the fastest encoding to which the receiver may be converted without loss of information. “Fastest” 
applies to retrieval of characters from the string. This encoding may not be space efficient.

See also: – smallestEncoding, – getCharacters:range:

fileSystemRepresentation
– (const char *)fileSystemRepresentation

Returns a file system specific representation of the receiver, as described for 
getFileSystemRepresentation:maxLength:. The returned C string will be automatically freed just as a 
returned object would be released; your code should copy the representation or use 
getFileSystemRepresentation:maxLength: if it needs to store the representation outside of the 
autorelease context in which the representation is created.

Raises an NSCharacterConversionException if the receiver can’t be represented in the file system’s 
encoding.



19

 Classes: NSString Class Cluster

floatValue
– (float)floatValue

Returns the floating-point value of the receiver’s text as a float, skipping whitespace at the beginning of the 
string. Returns HUGE_VAL or –HUGE_VAL on overflow, 0.0 on underflow. Also returns 0.0 if the receiver 
doesn’t begin with a valid text representation of a floating-point number.

This method uses formatting information stored in the default locale; use an NSScanner for localized 
scanning of numeric values from a string.

See also: – doubleValue, – intValue, – scanFloat: (NSScanner)

getCharacters:
– (void)getCharacters:(unichar *)buffer

Invokes getCharacters:range: with buffer and the entire extent of the receiver as the range. buffer must be 
large enough to contain all the characters in the string.

See also: – length

getCharacters:range:
– (void)getCharacters:(unichar *)buffer range:(NSRange)aRange

Copies characters from aRange in the receiver into buffer, which must be large enough to contain them. 
Does not add a zero character. Raises an NSRangeException if any part of aRange lies beyond the end of 
the string.

The abstract implementation of this method uses characterAtIndex:  repeatedly, correctly extracting the 
characters, though very inefficiently. Subclasses should override it to provide a fast implementation.

getCString:
– (void)getCString:(char *)buffer

Invokes getCString:maxLength:range:remainingRange: with NSMaximumStringLength as the 
maximum length, the receiver’s entire extent as the range, and NULL for the remaining range. buffer must 
be large enough to contain the resulting C string plus a terminating zero character (which this method adds).

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C string 
encoding without loss of information. Use canBeConvertedToEncoding: if necessary to check whether a 
string can be losslessly converted to the default C string encoding. If it can’t, use lossyCString or 



20

dataUsingEncoding:allowLossyConversion: to get a C string representation with some loss of 
information.

See also: – cStringLength, – canBeConvertedToEncoding:, + defaultCStringEncoding, 
– getCharacters:

getCString:maxLength:
– (void)getCString:(char *)buffer maxLength:(unsigned int)maxLength

Invokes getCString:maxLength:range:remainingRange: with maxLength as the maximum length in 
char-sized units, the receiver’s entire extent as the range, and NULL for the remaining range. buffer must 
be large enough to contain maxLength chars plus a terminating zero char (which this method adds).

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C string 
encoding without loss of information. Use canBeConvertedToEncoding: if necessary to check whether a 
string can be losslessly converted to the default C string encoding. If it can’t, use lossyCString or 
dataUsingEncoding:allowLossyConversion: to get a C string representation with some loss of 
information.

See also: – cStringLength, – canBeConvertedToEncoding:, + defaultCStringEncoding, 
– getCharacters:

getCString:maxLength:range:remainingRange:
– (void)getCString:(char *)buffer

maxLength:(unsigned int)maxLength
range:(NSRange)aRange
remainingRange:(NSRange *)leftoverRange

Converts the receiver’s characters to the default C string encoding and stores them in buffer. buffer must be 
large enough to contain maxLength chars plus a terminating zero char (which this method adds). Copies 
and converts as many character as possible from aRange, and stores the range of those not converted in the 
NSRange given by leftoverRange (if it’s non-NULL). Raises an NSRangeException if any part of aRange 
lies beyond the end of the string.

Raises an NSCharacterConversionException if the receiver can’t be represented in the default C string 
encoding without loss of information. Use canBeConvertedToEncoding: if necessary to check whether a 
string can be losslessly converted to the default C string encoding. If it can’t, use lossyCString or 
dataUsingEncoding:allowLossyConversion: to get a C string representation with some loss of 
information.

See also: – cStringLength, – canBeConvertedToEncoding:, + defaultCStringEncoding, 
– getCharacters:



21

 Classes: NSString Class Cluster

getFileSystemRepresentation:maxLength:
– (BOOL)getFileSystemRepresentation:(char *)buffer maxLength:(unsigned int)maxLength

Interprets the receiver as a system-independent path, filling buffer with a C string in a format and encoding 
suitable for use with file system calls. This is done by replacing the abstract path and extension separator 
characters (‘/’ and ‘.’ respectively) with their equivalents for the operating system. For example, on 
Microsoft Windows 95 the receiver “C:/Working/Sample.tiff” is returned as the C string “C:
\Working\Sample.tiff”.

buffer must be large enough to contain maxLength chars plus a terminating zero char (which this method 
adds). Returns YES if buffer is successfully filled with a file system representation, NO if not (for example, 
if maxLength would be exceeded). Also returns NO if the receiver can’t be represented in the file system’s 
encoding.

If the system-specific path or extension separator appear in the abstract representation, the characters 
they’re converted to depend on the system (unless they’re identical to the abstract separators). On Windows 
95, for example, a ‘\’ character is converted to ‘/’.

See also: – fileSystemRepresentation

getLineStart:end:contentsEnd:forRange:
+ (void)getLineStart:(unsigned int *)startIndex

end:(unsigned int *)lineEndIndex
contentsEnd:(unsigned int *)contentsEndIndex
forRange:(NSRange)aRange

Returns by reference the indexes of the smallest range of lines containing aRange. A line is delimited by 
any of these characters, the longest possible sequence being preferred to any shorter:

• U+000D (\r  or CR)
• U+2028 (Unicode line separator)
• U+000A (\n or LF)
• U+2029 (Unicode paragraph separator)
• \r\n , in that order (also known as CRLF)

When this method returns, startIndex contains the index of the first character of the line, which is at or 
before the location of aRange; lineEndIndex contains the index of the first character past the line 
terminator; and contentsEndIndex contains the index of the first character of the line terminator itself. You 
may pass a NULL pointer for any of these arguments, in which case the work to compute the value isn’t 
performed.

You can use the results of this method to construct ranges for lines by using the start index as the range’s 
location and the difference between the end index and the start index as the range’s length.

See also: – lineRangeForRange:, – substringWithRange:



22

hash
– (unsigned int)hash

Returns an unsigned integer that can be used as a hash table address. If two string objects are equal (as 
determined by the isEqualToString: method), they must have the same hash value. The abstract 
implementation of this method fulfills this requirement, so subclasses of NSString shouldn’t override it.

hasPrefix:
– (BOOL)hasPrefix:(NSString *)aString

Returns YES if aString matches the beginning characters of the receiver, NO otherwise. Returns NO if 
aString is the null string. This method is a convenience for comparing strings using the NSAnchoredSearch 
option. See “Working with String Objects” in the class cluster description for more information.

See also: – hasSuffix:, – compare:options:range:

hasSuffix:
– (BOOL)hasSuffix:(NSString *)aString

Returns YES if aString matches the ending characters of the receiver, NO otherwise. Returns NO if aString 
is the null string. This method is a convenience for comparing strings using the NSAnchoredSearch and 
NSBackwardsSearch options. See “Working with String Objects” in the class cluster description for more 
information.

See also: – hasPrefix:, – compare:options:range:

init
– (id)init

Initializes the receiver, a newly allocated NSString, to contain no characters. Returns self.

See also: + string

initWithCharacters:length:
– (id)initWithCharacters: (const unichar *)characters length:(unsigned int)length

Initializes the receiver, a newly allocated NSString, by copying length characters from characters, which 
may not be NULL. This method doesn’t stop short at a zero character. Returns self.

See also: + stringWithCharacters:length:



23

 Classes: NSString Class Cluster

initWithCharactersNoCopy:length:freeWhenDone:
– (id)initWithCharactersNoCopy: (unichar *)characters

length:(unsigned int)length
freeWhenDone:(BOOL)flag

Initializes the receiver, a newly allocated NSString, to contain length characters from characters, which 
may not be NULL. This method doesn’t stop short at a zero character. The receiver becomes the owner of 
characters; if flag is YES the receiver will free the memory when it no longer needs them, but if flag is NO 
it won’t. Returns self.

See also: + stringWithCharacters:length:

initWithContentsOfFile:
– (id)initWithContentsOfFile: (NSString *)path

Initializes the receiver, a newly allocated NSString, by reading characters from the file named by path. If 
the contents begin with a byte-order mark (U+FEFF or U+FFFE), interprets the contents as Unicode 
characters; otherwise interprets the contents as characters in the default C string encoding. Returns self, or 
nil  if the file can’t be opened.

See also: + stringWithContentsOfFile: , + defaultCStringEncoding

initWithCString:
– (id)initWithCString: (const char *)cString

Initializes the receiver, a newly allocated NSString, by converting the characters in cString from the default 
C string encoding into the Unicode character encoding. cString must be a zero-terminated C string in the 
default C string encoding, and may not be NULL. Returns self.

Note: To create an immutable string from an immutable CString buffer, do not attempt to use this method. 
Instead, use initWithCStringNoCopy:length:freeWhenDone: .

See also: + stringWithCString: , -initWithCStringNoCopy:length:freeWhenDone, 
+ defaultCStringEncoding

initWithCString:length:
– (id)initWithCString: (const char *)cString length:(unsigned int)length

Initializes the receiver, a newly allocated NSString, by converting the characters of cString from the default 
C string encoding into the Unicode character encoding. This method converts length * sizeof(char) bytes 



24

from cString, and doesn’t stop short at a zero character. cString must contain bytes in the default C string 
encoding, and may not be NULL. Returns self.

See also: + stringWithCString:length: , + defaultCStringEncoding

initWithCStringNoCopy:length:freeWhenDone:
– (id)initWithCStringNoCopy: (char *)cString

length:(unsigned int)length
freeWhenDone:(BOOL)flag

Initializes the receiver, a newly allocated NSString, by converting the characters of cString from the default 
C string encoding into the Unicode character encoding. This method converts length * sizeof(char) bytes 
from cString, and doesn’t stop short at a zero character. cString must be contain characters in the default C 
string encoding, and may not be NULL. The receiver becomes the owner of cString; if flag is YES it will 
free the memory when it no longer needs it, but if flag is NO it won’t. Returns self.

Note: You can use this method to create an immutable string from an immutable (const char*) C-string 
buffer. If you receive a warning message, you can disregard it; its purpose is simply to warn you that 
the C string passed as the method’s first argument may be modified. If you make certain that the 
freeWhenDone argument to initWithStringNoCopy  is NO, the C string passed as the method’s first 
argument cannot be modified, so you can safely use initWithStringNoCopy  to create an immutable 
string from an immutable (const char*) C-string buffer.

See also: + stringWithCString:length: , + defaultCStringEncoding

initWithData:encoding:
– (id)initWithData: (NSData *)data encoding:(NSStringEncoding)encoding

Initializes the receiver, a newly allocated NSString, by converting the bytes in data into Unicode characters. 
data must be an NSData object containing bytes in encoding and in the default plain text format (that is, 
pure content with no attribute or other markup) for that encoding. Returns self.

initWithFormat:
– (id)initWithFormat: (NSString *)format, ...

Invokes initWithFormat:locale:arguments:  with nil  as the locale.

See also: + stringWithFormat:



25

 Classes: NSString Class Cluster

initWithFormat:arguments:
– (id)initWithFormat: (NSString *)format arguments:(va_list)argList

Invokes initWithFormat:locale:arguments:  with nil  as the locale.

See also: + stringWithFormat:

initWithFormat:locale:
– (id)initWithFormat: (NSString *)format 

locale:(NSDictionary *)dictionary, ...

Invokes initWithFormat:locale:arguments:  with dictionary as the locale.

See also: + localizedStringWithFormat:

initWithFormat:locale:arguments:
– (id)initWithFormat: (NSString *)format 

locale:(NSDictionary *)dictionary
arguments:(va_list)argList

Initializes a newly allocated string object, using format as a template into which the following argument 
values are substituted according to the formatting information of the current locale. For example, this code 
excerpt creates a string from myArgs, which is derived from a string object with the value “Cost:” and an 
int  with the value 32:

va_list myArgs;

NSDictionary *myLocale;    /* Assume this exists. */

NSString *myString = [[NSString alloc] initWithFormat:@"%@: %d\n",

locale:[[NSUserDefaults standardUserDefaults] dictionaryRepresentation]

arguments:myArgs];

(Note the message construct for retrieving the user’s locale.). The resulting string has the value “Cost: 
32\n”.

See “Creating and Converting String Objects” in the class cluster description for more information. Returns 
self.

See also: – initWithFormat:arguments:



26

initWithString:
– (id)initWithString: (NSString *)aString

Initializes the receiver, a newly allocated NSString, by copying the characters from aString. Returns self.

See also: + stringWithString:

intValue
– (int)intValue

Returns the integer value of the string’s text, assuming a decimal representation and skipping whitespace 
at the beginning of the string. Returns INT_MAX or INT_MIN on overflow. Returns 0 if the receiver 
doesn’t begin with a valid decimal text representation of a number.

This method uses formatting information stored in the default locale; use an NSScanner for localized 
scanning of numeric values from a string.

See also: – doubleValue, – floatValue, – scanInt: (NSScanner)

isAbsolutePath
– (BOOL)isAbsolutePath

Interprets the receiver as a path, returning YES if it represents an absolute path, NO if it represents a relative 
path. See “Manipulating Paths” in the class description for more information on paths.

isEqualToString:
– (BOOL)isEqualToString:(NSString *)aString

Returns YES if aString is equivalent to the receiver (if they have the same id or if they compare as 
NSOrderedSame), NO otherwise. When you know both objects are strings, this method is a faster way to 
check equality than isEqual:.

See also: – compare:options:range:



27

 Classes: NSString Class Cluster

lastPathComponent
– (NSString *)lastPathComponent

Returns the last path component of the receiver. The following table illustrates the effect of 
lastPathComponent on a variety of different paths:

length
– (unsigned int)length

Returns the number of Unicode characters in the receiver. This includes the individual characters of 
composed character sequences, so you can’t use this method to determine if a string will be visible when 
printed, or how long it will appear.

See also: – cStringLength, – sizeWithAttributes:  (NSString Additions in the Application Kit)

lineRangeForRange:
+ (NSRange)lineRangeForRange:(NSRange)aRange

Returns the smallest range of lines containing aRange, including the characters that terminate the line.

See also: – getLineStart:end:contentsEnd:forRange:, – substringWithRange:

lossyCString
– (const char *)lossyCString

Returns a representation of the receiver as a C string in the default C string encoding, possibly losing 
information in converting to that encoding (and not raising an exception as cString does). The returned C 
string will be automatically freed just as a returned object would be released; your code should copy the C 

Receiver’s String Value String Returned

“/tmp/scratch.tiff” “scratch.tiff”

“/tmp/scratch” “scratch”

“/tmp/” “tmp”

“scratch” “scratch”

“/” “” (an empty string)



28

string or use getCString: if it needs to store the C string outside of the autorelease context in which the C 
string is created.

See also: – getCString:, – canBeConvertedToEncoding:, + defaultCStringEncoding, – cStringLength, 
– getCharacters:

lowercaseString
– (NSString *)lowercaseString

Returns a string with each character from the receiver changed to its corresponding lowercase value. Case 
transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the 
originals. The result of this statement:

lcString = [myString lowercaseString];

might not be equal to this:

lcString = [[myString uppercaseString] lowercaseString];

For example, the uppercase form of “ß” in German is “SS”, so converting “eßen” to uppercase then 
lowercase produces this sequence of strings:

“eßen”
“ESSEN”
“essen”

See also: – capitalizedString, – uppercaseString

pathComponents
– (NSArray *)pathComponents

Interprets the receiver as a path, returning an array of strings containing, in order, each path component of 
the receiver. The strings in the array appear in the order they did in the receiver. If the string begins or ends 
with the path separator then the first or last component, respectively, is empty. Empty components (caused 
by consecutive path separators) are deleted. For example, this code excerpt:

NSString *path = @"tmp/scratch";

NSArray *pathComponents = [path componentsSeparatedByString:@"/"];

produces an array with these contents:

Index Path Component

0 tmp



29

 Classes: NSString Class Cluster

If the receiver begins with a slash—for example, “/tmp/scratch”—the array has these contents:

If the receiver has no separators—for example, “scratch”—the array contains the string itself, in this case 
“scratch”.

See also: + pathWithComponents:, – stringByStandardizingPath, – componentsSeparatedByString:

pathExtension
– (NSString *)pathExtension

Interprets the receiver as a path, returning the receiver’s extension, if any (not including the extension 
divider). The following table illustrates the effect of pathExtension on a variety of different paths:

propertyList
– (id)propertyList

Parses the receiver as a text representation of a property list, returning an NSString, NSData, NSArray, or 
NSDictionary object according to the topmost element. Arrays are delimited by parentheses, with 

1 scratch

Index Path Component

0 “/”

1 “tmp”

2 “scratch”

Receiver’s String Value String Returned

“/tmp/scratch.tiff” “tiff”

“/tmp/scratch” “” (an empty string)

“/tmp/” “” (an empty string)

“/tmp/scratch..tiff” “tiff”

Index Path Component



30

individual elements separated by commas and optional spaces. Dictionaries are delimited by curly braces, 
with key-value pairs separated by semicolons, the key and value separated by an equals sign. Strings appear 
as plain text if they contain no whitespace, or enclosed in straight quotation marks if they do. Data items 
are delimited by angle brackets and encoded as hexadecimal digits. Here’s a short example of a text-format 
property list:

{

Title = "Star Wars";

Director = "Lucas, George";

Cast = (

"Hamill, Mark",

"Fisher, Carrie",

"Ford, Harrison"

);

"Thumbnail Image" = <040b7479 70656473 (many more sets of digits)  8484074e>

}

See also: – propertyListFromStringsFileFormat , + stringWithContentsOfFile:

propertyListFromStringsFileFormat
– (NSDictionary *)propertyListFromStringsFileFormat

Returns a dictionary object initialized with the keys and values found in the receiver. The receiver must 
contain text in the format used for .strings files. In this format, keys and values are separated by an equals 
sign, and each key-value pair is terminated with a semicolon. The value is optional, however; if not present, 
the equals sign is also omitted. The keys and values themselves are always strings enclosed in straight 
quotation marks. Comments may be included, delimited by /*  and */  as for ANSI C comments. Here’s a 
short example of a strings file:

/* Question in confirmation panel for quitting. */

"Confirm Quit" = "Are you sure you want to quit?";

/* Message when user tries to close unsaved document */

"Close or Save" = "Save changes before closing?";

/* Word for Cancel */

"Cancel";

See also: – propertyList , + stringWithContentsOfFile:

rangeOfCharacterFromSet:
– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

Invokes rangeOfCharacterFromSet:options: with no options.



31

 Classes: NSString Class Cluster

rangeOfCharacterFromSet:options:
– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

options:(unsigned int)mask

Invokes rangeOfCharacterFromSet:options:range: with mask for the options and the entire extent of the 
receiver for the range.

rangeOfCharacterFromSet:options:range:
– (NSRange)rangeOfCharacterFromSet:(NSCharacterSet *)aSet

options:(unsigned int)mask
range:(NSRange)aRange

Returns the range in the receiver of the first character found from aSet. The search is restricted to characters 
in the receiver within aRange. The following options may be specified in mask by combining them with the 
C bitwise OR operator:

NSCaseInsensitiveSearch
NSLiteralSearch
NSBackwardsSearch

See “Working with String Objects” in the class cluster description for details on these options. Raises an 
NSRangeException if any part of aRange lies beyond the end of the string.

Since precomposed characters in aSet can match composed characters sequences in the receiver, the length 
of the returned range can be greater than one. For example, if you search for “ü” in the string “stru¨del”, the 
returned range is {3,2}.

rangeOfComposedCharacterSequenceAtIndex:
– (NSRange)rangeOfComposedCharacterSequenceAtIndex:(unsigned int)anIndex

Returns the range in the receiver of the composed character sequence located at anIndex. The composed 
character sequence includes the first base character found at or before anIndex, and its length includes the 
base character and all non-base characters following the base character.

Raises an NSRangeException if anIndex lies beyond the end of the string.

If you want to write a method to adjust an arbitrary range so that it includes the composed character 
sequences on its boundaries, you can create a method such as this: 



32

- (NSRange)adjustRange:(NSRange)aRange

{

unsigned int index, endIndex;

NSRange newRange, endRange;

index = aRange.location;

newRange = [self rangeOfComposedCharacterSequenceAtIndex:index];

index = aRange.location + aRange.length;

endRange = [self rangeOfComposedCharacterSequenceAtIndex:index];

endIndex = endRange.location + endRange.length;

newRange.length = endIndex - newRange.location;

return newRange;

}

adjustRange: begins by correcting the location for the beginning of aRange, storing it in newRange. It then 
works at the end of aRange, correcting the location and storing it in endIndex. Finally, it sets the length of 
newRange to the difference between endIndex and the new range’s location.

rangeOfString:
– (NSRange)rangeOfString:(NSString *)aString

Invokes rangeOfString:options: with no options.

rangeOfString:options:
– (NSRange)rangeOfString:(NSString *)aString options:(unsigned int)mask

Invokes rangeOfString:options:range: with the options specified by mask and the entire extent of the 
receiver as the range.

rangeOfString:options:range:
– (NSRange)rangeOfString:(NSString *)subString

options:(unsigned int)mask
range:(NSRange)aRange

Returns an NSRange giving the location and length of the first occurrence of subString within aRange in 
the receiver. If subString isn’t found, the length of the returned NSRange is zero. The length of the returned 
range and that of subString may differ if equivalent composed character sequences are matched. The 
following options may be specified in mask by combining them with the C bitwise OR operator:



33

 Classes: NSString Class Cluster

NSCaseInsensitiveSearch
NSLiteralSearch
NSBackwardsSearch
NSAnchoredSearch

See “Working with String Objects” in the class cluster description for details on these options. Raises an 
NSRangeException if any part of aRange lies beyond the end of the string. Returns a range of 
{NSNotFound, 0} if subString is the null string.

smallestEncoding
– (NSStringEncoding)smallestEncoding

Returns the smallest encoding to which the receiver can be converted without loss of information. This 
encoding may not be the fastest for accessing characters, but is very space-efficient. This method itself may 
take some time to execute.

See also: – fastestEncoding, – getCharacters:range:

stringByAbbreviatingWithTildeInPath
– (NSString *)stringByAbbreviatingWithTildeInPath

Returns a string representing the receiver as a path, with a tilde, “~”, substituted for the full path to the 
current user’s home directory, or “~user” for a user other than the current user. Returns the receiver 
unaltered if it doesn’t begin with the user’s home directory.

See also: – stringByExpandingTildeInPath

stringByAppendingFormat:
– (NSString *)stringByAppendingFormat: (NSString *)format, ...

Returns a string made by appending to the receiver a string constructed from format and following 
arguments in the manner of stringWithFormat: .

See also: – stringByAppendingString:



34

stringByAppendingPathComponent:
– (NSString *)stringByAppendingPathComponent:(NSString *)aString

Returns a string made by appending aString, preceded by if necessary by a path separator. The following 
table illustrates the effect of this method on a variety of different paths, assuming that aString is supplied 
as “scratch.tiff”:

See also: – stringsByAppendingPaths:, – stringByAppendingPathExtension:, 
– stringByDeletingLastPathComponent

stringByAppendingPathExtension:
– (NSString *)stringByAppendingPathExtension:(NSString *)string

Returns a string made by appending to the receiver an extension separator followed by aString. The 
following table illustrates the effect of this method on a variety of different paths, assuming that aString is 
supplied as @“tiff”:

See also: – stringByAppendingPathComponent:, – stringByDeletingPathExtension

Receiver’s String Value Resulting String

“/tmp” “/tmp/scratch.tiff”

“/tmp/” “/tmp/scratch.tiff”

“/” “/scratch.tiff”

“” (an empty string) “scratch.tiff”

Receiver’s String Value Resulting String

“/tmp/scratch.old” “/tmp/scratch.old.tiff”

“/tmp/scratch.” “/tmp/scratch..tiff”

“/tmp/” “/tmp/.tiff”

“scratch” “scratch.tiff”



35

 Classes: NSString Class Cluster

stringByAppendingString:
– (NSString *)stringByAppendingString: (NSString *)aString

Returns a string object made by appending aString to the receiver. This code excerpt, for example:

NSString *errorTag = @"Error: ";

NSString *errorString = @"premature end of file.";

NSString *errorMessage = [errorTag stringByAppendingString:errorString];

produces the string “Error: premature end of file.”.

See also: – stringByAppendingFormat:

stringByDeletingLastPathComponent
– (NSString *)stringByDeletingLastPathComponent

Returns a string made by deleting the last path component from the receiver, along with any final path 
separator. If the receiver represents the root path, however, it’s returned unaltered. The following table 
illustrates the effect of this method on a variety of different paths:

See also: – stringByDeletingPathExtension, – stringByAppendingPathComponent:

stringByDeletingPathExtension
– (NSString *)stringByDeletingPathExtension

Returns a string made by deleting the extension (if any, and only the last) from the receiver. Strips any 
trailing path separator before checking for an extension. If the receiver represents the root path, however, 

Receiver’s String Value Resulting String

“/tmp/scratch.tiff” “/tmp”

“/tmp/lock/” “/tmp”

“/tmp/” “/”

“/tmp” “/”

“/” “/”

“scratch.tiff” “” (an empty string)



36

it’s returned unaltered. The following table illustrates the effect of this method on a variety of different 
paths:

See also: – pathExtension, – stringByDeletingLastPathComponent

stringByExpandingTildeInPath
– (NSString *)stringByExpandingTildeInPath

Returns a string made by expanding the initial component, if it begins with “~” or “~user”, to its full path 
value. Returns the receiver unaltered if that component can’t be expanded. 

See also: – stringByAbbreviatingWithTildeInPath

stringByResolvingSymlinksInPath
– (NSString *)stringByResolvingSymlinksInPath

On Microsoft Windows: Returns self.

On Rhapsody and supported systems: Expands an initial tilde expression in the receiving path, then resolves 
all symbolic links and references to current or parent directories if possible, returning a standardized path. 
If the original path is absolute, all symbolic links are guaranteed to be removed; if it’s a relative path, 
symbolic links that can’t be resolved are left unresolved in the returned string. Returns self if an error 
occurs.

Note: If the name of the receiving path begins with /private, the stringByResolvingSymlinksInPath 
method strips off the /private designator, provided the result is the name of an existing file.

See also: – stringByStandardizingPath, – stringByExpandingTildeInPath

Receiver’s String Value Resulting String

“/tmp/scratch.tiff” “/tmp/scratch”

“/tmp/” “/tmp”

“scratch.bundle/” “scratch”

“scratch..tiff” “scratch.”

“.tiff” “” (an empty string)

“/” “/”



37

 Classes: NSString Class Cluster

stringByStandardizingPath
– (NSString *)stringByStandardizingPath

Returns a string representing the receiving path, with extraneous path components removed. If 
stringByStandardizingPath detects symbolic links in a path name, the 
stringByResolvingSymlinksInPath method is called to resolve them. If an invalid path name is provided, 
stringByStandardizingPath may attempt to resolve it by calling stringByResolvingSymlinksInPath, 
and the results are undefined. If any other kind error is encountered (such as a path component not existing), 
self is returned.

The changes that this method can make in the provided string are:

• An initial tilde expression is expanded using stringByExpandingTildeInPath .

• Empty components and references to the current directory (that is, the sequences “//” and “/./”) are 
reduced to single path separators.

• In absolute paths only, references to the parent directory (that is, the component “..”) are resolved to the 
real parent directory if possible using stringByResolvingSymlinksInPath, which consults the file 
system to resolve each potential symbolic link.

• In relative paths, because symbolic links can’t be resolved, references to the parent directory are left in 
place.

• On Mach, an initial component of “/private” is removed from the path if the result still indicates an 
existing file or directory (checked by consulting the file system).

See also: – stringByExpandingTildeInPath , – stringByResolvingSymlinksInPath

stringsByAppendingPaths:
– (NSArray *)stringsByAppendingPaths:(NSArray *)paths

Returns an array of strings made by separately appending each string in paths to the receiver, preceded by 
if necessary by a path separator. See stringByAppendingPathComponent: for an individual example.

substringFromIndex:
– (NSString *)substringFromIndex:(unsigned int)anIndex

Returns a string object containing the characters of the receiver from the one at anIndex to the end. Raises 
an NSRangeException if anIndex lies beyond the end of the string.

See also: – substringWithRange:, – substringToIndex:



38

substringToIndex:
– (NSString *)substringToIndex:(unsigned int)anIndex

Returns a string object containing the characters of the receiver up to, but not including, the one at anIndex. 
Raises an NSRangeException if anIndex lies beyond the end of the string.

See also: – substringFromIndex:, – substringWithRange:

substringWithRange:
– (NSString *)substringWithRange:(NSRange)aRange

Returns a string object containing the characters of the receiver that lie within aRange. Raises an 
NSRangeException if any part of aRange lies beyond the end of the string.

See also: – substringFromIndex:, – substringToIndex:

uppercaseString
– (NSString *)uppercaseString

Returns a string with each character from the receiver changed to its corresponding uppercase value. Case 
transformations aren’t guaranteed to be symmetrical or to produce strings of the same lengths as the 
originals. See lowercaseString for an example.

See also: – capitalizedString, – lowercaseString

writeToFile:atomically:
– (BOOL)writeToFile: (NSString *)path atomically:(BOOL)flag

Writes the string’s characters to the file named by path, returning YES on success and NO on failure. If flag 
is YES, attempts to write the file safely so that an existing file named by path is not overwritten, nor does a 
new file at path actually get created, unless the write is successful. The string is written in the default C 
string encoding if possible (that is, if no information would be lost), in the Unicode encoding otherwise.

If path contains a tilde (~) character, you must expand it with stringByExpandingTildeInPath:  before 
invoking this method.

See also: + defaultCStringEncoding



39

 Classes: NSString Class Cluster

i NSMutableString

Inherits From: NSString : NSObject

Conforms To: NSCoding (NSString)
NSCopying (NSString)
NSMutableCopying (NSString)
NSObject (NSObject)

Declared In: Foundation/NSString.h

Class Description

The NSMutableString class declares the programmatic interface to an object that manages a mutable 
string—that is, a string whose contents can be edited. To construct and manage an immutable string—or a 
string that cannot be changed after it has been created—use an object of the NSString class.

An immutable string is implemented as array of Unicode characters (in other words, as a text string). The 
NSMutableString class adds one primitive method—replaceCharactersInRange:withString:—to the 
basic string-handling behavior inherited from NSString. All other methods that modify a string work 
through this method. For example, insertString:atIndex:  simply replaces the characters in a range of zero 
length, while deleteCharactersInRange: replaces the characters in a given range with no characters.

Method Types

Creating temporary strings
+ stringWithCapacity:

Initializing an NSMutableString
– initWithCapacity:

Modifying a string
– appendFormat:
– appendString:
– deleteCharactersInRange:
– insertString:atIndex:
– replaceCharactersInRange:withString:
– setString:



40

Class Methods

stringWithCapacity:
+ (NSMutableString *)stringWithCapacity: (unsigned int)capacity

Returns an empty mutable string, using capacity as a hint for how much initial storage to reserve.

Instance Methods

appendFormat:
– (void)appendFormat:(NSString *)format, ...

Adds a constructed string to the receiver. Creates the new string by using NSString’s stringWithFormat:  
method with the arguments listed.

See also: – appendString:

appendString:
– (void)appendString:(NSString *)aString

Adds the characters of aString to end of the receiver.

See also: – appendFormat:

deleteCharactersInRange:
– (void)deleteCharactersInRange:(NSRange)aRange

Removes the characters in aRange from the receiver. Raises an NSRangeException if any part of aRange 
lies beyond the end of the string.

initWithCapacity:
– (id)initWithCapacity: (unsigned int)capacity

Initializes a newly allocated NSMutableString, using capacity as a hint for how much memory to allocate. 
Returns self.



41

 Classes: NSString Class Cluster

insertString:atIndex:
– (void)insertString: (NSString *)aString atIndex:(unsigned int)anIndex

Inserts the characters of aString into the receiver, so that the new characters begin at anIndex and the 
existing characters from anIndex to the end are shifted by the length of aString. Raises an 
NSRangeException if anIndex lies beyond the end of the string.

replaceCharactersInRange:withString:
– (void)replaceCharactersInRange:(NSRange)aRange

withString: (NSString *)aString

Replaces the characters from aRange with those in aString. Raises an NSRangeException if any part of 
aRange lies beyond the end of the string.

setString:
– (void)setString:(NSString *)aString

Replaces the characters of the receiver with those in aString.



1

 Classes: NSTask

NSTask

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSTask.h

Class Description

Using NSTask, your program can run another program as a subprocess and can monitor that program’s 
execution. NSTask creates a separate executable entity; it differs from NSThread in that it does not share 
memory space with the process that creates it. 

A task operates within an environment defined by the current values for several items: the current directory, 
standard input, standard output, standard error, and the values of any environment variables. By default, an 
NSTask inherits its environment from the process that launches it. If there are any values that should be 
different for the task, for example, if the current directory should change, you must change the value before 
you launch the task. A task’s environment cannot be changed while it is running.

Creating and Launching an NSTask

There are two ways to create an NSTask. If it’s sufficient for the task to run in the environment that it inherits 
from the process that creates it, use the class method launchedTaskWithLaunchPath:arguments:. This 
method both creates and executes (launches) the task. If you need to change the task’s environment, create 
the task using alloc and init , use set... methods to change parts of the environment, then use the launch 
method to launch the task. For example, the following method runs tasks that take an input file and an output 
file as arguments. It reads these arguments, the task’s executable, and the current directory from text fields 
before it launches the task:



2

- (void)runTask:(id)sender

{

NSTask *aTask = [[NSTask alloc] init];

NSMutableArray *args = [NSMutableArray array];

/* set arguments */

[args addObject:[[inputFile stringValue] lastPathComponent]];

[args addObject:[outputFile stringValue]];

[aTask setCurrentDirectoryPath:[[inputFile stringValue] 

stringByDeletingLastPathComponent]];

[aTask setLaunchPath:[taskField stringValue]];

[aTask setArguments:args];

[aTask launch];

}

If you create an NSTask object in this manner, you must be sure to set the executable name using 
setLaunchPath:. If you don’t, an NSInvalidArgumentException is raised.

Ending an NSTask

Normally, you want the task that you’ve launched to run to completion. When an NSTask exits, it posts an 
NSTaskDidTerminateNotification to the default notification center. You can add one of the custom objects 
in your program as an observer of the notification and check the task’s exit status (using 
terminationStatus) in the observer method. For example:

-(id)init

{

self = [super init];

[[NSNotificationCenter defaultCenter] addObserver:self 

selector:@selector(checkATaskStatus:) 

name:NSTaskDidTerminateNotification 

object:nil];

return self;

}

- (void)checkATaskStatus:(NSNotification *)aNotification

{

int status = [[aNotification object] terminationStatus];

if (status == ATASK_SUCCESS_VALUE) 

NSLog(@"Task succeeded.");

else

NSLog(@"Task failed.");

}

If you need to force a task to end execution, send terminate to the NSTask object. 



3

 Classes: NSTask

Method Types

Creating and initializing an NSTask
+ launchedTaskWithLaunchPath:arguments:
– init

Returning task information
– arguments
– currentDirectoryPath
– environment
– launchPath
– standardError
– standardInput
– standardOutput

Running and stopping an NSTask
– interrupt
– launch
– terminate
– waitUntilExit

Querying the NSTask state
– isRunning
– terminationStatus

Setting up an NSTask
– setArguments:
– setCurrentDirectoryPath:
– setEnvironment:
– setLaunchPath:
– setStandardError:
– setStandardInput:
– setStandardOutput:

Class Methods

launchedTaskWithLaunchPath:arguments:
+ (NSTask *)launchedTaskWithLaunchPath:(NSString *)path arguments:(NSArray *)arguments 

Creates and launches a task with the executable specified in path, providing the argument in the array 
arguments. The task inherits its environment from the process that invokes this method.

See also: – init  



4

Instance Methods

arguments
– (NSArray *)arguments 

Returns the command arguments that were used when the task was launched.

See also: – setArguments: 

currentDirectoryPath
– (NSString *)currentDirectoryPath  

Returns the task’s current directory.

See also: – setCurrentDirectoryPath:  

environment
– (NSDictionary *)environment 

Returns a dictionary of variables for the environment from which the task was launched. The dictionary 
keys are the environment variable names.

See also: – environment (NSProcessInfo), – setEnvironment: 

init
– (id)init  

Returns an initialized NSTask object with the environment of the current process. Usually, if the current 
process’s environment is sufficient, you use the class method launchedTaskWithLaunchPath:
arguments: to create an run the task. Otherwise, you use alloc and init  and then set up the environment 
before you launch the task.

interrupt
– (void)interrupt

<< Description forthcoming. >>



5

 Classes: NSTask

isRunning
– (BOOL)isRunning 

Returns YES if the NSTask is still running, otherwise NO. NO either means the task could not run or it has 
terminated.

See also: – launch, – terminate, – waitUntilExit  

launch
– (void)launch 

Launches the task represented by the NSTask object. Raises an NSInvalidArgumentException if the launch 
path has not been set or is invalid or if it fails to create a process.

See also: – launchPath, – setLaunchPath:, – terminate, – waitUntilExit  

launchPath
– (NSString *)launchPath 

Returns the path of the NSTask’s executable.

See also: + launchedTaskWithLaunchPath:arguments:, – setLaunchPath:

setArguments:
– (void)setArguments:(NSArray *)arguments 

Sets the command arguments that should be used to launch the path to arguments. If this method (or 
launchedTaskWithLaunchPath:arguments:) isn’t used, the command is launched with no arguments. 
You cannot use this method if the task has already been launched. If you do, it raises an 
NSInvalidArgumentException. 

See also: – arguments 

setCurrentDirectoryPath:
– (void)setCurrentDirectoryPath: (NSString *)path 

Sets the current directory for the task to path. If this method isn’t used, the current directory is inherited 
from the process that created the NSTask. You cannot use this method if the task has already been launched. 
If you do, it raises an NSInvalidArgumentException. 

See also: – currentDirectoryPath 



6

setEnvironment:
– (void)setEnvironment:(NSDictionary *)environmentDictionary 

Sets the environment for the task to environmentDictionary. The environment is a dictionary of environment 
variable values whose keys are the variable names. If this method isn’t used, the environment is inherited 
from the process that created the NSTask. You cannot use this method if the task has already been launched. 
If you do, it raises an NSInvalidArgumentException. 

See also: – environment 

setLaunchPath:
– (void)setLaunchPath:(NSString *)path 

Sets the task’s executable to path. You must use this method before you send launch to launch the task or 
else use launchedTaskWithLaunchPath:arguments:. If you don’t, NSTask raises an 
NSInvalidArgumentException. 

See also: – launchPath 

setStandardError:
– (void)setStandardError: (id)file 

Sets standard error for the task to file, which can be either an NSFileHandle or an NSPipe object. If file is 
an NSPipe, launching the NSTask automatically closes the write end of the pipe in the current task. If you’re 
using a pipe for standard error, use an NSPipe instance as the argument to this method. Don’t create a handle 
for the pipe and pass that as the argument. If you do, the write end of the pipe won’t be closed automatically.

If this method isn’t used, the standard error is inherited from the process that created the NSTask. You 
cannot use this method if the task has already been launched. If you do, it raises an 
NSInvalidArgumentException. 

See also: – standardError 

setStandardInput:
– (void)setStandardInput:(id)file 

Sets standard input for the task to file, which can be either an NSFileHandle or an NSPipe object. If file is 
an NSPipe, launching the NSTask automatically closes the read end of the pipe in the current task. If you’re 
using a pipe for standard input, use an NSPipe instance as the argument to this method. Don’t create a 
handle for the pipe and pass that as the argument. If you do, the read end of the pipe won’t be closed 
automatically.



7

 Classes: NSTask

If this method isn’t used, the standard input is inherited from the process that created the NSTask. You 
cannot use this method if the task has already been launched. If you do, it raises an 
NSInvalidArgumentException. 

See also: – standardInput 

setStandardOutput:
– (void)setStandardOutput:(id)file 

Sets standard output for the task to file, which can be either an NSFileHandle or an NSPipe object. If file is 
an NSPipe, launching the NSTask automatically closes the write end of the pipe in the current task. If you’re 
using a pipe for standard output, use an NSPipe instance as the argument to this method. Don’t create a 
handle for the pipe and pass that as the argument. If you do, the write end of the pipe won’t be closed 
automatically.

If this method isn’t used, the current standard output is inherited from the process that created the NSTask. 
You cannot use this method if the task has already been launched. If you do, it raises an 
NSInvalidArgumentException. 

See also: – standardOutput 

standardError
– (id)standardError  

Returns the standard error file used by the task. Standard error is where all diagnostic messages are sent. 
The object returned is either an NSFileHandle or an NSPipe instance, depending on what type of object was 
passed to the setStandardError:  method. 

See also: – setStandardError: 

standardInput
– (id)standardInput  

Returns the standard input file used by the task. Standard input is where the task takes its input from unless 
otherwise specified. The object returned is either an NSFileHandle or an NSPipe instance, depending on 
what type of object was passed to the setStandardInput: method. 

See also: – setStandardInput: 



8

standardOutput
– (id)standardOutput 

Returns the standard output file used by the task. Standard output is where the task displays its output. The 
object returned is either an NSFileHandle or an NSPipe instance, depending on what type of object was 
passed to the setStandardOutput: method. 

See also: – setStandardOutput: 

terminate
– (void)terminate 

Sends a terminate signal to the NSTask and all of its subtasks, posting a NSTaskDidTerminateNotification 
to the default notification center. This method has no effect if the NSTask was already launched and has 
already finished executing. If the task hasn’t been launched yet, this method raises an 
NSInvalidArgumentException. 

It is not always possible to terminate the task because the task might be ignoring the terminate signal. 

See also: + launchedTaskWithLaunchPath:arguments:, – launch, – terminationStatus, 
– waitUntilExit

terminationStatus
– (int)terminationStatus 

Returns the value returned by the task’s executable. The return value indicates the exit status of the task. 
Each task defines and documents how its return value should be interpreted. (For example, many commands 
return 0 if they complete successfully or an error code if they don’t. You’ll need to look at the documentation 
for that task to learn what values it returns under what circumstances.) This method raises an 
NSInvalidArgumentException if the task is still running. Verify that the task is not running before you use it. 

if (![aTask isRunning]) {

int return = [aTask terminationStatus];

if (status == ATASK_SUCCESS_VALUE)

NSLog(@"Task succeeded.");

else

NSLog(@"Task failed.");

}

See also: – terminate, – waitUntilExit



9

 Classes: NSTask

waitUntilExit
– (void)waitUntilExit  

Suspends your program until the tasks is finished. This method first checks to see if the task is still running 
using isRunning. Then it polls the current run loop using NSDefaultRunLoopMode until the task 
completes. (See the NSRunLoop class specification for more information on run loops and run loop 
modes.)

int return = [aTask terminationStatus];

[aTask launch];

[aTask waitUntilExit];

return = [aTask terminationStatus];

if (status == ATASK_SUCCESS_VALUE)

NSLog(@"Task succeeded.");

else

NSLog(@"Task failed.");

See also: – launch, – terminate

Notifications

NSTaskDidTerminateNotification

Posted when the task has stopped execution. This can be posted either when the task has exited normally 
or as a result of terminate being sent to the NSTask. The observer method can use terminationStatus to 
determine why the task died. See the class description for an example.

This notification contains a notification object but no userInfo dictionary. The notification object is the 
NSTask that was terminated.



1

 Classes: NSThread

NSThread 

Inherits From: NSObject 

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSThread.h 

Class Description

An NSThread object controls a thread of execution. Use NSThread when you want to have an Objective-C 
method run in its own thread of execution or if you need to terminate or delay the current thread. 

A thread is an executable unit. A task is made up of one or more threads. Each thread has its own execution 
stack and is capable of independent input/output. All threads share the virtual memory address space and 
communication rights of their task. When a thread is started, it is detached from its initiating thread. The 
new thread runs independently. That is, the initiating thread does not know the new thread’s state.

To have an Objective-C message run in its own thread of execution, send the message 
detachNewThreadSelector:toTarget:withObject: to the NSThread class object. This method detaches a 
new thread from the current thread, and the specified target executes the specified method in that thread. 
When the target has finished executing the method, the thread exits. 

When you use detachNewThreadSelector:toTarget:withObject:, your application becomes 
multithreaded. At any time you can send isMultiThreaded  to find out if the application is multithreaded, 
that is, if a thread was ever detached from the main thread. isMultiThreaded  returns YES even if the 
detached thread has completed execution. 

Note: Do not interchange the use of the cthreads functions and NSThread objects within an application. In 
particular, do not use cthread_fork() to create a thread that executes an Objective-C message. 
isMultiThreaded  returns YES only if detachNewThreadSelector:toTarget:withObject: was used 
to create the thread.

If you need to terminate the current thread, send the exit message to the NSThread class object. Similarly, 
you send the sleepUntilDate: message to the NSThread class object to block the current thread for a period 
of time. 



2

Method Types

Querying an NSThread
+ isMultiThreaded
+ currentThread
– threadDictionary

Detaching a thread
+ detachNewThreadSelector:toTarget:withObject:

Stopping the Current Thread
+ sleepUntilDate:
+ exit

Class Methods

currentThread
+ (NSThread *)currentThread

Returns an object representing the current thread of execution.

See also: + detachNewThreadSelector:toTarget:withObject:

detachNewThreadSelector:toTarget:withObject:
+ (void)detachNewThreadSelector:(SEL)aSelector 

toTarget:(id)aTarget 
withObject: (id)anArgument

Detaches a new thread for the message [aTarget aSelector:anArgument]. The method aSelector must take 
only one argument and must not have a return value. The method aSelector is responsibile for setting up an 
autorelease pool for the newly detached thread, and freeing that pool before it exits. The objects aTarget and 
anArgument are retained during the execution of the detached thread, then released. The detached thread is 
exited (using the exit class method) as soon as aTarget has completed executing the aSelector method.

If this is the first thread detached from the current thread, this method posts the 
NSWillBecomeMultiThreadedNotification with nil  to the default notification center. 

See also: + currentThread , + isMultiThreaded



3

 Classes: NSThread

exit
+ (void)exit

Terminates the current thread, using the currentThread  class method to access that thread. Before exiting 
the thread, this method posts the NSThreadWillExitNotification with the thread being exited to the default 
notification center. Because notifications are delivered synchronously, all observers of 
NSThreadWillExitNotification are guaranteed to receive the notification before the thread exits.

See also: + currentThread , + sleepUntilDate: 

isMultiThreaded
+ (BOOL)isMultiThreaded

Returns YES if the application is multithreaded. An application is considered to be multithreaded if a thread 
was ever detached from the main thread using detachNewThreadSelector:toTarget:withObject:. If you 
detach a thread using the cthread_fork() function, this method returns NO. The detached thread does not 
have to be running for an application to be considered multithreaded; it may have already exited.

See also: + detachNewThreadSelector:toTarget:withObject:

sleepUntilDate:
+ (void)sleepUntilDate:(NSDate *)aDate

Blocks the current thread until the time specified by aDate. No run loop processing occurs while the thread 
is blocked.

See also: + currentThread , + exit 

Instance Methods

threadDictionary
– (NSMutableDictionary *)threadDictionary

Returns the NSThread’s dictionary, to which you can add data specific to the receiving NSThread. The 
thread dictionary is not used during any manipulations of the NSThread; it is simply a place where you can 
store any interesting attributes of a thread. For example, Foundation uses it to store the thread’s NSRunLoop 
and NSAssertionHandler instances. You may define your own keys for the dictionary. Accessing the thread 
dictionary may be slower than it usually is to access an NSMutableDictionary.



4

Notifications

NSWillBecomeMultiThreadedNotification

This notification does not contain a notification object or userInfo dictionary. 

Posted when the first thread is detached from the current thread. NSThread posts this notification at most 
once—the first time a thread is detached using detachNewThreadSelector:toTarget:withObject:. Any 
subsequent invocations of detachNewThreadSelector:toTarget:withObject: do not post this notification. 
The observer methods invoked to receive this notification execute in the main thread, not the new thread, 
and they execute before the new thread begins executing.

NSThreadWillExitNotification

This notification contains a notification object but no userInfo dictionary. The notification object is the 
exiting NSThread. NSThread posts this notification when it receives the exit message, before the thread 
exits. Observer methods invoked to receive this notification execute in the exiting thread, before it exits.



1

 Classes: NSTimer

NSTimer 

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSTimer.h 

Class Description

NSTimer creates timer objects, or more simply, timers. A timer waits until a certain time interval has elapsed 
and then fires, sending a specified message to a specified object. For example, you could create an NSTimer 
that sends a message to a window, telling it to update itself after a certain time interval.

Timers work in conjunction with NSRunLoop objects. NSRunLoops control loops that wait for input, and 
they use timers to help determine the maximum amount of time they should wait. When the timer’s time 
limit has elapsed, the NSRunLoop fires the timer (causing its message to be sent), then checks for new input. 
Because of the various input sources a typical run loop manages, the effective resolution of the time interval 
for an NSTimer is limited to on the order of 50-100 milliseconds.

There are several ways to create a timer. The scheduledTimerWithTimeInterval ... class methods 
automatically register the new timer with the current NSRunLoop object in the default mode 
(NSDefaultRunLoopMode). The timerWithTimeInterval ... class methods create timers that you may 
register at a later time by sending the message addTimer:forMode:  to the NSRunLoop. If you specify that 
the timer should repeat, it will automatically reschedule itself after it fires. 

There is no method that removes the association of a timer from an NSRunLoop—send the timer the 
invalidate message instead. invalidate disables the timer, so it will no longer affect the NSRunLoop.

See the NSRunLoop class description for more information on NSRunLoops. 

Method Types

Creating a timer 
+ scheduledTimerWithTimeInterval:

invocation:repeats:
+ scheduledTimerWithTimeInterval:target:selector:

userInfo:repeats:
+ timerWithTimeInterval:invocation:repeats:
+ timerWithTimeInterval:target:selector:

userInfo:repeats:



2

Firing a timer
– fire

Stopping a timer
– invalidate

Getting information about a timer
– isValid
– fireDate
– timeInterval 
– userInfo

Class Methods

scheduledTimerWithTimeInterval:invocation:repeats:
+ (NSTimer *)scheduledTimerWithTimeInterval: (NSTimeInterval)seconds

invocation:(NSInvocation *)invocation
repeats:(BOOL)repeats

Returns a new NSTimer object and registers it with the current NSRunLoop in the default mode. After 
seconds have elapsed, the timer fires, sending invocation’s message to its target. If seconds is less than or 
equal to 0.0, this method chooses a nonnegative interval. If repeats is YES, the timer will repeatedly 
reschedule itself.

scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:
+ (NSTimer *)scheduledTimerWithTimeInterval: (NSTimeInterval)seconds

target:(id)target
selector:(SEL)aSelector 
userInfo:(id)userInfo
repeats:(BOOL)repeats

Returns a new NSTimer object and registers it with the current NSRunLoop in the default mode. After 
seconds have elapsed, the timer fires, sending the message aSelector to target. The aSelector method must 
take only one argument, an NSTimer object. The timer passes itself as the argument to aSelector. To pass 
more information to the target, use userInfo. The target gets userInfo by sending userInfo to the timer. 

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval. If repeats is YES, the 
timer will repeatedly reschedule itself. 



3

 Classes: NSTimer

timerWithTimeInterval:invocation:repeats:
+ (NSTimer *)timerWithTimeInterval: (NSTimeInterval)seconds

invocation:(NSInvocation *)invocation
repeats:(BOOL)repeats

Returns a new NSTimer that, when registered, will fire after seconds. If seconds is less than or equal to 0.0, 
this method chooses a nonnegative interval. Upon firing, the timer sends invocation’s message to its target. 
If repeats is YES, the timer will repeatedly reschedule itself after firing. 

timerWithTimeInterval:target:selector:userInfo:repeats:
+ (NSTimer *)timerWithTimeInterval: (NSTimeInterval)seconds

target:(id)target
selector:(SEL)aSelector
userInfo:(id)userInfo
repeats:(BOOL)repeats

Returns a new NSTimer that, when registered, will fire after seconds. Upon firing, the timer sends aSelector 
to target. The aSelector method must take only one argument, an NSTimer object. The timer passes itself 
as the argument to aSelector. To pass more information to the target, use userInfo. The target gets userInfo 
by sending userInfo to the timer. 

If seconds is less than or equal to 0.0, this method chooses a nonnegative interval. If repeats is YES, the 
timer will repeatedly reschedule itself. 

Instance Methods

fire
– (void)fire

Causes the receiver’s message to be sent to its target.

fireDate
– (NSDate *)fireDate

Returns the date at which the receiver will fire. If the timer is no longer valid, this method returns the last 
date at which the timer fired. Use isValid to verify that the timer is valid. 

See also: – isValid 



4

invalidate
– (void)invalidate

Stops the receiver from ever firing again. This is the only way to remove a timer from an NSRunLoop. 

isValid
– (BOOL)isValid

Returns YES if the timer is currently valid, no otherwise. 

timeInterval
– (NSTimeInterval)timeInterval  

Returns the time interval associated with the receiver.

userInfo
– (id)userInfo

Additional data the target may use when the receiver is fired.

See also: + scheduledTimerWithTimeInterval:target:selector:userInfo:repeats:, 
+ timerWithTimeInterval:target:selector:userInfo:repeats:  



1

 Classes: NSTimeZone Class Cluster

c NSTimeZone Class Cluster

Class Cluster Description

From the NSTimeZone class cluster, you can obtain immutable objects that represent time zones. Time 
zones are split at lines of longitude and are split latitudinally at political boundaries. For example, 
US/Pacific and Canada/Pacific are two time zone regions. They are roughly the same time zone, but they 
differ when Daylight Savings Time is in effect. 

The abstract class, NSTimeZone, represents knowledge about a geopolitical time zone region (such as 
“US/Pacific” or “Canada/Pacific”), its colloquial abbreviation (such as “PST”), its offset from Greenwich 
Mean Time (GMT), and whether it is a Daylight Savings Time time zone.

NSTimeZone objects are used in conjunction with NSDate objects. NSDate objects represent dates as 
universal time. Universal time treats a date and time value as identical in, for instance, Redwood City and 
New York City. There is no provision for locale and, consequently, for time zone. Provision for locale is 
critical for string representations and other expressions of conventional dates and times. NSTimeZone 
expands the temporal value of date objects so that they reflect locale information related to time zones.

NSTimeZone objects are referred to simply as time zone objects. Because of the nature of class clusters, 
time zone objects returned by this class are not instances of the abstract class, but of one of its private 
subclasses. Although a time zone object’s class is private, its interface is public, as declared by the abstract 
superclass, NSTimeZone. (See the “Class Clusters” programming topic for more information on class 
clusters and creating subclasses within a cluster.)

You use the class methods defaultTimeZone, localTimeZone, timeZoneWithName:, 
timeZoneWithAbbreviation: , and timeZoneForSecondsFromGMT: to get suitable time zone objects. 
The instance method timeZoneForDate: returns the time zone object for a specific date.

Subclassing NSTimeZone is not recommended.



2

i NSTimeZone

Inherits From: NSObject

Conforms To: NSCoding, NSCopying
NSObject (NSObject) 

Declared In: Foundation/NSDate.h

Class Description

NSTimeZone is an abstract class that defines the behavior of time zone objects. Time zone objects represent 
geopolitical regions. Consequently, these objects have names for these regions. Time zone objects also 
represent a temporal offset, either plus or minus, from Greenwich Mean Time (GMT) and an abbreviation 
(such as “PST”). 

The system supplies many choices for time zones. The system stores time zone information in the directory 
System/Library/Frameworks/Foundation.framework/Resources/TimeZoneInfo. The files in this 
directory store time zone information. The NSTimeZone class object can provide you with the information 
in this directory.  The class method abbreviationDictionary  selects a subset of geopolitical regions that 
provide a non-overlapping set of abbreviations. For example, the geopolitical regions US/Pacific and 
Canada/Pacific are both in the same longitudinal area and both use the abbreviation “PST.” 
abbreviationDictionary  limits the choices for an abbreviation so there is one geopolitical region per 
abbreviation. Depending on where you are, the following message will return either “US/Pacific” or 
“Canada/Pacific”.

[[NSTimeZone abbreviationDictionary] objectForKey:@"PST"];

The RegionsDictionary file in the time zone information directory supplies these methods with the 
information necessary to make such choices. 

NSTimeZone provides several class methods to get time zone objects: timeZoneWithName:, 
timeZoneWithAbbreviation: , and timeZoneForSecondsFromGMT:. The class also permits you to set the 
default time zone for your locale (setDefaultTimeZone:) You can access this default time zone at any time 
with the defaultTimeZone class method, and with the localTimeZone class method, you can get a relative 
time zone object that decodes itself to become the default time zone for any locale in which it finds itself. 

Some NSCalendarDate methods return date objects that are automatically bound to time zone objects. 
These date objects use the functionality of NSTimeZone to adjust dates for the proper locale. Unless you 
specify otherwise, objects returned from NSCalendarDate are bound to the default time zone for the current 
locale. A useful instance method is timeZoneForDate:, which returns a time zone object associated with a 
specific date. 



3

 Classes: NSTimeZone Class Cluster

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

Method Types

Getting time zones
+ timeZoneWithAbbreviation:
+ timeZoneWithName:
+ timeZoneForSecondsFromGMT:
– timeZoneForDate:

Getting the default time zone
+ localTimeZone
+ defaultTimeZone
+ setDefaultTimeZone:

Getting time zone information
+ abbreviationDictionary

Getting information about a specific time zone
– timeZoneName
– timeZoneAbbreviation
– timeZoneSecondsFromGMT

Class Methods

abbreviationDictionary
+ (NSDictionary *)abbreviationDictionary

Returns a dictionary holding the mappings of time zone abbreviations to time zone names. More than one 
abbreviation may map to the same time zone. For example, the “US/Pacific” region is associated with both 
the abbreviations “PST” and “PDT.”

More than one time zone may have the same abbreviation. For example, US/Pacific and Canada/Pacific 
both use the abbreviation “PST.” In these cases abbreviationDictionary  chooses a single name to map the 
abbreviation to.



4

defaultTimeZone
+ (NSTimeZone *)defaultTimeZone

Returns the default time zone set for the current locale. If no default time zone has been set, this method 
invokes systemTimeZone and returns the system time zone.

See also: + localTimeZone, + setDefaultTimeZone:, + systemTimeZone

localTimeZone
+ (NSTimeZone *)localTimeZone

Returns an object that forwards all messages to the default time zone for the current locale. This behavior 
is particularly useful for NSCalendarDate objects that are archived or sent as Distributed Objects and may 
be interpreted in different locales. 

See also: + defaultTimeZone, + setDefaultTimeZone:

knownTimeZoneNames
+ (NSArray *)knownTimeZoneNames

Returns an array of strings listing the names of all the time zones known to the system.

resetSystemTimeZone
+ (void)resetSystemTimeZone

Clears the previously determined system time zone, if any. Subsequent calls to systemTimeZone will 
attempt to redetermine the system time zone.

setDefaultTimeZone:
+ (void)setDefaultTimeZone:(NSTimeZone *)aTimeZone

Sets the time zone appropriate for the current locale. There can be only one default time zone, so by setting 
a new default time zone, you lose the previous one. 

See also: + defaultTimeZone, + localTimeZone



5

 Classes: NSTimeZone Class Cluster

systemTimeZone
+ (NSTimeZone *)systemTimeZone

Returns the time zone currently used by the system. If it can’t figure out the current time zone, returns the 
GMT time zone.

timeZoneForSecondsFromGMT:
+ (NSTimeZone *)timeZoneForSecondsFromGMT:(int)seconds

Returns a time zone object with seconds offset from Greenwich Mean Time. The name of the new time zone 
is GMT +/- the offset, in hours and minutes.

See also: + timeZoneWithAbbreviation: , + timeZoneWithName:

timeZoneWithAbbreviation:
+ (NSTimeZone *)timeZoneWithAbbreviation: (NSString *)abbreviation

Returns the time zone object identified by abbreviation by resolving the abbreviation to a name using the 
abbreviation dictionary, and then returning the time zone for that name. Returns nil  if there is no match for 
abbreviation. 

See also: + abbreviationDictionary, + timeZoneForSecondsFromGMT:, + timeZoneWithName: 

timeZoneWithName:
+ (NSTimeZone *)timeZoneWithName:(NSString *)aTimeZoneName

Returns the time zone object identified by the name aTimeZoneName. It searches the time zone information 
directory for matching names. Returns nil  if there is no match on the name. 

See also: + timeZoneForSecondsFromGMT:, + timeZoneWithAbbreviation: , 
+ knownTimeZoneNames

timeZoneWithName:data:
+ (NSTimeZone *)timeZoneWithName:(NSString *)aTimeZoneName data:(NSData *)data

Returns the time zone with the name aTimeZoneName whose data has been initialized using the contents 
of data. You should not call this method directly—use timeZoneWithName: to get the time zone object 
for a given name.

See also: + timeZoneWithName:



6

Instance Methods

abbreviation
– (NSString *)abbreviation

Returns the abbreviation for the time zone, such as “EDT” (Eastern Daylight Time). Invokes 
abbreviationForDate: with the current date as the argument.

abbreviationForDate:
– (NSString *)abbreviationForDate:(NSDate *)aDate

Returns the abbreviation for the time zone object at the specified date . Note that the abbreviation may be 
different at different dates. For example, during Daylight Savings Time the US/Eastern time zone has an 
abbreviation of “EDT.” At other times, its abbreviation is “EST.”

data
– (NSData *)data

Returns the data that stores the information used by the time zone. This data should be treated as an opaque 
object.

description
– (NSString *)description

Returns the description of the timezone, including the name, abbreviation, offset from GMT, and whether 
or not DayligSavings Time is currently in effect.

initWithName:
– (id)initWithName: (NSString *)aName

Initializes a time zone with aName. If aName is a known name, this method calls initWithName:data:  
with the appropriate data object.

initWithName:data:
– (id)initWithName: (NSString *)aName data:(NSData *)data

Initializes a time zone with aName and data. You should not call this method directly—use 
timeZoneWithName: to get a time zone object.



7

 Classes: NSTimeZone Class Cluster

isDaylightSavingTime
– (BOOL)isDaylightSavingTime

Returns YES if the time zone is currently using Daylight Savings Time. This method invokes 
isDaylightSavingTimeForDate: with the current date as the argument.

isDaylightSavingTimeForDate:
– (BOOL)isDaylightSavingTimeForDate:(NSDate *)aDate

Returns YES if the time zone uses Daylight Savings Time at aDate. 

isEqualToTimeZone:
– (BOOL)isEqualToTimeZone:(NSTimeZone *)aTimeZone

Returns YES if aTimeZone and the receiving time zone have the same name and data.

name
– (NSString *)name

Returns the name of the time zone as returned by timeZoneName. 

secondsFromGMT
– (int)secondsFromGMT

Returns the current difference in seconds between the time zone and Greenwich Mean Time.

secondsFromGMTForDate:
– (int)secondsFromGMTForDate:(NSDate *)aDate

Returns the difference in seconds between the time zone and Greenwich Mean Time at aDate. This may be 
different from the current difference if the time zone changes its offset from GMT at different points in the 
year—for example, the U.S. time zones change with daylight savings time.



8

timeZoneAbbreviation
– (NSString *)timeZoneAbbreviation

Returns the abbreviation for the time zone object, such as “EDT” (Eastern Daylight Time).

timeZoneForDate:
– (NSTimeZone *)timeZoneForDate:(NSDate *)date 

Returns the time-zone object that is associated with the date. Invoke this method when a region’s time zone 
(that is, its offset value from GMT) varies over the year, as happens between Standard Time and Daylight 
Savings Time.

timeZoneName
– (NSString *)timeZoneName 

Returns the geopolitical region name that identifies the time zone. 

timeZoneSecondsFromGMT
– (int)timeZoneSecondsFromGMT

Returns the difference in seconds between the receiver and GMT. This offset can be a positive or negative 
value.



1

 Classes: NSUnarchiver

NSUnarchiver

Inherits From: NSCoder : NSObject

Conforms To: NSObject (NSObject) 

Declared In: Foundation/NSArchiver.h

Class Description 

NSUnarchiver, a concrete subclass of NSCoder, defines methods for decoding a set of Objective-C objects 
from an archive. Such archives are produced by objects of the NSArchiver class. See the NSCoder and 
NSArchiver specifications for an introduction to archiving.

General Exception Conditions

While unarchiving, NSUnarchiver performs a variety of consistency checks on the incoming data stream. 
NSUnarchiver raises an NSInconsistentArchiveException when: 

• A class name is missing where one is expected.
• A class name is found that refers to an unknown class.
• A type code is found that’s different from the one expected.
• An unknown type code is found.
• Excess characters are found in a type code, or characters are missing.

For a description of type codes, see the discussion of the @encode() compiler directive in Object-Oriented 
Programming and the Objective-C Language.

Invoking inappropriate methods can also lead to errors. NSUnarchiver’s superclass, NSCoder, provides 
methods for both encoding and decoding. However, only the decoding methods are applicable to 
NSUnarchiver; don’t send an NSUnarchiver any encode... messages. 

Method Types

Initializing an NSUnarchiver
– initForReadingWithData:

Decoding objects
+ unarchiveObjectWithData:
+ unarchiveObjectWithFile:



2

Managing an NSUnarchiver
– isAtEnd
– objectZone
– setObjectZone:
– systemVersion

Substituting classes or objects
+ classNameDecodedForArchiveClassName:
+ decodeClassName:asClassName:
– classNameDecodedForArchiveClassName:
– decodeClassName:asClassName:
– replaceObject:withObject:

Class Methods

classNameDecodedForArchiveClassName:
+ (NSString *)classNameDecodedForArchiveClassName:(NSString *)nameInArchive

Returns the name of the class used when instantiating objects whose ostensible class, according to the 
archived data, is nameInArchive. This method returns nameInArchive if no substitute name has been 
specified using the class method (not the instance method) decodeClassName:asClassName:.

Note that individual instances of NSUnarchiver can each be given their own class name mappings by 
invoking the instance method decodeClassName:asClassName:. The NSUnarchiver class has no 
information about these instance-specific mappings, however, so they don’t affect the return value of this 
class method (that is, classNameDecodedForArchiveClassName:).

See also: – classNameDecodedForArchiveClassName:

decodeClassName:asClassName:
+ (void)decodeClassName:(NSString *)nameInArchive asClassName:(NSString *)trueName

Instructs instances of NSUnarchiver to use the class named trueName when instantiating objects whose 
ostensible class, according to the archived data, is nameInArchive. This method enables easy conversion of 
unarchived data when the name of a class has changed since the archive was created.

Note that there’s also an instance method of the same name. An instance of NSUnarchiver can maintain its 
own mapping of class names. However, if both the class method and the instance method have been invoked 
using an identical value for nameInArchive, the class method takes precedence.

See also: + classNameDecodedForArchiveClassName:, – decodeClassName:asClassName:



3

 Classes: NSUnarchiver

unarchiveObjectWithData:
+ (id)unarchiveObjectWithData: (NSData *)data 

Decodes and returns the object archived in data. This method invokes initForReadingWithData:  and 
decodeObject to create a temporary NSUnarchiver that decodes the object. If the archived object is the root 
of a graph of objects, the entire graph is unarchived.

See also: – encodeRootObject: (NSArchiver)

unarchiveObjectWithFile:
+ (id)unarchiveObjectWithFile: (NSString *)path

Decodes and returns the object archived in the file path. This convenience method reads the file by invoking 
NSData’s dataWithContentsOfFile: method, and then invokes unarchiveObjectWithData: .

Instance Methods

classNameDecodedForArchiveClassName:
– (NSString *)classNameDecodedForArchiveClassName:(NSString *)nameInArchive 

Returns the name of the class that will be used when instantiating objects whose ostensible class, according 
to the archived data, is nameInArchive. This method returns nameInArchive unless a substitute name has 
been specified using the instance method (not the class method) decodeClassName:asClassName:.

See also: + classNameDecodedForArchiveClassName:

decodeClassName:asClassName:
– (void)decodeClassName:(NSString *)nameInArchive asClassName:(NSString *)trueName 

Instructs the receiver to use the class named trueName when instantiating objects whose ostensible class, 
according to the archived data, is nameInArchive. This method enables easy conversion of unarchived data 
when the name of a class has changed since the archive was created.

Note that there’s also a class method of the same name. The class method has precedence in case of 
conflicts.

See also: – classNameDecodedForArchiveClassName:, + decodeClassName:asClassName:



4

initForReadingWithData:
– (id)initForReadingWithData: (NSData *)data 

Initializes an NSUnarchiver object from the data object data, decoding the system version number that was 
archived in data and preparing the NSUnarchiver for a subsequent invocation of decodeObject. Raises an 
NSInvalidArgumentException if data is nil.

See also: – systemVersion

isAtEnd
– (BOOL)isAtEnd 

Returns YES if the NSUnarchiver has reached the end of the encoded data while decoding, NO if more data 
follows. You can invoke this method after invoking decodeObject to discover whether the archive contains 
extra data following the encoded object graph. If it does, you can either ignore this anomaly or consider it 
an error.

objectZone
– (NSZone *)objectZone 

Returns the memory zone used to allocate decoded objects.

See also:  – setObjectZone:

replaceObject:withObject:
– (void)replaceObject:(id)object withObject: (id)newObject

Causes the NSUnarchiver to substitute newObject for object whenever object is extracted from the archive. 
newObject can be of a different class from object, and the class mappings set by the two decodeClassName:
asClassName: methods are ignored.

setObjectZone:
– (void)setObjectZone:(NSZone *)zone 

Set the memory zone used to allocate decoded objects. If zone is NULL, or if this method is never invoked, 
the default zone will be used, as given by NSDefaultMallocZone().

See also:  – objectZone



5

 Classes: NSUnarchiver

systemVersion
– (unsigned int)systemVersion 

Returns the system version number that was in effect when the archive was created. This information is 
available as soon as the NSUnarchiver has been initialized. 

The version numbers aren’t the usual release designations (such as 2.0 or 3.1). By convention, version 
numbers under 1000 refer to early versions of NEXTSTEP that didn’t conform to the OpenStep 
specification. 



1

 Classes: NSUndoManager

NSUndoManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: Foundation/NSUndoManager.h

Class Description

NSUndoManager is a general-purpose recorder of operations for undo and redo. You register an undo 
operation by specifying the object that’s changing (or the owner of that object), along with a method to 
invoke to revert its state, and the arguments for that method. NSUndoManager groups all operations within 
a single cycle of the run loop, so that performing an undo reverts all changes that occurred during the loop. 
Also, when performing undo an NSUndoManager saves the operations reverted so that you can redo the 
undos.

NSUndoManager is implemented as a class of the Foundation framework because executables other than 
applications might want to revert changes to their states. For example, you might have an interactive 
command-line tool with undo and redo commands; or there could be Distributed Object implementations 
that can revert operations "over the wire." However, users typically see undo and redo as application 
features. The Application Kit implements undo and redo in its NSTextView object and makes it easy to 
implement it in objects along the responder chain. For more on the role of the Application Kit in undo and 
redo, see "“Undo in Applications”."

Operations and Groups

An undo operation is a method for reverting a change to an object, along with the arguments needed to revert 
the change (for example, its state before the change). Undo operations are typically collected in undo 
groups, which represent whole revertable actions, and are stored on a stack. Redo operations and groups are 
simply undo operations stored on a separate stack (described below). When an NSUndoManager performs 
undo or redo, it’s actually undoing or redoing an entire group of operations. For example, a user could 
change the type face and the font size of some text. An application might package both attributed-setting 
operations as a group, so when the user choses Undo, both type face and font size are reverted. To undo a 
single operation, it must still be packaged in a group. 

NSUndoManager normally creates undo groups automatically during the run loop. The first time it’s asked 
to record an undo operation in the run loop, it creates a new group. Then, at the end of the loop, it closes 
the group. You can create additional, nested undo groups within these default groups using the 
beginUndoGrouping and enableUndoRegistration methods. You can also turn off the default grouping 
behavior using setGroupsByEvent:. 



2

The Undo and Redo Stacks

Undo groups are stored on a stack, with the oldest groups at the bottom and the newest at the top. The undo 
stack is unlimited by default, but you can restrict it to a maximum number of groups using the 
setLevelsOfUndo: method. When the stack exceeds the maximum, the oldest undo groups are dropped 
from the bottom. 

Initially, both stacks are empty. Recording undo operations adds to the undo stack, but the redo stack 
remains empty until undo is performed. Performing undo causes the reverting operations in the latest group 
to be applied to their objects. Since these operations cause changes to the objects’ states, the objects 
presumably register new operations with the NSUndoManager, this time in the reverse direction from the 
original operations. Since the NSUndoManager is in the process of performing undo, it records these 
operations as redo operations on the redo stack. Consecutive undos add to the redo stack. Subsequent redo 
operations pull the operations off the redo stack,  apply them to the objects, and push them back onto the 
undo stack. 

The redo stack’s contents last as long as undo and redo are performed successively. However, because 
applying a new change to an object invalidates the previous changes, as soon as a new undo operation is 
registered, the redo stack is cleared. This prevents redo from returning objects to an inappropriate prior 
state. You can check for the ability to undo and redo with the canUndo and canRedo methods.

Registering Undo Operations

To add an undo operation to the undo stack, you must register it with the object that will perform the undo 
operation. NSUndoManager supports two ways to register undo operations: one based on a simple selector 
with a single object argument, and one based on a general NSInvocation (which allows any number and 
type of arguments).  In the first type of operation, when an object changes, the object itself (or another object 
acting on its behalf) records in the object passed as argument the attributes of the object  prior to the change. 
(This argument is frequently an NSDictionary object, but it can be any object.) Performing the undo then 
involves resetting the object with these attributes. Invocation-based undo is useful for undoing specific 
state-changing methods, such as a  setFont:color: method. 

In most applications a single instance of NSUndoManager belongs to an object that contains or manages 
other objects. This is particularly the case with document-based applications, where each NSDocument 
object is responsible for all undo and redo operations for a document. An object such as this is often called 
the NSUndoManager’s client. Each client object has its own NSUndoManager. The client  claims exclusive 
right to alter its undoable objects so that it can record undo operations for all changes. In the specific case 
of documents, this scheme keeps each pair of undo and redo stacks separate so that when an undo is 
performed, it applies to the focal document in the application (typically the one displayed in the key 
window). It also relieves the individual objects in a document from having to know the identity of their 
NSUndoManager or from having to track changes to themselves.

However, an object that is changed can have its own NSUndoManager and perform its own undo and redo 
operations. For example, you could have a custom view that displays images dragged into it; with each 



3

 Classes: NSUndoManager

successful drag operation, it registers a new undo group. If the view is then selected (that is, made first 
responder) and the Undo command applied, the previously displayed image would be redisplayed. 

Simple Undo

To record a simple undo operation, you need only invoke registerUndoWithTarget:selector:object:, 
giving the object to be sent the undo operation selector, the selector to invoke, and an argument to pass with 
that message. The target object is usually not the actual object whose state is changing; instead, it’s the 
client object, a document or container that holds many undoable objects.  The argument is an object that 
captures the state of the object before the change is made. Here is a method from the Draw example 
application (DrawDocument.m):

- (void)setGridVisible:(NSNumber *)flag {

    BOOL flagValue = [flag boolValue];

    if (gvFlags.showGrid != flagValue) {

        NSNumber *currentValue = [NSNumber numberWithBool:gvFlags.showGrid];

        gvFlags.showGrid = flagValue;

        if (flagValue)

            [graphicView resetGUP];

        [graphicView cache:[graphicView bounds]];

        [undoManager registerUndoWithTarget:self selector:@selector(setGridVisible:

) object:currentValue];

        [undoManager setActionName:GRID_OP];

    } 

If the user choses Undo, setGridVisible: is invoked with the previous value:

Invocation-Based Undo

For other changes involving specific methods or arguments that aren’t objects, you can use invocation-based 
undo, which records an actual message to revert the target object’s state. As with simple undo, you record 
a message that reverts the object to its state before the change. However, in this case you do so by sending 
the message directly to the NSUndoManager, after preparing it with a special message to note the target:

[[myUndoManager prepareWithInvocationTarget:drawObject]

    setFont:[drawObject font] color:[drawObject color]];

[drawObject setFont:newFont color:newColor];

The prepareWithInvocationTarget:  method records the argument as the target of the undo operation 
about to be established. Following this, you send the message that will revert the target’s state—in this case, 
setFont:color:. Because NSUndoManager doesn’t respond to this method, forwardInvocation:  is 
invoked, which NSUndoManager implements to record the NSInvocation containing the target, selector, 
and all arguments. Performing undo thus results in drawObject being sent a setFont:color: message with 
the old values.



4

Performing Undo and Redo

Performing undo and redo is usually as simple as sending undo and redo messages to the 
NSUndoManager. undo closes the last open undo group and then applies all of the undo operations in that 
group (recording any undo operations as redo operations instead). redo likewise applies all of the redo 
operations on the top redo group.

undo is intended for undoing top-level groups, and shouldn’t be used for nested undo groups. If any 
unclosed, nested undo groups are on the stack when undo is invoked, it raises an exception. To undo nested 
groups, you must use explicitly close the group with an enableUndoRegistration message, then use 
undoNestedGroup to undo it. Note also that if you turn off automatic grouping by event with 
setGroupsByEvent:, you must explicitly close the current undo group with enableUndoRegistration 
before invoking either undo method.

Cleaning the Undo Stack

NSUndoManager doesn’t retain the targets of undo operations, for several reasons. Foremost is that the 
client—the object performing undo operations—typically owns the NSUndoManager; thus for the 
NSUndoManager to retain the target would create cycles. The NSUndoManager does contain references to 
the targets of undo operations, however, which it uses to send undo messages when undo is performed. If a 
target object has been deallocated, and an undo message is sent to it, errors will result.

To remedy this, the client must take care to clear undo operations for targets that are being deallocated. This 
typically occurs in one of three ways:

• The client is the exclusive owner of the NSUndoManager and the target of all undo operations. In this 
case the client can simply release the NSUndoManager in its dealloc method.

• The client shares the NSUndoManager with other clients. To handle this the client should send 
removeAllActionsWithTarget:  (argument of self) to the NSUndoManager before releasing it in its 
dealloc method.

• The client registers objects other than itself for undo operations. Here either the client must watch for the 
other objects being deallocated in order to send removeAllActionsWithTarget: , or the other objects 
must do so themselves when deallocated (which requires that they have a reference to the 
NSUndoManager). This is likely to be needed with invocation-based undo.

In a more general sense, it sometimes makes sense to clear all undo and redo operations. Some applications 
might want to do this when saving a document, for example. To this end, NSUndoManager defines the 
removeAllActions method, which clears both stacks.

Setting Action Names

NSUndoManager provides methods for qualifying the Undo and Redo command titles in the Edit menu. 
Take, as an example, a graphics application that allows users to add circles, fill them with a color, and delete 



5

 Classes: NSUndoManager

them. With the methods defined here, the application could, upon successive undos, make the titles "Undo 
Delete," "Undo Fill," and "Undo Add Circle."

These extensions automatically localize Undo and Redo command titles.  They also provide two methods 
that you can override to customize how these titles are localized: undoMenuTitleForUndoActionName: 
and redoMenuTitleForUndoActionName:.

Undo Notifications

An NSUndoManager regularly posts checkpoint notifications to synchronize the inclusion of undo 
operations in undo groups.  Objects sometimes delay performing changes, for various reasons. This means 
they may also delay registering undo operations for those changes. Because NSUndoManager collects 
individual operations into groups, it must be sure to synchronize its client with the creation of these groups 
so that operations are entered into the proper undo groups. To this end, whenever an NSUndoManager 
opens or closes a new undo group (except when it opens a top-level group), it posts an 
“NSUndoManagerCheckpointNotification” so that observers can apply their pending undo operations to 
the group in effect. The NSUndoManager’s client should register itself as an observer for this notification 
and record undo operations for all pending changes upon receiving it.

NSUndoManager also posts a number of other notifications at specific intervals: when a group is created, 
when a group is closed, and just before and just after both undo and redo operations. “”“”

Undo in Applications

The Application Kit supplements the behavior of NSUndoManager in several ways. It offers default undo 
and redo behavior in text. It includes APIs for managing the action names that appear with "Undo" and 
"Redo" in an application’s menu. And it establishes a framework for the distribution and selection of 
NSUndoManagers in an application.

Undo and the Responder Chain

As stated earlier, an application can have one or more clients: objects that register and perform undo 
operations in their local contexts. Each of these objects has its own NSUndoManger and the associated undo 
and redo stacks. One example of this scenario involves custom views, each a client of an NSUndoManager. 
For example, you could have a window with two custom views; each view can display text in changeable 
attributes (such as font, color, and size) and users can undo (or redo) each change to any attribute in either 
of the views.NSResponder and NSWindow define methods to help you control the context of undo 
operations within the view hierarchy. 

NSResponder declares the undoManager method for most objects that inherit from it (namely, windows 
and views). When the first responder of an application receives undo or redo message, NSResponder goes 
up the responder chain looking for a next responder that implements the undoManager by returning an 
NSUndoManager object. If such an object is returned, it is used for the undo or redo operation. If the 
undoManager message wends its way up the responder chain to the window, the NSWindow object queries 



6

its delegate with windowWillReturnUndoManager:  to see if the delegater has an NSUndoManager. If the 
delegate does not implement this method, the NSWindow creates an NSUndoManager for the window and 
all its views.

Document-based applications often make their NSDocument objects the delegates of their windows and 
have them respond to the windowWillReturnUndoManager:  message by returning the NSUndoManager 
used for the document.  These applications can also make each NSWindowController the  delegate of its 
window; the window controller implements windowWillReturnUndoManager: to get the 
NSUndoManager from its document and return it, for example:

return [[self document] undoManager];

NSTextView

NSTextViews provide undo and redo behavior by default. For your application to take advantage of this 
feature, however, it must send setAllowsUndo: with an argument of YES to the text view. If you want a text 
view  to have its own NSUndoManager (and not the window’s), have the text view’s delegate implement 
undoManagerForTextView:, to return the NSUndoManager.

The default undo and redo behavior applies to text fields and text in cells as long as the field or cell is the 
first responder (that is, the focus of keyboard actions). Once the insertion point leaves the field or cell, prior 
operations cannot be undone.

Method Types

Registering undo operations – registerUndoWithTarget:selector:object:
– prepareWithInvocationTarget:
– forwardInvocation:

Checking undo ability – canUndo
– canRedo

Performing undo and redo – undo
– undoNestedGroup
– redo

Limiting the undo stack – setLevelsOfUndo:
– levelsOfUndo

Creating undo groups – beginUndoGrouping
– enableUndoRegistration
– setGroupsByEvent:
– groupingLevel

Disabling undo – disableUndoRegistration
– enableUndoRegistration



7

 Classes: NSUndoManager

Checking whether undo or redo is being performed
– isUndoing
– isRedoing

Clearing undo operations – removeAllActions
– removeAllActionsWithTarget:

Setting and getting the action name
– setActionName:
– redoActionName
– undoActionName

Getting and localizing menu item title
– redoMenuItemTitle
– undoMenuItemTitle
– redoMenuTitleForUndoActionName:
– undoMenuTitleForUndoActionName: 

Instance Methods

beginUndoGrouping
– (void)beginUndoGrouping

Marks the beginning of an undo group. All individual undo operations before a subsequent 
endUndoGrouping  message are grouped together and reversed by a later undo message. By default undo 
groups are begun automatically at the start of the event loop, but you can begin your own undo groups with 
this method, and nest them within other groups.

This method posts an “NSUndoManagerCheckpointNotification” unless a top-level undo is in progress. It 
posts a “NSUndoManagerDidOpenUndoGroupNotification” if a new group was successfully created.

canRedo
– (BOOL)canRedo

Returns YES if the receiver has any actions to redo, NO if it doesn’t.

Because any undo operation registered clears the redo stack, this method posts an 
“NSUndoManagerCheckpointNotification” to allow clients to apply their pending operations before testing 
the redo stack.

See also: – canUndo, – redo



8

canUndo
– (BOOL)canUndo

Returns YES if the receiver has any actions to undo, NO if it doesn’t. This does not mean that you can safely 
invoke undo or undoNestedGroup; you may have to close open undo groups first.

See also: – canRedo, – enableUndoRegistration, – registerUndoWithTarget:selector:object:

disableUndoRegistration
– (void)disableUndoRegistration

Disables the recording of undo operations, whether by registerUndoWithTarget:selector:object: or by 
invocation-based undo. This method can be invoked multiple times by multiple clients; 
enableUndoRegistration must be invoked an equal number of times to re-enable undo registration. 

enableUndoRegistration
– (void)enableUndoRegistration

Enables the recording of undo operations. Because undo registration is enabled by default, it is often used 
to balance a prior disableUndoRegistration message. Undo registration isn’t actually re-enabled until a 
enable message balances the last disable message in effect. Raises an NSInternalInconsistencyException if 
invoked while no disableUndoRegistration message is in effect.

endUndoGrouping
– (void)endUndoGrouping

Marks the end of an undo group. All individual undo operations back to the matching beginUndoGrouping 
message are grouped together and reversed by a later undo or undoNestedGroup message. Undo groups 
can be nested, thus providing functionality similar to nested transactions. Raises an 
NSInternalInconsistencyException if there’s no beginUndoGrouping message in effect.

This method posts an “NSUndoManagerCheckpointNotification” and an 
“NSUndoManagerWillCloseUndoGroupNotification” just before the group is closed.

See also: – levelsOfUndo



9

 Classes: NSUndoManager

forwardInvocation:
– (void)forwardInvocation: (NSInvocation *)anInvocation

Overrides NSObject’s implementation to record anInvocation as an undo operation. Also clears the redo 
stack. You can override this method if you want different or supplementary invocation-based behavior. See 
““Invocation-Based Undo”” in the class description for more information.

Raises an NSInternalInconsistencyException if prepareWithInvocationTarget:  wasn’t invoked before 
this method; this method then clears the prepared invocation target. Also raises an 
NSInternalInconsistencyException if invoked when no undo group has been established using 
beginUndoGrouping. Undo groups are normally set by default, so you should rarely need to begin a top-level 
undo group explicitly.

See also: – undoNestedGroup, – registerUndoWithTarget:selector:object:, – groupingLevel

groupingLevel
– (int)groupingLevel

Returns the number of nested undo groups (or redo groups, if Redo was last invoked) in the current event 
loop. If zero is returned, there is no open undo or redo group.

See also: – levelsOfUndo, – setLevelsOfUndo:

groupsByEvent
– (BOOL)groupsByEvent

Returns YES if the receiver automatically creates undo groups around each pass of the run loop, NO if it 
doesn’t. The default is YES.

See also: – beginUndoGrouping, – setGroupsByEvent:

isRedoing
– (BOOL)isRedoing

Returns YES if the receiver is in the process of performing its redo method, NO otherwise.

See also: – isUndoing



10

isUndoing
– (BOOL)isUndoing

Returns YES if the receiver is in the process of performing its undo or undoNestedGroup method, NO 
otherwise.

See also: – isRedoing

isUndoRegistrationEnabled
– (BOOL)isUndoRegisgrationEnabled

Returns whether the recording of undo operations is enabled. Undo registration is enabled by default.

See also: – disableUndoRegistration, – enableUndoRegistration

levelsOfUndo
– (unsigned int)levelsOfUndo

Returns the maximum number of top-level undo groups the receiver will hold. When ending an undo group 
results in the number of groups exceeding this limit, the oldest groups are dropped from the stack. A limit 
of zero indicates no limit, so that old undo groups are never dropped. The default is zero.

See also: – enableUndoRegistration, – setLevelsOfUndo:

prepareWithInvocationTarget:
– (id)prepareWithInvocationTarget: (id)target

Prepares the receiver for invocation-based undo with target as the subject of the next undo operation and 
returns self. See ““Invocation-Based Undo”” in the class description for more information.

See also: – forwardInvocation:

redo
– (void)redo

Performs the operations in the last group on the redo stack, if there are any, recording them on the undo 
stack as a single group. Raises an NSInternalInconsistencyException if the method is invoked during an 
undo operation.



11

 Classes: NSUndoManager

This method posts an “NSUndoManagerCheckpointNotification” and 
“NSUndoManagerWillRedoChangeNotification” before it performs the redo operation, and it posts the 
“NSUndoManagerDidRedoChangeNotification” after it performs the redo operation.

See also: – redo, – registerUndoWithTarget:selector:object:

redoActionName
– (NSString *)redoActionName 

Returns the name identifying the redo action. For example, if the menu title is "Redo Delete," the string 
returned is "Delete."  Returns an empty string  if  no action name has been assigned or nil  if there is nothing 
to undo.

See also:  – setActionName:, – undoActionName 

redoMenuItemTitle
– (NSString *)redoMenuItemTitle  

Returns the co mplete title of the Redo menu command, for example, "Redo Paste."  Returns "Redo"  if  no 
action name has been assigned or nil  if there is nothing to undo.

See also: – undoMenuItemTitle

redoMenuTitleForUndoActionName:
– (NSString *)redoMenuTitleForUndoActionName:(NSString *)actionName 

Returns the complete, localized title of the Redo menu command for the action identified by actionName. 
Override this method if you want to customize the localization behavior. This method is invoked by 
redoMenuItemTitle .

See also: – undoMenuTitleForUndoActionName:

registerUndoWithTarget:selector:object:
– (void)registerUndoWithTarget: (id)target selector:(SEL)aSelector object:(id)anObject

Records a single undo operation for target, so that when undo is performed it’s sent aSelector with anObject 
as the sole argument. Also clears the redo stack. Doesn’t retain target. See ““Simple Undo”” in the class 
description for more information.



12

Raises an NSInternalInconsistencyException if invoked when no undo group has been established using 
beginUndoGrouping. Undo groups are normally set by default, so you should rarely need to begin a top-level 
undo group explicitly.

See also: – undoNestedGroup, – forwardInvocation: , – groupingLevel

removeAllActions
– (void)removeAllActions

Clears the undo and redo stacks and reenables the receiver.

See also: – enableUndoRegistration, – removeAllActionsWithTarget:

removeAllActionsWithTarget:
– (void)removeAllActionsWithTarget: (id)target

Clears the undo and redo stacks of all operations involving target as the recipient of the undo message. 
Doesn’t re-enable the receiver if it’s disabled. An object that shares an NSUndoManager with other clients 
should invoke this message in its implementation of dealloc.

See also: – enableUndoRegistration, – removeAllActions

runLoopModes
– (NSArray *)runLoopModes

Returns the modes determining the types of input handled during a cycle of the run loop.  By default, the 
sole run-loop mode is NSDefaultRunLoopMode (which excludes data from NSConnections).

See also: – setRunLoopModes:, – performSelector:target:argument:order:modes: (NSRunLoop)

setActionName:
– (void)setActionName:(NSString *)actionName 

Sets the name of the action associated with the Undo or Redo command to actionName. If actionName is 
an empty string, the action name currently associated with the menu command is removed. There is no 
effect if actionName is nil .

See also: – redoActionName, – undoActionName



13

 Classes: NSUndoManager

setGroupsByEvent:
– (void)setGroupsByEvent:(BOOL)flag

Sets whether the receiver automatically groups undo operations during the run loop. If flag is YES, the 
receiver creates undo groups around each pass through the run loop; if flag is NO it doesn’t. The default is 
YES.

If you turn automatic grouping off, you must close groups explicitly before invoking either undo or 
undoNestedGroup.

See also: – groupingLevel, – groupsByEvent

setLevelsOfUndo:
– (void)setLevelsOfUndo:(unsigned int)anInt

Sets the maximum number of top-level undo groups the receiver will hold to anInt. When ending an undo 
group results in the number of groups exceeding this limit, the oldest groups are dropped from the stack. A 
limit of zero indicates no limit, so that old undo groups are never dropped. The default is zero.

If invoked with a limit below the prior limit, old undo groups are immediately dropped.

See also: – enableUndoRegistration, – levelsOfUndo

setRunLoopModes:
– (void)setRunLoopModes:(NSArray *)modes

Sets the modes that determine the types of input handled during a cycle of the run loop.  By default, the sole 
run-loop mode is NSDefaultRunLoopMode (which excludes data from NSConnections). With this method, 
you could limit the input to data received during a mouse-tracking session by setting the mode to 
NSEventTrackingRunLoopMode, or you could limit it to data received from a modal panel with 
NSModalPanelRunLoopMode.

See also: – runLoopModes, – performSelector:target:argument:order:modes: (NSRunLoop)

undo
– (void)undo

Closes the top-level undo group if necessary and invokes undoNestedGroup. It also invokes 
endUndoGrouping if the nesting level is 1. Raises an NSInternalInconsistencyException if more than one 
undo group is open (that is, if the last group isn’t at the top level).



14

This method posts an “NSUndoManagerCheckpointNotification”.

See also: – enableUndoRegistration, – groupingLevel

undoActionName
– (NSString *)undoActionName 

Returns the name identifying the undo action. For example, if the menu title is "Undo Delete," the string 
returned is "Delete." Returns an empty string if  no action name has been assigned or nil  if there is nothing 
to undo.

See also: – redoActionName, – setActionName:

undoMenuItemTitle
– (NSString *)undoMenuItemTitle  

Returns the co mplete title of the Undo menu command, for example, "Undo Paste." If no action name as 
been assigned, it returns "Undo."  Returns "Undo"  if  no action name has been assigned or nil  if there is 
nothing to undo.

See also: – redoMenuItemTitle

undoMenuTitleForUndoActionName:
– (NSString *)undoMenuTitleForUndoActionName:(NSString *)actionName 

Returns the complete, localized title of the Undo menu command for the action identified by actionName. 
Override this method if you want to customize the localization behavior.  This method is invoked by 
undoMenuItemTitle .

See also: – redoMenuTitleForUndoActionName: 

undoNestedGroup
– (void)undoNestedGroup

Performs the undo operations in the last undo group (whether top-level or nested), recording the operations 
on the redo stack as a single group. Raises an NSInternalInconsistencyException if any undo operations 
have been registered since the last enableUndoRegistration message.



15

 Classes: NSUndoManager

This method posts an “NSUndoManagerCheckpointNotification” and 
“NSUndoManagerWillUndoChangeNotification” before it performs the undo operation, and it posts the 
“NSUndoManagerDidUndoChangeNotification” after it performs the undo operation.

See also: – undo

Notifications 

NSUndoManagerCheckpointNotification

Posted whenever an NSUndoManager opens or closes an undo group (except when it opens a top-level 
group), and when checking the redo stack in canRedo. The notification contains:

Notification Object The NSUndoManager
Userinfonil

NSUndoManagerDidOpenUndoGroupNotification

Posted whenever an NSUndoManager opens an undo group, which occurs in the implementation of the 
beginUndoGrouping method. The notification contains:

Notification Object The NSUndoManager
Userinfonil

NSUndoManagerDidRedoChangeNotification

Posted just after an NSUndoManager performs a redo operation (redo). The notification contains:

Notification Object The NSUndoManager
Userinfonil

NSUndoManagerDidUndoChangeNotification

Posted just after an NSUndoManager performs an undo operation.  If you invoke undo or 
undoNestedGroup, this notification will be posted. The notification contains:

Notification Object The NSUndoManager
Userinfonil



16

NSUndoManagerWillCloseUndoGroupNotification

Posted whenever an NSUndoManager closes an undo group, which occurs in the implementation of the 
endUndoGrouping method.. The notification contains:

Notification Object The NSUndoManager
Userinfonil

NSUndoManagerWillRedoChangeNotification

Posted just before an NSUndoManager performs a redo operation (redo).. The notification contains:

Notification Object The NSUndoManager
Userinfonil

NSUndoManagerWillUndoChangeNotification

Posted just after an NSUndoManager performs an undo operation.  If you invoke undo or 
undoNestedGroup, this notification will be posted.  The notification contains:

Notification Object The NSUndoManager
Userinfonil



1

 Classes: NSUserDefaults

NSUserDefaults

Inherits From: NSObject 

Conforms To: NSObject (NSObject) 

Declared In: Foundation/NSUserDefaults.h

Class at a GlanceClass at a Glance

Purpose
The NSUserDefaults class provides an programmatic interface for interacting with the OPENSTEP defaults 
system.

Principal Attributes
• A dictionary of defaults.

Creation

Commonly Used Methods

+ standardUserDefaults Returns a shared instance initialized with the current user’s defaults.

– objectForKey: Returns the default value for the specified key.

– setObject:forKey: Sets the default value for the specified key.

– removeObjectForKey: Removes the default entry identified by the specified key.

– registerDefaults:
Adds the specified defaults to the NSRegistrationDomain—a cache of 
application-provided defaults that are used unless a user overrides them.



2

Class Description

The NSUserDefaults class provides a programmatic interface for interacting with the OPENSTEP defaults 
system. The defaults system allows an application to customize its behavior to match a user’s preferences. 
For example, you can allow users to determine what units of measurement your application displays or how 
often documents are automatically saved. Applications record such preferences by assigning values to a set 
of parameters in a user’s defaults database. The parameters are referred to as defaults since they're 
commonly used to determine an application's default state at startup or the way it acts by default.

A defaults database is created automatically for each user. On Unix (Mach, Solaris, and HPUX) platforms, 
the database is made up of a collection of files located in the .OpenStep directory of a user's home directory. 
On Windows platforms, the defaults database is stored in the Windows registry.

At run time, you use an NSUserDefaults object to read the defaults that your application uses from a user’s 
defaults database. NSUserDefaults caches the information to avoid having to open the user’s defaults 
database each time you need a default value. The synchronize method, which is automatically invoked at 
periodic intervals, keeps the in-memory cache in sync with a user’s defaults database.

Warning: User defaults are not thread safe. 

Domains

Defaults are grouped in domains. For example, there’s a domain for application-specific defaults and 
another for system-wide defaults that apply to all applications.

Note: All defaults are stored and accessed per user. OpenStep doesn’t provide for defaults that affect all 
users.

Each domain has a name by which it’s identified and stores defaults as key-value pairs in an NSDictionary 
object. Each default is made up of three components:

• The domain in which the default is stored
• The name by which the default is identified (an NSString)
• The default’s value, which can be any property-list object (NSData, NSString, NSArray, or 

NSDictionary)

A domain is either persistent or volatile. Persistent domains are permanent and last past the life of the 
NSUserDefaults object. Persistent domains are stored in a user’s defaults database. If you use 
NSUserDefaults to make a changes to a default in a persistent domain, the changes are saved in the user’s 
defaults database automatically. On the other hand, volatile domains last only as long as the 
NSUserDefaults object exists; they aren’t saved in the user’s defaults database. The standard domains are:

Domain State

NSArgumentDomain volatile



3

 Classes: NSUserDefaults

A search for the value of a given default proceeds through the domains in an NSUserDefaults object’s 
search list. Only domains in the search list are searched. The standard search list contains the domains from 
the table above, in the order listed. A search ends when the default is found. Thus, if multiple domains 
contain the same default, only the domain nearest the beginning of the search list provides the default’s 
value. Using the setSearchList: method, you can reorder the default search list or set up one that is a subset 
of all the user’s domains.

The following sections describe the purpose of each of the domains.

NSArgumentDomain

Default values can be set from command line arguments (if you start the application from the command 
line) as well as from a user's defaults database. Default values set from the command line go in the 
NSArgumentDomain. They are set on the command line by preceding the default name with a hyphen and 
following it with a value. For example, the following command launches Project Builder and sets Project 
Builder’s IndexOnOpen default to NO:

localhost> ProjectBuilder.app/ProjectBuilder -IndexOnOpen NO

Defaults set from the command line temporarily override values from a user’s defaults database. In the 
example above, Project Builder won’t automatically index projects even if the user’s IndexOnOpen 
preference is set to YES in the defaults database.

Application Domain

The application domain contains application-specific defaults that are read from a user’s defaults database. 
The application domain is identified by the name of the application, as returned by NSProcessInfo’s 
processName method:

NSString *applicationName = [[NSProcessInfo processInfo] processName];

NSGlobalDomain

The global domain contains defaults that are read from a user’s defaults database and are applicable to all 
applications that a user runs. Many Application Kit and Foundation objects use default values from the 

Application (Identified by the application’s name) persistent

NSGlobalDomain persistent

Languages (Identified by the language names) volatile

NSRegistrationDomain volatile

Domain State



4

NSGlobalDomain. For example, NSRulerView objects automatically use a user’s preferred measurement 
units, as stored in the user’s defaults database under the key “NSMeasurementUnit.” Consequently, ruler 
views in all applications use the user’s preferred measurement units—unless an application overrides the 
default by creating an NSMeasurementUnit default in its application domain. Another NSGlobalDomain 
default, NSLanguages, allows users to specify a preference of languages. For example, a user could specify 
English as the preferred language, followed by Spanish, French, German, Italian, and Swedish.

Languages

If a user has a value for the NSLanguages default, then NSUserDefaults records language-specific default 
values in domains identified by the language name. The language specific domains contain defaults for a 
locale. Certain classes from the Foundation Framework (NSCalendarDate, NSDate, NSTimeZone, 
NSString, and NSScanner, for example) use locale defaults to modify their behavior. For example, when 
you request an NSString representation of an NSCalendarDate, the NSCalendarDate looks at the locale to 
determine what the months and the days of the week are named in your preferred language. For more 
information on locale defaults, see the document “Locales” in the Foundation Reference.

NSRegistrationDomain

The registration domain is a set of application-provided defaults that are used unless a user overrides them. For 
example, the first time you run Project Builder, there isn’t an IndexOnOpen value saved in your defaults 
database. Consequently, Project Builder registers a default value for IndexOnOpen in the 
NSRegistrationDomain as a “catch all” value. Project Builder can thereafter assume that an 
NSUserDefaults object always has a value to return for the default, simplifying the use of user defaults.

You set NSRegistrationDomain defaults programmatically with the method registerDefaults:.

Synchronizing an NSUserDefaults Object with the Defaults Database

Since other applications (and the user) can write to a defaults database, the database and an NSUserDefaults 
object might not agree on the value of a given default at all times. Using the synchronize method, you can 
update the defaults database with an NSUserDefaults object’s new values and update the NSUserDefaults 
object with any changes that have been made to the database. In applications in which a run-loop is present, 
synchronize is automatically invoked at periodic intervals. Consequently, you might synchronize before 
exiting a process, but otherwise you shouldn’t need to.

Using NSUserDefaults

Typically, you use this class by invoking the standardUserDefaults class method to get an NSUserDefaults 
object. This method returns a global NSUserDefaults object with a search list already initialized. Use the 
objectForKey: and setObject:forKey: methods to get and set default values.

For example, suppose that your application needs a default that specifies whether or not to delete backup 
files. You could use an NSUserDefaults object to manage your default, as follows:



5

 Classes: NSUserDefaults

Set a default in the NSRegistrationDomain.

An application can set values for all its defaults in the NSRegistrationDomain. If users specify a different 
preference in their defaults database, the users’ preferences override the values from the 
NSRegistrationDomain. An NSUserDefaults object only uses values from the NSRegistrationDomain 
when a user hasn’t specified a different preference. So, you need to decide whether or not your application 
should delete backup files by default. 

To register the application’s default behavior, you get the application's shared instance of NSUserDefaults 
and register default values with it. A good place to do this is in the initialize  method of the class that uses 
the default. The following example registers the value “YES” for the default named “DeleteBackup”. 

+ (void)initialize{

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

NSDictionary *appDefaults = [NSDictionary

dictionaryWithObject:@"YES" andKey:@"DeleteBackup"];

[defaults registerDefaults:appDefaults];

}

The initialize message is sent to each class before it receives any other message, ensuring that the 
application's defaults are set before the application needs to read them.

Allow the user to specify a different default behavior.

To allow users to specify a different default behavior for deleting backups, you must provide an interface 
in which they can express their preference. Most applications provide a Preferences panel for this purpose. 
When your application detects that a user has specified a new preference, it should save it in the shared 
instance of NSUserDefaults.

For example, assume that your application has an instance variable called deleteBackupButton that is an 
outlet to an NSButton, and that users toggle this button’s state to indicate whether or not the application 
should delete its backup files. Then you could use the following code to update the user’s value for the 
DeleteBackup default:

if ([deleteBackupButton state]) {

// The user wants to delete backup files.

[[NSUserDefaults standardUserDefaults]

setObject:@"YES" forKey:@"DeleteBackup"];

} else {

// The user doesn’t want to delete backup files.

[[NSUserDefaults standardUserDefaults]

setObject:@"NO" forKey:@"DeleteBackup"];

}

After determining the button’s state, setObject:forKey: is used to set the value of the specified default in 
the application domain.



6

You don’t have to use a Preferences panel to manage all defaults. For example, an NSWindow can store its 
placement in the user defaults system, so that it appears in the same location the next time the user starts 
the application.

Use the default value to determine behavior.

To find out whether or not to delete a backup file, you can use the following statement:

     [[NSUserDefaults standardUserDefaults] boolForKey:@"DeleteBackup"];

As a convenience, NSUserDefaults provides boolForKey:, floatForKey: , and so on. Recall that a default’s 
value can be only an NSData, NSString, NSArray, or NSDictionary. The boolForKey: and similarly named 
methods attempt to get the value for the specified default and interpret it as a different data type.

Method Types

Getting the shared instance
+ standardUserDefaults

Initializing an NSUserDefaults
– init
– initWithUser:

Getting a default
– arrayForKey:
– boolForKey:
– dataForKey:
– dictionaryForKey:
– floatForKey:
– integerForKey:
– objectForKey:
– stringArrayForKey:
– stringForKey:

Setting and removing defaults
– removeObjectForKey:
– setBool:forKey:
– setFloat:forKey:
– setInteger:forKey:
– setObject:forKey:

Setting and getting the search list
– setSearchList:
– searchList
– dictionaryRepresentation



7

 Classes: NSUserDefaults

Maintaining persistent domains
– persistentDomainForName:
– persistentDomainNames
– removePersistentDomainForName:
– setPersistentDomain:forName:
– synchronize

Maintaining volatile domains
– removeVolatileDomainForName:
– setVolatileDomain:forName:
– volatileDomainForName:
– volatileDomainNames

Registering defaults
– registerDefaults:

Class Methods 

standardUserDefaults
+ (NSUserDefaults *)standardUserDefaults 

Returns the shared defaults object. If it doesn’t exist yet, it’s created with a search list containing the names 
of the following domains, in this order: 

• NSArgumentDomain, consisting of defaults parsed from the application’s arguments

• A domain identified by the process (application) name

• NSGlobalDomain, consisting of defaults meant to be seen by all applications

• Separate domains for each of the user’s preferred languages 

• NSRegistrationDomain, a set of temporary defaults whose values can be set by the application to ensure 
that searches will always be successful 

The defaults are initialized for the current user.  Subsequent modifications to the standard search list remain 
in effect even when this method is invoked again—the search list is guaranteed to be standard only the first 
time this method is invoked. The shared instance is provided as a convenience; you may create custom  
instances with initWithUser:  and init . 

See also: – init, – initWithUser:



8

Instance Methods

arrayForKey:
– (NSArray *)arrayForKey: (NSString *)defaultName 

Invokes objectForKey: with key defaultName. Returns the value associated with defaultName if it’s an 
NSArray object and nil  otherwise.  

See also: –boolForKey:, – dataForKey:, – dictionaryForKey: , – floatForKey: , – integerForKey:, 
– objectForKey:, – stringArrayForKey: , – stringForKey:

boolForKey:
– (BOOL)boolForKey:(NSString *)defaultName 

Invokes stringForKey : with key defaultName. Returns YES if the  value associated with defaultName is an 
NSString containing uppercase or lowercase “YES” or responds to the intValue message by returning a 
non-zero value. Otherwise, returns NO.

See also: –arrayForKey: , – dataForKey:, – dictionaryForKey: , – floatForKey: , – integerForKey:, 
– objectForKey:, – stringArrayForKey: , – stringForKey: 

dataForKey:
– (NSData *)dataForKey:(NSString *)defaultName 

Invokes objectForKey: with key defaultName. Returns the corresponding value if it’s an NSData object 
and nil otherwise.

See also:  – arrayForKey: , –boolForKey:, – dictionaryForKey: , – floatForKey: , – integerForKey:, 
– objectForKey:, – stringArrayForKey: , – stringForKey:  

dictionaryForKey:
– (NSDictionary *)dictionaryForKey: (NSString *)defaultName 

Invokes objectForKey: with key defaultName. Returns the corresponding value if it’s an NSDictionary 
object and nil  otherwise.

See also:  – arrayForKey: , –boolForKey:, – dataForKey:, – floatForKey: , – integerForKey:, 
– objectForKey:, – stringArrayForKey: , – stringForKey:



9

 Classes: NSUserDefaults

dictionaryRepresentation
– (NSDictionary *)dictionaryRepresentation 

Returns a dictionary that contains a union of all key-value pairs in the domains in the search list.  As with 
objectForKey:, key-value pairs in domains that are earlier in the search list take precedence.  The combined 
result doesn’t preserve information about which domain each entry came from.

See also:  – searchList

floatForKey:
– (float)floatForKey: (NSString *)defaultName 

Invokes stringForKey:  with key defaultName. Returns 0 if no string is returned. Otherwise, the resulting 
string is sent a floatValue message, which provides this method’s return value.

See also:  – arrayForKey: , –boolForKey:, – dataForKey:, – dictionaryForKey: , – integerForKey:, 
– objectForKey:, – stringArrayForKey: , – stringForKey:  

init
– (id)init  

Initializes defaults for the current user account and returns an NSUserDefaults instance with the argument 
and registration domains set up. This method doesn’t put anything in the search list. Invoke it only if you’ve 
allocated your own NSUserDefaults instance instead of using the shared one.

See also:  + standardUserDefaults  

initWithUser:
– (id)initWithUser: (NSString *)username 

Initializes defaults for the user account identified by username and returns an NSUserDefaults instance with 
the argument and registration domains set up. This method doesn’t put anything in the search list. Invoke it 
only if you’ve allocated your own NSUserDefaults instance instead of using the shared one.

You wouldn’t ordinarily use this method to initialize an instance of NSUserDefaults. It is provided for 
applications intended for use by a superuser who needs to update defaults databases for a number of users. 
The user who started the application must have appropriate access (read, write, or both) to the defaults 
database of the new user, or this method returns nil .

See also:  + standardUserDefaults  



10

integerForKey:
– (int)integerForKey:(NSString *)defaultName 

Invokes stringForKey:  with key defaultName. Returns 0 if no string is returned.  Otherwise, the resulting 
string is sent a intValue message, which provides this method’s return value.

See also:  – arrayForKey: , –boolForKey:, – dataForKey:, – dictionaryForKey: , – floatForKey: , 
– objectForKey:, – stringArrayForKey: , – stringForKey:  

objectForKey:
– (id)objectForKey:(NSString *)defaultName 

Returns the value of the first occurrence of the default identified by defaultName, searching the domains 
included in the search list in the order they’re listed. Returns nil  if the default isn’t found.

See also:  – arrayForKey: , –boolForKey:, – dataForKey:, – dictionaryForKey: , – floatForKey: , 
– integerForKey:, – stringArrayForKey: , – stringForKey:  

persistentDomainForName:
– (NSDictionary *)persistentDomainForName:(NSString *)domainName 

Returns a dictionary representing the persistent domain identified by domainName. The keys in the 
dictionary are names of defaults, and the value corresponding to each key is a property-list object 
(NSString, NSDictionary, NSArray, or NSData).

See also:  – removePersistentDomainForName:, – setPersistentDomain:forName:  

persistentDomainNames
– (NSArray *)persistentDomainNames 

Returns an array containing the names of the current persistent domains. You can get each domain by using 
the domain names in the array as arguments to persistentDomainForName:. 

See also:  – removePersistentDomainForName:, – setPersistentDomain:forName:  

registerDefaults:
– (void)registerDefaults:(NSDictionary *)dictionary 

Adds the contents of dictionary to the registration domain. If there is no registration domain, it’s created 
using dictionary, and NSRegistrationDomain is added to the end of the search list



11

 Classes: NSUserDefaults

removeObjectForKey:
– (void)removeObjectForKey:(NSString *)defaultName 

Removes the value for the default identified by defaultName in the standard application domain. Removing 
a default has no effect on the value returned by the objectForKey: method if the same key exists in a 
domain that precedes the standard application domain in the search list.

See also: – setObject:forKey:

removePersistentDomainForName:
– (void)removePersistentDomainForName:(NSString *)domainName 

Removes the persistent domain identified by domainName from the user’s defaults. The first time that a 
persistent domain is changed after synchronize, an NSUserDefaultsChanged notification is posted.

See also:  – setPersistentDomain:forName:  

removeVolatileDomainForName:
– (void)removeVolatileDomainForName:(NSString *)domainName 

Removes the volatile domain identified by domainName from the user’s defaults.

See also:  – setVolatileDomain:forName:  

searchList
– (NSArray *)searchList 

Returns an array of domain names, identifying the domains that objectForKey: will search.

See also: – setSearchList:, – dictionaryRepresentation 

setBool:forKey:
– (void)setBool:(BOOL)value forKey: (NSString *)defaultName 

Sets the value of the default identified by defaultName to a string representation of YES or NO, depending 
on value. Invokes setObject:forKey: as part of its implementation.

See also: – boolForKey:



12

setFloat:forKey:
– (void)setFloat:(float)value forKey: (NSString *)defaultName 

Sets the value of the default identified by defaultName to a string representation of value. Invokes 
setObject:forKey: as part of its implementation.

See also: – floatForKey:

setInteger:forKey:
– (void)setInteger:(int)value forKey: (NSString *)defaultName 

Sets the value of the default identified by defaultName to a string representation of value. Invokes setObject:
forKey:  as part of its implementation.

See also: – integerForKey:

setObject:forKey:
– (void)setObject:(id)value forKey: (NSString *)defaultName 

Sets the value of the  default identified by defaultName in the standard application domain. Setting a default 
has no effect on the value returned by the objectForKey: method if the same key exists in a domain that 
precedes the application domain in the search list.

See also: – objectForKey:, – removeObjectForKey:

setPersistentDomain:forName:
– (void)setPersistentDomain:(NSDictionary *)domain forName:(NSString *)domainName 

Sets the dictionary for the persistent domain named domainName; raises an NSInvalidArgumentException 
if a persistent domain with domainName already exists. The first time that a persistent domain is changed 
after synchronize, an NSUserDefaultsChanged notification is posted.

See also:  – persistentDomainForName:, – persistentDomainNames

setSearchList:
– (void)setSearchList:(NSArray *)array

Sets the domains that objectForKey: will search. Domain names in array with no corresponding user 
default domain are ignored.

See also: – searchList



13

 Classes: NSUserDefaults

setVolatileDomain:forName:
– (void)setVolatileDomain:(NSDictionary *)domain forName:(NSString *)domainName 

Sets the dictionary to domain for the volatile domain named domainName. This method raises an 
NSInvalidArgumentException if a volatile domain with domainName already exists.

See also:  – volatileDomainForName:, – volatileDomainNames  

stringArrayForKey:
– (NSArray *)stringArrayForKey: (NSString *)defaultName 

Invokes objectForKey: with key defaultName. Returns the corresponding value if it’s an NSArray object 
containing NSStrings, and nil  otherwise. 

See also:  – arrayForKey: , –boolForKey:, – dataForKey:, – dictionaryForKey: , – floatForKey: , 
– integerForKey:, – objectForKey:, – stringForKey:  

stringForKey:
– (NSString *)stringForKey: (NSString *)defaultName 

Invokes objectForKey: with key defaultName. Returns the corresponding value if it’s an NSString object 
and nil  otherwise.

See also:  – arrayForKey: , –boolForKey:, – dataForKey:, – dictionaryForKey: , – floatForKey: , 
– integerForKey:, – objectForKey:, – stringArrayForKey:   

synchronize
– (BOOL)synchronize 

Saves any modifications to the persistent domains and updates all persistent domains that were not modified 
to what is on disk. Returns NO if it could not save data to disk. Since the synchronize method is 
automatically invoked at periodic intervals, use this method only if you cannot wait for the automatic 
synchronization (for example if your application is about to exit), or if you want to update user defaults to 
what is on disk even though you have not made any changes.

See also:  – persistentDomainForName:, – persistentDomainNames, 
– removePersistentDomainForName:, – setPersistentDomain:forName:  



14

volatileDomainForName:
– (NSDictionary *)volatileDomainForName:(NSString *)domainName 

Returns a dictionary representing the volatile domain identified by domainName. The keys in the dictionary 
are names of defaults, and the value corresponding to each key is a property-list object (NSString, NSData, 
NSDictionary, NSArray).

See also:  – removeVolatileDomainForName:, – setVolatileDomain:forName:   

volatileDomainNames
– (NSArray *)volatileDomainNames 

Returns an array containing the names of the current volatile domains. You can get each domain by using 
the domain names in the array as arguments to volatileDomainForName:. 

See also:  – removeVolatileDomainForName:, – setVolatileDomain:forName:

Notifications

NSUserDefaultsDidChangeNotification

This notification contains a notification object but no userInfo dictionary. The notification object is the 
NSUserDefaults instance.

This notification is posted the first time after a synchronize when a change is made to defaults in a 
persistent domain. 



1

 Classes: NSValue

NSValue

Inherits From: NSObject

Conforms To: NSCoding
NSCopying 
NSObject (NSObject)

Declared In: Foundation/NSValue.h
Foundation/NSGeometry.h



2

Class at a GlanceClass at a Glance

Purpose
An NSValue object serves as an object wrapper for a standard C or Objective-C data item, allowing it to be stored 
in a collection object such as an NSArray or NSDictionary.

Creation

Commonly Used Methods

Primitive Methods
– getValue:
– objCType

Class Description

An NSValue object is a simple container for a single C or Objective-C data item. It can hold any of the scalar 
types such as int , float, and char, as well as pointers, structures, and object ids. The purpose of this class is 

+ value:withObjCType: Returns an NSValue containing any C or Objective-C data item.

+ valueWithBytes:objCType:
Returns an NSValue containing any Objective-C data item, which is 
interpreted as being of the specified Objective-C type.

+ valueWithNonretainedObject:
Returns an NSValue containing an Objective-C object, without retaining 
the Objective-C object.

+ valueWithPointer: Returns an NSValue that contains a pointer.

– objCType Returns the Objective-C type for the data contained in an NSValue.

– getValue: Copies an NSValue’s contents into a buffer.

– nonretainedObjectValue Returns an NSValue’s contents as an id .

– pointerValue Returns an NSValue’s contents as a pointer to void .



3

 Classes: NSValue

to allow items of such data types to be added to collection objects such as NSArrays and NSSets, which 
require their elements to be objects. NSValue objects are always immutable.

To create an NSValue object with a particular data item, you provide a pointer to the item along with a C 
string describing the item’s type in Objective-C type encoding. You get this string using the @encode() 
compiler directive, which returns the platform-specific encoding for the given type (See the section “Types 
Encoding” in the chapter “Objective-C Extensions” in the book Object-Oriented Programming and the 
Objective-C Language for more information about @encode() and a list of type codes). Fore example, 
this code excerpt creates theValue containing an NSRange:

NSRange myRange = {4, 10};

NSValue *theValue = [NSValue valueWithBytes:&myRange objCType:@encode(NSRange)];

Note that the type you specify must be of constant length. C strings, variable-length arrays and structures, 
and other data types of indeterminate length can’t be stored in an NSValue. You should use NSString or 
NSData objects for these. If you must store a variable-length item in an NSValue, you have to store a pointer 
to the item, not the item itself. This code excerpt incorrectly attempts to place a C string directly into an 
NSValue object:

/* INCORRECT! */

char *myCString = "This is a string.";

NSValue *theValue = [NSValue value:myCString withObjCType:@encode(char *)];

In this code excerpt the contents of myCString are interpreted as a pointer to a char, so that the first four 
bytes contained in the string are treated as a pointer (the actual number of bytes used may vary with the 
hardware architecture). That is, the sequence “This” is interpreted as a pointer value, which is unlikely to 
be a legal address. The correct way to store such a data item, short of using an NSString object, is to pass 
the address of its pointer, not the pointer itself:

/* Correct. */

char *myCString = "This is a string.";

NSValue *theValue = [NSValue value:&myCString withObjCType:@encode(char *)];

Here the address of myCString is passed, so that the address of the first character of the string is stored in 
theValue. Note that the NSValue doesn’t copy the contents of the string, but the pointer itself. If you create 
an NSValue with an allocated data item, don’t deallocate its memory while the NSValue object exists.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:



4

Method Types

Creating an NSValue
– initWithBytes:objCType:
+ valueWithBytes:objCType:
+ value:withObjCType:
+ valueWithNonretainedObject:
+ valueWithPointer:
+ valueWithPoint:
+ valueWithRect:
+ valueWithSize:

Accessing data
– getValue:
– nonretainedObjectValue
– objCType
– pointValue
– pointerValue
– rectValue
– sizeValue

Comparing objects
– isEqualToValue:

Class Methods

value:withObjCType:
+ (NSValue *)value:(const void *)value withObjCType: (const char *)type

Creates and returns an NSValue containing value, which is interpreted as being of the Objective-C type type. 
type should be created with the Objective-C @encode() compiler directive; it shouldn’t be hard-coded as a 
C string. See the class description for other considerations in creating an NSValue object and code 
examples.

See also:  + valueWithBytes:objCType:

valueWithBytes:objCType:
+ (NSValue *)valueWithBytes:(const void *)value objCType:(const char *)type

Creates and returns an NSValue containing value, which is interpreted as being of the Objective-C type type. 
type should be created with the Objective-C @encode() compiler directive; it shouldn’t be hard-coded as a 



5

 Classes: NSValue

C string. This method is equivalent to value:withObjCType: , which is part of OpenStep. See the class 
description for other considerations in creating an NSValue object and code examples.

See also: – initWithBytes:objCType:

valueWithNonretainedObject:
+ (NSValue *)valueWithNonretainedObject:(id)anObject

Creates and returns an NSValue containing anObject, but doesn’t retain it. This method is equivalent to 
invoking value:withObjCType:  in this manner:

NSValue *theValue = [NSValue value:&anObject withObjCType:@encode(void *)];

This method is useful for preventing an object from being retained when it’s added to a collection object 
(such as an NSArray or NSDictionary).

See also: – nonretainedObjectValue

valueWithPoint:
+  (NSValue *)valueWithPoint: (NSPoint)aPoint

Creates and returns an NSValue object that contains the specified NSPoint structure (which represents a 
geometrical point in two dimensions).

See also: – pointValue

valueWithPointer:
+  (NSValue *)valueWithPointer: (const void *)aPointer

Creates and returns an NSValue object that contains aPointer. This method is equivalent to invoking value:
withObjCType:  in this manner:

NSValue *theValue = [NSValue value:&aPointer withObjCType:@encode(void *)];

This method doesn’t copy the contents of aPointer, so you should be sure not to deallocate that memory 
while the NSValue object exists. NSData objects may be more suited for arbitrary pointers than NSValue 
objects.

See also: – pointerValue



6

valueWithRect:
+  (NSValue *)valueWithRect:(NSRect)rect

Creates and returns an NSValue object that contains the specified NSRect structure (which represents the 
coordinates of the rectangle’s origin).

See also: – rectValue

valueWithSize:
+  (NSValue *)valueWithSize:(NSSize)size

Creates and returns an NSValue that contains the specified NSSize structure (which represents the width 
and height of a rectangle).

See also: – sizeValue

Instance Methods

getValue:
– (void)getValue:(void *)buffer

Copies the NSValue’s contents into buffer. buffer should be large enough to hold the value.

initWithBytes:objCType:
– (id)initWithBytes: (const void *)value objCType:(const char *)type

Initializes a newly created NSValue to contain value, which is interpreted as being of the Objective-C type 
type. type should be created with the Objective-C @encode() compiler directive; it shouldn’t be hard-coded 
as a C string. See the class description for other considerations in creating an NSValue object.

This is the designated initializer for the NSValue class. Returns self.

isEqualToValue:
– isEqualToValue:(NSValue *)aValue

Returns YES if the receiver and aValue are equal, otherwise returns NO. For NSValue objects, the class, 
type, and contents are compared to determine equality.



7

 Classes: NSValue

nonretainedObjectValue
– (id)nonretainedObjectValue

For an NSValue object created to hold a pointer-sized data item, returns that item as an id. For any other 
NSValue object the result is undefined.

See also: – getValue:

objCType
– (const char *)objCType

Returns a C string containing the Objective-C type of the data contained in the receiver, as encoded by the 
@encode() compiler directive.

pointValue
–  (NSPoint)pointValue

Returns an NSPoint structure (which represents a geometrical point in two dimensions).

See also: – rectValue, – sizeValue

pointerValue
– (void *)pointerValue

For an NSValue object created to hold a pointer-sized data item, returns that item as a pointer to void. For 
any other NSValue object the result is undefined.

See also: – getValue:

rectValue
–  (NSRect)rectValue

Returns an NSRect structure (which represents the coordinates of the rectangle’s origin).

See also: – pointValue, – sizeValue



8

sizeValue
–  (NSSize)sizeValue

Returns an NSSize structure (which represents the width and height of a rectangle).

See also: – pointValue, – rectValue



                                      
Functions and Macros
This section describes the functions and macros found in the Foundation Kit.

NSAllHashTableObjects

SUMMARY This function returns all of the elements in the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSArray *NSAllHashTableObjects(NSHashTable *table)

DESCRIPTION Returns an array object containing all the elements of table. This function should be called only 
when the table elements are objects, not when they’re any other data type.

SEE ALSO NSCreateHashTable, NSFreeHashTable

NSAllMapTableKeys

SUMMARY This function returns all of the keys in the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSArray *NSAllMapTableKeys(NSMapTable *table)

DESCRIPTION NSAllMapTableKeys Returns an array object containing all the keys in table. This function 
should be called only when the table keys are objects, not when they’re any other type of pointer.

SEE ALSO NSMapMember, NSMapGet, NSEnumerateMapTable, NSNextMapEnumeratorPair, 
NSAllMapTableValues
1



                                     
NSAllMapTableValues

SUMMARY This function returns all of the values in the specified table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSArray *NSAllMapTableValues(NSMapTable *table)

DESCRIPTION NSAllMapTableValues Returns an array object containing all the values in table. This function 
should be called only when the table values are objects, not when they’re any other type of pointer.

SEE ALSO NSMapMember, NSMapGet, NSEnumerateMapTable, NSNextMapEnumeratorPair, 
NSAllMapTableKeys

NSAllocateMemoryPages

SUMMARY This function allocates a new block of memory.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSAllocateMemoryPages(unsigned int byteCount)

DESCRIPTION NSAllocateMemoryPages allocates the integral number of pages whose total size is closest to, 
but not less than, byteCount. The allocated pages are guaranteed to be filled with zeros. 

SEE ALSO NSCopyMemoryPages, NSDeallocateMemoryPages
2



                                            

n 

          
NSAllocateObject

SUMMARY This function creates new objects.

DECLARED IN Foundation/NSObject.h

SYNOPSIS id <NSObject> NSAllocateObject(Class aClass, unsigned int extraBytes, NSZone *zone)

DESCRIPTION NSAllocateObject allocates and returns a pointer to an instance of aClass, created in the specified 
zone (or in the default zone, if zone is NULL). The extraBytes argument (usually zero) states the 
number of extra bytes required for indexed instance variables. Returns nil  on failure.

SEE ALSO NSCopyObject, NSDeallocateObject

NSAssert

SUMMARY This macro generates an assertion if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSAssert(condition, NSString *description)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes the method and class names (or the functio
name). It then raises an exception of type NSInternalInconsistencyException.

The NSAssert macro evaluates the condition and serves as a front end to the assertion handler. 
This macro should be used only within Objective-C methods. NSAssert takes no arguments other 
than the condition and format string.

condition must be an expression that evaluates to true or false. description is a printf -style format 
string that contains the error message describing the failure condition.
3



           

 

                                                               

n 

                        
Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert1, NSCAssert, NSCParameterAssert, NSParameterAssert

NSAssert1

SUMMARY NSAssert1 is one of a series of macros, as listed in the SYNOPSIS section, that generate assertions
if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSAssert1(condition, NSString *description, arg1 )
NSAssert2(condition, NSString *description, arg1, arg2)
NSAssert3(condition, NSString *description, arg1, arg2, arg3)
NSAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)
NSAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes the method and class names (or the functio
name). It then raises an exception of type NSInternalInconsistencyException.

The NSAssertn macros evaluate the condition and serve as a front end to the assertion handler. 
These macros should be used only within Objective-C methods. NSAssertn takes the number of 
format-string arguments indicated by n.

condition must be an expression that evaluates to true or false. description is a printf -style format 
string that contains the error message describing the failure condition. Each arg parameter is an 
argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert, NSCParameterAssert, NSParameterAssert
4



                                   
NSAssert2

SUMMARY See NSAssert1.

NSAssert3

SUMMARY See NSAssert1.

NSAssert4

SUMMARY See NSAssert1.

NSAssert5

SUMMARY See NSAssert1.

NSCAssert

SUMMARY This macro generates an assertion if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSCAssert(condition, NSString *description)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
5



                                
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

The NSCAssert macro evaluates the condition and serves as a front end to the assertion handler. 
This macro should be used only within C functions. NSCAssert takes no arguments other than the 
condition and format string.

condition must be an expression that evaluates to true or false. description is a printf -style format 
string that describes the failure condition. 

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert1, NSCParameterAssert, NSParameterAssert

NSCAssert1

SUMMARY NSCAssert1 is one of a series of macros, as listed in the SYNOPSIS section, that generate 
assertions if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSCAssert1(condition, NSString *description, arg1)
NSCAssert2(condition, NSString *description, arg1, arg2)
NSCAssert3(condition, NSString *description, arg1, arg2, arg3)
NSCAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)
NSCAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

The NSCAssertn macros evaluate the condition and serve as a front end to the assertion handler. 
These macros should be used only within Objective-C methods. NSCAssertn takes the number of 
format-string arguments indicated by n.
6



condition must be an expression that evaluates to true or false. description is a printf -style format 
string that describes the failure condition. Each arg is an argument to be inserted, in place, into the 
description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSCAssert, NSCParameterAssert, NSParameterAssert

NSCAssert2

SUMMARY See NSCAssert1.

NSCAssert3

SUMMARY See NSCAssert1.

NSCAssert4

SUMMARY See NSCAssert1.

NSCAssert5

SUMMARY See NSCAssert1.
7



NSClassFromString

SUMMARY This function obtains a class by name.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS Class NSClassFromString(NSString *aClassName)

DESCRIPTION NSClassFromString returns the class object named by aClassName, or nil  if no class by that 
name is currently loaded.

SEE ALSO NSStringFromClass

NSCompareHashTables

SUMMARY This function compares the elements of two hash tables for equality.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS BOOL NSCompareHashTables(NSHashTable *table1, NSHashTable *table2)

DESCRIPTION Returns YES if the two hash tables are equal—that is, if each element of table1 is in table2, and 
the two tables are the same size.

SEE ALSO NSCreateHashTable, NSCreateHashTableWithZone

NSCompareMapTables

SUMMARY This function compares the elements of two map tables for equality.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS BOOL NSCompareMapTables(NSMapTable *table1, NSMapTable *table2)
8



DESCRIPTION Returns YES if each key of table1 is in table2, and the two tables are the same size. Note that this 
function does not compare values, only keys.

SEE ALSO NSCreateMapTable, NSCreateMapTableWithZone

NSContainsRect

SUMMARY This function determines whether one rectangle completely encloses another.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSContainsRect(NSRect aRect, NSRect bRect)

DESCRIPTION Returns YES if aRect completely encloses bRect. For this condition to be true, bRect cannot be 
empty and its sides must not touch the sides of aRect.

NSConvertHostDoubleToSwapped

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSConvertHostDoubleToSwapped(double x)

DESCRIPTION Converts the double value in x to a value whose bytes can be swapped. This function does not 
actually swap the bytes of x. You should not need to call this method directly. 

SEE ALSO NSSwapHostDoubleToBig, NSSwapHostDoubleToLittle
9



NSConvertHostFloatToSwapped

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSConvertHostFloatToSwapped(float x)

DESCRIPTION Converts the float value in x to a value whose bytes can be swapped. This function does not 
actually swap the bytes of x. You should not need to call this method directly.

SEE ALSO NSSwapHostFloatToBig, NSSwapHostFloatToLittle

NSConvertSwappedDoubleToHost

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS double NSConvertSwappedDoubleToHost(NSSwappedDouble x)

DESCRIPTION Converts the value in x to a double value. This function does not actually swap the bytes of x. You 
should not need to call this method directly.

SEE ALSO NSSwapBigDoubleToHost, NSSwapLittleDoubleToHost

NSConvertSwappedFloatToHost

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS float NSConvertSwappedFloatToHost(NSSwappedFloat x)
10



DESCRIPTION Converts the value in x to a float value. This function does not actually swap the bytes of x. You 
should not need to call this method directly.

SEE ALSO NSSwapBigFloatToHost, NSSwapLittleFloatToHost

NSCopyHashTableWithZone

SUMMARY This function performs a shallow copy of the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashTable *NSCopyHashTableWithZone(NSHashTable *table, NSZone *zone)

DESCRIPTION Returns a pointer to a new copy of table, created in zone and containing pointers to the data 
elements of table. If zone is NULL, the new table is created in the default zone. 

The new table adopts the callback functions of table and calls the hash and retain callback 
functions as appropriate when inserting elements into the new table.

SEE ALSO NSCreateHashTable, NSCreateHashTableWithZone, NSHashTableCallBacks (structure)

NSCopyMapTableWithZone

SUMMARY This function performs a shallow copy of the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapTable *NSCopyMapTableWithZone(NSMapTable *table, NSZone *zone)

DESCRIPTION Returns a pointer to a new copy of table, created in zone and containing pointers to the keys and 
values of table. If zone is NULL, the new table is created in the default zone. 
11



The new table adopts the callback functions of table and calls the hash and retain callback 
functions as appropriate when inserting elements into the new table.

SEE ALSO NSCreateMapTable, NSCreateMapTableWithZone, NSMapTableKeyCallBacks 
(structure), NSMapTableValueCallBacks (structure)

NSCopyMemoryPages

SUMMARY This function copies a block of memory.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSCopyMemoryPages(const void *source, void *destination, unsigned int byteCount)

DESCRIPTION Copies (or copies-on-write) byteCount bytes from source to destination.

SEE ALSO NSAllocateMemoryPages, NSDeallocateMemoryPages

NSCopyObject

SUMMARY This function creates exact copies of objects.

DECLARED IN Foundation/NSObject.h

SYNOPSIS id <NSObject> NSCopyObject(id <NSObject> anObject, unsigned int extraBytes, 
NSZone *zone)

DESCRIPTION Creates and returns a new object that's an exact copy of anObject, created in the specified zone (or 
in the default zone, if zone is NULL). The extraBytes argument (usually zero) states the number 
of extra bytes required for indexed instance variables. Returns nil  if anObject is nil  or if anObject 
could not be copied.

SEE ALSO NSAllocateObject, NSDeallocateObject
12



NSCountHashTable

SUMMARY This function returns the number of elements in a hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS unsigned int NSCountHashTable(NSHashTable *table)

DESCRIPTION Returns the number of elements currently in table. 

NSCountMapTable

SUMMARY This function returns the number of elements in a map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS unsigned int NSCountMapTable(NSMapTable *table)

DESCRIPTION Returns the number of key/value pairs currently in table.

NSCParameterAssert  

SUMMARY This macro evaluates the specified parameter.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSCParameterAssert(condition)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.
13



r 

 

This macro validates a parameter for a C-function. Simply provide the parameter as the condition 
argument. The macro evaluates the parameter and, if the parameter evaluates to false, logs an erro
message which includes the parameter and then raises an exception. 

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert, NSParameterAssert

NSCreateHashTable

SUMMARY This function creates a new hash table in the default zone.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashTable *NSCreateHashTable(NSHashTableCallBacks callBacks, unsigned int capacity)

DESCRIPTION NSCreateHashTable creates and returns a pointer to an NSHashTable in the default zone. 

The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small hash 
table is created. The NSHashTableCallBacks structure callBacks has five pointers to functions 
(documented under “Types and Constants”), with the following defaults: pointer hashing, if hash 
is NULL; pointer equality, if isEqual is NULL; no call-back upon adding an element, if retain is 
NULL; no call-back upon removing an element, if release is NULL; and a function returning a 
pointer’s hexadecimal value as a string, if describe is NULL. The hashing function must be 
defined such that if two data elements are equal, as defined by the comparison function, the values
produced by hashing on these elements must also be equal. Also, data elements must remain 
invariant if the value of the hashing function depends on them; for example, if the hashing function 
operates directly on the characters of a string, that string can’t change.

SEE ALSO NSCopyHashTableWithZone, NSCreateHashTableWithZone
14



 

NSCreateHashTableWithZone

SUMMARY This function creates a new hash table in the specified zone.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashTable *NSCreateHashTableWithZone(NSHashTableCallBacks callBacks, 
unsigned int capacity, NSZone *zone)

DESCRIPTION This function creates a new hash table in the specified zone. If zone is NULL, the hash table is 
created in the default zone. 

The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small hash 
table is created. The NSHashTableCallBacks structure callBacks has five pointers to functions 
(documented under “Types and Constants”), with the following defaults: pointer hashing, if hash 
is NULL; pointer equality, if isEqual is NULL; no call-back upon adding an element, if retain is 
NULL; no call-back upon removing an element, if release is NULL; and a function returning a 
pointer’s hexadecimal value as a string, if describe is NULL. The hashing function must be 
defined such that if two data elements are equal, as defined by the comparison function, the values
produced by hashing on these elements must also be equal. Also, data elements must remain 
invariant if the value of the hashing function depends on them; for example, if the hashing function 
operates directly on the characters of a string, that string can’t change.

SEE ALSO NSCreateHashTable

NSCreateMapTable

SUMMARY This function creates a new map table in the default zone.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapTable *NSCreateMapTable(NSMapTableKeyCallBacks keyCallBacks, 
NSMapTableValueCallBacks valueCallBacks, unsigned int capacity)

DESCRIPTION NSCreateMapTable creates, and returns a pointer to, an NSMapTable in the default zone; the 
table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small map table 
is created. The NSMapTableKeyCallBacks arguments are structures (documented under “Types 
15



and Constants”) that are very similar to the call-back structure used by NSCreateHashTable; in 
fact, they have the same defaults as documented for that function.

SEE ALSO NSCopyMapTableWithZone, NSCreateMapTableWithZone

NSCreateMapTableWithZone

SUMMARY This function creates a new map table in the specified zone.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapTable *NSCreateMapTableWithZone(NSMapTableKeyCallBacks keyCallBacks, 
NSMapTableValueCallBacks valueCallBacks, unsigned int capacity, NSZone *zone)

DESCRIPTION This function creates a new map table in the specified zone. If zone is NULL, the hash table is 
created in the default zone. 

The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small map 
table is created. The NSMapTableKeyCallBacks arguments are structures (documented under 
“Types and Constants”) that are very similar to the call-back structure used by 
NSCreateHashTable; in fact, they have the same defaults as documented for that function.

SEE ALSO NSCopyMapTableWithZone, NSCreateMapTable

NSCreateZone

SUMMARY Creates a new zone

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSZone *NSCreateZone(unsigned int startSize, unsigned int granularity, BOOL canFree)
16



DESCRIPTION Creates and returns a pointer to a new zone of startSize bytes, which will grow and shrink by 
granularity bytes. If canFree is zero, the allocator will never free memory, and malloc will be fast.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSSetZoneName

NSDeallocateMemoryPages

SUMMARY This function deallocates the specified block of memory.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSDeallocateMemoryPages(void *pointer, unsigned int byteCount)

DESCRIPTION This function deallocates memory that was allocated with NSAllocateMemoryPages.

SEE ALSO NSCopyMemoryPages, NSAllocateMemoryPages

NSDeallocateObject

SUMMARY This function destroys an existing object.

DECLARED IN Foundation/NSObject.h

SYNOPSIS void NSDeallocateObject(id <NSObject> anObject)

DESCRIPTION This function deallocates anObject, which must have been allocated using NSAllocateObject.

SEE ALSO NSCopyObject, NSAllocateObject
17



NSDecimalAdd

SUMMARY This function adds two decimal values.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalAdd(NSDecimal *result, const NSDecimal *leftOperand, const 
NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Adds leftOperand to rightOperand, and stores the sum in result. 

An NSDecimal can represent a number with up to 38 significant digits. If a number is more precise 
than that, it must be rounded off. roundingMode determines how to round it off. There are four 
possible rounding modes:

• NSRoundDown. The number rounds down.
• NSRoundUp. The number rounds up.
• NSRoundPlain. The number rounds to the closest 38-digit approximation. If the number is 

halfway between two positive numbers, it round up; if it’s halfway between two negative 
numbers, it rounds down.

• NSRoundBankers. The number rounds to the closest 38-digit approximation. If it is caught 
halfway between two possibilities, it rounds to the one whose last digit is even. In practice, this 
means that, over the long run, numbers will be rounded up as often as they are rounded down; 
there will be no systematic bias.

The return value indicates whether any machine limitations were encountered in the addition. If 
none were encountered, the function returns NSCalculationNoError. Otherwise it may return one 
of the following values: NSCalculationLossOfPrecision, NSCalculationOverflow or 
NSCalculationUnderflow. For descriptions of all these error conditions, see 
exceptionDuringOperation:error:leftOperand:rightOperand:  in the protocol specification 
for NSDecimalNumberBehaviors.
18



NSDecimalCompact

SUMMARY This function compacts the decimal structure for efficiency.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS void NSDecimalCompact(NSDecimal *number)

DESCRIPTION Formats number so that calculations using it will take up as little memory as possible. All the 
NSDecimal... arithmetic functions expect compact NSDecimal arguments.

NSDecimalCompare

SUMMARY This function compares two decimal values.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSComparisonResult NSDecimalCompare(const NSDecimal *leftOperand, const NSDecimal 
* rightOperand)

DESCRIPTION Compares leftOperand to rightOperand, with three possible return values.

• If leftOperand is bigger, the function returns NSOrderedDescending. 
• If rightOperand is bigger, the the function returns NSOrdered Ascending. 
• If the two operands are equal, the function returns NSOrderedSame.

NSDecimalCopy

SUMMARY This function copies the value of a decimal number.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS void NSDecimalCopy(NSDecimal *destination, const NSDecimal *source)
19



DESCRIPTION Copies the value in source to destination.

NSDecimalDivide

SUMMARY This function divides one decimal value by another.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalDivide(NSDecimal *result, const NSDecimal *leftOperand, 
const NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Divides leftOperand by rightOperand, and stores the quotient, possibly rounded off according to 
roundingMode, in result. If rightOperand is 0, returns NSDivideByZero.

For explanations of the other possible return values, and of all the possible roundingMode’s, see 
NSDecimalAdd, above.

Note that this function can’t precisely represent a non-decimal fraction like 1/3.

NSDecimalIsNotANumber

SUMMARY This function determines if the specified decimal contains a valid number.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS BOOL NSDecimalIsNotANumber(const NSDecimal *decimal)

DESCRIPTION Returns YES if the value in decimal represents a valid number, otherwise returns NO.
20



NSDecimalMultiply

SUMMARY This function multiplies two decimal numbers together.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalMultiply (NSDecimal *result, const NSDecimal *leftOperand, 
const NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Multiplies rightOperand by leftOperand, and stores the product, possibly rounded off according 
to roundingMode, in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.

NSDecimalMultiplyByPowerOf10

SUMMARY This function multiplies a decimal by the specified power of 10.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalMultiplyByPowerOf10(NSDecimal *result, const NSDecimal 
*number, short power, NSRoundingMode roundingMode)

DESCRIPTION Multiplies number by 10power, and stores the product, possibly rounded off according to 
roundingMode, in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.
21



NSDecimalNormalize

SUMMARY This function normalizes the internal format of two decimal numbers to simplify later operations.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalNormalize(NSDecimal *number1, NSDecimal *number2, 
NSRoundingMode roundingMode)

DESCRIPTION An NSDecimal is represented in memory as a mantissa and an exponent, expressing the value 
mantissa x 10exponent. A number can have many NSDecimal representations; for example, the 
following table lists several valid NSDecimal representations for the number 100:

NSDecimalNormalize formats number1 and number2 so that they have equal exponents. This 
format makes addition and subtraction very convenient. Both NSDecimalAdd and 
NSDecimalSubtract call NSDecimalNormalize. You may want to use it if you write more 
complicated addition or subtraction routines.

For explanations of the function’s possible return values, see NSDecimalAdd, above.

NSDecimalPower

SUMMARY This function raises the decimal value to the specified power.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalPower(NSDecimal *result, const NSDecimal *number, 
unsigned int power, NSRoundingMode roundingMode)

Mantissa Exponent

100 0

10 1

1 2
22



DESCRIPTION Raises number to power, possibly rounding off according to roundingMode, and stores the 
resulting value in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.

NSDecimalRound

SUMMARY This function rounds off the decimal value.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS void NSDecimalRound(NSDecimal *result, const NSDecimal *number, int scale, 
NSRoundingMode roundingMode)

DESCRIPTION Rounds number off according to the parameters scale and rounding mode, and stores the result in 
result.

scale specifies the number of digits result can have after its decimal point. roundingMode specifies 
the way that number is rounded off. There are four possible values for roundingMode: 
NSRoundDown, NSRoundUp, NSRoundPlain, and NSRoundBankers. For thorough discussions 
of scale and roundingMode, see the scale and roundingMode in the protocol specification for 
NSDecimalNumberBehaviors.

NSDecimalString

SUMMARY This function returns a string representation of the decimal value.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSString *NSDecimalString(const NSDecimal *decimal, NSDictionary *locale)

DESCRIPTION Returns a string representation of decimal. locale determines the format of the decimal separator. 
23



. 
 

NSDecimalSubtract

SUMMARY This function subtracts one decimal value from another.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalSubtract(NSDecimal *result, const NSDecimal *leftOperand, 
const NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Subtracts rightOperand from leftOperand, and stores the difference, possibly rounded off 
according to roundingMode, in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.

NSDecrementExtraRefCountWasZero

SUMMARY This function decrements the specified object’s reference count.

DECLARED IN Foundation/NSObject.h

SYNOPSIS BOOL NSDecrementExtraRefCountWasZero(id anObject)

DESCRIPTION This function decrements the “extra reference” count of an object. Newly created objects have 
only one actual reference, so that a single release message results in the object being deallocated
Extra references are those beyond the single original reference, and are usually created by sending
the object a retain message. Your code should generally not use these functions unless it is 
overriding the retain or release methods. 

This function returns NO if anObject had an extra reference count. If anObject didn’t have an extra 
referenct count, it returns YES, indicating that the object should be deallocated (with dealloc).

SEE ALSO NSExtraRefCount, NSIncrementExtraRefCount
24



NSDefaultMallocZone

SUMMARY Returns the default zone

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSZone *NSDefaultMallocZone(void)

DESCRIPTION Returns the default zone, which is created automatically at startup. This is the zone used by the 
standard C function malloc.

SEE ALSO NSCreateZone

NSDivideRect

SUMMARY This function divides a rectangle into two new rectangles.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS void NSDivideRect(NSRect inRect, NSRect *slice, NSRect *remainder, float amount, 
NSRectEdge edge)

DESCRIPTION Creates two rectangles, slice and remainder, from inRect, by dividing inRect with a line that’s 
parallel to one of inRect’s sides (namely, the side specified by edge—either NSMinXEdge, 
NSMinYEdge, NSMaxXEdge, or NSMaxYEdge). The size of slice is determined by amount, 
which measures the distance from edge.

SEE ALSO NSInsetRect, NSIntegralRect, NSOffsetRect
25



NSEnumerateHashTable

SUMMARY This function creates an enumerator for the specified hash table. 

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashEnumerator NSEnumerateHashTable(NSHashTable *table)

DESCRIPTION Returns an NSHashEnumerator structure that will cause successive elements of table to be 
returned each time this enumerator is passed to NSNextHashEnumeratorItem.

SEE ALSO NSNextHashEnumeratorItem

NSEnumerateMapTable

SUMMARY This function creates an enumerator for the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapEnumerator NSEnumerateMapTable(NSMapTable *table)

DESCRIPTION NSEnumerateMapTable returns an NSMapEnumerator structure that will cause successive 
key/value pairs of table to be visited each time this enumerator is passed to 
NSNextMapEnumeratorPair.

SEE ALSO NSNextMapEnumeratorPair, NSMapMember, NSMapGet, NSAllMapTableKeys, 
NSAllMapTableValues
26



NSEqualPoints

SUMMARY This function tests the two points for equality.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSEqualPoints(NSPoint aPoint, NSPoint bPoint)

DESCRIPTION Returns YES if the two points aPoint and bPoint are identical, and NO otherwise.

NSEqualRanges

SUMMARY This function tests the two range values for equality.

DECLARED IN Foundation/NSRange.h

SYNOPSIS BOOL NSEqualRanges(NSRange range1, NSRange range2)

DESCRIPTION Returns YES if range1 and range2 have the same locations and lengths.

NSEqualRects

SUMMARY This function tests the two rectangles for equality.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSEqualRects(NSRect aRect, NSRect bRect)

DESCRIPTION Returns YES if the two rectangles aRect and bRect are identical, and NOotherwise.
27



NSEqualSizes

SUMMARY This function tests the two size values for equality.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSEqualSizes(NSSize aSize, NSSize bSize)

DESCRIPTION Returns YES if the two sizes aSize and bSize are identical, and NO otherwise.

NSExtraRefCount

SUMMARY This function returns the specified object’s reference count.

DECLARED IN Foundation/NSObject.h

SYNOPSIS unsigned int NSExtraRefCount(id object)

DESCRIPTION Returns the current reference count of object. This function is used in conjunction with 
NSIncrementExtraRefCount and NSDecrementExtraRefCountWasZero in situations where 
you need to override an object’s retain and release methods.

NSFreeHashTable

SUMMARY This function deletes the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSFreeHashTable(NSHashTable *table)

DESCRIPTION NSFreeHashTable releases each element of the specified hash table and frees the table itself.

SEE ALSO NSResetHashTable
28



NSFreeMapTable

SUMMARY This function deletes the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSFreeMapTable(NSMapTable *table)

DESCRIPTION NSFreeMapTable releases each key and value of the specified map table and frees the table itself. 

SEE ALSO NSResetMapTable

NSFullUserName

SUMMARY This function returns the full name of the current user.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSFullUserName(void)

DESCRIPTION Returns a string containing the full name of the current user. 

SEE ALSO NSUserName

NSGetSizeAndAlignment

SUMMARY This function returns the type and size of the specified data type.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS const char *NSGetSizeAndAlignment(const char *typePtr, 
unsigned int *sizep, 
unsigned int *alignp)
29



DESCRIPTION Gets the next type code from typePtr and returns the size and alignment of that data type in sizep 
and alignp, respectively. You can specify 0 for either sizep or alignp to ignore the corresponding 
information. This function returns a new pointer to the string specified by typePtr; the new pointer 
points to the character just past the type code that was read.

NSGetUncaughtExceptionHandler

SUMMARY This function returns the top-level error handler.

DECLARED IN Foundation/NSException.h

SYNOPSIS NSUncaughtExceptionHandler *NSGetUncaughtExceptionHandler(void)

DESCRIPTION NSGetUncaughtExceptionHandler returns a pointer to the function serving as the top-level 
error handler. This handler will process exceptions raised outside of any exception-handling 
domain.

SEE ALSO NSSetUncaughtExceptionHandler

NSHashGet

SUMMARY This function returns an element of the hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void *NSHashGet(NSHashTable *table, const void *pointer)

DESCRIPTION Returns the pointer in the table that matches pointer (as defined by the isEqual call-back 
function). If there is no matching element, the function returns NULL
30



NSHashInsert

SUMMARY This function adds an element to the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSHashInsert(NSHashTable *table, const void *pointer)

DESCRIPTION NSHashInsert inserts pointer, which must not be NULL, into table. If pointer matches an item 
already in the table, the previous pointer is released using the release call-back function that was 
specified when the table was created.

SEE ALSO NSHashRemove, NSHashInsertKnownAbsent, NSHashInsertIfAbsent

NSHashInsertIfAbsent

SUMMARY This function adds an element to the specified hash table only if the table does not already contain 
the element.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void *NSHashInsertIfAbsent(NSHashTable *table, const void *pointer)

DESCRIPTION If pointer matches an item already in table, NSHashInsertIfAbsent returns the pre-existing 
pointer; otherwise, it adds pointer to the table and returns NULL. You must not specify NULL for 
pointer.

SEE ALSO NSHashRemove, NSHashInsert, NSHashInsertKnownAbsent
31



NSHashInsertKnownAbsent

SUMMARY This function adds an element to the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSHashInsertKnownAbsent(NSHashTable *table, const void *pointer)

DESCRIPTION NSHashInsertKnownAbsent inserts pointer, which must not be NULL, into table. Unike 
NSHashInsert, this function raises NSInvalidArgumentException if table already includes an 
element that matches pointer.

SEE ALSO NSHashRemove, NSHashInsert, NSHashInsertIfAbsent

NSHashRemove

SUMMARY This function removes an element from the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSHashRemove(NSHashTable *table, const void *pointer)

DESCRIPTION If pointer matches an item already in table, this function releases the pre-existing item.

SEE ALSO NSHashInsert, NSHashInsertKnownAbsent, NSHashInsertIfAbsent

NSHeight

SUMMARY This function returns the height of the specified rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSHeight(NSRect aRect)
32



DESCRIPTION Returns the height of aRect. 

SEE ALSO NSMaxX, NSMaxY, NSMidX, NSMidY, NSMinX, NSMinY, NSWidth

NSHomeDirectory

SUMMARY This function getsinformation about a user.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSHomeDirectory(void)

DESCRIPTION NSHomeDirectory returns a path to the current user’s home directory.

SEE ALSO NSFullUserName, NSUserName, NSHomeDirectoryForUser

NSHomeDirectoryForUser

SUMMARY Get information about a user

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSHomeDirectoryForUser(NSString *userName)

DESCRIPTION NSHomeDirectoryForUser returns a path to the home directory for the user specified by 
userName.

SEE ALSO NSFullUserName, NSUserName, NSHomeDirectory
33



a 
 
 

NSHostByteOrder

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSHostByteOrder(void)

DESCRIPTION Returns the endian format, either NSLittleEndian or NSBigEndian, supported by the current 
platform.

NSIncrementExtraRefCount

SUMMARY This function increments the specified object’s reference count.

DECLARED IN Foundation/NSObject.h

SYNOPSIS void NSIncrementExtraRefCount(id anObject)

DESCRIPTION This function increments the “extra reference” count of an object. Newly created objects have only 
one actual reference, so that a single release message results in the object being deallocated. Extr
references are those beyond the single original reference, and are usually created by sending the
object a retain message. Your code should generally not use these functions unless it is overriding
the retain or release methods.

SEE ALSO NSExtraRefCount, NSDecrementExtraRefCountWasZero

NSInsetRect

SUMMARY This function insets the rectangle by the specified amount.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSInsetRect(NSRect aRect, float dX, float dY)
34



DESCRIPTION NSInsetRect returns a copy of the rectangle aRect, altered by moving the two sides that are 
parallel to the y-axis inwards by dX, and the two sides parallel to the x-axis inwards by dY.

SEE ALSO NSDivideRect, NSIntegralRect, NSOffsetRect

NSIntegralRect

SUMMARY This function adjusts the sides of the rectangle to integer values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSIntegralRect(NSRect aRect)

DESCRIPTION NSIntegralRect returns a copy of the rectangle aRect, expanded outwards just enough to ensure 
that none of its four defining values (x, y, width, and height) have fractional parts. If aRect’s width 
or height is zero or negative, this function returns a rectangle with origin at (0.0, 0.0) and with zero 
width and height.

SEE ALSO NSDivideRect, NSInsetRect, NSOffsetRect

NSIntersectionRange

SUMMARY This function returns the intersection of the specified ranges.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSIntersectionRange(NSRange range1, NSRange range2)

DESCRIPTION NSIntersectionRange returns a range describing the intersection of range1 and range2—that is, 
a range containing the indices that exist in both ranges. If the returned range’s length field is zero, 
then the two ranges don’t intersect, and the value of the location field is undefined.

SEE ALSO NSUnionRange
35



NSIntersectionRect

SUMMARY This function calculates the intersection of two rectangles.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSIntersectionRect(NSRect aRect, NSRect bRect)

DESCRIPTION NSIntersectionRect returns the graphic intersection of aRect and bRect. If the two rectangles 
don’t overlap, the returned rectangle has its origin at (0.0, 0.0) and zero width and height. (This 
includes situations where the intersection is a point or a line segment.)

SEE ALSO NSUnionRect

NSIntersectsRect

SUMMARY This function tests whether two rectangles intersect.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSIntersectsRect(NSRect aRect, NSRect bRect)

DESCRIPTION Returns YES if aRect intersects bRect, otherwise returns NO. This function returns NO if either 
aRect and bRect has a width or height that is 0.

SEE ALSO NSIntersectionRect
36



NSIsEmptyRect

SUMMARY This function tests whether the specified rectangle is empty.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSIsEmptyRect(NSRect aRect)

DESCRIPTION Returns YES if the rectangle encloses no area at all—that is, if its width or height is zero or 
negative.

NSJavaBundleCleanup

SYNOPSIS void NSJavaBundleCleanup(NSBundle *bundle, NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaBundleSetup

SYNOPSIS id NSJavaBundleSetup(NSBundle *bundle, NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaNeedsToLoadClasses

SYNOPSIS BOOL NSJavaNeedsToLoadClasses(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>
37



NSJavaNeedsVirtualMachine

SYNOPSIS BOOL NSJavaNeedsVirtualMachine(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaProvidesClasses

SYNOPSIS BOOL NSJavaProvidesClasses(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaSetup

SYNOPSIS id NSJavaSetup(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaVirtualMachineSetup

SYNOPSIS id NSJavaVirtualMachineSetup(BOOL *vmNeeded)

DESCRIPTION <<Description Forthcoming>>
38



NSLocationInRange

SUMMARY This function verifies that the specified position is in the given range.

DECLARED IN Foundation/NSRange.h

SYNOPSIS BOOL NSLocationInRange(unsigned int index, NSRange aRange)

DESCRIPTION NSLocationInRange returns YES if the given index lies within aRange—that is, if it’s greater 
than or equal to aRange.location and less than aRange.location plus aRange.length.

NSLog

SUMMARY This function logs error messages to stderr.

DECLARED IN Foundation/NSUtilities.h

SYNOPSIS void NSLog(NSString *format, ...)

DESCRIPTION NSLog simply calls NSLogv, passing it a variable number of arguments. 

SEE ALSO NSLogv

NSLogPageSize

SUMMARY This function returns the binary log of the page size.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSLogPageSize(void)
39



 

 

DESCRIPTION NSLogPageSize returns the binary log of the current page size. 

SEE ALSO NSRoundDownToMultipleOfPageSize, NSRoundUpToMultipleOfPageSize, NSPageSize

NSLogv 

SUMMARY This function logs error messages to stderr.

DECLARED IN Foundation/NSUtilities.h

SYNOPSIS void NSLogv(NSString *format, va_list args)

DESCRIPTION NSLogv logs an error message. The message consists of a timestamp and the process ID prefixed
to the string you pass in. You compose this string with a format string , format, and one or more 
arguments to be inserted into the string. The format specification allowed by these functions is that 
which is understood by NSString’s formatting capabilities (which is not necessarily the set of 
format escapes and flags understood by printf ). 

In general, you should use the NSLog function instead of calling this function directly. If you do 
use this function directly, you must have prepared the the variable argument list in the args 
parameter by calling the standard C macro va_start. Upon completion, you must similarly call the 
standard C macro va_end for this list.

On HP-UX, Solaris, and Mach, NSLogv writes the log to STDERR_FILENO if the file descriptor 
is open. If that fails, the message is sent to the syslog subsystem, if it exists on a platform, with the 
LOG_USER facility (or default facility if LOG_USER doesn't exist on a platform), with priority 
LOG_ERR (or similar, depending on what the platform supports). If both of these attempts to 
write the message fail, the message is discarded.

On Windows platforms, the message is written to the STD_ERROR_HANDLE, if that handle is 
valid, on Windows platforms that support that standard handle. It is also written to the Windows 
Event Log on Windows platforms that support that, or to a file c:\fndation.log on Windows 
platforms that do not, if that file can be opened. If all of these attempts fail, the message is 
discarded. On some Windows platforms, the message to the Event Log may be truncated if there 
is a limit to the size of a message that the Event Log can accept. On Windows platforms that 
support an application discovering whether or not it’s running under a debugger, NSLogv may 
only send the message to the debugger for its handling, via standard WIN32 mechanisms, and not
also write the message to STD_ERROR_HANDLE and the Event Log. Note that a debugger may 
40



g 
choose to not display message thus sent to it, or may choose not to display all of the message—
that has nothing to do with NSLogv.

Output from NSLogv is serialized, in that only one thread in a process can be doing the 
writing/logging described above at a time. All attempts at writing/logging a message complete 
before the next thread can begin its attempts.

The effects of NSLogv are not serialized with subsystems other than those discussed above (such 
as the standard I/O package) and do not produce side effects on those subsystems (such as causin
buffered output to be flushed, which may be undesirable).

SEE ALSO NSLog

NSMakePoint

SUMMARY This function creates a new NSPoint from the specified values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSPoint NSMakePoint(float x, float y)

DESCRIPTION Creates an NSPoint having the coordinates x and y.

NSMakeRange

SUMMARY This function creates a new NSRange from the specified values.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSMakeRange(unsigned int location, unsigned int length)

DESCRIPTION Creates an NSRange having the specified location and length.
41



NSMakeRect

SUMMARY This function creates a new NSRect from the specified values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSMakeRect(float x, float y, float w, float h)

DESCRIPTION Creates an NSRect having the specified origin and size.

NSMakeSize

SUMMARY This function creates a new NSSize from the specified values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSSize NSMakeSize(float w, float h)

DESCRIPTION Creates an NSSize having the specified width and height.

NSMapGet

SUMMARY This function returns a map-table value for the specified key.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void *NSMapGet(NSMapTable *table, const void *key)

DESCRIPTION Returns the value that table maps to key, or NULL if the table doesn’t contain key.

SEE ALSO NSMapMember, NSEnumerateMapTable, NSNextMapEnumeratorPair, 
NSAllMapTableKeys, NSAllMapTableValues
42



NSMapInsert

SUMMARY This function inserts a key/value pair into the specified table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSMapInsert(NSMapTable *table, const void *key, const void *value)

DESCRIPTION NSMapInsert inserts key and value into table. If key matches a key already in the table, value is 
retained and the previous value is released, using the retain and release call-back functions that 
were specified when the table was created. Raises InvalidArgumentException if key is equal to the 
notAKeyMarker  field of the table’s NSMapTableKeyCallBacks structure.

SEE ALSO NSMapRemove, NSMapInsertIfAbsent, NSMapInsertKnownAbsent

NSMapInsertIfAbsent

SUMMARY This function inserts a key/value pair into the specified table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void *NSMapInsertIfAbsent(NSMapTable *table, const void *key, const void *value)

DESCRIPTION If key matches a key already in table, NSMapInsertIfAbsent returns the pre-existing key; 
otherwise, it adds key and value to the table and returns NULL. Raises 
NSInvalidArgumentException if key is equal to the notAKeyMarker  field of the table’s 
NSMapTableKeyCallBacks structure.

SEE ALSO NSMapRemove, NSMapInsert, NSMapInsertKnownAbsent
43



NSMapInsertKnownAbsent

SUMMARY This function inserts a key/value pair into the specified table if the pair had not been previously 
added.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSMapInsertKnownAbsent(NSMapTable *table, const void *key, const void *value)

DESCRIPTION NSMapInsertKnownAbsent inserts key (which must not be notAKeyMarker ) and value into 
table. Unlike NSMapInsert, this function raises NSInvalidArgumentException if table already 
includes a key that matches key.

SEE ALSO NSMapRemove, NSMapInsert, NSMapInsertIfAbsent

NSMapMember

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS BOOL NSMapMember(NSMapTable *table, const void *key, void **originalKey, void **value)

DESCRIPTION Returns YES if table contains a key equal to key. If so, originalKey is set to key, and value is set to 
the value that the table maps to key.

SEE ALSO NSMapGet, NSEnumerateMapTable, NSNextMapEnumeratorPair, NSAllMapTableKeys, 
NSAllMapTableValues

NSMapRemove

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSMapRemove(NSMapTable *table, const void *key)
44



DESCRIPTION If key matches a key already in table, this function release the pre-existing key and its 
corresponding value.

SEE ALSO NSMapInsert, NSMapInsertIfAbsent, NSMapInsertKnownAbsent

NSMaxRange

DECLARED IN Foundation/NSRange.h

SYNOPSIS unsigned int NSMaxRange(NSRange range)

DESCRIPTION Returns range.location + range.length—in other words, the number one greater than the 
maximum value within the range.

NSMaxX

SUMMARY This function returns the largest x-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMaxX(NSRect aRect)

DESCRIPTION NSMaxX returns the largest x-coordinate value within aRect. 

SEE ALSO NSWidth, NSHeight, NSMaxY
45



NSMaxY

SUMMARY This function returns the largest y-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMaxY(NSRect aRect)

DESCRIPTION NSMaxY returns the largest y-coordinate value within aRect. 

SEE ALSO NSWidth, NSHeight, NSMaxX

NSMidX

SUMMARY This function returns the x-coordinate of a rectangle’s midpoint.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMidX (NSRect aRect)

DESCRIPTION NSMidX  returns the x-coordinate of the center of the rectangle. 

SEE ALSO NSWidth, NSHeight, NSMidY

NSMidY

SUMMARY This function returns the y-coordinate of a rectangle’s midpoint.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMidY (NSRect aRect)
46



DESCRIPTION NSMidY  returns the y-coordinate of the rectangle’s center point.

SEE ALSO NSWidth, NSHeight, NSMidX

NSMinX

SUMMARY This function returns the smallest x-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMinX (NSRect aRect)

DESCRIPTION NSMinX  returns the smallest x-coordinate value within aRect.

SEE ALSO NSWidth, NSHeight, NSMinY

NSMinY

SUMMARY This function returns the smallest y-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMinY (NSRect aRect)

DESCRIPTION NSMinY  returns the smallest y-coordinate value within aRect .

SEE ALSO NSWidth, NSHeight, NSMinX
47



NSMouseInRect

SUMMARY This function tests whether the point is in the specified rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSMouseInRect(NSPoint aPoint, NSRect aRect, BOOL flipped)

DESCRIPTION Returns YES if the point represented by aPoint is located within the rectangle represented by 
aRect. It assumes an unscaled and unrotated coordinate system; the argument flipped should be 
YES if the coordinate system has been flipped so that the positive y-axis extends downward. This 
function is used to determine whether the hot spot of the cursor lies inside a given rectangle.

NSNextHashEnumeratorItem

SUMMARY This function returns the next hash-table element in the enumeration.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void *NSNextHashEnumeratorItem(NSHashEnumerator *enumerator)

DESCRIPTION NSNextHashEnumeratorItem returns the next element in the table that enumerator is associated 
with, or NULL if enumerator has already iterated over all the elements.

SEE ALSO NSEnumerateHashTable
48



NSNextMapEnumeratorPair

SUMMARY This function returns the next map-table pair in the enumeration

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS BOOL NSNextMapEnumeratorPair(NSMapEnumerator *enumerator, void **key, void 
** value) 

DESCRIPTION NSNextMapEnumeratorPair returns NO if enumerator has already iterated over all the 
elements in the table that enumerator is associated with. Otherwise, this function sets key and 
value to match the next key/value pair in the table, and returns YES.

SEE ALSO NSEnumerateMapTable, NSMapMember, NSMapGet, NSAllMapTableKeys, 
NSAllMapTableValues

NSOffsetRect

SUMMARY This function insets the rectangle by the specified amount.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSOffsetRect(NSRect aRect, float dX, float dY)

DESCRIPTION NSOffsetRect returns a copy of the rectangle aRect, with its location shifted by dX along the 
x-axis and by dY along the y-axis.

SEE ALSO NSDivideRect, NSInsetRect, NSIntegralRect
49



NSOpenStepRootDirectory

SUMMARY This function returns the root directory of the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSOpenStepRootDirectory(void)

DESCRIPTION Returns a string identifying the root directory of the user’s system.

SEE ALSO NSHomeDirectory, NSHomeDirectoryForUser

NSPageSize

SUMMARY This function returns the number of bytes in a page.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSPageSize(void)

DESCRIPTION NSPageSize returns the number of bytes in a page.

SEE ALSO NSRoundDownToMultipleOfPageSize, NSRoundUpToMultipleOfPageSize, 
NSLogPageSize

NSParameterAssert

SUMMARY This macro validates the specified parameter.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSParameterAssert(condition)
50



DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

This macro validates a parameter for an Objective-C method. Simply provide the parameter as the 
condition argument. The macro evaluates the parameter and, if it is false, it logs an error message 
which includes the parameter and then raises an exception. 

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.All 
assertion macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert, NSCParameterAssert

NSPointFromString

SUMMARY This function returns a point from a text-based representation.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSPoint NSPointFromString(NSString *aString)

DESCRIPTION Scans aString for text of the form “{x=a; y=b}” and returns the values for a and b in a new 
NSPoint object. If aString does not contain this text, this function returns an NSPoint object whose 
x- and y-coordinates are both 0.

SEE ALSO NSStringFromPoint
51



NSPointInRect

SUMMARY This function tests whether the specified point is in the rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSPointInRect(NSPoint aPoint, NSRect aRect)

DESCRIPTION  Performs the same test as NSMouseInRect, but assumes a flipped coordinate system.

NSRangeFromString

SUMMARY This function returns a range from a text-based representation.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSRangeFromString(NSString *aString)

DESCRIPTION Returns aString for text of the form: “{location = a; length = b}” and returns the values for a and 
b in a new NSRange object. If aString does not contain this text, this function returns an NSRange 
object whose location and length values are both 0.

SEE ALSO NSStringFromRange

NSRealMemoryAvailable

SUMMARY This function returns information about the user’s system.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSRealMemoryAvailable(void)

DESCRIPTION NSRealMemoryAvailable returns the number of bytes available in RAM.
52



NSRectFromString

SUMMARY This function returns a rectangle from a text-based representation.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSRectFromString(NSString *aString)

DESCRIPTION Scans aString for text of the form “{x=a; y=b; width=c; height=d}”, and returns the values for a, 
b, c, and d in a new NSRect object. If aString does not contain the specified text, this function 
returns an NSRect object with a rectangle whose origin is (0, 0) and width and height are both 0. 

SEE ALSO NSStringFromRect

NSRecycleZone

SUMMARY This function frees memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSRecycleZone(NSZone *zone)
void NSZoneFree(NSZone *zone, void *pointer)

DESCRIPTION NSRecycleZone frees zone after adding any of its pointers still in use to the default zone. (This 
strategy prevents retained objects from being inadvertently destroyed.)

NSZoneFree returns the memory indicated by pointer to zone. The standard C function free does 
the same, but spends time finding which zone the memory belongs to.

RETURN Both functions return void.

SEE ALSO NSCreateZone, NSZoneMalloc
53



NSResetHashTable

SUMMARY This function deletes the elements of the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSResetHashTable(NSHashTable *table)

DESCRIPTION NSResetHashTable releases each element but doesn't deallocate the table. This is useful for 
preserving the table's capacity.

SEE ALSO NSFreeHashTable

NSResetMapTable

SUMMARY This function deletes the elements of the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSResetMapTable(NSMapTable *table)

DESCRIPTION NSResetMapTable releases each key and value but doesn’t deallocate the table. This is useful for 
preserving the table’s capacity.

SEE ALSO NSFreeMapTable

NSRoundDownToMultipleOfPageSize

SUMMARY This function returns the number of pages that correspond to the specified number of bytes.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSRoundDownToMultipleOfPageSize(unsigned int byteCount)
54



DESCRIPTION NSRoundDownToMultipleOfPageSize returns the multiple of the page size that is closest to, but 
not greater than, byteCount.

SEE ALSO NSPageSize, NSLogPageSize, NSRoundUpToMultipleOfPageSize

NSRoundUpToMultipleOfPageSize

SUMMARY This function returns the number of pages that correspond to the specified number of bytes.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSRoundUpToMultipleOfPageSize(unsigned int byteCount)

DESCRIPTION NSRoundUpToMultipleOfPageSize returns the multiple of the page size that is closest to, but 
not less than, byteCount.

SEE ALSO NSPageSize, NSLogPageSize, NSRoundDownToMultipleOfPageSize

NSSearchPathForDirectoriesInDomains

SYNOPSIS NSArray *NSSearchPathForDirectoriesInDomains (NSSearchPathDirectory directory, 
NSSearchPathDomainMask domainMask, BOOL expandTilde)

DESCRIPTION <<Description forthcoming>>
55



NSSelectorFromString

SUMMARY This function obtains a selector by name.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS SEL NSSelectorFromString(NSString *aSelectorName)

DESCRIPTION NSSelectorFromString returns the selector named by aSelectorName, or zero if none by this 
name exists.

SEE ALSO NSStringFromSelector

NSSetUncaughtExceptionHandler

SUMMARY This function changes the top level error handler.

DECLARED IN Foundation/NSException.h

SYNOPSIS void NSSetUncaughtExceptionHandler(NSUncaughtExceptionHandler *handler)

DESCRIPTION NSSetUncaughtExceptionHandler sets the top-level error-handling function to handler. If 
handler is NULL or this function is never invoked, the default top-level handler is used.

SEE ALSO NSGetUncaughtExceptionHandler

NSSetZoneName

SUMMARY This function sets the name of the specified zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSSetZoneName(NSZone *zone, NSString *name)
56



DESCRIPTION NSSetZoneName sets the specified zone’s name to name, which can aid in debugging.

SEE ALSO NSZoneName

NSShouldRetainWithZone

SUMMARY This function indicates whether an object should be retained.

DECLARED IN Foundation/NSObject.h

SYNOPSIS BOOL NSShouldRetainWithZone(id <NSObject> anObject, NSZone *requestedZone)

DESCRIPTION Returns YES if requestedZone is NULL, the default zone, or the zone in which anObject was 
allocated. This function is typically called from inside an NSObject’s copyWithZone: method, 
when deciding whether to retain anObject as opposed to making a copy of it.

NSSizeFromString

SUMMARY This function returns an NSSize from a text-based representation.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSSize NSSizeFromString(NSString *aString)

DESCRIPTION Scans aString for text of the form “{width=a; height=b}” and returns the values for a and b in an 
NSSize object. If aString does not contain the specified text, this function returns an NSSize object 
whose width and height are both 0. 

SEE ALSO NSStringFromSize
57



NSStandardApplicationPaths

SUMMARY This function returns the application paths for the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSArray* NSStandardApplicationPaths(void)

DESCRIPTION Returns an array of strings, each string specifying one of the standard paths to the OpenStep 
applications.

SEE ALSO NSStandardLibraryPaths

NSStandardLibraryPaths

SUMMARY This function returns the library paths for the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSArray* NSStandardLibraryPaths(void)

DESCRIPTION Returns an array of strings, each string specifying one of the standard paths to the OpenStep 
libraries. 

SEE ALSO NSStandardApplicationPaths

NSStringFromClass

SUMMARY This function obtains the name of a class

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS NSString *NSStringFromClass(Class aClass)
58



DESCRIPTION This function returns an NSString containing the name of aClass.

SEE ALSO NSClassFromString

NSStringFromHashTable

SUMMARY This function returns a string describing the hash table’s contents.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSString *NSStringFromHashTable(NSHashTable *table)

DESCRIPTION Returns a string describing the hash table’s contents. The function iterates over the table’s 
elements, and for each one appends the string returned by the describe call-back function. If 
NULL was specified for the call-back function, the hexadecimal value of each pointer is added to 
the string.

NSStringFromMapTable

SUMMARY This function returns a string describing the map table’s contents.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSString *NSStringFromMapTable(NSMapTable *table)

DESCRIPTION Returns a string describing the map table’s contents. The function iterates over the table’s 
key/value pairs, and for each one appends the string “a = b;\n”, where a and b are the key and value 
strings returned by the corresponding describe call-back functions. If NULL was specified for the 
call-back function, a and b are the key and value pointers, expressed as hexadecimal numbers.
59



NSStringFromPoint

SUMMARY This function returns a string representation of a point.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSString *NSStringFromPoint(NSPoint aPoint)

DESCRIPTION Returns a string of the form “{x=a; y=b}”, where a and b are the x- and y-coordinates of aPoint.

SEE ALSO NSPointFromString

NSStringFromRange

SUMMARY This function returns a string representation of a range.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSString *NSStringFromRange(NSRange aRange)

DESCRIPTION Returns a string of the form: “{location = a; length = b}”, where a and b are non-negative integers 
representing aRange.

NSStringFromRect

SUMMARY This function returns a string representation of a rect.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSString *NSStringFromRect(NSRect aRect)
60



DESCRIPTION Returns a string of the form “{x=a; y=b; width=c; height=d}”, where a, b, c, and d are the x- and 
y-coordinates and the width and height, respectively, of aRect.

SEE ALSO NSRectFromString

NSStringFromSelector

SUMMARY This function returns the name of a selector.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS NSString *NSStringFromSelector(SEL aSelector)

DESCRIPTION NSStringFromSelector returns an NSString containing the name of aSelector.

SEE ALSO NSSelectorFromString

NSStringFromSize

SUMMARY This function returns a string representation of a size.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSString *NSStringFromSize(NSSize aSize)

DESCRIPTION Returns a string of the form “{width=a; height=b}”, where a and b are the width and height of 
aSize.

SEE ALSO NSSizeFromString
61



NSSwapBigDoubleToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS double NSSwapBigDoubleToHost(NSSwappedDouble x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapDouble to 
perform the swap.

SEE ALSO NSSwapHostDoubleToBig, NSSwapLittleDoubleToHost

NSSwapBigFloatToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS float NSSwapBigFloatToHost(NSSwappedFloat x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapFloat to 
perform the swap.

SEE ALSO NSSwapHostFloatToBig, NSSwapLittleFloatToHost
62



NSSwapBigIntToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapBigIntToHost(unsigned int x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapInt to perform 
the swap.

SEE ALSO NSSwapHostIntToBig, NSSwapLittleIntToHost

NSSwapBigLongLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapBigLongLongToHost(unsigned long long x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapLongLong to 
perform the swap.

SEE ALSO NSSwapHostLongLongToBig, NSSwapLittleLongLongToHost
63



NSSwapBigLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapBigLongToHost(unsigned long x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapLong to 
perform the swap.

SEE ALSO NSSwapHostLongToBig, NSSwapLittleLongToHost

NSSwapBigShortToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapBigShortToHost(unsigned short x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapShort to 
perform the swap.

SEE ALSO NSSwapHostShortToBig, NSSwapLittleShortToHost
64



 

NSSwapDouble 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSSwapDouble(NSSwappedDouble x)

DESCRIPTION Swaps the bytes of x and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of x are 
numbered from 1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes
4 and 5.

SEE ALSO NSSwapLongLong, NSSwapFloat

NSSwapFloat 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSSwapFloat(NSSwappedFloat x)

DESCRIPTION Swaps the bytes of x and returns the resulting value.Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of x are 
numbered from 1 to 4, this function swaps bytes 1 and 4, and swaps bytes 2 and 3.

SEE ALSO NSSwapLong, NSSwapDouble
65



NSSwapHostDoubleToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSSwapHostDoubleToBig(double x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapDouble to perform the swap.

SEE ALSO NSSwapBigDoubleToHost, NSSwapHostDoubleToLittle

NSSwapHostDoubleToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSSwapHostDoubleToLittle(double x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapDouble to perform the swap.

SEE ALSO NSSwapLittleDoubleToHost, NSSwapHostDoubleToBig
66



NSSwapHostFloatToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSSwapHostFloatToBig(float x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapFloat to perform the swap.

SEE ALSO NSSwapBigFloatToHost, NSSwapHostFloatToLittle

NSSwapHostFloatToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSSwapHostFloatToLittle(float x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapFloat to perform the swap.

SEE ALSO NSSwapLittleFloatToHost, NSSwapHostFloatToBig
67



NSSwapHostIntToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapHostIntToBig(unsigned int x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls NSSwapInt 
to perform the swap.

SEE ALSO NSSwapBigIntToHost, NSSwapHostIntToLittle

NSSwapHostIntToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapHostIntToLittle(unsigned int x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapInt to perform the swap.

SEE ALSO NSSwapLittleIntToHost, NSSwapHostIntToBig
68



NSSwapHostLongLongToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapHostLongLongToBig(unsigned long long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLongLong to perform the swap.

SEE ALSO NSSwapBigLongLongToHost, NSSwapHostLongLongToLittle

NSSwapHostLongLongToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapHostLongLongToLittle(unsigned long long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLongLong to perform the swap.

SEE ALSO NSSwapLittleLongLongToHost, NSSwapHostLongLongToBig
69



NSSwapHostLongToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapHostLongToBig(unsigned long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLong to perform the swap.

SEE ALSO NSSwapBigLongToHost, NSSwapHostLongToLittle

NSSwapHostLongToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapHostLongToLittle(unsigned long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLong to perform the swap.

SEE ALSO NSSwapLittleLongToHost, NSSwapHostLongToBig
70



NSSwapHostShortToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapHostShortToBig(unsigned short x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapShort to perform the swap.

SEE ALSO NSSwapBigShortToHost, NSSwapHostShortToLittle

NSSwapHostShortToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapHostShortToLittle(unsigned short x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapShort to perform the swap.

SEE ALSO NSSwapLittleShortToHost, NSSwapHostShortToBig
71



NSSwapInt 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapInt (unsigned int inv)

DESCRIPTION Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of inv 
are numbered from 1 to 4, this function swaps bytes 1 and 4, and swaps bytes 2 and 3.

SEE ALSO NSSwapShort, NSSwapLong, NSSwapLongLong

NSSwapLittleDoubleToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS double NSSwapLittleDoubleToHost(NSSwappedDouble x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapDouble to perform the swap.

SEE ALSO NSSwapHostDoubleToLittle, NSSwapBigDoubleToHost, 
NSConvertSwappedDoubleToHost
72



NSSwapLittleFloatToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS float NSSwapLittleFloatToHost(NSSwappedFloat x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapFloat to perform the swap.

SEE ALSO NSSwapHostFloatToLittle, NSSwapBigFloatToHost, NSConvertSwappedFloatToHost

NSSwapLittleIntToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapLittleIntToHost(unsigned int x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes, this function calls NSSwapInt to 
perform the swap.

SEE ALSO NSSwapHostIntToLittle, NSSwapBigIntToHost
73



NSSwapLittleLongLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapLittleLongLongToHost(unsigned long long x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLongLong to perform the swap.

SEE ALSO NSSwapHostLongLongToLittle, NSSwapBigLongLongToHost

NSSwapLittleLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapLittleLongToHost(unsigned long x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapLong to perform the swap.

SEE ALSO NSSwapHostLongToLittle, NSSwapBigLongToHost, NSSwapLong
74



NSSwapLittleShortToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapLittleShortToHost(unsigned short x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapShort to perform the swap.

SEE ALSO NSSwapHostShortToLittle, NSSwapBigShortToHost

NSSwapLong 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapLong(unsigned long inv)

DESCRIPTION Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of inv 
are numbered from 1 to 4, this function swaps bytes 1 and 4, and swaps bytes 2 and 3.

SEE ALSO NSSwapLongLong, NSSwapInt, NSSwapFloat
75



 

NSSwapLongLong 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapLongLong(unsigned long long inv)

DESCRIPTION Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of inv 
are numbered from 1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes
4 and 5.

SEE ALSO NSSwapLong, NSSwapDouble

NSSwapShort 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapShort (unsigned short inv)

DESCRIPTION Swaps the low-order and high-order bytes of inv and returns the resulting value.

SEE ALSO NSSwapInt, NSSwapLong
76



NSTemporaryDirectory

SUMMARY This function returns the temporary directory on the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSTemporaryDirectory(void)

DESCRIPTION Returns a string containing the path of the current temporary directory. If no such directory is 
currently available, this function returns nil .

SEE ALSO NSStandardApplicationPaths, NSStandardLibraryPaths, NSHomeDirectory

NSUnionRange

SUMMARY This function returns the intersection of the specified ranges.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSUnionRange(NSRange range1, NSRange range2)

DESCRIPTION NSUnionRange returns a range covering all indices in and between range1 and range2. If one 
range is completely contained in the other, the returned range is equal to the larger range.

SEE ALSO NSIntersectionRange

NSUnionRect

SUMMARY This function calculates the union of two rectangles.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSUnionRect(NSRect aRect, NSRect bRect)
77



DESCRIPTION NSUnionRect returns the smallest rectangle that completely encloses both aRect and bRect. If one 
of the rectangles has zero (or negative) width or height, a copy of the other rectangle is returned; 
but if both have zero (or negative) width or height, the returned rectangle has its origin at (0.0, 0.0) 
and has zero width and height.

SEE ALSO NSIntersectionRect

NSUserName

SUMMARY This function gets information about a user.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSUserName(void)

DESCRIPTION NSUserName returns the logon name of the current user.

SEE ALSO NSFullUserName, NSHomeDirectory, NSHomeDirectoryForUser

NSWidth

SUMMARY This function returns the width of the specified rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSWidth(NSRect aRect)

DESCRIPTION NSWidth returns the width of aRect.

SEE ALSO NSMaxX, NSMaxY, NSMidX, NSMidY, NSMinX, NSMinY, NSHeight
78



NSZoneCalloc

SUMMARY This function allocates memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSZoneCalloc(NSZone *zone, unsigned int numElems, unsigned int byteSize)

DESCRIPTION NSZoneCalloc allocates enough memory from zone for numElems elements, each with a size 
numBytes bytes, and returns a pointer to the allocated memory. The memory is initialized with 
zeros. This function returns nil  if it was unable to allocate the requested memory.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSZoneFree, NSZoneMalloc, NSZoneRealloc

NSZoneFree

SUMMARY This function deallocates a block of memory in the specified zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSZoneFree(NSZone *zone, void *pointer)

DESCRIPTION Returns memory to the zone from which it was allocated. The standard C function free does the 
same, but spends time finding which zone the memory belongs to.

SEE ALSO NSRecycleZone, NSZoneMalloc, NSZoneCalloc, NSZoneRealloc
79



NSZoneFromPointer

SUMMARY This function gets the zone for a given block of memory

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSZone *NSZoneFromPointer(void *pointer)

DESCRIPTION Returns the zone for the block of memory indicated by pointer, or NULL if the block was not 
allocated from a zone. The pointer must be one that was returned by a prior call to an allocation 
function.

RETURN Returns the zone for the indicated block of memory, or NULL if the block was not allocated from 
a zone.

SEE ALSO NSZoneCalloc, NSZoneMalloc, NSZoneRealloc

NSZoneMalloc

SUMMARY This function allocates memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSZoneMalloc(NSZone *zone, unsigned int size)

DESCRIPTION NSZoneMalloc allocates size bytes in zone, and returns a pointer to the allocated memory. This 
function returns nil  if it was unable to allocate the requested memory.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSZoneFree, NSZoneCalloc, NSZoneRealloc
80



NSZoneName

SUMMARY This function returns the name of the specified zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSString *NSZoneName(NSZone *zone)

DESCRIPTION Returns a string containing the name associated with zone, If zone is nil , the default zone is used. 
If no name is associated with zone, the returned string is empty.

SEE ALSO NSSetZoneName

NSZoneRealloc

SUMMARY This function allocates memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSZoneRealloc(NSZone *zone, void *ptr, unsigned int size)

DESCRIPTION NSZoneRealloc changes the size of the block of memory pointed to by ptr to size bytes. It may 
allocate new memory to replace the old, in which case it moves the contents of the old memory 
block to the new block, up to a maximum of size bytes. ptr may be NULL. This function returns 
nil  if it was unable to allocate the requested memory.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSZoneFree, NSZoneCalloc, NSZoneMalloc
81



 Classes: NSCoding

s 

 

y 

 

NSCoding

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

The NSCoding protocol declares the two methods that a class must implement so that instances of that clas
can be encoded and decoded. This capability provides the basis for archiving (where objects and other 
structures are stored on disk) and distribution (where objects are copied to different address spaces). See
the NSCoder and NSArchiver class specifications for an introduction to coding.

In keeping with object-oriented design principles, an object being encoded or decoded is responsible for 
encoding and decoding its instance variables. A coder instructs the object to do so by invoking 
encodeWithCoder: or initWithCoder: . encodeWithCoder: instructs the object to encode its instance 
variables to the coder provided; an object can receive this method any number of times. initWithCoder:  
instructs the object to initialize itself from data in the coder provided; as such, it replaces any other 
initialization method and is only sent once per object. Any object class that should be codable must adopt 
the NSCoding protocol and implement its methods.

When an object receives an encodeWithCoder: message, it should encode all of its vital instance variables, 
after sending a message to super if its superclass also conforms to the NSCoding protocol. An object 
doesn’t have to encode all of its instance variables. Some values may not be important to reestablish and 
others may be derivable from related state upon decoding. Other instance variables should be encoded onl
under certain conditions (for example, with encodeConditionalObject:, as described in the NSArchiver 
class specification).

For example, suppose you were creating a fictitious MapView class that displays a legend and a map at 
various magnifications. The MapView class defines several instance variables, including the name of the 
map and the current magnification. The MapView class also contains instance variables for several related
views. The encodeWithCoder: method of MapView might look like the following:

- (void)encodeWithCoder:(NSCoder *)coder

{

[super encodeWithCoder:coder];

[coder encodeValueOfObjCType:@encode(char *) at:mapName];

[coder encodeValueOfObjCType:@encode(unsigned int) at:&magnification];

[coder encodeObject:legendView];

[coder encodeConditionalObject:auxiliaryView];

return;

}

1



s, 

 

 

This example assumes that the superclass of MapView also supports the NSCoding protocol. If the 
superclass of your class does not support NSCoding, you should omit the line that invokes super’s 
encodeWithCoder: method.

encodeValueOfObjCType:at: and encodeObject: are coder methods that you can use to encode instance 
variables of your class. You can use these and other methods of the coder to encode id’s, scalars, C array
structs, strings, and pointers to any of these types. The coder also defines corresponding methods for 
decoding values. See the NSCoder, NSArchiver, and NSUnarchiver class specifications for a list of 
methods.

The @encode() compiler directive generates an Objective-C type code from a type expression. See 
Object-Oriented Programming and the Objective-C Language for more information.

Similarly, in initWithCoder:  the object should first send a message to super (if appropriate) to initialize 
inherited instance variables, and then it should decode and initialize its own. MapView’s implementation of 
initWithCoder:  might look like this:

- (id)initWithCoder:(NSCoder *)coder

{

self = [super initWithCoder:coder];

[coder decodeValueOfObjCType:@encode(char *) at:mapName];

[coder decodeValueOfObjCType:@encode(unsigned int) at:&magnification];

legendView = [[coder decodeObject] retain];

auxiliaryView = [[coder decodeObject] retain];

return self;

}

Note the assignment of the return value of initWithCoder:  to self in the example above. This is done in the 
subclass because the superclass, in its implementation of initWithCoder: , may decide to return a object 
other than itself. If the superclass of your class does not support NSCoding, you should invoke super’s 
designated initializer instead of initWithCoder: .

Making Substitutions During Coding

During encoding or decoding a coder object invokes methods that allow the object being coded to substitute
a replacement class or instance for itself. This allows archives to be shared among implementations with 
different class hierarchies or simply different versions of a class (for example, class clusters take advantage
of this feature). It also allows classes that should maintain unique instances to enforce this policy on 
decoding (for example, there need only be a single NSFont instance for a given typeface and size).
2



 Classes: NSCoding

 
 

Substitution methods are declared by NSObject, and come in two flavors: generic and specialized. The 
generic methods are these:

The specialized substitution methods are analogous to classForCoder and replacementObjectForCoder:
, but they’re designed for (and invoked by) a specific, concrete coder subclass.  NSArchiver invokes 
classForArchiver: and replacementObjectForArchiver:, while NSPortCoder invokes 
classForPortCoder and replacementObjectForPortCoder:.  (There isn’t a specialized version of 
awakeAfterUsingCoder:.)  By implementing these specialized methods, your class can base its coding 
behavior on the specific coder class being used. For more information on these methods, see their method
descriptions in the NSObject class specification, as well as the class description in the NSPortCoder class
specification.

Method Types

Encoding and decoding objects
– encodeWithCoder:
– initWithCoder:

Instance Methods

encodeWithCoder:
– (void)encodeWithCoder:(NSCoder *)encoder

Encodes the receiver using encoder.

Method Typical Use

classForCoder
Allows an object, before being encoded, to substitute a class other than 
its own. For example, the private subclasses of a class cluster substitute 
the name of their public superclass when being archived.

replacementObjectForCoder:
Allows an object, before being encoded, to substitute another instance in 
its place.

awakeAfterUsingCoder:

Allows an object, after being decoded, to substitute another object for 
itself. For example, an object that represents a font might, upon being 
decoded, release itself and return an existing object having the same 
font description as itself. In this way, redundant objects can be 
eliminated.
3



initWithCoder:
– (id)initWithCoder: (NSCoder *)decoder

Initializes a newly allocated instance from data in decoder. Returns self.
4



 Classes: NSCopying

t 

y 
NSCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

The NSCopying protocol declares a method for providing functional copies of an object. The exact meaning 
of “copy” can vary from class to class, but a copy must be a functionally independent object with values 
identical to the original at the time the copy was made. A copy produced with NSCopying is implicitly 
retained by the sender, who is responsible for releasing it. 

NSCopying declares one method, copyWithZone:, but copying is commonly invoked with the convenience 
method copy. The copy method is defined for all NSObjects and simply invokes copyWithZone: with the 
default zone.

Using NSCopying

NSCopying is frequently used to copy value objects—objects that represent attributes. C-type variables can 
usually be substituted for value objects, but value objects have the advantage of encapsulating convenien
utilities for common manipulations. For example, NSString objects are used instead of character pointers 
because they encapsulate encoding and storage. Despite NSString functionality, the role played by 
NSStrings parallels the role played by character pointers.

When value objects are passed as method arguments or returned from a method, it is common to use a cop
instead of the object itself. For example, consider the following method for assigning a string to an object’s 
name instance variable.

- (void)setName:(NSString *)aName

{

[name autorelease];

name = [aName copy];

}

Storing a copy of aName has the effect of producing an object that’s independent of the original, but has 
the same contents. Subsequent changes to the copy don’t affect the original, and changes to the original 
don’t affect the copy. Similarly, it is common to return a copy of an instance variable instead of the instance 
variable itself. For example, this method returns a copy of the name instance variable:

- (NSString *)name

{

return [[name copy] autorelease];

}

1



 

 

Implementing NSCopying

There are two basic approaches to creating copies. You can use alloc and init..., or you can use 
NSCopyObject(). To choose the one that’s right for your class, you need to consider the following 
questions:

• “What kind of copying—deep or shallow—does your class need?”
• “Does your class’s superclass implement NSCopying?”
• “Are you familiar with the implementations of your class’s superclasses?”

These areas are described in the following sections.

What kind of copying—deep or shallow—does your class need?

Generally, copying an object involves creating a new instance and initializing it with the values in the 
original object. Copying the values for non-pointer instance variables, such as booleans, integers, and 
floating points, is straightforward. When copying pointer instance variables there are two approaches. One
approach, called a shallow copy, copies the pointer value from the original object into the copy. Thus, the 
original and the copy share referenced data. The other approach, called a deep copy, duplicates the data 
referenced by the pointer and assigns it to the copy’s instance variable.

The implementation of an instance variable’s set method should reflect the kind of copying you need to use.
You should deeply copy the instance variable if the corresponding set method copies the new value as in 
this method:

- (void)setMyVariable:(id)newValue

{

[myVariable autorelease];

myVariable = [newValue copy];

}

You should shallowly copy the instance variable if the corresponding set method retains the new value as 
in this method:

- (void)setMyVariable:(id)newValue

{

[myVariable autorelease];

myVariable = [newValue retain];

}

Similarly, you should shallowly copy the instance variable if its set method simply assigns the new value to 
the instance variable without copying or retaining it as in this method:

- (void)setMyVariable:(id)newValue

{

myVariable = newValue;

}

2



 Classes: NSCopying

r 

as 

 

To produce a copy of an object that’s truly independent of the original, the entire object must be deeply 
copied. Every instance variable must be duplicated. If the instance variables themselves have instance 
variables, those too must be duplicated, and so on. In many cases, a mixed approach is more useful. Pointe
instance variables that can be thought of as data containers are generally deeply copied, while more 
sophisticated instance variables like delegates are shallowly copied.

For example, a Product class adopts NSCopying. Product instances have a name, a price, and a delegate 
declared in this interface.

@interface Product : NSObject <NSCopying>

{

NSString *productName;

float price;

id delegate;

}

@end

Copying a Product instance produces a deep copy of productName because it represents a flat data value. 
On the other hand, the delegate instance variable is a more complex object capable of functioning properly 
for both Products. The copy and the original should therefore share the delegate. The following figure 
represents the images of a Product instance and a copy in memory.

 

The different pointer values for productName illustrate that the original and the copy each have their own 
productName string object. The pointer values for delegate are the same, indicating that the two product 
objects share the same object as their delegate.

Does your class’s superclass implement NSCopying?

If the superclass does not implement NSCopying, your class’s implementation will have to copy the 
instance variables it inherits as well as those declared in your class. Generally, the safest way to do this is
by using alloc, init..., and set methods. On the other hand, if your class inherits NSCopying behavior, its 
implementation only has to copy instance variables declared in your class. It invokes the superclass’s 
implementation to copy inherited instance variables.

original 0xf2ae4

isa 0x8028
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
productName 0xe81f4
price 0.00
delegate 0xe83c8
3



Are you familiar with the implementations of your class’s superclasses?

If your class inherits NSCopying behavior, how you handle the new instance variables in copyWithZone: 
depends on your familiarity with the superclass’s implementation. There are essentially two ways to make 
a copy of an object, using alloc and init... or using the function NSCopyObject(). If the superclass used or 
might have used NSCopyObject(), you must handle instance variables differently than you would 
otherwise.

Using the alloc, init... Approach

If a class does not inherit NSCopying behavior, you should implement copyWithZone: using alloc, init..., 
and set methods. For example, an implementation of copyWithZone: for the Product class described above 
might be implemented in the following way:

- (id)copyWithZone:(NSZone *)zone

{

Product *copy = [[Product alloc] 

initWithProductName:[self productName]

price:[self price]];

[copy setDelegate:[self delegate]];

return copy;

}

Because implementation details associated with inherited instance variables are encapsulated in the 
superclass, it is generally better to implement NSCopying with the alloc, init... approach. Doing so uses 
policy implemented in set methods to determine the kind of copying needed of instance variables.

Using NSCopyObject()

When a class inherits NSCopying behavior, you must consider the possibility that the superclass’s 
implementation uses NSCopyObject(). NSCopyObject() creates an exact shallow copy of an object by 
copying instance variable values but not the data they point to. For example, NSCell’s implementation of 
copyWithZone: could be defined in the following way.

- (id)copyWithZone:(NSZone *)zone

{

NSCell *cellCopy = NSCopyObject(self, 0, zone);

/* Assume that other initialization takes place here. */

cellCopy->image = nil;

[cellCopy setImage:[self image]];

return cellCopy;

}

4



 Classes: NSCopying

 

In the implementation above, NSCopyObject() creates an exact shallow copy of the original cell. This 
behavior is desirable for copying instance variables that aren’t pointers or are pointers to non-retained data
that is shallowly copied. Pointer instance variables for retained objects need additional treatment.

In the copyWithZone: example above, image is a pointer to a retained object. The policy to retain the image 
is reflected in the following implementation of the setImage: accessor method.

- (void)setImage:(NSImage *)anImage

{

[image autorelease];

image = [anImage retain];

}

Notice that setImage: autoreleases image before it reassigns it. If the above implementation of 
copyWithZone: hadn’t explicitly set the copy’s image instance variable to nil  before invoking setImage:, 
the image referenced by the copy and the original would be released without a corresponding retain.

Even though image points to the right object, it is conceptually uninitialized. Unlike the instance variables 
that are created with alloc and init..., these uninitialized variables aren’t nil-valued. You should explicitly 
assign initial values to these variables before using them. In this case, cellCopy’s image instance variable is 
set to nil , then it is set using the setImage: method.

The effects of NSCopyObject() extend to a subclass’s implementation. For example, an implementation of 
NSSliderCell could copy a new titleCell  instance variable in the following way.

- (id)copyWithZone:(NSZone *)zone

{

NSSliderCell *cellCopy = [super copyWithZone:zone];

/* Assume that other initialization takes place here. */

cellCopy->titleCell = nil;

[cellCopy setTitleCell:[self titleCell]];

return cellCopy;

}

The superclass’s copyWithZone: method is invoked to copy inherited instance variables. When you invoke 
a superclass’s copyWithZone: method, assume that new object instance variables are uninitialized if there’s 
any chance that the superclass implementation uses NSCopyObject(). Explicitly assign a value to them 
before using them. In this example, titleCell  is explicitly set to nil  before setTitleCell: is invoked.

The implementation of an object’s retain count is another consideration when using NSCopyObject(). If an 
object stores its retain count in an instance variable, the implementation of copyWithZone: must correctly 
initialize the copy’s retain count. The following figure illustrates the process.
5



 

The first object represents a Product instance in memory. The value in refCount indicates that the instance 
has been retained three times. The second object is a copy of the Product instance produced with 
NSCopyObject(). Its refCount value matches the original. The third object represents the copy returned 
from copyWithZone: after refCount is correctly initialized. After copyWithZone: creates the copy with 
NSCopyObject(), it assigns the value 1 to the refCount instance variable. The sender of copyWithZone: 
implicitly retains the copy and is responsible for releasing it.

NSCopying and Immutable Classes

Where the concept “immutable vs. mutable” applies to an object, NSCopying produces immutable copies 
whether the original is immutable or not. See the NSMutableCopying protocol for details on making 
mutable copies.

Immutable classes can implement NSCopying very efficiently. Since immutable objects don’t change, there 
is no need to duplicate them. Instead, NSCopying can be implemented to retain the original. For example, 
copyWithZone: for an immutable string class can be implemented in the following way.

- (id)copyWithZone:(NSZone *)zone

{

return [self retain];

}

Summary

• Implement NSCopying using alloc and init... in classes that don’t inherit copyWithZone:.

• Implement NSCopying by invoking the superclass’s copyWithZone: when NSCopying behavior is 
inherited. If the superclass implementation might use NSCopyObject(), make explicit assignments to 
pointer instance variables for retained objects.

• Implement NSCopying by retaining the original instead of creating a new copy when the class and its 
contents are immutable.

original 0xf2ae4

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 1
productName 0xe81f4
price 0.00
delegate 0xe83c8

The copy produced by
NSCopyObject

The copy after unitialized
instance variables are assigned
in copyWithZone:
6



 Classes: NSCopying
Instance Methods

copyWithZone:
– (id)copyWithZone:(NSZone *)zone

Returns a new instance that’s a copy of the receiver. Memory for the new instance is allocated from zone, 
which may be NULL. If zone is NULL, the new instance is allocated from the default zone, which is 
returned from NSDefaultMallocZone(). The returned object is implicitly retained by the sender, who is 
responsible for releasing it. The copy returned is immutable if the consideration “immutable vs. mutable” 
applies to the receiving object; otherwise the exact nature of the copy is determined by the class. 

See also: – mutableCopyWithZone: (NSMutableCopying protocol), – copy (NSObject)
7



 Classes: NSDecimalNumberBehaviors

 

NSDecimalNumberBehaviors

Adopted By: NSDecimalNumberHandler

Declared In: Foundation/NSDecimalNumber.h

Protocol Description

The NSDecimalBehaviors protocol declares three methods that control the discretionary aspects of working
with NSDecimalNumbers. The scale and roundingMode methods determine the precision of 
NSDecimalNumber’s return values, and the way in which those values should be rounded to fit that 
precision. The exceptionDuringOperation:error:leftOperand:rightOperand:  determines the way in 
which an NSDecimalNumber should handle different calculation errors.

For an example of a class that adopts the NSDecimalBehaviors protocol, see the specification for 
NSDecimalNumberHandler.

Method Types

Rounding
– roundingMode
– scale

Handling errors
– exceptionDuringOperation:error:leftOperand:rightOperand:

Instance Methods 

exceptionDuringOperation:error:leftOperand:rightOperand:
– (NSDecimalNumber *)exceptionDuringOperation:(SEL)method 

error: (NSCalculationError)error 
leftOperand:(NSDecimalNumber *)leftOperand 
rightOperand: (NSDecimalNumber *)rightOperand

Specifies what an NSDecimalNumber will do when, in the course of applying method to leftOperand and 
rightOperand, it encounters error. 

There are four possible values for error. The first three have to do with limits on NSDecimalNumber’s 
ability to represent decimal numbers. An NSDecimalNumber can represent any number that can be 
1



 

expressed as mantissa x 10exponent , where mantissa is a decimal integer up to 38 digits long, and exponent 
is between -256 and 256. If these limits are exceeded, the NSDecimalNumber returns one of the following 
errors:

• NSCalculationLossOfPrecision. The number can’t be represented in 38 significant digits.

• NSCalculationOverflow. The number is too large to represent.

• NSCalculationUnderflow. The  number is too small to represent.

The last error is simpler:

• NSCalculationDivideByZero. The caller tried to divide by zero.

In implementing exceptionDuringOperation:error:leftOperand:rightOperand , you can handle each of 
these errors in several ways:

• Raise an exception. For an explantion of exceptions, see the NSException class description in the 
Foundation Framework Reference.

• Return nil . The calling method will return its value as though no error had occurred. If error is 
NSCalculationLossOfPrecision, method will return an imprecise value—that is, one constrained to 38 
significant digits. If error is NSCalculationUnderflow or NSCalculationOverflow, method will return 
NSDecimalNumber’s notANumber. You shouldn’t return nil  if error is NSDivideByZero.

• Correct the error and return a valid NSDecimalNumber. The calling method will use this as its own return 
value.

roundingMode
– (NSRoundingMode)roundingMode

Returns the way that NSDecimalNumber’s decimalNumberBy... methods round their return values. There 
are four possible NSRoundingModes: 

• NSRoundDown. The methods round their return values down.
• NSRoundUp. The methods round their return values up.
• NSRoundPlain. The methods round to the closest possible return value. When they are caught halfway 

between two positive numbers, they round up; when caught between two negative numbers, they round
down.

• NSRoundBankers. The methods round to the closest possible return value. When they are caught halfway 
between two possibilities, they return the possibility whose last digit is even. In practice, this means that, 
over the long run, numbers will be rounded up as often as they are rounded down; there will be no 
systematic bias.

The rounding mode only matters if the scale method sets a limit on the precision of NSDecimalNumber 
return values. It has no effect if scale returns NSDecimalNoScale.
2



 Classes: NSDecimalNumberBehaviors
Assuming that scale returns 1, the NSRoundingMode has the following effects on various original values:

scale
– (short)scale

Limits the precision of the values returned by NSDecimalNumber’s decimalNumberBy... methods. 

Specifically, scale returns the number of digits allowed after the decimal separator. If scale returns a 
negative value, it affects the digits before the decimal separator as well. If scale returns NSDecimalNoScale, 
the number of digits is unlimited.

Assuming that roundingMode returns NSRoundPlain, different values of scale have the following effects 
on the number 123.456:

Original value NSRoundDown NSRoundUp NSRoundPlain NSRoundBankers

1.24 1.2 1.3 1.2 1.2

1.26 1.2 1.3 1.3 1.3

1.25 1.2 1.3 1.3 1.2

1.35 1.3 1.4 1.4 1.4

-1.35 -1.4 -1.3 -1.4 -1.4

Scale Return value

NSDecimalNoScale 123.456

2 123.45

0 123

-2 100
3



 Classes: NSLocking

 

 

NSLocking 

Adopted By: NSConditionLock
NSLock
NSRecursiveLock 

Declared In: Foundation/NSLock.h 

Protocol Description

The NSLocking protocol declares the elementary methods adopted by classes that define lock objects. A 
lock object is used to coordinate the actions of multiple threads of execution within a single application. By 
using a lock object, an application can protect critical sections of code from being executed simultaneously 
by separate threads, thus protecting shared data and other shared resources from corruption.

For example, consider a multithreaded application in which each thread updates a shared counter. If two 
threads simultaneously fetch the current value into local storage, increment it, and then write the value back,
the counter will be incremented only once, losing one thread’s contribution. However, if the code that 
manipulates the shared data (the critical section of code) must be locked before being executed, only one 
thread at a time can perform the updating operation, and collisions are prevented.

A lock object is either locked or unlocked. You acquire a lock by sending the object a lock message, thus 
putting the object in the locked state. You relinquish a lock by sending an unlock message, and thus putting 
the object in the unlocked state. (The NEXTSTEP classes that adopt this protocol define additional ways to
acquire and relinquish locks.)

The lock method as declared in this protocol is blocking. That is, the thread that sends a lock message is 
blocked from further execution until the lock is acquired (presumably because some other thread 
relinquishes its lock). Classes that adopt this protocol typically add methods that offer nonblocking 
alternatives.

These NEXTSTEP classes conform to the NSLocking protocol: 

Class Adds these features to the basic protocol

NSLock
A nonblocking lock method; the ability to limit the duration of a locking 
attempt.

NSConditionLock The ability to postpone entry to a critical section until a condition is met.

NSRecursiveLock
The ability for a single thread to acquire a lock more than once without 
deadlocking.
1



r 

 

 

The locking mechanism that these classes use causes a thread to sleep while waiting to acquire a lock rathe
than to poll the system constantly. Thus, lock objects can be used to lock time-consuming operations 
without causing system performance to degrade. See the class specifications for these classes for further
information on their behavior and usage.

There is some performance cost in acquiring a lock, so it’s best to avoid the overhead if possible. An 
application developer has control over whether the application will execute with multiple threads, so it’s 
clear when locking is appropriate. A library developer doesn’t necessarily know whether library code will 
execute in a multithreaded environment. In this case, it’s best to test whether the code is executing in a 
multithreaded environment before attempting to acquire a lock. The following example illustrates how this 
is done.

Assume your application uses a Counter object to record various operations. Here’s one design that lets the
Counter know whether it is multithreaded:

+ (void)initialize 

{

    if ([NSThread isMultiThreaded]) {

[self taskNowMultiThreaded:nil];

} else {

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(taskNowMultiThreaded:)

name:NSWillBecomeMultiThreadedNotification object:nil];

}

}

In the initialize method (which, by definition, is invoked before any Counter objects are created), the 
Counter class object first checks whether the application has already become multithreaded and if so 
invokes its own taskNowMultiThreaded:  method. Otherwise, it registers as an observer of 
NSWillBecomeMultiThreadedNotification so that taskNowMultiThreaded:  will be invoked when the 
application becomes multithreaded. 

Counter’s taskNowMultiThreaded:  method creates a lock object that the threads use to coordinate their 
activities:

+ (void)taskNowMultiThreaded:(NSNotification *)event 

{

if (!theLock)

theLock = [[NSLock alloc] init];

}

theLock, a static variable declared in the class implementation file, is assigned a value of nil  until 
taskNowMultiThreaded:  is invoked. Since messages sent to nil  are permitted and have no effect, code 
within Counter that acts on shared data can be written like this:

[theLock lock];

/* Operate on shared data */

[theLock unlock];
2



 Classes: NSLocking

e 

 

, 
With this approach, the overhead associated with lock operations is only incurred if the application is 
multithreaded. This code, however, raises another issue. What happens if one of the statements between th
lock and unlock messages cause the application to become multithreaded? Then the unlock message 
wouldn’t be paired with the preceding lock.

In normal usage, locking and unlocking messages are paired. However, as in the example above, it might 
be convenient to unlock a lock object that hasn’t yet been locked. This is permitted with two restrictions. 
First, you can send an unpaired unlocking message to a lock object as long as the object has never before
been locked. Second, of the NEXTSTEP classes that conform to the NSLocking protocol, only 
NSConditionLock and NSLock allow an unpaired unlocking message. NSRecursiveLock requires locking 
and unlocking messages to be paired.

NEXTSTEP’s locking classes are designed to work in a well-behaved, multithreaded environment: The 
protection they offer can be subverted by the use of signal handlers. A signal handler can interrupt a thread
execute code that affects shared data, and then let the thread resume without alerting the thread that the 
application has, in effect, become multithreaded. For this reason, it’s recommended that you don’t use 
signal handlers in multithreaded NEXTSTEP applications.

Instance Methods

lock
– (void)lock

Attempts to acquire a lock. This method blocks a thread’s execution until the lock can be acquired.

An application protects a critical section of code by requiring a thread to acquire a lock before executing 
the code. Once the critical section is past, the thread relinquishes the lock by invoking unlock.

unlock
– (void)unlock

Relinquishes a previously acquired lock. 
3



1

 Classes: NSMutableCopying

NSMutableCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

The NSMutableCopying protocol declares a method for providing mutable copies of an object. Only classes 
that define an “immutable vs. mutable” distinction should adopt this protocol. Classes that don’t define such 
a distinction should adopt NSCopying instead.

NSMutableCopying declares one method, mutableCopyWithZone:, but mutable copying is commonly 
invoked with the convenience method mutableCopy. The mutableCopy method is defined for all 
NSObjects and simply invokes mutableCopyWithZone: with the default zone.

See the NSCopying protocol for details on implementing copying behavior.

Instance Methods

mutableCopyWithZone:
– mutableCopyWithZone:(NSZone *)zone

Returns a new instance that’s a mutable copy of the receiver. Memory for the new instance is allocated from 
zone, which may be NULL. If zone is NULL, the new instance is allocated from the default zone, which is 
returned by NSDefaultMallocZone(). The returned object is implicitly retained by the sender, who is 
responsible for releasing it.  The copy returned is mutable whether the original is mutable or not.

See also: – copyWithZone: (NSCopying protocol), – mutableCopy (NSObject)



 Classes: NSObjCTypeSerializationCallBack
NSObjCTypeSerializationCallBack

Adopted By: No OpenStep classes

Declared In: Foundation/NSSerialization.h

Protocol Description 

An object conforms to the NSObjCTypeSerializationCallBack protocol so that it can intervene in the 
serialization and deserialization process. The primary purpose of this protocol is to allow for the 
serialization of objects and other data types that aren’t directly supported by OpenStep’s serialization 
facility. (See the NSSerializer class specification for information on serialization.) 

NSMutableData declares the method that’s used to begin the serialization process:

- (void)serializeDataAt:(const void *)data

ofObjCType:(const char *)type

context:(id <NSObjCTypeSerializationCallBack>)callback

This method can serialize all standard Objective C types (int , float, character strings, and so on) except for 
objects, union, and void *. If, during the serialization process, an object is encountered, the object passed 
as the callback argument above is asked to provide the serialization.

Suppose that the type being serialized is a structure of this description:

struct stockRecord {

NSString *stockName;

float value;

};

The Objective C type code for this structure is {@f}, so the serialization process begins with this message: 
(Assume that theData is the NSMutableData object that’s doing the serialization and helper is an object 
that conforms to the NSObjCTypeSerializationCallBack protocol.)

struct stockRecord aRecord = {@ "aCompany", 34.7};

[theData serializeDataAt:&aRecord ofObjCType: "{@f}"  context:helper];

Since the first field of the structure is an unsupported type, the helper object is sent a serializeObjectAt:
ofObjCType:intoData:  message, letting it serialize the object. helper might implement the method in this 
way:
1



- (void)serializeObjectAt:(id *)objectPtr

ofObjCType:(const char *)type

intoData:(NSMutableData *)theMutableData

{

NSString *nameObject;

char *companyName

nameObject = *objectPtr;

companyName = [nameObject cString];

[theData serializeDataAt:&companyName ofObjCType:@encode(typeof(companyName))

context:nil];

}

The callback object is free to serialize the target object as it wishes. In this case, helper simply extracts the 
company name from the NSString object and then has that character string serialized. Once this callback 
method finishes executing, the original method (serializeDataAt:ofObjCType:context:) resumes execution 
and serializes the second field of the structure. Since this second field contains a supported type (float), the 
callback method is not invoked again.

Deserialization follows a similar pattern, except in this case NSData declares the central method 
deserializeDataAt:ofObjCType:atCursor:context:. The deserialization of the example structure starts with 
a message to the NSData object that contains the serialized data:

(unsigned *)cursor = 0;

[theData deserializeDataAt:&aRecord ofObjCType:"{@f}" cursor:&cursor

context:helper];

(The cursor argument is a pointer to zero since we’re starting at the beginning of the data in the NSData 
object.) 

When this method is invoked, the callback object receives a deserializeObjectAt:ofObjCType:fromData:
atCursor:  message, as declared in this protocol. The callback object can then reestablish the first field of 
the structure. For example, helper might implement the method in this way:

- (void) deserializeObjectAt:(id *)objectPtr

ofObjCType:(const char *)type

fromData:(NSData *)data

atCursor:(unsigned *)cursor

{

char *companyName;

[theData deserializeDataAt:&companyName ofObjCType:"*" atCursor:cursor

context:nil];

*objectPtr = [[NSString stringWithCString:companyName] retain];

}

2



 Classes: NSObjCTypeSerializationCallBack
Instance Methods

deserializeObjectAt:ofObjCType:fromData:atCursor:
– (void)deserializeObjectAt:(id *)object

ofObjCType:(const char *)type
fromData:(NSData *)data
atCursor:(unsigned *)cursor 

The implementor of this method decodes the referenced object (which should always be of type "@") 
located at the cursor position in the data object. The decoded object is not autoreleased.

See also:  – deserializeDataAt:ofObjCType:atCursor:context: (NSData)

serializeObjectAt:ofObjCType:intoData:
– (void)serializeObjectAt:(id *)object

ofObjCType:(const char *)type
intoData:(NSMutableData *)data 

The implementor of this method encodes the referenced object (which should always be of type "@") in the 
data object. 

See also: – serializeDataAt:ofObjCType:context: (NSMutableData)
3



 Classes: NSObject

 

NSObject

Adopted By: NSObject

Declared In: Foundation/NSObject.h

Protocol Description

The NSObject protocol groups methods that are fundamental to all Objective-C objects. If an object 
conforms to this protocol, it can be considered a first-class object in NEXTSTEP. Such an object can be 
asked about its: 

• Class, and the place of its class in the inheritance hierarchy 
• Conformance to protocols
• Ability to respond to a particular message

In addition, objects that conform to this protocol—with its retain, release, and autorelease methods—can 
also integrate with the object-management and deallocation scheme defined in the Foundation Kit. (See the
introduction to the Foundation Kit for more information.) Thus, an object that conforms to the NSObject 
protocol can be managed by container objects like those defined by NSArray and NSDictionary.

NEXTSTEP’s root class, NSObject, adopts this protocol, so virtually all objects in NEXTSTEP have the 
features described by this protocol.

Method Types

Identifying classes
– class
– superclass

Identifying and comparing objects
– isEqual:
– hash
– self

Determining allocation zones
– zone
1



Managing reference counts
– retain
– release
– autorelease
– retainCount

Testing class functionality
– respondsToSelector:

Testing inheritance relationships
– isKindOfClass:
– isMemberOfClass:

Testing protocol conformance
– conformsToProtocol:

Describing objects
– description

Sending messages
– performSelector:
– performSelector:withObject:
– performSelector:withObject:withObject:

Identifying proxies
– isProxy

Instance Methods

autorelease
– (id)autorelease

Adds the receiver to the current autorelease pool and returns self. You add an object to an autorelease pool 
so that it will receive a release message—and thus might be deallocated—when the pool is destroyed. For 
more information on the autorelease mechanism, see the NSAutoreleasePool class specification.

See also: – retain, – retainCount

class
– (Class)class

Returns the class object for the receiver’s class.

See also: + class (NSObject class)
2



 Classes: NSObject

as 
conformsToProtocol:
– (BOOL)conformsToProtocol:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol, NO otherwise.  This method works identically to 
the conformsToProtocol: class method declared in NSObject.  It’s provided as a convenience so that you 
don’t need to get the class object to find out whether an instance can respond to a given set of messages.

See also: + conformsToProtocol: (NSObject class)

description
– (NSString *)description

Returns an NSString object that describes the contents of the receiver.  The debugger’s print-object  
command indirectly invokes this method to produce a textual description of an object.

hash
– (unsigned)hash

Returns an integer that can be used as a table address in a hash table structure.  If two objects are equal (
determined by the isEqual: method), they must have the same hash value. This last point is particularly 
important if you define hash in a subclass and intend to put instances of that subclass into a collection.

If a mutable object is added to a collection that uses hash values to determine the object’s position in the 
collection, the value returned by the hash method of the object must not change while the object is in the 
collection. To accomplish this, either the hash method must not rely on any of the object’s internal state 
information or you must make sure that the object’s internal state information does not change while the 
object is in the collection. (Note that it can be difficult to know whether or not a given object is in a 
collection.)

isEqual:
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal, NO otherwise.  This method defines what it means for 
an instance to be equal.  For example, a container object might define two containers as equal if their 
corresponding objects all respond YES to an isEqual: request.  See the NSData, NSDictionary, NSArray, 
and NSString class specifications for examples of the use of this method.
3



ss 

.

isKindOfClass:
– (BOOL)isKindOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass or an instance of any class that inherits from aClass, 
NO otherwise.  For example, in this code, isKindOfClass: would return YES because, in the Foundation 
Kit, the NSArchiver class inherits from NSCoder:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];

id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];

if ( [anArchiver isKindOfClass:[NSCoder class]] )

...

Because instance methods defined in the root class can be sent to class objects, when the receiver is a cla
object, this method returns YES if aClass is NSObject, NO otherwise.

See also: – isMemberOfClass:

isMemberOfClass:
– (BOOL)isMemberOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass, NO otherwise.  For example, in this code, 
isMemberOfClass: would return NO:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];

id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];

if ([anArchiver isMemberOfClass:[NSCoder class]])

...

When the receiver is a class object, this method returns NO.  Class objects are not “members of” any class

See also: – isKindOfClass:

isProxy
– (BOOL)isProxy

Returns NO if the receiver really descends from NSObject, YES otherwise. This method is necessary 
because sending isKindOfClass: or isMemberOfClass: to an NSProxy object will test the object that the 
proxy stands-in for, not itself. Use this method to test if the receiver is a proxy (or a member of some other 
root class).
4



 Classes: NSObject

 

performSelector:
– (id)performSelector:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message.  If aSelector is NULL, an 
NSInvalidArgumentException is raised.

performSelector: is equivalent to sending an aSelector message directly to the receiver.  For example, all 
three of the following messages do the same thing:

id myClone = [anObject copy];

id myClone = [anObject performSelector:@selector(copy)];

id myClone = [anObject performSelector:sel_getUid("copy")];

However, the performSelector: method allows you to send messages that aren’t determined until run time.  
A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();

[anObject performSelector:myMethod];

aSelector should identify a method that takes no arguments.  For methods that return anything other than an
object, use NSInvocation.

See also: – performSelector:withObject: , – performSelector:withObject:withObject:

performSelector:withObject:
– (id)performSelector:(SEL)aSelector withObject: (id)anObject

Sends an aSelector message to the receiver with anObject as the argument.  If aSelector is NULL, an 
NSInvalidArgumentException is raised.

This method is the same as performSelector: except that you can supply an argument for  aSelector.  
aSelector should identify a method that takes a single argument of type id. For methods with other argument 
types and return values, use NSInvocation.

See also:  – performSelector:withObject:withObject: , – methodForSelector: (NSObject class)

performSelector:withObject:withObject:
– (id)performSelector:(SEL)aSelector

withObject: (id)anObject
withObject: (id)anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments. If aSelector is 
NULL, an NSInvalidArgumentException is raised. This method is the same as performSelector: except 
5



es 

e 
d 

 

 

t 
that you can supply two arguments for  aSelector. aSelector should identify a method that can take two 
arguments of type id. For methods with other argument types and return values use NSInvocation.

See also: – performSelector:withObject:, – methodForSelector: (NSObject class)

release
– (oneway void)release

Decrements the receivers’s reference count, and sends it a dealloc message when its reference count reach
0.

You send release messages only to objects that you “own."  By definition, you own objects that you create 
using one of the alloc... or copy... methods.  These methods return objects with an implicit reference count 
of one.  You also own (or perhaps share ownership in) an object that you send a retain message to becaus
retain increments the object’s reference count.  Each retain message you send an object should be balance
eventually with a release or autorelease message, so that the object can be deallocated.  For more 
information on the automatic deallocation mechanism, see the introduction to the Foundation Kit.

You would only implement this method to define your own reference-counting scheme.  Such 
implementations should not invoke the inherited method; that is, they should not include a release message
to super.

See also: – retainCount

respondsToSelector:
– (BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to aSelector messages,  NO 
otherwise.  The application is responsible for determining whether a NO response should be considered an
error.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to respond 
to the message, albeit indirectly, even though this method returns NO.

See also: – forwardInvocation:  (NSObject class), + instancesRespondToSelector:(NSObject class)

retain
– (id)retain

Increments the receiver’s reference count.  You send an object a retain message when you want to preven
it from being deallocated without your express permission.
6



 Classes: NSObject

 

 

 

An object is deallocated automatically when its reference count reaches 0.  retain messages increment the
reference count, and release messages decrement it.  For more information on this mechanism, see the 
introduction to the Foundation Kit.

As a convenience, retain returns self because it is often used in nested expressions:

NSString *systemApps = [[NSString

stringWithCString:”/System/Applications”] retain];

You would only implement this method if you were defining your own reference-counting scheme.  Such 
implementations must return self and should not invoke the inherited method by sending a retain message
to super.

See also: – autorelease, – release, – retainCount

retainCount
– (unsigned)retainCount

Returns the receiver’s reference count for debugging purposes.  You rarely send a retainCount message; 
however, you might implement this method in a class to implement your own reference-counting scheme.  
For objects that never get released (that is, their release method does nothing), this method should return
UINT_MAX, as defined in <limits.h>.

See also: – autorelease, – retain

self
– (id)self

Returns the receiver.

See also: – class

superclass
– (Class)superclass

Returns the class object for the receiver’s superclass.

See also: + superclass (NSObject class)
7



zone
– (NSZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created without specifying a 
zone are allocated from the default zone.

See also: + allocWithZone: (NSObject class)
8



Defined Types

NSBTreeComparator

DECLARED IN Foundation/NSByteStore.h

SYNOPSIS typedef int NSBTreeComparator(NSData *, NSData *, const void *);

NSComparisonResult

DECLARED IN Foundation/NSObject.h

SYNOPSIS typedef enum _NSComparisonResult {
NSOrderedAscending = -1,
NSOrderedSame,
NSOrderedDescending

} NSComparisonResult;

DESCRIPTION An NSComparisonResult indicates how items in a request are ordered, from the first one given 
in a method invocation or function call to the last (that is, left-to-right in code).
1



NSHashTableCallBacks

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS typedef struct {
unsigned (*hash)(NSHashTable *table, const void *);
BOOL (*isEqual)(NSHashTable *table, const void *, const void *);
void (*retain)(NSHashTable *table, const void *);
void (*release)(NSHashTable *table, void *);
NSString *(*describe)(NSHashTable *table, const void *);

} NSHashTableCallBacks;

NSMapTableKeyCallBacks

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS typedef struct {
unsigned (*hash)(NSMapTable *table, const void *);
BOOL (*isEqual)(NSMapTable *table, const void *, const void *);
void (*retain)(NSMapTable *table, const void *);
void (*release)(NSMapTable *table, void *);
NSString *(*describe)(NSMapTable *table, const void *);
 const void *notAKeyMarker ;

} NSMapTableKeyCallBacks;

NSMapTableValueCallBacks

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS typedef struct {
void (*retain)(NSMapTable *table, const void *);
void (*release)(NSMapTable *table, void *);
NSString *(*describe)(NSMapTable *table, const void *);

} NSMapTableValueCallBacks;
2



NSNotificationCoalescing

DECLARED IN Foundation/NSNotificationQueue.h

SYNOPSIS typedef enum {
NSNotificationNoCoalescing = 0,
NSNotificationCoalescingOnName = 1,
NSNotificationCoalescingOnSender = 2,

} NSNotificationCoalescing;

NSObjCValue

DECLARED IN Foundation/NSInvocation.h

SYNOPSIS typedef struct {
enum _NSObjCValueType type;
union {

char charValue;
short shortValue;
long longValue;
long long longlongValue;
float floatValue;
double doubleValue;
SEL selectorValue;
id objectValue;
void *pointerValue;
void *structLocation;
char *cStringLocation;

} value;
} NSObjCValue;
3



NSPoint

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS typedef struct _NSPoint {
    float x;
    float y;
} NSPoint;

NSPosixFileActivity

DECLARED IN Foundation/NSPosixFileDescriptor.h

SYNOPSIS typedef enum {
NSPosixNoActivity = 0,
NSPosixReadableActivity = 1,
NSPosixWritableActivity  = 2,
NSPosixExceptionalActivity = 4

} NSPosixFileActivity;

NSPostingStyle

DECLARED IN Foundation/NSNotificationQueue.h

SYNOPSIS typedef enum {
NSPostWhenIdle = 1,
NSPostASAP = 2,
NSPostNow = 3

} NSPostingStyle;
4



NSRange

DECLARED IN Foundation/NSRange.h

SYNOPSIS typedef struct _NSRange {
unsigned int location;
unsigned int length;

} NSRange;

DESCRIPTION An NSRange describes a portion of a series—such as characters in a string or objects in an 
NSArray.  Its location member gives the start index (0 is the first, as in C arrays), and its length 
member gives the number of items in the range (and can be zero).

NSRect

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS typedef struct _NSRect {
NSPoint origin;
NSSize size;

} NSRect;

NSRectEdge

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS typedef enum _NSRectEdge {
NSMinXEdge = 0,
NSMinYEdge = 1,
NSMaxXEdge = 2,
NSMaxYEdge = 3

} NSRectEdge;

DESCRIPTION This enumeration identifies the sides of a rectangle represented by an NSRect.
5



NSSize

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS typedef struct _NSSize {
float width;
float height;

} NSSize;

DESCRIPTION The values for width and height should never be negative.

NSStringEncoding

DECLARED IN Foundation/NSString.h

SYNOPSIS typedef unsigned NSStringEncoding;

NSTimeInterval

DECLARED IN Foundation/NSDate.h

SYNOPSIS typedef double NSTimeInterval;

DESCRIPTION Always in seconds; yields sub-millisecond precision over a range of 10000 years.

NSUncaughtExceptionHandler

DECLARED IN Foundation/NSException.h

SYNOPSIS typedef volatile void NSUncaughtExceptionHandler(NSException *exception);
6



Enumerations

NSByteOrder

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS enum NSByteOrder {
NS_UnknownByteOrder,
NS_LittleEndian,
NS_BigEndian

};

DESCRIPTION

NSNotFound

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS enum {
NSNotFound = 0x7fffffff

};

DESCRIPTION A method or function return value of NSNotFound indicates that the item requested couldn’t be 
found or doesn’t exist.  It’s typically used by various methods and functions that search for items 
in serial data and return indices, such as characters in a string object or ids in an NSArray.
7



NSOpenStepUnicodeReservedBase

DECLARED IN Foundation/NSCharacterSet.h

SYNOPSIS enum {
NSOpenStepUnicodeReservedBase = 0xF400

};

DESCRIPTION  

ObjC Types

DECLARED IN Foundation/NSInvocation.h

SYNOPSIS enum _NSObjCValueType {
NSObjCNoType = 0,
NSObjCVoidType = 'v',
NSObjCCharType = 'c',
NSObjCShortType = 's',
NSObjCLongType = 'l',
NSObjCLonglongType = 'q',
NSObjCFloatType = 'f',
NSObjCDoubleType = 'd',
NSObjCSelectorType = ':',
NSObjCObjectType = '@',
NSObjCStructType = '{',
NSObjCPointerType = '^',
NSObjCStringType = '*',
NSObjCArrayType  = '[', 
NSObjCUnionType = '(', 
NSObjCBitfield  = 'b', 

};
8



 

Search Types

DECLARED IN Foundation/NSString.h

SYNOPSIS enum {
NSCaseInsensitiveSearch = 1,
NSLiteralSearch = 2,
NSBackwardsSearch = 4,
NSAnchoredSearch = 8

};

DESCRIPTION These values represent the options available to many of the string classes’ searching and 
comparison methods.  See the NSString class cluster description for details on the effects of these
options.

String Encodings

DECLARED IN Foundation/NSString.h

SYNOPSIS enum {
NSASCIIStringEncoding = 1,
NSNEXTSTEPStringEncoding = 2,
NSJapaneseEUCStringEncoding = 3,
NSUTF8StringEncoding = 4,
NSISOLatin1StringEncoding = 5,
NSSymbolStringEncoding = 6,
NSNonLossyASCIIStringEncoding = 7,
NSShiftJISStringEncoding = 8,
NSISOLatin2StringEncoding = 9,
NSUnicodeStringEncoding = 10,
NSWindowsCP1251StringEncoding = 11,
NSWindowsCP1252StringEncoding = 12, 
NSWindowsCP1253StringEncoding = 13, 
NSWindowsCP1254StringEncoding = 14, 
NSWindowsCP1250StringEncoding = 15,
NSISO2022JPStringEncoding = 21 

};
9



e 
DESCRIPTION These values represent the various character encodings supported by the NSString classes.  Thes
encodings are documented more fully elsewhere; here are some short descriptions: 

Encoding Description

NSASCIIStringEncoding Strict 7-bit ASCII encoding within 8-bit chars

NSNEXTSTEPStringEncoding 8-bit ASCII encoding with NEXTSTEP extensions 
(see Appendix C of the NEXTSTEP General 
Reference)

NSUnicodeStringEncoding The canonical Unicode encoding for string objects

NSISOLatin1StringEncoding 8-bit ISO Latin 1 encoding

NSISOLatin2StringEncoding 8-bit ISO Latin 2 encoding

NSSymbolStringEncoding 8-bit Adobe Symbol encoding vector

NSJapaneseEUCStringEncoding 8-bit EUC encoding for Japanese text

NSShiftJISStringEncoding 8-bit Shift-JIS encoding for Japanese text

NSUTF8StringEncoding An 8-bit representation of Unicode characters, 
suitable for transmission or storage by ASCII-based 
systems

NSNonLossyASCIIStringEncoding 7-bit verbose ASCII to represent all Unicode 
characters. 

NSWindowsCP1250StringEncoding Microsoft Windows codepage 1250; equivalent to 
WinLatin2 

NSWindowsCP1251StringEncoding Microsoft Windows codepage 1251, encoding 
Cyrillic characters; equivalent to 
AdobeStandardCyrillic font encoding 

NSWindowsCP1252StringEncoding Microsoft Windows codepage 1252; equivalent to 
WinLatin1 

NSWindowsCP1253StringEncoding Microsoft Windows codepage 1253, encoding Greek 
characters

NSWindowsCP1254StringEncoding Microsoft Windows codepage 1254, encoding 
Turkish characters

NSISO2022JPStringEncoding ISO 2022 Japanese encoding for electronic mail
10



Global Variables

Archiving Exception Names

DECLARED IN Foundation/NSArchiver.h

SYNOPSIS extern NSString *NSInconsistentArchiveException;

Bundle Notification Names

DECLARED IN Foundation/NSBundle.h

SYNOPSIS extern NSString *NSBundleLoaded;

Byte Store Exception Names

DECLARED IN Foundation/NSByteStore.h

SYNOPSIS extern NSString *NSByteStoreLockedException;
extern NSString *NSByteStoreVersionException;
extern NSString *NSBTreeStoreKeyTooLargeException;
extern NSString *NSByteStoreDamagedException;
11



Connection Exception Names

DECLARED IN Foundation/NSConnection.h

SYNOPSIS extern NSString *NSFailedAuthenticationException;

Connection Notification Names

DECLARED IN Foundation/NSConnection.h

SYNOPSIS extern NSString *NSConnectionDidDieNotification;

File Attribute Keys

DECLARED IN Foundation/NSFileManager.h

SYNOPSIS extern NSString *NSFileType;
extern NSString *NSFileTypeDirectory;
extern NSString *NSFileTypeRegular;
extern NSString *NSFileTypeSymbolicLink;
extern NSString *NSFileTypeSocket;
extern NSString *NSFileTypeCharacterSpecial;
extern NSString *NSFileTypeBlockSpecial;
extern NSString *NSFileTypeUnknown;
extern NSString *NSFileSize;
extern NSString *NSFileModificationDate;
extern NSString *NSFileReferenceCount;
extern NSString *NSFileDeviceIdentifier;
extern NSString *NSFileOwnerAccountNumber;
extern NSString *NSFileGroupOwnerAccountNumber;
extern NSString *NSFilePosixPermissions;
extern NSString *NSFileSystemNumber;
extern NSString *NSFileSystemFileNumber;
12



DESCRIPTION Keys to access the file attribute values contained in the NSDictionary returned from 
NSFileManager’s  fileAttributesAtPath:follow: . See the class specification for NSFileManager 
for details of usage. NSFileDeviceIdentifier is used to access the identifier of a remote device.

File Exception Names

DECLARED IN Foundation/NSPosix.h

SYNOPSIS extern NSString *NSPosixFileOperationException;

File System Attribute Keys

DECLARED IN Foundation/NSFileManager.h

SYNOPSIS extern NSString *NSFileSystemSize;
extern NSString *NSFileSystemFreeSize;
extern NSString *NSFileSystemNodes;
extern NSString *NSFileSystemFreeNodes;
13



General Exception Names

DECLARED IN Foundation/NSException.h

SYNOPSIS extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;
extern NSString *NSInternalInconsistencyException;
extern NSString *NSMallocException;
extern NSString *NSObjectInaccessibleException;
extern NSString *NSObjectNotAvailableException;
extern NSString *NSDestinationInvalidException;
extern NSString *NSPortTimeoutException;
extern NSString *NSInvalidSendPortException;
extern NSString *NSInvalidReceivePortException;
extern NSString *NSPortSendException;
extern NSString *NSPortReceiveException;
extern NSString *NSOldStyleException;
extern NSString *NSInvalidSendPort;
extern NSString *NSInvalidReceivePort;
extern NSString *NSPortSendError;
extern NSString *NSPortReceiveError;
extern NSString *NSCharacterConversionException;

Hash Table Call Backs

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS extern const NSHashTableCallBacks NSIntHashCallBacks;
extern const NSHashTableCallBacks NSNonOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSPointerToStructHashCallBacks;
extern const NSHashTableCallBacks NSObjectHashCallBacks;
extern const NSHashTableCallBacks NSNonRetainedObjectHashCallBacks;;

DESCRIPTION NSIntHashCallBacks are for sets of pointer-sized quantities or samller (for example, ints, longs, 
or unichars).
14



NSNonOwnedPointerHashCallBacks are for sets of pointers, hashed by address.

NSOwnedPointerHashCallBacks are for sets of pointers, with transfer of ownership upon 
insertion.

NSPointerToStructHashCallBacks are for sets of pointers to structs, when the first field of the 
struct is int-sized.

NSObjectHashCallBacks are for sets of objects (similar to NSSet)

NSNonRetainedObjectHashCallBacks are for sets of objects, but without retaining/releasing.

Note that you can make your own call back by picking fields among the above call backs.
15



Language-Dependent Information

DECLARED IN Foundation/NSUserDefaults.h

SYNOPSIS extern NSString *NSWeekDayNameArray;
extern NSString *NSShortWeekDayNameArray;
extern NSString *NSMonthNameArray;
extern NSString *NSShortMonthNameArray;
extern NSString *NSTimeFormatString;
extern NSString *NSDateFormatString;
extern NSString *NSTimeDateFormatString;
extern NSString *NSShortTimeDateFormatString;
extern NSString *NSCurrencySymbol;
extern NSString *NSDecimalSeparator;
extern NSString *NSThousandsSeparator;
extern NSString *NSInternationalCurrencyString ;
extern NSString *NSCurrencyString;
extern NSString *NSDecimalDigits;
extern NSString *NSAMPMDesignation;
extern NSString *NSHourNameDesignations;
extern NSString *NSYearMonthWeekDesignations;
extern NSString *NSEarlierTimeDesignations;
extern NSString *NSLaterTimeDesignations;
extern NSString *NSThisDayDesignations;
extern NSString *NSNextDayDesignations;
extern NSString *NSNextNextDayDesignations;
extern NSString *NSPriorDayDesignations;
extern NSString *NSDateTimeOrdering;
16



Map Table Key Call Backs

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS extern const NSMapTableKeyCallBacks NSIntMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerOrNullMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSOwnedPointerMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSObjectMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonRetainedObjectMapKeyCallBacks;

DESCRIPTION NSIntMapKeyCallBacks are for keys that are pointer-sized quantities or smaller (for example, 
ints, longs, or unichars).

NSNonOwnedPointerMapKeyCallBacks are for keys that are pointers not freed.

NSNonOwnedPointerOrNullMapKeyCallBacks are for keys that are pointers not freed, or 
NULL.

NSOwnedPointerMapKeyCallBacks are for keys that are pointers, with transfer of ownership 
upon insertion.

NSObjectMapKeyCallBacks are for keys that are objects

NSNonRetainedObjectMapKeyCallBacks are for sets of objects, but without 
retaining/releasing.

Note that you can make your own call back by picking fields among the above call backs.

Map Table Value Call Backs

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS extern const NSMapTableValueCallBacks NSIntMapValueCallBacks;
extern const NSMapTableValueCallBacks NSNonOwnedPointerMapValueCallBacks;
extern const NSMapTableValueCallBacks NSOwnedPointerMapValueCallBacks;
extern const NSMapTableValueCallBacks NSObjectMapValueCallBacks;

DESCRIPTION NSIntMapValueCallBacks are for values that are pointer-sized quantities, such as ints.
17



NSNonOwnedPointerMapValueCallBacks are for values that are not owned pointers.

NSOwnedPointerMapValueCallBacks are for values that are owned pointers.

NSObjectMapValueCallBacks are for values that are objects.

Note that you can make your own call back by picking fields among the above call backs.

NSConnectionReplyMode

DECLARED IN NSConnection.h

SYNOPSIS extern NSString *NSConnectionReplyMode;

NSDefaultRunLoopMode

DECLARED IN Foundation/NSRunLoop.h

SYNOPSIS extern NSString *NSDefaultRunLoopMode;

Port Notification Names

DECLARED IN Foundation/NSPort.h

SYNOPSIS extern NSString *NSPortDidBecomeInvalidNotification;
18



PPL Notification Names

DECLARED IN Foundation/NPPL.h

SYNOPSIS extern NSString *NSPPLDidBecomeDirtyNotification;
extern NSString *NSPPLDidSaveNotification;

Thread Notification Names

DECLARED IN Foundation/NSThread.h

SYNOPSIS extern NSString *NSBecomingMultiThreaded;
extern NSString *NSThreadExiting;

User Defaults

DECLARED IN Foundation/NSUserDefaults.h

SYNOPSIS extern NSString *NSGlobalDomain;
extern NSString *NSArgumentDomain;
extern NSString *NSRegistrationDomain;

Zero Constants

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS extern const NSPoint NSZeroPoint;
extern const NSSize NSZeroSize;
extern const NSRect NSZeroRect;
19



                                      
Functions and Macros
This section describes the functions and macros found in the Foundation Kit.

NSAllHashTableObjects

SUMMARY This function returns all of the elements in the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSArray *NSAllHashTableObjects(NSHashTable *table)

DESCRIPTION Returns an array object containing all the elements of table. This function should be called only 
when the table elements are objects, not when they’re any other data type.

SEE ALSO NSCreateHashTable, NSFreeHashTable

NSAllMapTableKeys

SUMMARY This function returns all of the keys in the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSArray *NSAllMapTableKeys(NSMapTable *table)

DESCRIPTION NSAllMapTableKeys Returns an array object containing all the keys in table. This function 
should be called only when the table keys are objects, not when they’re any other type of pointer.

SEE ALSO NSMapMember, NSMapGet, NSEnumerateMapTable, NSNextMapEnumeratorPair, 
NSAllMapTableValues
1



                                     
NSAllMapTableValues

SUMMARY This function returns all of the values in the specified table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSArray *NSAllMapTableValues(NSMapTable *table)

DESCRIPTION NSAllMapTableValues Returns an array object containing all the values in table. This function 
should be called only when the table values are objects, not when they’re any other type of pointer.

SEE ALSO NSMapMember, NSMapGet, NSEnumerateMapTable, NSNextMapEnumeratorPair, 
NSAllMapTableKeys

NSAllocateMemoryPages

SUMMARY This function allocates a new block of memory.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSAllocateMemoryPages(unsigned int byteCount)

DESCRIPTION NSAllocateMemoryPages allocates the integral number of pages whose total size is closest to, 
but not less than, byteCount. The allocated pages are guaranteed to be filled with zeros. 

SEE ALSO NSCopyMemoryPages, NSDeallocateMemoryPages
2



                                            

n 

          
NSAllocateObject

SUMMARY This function creates new objects.

DECLARED IN Foundation/NSObject.h

SYNOPSIS id <NSObject> NSAllocateObject(Class aClass, unsigned int extraBytes, NSZone *zone)

DESCRIPTION NSAllocateObject allocates and returns a pointer to an instance of aClass, created in the specified 
zone (or in the default zone, if zone is NULL). The extraBytes argument (usually zero) states the 
number of extra bytes required for indexed instance variables. Returns nil  on failure.

SEE ALSO NSCopyObject, NSDeallocateObject

NSAssert

SUMMARY This macro generates an assertion if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSAssert(condition, NSString *description)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes the method and class names (or the functio
name). It then raises an exception of type NSInternalInconsistencyException.

The NSAssert macro evaluates the condition and serves as a front end to the assertion handler. 
This macro should be used only within Objective-C methods. NSAssert takes no arguments other 
than the condition and format string.

condition must be an expression that evaluates to true or false. description is a printf -style format 
string that contains the error message describing the failure condition.
3



           

 

                                                               

n 

                        
Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert1, NSCAssert, NSCParameterAssert, NSParameterAssert

NSAssert1

SUMMARY NSAssert1 is one of a series of macros, as listed in the SYNOPSIS section, that generate assertions
if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSAssert1(condition, NSString *description, arg1 )
NSAssert2(condition, NSString *description, arg1, arg2)
NSAssert3(condition, NSString *description, arg1, arg2, arg3)
NSAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)
NSAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes the method and class names (or the functio
name). It then raises an exception of type NSInternalInconsistencyException.

The NSAssertn macros evaluate the condition and serve as a front end to the assertion handler. 
These macros should be used only within Objective-C methods. NSAssertn takes the number of 
format-string arguments indicated by n.

condition must be an expression that evaluates to true or false. description is a printf -style format 
string that contains the error message describing the failure condition. Each arg parameter is an 
argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert, NSCParameterAssert, NSParameterAssert
4



                                   
NSAssert2

SUMMARY See NSAssert1.

NSAssert3

SUMMARY See NSAssert1.

NSAssert4

SUMMARY See NSAssert1.

NSAssert5

SUMMARY See NSAssert1.

NSCAssert

SUMMARY This macro generates an assertion if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSCAssert(condition, NSString *description)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
5



                                
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

The NSCAssert macro evaluates the condition and serves as a front end to the assertion handler. 
This macro should be used only within C functions. NSCAssert takes no arguments other than the 
condition and format string.

condition must be an expression that evaluates to true or false. description is a printf -style format 
string that describes the failure condition. 

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert1, NSCParameterAssert, NSParameterAssert

NSCAssert1

SUMMARY NSCAssert1 is one of a series of macros, as listed in the SYNOPSIS section, that generate 
assertions if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSCAssert1(condition, NSString *description, arg1)
NSCAssert2(condition, NSString *description, arg1, arg2)
NSCAssert3(condition, NSString *description, arg1, arg2, arg3)
NSCAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)
NSCAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

The NSCAssertn macros evaluate the condition and serve as a front end to the assertion handler. 
These macros should be used only within Objective-C methods. NSCAssertn takes the number of 
format-string arguments indicated by n.
6



condition must be an expression that evaluates to true or false. description is a printf -style format 
string that describes the failure condition. Each arg is an argument to be inserted, in place, into the 
description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSCAssert, NSCParameterAssert, NSParameterAssert

NSCAssert2

SUMMARY See NSCAssert1.

NSCAssert3

SUMMARY See NSCAssert1.

NSCAssert4

SUMMARY See NSCAssert1.

NSCAssert5

SUMMARY See NSCAssert1.
7



NSClassFromString

SUMMARY This function obtains a class by name.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS Class NSClassFromString(NSString *aClassName)

DESCRIPTION NSClassFromString returns the class object named by aClassName, or nil  if no class by that 
name is currently loaded.

SEE ALSO NSStringFromClass

NSCompareHashTables

SUMMARY This function compares the elements of two hash tables for equality.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS BOOL NSCompareHashTables(NSHashTable *table1, NSHashTable *table2)

DESCRIPTION Returns YES if the two hash tables are equal—that is, if each element of table1 is in table2, and 
the two tables are the same size.

SEE ALSO NSCreateHashTable, NSCreateHashTableWithZone

NSCompareMapTables

SUMMARY This function compares the elements of two map tables for equality.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS BOOL NSCompareMapTables(NSMapTable *table1, NSMapTable *table2)
8



DESCRIPTION Returns YES if each key of table1 is in table2, and the two tables are the same size. Note that this 
function does not compare values, only keys.

SEE ALSO NSCreateMapTable, NSCreateMapTableWithZone

NSContainsRect

SUMMARY This function determines whether one rectangle completely encloses another.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSContainsRect(NSRect aRect, NSRect bRect)

DESCRIPTION Returns YES if aRect completely encloses bRect. For this condition to be true, bRect cannot be 
empty and its sides must not touch the sides of aRect.

NSConvertHostDoubleToSwapped

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSConvertHostDoubleToSwapped(double x)

DESCRIPTION Converts the double value in x to a value whose bytes can be swapped. This function does not 
actually swap the bytes of x. You should not need to call this method directly. 

SEE ALSO NSSwapHostDoubleToBig, NSSwapHostDoubleToLittle
9



NSConvertHostFloatToSwapped

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSConvertHostFloatToSwapped(float x)

DESCRIPTION Converts the float value in x to a value whose bytes can be swapped. This function does not 
actually swap the bytes of x. You should not need to call this method directly.

SEE ALSO NSSwapHostFloatToBig, NSSwapHostFloatToLittle

NSConvertSwappedDoubleToHost

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS double NSConvertSwappedDoubleToHost(NSSwappedDouble x)

DESCRIPTION Converts the value in x to a double value. This function does not actually swap the bytes of x. You 
should not need to call this method directly.

SEE ALSO NSSwapBigDoubleToHost, NSSwapLittleDoubleToHost

NSConvertSwappedFloatToHost

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS float NSConvertSwappedFloatToHost(NSSwappedFloat x)
10



DESCRIPTION Converts the value in x to a float value. This function does not actually swap the bytes of x. You 
should not need to call this method directly.

SEE ALSO NSSwapBigFloatToHost, NSSwapLittleFloatToHost

NSCopyHashTableWithZone

SUMMARY This function performs a shallow copy of the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashTable *NSCopyHashTableWithZone(NSHashTable *table, NSZone *zone)

DESCRIPTION Returns a pointer to a new copy of table, created in zone and containing pointers to the data 
elements of table. If zone is NULL, the new table is created in the default zone. 

The new table adopts the callback functions of table and calls the hash and retain callback 
functions as appropriate when inserting elements into the new table.

SEE ALSO NSCreateHashTable, NSCreateHashTableWithZone, NSHashTableCallBacks (structure)

NSCopyMapTableWithZone

SUMMARY This function performs a shallow copy of the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapTable *NSCopyMapTableWithZone(NSMapTable *table, NSZone *zone)

DESCRIPTION Returns a pointer to a new copy of table, created in zone and containing pointers to the keys and 
values of table. If zone is NULL, the new table is created in the default zone. 
11



The new table adopts the callback functions of table and calls the hash and retain callback 
functions as appropriate when inserting elements into the new table.

SEE ALSO NSCreateMapTable, NSCreateMapTableWithZone, NSMapTableKeyCallBacks 
(structure), NSMapTableValueCallBacks (structure)

NSCopyMemoryPages

SUMMARY This function copies a block of memory.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSCopyMemoryPages(const void *source, void *destination, unsigned int byteCount)

DESCRIPTION Copies (or copies-on-write) byteCount bytes from source to destination.

SEE ALSO NSAllocateMemoryPages, NSDeallocateMemoryPages

NSCopyObject

SUMMARY This function creates exact copies of objects.

DECLARED IN Foundation/NSObject.h

SYNOPSIS id <NSObject> NSCopyObject(id <NSObject> anObject, unsigned int extraBytes, 
NSZone *zone)

DESCRIPTION Creates and returns a new object that's an exact copy of anObject, created in the specified zone (or 
in the default zone, if zone is NULL). The extraBytes argument (usually zero) states the number 
of extra bytes required for indexed instance variables. Returns nil  if anObject is nil  or if anObject 
could not be copied.

SEE ALSO NSAllocateObject, NSDeallocateObject
12



NSCountHashTable

SUMMARY This function returns the number of elements in a hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS unsigned int NSCountHashTable(NSHashTable *table)

DESCRIPTION Returns the number of elements currently in table. 

NSCountMapTable

SUMMARY This function returns the number of elements in a map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS unsigned int NSCountMapTable(NSMapTable *table)

DESCRIPTION Returns the number of key/value pairs currently in table.

NSCParameterAssert  

SUMMARY This macro evaluates the specified parameter.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSCParameterAssert(condition)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.
13



r 

 

This macro validates a parameter for a C-function. Simply provide the parameter as the condition 
argument. The macro evaluates the parameter and, if the parameter evaluates to false, logs an erro
message which includes the parameter and then raises an exception. 

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert, NSParameterAssert

NSCreateHashTable

SUMMARY This function creates a new hash table in the default zone.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashTable *NSCreateHashTable(NSHashTableCallBacks callBacks, unsigned int capacity)

DESCRIPTION NSCreateHashTable creates and returns a pointer to an NSHashTable in the default zone. 

The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small hash 
table is created. The NSHashTableCallBacks structure callBacks has five pointers to functions 
(documented under “Types and Constants”), with the following defaults: pointer hashing, if hash 
is NULL; pointer equality, if isEqual is NULL; no call-back upon adding an element, if retain is 
NULL; no call-back upon removing an element, if release is NULL; and a function returning a 
pointer’s hexadecimal value as a string, if describe is NULL. The hashing function must be 
defined such that if two data elements are equal, as defined by the comparison function, the values
produced by hashing on these elements must also be equal. Also, data elements must remain 
invariant if the value of the hashing function depends on them; for example, if the hashing function 
operates directly on the characters of a string, that string can’t change.

SEE ALSO NSCopyHashTableWithZone, NSCreateHashTableWithZone
14



 

NSCreateHashTableWithZone

SUMMARY This function creates a new hash table in the specified zone.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashTable *NSCreateHashTableWithZone(NSHashTableCallBacks callBacks, 
unsigned int capacity, NSZone *zone)

DESCRIPTION This function creates a new hash table in the specified zone. If zone is NULL, the hash table is 
created in the default zone. 

The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small hash 
table is created. The NSHashTableCallBacks structure callBacks has five pointers to functions 
(documented under “Types and Constants”), with the following defaults: pointer hashing, if hash 
is NULL; pointer equality, if isEqual is NULL; no call-back upon adding an element, if retain is 
NULL; no call-back upon removing an element, if release is NULL; and a function returning a 
pointer’s hexadecimal value as a string, if describe is NULL. The hashing function must be 
defined such that if two data elements are equal, as defined by the comparison function, the values
produced by hashing on these elements must also be equal. Also, data elements must remain 
invariant if the value of the hashing function depends on them; for example, if the hashing function 
operates directly on the characters of a string, that string can’t change.

SEE ALSO NSCreateHashTable

NSCreateMapTable

SUMMARY This function creates a new map table in the default zone.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapTable *NSCreateMapTable(NSMapTableKeyCallBacks keyCallBacks, 
NSMapTableValueCallBacks valueCallBacks, unsigned int capacity)

DESCRIPTION NSCreateMapTable creates, and returns a pointer to, an NSMapTable in the default zone; the 
table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small map table 
is created. The NSMapTableKeyCallBacks arguments are structures (documented under “Types 
15



and Constants”) that are very similar to the call-back structure used by NSCreateHashTable; in 
fact, they have the same defaults as documented for that function.

SEE ALSO NSCopyMapTableWithZone, NSCreateMapTableWithZone

NSCreateMapTableWithZone

SUMMARY This function creates a new map table in the specified zone.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapTable *NSCreateMapTableWithZone(NSMapTableKeyCallBacks keyCallBacks, 
NSMapTableValueCallBacks valueCallBacks, unsigned int capacity, NSZone *zone)

DESCRIPTION This function creates a new map table in the specified zone. If zone is NULL, the hash table is 
created in the default zone. 

The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small map 
table is created. The NSMapTableKeyCallBacks arguments are structures (documented under 
“Types and Constants”) that are very similar to the call-back structure used by 
NSCreateHashTable; in fact, they have the same defaults as documented for that function.

SEE ALSO NSCopyMapTableWithZone, NSCreateMapTable

NSCreateZone

SUMMARY Creates a new zone

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSZone *NSCreateZone(unsigned int startSize, unsigned int granularity, BOOL canFree)
16



DESCRIPTION Creates and returns a pointer to a new zone of startSize bytes, which will grow and shrink by 
granularity bytes. If canFree is zero, the allocator will never free memory, and malloc will be fast.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSSetZoneName

NSDeallocateMemoryPages

SUMMARY This function deallocates the specified block of memory.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSDeallocateMemoryPages(void *pointer, unsigned int byteCount)

DESCRIPTION This function deallocates memory that was allocated with NSAllocateMemoryPages.

SEE ALSO NSCopyMemoryPages, NSAllocateMemoryPages

NSDeallocateObject

SUMMARY This function destroys an existing object.

DECLARED IN Foundation/NSObject.h

SYNOPSIS void NSDeallocateObject(id <NSObject> anObject)

DESCRIPTION This function deallocates anObject, which must have been allocated using NSAllocateObject.

SEE ALSO NSCopyObject, NSAllocateObject
17



NSDecimalAdd

SUMMARY This function adds two decimal values.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalAdd(NSDecimal *result, const NSDecimal *leftOperand, const 
NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Adds leftOperand to rightOperand, and stores the sum in result. 

An NSDecimal can represent a number with up to 38 significant digits. If a number is more precise 
than that, it must be rounded off. roundingMode determines how to round it off. There are four 
possible rounding modes:

• NSRoundDown. The number rounds down.
• NSRoundUp. The number rounds up.
• NSRoundPlain. The number rounds to the closest 38-digit approximation. If the number is 

halfway between two positive numbers, it round up; if it’s halfway between two negative 
numbers, it rounds down.

• NSRoundBankers. The number rounds to the closest 38-digit approximation. If it is caught 
halfway between two possibilities, it rounds to the one whose last digit is even. In practice, this 
means that, over the long run, numbers will be rounded up as often as they are rounded down; 
there will be no systematic bias.

The return value indicates whether any machine limitations were encountered in the addition. If 
none were encountered, the function returns NSCalculationNoError. Otherwise it may return one 
of the following values: NSCalculationLossOfPrecision, NSCalculationOverflow or 
NSCalculationUnderflow. For descriptions of all these error conditions, see 
exceptionDuringOperation:error:leftOperand:rightOperand:  in the protocol specification 
for NSDecimalNumberBehaviors.
18



NSDecimalCompact

SUMMARY This function compacts the decimal structure for efficiency.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS void NSDecimalCompact(NSDecimal *number)

DESCRIPTION Formats number so that calculations using it will take up as little memory as possible. All the 
NSDecimal... arithmetic functions expect compact NSDecimal arguments.

NSDecimalCompare

SUMMARY This function compares two decimal values.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSComparisonResult NSDecimalCompare(const NSDecimal *leftOperand, const NSDecimal 
* rightOperand)

DESCRIPTION Compares leftOperand to rightOperand, with three possible return values.

• If leftOperand is bigger, the function returns NSOrderedDescending. 
• If rightOperand is bigger, the the function returns NSOrdered Ascending. 
• If the two operands are equal, the function returns NSOrderedSame.

NSDecimalCopy

SUMMARY This function copies the value of a decimal number.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS void NSDecimalCopy(NSDecimal *destination, const NSDecimal *source)
19



DESCRIPTION Copies the value in source to destination.

NSDecimalDivide

SUMMARY This function divides one decimal value by another.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalDivide(NSDecimal *result, const NSDecimal *leftOperand, 
const NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Divides leftOperand by rightOperand, and stores the quotient, possibly rounded off according to 
roundingMode, in result. If rightOperand is 0, returns NSDivideByZero.

For explanations of the other possible return values, and of all the possible roundingMode’s, see 
NSDecimalAdd, above.

Note that this function can’t precisely represent a non-decimal fraction like 1/3.

NSDecimalIsNotANumber

SUMMARY This function determines if the specified decimal contains a valid number.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS BOOL NSDecimalIsNotANumber(const NSDecimal *decimal)

DESCRIPTION Returns YES if the value in decimal represents a valid number, otherwise returns NO.
20



NSDecimalMultiply

SUMMARY This function multiplies two decimal numbers together.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalMultiply (NSDecimal *result, const NSDecimal *leftOperand, 
const NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Multiplies rightOperand by leftOperand, and stores the product, possibly rounded off according 
to roundingMode, in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.

NSDecimalMultiplyByPowerOf10

SUMMARY This function multiplies a decimal by the specified power of 10.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalMultiplyByPowerOf10(NSDecimal *result, const NSDecimal 
*number, short power, NSRoundingMode roundingMode)

DESCRIPTION Multiplies number by 10power, and stores the product, possibly rounded off according to 
roundingMode, in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.
21



NSDecimalNormalize

SUMMARY This function normalizes the internal format of two decimal numbers to simplify later operations.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalNormalize(NSDecimal *number1, NSDecimal *number2, 
NSRoundingMode roundingMode)

DESCRIPTION An NSDecimal is represented in memory as a mantissa and an exponent, expressing the value 
mantissa x 10exponent. A number can have many NSDecimal representations; for example, the 
following table lists several valid NSDecimal representations for the number 100:

NSDecimalNormalize formats number1 and number2 so that they have equal exponents. This 
format makes addition and subtraction very convenient. Both NSDecimalAdd and 
NSDecimalSubtract call NSDecimalNormalize. You may want to use it if you write more 
complicated addition or subtraction routines.

For explanations of the function’s possible return values, see NSDecimalAdd, above.

NSDecimalPower

SUMMARY This function raises the decimal value to the specified power.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalPower(NSDecimal *result, const NSDecimal *number, 
unsigned int power, NSRoundingMode roundingMode)

Mantissa Exponent

100 0

10 1

1 2
22



DESCRIPTION Raises number to power, possibly rounding off according to roundingMode, and stores the 
resulting value in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.

NSDecimalRound

SUMMARY This function rounds off the decimal value.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS void NSDecimalRound(NSDecimal *result, const NSDecimal *number, int scale, 
NSRoundingMode roundingMode)

DESCRIPTION Rounds number off according to the parameters scale and rounding mode, and stores the result in 
result.

scale specifies the number of digits result can have after its decimal point. roundingMode specifies 
the way that number is rounded off. There are four possible values for roundingMode: 
NSRoundDown, NSRoundUp, NSRoundPlain, and NSRoundBankers. For thorough discussions 
of scale and roundingMode, see the scale and roundingMode in the protocol specification for 
NSDecimalNumberBehaviors.

NSDecimalString

SUMMARY This function returns a string representation of the decimal value.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSString *NSDecimalString(const NSDecimal *decimal, NSDictionary *locale)

DESCRIPTION Returns a string representation of decimal. locale determines the format of the decimal separator. 
23



. 
 

NSDecimalSubtract

SUMMARY This function subtracts one decimal value from another.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalSubtract(NSDecimal *result, const NSDecimal *leftOperand, 
const NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Subtracts rightOperand from leftOperand, and stores the difference, possibly rounded off 
according to roundingMode, in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.

NSDecrementExtraRefCountWasZero

SUMMARY This function decrements the specified object’s reference count.

DECLARED IN Foundation/NSObject.h

SYNOPSIS BOOL NSDecrementExtraRefCountWasZero(id anObject)

DESCRIPTION This function decrements the “extra reference” count of an object. Newly created objects have 
only one actual reference, so that a single release message results in the object being deallocated
Extra references are those beyond the single original reference, and are usually created by sending
the object a retain message. Your code should generally not use these functions unless it is 
overriding the retain or release methods. 

This function returns NO if anObject had an extra reference count. If anObject didn’t have an extra 
referenct count, it returns YES, indicating that the object should be deallocated (with dealloc).

SEE ALSO NSExtraRefCount, NSIncrementExtraRefCount
24



NSDefaultMallocZone

SUMMARY Returns the default zone

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSZone *NSDefaultMallocZone(void)

DESCRIPTION Returns the default zone, which is created automatically at startup. This is the zone used by the 
standard C function malloc.

SEE ALSO NSCreateZone

NSDivideRect

SUMMARY This function divides a rectangle into two new rectangles.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS void NSDivideRect(NSRect inRect, NSRect *slice, NSRect *remainder, float amount, 
NSRectEdge edge)

DESCRIPTION Creates two rectangles, slice and remainder, from inRect, by dividing inRect with a line that’s 
parallel to one of inRect’s sides (namely, the side specified by edge—either NSMinXEdge, 
NSMinYEdge, NSMaxXEdge, or NSMaxYEdge). The size of slice is determined by amount, 
which measures the distance from edge.

SEE ALSO NSInsetRect, NSIntegralRect, NSOffsetRect
25



NSEnumerateHashTable

SUMMARY This function creates an enumerator for the specified hash table. 

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashEnumerator NSEnumerateHashTable(NSHashTable *table)

DESCRIPTION Returns an NSHashEnumerator structure that will cause successive elements of table to be 
returned each time this enumerator is passed to NSNextHashEnumeratorItem.

SEE ALSO NSNextHashEnumeratorItem

NSEnumerateMapTable

SUMMARY This function creates an enumerator for the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapEnumerator NSEnumerateMapTable(NSMapTable *table)

DESCRIPTION NSEnumerateMapTable returns an NSMapEnumerator structure that will cause successive 
key/value pairs of table to be visited each time this enumerator is passed to 
NSNextMapEnumeratorPair.

SEE ALSO NSNextMapEnumeratorPair, NSMapMember, NSMapGet, NSAllMapTableKeys, 
NSAllMapTableValues
26



NSEqualPoints

SUMMARY This function tests the two points for equality.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSEqualPoints(NSPoint aPoint, NSPoint bPoint)

DESCRIPTION Returns YES if the two points aPoint and bPoint are identical, and NO otherwise.

NSEqualRanges

SUMMARY This function tests the two range values for equality.

DECLARED IN Foundation/NSRange.h

SYNOPSIS BOOL NSEqualRanges(NSRange range1, NSRange range2)

DESCRIPTION Returns YES if range1 and range2 have the same locations and lengths.

NSEqualRects

SUMMARY This function tests the two rectangles for equality.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSEqualRects(NSRect aRect, NSRect bRect)

DESCRIPTION Returns YES if the two rectangles aRect and bRect are identical, and NOotherwise.
27



NSEqualSizes

SUMMARY This function tests the two size values for equality.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSEqualSizes(NSSize aSize, NSSize bSize)

DESCRIPTION Returns YES if the two sizes aSize and bSize are identical, and NO otherwise.

NSExtraRefCount

SUMMARY This function returns the specified object’s reference count.

DECLARED IN Foundation/NSObject.h

SYNOPSIS unsigned int NSExtraRefCount(id object)

DESCRIPTION Returns the current reference count of object. This function is used in conjunction with 
NSIncrementExtraRefCount and NSDecrementExtraRefCountWasZero in situations where 
you need to override an object’s retain and release methods.

NSFreeHashTable

SUMMARY This function deletes the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSFreeHashTable(NSHashTable *table)

DESCRIPTION NSFreeHashTable releases each element of the specified hash table and frees the table itself.

SEE ALSO NSResetHashTable
28



NSFreeMapTable

SUMMARY This function deletes the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSFreeMapTable(NSMapTable *table)

DESCRIPTION NSFreeMapTable releases each key and value of the specified map table and frees the table itself. 

SEE ALSO NSResetMapTable

NSFullUserName

SUMMARY This function returns the full name of the current user.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSFullUserName(void)

DESCRIPTION Returns a string containing the full name of the current user. 

SEE ALSO NSUserName

NSGetSizeAndAlignment

SUMMARY This function returns the type and size of the specified data type.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS const char *NSGetSizeAndAlignment(const char *typePtr, 
unsigned int *sizep, 
unsigned int *alignp)
29



DESCRIPTION Gets the next type code from typePtr and returns the size and alignment of that data type in sizep 
and alignp, respectively. You can specify 0 for either sizep or alignp to ignore the corresponding 
information. This function returns a new pointer to the string specified by typePtr; the new pointer 
points to the character just past the type code that was read.

NSGetUncaughtExceptionHandler

SUMMARY This function returns the top-level error handler.

DECLARED IN Foundation/NSException.h

SYNOPSIS NSUncaughtExceptionHandler *NSGetUncaughtExceptionHandler(void)

DESCRIPTION NSGetUncaughtExceptionHandler returns a pointer to the function serving as the top-level 
error handler. This handler will process exceptions raised outside of any exception-handling 
domain.

SEE ALSO NSSetUncaughtExceptionHandler

NSHashGet

SUMMARY This function returns an element of the hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void *NSHashGet(NSHashTable *table, const void *pointer)

DESCRIPTION Returns the pointer in the table that matches pointer (as defined by the isEqual call-back 
function). If there is no matching element, the function returns NULL
30



NSHashInsert

SUMMARY This function adds an element to the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSHashInsert(NSHashTable *table, const void *pointer)

DESCRIPTION NSHashInsert inserts pointer, which must not be NULL, into table. If pointer matches an item 
already in the table, the previous pointer is released using the release call-back function that was 
specified when the table was created.

SEE ALSO NSHashRemove, NSHashInsertKnownAbsent, NSHashInsertIfAbsent

NSHashInsertIfAbsent

SUMMARY This function adds an element to the specified hash table only if the table does not already contain 
the element.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void *NSHashInsertIfAbsent(NSHashTable *table, const void *pointer)

DESCRIPTION If pointer matches an item already in table, NSHashInsertIfAbsent returns the pre-existing 
pointer; otherwise, it adds pointer to the table and returns NULL. You must not specify NULL for 
pointer.

SEE ALSO NSHashRemove, NSHashInsert, NSHashInsertKnownAbsent
31



NSHashInsertKnownAbsent

SUMMARY This function adds an element to the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSHashInsertKnownAbsent(NSHashTable *table, const void *pointer)

DESCRIPTION NSHashInsertKnownAbsent inserts pointer, which must not be NULL, into table. Unike 
NSHashInsert, this function raises NSInvalidArgumentException if table already includes an 
element that matches pointer.

SEE ALSO NSHashRemove, NSHashInsert, NSHashInsertIfAbsent

NSHashRemove

SUMMARY This function removes an element from the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSHashRemove(NSHashTable *table, const void *pointer)

DESCRIPTION If pointer matches an item already in table, this function releases the pre-existing item.

SEE ALSO NSHashInsert, NSHashInsertKnownAbsent, NSHashInsertIfAbsent

NSHeight

SUMMARY This function returns the height of the specified rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSHeight(NSRect aRect)
32



DESCRIPTION Returns the height of aRect. 

SEE ALSO NSMaxX, NSMaxY, NSMidX, NSMidY, NSMinX, NSMinY, NSWidth

NSHomeDirectory

SUMMARY This function getsinformation about a user.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSHomeDirectory(void)

DESCRIPTION NSHomeDirectory returns a path to the current user’s home directory.

SEE ALSO NSFullUserName, NSUserName, NSHomeDirectoryForUser

NSHomeDirectoryForUser

SUMMARY Get information about a user

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSHomeDirectoryForUser(NSString *userName)

DESCRIPTION NSHomeDirectoryForUser returns a path to the home directory for the user specified by 
userName.

SEE ALSO NSFullUserName, NSUserName, NSHomeDirectory
33



a 
 
 

NSHostByteOrder

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSHostByteOrder(void)

DESCRIPTION Returns the endian format, either NSLittleEndian or NSBigEndian, supported by the current 
platform.

NSIncrementExtraRefCount

SUMMARY This function increments the specified object’s reference count.

DECLARED IN Foundation/NSObject.h

SYNOPSIS void NSIncrementExtraRefCount(id anObject)

DESCRIPTION This function increments the “extra reference” count of an object. Newly created objects have only 
one actual reference, so that a single release message results in the object being deallocated. Extr
references are those beyond the single original reference, and are usually created by sending the
object a retain message. Your code should generally not use these functions unless it is overriding
the retain or release methods.

SEE ALSO NSExtraRefCount, NSDecrementExtraRefCountWasZero

NSInsetRect

SUMMARY This function insets the rectangle by the specified amount.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSInsetRect(NSRect aRect, float dX, float dY)
34



DESCRIPTION NSInsetRect returns a copy of the rectangle aRect, altered by moving the two sides that are 
parallel to the y-axis inwards by dX, and the two sides parallel to the x-axis inwards by dY.

SEE ALSO NSDivideRect, NSIntegralRect, NSOffsetRect

NSIntegralRect

SUMMARY This function adjusts the sides of the rectangle to integer values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSIntegralRect(NSRect aRect)

DESCRIPTION NSIntegralRect returns a copy of the rectangle aRect, expanded outwards just enough to ensure 
that none of its four defining values (x, y, width, and height) have fractional parts. If aRect’s width 
or height is zero or negative, this function returns a rectangle with origin at (0.0, 0.0) and with zero 
width and height.

SEE ALSO NSDivideRect, NSInsetRect, NSOffsetRect

NSIntersectionRange

SUMMARY This function returns the intersection of the specified ranges.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSIntersectionRange(NSRange range1, NSRange range2)

DESCRIPTION NSIntersectionRange returns a range describing the intersection of range1 and range2—that is, 
a range containing the indices that exist in both ranges. If the returned range’s length field is zero, 
then the two ranges don’t intersect, and the value of the location field is undefined.

SEE ALSO NSUnionRange
35



NSIntersectionRect

SUMMARY This function calculates the intersection of two rectangles.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSIntersectionRect(NSRect aRect, NSRect bRect)

DESCRIPTION NSIntersectionRect returns the graphic intersection of aRect and bRect. If the two rectangles 
don’t overlap, the returned rectangle has its origin at (0.0, 0.0) and zero width and height. (This 
includes situations where the intersection is a point or a line segment.)

SEE ALSO NSUnionRect

NSIntersectsRect

SUMMARY This function tests whether two rectangles intersect.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSIntersectsRect(NSRect aRect, NSRect bRect)

DESCRIPTION Returns YES if aRect intersects bRect, otherwise returns NO. This function returns NO if either 
aRect and bRect has a width or height that is 0.

SEE ALSO NSIntersectionRect
36



NSIsEmptyRect

SUMMARY This function tests whether the specified rectangle is empty.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSIsEmptyRect(NSRect aRect)

DESCRIPTION Returns YES if the rectangle encloses no area at all—that is, if its width or height is zero or 
negative.

NSJavaBundleCleanup

SYNOPSIS void NSJavaBundleCleanup(NSBundle *bundle, NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaBundleSetup

SYNOPSIS id NSJavaBundleSetup(NSBundle *bundle, NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaNeedsToLoadClasses

SYNOPSIS BOOL NSJavaNeedsToLoadClasses(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>
37



NSJavaNeedsVirtualMachine

SYNOPSIS BOOL NSJavaNeedsVirtualMachine(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaProvidesClasses

SYNOPSIS BOOL NSJavaProvidesClasses(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaSetup

SYNOPSIS id NSJavaSetup(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaVirtualMachineSetup

SYNOPSIS id NSJavaVirtualMachineSetup(BOOL *vmNeeded)

DESCRIPTION <<Description Forthcoming>>
38



NSLocationInRange

SUMMARY This function verifies that the specified position is in the given range.

DECLARED IN Foundation/NSRange.h

SYNOPSIS BOOL NSLocationInRange(unsigned int index, NSRange aRange)

DESCRIPTION NSLocationInRange returns YES if the given index lies within aRange—that is, if it’s greater 
than or equal to aRange.location and less than aRange.location plus aRange.length.

NSLog

SUMMARY This function logs error messages to stderr.

DECLARED IN Foundation/NSUtilities.h

SYNOPSIS void NSLog(NSString *format, ...)

DESCRIPTION NSLog simply calls NSLogv, passing it a variable number of arguments. 

SEE ALSO NSLogv

NSLogPageSize

SUMMARY This function returns the binary log of the page size.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSLogPageSize(void)
39



 

 

DESCRIPTION NSLogPageSize returns the binary log of the current page size. 

SEE ALSO NSRoundDownToMultipleOfPageSize, NSRoundUpToMultipleOfPageSize, NSPageSize

NSLogv 

SUMMARY This function logs error messages to stderr.

DECLARED IN Foundation/NSUtilities.h

SYNOPSIS void NSLogv(NSString *format, va_list args)

DESCRIPTION NSLogv logs an error message. The message consists of a timestamp and the process ID prefixed
to the string you pass in. You compose this string with a format string , format, and one or more 
arguments to be inserted into the string. The format specification allowed by these functions is that 
which is understood by NSString’s formatting capabilities (which is not necessarily the set of 
format escapes and flags understood by printf ). 

In general, you should use the NSLog function instead of calling this function directly. If you do 
use this function directly, you must have prepared the the variable argument list in the args 
parameter by calling the standard C macro va_start. Upon completion, you must similarly call the 
standard C macro va_end for this list.

On HP-UX, Solaris, and Mach, NSLogv writes the log to STDERR_FILENO if the file descriptor 
is open. If that fails, the message is sent to the syslog subsystem, if it exists on a platform, with the 
LOG_USER facility (or default facility if LOG_USER doesn't exist on a platform), with priority 
LOG_ERR (or similar, depending on what the platform supports). If both of these attempts to 
write the message fail, the message is discarded.

On Windows platforms, the message is written to the STD_ERROR_HANDLE, if that handle is 
valid, on Windows platforms that support that standard handle. It is also written to the Windows 
Event Log on Windows platforms that support that, or to a file c:\fndation.log on Windows 
platforms that do not, if that file can be opened. If all of these attempts fail, the message is 
discarded. On some Windows platforms, the message to the Event Log may be truncated if there 
is a limit to the size of a message that the Event Log can accept. On Windows platforms that 
support an application discovering whether or not it’s running under a debugger, NSLogv may 
only send the message to the debugger for its handling, via standard WIN32 mechanisms, and not
also write the message to STD_ERROR_HANDLE and the Event Log. Note that a debugger may 
40



g 
choose to not display message thus sent to it, or may choose not to display all of the message—
that has nothing to do with NSLogv.

Output from NSLogv is serialized, in that only one thread in a process can be doing the 
writing/logging described above at a time. All attempts at writing/logging a message complete 
before the next thread can begin its attempts.

The effects of NSLogv are not serialized with subsystems other than those discussed above (such 
as the standard I/O package) and do not produce side effects on those subsystems (such as causin
buffered output to be flushed, which may be undesirable).

SEE ALSO NSLog

NSMakePoint

SUMMARY This function creates a new NSPoint from the specified values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSPoint NSMakePoint(float x, float y)

DESCRIPTION Creates an NSPoint having the coordinates x and y.

NSMakeRange

SUMMARY This function creates a new NSRange from the specified values.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSMakeRange(unsigned int location, unsigned int length)

DESCRIPTION Creates an NSRange having the specified location and length.
41



NSMakeRect

SUMMARY This function creates a new NSRect from the specified values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSMakeRect(float x, float y, float w, float h)

DESCRIPTION Creates an NSRect having the specified origin and size.

NSMakeSize

SUMMARY This function creates a new NSSize from the specified values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSSize NSMakeSize(float w, float h)

DESCRIPTION Creates an NSSize having the specified width and height.

NSMapGet

SUMMARY This function returns a map-table value for the specified key.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void *NSMapGet(NSMapTable *table, const void *key)

DESCRIPTION Returns the value that table maps to key, or NULL if the table doesn’t contain key.

SEE ALSO NSMapMember, NSEnumerateMapTable, NSNextMapEnumeratorPair, 
NSAllMapTableKeys, NSAllMapTableValues
42



NSMapInsert

SUMMARY This function inserts a key/value pair into the specified table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSMapInsert(NSMapTable *table, const void *key, const void *value)

DESCRIPTION NSMapInsert inserts key and value into table. If key matches a key already in the table, value is 
retained and the previous value is released, using the retain and release call-back functions that 
were specified when the table was created. Raises InvalidArgumentException if key is equal to the 
notAKeyMarker  field of the table’s NSMapTableKeyCallBacks structure.

SEE ALSO NSMapRemove, NSMapInsertIfAbsent, NSMapInsertKnownAbsent

NSMapInsertIfAbsent

SUMMARY This function inserts a key/value pair into the specified table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void *NSMapInsertIfAbsent(NSMapTable *table, const void *key, const void *value)

DESCRIPTION If key matches a key already in table, NSMapInsertIfAbsent returns the pre-existing key; 
otherwise, it adds key and value to the table and returns NULL. Raises 
NSInvalidArgumentException if key is equal to the notAKeyMarker  field of the table’s 
NSMapTableKeyCallBacks structure.

SEE ALSO NSMapRemove, NSMapInsert, NSMapInsertKnownAbsent
43



NSMapInsertKnownAbsent

SUMMARY This function inserts a key/value pair into the specified table if the pair had not been previously 
added.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSMapInsertKnownAbsent(NSMapTable *table, const void *key, const void *value)

DESCRIPTION NSMapInsertKnownAbsent inserts key (which must not be notAKeyMarker ) and value into 
table. Unlike NSMapInsert, this function raises NSInvalidArgumentException if table already 
includes a key that matches key.

SEE ALSO NSMapRemove, NSMapInsert, NSMapInsertIfAbsent

NSMapMember

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS BOOL NSMapMember(NSMapTable *table, const void *key, void **originalKey, void **value)

DESCRIPTION Returns YES if table contains a key equal to key. If so, originalKey is set to key, and value is set to 
the value that the table maps to key.

SEE ALSO NSMapGet, NSEnumerateMapTable, NSNextMapEnumeratorPair, NSAllMapTableKeys, 
NSAllMapTableValues

NSMapRemove

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSMapRemove(NSMapTable *table, const void *key)
44



DESCRIPTION If key matches a key already in table, this function release the pre-existing key and its 
corresponding value.

SEE ALSO NSMapInsert, NSMapInsertIfAbsent, NSMapInsertKnownAbsent

NSMaxRange

DECLARED IN Foundation/NSRange.h

SYNOPSIS unsigned int NSMaxRange(NSRange range)

DESCRIPTION Returns range.location + range.length—in other words, the number one greater than the 
maximum value within the range.

NSMaxX

SUMMARY This function returns the largest x-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMaxX(NSRect aRect)

DESCRIPTION NSMaxX returns the largest x-coordinate value within aRect. 

SEE ALSO NSWidth, NSHeight, NSMaxY
45



NSMaxY

SUMMARY This function returns the largest y-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMaxY(NSRect aRect)

DESCRIPTION NSMaxY returns the largest y-coordinate value within aRect. 

SEE ALSO NSWidth, NSHeight, NSMaxX

NSMidX

SUMMARY This function returns the x-coordinate of a rectangle’s midpoint.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMidX (NSRect aRect)

DESCRIPTION NSMidX  returns the x-coordinate of the center of the rectangle. 

SEE ALSO NSWidth, NSHeight, NSMidY

NSMidY

SUMMARY This function returns the y-coordinate of a rectangle’s midpoint.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMidY (NSRect aRect)
46



DESCRIPTION NSMidY  returns the y-coordinate of the rectangle’s center point.

SEE ALSO NSWidth, NSHeight, NSMidX

NSMinX

SUMMARY This function returns the smallest x-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMinX (NSRect aRect)

DESCRIPTION NSMinX  returns the smallest x-coordinate value within aRect.

SEE ALSO NSWidth, NSHeight, NSMinY

NSMinY

SUMMARY This function returns the smallest y-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMinY (NSRect aRect)

DESCRIPTION NSMinY  returns the smallest y-coordinate value within aRect .

SEE ALSO NSWidth, NSHeight, NSMinX
47



NSMouseInRect

SUMMARY This function tests whether the point is in the specified rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSMouseInRect(NSPoint aPoint, NSRect aRect, BOOL flipped)

DESCRIPTION Returns YES if the point represented by aPoint is located within the rectangle represented by 
aRect. It assumes an unscaled and unrotated coordinate system; the argument flipped should be 
YES if the coordinate system has been flipped so that the positive y-axis extends downward. This 
function is used to determine whether the hot spot of the cursor lies inside a given rectangle.

NSNextHashEnumeratorItem

SUMMARY This function returns the next hash-table element in the enumeration.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void *NSNextHashEnumeratorItem(NSHashEnumerator *enumerator)

DESCRIPTION NSNextHashEnumeratorItem returns the next element in the table that enumerator is associated 
with, or NULL if enumerator has already iterated over all the elements.

SEE ALSO NSEnumerateHashTable
48



NSNextMapEnumeratorPair

SUMMARY This function returns the next map-table pair in the enumeration

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS BOOL NSNextMapEnumeratorPair(NSMapEnumerator *enumerator, void **key, void 
** value) 

DESCRIPTION NSNextMapEnumeratorPair returns NO if enumerator has already iterated over all the 
elements in the table that enumerator is associated with. Otherwise, this function sets key and 
value to match the next key/value pair in the table, and returns YES.

SEE ALSO NSEnumerateMapTable, NSMapMember, NSMapGet, NSAllMapTableKeys, 
NSAllMapTableValues

NSOffsetRect

SUMMARY This function insets the rectangle by the specified amount.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSOffsetRect(NSRect aRect, float dX, float dY)

DESCRIPTION NSOffsetRect returns a copy of the rectangle aRect, with its location shifted by dX along the 
x-axis and by dY along the y-axis.

SEE ALSO NSDivideRect, NSInsetRect, NSIntegralRect
49



NSOpenStepRootDirectory

SUMMARY This function returns the root directory of the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSOpenStepRootDirectory(void)

DESCRIPTION Returns a string identifying the root directory of the user’s system.

SEE ALSO NSHomeDirectory, NSHomeDirectoryForUser

NSPageSize

SUMMARY This function returns the number of bytes in a page.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSPageSize(void)

DESCRIPTION NSPageSize returns the number of bytes in a page.

SEE ALSO NSRoundDownToMultipleOfPageSize, NSRoundUpToMultipleOfPageSize, 
NSLogPageSize

NSParameterAssert

SUMMARY This macro validates the specified parameter.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSParameterAssert(condition)
50



DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

This macro validates a parameter for an Objective-C method. Simply provide the parameter as the 
condition argument. The macro evaluates the parameter and, if it is false, it logs an error message 
which includes the parameter and then raises an exception. 

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.All 
assertion macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert, NSCParameterAssert

NSPointFromString

SUMMARY This function returns a point from a text-based representation.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSPoint NSPointFromString(NSString *aString)

DESCRIPTION Scans aString for text of the form “{x=a; y=b}” and returns the values for a and b in a new 
NSPoint object. If aString does not contain this text, this function returns an NSPoint object whose 
x- and y-coordinates are both 0.

SEE ALSO NSStringFromPoint
51



NSPointInRect

SUMMARY This function tests whether the specified point is in the rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSPointInRect(NSPoint aPoint, NSRect aRect)

DESCRIPTION  Performs the same test as NSMouseInRect, but assumes a flipped coordinate system.

NSRangeFromString

SUMMARY This function returns a range from a text-based representation.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSRangeFromString(NSString *aString)

DESCRIPTION Returns aString for text of the form: “{location = a; length = b}” and returns the values for a and 
b in a new NSRange object. If aString does not contain this text, this function returns an NSRange 
object whose location and length values are both 0.

SEE ALSO NSStringFromRange

NSRealMemoryAvailable

SUMMARY This function returns information about the user’s system.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSRealMemoryAvailable(void)

DESCRIPTION NSRealMemoryAvailable returns the number of bytes available in RAM.
52



NSRectFromString

SUMMARY This function returns a rectangle from a text-based representation.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSRectFromString(NSString *aString)

DESCRIPTION Scans aString for text of the form “{x=a; y=b; width=c; height=d}”, and returns the values for a, 
b, c, and d in a new NSRect object. If aString does not contain the specified text, this function 
returns an NSRect object with a rectangle whose origin is (0, 0) and width and height are both 0. 

SEE ALSO NSStringFromRect

NSRecycleZone

SUMMARY This function frees memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSRecycleZone(NSZone *zone)
void NSZoneFree(NSZone *zone, void *pointer)

DESCRIPTION NSRecycleZone frees zone after adding any of its pointers still in use to the default zone. (This 
strategy prevents retained objects from being inadvertently destroyed.)

NSZoneFree returns the memory indicated by pointer to zone. The standard C function free does 
the same, but spends time finding which zone the memory belongs to.

RETURN Both functions return void.

SEE ALSO NSCreateZone, NSZoneMalloc
53



NSResetHashTable

SUMMARY This function deletes the elements of the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSResetHashTable(NSHashTable *table)

DESCRIPTION NSResetHashTable releases each element but doesn't deallocate the table. This is useful for 
preserving the table's capacity.

SEE ALSO NSFreeHashTable

NSResetMapTable

SUMMARY This function deletes the elements of the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSResetMapTable(NSMapTable *table)

DESCRIPTION NSResetMapTable releases each key and value but doesn’t deallocate the table. This is useful for 
preserving the table’s capacity.

SEE ALSO NSFreeMapTable

NSRoundDownToMultipleOfPageSize

SUMMARY This function returns the number of pages that correspond to the specified number of bytes.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSRoundDownToMultipleOfPageSize(unsigned int byteCount)
54



DESCRIPTION NSRoundDownToMultipleOfPageSize returns the multiple of the page size that is closest to, but 
not greater than, byteCount.

SEE ALSO NSPageSize, NSLogPageSize, NSRoundUpToMultipleOfPageSize

NSRoundUpToMultipleOfPageSize

SUMMARY This function returns the number of pages that correspond to the specified number of bytes.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSRoundUpToMultipleOfPageSize(unsigned int byteCount)

DESCRIPTION NSRoundUpToMultipleOfPageSize returns the multiple of the page size that is closest to, but 
not less than, byteCount.

SEE ALSO NSPageSize, NSLogPageSize, NSRoundDownToMultipleOfPageSize

NSSearchPathForDirectoriesInDomains

SYNOPSIS NSArray *NSSearchPathForDirectoriesInDomains (NSSearchPathDirectory directory, 
NSSearchPathDomainMask domainMask, BOOL expandTilde)

DESCRIPTION <<Description forthcoming>>
55



NSSelectorFromString

SUMMARY This function obtains a selector by name.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS SEL NSSelectorFromString(NSString *aSelectorName)

DESCRIPTION NSSelectorFromString returns the selector named by aSelectorName, or zero if none by this 
name exists.

SEE ALSO NSStringFromSelector

NSSetUncaughtExceptionHandler

SUMMARY This function changes the top level error handler.

DECLARED IN Foundation/NSException.h

SYNOPSIS void NSSetUncaughtExceptionHandler(NSUncaughtExceptionHandler *handler)

DESCRIPTION NSSetUncaughtExceptionHandler sets the top-level error-handling function to handler. If 
handler is NULL or this function is never invoked, the default top-level handler is used.

SEE ALSO NSGetUncaughtExceptionHandler

NSSetZoneName

SUMMARY This function sets the name of the specified zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSSetZoneName(NSZone *zone, NSString *name)
56



DESCRIPTION NSSetZoneName sets the specified zone’s name to name, which can aid in debugging.

SEE ALSO NSZoneName

NSShouldRetainWithZone

SUMMARY This function indicates whether an object should be retained.

DECLARED IN Foundation/NSObject.h

SYNOPSIS BOOL NSShouldRetainWithZone(id <NSObject> anObject, NSZone *requestedZone)

DESCRIPTION Returns YES if requestedZone is NULL, the default zone, or the zone in which anObject was 
allocated. This function is typically called from inside an NSObject’s copyWithZone: method, 
when deciding whether to retain anObject as opposed to making a copy of it.

NSSizeFromString

SUMMARY This function returns an NSSize from a text-based representation.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSSize NSSizeFromString(NSString *aString)

DESCRIPTION Scans aString for text of the form “{width=a; height=b}” and returns the values for a and b in an 
NSSize object. If aString does not contain the specified text, this function returns an NSSize object 
whose width and height are both 0. 

SEE ALSO NSStringFromSize
57



NSStandardApplicationPaths

SUMMARY This function returns the application paths for the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSArray* NSStandardApplicationPaths(void)

DESCRIPTION Returns an array of strings, each string specifying one of the standard paths to the OpenStep 
applications.

SEE ALSO NSStandardLibraryPaths

NSStandardLibraryPaths

SUMMARY This function returns the library paths for the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSArray* NSStandardLibraryPaths(void)

DESCRIPTION Returns an array of strings, each string specifying one of the standard paths to the OpenStep 
libraries. 

SEE ALSO NSStandardApplicationPaths

NSStringFromClass

SUMMARY This function obtains the name of a class

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS NSString *NSStringFromClass(Class aClass)
58



DESCRIPTION This function returns an NSString containing the name of aClass.

SEE ALSO NSClassFromString

NSStringFromHashTable

SUMMARY This function returns a string describing the hash table’s contents.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSString *NSStringFromHashTable(NSHashTable *table)

DESCRIPTION Returns a string describing the hash table’s contents. The function iterates over the table’s 
elements, and for each one appends the string returned by the describe call-back function. If 
NULL was specified for the call-back function, the hexadecimal value of each pointer is added to 
the string.

NSStringFromMapTable

SUMMARY This function returns a string describing the map table’s contents.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSString *NSStringFromMapTable(NSMapTable *table)

DESCRIPTION Returns a string describing the map table’s contents. The function iterates over the table’s 
key/value pairs, and for each one appends the string “a = b;\n”, where a and b are the key and value 
strings returned by the corresponding describe call-back functions. If NULL was specified for the 
call-back function, a and b are the key and value pointers, expressed as hexadecimal numbers.
59



NSStringFromPoint

SUMMARY This function returns a string representation of a point.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSString *NSStringFromPoint(NSPoint aPoint)

DESCRIPTION Returns a string of the form “{x=a; y=b}”, where a and b are the x- and y-coordinates of aPoint.

SEE ALSO NSPointFromString

NSStringFromRange

SUMMARY This function returns a string representation of a range.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSString *NSStringFromRange(NSRange aRange)

DESCRIPTION Returns a string of the form: “{location = a; length = b}”, where a and b are non-negative integers 
representing aRange.

NSStringFromRect

SUMMARY This function returns a string representation of a rect.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSString *NSStringFromRect(NSRect aRect)
60



DESCRIPTION Returns a string of the form “{x=a; y=b; width=c; height=d}”, where a, b, c, and d are the x- and 
y-coordinates and the width and height, respectively, of aRect.

SEE ALSO NSRectFromString

NSStringFromSelector

SUMMARY This function returns the name of a selector.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS NSString *NSStringFromSelector(SEL aSelector)

DESCRIPTION NSStringFromSelector returns an NSString containing the name of aSelector.

SEE ALSO NSSelectorFromString

NSStringFromSize

SUMMARY This function returns a string representation of a size.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSString *NSStringFromSize(NSSize aSize)

DESCRIPTION Returns a string of the form “{width=a; height=b}”, where a and b are the width and height of 
aSize.

SEE ALSO NSSizeFromString
61



NSSwapBigDoubleToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS double NSSwapBigDoubleToHost(NSSwappedDouble x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapDouble to 
perform the swap.

SEE ALSO NSSwapHostDoubleToBig, NSSwapLittleDoubleToHost

NSSwapBigFloatToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS float NSSwapBigFloatToHost(NSSwappedFloat x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapFloat to 
perform the swap.

SEE ALSO NSSwapHostFloatToBig, NSSwapLittleFloatToHost
62



NSSwapBigIntToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapBigIntToHost(unsigned int x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapInt to perform 
the swap.

SEE ALSO NSSwapHostIntToBig, NSSwapLittleIntToHost

NSSwapBigLongLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapBigLongLongToHost(unsigned long long x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapLongLong to 
perform the swap.

SEE ALSO NSSwapHostLongLongToBig, NSSwapLittleLongLongToHost
63



NSSwapBigLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapBigLongToHost(unsigned long x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapLong to 
perform the swap.

SEE ALSO NSSwapHostLongToBig, NSSwapLittleLongToHost

NSSwapBigShortToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapBigShortToHost(unsigned short x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapShort to 
perform the swap.

SEE ALSO NSSwapHostShortToBig, NSSwapLittleShortToHost
64



 

NSSwapDouble 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSSwapDouble(NSSwappedDouble x)

DESCRIPTION Swaps the bytes of x and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of x are 
numbered from 1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes
4 and 5.

SEE ALSO NSSwapLongLong, NSSwapFloat

NSSwapFloat 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSSwapFloat(NSSwappedFloat x)

DESCRIPTION Swaps the bytes of x and returns the resulting value.Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of x are 
numbered from 1 to 4, this function swaps bytes 1 and 4, and swaps bytes 2 and 3.

SEE ALSO NSSwapLong, NSSwapDouble
65



NSSwapHostDoubleToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSSwapHostDoubleToBig(double x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapDouble to perform the swap.

SEE ALSO NSSwapBigDoubleToHost, NSSwapHostDoubleToLittle

NSSwapHostDoubleToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSSwapHostDoubleToLittle(double x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapDouble to perform the swap.

SEE ALSO NSSwapLittleDoubleToHost, NSSwapHostDoubleToBig
66



NSSwapHostFloatToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSSwapHostFloatToBig(float x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapFloat to perform the swap.

SEE ALSO NSSwapBigFloatToHost, NSSwapHostFloatToLittle

NSSwapHostFloatToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSSwapHostFloatToLittle(float x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapFloat to perform the swap.

SEE ALSO NSSwapLittleFloatToHost, NSSwapHostFloatToBig
67



NSSwapHostIntToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapHostIntToBig(unsigned int x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls NSSwapInt 
to perform the swap.

SEE ALSO NSSwapBigIntToHost, NSSwapHostIntToLittle

NSSwapHostIntToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapHostIntToLittle(unsigned int x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapInt to perform the swap.

SEE ALSO NSSwapLittleIntToHost, NSSwapHostIntToBig
68



NSSwapHostLongLongToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapHostLongLongToBig(unsigned long long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLongLong to perform the swap.

SEE ALSO NSSwapBigLongLongToHost, NSSwapHostLongLongToLittle

NSSwapHostLongLongToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapHostLongLongToLittle(unsigned long long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLongLong to perform the swap.

SEE ALSO NSSwapLittleLongLongToHost, NSSwapHostLongLongToBig
69



NSSwapHostLongToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapHostLongToBig(unsigned long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLong to perform the swap.

SEE ALSO NSSwapBigLongToHost, NSSwapHostLongToLittle

NSSwapHostLongToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapHostLongToLittle(unsigned long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLong to perform the swap.

SEE ALSO NSSwapLittleLongToHost, NSSwapHostLongToBig
70



NSSwapHostShortToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapHostShortToBig(unsigned short x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapShort to perform the swap.

SEE ALSO NSSwapBigShortToHost, NSSwapHostShortToLittle

NSSwapHostShortToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapHostShortToLittle(unsigned short x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapShort to perform the swap.

SEE ALSO NSSwapLittleShortToHost, NSSwapHostShortToBig
71



NSSwapInt 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapInt (unsigned int inv)

DESCRIPTION Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of inv 
are numbered from 1 to 4, this function swaps bytes 1 and 4, and swaps bytes 2 and 3.

SEE ALSO NSSwapShort, NSSwapLong, NSSwapLongLong

NSSwapLittleDoubleToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS double NSSwapLittleDoubleToHost(NSSwappedDouble x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapDouble to perform the swap.

SEE ALSO NSSwapHostDoubleToLittle, NSSwapBigDoubleToHost, 
NSConvertSwappedDoubleToHost
72



NSSwapLittleFloatToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS float NSSwapLittleFloatToHost(NSSwappedFloat x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapFloat to perform the swap.

SEE ALSO NSSwapHostFloatToLittle, NSSwapBigFloatToHost, NSConvertSwappedFloatToHost

NSSwapLittleIntToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapLittleIntToHost(unsigned int x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes, this function calls NSSwapInt to 
perform the swap.

SEE ALSO NSSwapHostIntToLittle, NSSwapBigIntToHost
73



NSSwapLittleLongLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapLittleLongLongToHost(unsigned long long x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLongLong to perform the swap.

SEE ALSO NSSwapHostLongLongToLittle, NSSwapBigLongLongToHost

NSSwapLittleLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapLittleLongToHost(unsigned long x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapLong to perform the swap.

SEE ALSO NSSwapHostLongToLittle, NSSwapBigLongToHost, NSSwapLong
74



NSSwapLittleShortToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapLittleShortToHost(unsigned short x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapShort to perform the swap.

SEE ALSO NSSwapHostShortToLittle, NSSwapBigShortToHost

NSSwapLong 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapLong(unsigned long inv)

DESCRIPTION Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of inv 
are numbered from 1 to 4, this function swaps bytes 1 and 4, and swaps bytes 2 and 3.

SEE ALSO NSSwapLongLong, NSSwapInt, NSSwapFloat
75



 

NSSwapLongLong 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapLongLong(unsigned long long inv)

DESCRIPTION Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of inv 
are numbered from 1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes
4 and 5.

SEE ALSO NSSwapLong, NSSwapDouble

NSSwapShort 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapShort (unsigned short inv)

DESCRIPTION Swaps the low-order and high-order bytes of inv and returns the resulting value.

SEE ALSO NSSwapInt, NSSwapLong
76



NSTemporaryDirectory

SUMMARY This function returns the temporary directory on the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSTemporaryDirectory(void)

DESCRIPTION Returns a string containing the path of the current temporary directory. If no such directory is 
currently available, this function returns nil .

SEE ALSO NSStandardApplicationPaths, NSStandardLibraryPaths, NSHomeDirectory

NSUnionRange

SUMMARY This function returns the intersection of the specified ranges.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSUnionRange(NSRange range1, NSRange range2)

DESCRIPTION NSUnionRange returns a range covering all indices in and between range1 and range2. If one 
range is completely contained in the other, the returned range is equal to the larger range.

SEE ALSO NSIntersectionRange

NSUnionRect

SUMMARY This function calculates the union of two rectangles.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSUnionRect(NSRect aRect, NSRect bRect)
77



DESCRIPTION NSUnionRect returns the smallest rectangle that completely encloses both aRect and bRect. If one 
of the rectangles has zero (or negative) width or height, a copy of the other rectangle is returned; 
but if both have zero (or negative) width or height, the returned rectangle has its origin at (0.0, 0.0) 
and has zero width and height.

SEE ALSO NSIntersectionRect

NSUserName

SUMMARY This function gets information about a user.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSUserName(void)

DESCRIPTION NSUserName returns the logon name of the current user.

SEE ALSO NSFullUserName, NSHomeDirectory, NSHomeDirectoryForUser

NSWidth

SUMMARY This function returns the width of the specified rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSWidth(NSRect aRect)

DESCRIPTION NSWidth returns the width of aRect.

SEE ALSO NSMaxX, NSMaxY, NSMidX, NSMidY, NSMinX, NSMinY, NSHeight
78



NSZoneCalloc

SUMMARY This function allocates memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSZoneCalloc(NSZone *zone, unsigned int numElems, unsigned int byteSize)

DESCRIPTION NSZoneCalloc allocates enough memory from zone for numElems elements, each with a size 
numBytes bytes, and returns a pointer to the allocated memory. The memory is initialized with 
zeros. This function returns nil  if it was unable to allocate the requested memory.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSZoneFree, NSZoneMalloc, NSZoneRealloc

NSZoneFree

SUMMARY This function deallocates a block of memory in the specified zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSZoneFree(NSZone *zone, void *pointer)

DESCRIPTION Returns memory to the zone from which it was allocated. The standard C function free does the 
same, but spends time finding which zone the memory belongs to.

SEE ALSO NSRecycleZone, NSZoneMalloc, NSZoneCalloc, NSZoneRealloc
79



NSZoneFromPointer

SUMMARY This function gets the zone for a given block of memory

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSZone *NSZoneFromPointer(void *pointer)

DESCRIPTION Returns the zone for the block of memory indicated by pointer, or NULL if the block was not 
allocated from a zone. The pointer must be one that was returned by a prior call to an allocation 
function.

RETURN Returns the zone for the indicated block of memory, or NULL if the block was not allocated from 
a zone.

SEE ALSO NSZoneCalloc, NSZoneMalloc, NSZoneRealloc

NSZoneMalloc

SUMMARY This function allocates memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSZoneMalloc(NSZone *zone, unsigned int size)

DESCRIPTION NSZoneMalloc allocates size bytes in zone, and returns a pointer to the allocated memory. This 
function returns nil  if it was unable to allocate the requested memory.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSZoneFree, NSZoneCalloc, NSZoneRealloc
80



NSZoneName

SUMMARY This function returns the name of the specified zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSString *NSZoneName(NSZone *zone)

DESCRIPTION Returns a string containing the name associated with zone, If zone is nil , the default zone is used. 
If no name is associated with zone, the returned string is empty.

SEE ALSO NSSetZoneName

NSZoneRealloc

SUMMARY This function allocates memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSZoneRealloc(NSZone *zone, void *ptr, unsigned int size)

DESCRIPTION NSZoneRealloc changes the size of the block of memory pointed to by ptr to size bytes. It may 
allocate new memory to replace the old, in which case it moves the contents of the old memory 
block to the new block, up to a maximum of size bytes. ptr may be NULL. This function returns 
nil  if it was unable to allocate the requested memory.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSZoneFree, NSZoneCalloc, NSZoneMalloc
81



 

1

 

Locales

 

A locale is a set of defaults whose values are determined by the user’s preferred 
language. The locale defaults are stored in the NSUserDefault’s preferred language 
domain. 

Certain classes from the Foundation Framework (for example, NSCalendarDate, 
NSDate, NSTimeZone, NSString, and NSScanner) use information from the locale 
to determine their values. For example, when you request an NSString representation 
of an NSCalendarDate, the NSCalendarDate looks at the locale to determine what 
the months and the days of the week are called in the user’s preferred language. 

The actual attributes for the locale keys are contained in 

 

NextLibrary/Frameworks/ Foundation.framework/Resources/Languages

 

. If a given 
language does not define one of the locale attributes, the value for that attribute 
defaults to the one defined for the default language (US English). 

The Foundation Framework defines these locale dictionary keys. Other frameworks 
may add other keys to the locale dictionary. 



 

Chapter 2

 

Topics in NEXTSTEP Programming

 

2

 

Key Description

 

NSAMPMDesignation An array of strings that specify how the morning and afternoon 

 

designations are printed. The default is AM and PM.

NSCurrencySymbol A string that specifies the symbol used to denote currency in this 

 

language. The default is "$". 

NSDateFormatString A format string that specifies how dates are printed using the date 
format specifiers. (See the NSCalendarDate class specification for a 
list of these.) The default is to use weekday names with full month 

 

names and full years, as in “Sunday, January 01, 1995.”

NSDateTimeOrdering A string that specifies how to use ambiguous numbers in date strings. 
Specify this value as a permutation of the letters M (month), D (day), 
Y (year), and H (hour). For example, MDYH treats “2/3/95 10” as the 
3rd day of February 1995 at 10:00am, whereas DMYH treats the same 
value as the 2nd day of March 1995 at 10:00am. If fewer numbers are 
specified than are needed, the numbers are prioritized to satisfy day 
first, then the month, and then the year. For example, if you supply 
only the value 12, it means the 12th day of this month in this year 
because the day must be specified. If you supply “2 12” it means either 
February 12 or December 2, depending on if the ordering is “MDYH” 

 

or “DMYH.” 

NSDecimalDigits Strings that identify the decimal digits in addition to or instead of the 

 

ASCII digits. 

NSDecimalSeparator A string that specifies the decimal separator. The decimal separator 

 

separates the ones place from the tenths place. The default is “.”. 

NSEarlierTimeDesignations An array of strings that denote a time in the past. These are adjectives 
that modify values from NSYearMonthWeekDesignations. The 

 

defaults are “prior,” “last,” “past,” and “ago.”

NSHourNameDesignations Strings that identify the time of day. These strings should be bound to 
an hour. The default is this array of arrays: (0, midnight), (12, noon, 

 

lunch), (10, morning), (14, afternoon), (19, dinner).

NSInternationalCurrencyString A string containing three letter abbreviation for currency, following 

 

the ISO 4217 standard.

NSLaterTimeDesignations An array of strings that denote a time in the future. This is an adjective 
that modifies a value from NSYearMonthWeekDesignations. The 

 

default is “next.”.

 

NSMonthNameArray An array that specifies the full names for the months.

 

NSNextDayDesignations A string that identifies the day after today. The default is “tomorrow.”

NSNextNextDayDesignations A string that identifies the day after tomorrow. The default is 

 

“nextday”. 

 

NSPriorDayDesignations A string that identifies the day before today. The default is “yesterday.”

NSShortDateFormatString A format string that specifies how dates are abbreviated. (See the 



 

3

 

NSCalendarDate class specification for a list of the date format 
specifiers to use.) The default is to separate the day month and year 

 

with slashes and to put the day first, as in 31/10/95. 

 

NSShortMonthNameArray An array that specifies the abbreviations for the months.

NSShortWeekDayNameArray An array that specifies the abbreviations for the days of the week. 

 

Sunday should be the first day of the week.

NSShortTimeDateFormatString A format string that specifies how times and dates are abbreviated. 
(See the NSCalendarDate class specification for a list of the date 
format specifiers.) The default is to use dashes to separate the day, 

 

month, and year and to use a 12-hour clock, as in “31-Jan-95 1:30 PM. 

 

NSThisDayDesignations A string that identifies what this day is called. The default is “today.”

NSThousandsSeparator A string that specifier the separator character for the thousands place 

 

of a decimal number. The default is a comma.

NSTimeDateFormatString A format string how dates with times are printed.(See the 
NSCalendarDate class specification for a list of the date format 
specifiers.) The default is to use abbreviated months and days with a 

 

24 hour clock, as in “Sun Jan 01 23:00:00 +6 2001.”

NSTimeFormatString A format string how dates with times are printed.(See the 
NSCalendarDate class specification for a list of the date format 

 

specifiers.) The default is to use a 24 hour clock, as in 13:30:25.

NSWeekDayNameArray An array that gives the names for the days of the week. Sunday should 

 

be the first day of the week.

NSYearMonthWeekDesignationsAn array of strings that specify the word for year, month, and week in 

 

the current locale. The defaults are “year,” “month,” and “week.”



 Classes: NSCoding

s 

 

y 

 

NSCoding

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

The NSCoding protocol declares the two methods that a class must implement so that instances of that clas
can be encoded and decoded. This capability provides the basis for archiving (where objects and other 
structures are stored on disk) and distribution (where objects are copied to different address spaces). See
the NSCoder and NSArchiver class specifications for an introduction to coding.

In keeping with object-oriented design principles, an object being encoded or decoded is responsible for 
encoding and decoding its instance variables. A coder instructs the object to do so by invoking 
encodeWithCoder: or initWithCoder: . encodeWithCoder: instructs the object to encode its instance 
variables to the coder provided; an object can receive this method any number of times. initWithCoder:  
instructs the object to initialize itself from data in the coder provided; as such, it replaces any other 
initialization method and is only sent once per object. Any object class that should be codable must adopt 
the NSCoding protocol and implement its methods.

When an object receives an encodeWithCoder: message, it should encode all of its vital instance variables, 
after sending a message to super if its superclass also conforms to the NSCoding protocol. An object 
doesn’t have to encode all of its instance variables. Some values may not be important to reestablish and 
others may be derivable from related state upon decoding. Other instance variables should be encoded onl
under certain conditions (for example, with encodeConditionalObject:, as described in the NSArchiver 
class specification).

For example, suppose you were creating a fictitious MapView class that displays a legend and a map at 
various magnifications. The MapView class defines several instance variables, including the name of the 
map and the current magnification. The MapView class also contains instance variables for several related
views. The encodeWithCoder: method of MapView might look like the following:

- (void)encodeWithCoder:(NSCoder *)coder

{

[super encodeWithCoder:coder];

[coder encodeValueOfObjCType:@encode(char *) at:mapName];

[coder encodeValueOfObjCType:@encode(unsigned int) at:&magnification];

[coder encodeObject:legendView];

[coder encodeConditionalObject:auxiliaryView];

return;

}

1



s, 

 

 

This example assumes that the superclass of MapView also supports the NSCoding protocol. If the 
superclass of your class does not support NSCoding, you should omit the line that invokes super’s 
encodeWithCoder: method.

encodeValueOfObjCType:at: and encodeObject: are coder methods that you can use to encode instance 
variables of your class. You can use these and other methods of the coder to encode id’s, scalars, C array
structs, strings, and pointers to any of these types. The coder also defines corresponding methods for 
decoding values. See the NSCoder, NSArchiver, and NSUnarchiver class specifications for a list of 
methods.

The @encode() compiler directive generates an Objective-C type code from a type expression. See 
Object-Oriented Programming and the Objective-C Language for more information.

Similarly, in initWithCoder:  the object should first send a message to super (if appropriate) to initialize 
inherited instance variables, and then it should decode and initialize its own. MapView’s implementation of 
initWithCoder:  might look like this:

- (id)initWithCoder:(NSCoder *)coder

{

self = [super initWithCoder:coder];

[coder decodeValueOfObjCType:@encode(char *) at:mapName];

[coder decodeValueOfObjCType:@encode(unsigned int) at:&magnification];

legendView = [[coder decodeObject] retain];

auxiliaryView = [[coder decodeObject] retain];

return self;

}

Note the assignment of the return value of initWithCoder:  to self in the example above. This is done in the 
subclass because the superclass, in its implementation of initWithCoder: , may decide to return a object 
other than itself. If the superclass of your class does not support NSCoding, you should invoke super’s 
designated initializer instead of initWithCoder: .

Making Substitutions During Coding

During encoding or decoding a coder object invokes methods that allow the object being coded to substitute
a replacement class or instance for itself. This allows archives to be shared among implementations with 
different class hierarchies or simply different versions of a class (for example, class clusters take advantage
of this feature). It also allows classes that should maintain unique instances to enforce this policy on 
decoding (for example, there need only be a single NSFont instance for a given typeface and size).
2



 Classes: NSCoding

 
 

Substitution methods are declared by NSObject, and come in two flavors: generic and specialized. The 
generic methods are these:

The specialized substitution methods are analogous to classForCoder and replacementObjectForCoder:
, but they’re designed for (and invoked by) a specific, concrete coder subclass.  NSArchiver invokes 
classForArchiver: and replacementObjectForArchiver:, while NSPortCoder invokes 
classForPortCoder and replacementObjectForPortCoder:.  (There isn’t a specialized version of 
awakeAfterUsingCoder:.)  By implementing these specialized methods, your class can base its coding 
behavior on the specific coder class being used. For more information on these methods, see their method
descriptions in the NSObject class specification, as well as the class description in the NSPortCoder class
specification.

Method Types

Encoding and decoding objects
– encodeWithCoder:
– initWithCoder:

Instance Methods

encodeWithCoder:
– (void)encodeWithCoder:(NSCoder *)encoder

Encodes the receiver using encoder.

Method Typical Use

classForCoder
Allows an object, before being encoded, to substitute a class other than 
its own. For example, the private subclasses of a class cluster substitute 
the name of their public superclass when being archived.

replacementObjectForCoder:
Allows an object, before being encoded, to substitute another instance in 
its place.

awakeAfterUsingCoder:

Allows an object, after being decoded, to substitute another object for 
itself. For example, an object that represents a font might, upon being 
decoded, release itself and return an existing object having the same 
font description as itself. In this way, redundant objects can be 
eliminated.
3



initWithCoder:
– (id)initWithCoder: (NSCoder *)decoder

Initializes a newly allocated instance from data in decoder. Returns self.
4



 Classes: NSCopying

t 

y 
NSCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

The NSCopying protocol declares a method for providing functional copies of an object. The exact meaning 
of “copy” can vary from class to class, but a copy must be a functionally independent object with values 
identical to the original at the time the copy was made. A copy produced with NSCopying is implicitly 
retained by the sender, who is responsible for releasing it. 

NSCopying declares one method, copyWithZone:, but copying is commonly invoked with the convenience 
method copy. The copy method is defined for all NSObjects and simply invokes copyWithZone: with the 
default zone.

Using NSCopying

NSCopying is frequently used to copy value objects—objects that represent attributes. C-type variables can 
usually be substituted for value objects, but value objects have the advantage of encapsulating convenien
utilities for common manipulations. For example, NSString objects are used instead of character pointers 
because they encapsulate encoding and storage. Despite NSString functionality, the role played by 
NSStrings parallels the role played by character pointers.

When value objects are passed as method arguments or returned from a method, it is common to use a cop
instead of the object itself. For example, consider the following method for assigning a string to an object’s 
name instance variable.

- (void)setName:(NSString *)aName

{

[name autorelease];

name = [aName copy];

}

Storing a copy of aName has the effect of producing an object that’s independent of the original, but has 
the same contents. Subsequent changes to the copy don’t affect the original, and changes to the original 
don’t affect the copy. Similarly, it is common to return a copy of an instance variable instead of the instance 
variable itself. For example, this method returns a copy of the name instance variable:

- (NSString *)name

{

return [[name copy] autorelease];

}

1



 

 

Implementing NSCopying

There are two basic approaches to creating copies. You can use alloc and init..., or you can use 
NSCopyObject(). To choose the one that’s right for your class, you need to consider the following 
questions:

• “What kind of copying—deep or shallow—does your class need?”
• “Does your class’s superclass implement NSCopying?”
• “Are you familiar with the implementations of your class’s superclasses?”

These areas are described in the following sections.

What kind of copying—deep or shallow—does your class need?

Generally, copying an object involves creating a new instance and initializing it with the values in the 
original object. Copying the values for non-pointer instance variables, such as booleans, integers, and 
floating points, is straightforward. When copying pointer instance variables there are two approaches. One
approach, called a shallow copy, copies the pointer value from the original object into the copy. Thus, the 
original and the copy share referenced data. The other approach, called a deep copy, duplicates the data 
referenced by the pointer and assigns it to the copy’s instance variable.

The implementation of an instance variable’s set method should reflect the kind of copying you need to use.
You should deeply copy the instance variable if the corresponding set method copies the new value as in 
this method:

- (void)setMyVariable:(id)newValue

{

[myVariable autorelease];

myVariable = [newValue copy];

}

You should shallowly copy the instance variable if the corresponding set method retains the new value as 
in this method:

- (void)setMyVariable:(id)newValue

{

[myVariable autorelease];

myVariable = [newValue retain];

}

Similarly, you should shallowly copy the instance variable if its set method simply assigns the new value to 
the instance variable without copying or retaining it as in this method:

- (void)setMyVariable:(id)newValue

{

myVariable = newValue;

}

2



 Classes: NSCopying

r 

as 

 

To produce a copy of an object that’s truly independent of the original, the entire object must be deeply 
copied. Every instance variable must be duplicated. If the instance variables themselves have instance 
variables, those too must be duplicated, and so on. In many cases, a mixed approach is more useful. Pointe
instance variables that can be thought of as data containers are generally deeply copied, while more 
sophisticated instance variables like delegates are shallowly copied.

For example, a Product class adopts NSCopying. Product instances have a name, a price, and a delegate 
declared in this interface.

@interface Product : NSObject <NSCopying>

{

NSString *productName;

float price;

id delegate;

}

@end

Copying a Product instance produces a deep copy of productName because it represents a flat data value. 
On the other hand, the delegate instance variable is a more complex object capable of functioning properly 
for both Products. The copy and the original should therefore share the delegate. The following figure 
represents the images of a Product instance and a copy in memory.

 

The different pointer values for productName illustrate that the original and the copy each have their own 
productName string object. The pointer values for delegate are the same, indicating that the two product 
objects share the same object as their delegate.

Does your class’s superclass implement NSCopying?

If the superclass does not implement NSCopying, your class’s implementation will have to copy the 
instance variables it inherits as well as those declared in your class. Generally, the safest way to do this is
by using alloc, init..., and set methods. On the other hand, if your class inherits NSCopying behavior, its 
implementation only has to copy instance variables declared in your class. It invokes the superclass’s 
implementation to copy inherited instance variables.

original 0xf2ae4

isa 0x8028
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
productName 0xe81f4
price 0.00
delegate 0xe83c8
3



Are you familiar with the implementations of your class’s superclasses?

If your class inherits NSCopying behavior, how you handle the new instance variables in copyWithZone: 
depends on your familiarity with the superclass’s implementation. There are essentially two ways to make 
a copy of an object, using alloc and init... or using the function NSCopyObject(). If the superclass used or 
might have used NSCopyObject(), you must handle instance variables differently than you would 
otherwise.

Using the alloc, init... Approach

If a class does not inherit NSCopying behavior, you should implement copyWithZone: using alloc, init..., 
and set methods. For example, an implementation of copyWithZone: for the Product class described above 
might be implemented in the following way:

- (id)copyWithZone:(NSZone *)zone

{

Product *copy = [[Product alloc] 

initWithProductName:[self productName]

price:[self price]];

[copy setDelegate:[self delegate]];

return copy;

}

Because implementation details associated with inherited instance variables are encapsulated in the 
superclass, it is generally better to implement NSCopying with the alloc, init... approach. Doing so uses 
policy implemented in set methods to determine the kind of copying needed of instance variables.

Using NSCopyObject()

When a class inherits NSCopying behavior, you must consider the possibility that the superclass’s 
implementation uses NSCopyObject(). NSCopyObject() creates an exact shallow copy of an object by 
copying instance variable values but not the data they point to. For example, NSCell’s implementation of 
copyWithZone: could be defined in the following way.

- (id)copyWithZone:(NSZone *)zone

{

NSCell *cellCopy = NSCopyObject(self, 0, zone);

/* Assume that other initialization takes place here. */

cellCopy->image = nil;

[cellCopy setImage:[self image]];

return cellCopy;

}

4



 Classes: NSCopying

 

In the implementation above, NSCopyObject() creates an exact shallow copy of the original cell. This 
behavior is desirable for copying instance variables that aren’t pointers or are pointers to non-retained data
that is shallowly copied. Pointer instance variables for retained objects need additional treatment.

In the copyWithZone: example above, image is a pointer to a retained object. The policy to retain the image 
is reflected in the following implementation of the setImage: accessor method.

- (void)setImage:(NSImage *)anImage

{

[image autorelease];

image = [anImage retain];

}

Notice that setImage: autoreleases image before it reassigns it. If the above implementation of 
copyWithZone: hadn’t explicitly set the copy’s image instance variable to nil  before invoking setImage:, 
the image referenced by the copy and the original would be released without a corresponding retain.

Even though image points to the right object, it is conceptually uninitialized. Unlike the instance variables 
that are created with alloc and init..., these uninitialized variables aren’t nil-valued. You should explicitly 
assign initial values to these variables before using them. In this case, cellCopy’s image instance variable is 
set to nil , then it is set using the setImage: method.

The effects of NSCopyObject() extend to a subclass’s implementation. For example, an implementation of 
NSSliderCell could copy a new titleCell  instance variable in the following way.

- (id)copyWithZone:(NSZone *)zone

{

NSSliderCell *cellCopy = [super copyWithZone:zone];

/* Assume that other initialization takes place here. */

cellCopy->titleCell = nil;

[cellCopy setTitleCell:[self titleCell]];

return cellCopy;

}

The superclass’s copyWithZone: method is invoked to copy inherited instance variables. When you invoke 
a superclass’s copyWithZone: method, assume that new object instance variables are uninitialized if there’s 
any chance that the superclass implementation uses NSCopyObject(). Explicitly assign a value to them 
before using them. In this example, titleCell  is explicitly set to nil  before setTitleCell: is invoked.

The implementation of an object’s retain count is another consideration when using NSCopyObject(). If an 
object stores its retain count in an instance variable, the implementation of copyWithZone: must correctly 
initialize the copy’s retain count. The following figure illustrates the process.
5



 

The first object represents a Product instance in memory. The value in refCount indicates that the instance 
has been retained three times. The second object is a copy of the Product instance produced with 
NSCopyObject(). Its refCount value matches the original. The third object represents the copy returned 
from copyWithZone: after refCount is correctly initialized. After copyWithZone: creates the copy with 
NSCopyObject(), it assigns the value 1 to the refCount instance variable. The sender of copyWithZone: 
implicitly retains the copy and is responsible for releasing it.

NSCopying and Immutable Classes

Where the concept “immutable vs. mutable” applies to an object, NSCopying produces immutable copies 
whether the original is immutable or not. See the NSMutableCopying protocol for details on making 
mutable copies.

Immutable classes can implement NSCopying very efficiently. Since immutable objects don’t change, there 
is no need to duplicate them. Instead, NSCopying can be implemented to retain the original. For example, 
copyWithZone: for an immutable string class can be implemented in the following way.

- (id)copyWithZone:(NSZone *)zone

{

return [self retain];

}

Summary

• Implement NSCopying using alloc and init... in classes that don’t inherit copyWithZone:.

• Implement NSCopying by invoking the superclass’s copyWithZone: when NSCopying behavior is 
inherited. If the superclass implementation might use NSCopyObject(), make explicit assignments to 
pointer instance variables for retained objects.

• Implement NSCopying by retaining the original instead of creating a new copy when the class and its 
contents are immutable.

original 0xf2ae4

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 1
productName 0xe81f4
price 0.00
delegate 0xe83c8

The copy produced by
NSCopyObject

The copy after unitialized
instance variables are assigned
in copyWithZone:
6



 Classes: NSCopying
Instance Methods

copyWithZone:
– (id)copyWithZone:(NSZone *)zone

Returns a new instance that’s a copy of the receiver. Memory for the new instance is allocated from zone, 
which may be NULL. If zone is NULL, the new instance is allocated from the default zone, which is 
returned from NSDefaultMallocZone(). The returned object is implicitly retained by the sender, who is 
responsible for releasing it. The copy returned is immutable if the consideration “immutable vs. mutable” 
applies to the receiving object; otherwise the exact nature of the copy is determined by the class. 

See also: – mutableCopyWithZone: (NSMutableCopying protocol), – copy (NSObject)
7



 Classes: NSDecimalNumberBehaviors

 

NSDecimalNumberBehaviors

Adopted By: NSDecimalNumberHandler

Declared In: Foundation/NSDecimalNumber.h

Protocol Description

The NSDecimalBehaviors protocol declares three methods that control the discretionary aspects of working
with NSDecimalNumbers. The scale and roundingMode methods determine the precision of 
NSDecimalNumber’s return values, and the way in which those values should be rounded to fit that 
precision. The exceptionDuringOperation:error:leftOperand:rightOperand:  determines the way in 
which an NSDecimalNumber should handle different calculation errors.

For an example of a class that adopts the NSDecimalBehaviors protocol, see the specification for 
NSDecimalNumberHandler.

Method Types

Rounding
– roundingMode
– scale

Handling errors
– exceptionDuringOperation:error:leftOperand:rightOperand:

Instance Methods 

exceptionDuringOperation:error:leftOperand:rightOperand:
– (NSDecimalNumber *)exceptionDuringOperation:(SEL)method 

error: (NSCalculationError)error 
leftOperand:(NSDecimalNumber *)leftOperand 
rightOperand: (NSDecimalNumber *)rightOperand

Specifies what an NSDecimalNumber will do when, in the course of applying method to leftOperand and 
rightOperand, it encounters error. 

There are four possible values for error. The first three have to do with limits on NSDecimalNumber’s 
ability to represent decimal numbers. An NSDecimalNumber can represent any number that can be 
1



 

expressed as mantissa x 10exponent , where mantissa is a decimal integer up to 38 digits long, and exponent 
is between -256 and 256. If these limits are exceeded, the NSDecimalNumber returns one of the following 
errors:

• NSCalculationLossOfPrecision. The number can’t be represented in 38 significant digits.

• NSCalculationOverflow. The number is too large to represent.

• NSCalculationUnderflow. The  number is too small to represent.

The last error is simpler:

• NSCalculationDivideByZero. The caller tried to divide by zero.

In implementing exceptionDuringOperation:error:leftOperand:rightOperand , you can handle each of 
these errors in several ways:

• Raise an exception. For an explantion of exceptions, see the NSException class description in the 
Foundation Framework Reference.

• Return nil . The calling method will return its value as though no error had occurred. If error is 
NSCalculationLossOfPrecision, method will return an imprecise value—that is, one constrained to 38 
significant digits. If error is NSCalculationUnderflow or NSCalculationOverflow, method will return 
NSDecimalNumber’s notANumber. You shouldn’t return nil  if error is NSDivideByZero.

• Correct the error and return a valid NSDecimalNumber. The calling method will use this as its own return 
value.

roundingMode
– (NSRoundingMode)roundingMode

Returns the way that NSDecimalNumber’s decimalNumberBy... methods round their return values. There 
are four possible NSRoundingModes: 

• NSRoundDown. The methods round their return values down.
• NSRoundUp. The methods round their return values up.
• NSRoundPlain. The methods round to the closest possible return value. When they are caught halfway 

between two positive numbers, they round up; when caught between two negative numbers, they round
down.

• NSRoundBankers. The methods round to the closest possible return value. When they are caught halfway 
between two possibilities, they return the possibility whose last digit is even. In practice, this means that, 
over the long run, numbers will be rounded up as often as they are rounded down; there will be no 
systematic bias.

The rounding mode only matters if the scale method sets a limit on the precision of NSDecimalNumber 
return values. It has no effect if scale returns NSDecimalNoScale.
2



 Classes: NSDecimalNumberBehaviors
Assuming that scale returns 1, the NSRoundingMode has the following effects on various original values:

scale
– (short)scale

Limits the precision of the values returned by NSDecimalNumber’s decimalNumberBy... methods. 

Specifically, scale returns the number of digits allowed after the decimal separator. If scale returns a 
negative value, it affects the digits before the decimal separator as well. If scale returns NSDecimalNoScale, 
the number of digits is unlimited.

Assuming that roundingMode returns NSRoundPlain, different values of scale have the following effects 
on the number 123.456:

Original value NSRoundDown NSRoundUp NSRoundPlain NSRoundBankers

1.24 1.2 1.3 1.2 1.2

1.26 1.2 1.3 1.3 1.3

1.25 1.2 1.3 1.3 1.2

1.35 1.3 1.4 1.4 1.4

-1.35 -1.4 -1.3 -1.4 -1.4

Scale Return value

NSDecimalNoScale 123.456

2 123.45

0 123

-2 100
3



 Classes: NSLocking

 

 

NSLocking 

Adopted By: NSConditionLock
NSLock
NSRecursiveLock 

Declared In: Foundation/NSLock.h 

Protocol Description

The NSLocking protocol declares the elementary methods adopted by classes that define lock objects. A 
lock object is used to coordinate the actions of multiple threads of execution within a single application. By 
using a lock object, an application can protect critical sections of code from being executed simultaneously 
by separate threads, thus protecting shared data and other shared resources from corruption.

For example, consider a multithreaded application in which each thread updates a shared counter. If two 
threads simultaneously fetch the current value into local storage, increment it, and then write the value back,
the counter will be incremented only once, losing one thread’s contribution. However, if the code that 
manipulates the shared data (the critical section of code) must be locked before being executed, only one 
thread at a time can perform the updating operation, and collisions are prevented.

A lock object is either locked or unlocked. You acquire a lock by sending the object a lock message, thus 
putting the object in the locked state. You relinquish a lock by sending an unlock message, and thus putting 
the object in the unlocked state. (The NEXTSTEP classes that adopt this protocol define additional ways to
acquire and relinquish locks.)

The lock method as declared in this protocol is blocking. That is, the thread that sends a lock message is 
blocked from further execution until the lock is acquired (presumably because some other thread 
relinquishes its lock). Classes that adopt this protocol typically add methods that offer nonblocking 
alternatives.

These NEXTSTEP classes conform to the NSLocking protocol: 

Class Adds these features to the basic protocol

NSLock
A nonblocking lock method; the ability to limit the duration of a locking 
attempt.

NSConditionLock The ability to postpone entry to a critical section until a condition is met.

NSRecursiveLock
The ability for a single thread to acquire a lock more than once without 
deadlocking.
1



r 

 

 

The locking mechanism that these classes use causes a thread to sleep while waiting to acquire a lock rathe
than to poll the system constantly. Thus, lock objects can be used to lock time-consuming operations 
without causing system performance to degrade. See the class specifications for these classes for further
information on their behavior and usage.

There is some performance cost in acquiring a lock, so it’s best to avoid the overhead if possible. An 
application developer has control over whether the application will execute with multiple threads, so it’s 
clear when locking is appropriate. A library developer doesn’t necessarily know whether library code will 
execute in a multithreaded environment. In this case, it’s best to test whether the code is executing in a 
multithreaded environment before attempting to acquire a lock. The following example illustrates how this 
is done.

Assume your application uses a Counter object to record various operations. Here’s one design that lets the
Counter know whether it is multithreaded:

+ (void)initialize 

{

    if ([NSThread isMultiThreaded]) {

[self taskNowMultiThreaded:nil];

} else {

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(taskNowMultiThreaded:)

name:NSWillBecomeMultiThreadedNotification object:nil];

}

}

In the initialize method (which, by definition, is invoked before any Counter objects are created), the 
Counter class object first checks whether the application has already become multithreaded and if so 
invokes its own taskNowMultiThreaded:  method. Otherwise, it registers as an observer of 
NSWillBecomeMultiThreadedNotification so that taskNowMultiThreaded:  will be invoked when the 
application becomes multithreaded. 

Counter’s taskNowMultiThreaded:  method creates a lock object that the threads use to coordinate their 
activities:

+ (void)taskNowMultiThreaded:(NSNotification *)event 

{

if (!theLock)

theLock = [[NSLock alloc] init];

}

theLock, a static variable declared in the class implementation file, is assigned a value of nil  until 
taskNowMultiThreaded:  is invoked. Since messages sent to nil  are permitted and have no effect, code 
within Counter that acts on shared data can be written like this:

[theLock lock];

/* Operate on shared data */

[theLock unlock];
2



 Classes: NSLocking

e 

 

, 
With this approach, the overhead associated with lock operations is only incurred if the application is 
multithreaded. This code, however, raises another issue. What happens if one of the statements between th
lock and unlock messages cause the application to become multithreaded? Then the unlock message 
wouldn’t be paired with the preceding lock.

In normal usage, locking and unlocking messages are paired. However, as in the example above, it might 
be convenient to unlock a lock object that hasn’t yet been locked. This is permitted with two restrictions. 
First, you can send an unpaired unlocking message to a lock object as long as the object has never before
been locked. Second, of the NEXTSTEP classes that conform to the NSLocking protocol, only 
NSConditionLock and NSLock allow an unpaired unlocking message. NSRecursiveLock requires locking 
and unlocking messages to be paired.

NEXTSTEP’s locking classes are designed to work in a well-behaved, multithreaded environment: The 
protection they offer can be subverted by the use of signal handlers. A signal handler can interrupt a thread
execute code that affects shared data, and then let the thread resume without alerting the thread that the 
application has, in effect, become multithreaded. For this reason, it’s recommended that you don’t use 
signal handlers in multithreaded NEXTSTEP applications.

Instance Methods

lock
– (void)lock

Attempts to acquire a lock. This method blocks a thread’s execution until the lock can be acquired.

An application protects a critical section of code by requiring a thread to acquire a lock before executing 
the code. Once the critical section is past, the thread relinquishes the lock by invoking unlock.

unlock
– (void)unlock

Relinquishes a previously acquired lock. 
3



1

 Classes: NSMutableCopying

NSMutableCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

The NSMutableCopying protocol declares a method for providing mutable copies of an object. Only classes 
that define an “immutable vs. mutable” distinction should adopt this protocol. Classes that don’t define such 
a distinction should adopt NSCopying instead.

NSMutableCopying declares one method, mutableCopyWithZone:, but mutable copying is commonly 
invoked with the convenience method mutableCopy. The mutableCopy method is defined for all 
NSObjects and simply invokes mutableCopyWithZone: with the default zone.

See the NSCopying protocol for details on implementing copying behavior.

Instance Methods

mutableCopyWithZone:
– mutableCopyWithZone:(NSZone *)zone

Returns a new instance that’s a mutable copy of the receiver. Memory for the new instance is allocated from 
zone, which may be NULL. If zone is NULL, the new instance is allocated from the default zone, which is 
returned by NSDefaultMallocZone(). The returned object is implicitly retained by the sender, who is 
responsible for releasing it.  The copy returned is mutable whether the original is mutable or not.

See also: – copyWithZone: (NSCopying protocol), – mutableCopy (NSObject)



 Classes: NSObjCTypeSerializationCallBack
NSObjCTypeSerializationCallBack

Adopted By: No OpenStep classes

Declared In: Foundation/NSSerialization.h

Protocol Description 

An object conforms to the NSObjCTypeSerializationCallBack protocol so that it can intervene in the 
serialization and deserialization process. The primary purpose of this protocol is to allow for the 
serialization of objects and other data types that aren’t directly supported by OpenStep’s serialization 
facility. (See the NSSerializer class specification for information on serialization.) 

NSMutableData declares the method that’s used to begin the serialization process:

- (void)serializeDataAt:(const void *)data

ofObjCType:(const char *)type

context:(id <NSObjCTypeSerializationCallBack>)callback

This method can serialize all standard Objective C types (int , float, character strings, and so on) except for 
objects, union, and void *. If, during the serialization process, an object is encountered, the object passed 
as the callback argument above is asked to provide the serialization.

Suppose that the type being serialized is a structure of this description:

struct stockRecord {

NSString *stockName;

float value;

};

The Objective C type code for this structure is {@f}, so the serialization process begins with this message: 
(Assume that theData is the NSMutableData object that’s doing the serialization and helper is an object 
that conforms to the NSObjCTypeSerializationCallBack protocol.)

struct stockRecord aRecord = {@ "aCompany", 34.7};

[theData serializeDataAt:&aRecord ofObjCType: "{@f}"  context:helper];

Since the first field of the structure is an unsupported type, the helper object is sent a serializeObjectAt:
ofObjCType:intoData:  message, letting it serialize the object. helper might implement the method in this 
way:
1



- (void)serializeObjectAt:(id *)objectPtr

ofObjCType:(const char *)type

intoData:(NSMutableData *)theMutableData

{

NSString *nameObject;

char *companyName

nameObject = *objectPtr;

companyName = [nameObject cString];

[theData serializeDataAt:&companyName ofObjCType:@encode(typeof(companyName))

context:nil];

}

The callback object is free to serialize the target object as it wishes. In this case, helper simply extracts the 
company name from the NSString object and then has that character string serialized. Once this callback 
method finishes executing, the original method (serializeDataAt:ofObjCType:context:) resumes execution 
and serializes the second field of the structure. Since this second field contains a supported type (float), the 
callback method is not invoked again.

Deserialization follows a similar pattern, except in this case NSData declares the central method 
deserializeDataAt:ofObjCType:atCursor:context:. The deserialization of the example structure starts with 
a message to the NSData object that contains the serialized data:

(unsigned *)cursor = 0;

[theData deserializeDataAt:&aRecord ofObjCType:"{@f}" cursor:&cursor

context:helper];

(The cursor argument is a pointer to zero since we’re starting at the beginning of the data in the NSData 
object.) 

When this method is invoked, the callback object receives a deserializeObjectAt:ofObjCType:fromData:
atCursor:  message, as declared in this protocol. The callback object can then reestablish the first field of 
the structure. For example, helper might implement the method in this way:

- (void) deserializeObjectAt:(id *)objectPtr

ofObjCType:(const char *)type

fromData:(NSData *)data

atCursor:(unsigned *)cursor

{

char *companyName;

[theData deserializeDataAt:&companyName ofObjCType:"*" atCursor:cursor

context:nil];

*objectPtr = [[NSString stringWithCString:companyName] retain];

}

2



 Classes: NSObjCTypeSerializationCallBack
Instance Methods

deserializeObjectAt:ofObjCType:fromData:atCursor:
– (void)deserializeObjectAt:(id *)object

ofObjCType:(const char *)type
fromData:(NSData *)data
atCursor:(unsigned *)cursor 

The implementor of this method decodes the referenced object (which should always be of type "@") 
located at the cursor position in the data object. The decoded object is not autoreleased.

See also:  – deserializeDataAt:ofObjCType:atCursor:context: (NSData)

serializeObjectAt:ofObjCType:intoData:
– (void)serializeObjectAt:(id *)object

ofObjCType:(const char *)type
intoData:(NSMutableData *)data 

The implementor of this method encodes the referenced object (which should always be of type "@") in the 
data object. 

See also: – serializeDataAt:ofObjCType:context: (NSMutableData)
3



 Classes: NSObject

 

NSObject

Adopted By: NSObject

Declared In: Foundation/NSObject.h

Protocol Description

The NSObject protocol groups methods that are fundamental to all Objective-C objects. If an object 
conforms to this protocol, it can be considered a first-class object in NEXTSTEP. Such an object can be 
asked about its: 

• Class, and the place of its class in the inheritance hierarchy 
• Conformance to protocols
• Ability to respond to a particular message

In addition, objects that conform to this protocol—with its retain, release, and autorelease methods—can 
also integrate with the object-management and deallocation scheme defined in the Foundation Kit. (See the
introduction to the Foundation Kit for more information.) Thus, an object that conforms to the NSObject 
protocol can be managed by container objects like those defined by NSArray and NSDictionary.

NEXTSTEP’s root class, NSObject, adopts this protocol, so virtually all objects in NEXTSTEP have the 
features described by this protocol.

Method Types

Identifying classes
– class
– superclass

Identifying and comparing objects
– isEqual:
– hash
– self

Determining allocation zones
– zone
1



Managing reference counts
– retain
– release
– autorelease
– retainCount

Testing class functionality
– respondsToSelector:

Testing inheritance relationships
– isKindOfClass:
– isMemberOfClass:

Testing protocol conformance
– conformsToProtocol:

Describing objects
– description

Sending messages
– performSelector:
– performSelector:withObject:
– performSelector:withObject:withObject:

Identifying proxies
– isProxy

Instance Methods

autorelease
– (id)autorelease

Adds the receiver to the current autorelease pool and returns self. You add an object to an autorelease pool 
so that it will receive a release message—and thus might be deallocated—when the pool is destroyed. For 
more information on the autorelease mechanism, see the NSAutoreleasePool class specification.

See also: – retain, – retainCount

class
– (Class)class

Returns the class object for the receiver’s class.

See also: + class (NSObject class)
2



 Classes: NSObject

as 
conformsToProtocol:
– (BOOL)conformsToProtocol:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol, NO otherwise.  This method works identically to 
the conformsToProtocol: class method declared in NSObject.  It’s provided as a convenience so that you 
don’t need to get the class object to find out whether an instance can respond to a given set of messages.

See also: + conformsToProtocol: (NSObject class)

description
– (NSString *)description

Returns an NSString object that describes the contents of the receiver.  The debugger’s print-object  
command indirectly invokes this method to produce a textual description of an object.

hash
– (unsigned)hash

Returns an integer that can be used as a table address in a hash table structure.  If two objects are equal (
determined by the isEqual: method), they must have the same hash value. This last point is particularly 
important if you define hash in a subclass and intend to put instances of that subclass into a collection.

If a mutable object is added to a collection that uses hash values to determine the object’s position in the 
collection, the value returned by the hash method of the object must not change while the object is in the 
collection. To accomplish this, either the hash method must not rely on any of the object’s internal state 
information or you must make sure that the object’s internal state information does not change while the 
object is in the collection. (Note that it can be difficult to know whether or not a given object is in a 
collection.)

isEqual:
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal, NO otherwise.  This method defines what it means for 
an instance to be equal.  For example, a container object might define two containers as equal if their 
corresponding objects all respond YES to an isEqual: request.  See the NSData, NSDictionary, NSArray, 
and NSString class specifications for examples of the use of this method.
3



ss 

.

isKindOfClass:
– (BOOL)isKindOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass or an instance of any class that inherits from aClass, 
NO otherwise.  For example, in this code, isKindOfClass: would return YES because, in the Foundation 
Kit, the NSArchiver class inherits from NSCoder:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];

id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];

if ( [anArchiver isKindOfClass:[NSCoder class]] )

...

Because instance methods defined in the root class can be sent to class objects, when the receiver is a cla
object, this method returns YES if aClass is NSObject, NO otherwise.

See also: – isMemberOfClass:

isMemberOfClass:
– (BOOL)isMemberOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass, NO otherwise.  For example, in this code, 
isMemberOfClass: would return NO:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];

id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];

if ([anArchiver isMemberOfClass:[NSCoder class]])

...

When the receiver is a class object, this method returns NO.  Class objects are not “members of” any class

See also: – isKindOfClass:

isProxy
– (BOOL)isProxy

Returns NO if the receiver really descends from NSObject, YES otherwise. This method is necessary 
because sending isKindOfClass: or isMemberOfClass: to an NSProxy object will test the object that the 
proxy stands-in for, not itself. Use this method to test if the receiver is a proxy (or a member of some other 
root class).
4



 Classes: NSObject

 

performSelector:
– (id)performSelector:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message.  If aSelector is NULL, an 
NSInvalidArgumentException is raised.

performSelector: is equivalent to sending an aSelector message directly to the receiver.  For example, all 
three of the following messages do the same thing:

id myClone = [anObject copy];

id myClone = [anObject performSelector:@selector(copy)];

id myClone = [anObject performSelector:sel_getUid("copy")];

However, the performSelector: method allows you to send messages that aren’t determined until run time.  
A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();

[anObject performSelector:myMethod];

aSelector should identify a method that takes no arguments.  For methods that return anything other than an
object, use NSInvocation.

See also: – performSelector:withObject: , – performSelector:withObject:withObject:

performSelector:withObject:
– (id)performSelector:(SEL)aSelector withObject: (id)anObject

Sends an aSelector message to the receiver with anObject as the argument.  If aSelector is NULL, an 
NSInvalidArgumentException is raised.

This method is the same as performSelector: except that you can supply an argument for  aSelector.  
aSelector should identify a method that takes a single argument of type id. For methods with other argument 
types and return values, use NSInvocation.

See also:  – performSelector:withObject:withObject: , – methodForSelector: (NSObject class)

performSelector:withObject:withObject:
– (id)performSelector:(SEL)aSelector

withObject: (id)anObject
withObject: (id)anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments. If aSelector is 
NULL, an NSInvalidArgumentException is raised. This method is the same as performSelector: except 
5



es 

e 
d 

 

 

t 
that you can supply two arguments for  aSelector. aSelector should identify a method that can take two 
arguments of type id. For methods with other argument types and return values use NSInvocation.

See also: – performSelector:withObject:, – methodForSelector: (NSObject class)

release
– (oneway void)release

Decrements the receivers’s reference count, and sends it a dealloc message when its reference count reach
0.

You send release messages only to objects that you “own."  By definition, you own objects that you create 
using one of the alloc... or copy... methods.  These methods return objects with an implicit reference count 
of one.  You also own (or perhaps share ownership in) an object that you send a retain message to becaus
retain increments the object’s reference count.  Each retain message you send an object should be balance
eventually with a release or autorelease message, so that the object can be deallocated.  For more 
information on the automatic deallocation mechanism, see the introduction to the Foundation Kit.

You would only implement this method to define your own reference-counting scheme.  Such 
implementations should not invoke the inherited method; that is, they should not include a release message
to super.

See also: – retainCount

respondsToSelector:
– (BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to aSelector messages,  NO 
otherwise.  The application is responsible for determining whether a NO response should be considered an
error.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to respond 
to the message, albeit indirectly, even though this method returns NO.

See also: – forwardInvocation:  (NSObject class), + instancesRespondToSelector:(NSObject class)

retain
– (id)retain

Increments the receiver’s reference count.  You send an object a retain message when you want to preven
it from being deallocated without your express permission.
6



 Classes: NSObject

 

 

 

An object is deallocated automatically when its reference count reaches 0.  retain messages increment the
reference count, and release messages decrement it.  For more information on this mechanism, see the 
introduction to the Foundation Kit.

As a convenience, retain returns self because it is often used in nested expressions:

NSString *systemApps = [[NSString

stringWithCString:”/System/Applications”] retain];

You would only implement this method if you were defining your own reference-counting scheme.  Such 
implementations must return self and should not invoke the inherited method by sending a retain message
to super.

See also: – autorelease, – release, – retainCount

retainCount
– (unsigned)retainCount

Returns the receiver’s reference count for debugging purposes.  You rarely send a retainCount message; 
however, you might implement this method in a class to implement your own reference-counting scheme.  
For objects that never get released (that is, their release method does nothing), this method should return
UINT_MAX, as defined in <limits.h>.

See also: – autorelease, – retain

self
– (id)self

Returns the receiver.

See also: – class

superclass
– (Class)superclass

Returns the class object for the receiver’s superclass.

See also: + superclass (NSObject class)
7



zone
– (NSZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created without specifying a 
zone are allocated from the default zone.

See also: + allocWithZone: (NSObject class)
8



Defined Types

NSBTreeComparator

DECLARED IN Foundation/NSByteStore.h

SYNOPSIS typedef int NSBTreeComparator(NSData *, NSData *, const void *);

NSComparisonResult

DECLARED IN Foundation/NSObject.h

SYNOPSIS typedef enum _NSComparisonResult {
NSOrderedAscending = -1,
NSOrderedSame,
NSOrderedDescending

} NSComparisonResult;

DESCRIPTION An NSComparisonResult indicates how items in a request are ordered, from the first one given 
in a method invocation or function call to the last (that is, left-to-right in code).
1



NSHashTableCallBacks

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS typedef struct {
unsigned (*hash)(NSHashTable *table, const void *);
BOOL (*isEqual)(NSHashTable *table, const void *, const void *);
void (*retain)(NSHashTable *table, const void *);
void (*release)(NSHashTable *table, void *);
NSString *(*describe)(NSHashTable *table, const void *);

} NSHashTableCallBacks;

NSMapTableKeyCallBacks

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS typedef struct {
unsigned (*hash)(NSMapTable *table, const void *);
BOOL (*isEqual)(NSMapTable *table, const void *, const void *);
void (*retain)(NSMapTable *table, const void *);
void (*release)(NSMapTable *table, void *);
NSString *(*describe)(NSMapTable *table, const void *);
 const void *notAKeyMarker ;

} NSMapTableKeyCallBacks;

NSMapTableValueCallBacks

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS typedef struct {
void (*retain)(NSMapTable *table, const void *);
void (*release)(NSMapTable *table, void *);
NSString *(*describe)(NSMapTable *table, const void *);

} NSMapTableValueCallBacks;
2



NSNotificationCoalescing

DECLARED IN Foundation/NSNotificationQueue.h

SYNOPSIS typedef enum {
NSNotificationNoCoalescing = 0,
NSNotificationCoalescingOnName = 1,
NSNotificationCoalescingOnSender = 2,

} NSNotificationCoalescing;

NSObjCValue

DECLARED IN Foundation/NSInvocation.h

SYNOPSIS typedef struct {
enum _NSObjCValueType type;
union {

char charValue;
short shortValue;
long longValue;
long long longlongValue;
float floatValue;
double doubleValue;
SEL selectorValue;
id objectValue;
void *pointerValue;
void *structLocation;
char *cStringLocation;

} value;
} NSObjCValue;
3



NSPoint

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS typedef struct _NSPoint {
    float x;
    float y;
} NSPoint;

NSPosixFileActivity

DECLARED IN Foundation/NSPosixFileDescriptor.h

SYNOPSIS typedef enum {
NSPosixNoActivity = 0,
NSPosixReadableActivity = 1,
NSPosixWritableActivity  = 2,
NSPosixExceptionalActivity = 4

} NSPosixFileActivity;

NSPostingStyle

DECLARED IN Foundation/NSNotificationQueue.h

SYNOPSIS typedef enum {
NSPostWhenIdle = 1,
NSPostASAP = 2,
NSPostNow = 3

} NSPostingStyle;
4



NSRange

DECLARED IN Foundation/NSRange.h

SYNOPSIS typedef struct _NSRange {
unsigned int location;
unsigned int length;

} NSRange;

DESCRIPTION An NSRange describes a portion of a series—such as characters in a string or objects in an 
NSArray.  Its location member gives the start index (0 is the first, as in C arrays), and its length 
member gives the number of items in the range (and can be zero).

NSRect

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS typedef struct _NSRect {
NSPoint origin;
NSSize size;

} NSRect;

NSRectEdge

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS typedef enum _NSRectEdge {
NSMinXEdge = 0,
NSMinYEdge = 1,
NSMaxXEdge = 2,
NSMaxYEdge = 3

} NSRectEdge;

DESCRIPTION This enumeration identifies the sides of a rectangle represented by an NSRect.
5



NSSize

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS typedef struct _NSSize {
float width;
float height;

} NSSize;

DESCRIPTION The values for width and height should never be negative.

NSStringEncoding

DECLARED IN Foundation/NSString.h

SYNOPSIS typedef unsigned NSStringEncoding;

NSTimeInterval

DECLARED IN Foundation/NSDate.h

SYNOPSIS typedef double NSTimeInterval;

DESCRIPTION Always in seconds; yields sub-millisecond precision over a range of 10000 years.

NSUncaughtExceptionHandler

DECLARED IN Foundation/NSException.h

SYNOPSIS typedef volatile void NSUncaughtExceptionHandler(NSException *exception);
6



Enumerations

NSByteOrder

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS enum NSByteOrder {
NS_UnknownByteOrder,
NS_LittleEndian,
NS_BigEndian

};

DESCRIPTION

NSNotFound

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS enum {
NSNotFound = 0x7fffffff

};

DESCRIPTION A method or function return value of NSNotFound indicates that the item requested couldn’t be 
found or doesn’t exist.  It’s typically used by various methods and functions that search for items 
in serial data and return indices, such as characters in a string object or ids in an NSArray.
7



NSOpenStepUnicodeReservedBase

DECLARED IN Foundation/NSCharacterSet.h

SYNOPSIS enum {
NSOpenStepUnicodeReservedBase = 0xF400

};

DESCRIPTION  

ObjC Types

DECLARED IN Foundation/NSInvocation.h

SYNOPSIS enum _NSObjCValueType {
NSObjCNoType = 0,
NSObjCVoidType = 'v',
NSObjCCharType = 'c',
NSObjCShortType = 's',
NSObjCLongType = 'l',
NSObjCLonglongType = 'q',
NSObjCFloatType = 'f',
NSObjCDoubleType = 'd',
NSObjCSelectorType = ':',
NSObjCObjectType = '@',
NSObjCStructType = '{',
NSObjCPointerType = '^',
NSObjCStringType = '*',
NSObjCArrayType  = '[', 
NSObjCUnionType = '(', 
NSObjCBitfield  = 'b', 

};
8



 

Search Types

DECLARED IN Foundation/NSString.h

SYNOPSIS enum {
NSCaseInsensitiveSearch = 1,
NSLiteralSearch = 2,
NSBackwardsSearch = 4,
NSAnchoredSearch = 8

};

DESCRIPTION These values represent the options available to many of the string classes’ searching and 
comparison methods.  See the NSString class cluster description for details on the effects of these
options.

String Encodings

DECLARED IN Foundation/NSString.h

SYNOPSIS enum {
NSASCIIStringEncoding = 1,
NSNEXTSTEPStringEncoding = 2,
NSJapaneseEUCStringEncoding = 3,
NSUTF8StringEncoding = 4,
NSISOLatin1StringEncoding = 5,
NSSymbolStringEncoding = 6,
NSNonLossyASCIIStringEncoding = 7,
NSShiftJISStringEncoding = 8,
NSISOLatin2StringEncoding = 9,
NSUnicodeStringEncoding = 10,
NSWindowsCP1251StringEncoding = 11,
NSWindowsCP1252StringEncoding = 12, 
NSWindowsCP1253StringEncoding = 13, 
NSWindowsCP1254StringEncoding = 14, 
NSWindowsCP1250StringEncoding = 15,
NSISO2022JPStringEncoding = 21 

};
9



e 
DESCRIPTION These values represent the various character encodings supported by the NSString classes.  Thes
encodings are documented more fully elsewhere; here are some short descriptions: 

Encoding Description

NSASCIIStringEncoding Strict 7-bit ASCII encoding within 8-bit chars

NSNEXTSTEPStringEncoding 8-bit ASCII encoding with NEXTSTEP extensions 
(see Appendix C of the NEXTSTEP General 
Reference)

NSUnicodeStringEncoding The canonical Unicode encoding for string objects

NSISOLatin1StringEncoding 8-bit ISO Latin 1 encoding

NSISOLatin2StringEncoding 8-bit ISO Latin 2 encoding

NSSymbolStringEncoding 8-bit Adobe Symbol encoding vector

NSJapaneseEUCStringEncoding 8-bit EUC encoding for Japanese text

NSShiftJISStringEncoding 8-bit Shift-JIS encoding for Japanese text

NSUTF8StringEncoding An 8-bit representation of Unicode characters, 
suitable for transmission or storage by ASCII-based 
systems

NSNonLossyASCIIStringEncoding 7-bit verbose ASCII to represent all Unicode 
characters. 

NSWindowsCP1250StringEncoding Microsoft Windows codepage 1250; equivalent to 
WinLatin2 

NSWindowsCP1251StringEncoding Microsoft Windows codepage 1251, encoding 
Cyrillic characters; equivalent to 
AdobeStandardCyrillic font encoding 

NSWindowsCP1252StringEncoding Microsoft Windows codepage 1252; equivalent to 
WinLatin1 

NSWindowsCP1253StringEncoding Microsoft Windows codepage 1253, encoding Greek 
characters

NSWindowsCP1254StringEncoding Microsoft Windows codepage 1254, encoding 
Turkish characters

NSISO2022JPStringEncoding ISO 2022 Japanese encoding for electronic mail
10



Global Variables

Archiving Exception Names

DECLARED IN Foundation/NSArchiver.h

SYNOPSIS extern NSString *NSInconsistentArchiveException;

Bundle Notification Names

DECLARED IN Foundation/NSBundle.h

SYNOPSIS extern NSString *NSBundleLoaded;

Byte Store Exception Names

DECLARED IN Foundation/NSByteStore.h

SYNOPSIS extern NSString *NSByteStoreLockedException;
extern NSString *NSByteStoreVersionException;
extern NSString *NSBTreeStoreKeyTooLargeException;
extern NSString *NSByteStoreDamagedException;
11



Connection Exception Names

DECLARED IN Foundation/NSConnection.h

SYNOPSIS extern NSString *NSFailedAuthenticationException;

Connection Notification Names

DECLARED IN Foundation/NSConnection.h

SYNOPSIS extern NSString *NSConnectionDidDieNotification;

File Attribute Keys

DECLARED IN Foundation/NSFileManager.h

SYNOPSIS extern NSString *NSFileType;
extern NSString *NSFileTypeDirectory;
extern NSString *NSFileTypeRegular;
extern NSString *NSFileTypeSymbolicLink;
extern NSString *NSFileTypeSocket;
extern NSString *NSFileTypeCharacterSpecial;
extern NSString *NSFileTypeBlockSpecial;
extern NSString *NSFileTypeUnknown;
extern NSString *NSFileSize;
extern NSString *NSFileModificationDate;
extern NSString *NSFileReferenceCount;
extern NSString *NSFileDeviceIdentifier;
extern NSString *NSFileOwnerAccountNumber;
extern NSString *NSFileGroupOwnerAccountNumber;
extern NSString *NSFilePosixPermissions;
extern NSString *NSFileSystemNumber;
extern NSString *NSFileSystemFileNumber;
12



DESCRIPTION Keys to access the file attribute values contained in the NSDictionary returned from 
NSFileManager’s  fileAttributesAtPath:follow: . See the class specification for NSFileManager 
for details of usage. NSFileDeviceIdentifier is used to access the identifier of a remote device.

File Exception Names

DECLARED IN Foundation/NSPosix.h

SYNOPSIS extern NSString *NSPosixFileOperationException;

File System Attribute Keys

DECLARED IN Foundation/NSFileManager.h

SYNOPSIS extern NSString *NSFileSystemSize;
extern NSString *NSFileSystemFreeSize;
extern NSString *NSFileSystemNodes;
extern NSString *NSFileSystemFreeNodes;
13



General Exception Names

DECLARED IN Foundation/NSException.h

SYNOPSIS extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;
extern NSString *NSInternalInconsistencyException;
extern NSString *NSMallocException;
extern NSString *NSObjectInaccessibleException;
extern NSString *NSObjectNotAvailableException;
extern NSString *NSDestinationInvalidException;
extern NSString *NSPortTimeoutException;
extern NSString *NSInvalidSendPortException;
extern NSString *NSInvalidReceivePortException;
extern NSString *NSPortSendException;
extern NSString *NSPortReceiveException;
extern NSString *NSOldStyleException;
extern NSString *NSInvalidSendPort;
extern NSString *NSInvalidReceivePort;
extern NSString *NSPortSendError;
extern NSString *NSPortReceiveError;
extern NSString *NSCharacterConversionException;

Hash Table Call Backs

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS extern const NSHashTableCallBacks NSIntHashCallBacks;
extern const NSHashTableCallBacks NSNonOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSPointerToStructHashCallBacks;
extern const NSHashTableCallBacks NSObjectHashCallBacks;
extern const NSHashTableCallBacks NSNonRetainedObjectHashCallBacks;;

DESCRIPTION NSIntHashCallBacks are for sets of pointer-sized quantities or samller (for example, ints, longs, 
or unichars).
14



NSNonOwnedPointerHashCallBacks are for sets of pointers, hashed by address.

NSOwnedPointerHashCallBacks are for sets of pointers, with transfer of ownership upon 
insertion.

NSPointerToStructHashCallBacks are for sets of pointers to structs, when the first field of the 
struct is int-sized.

NSObjectHashCallBacks are for sets of objects (similar to NSSet)

NSNonRetainedObjectHashCallBacks are for sets of objects, but without retaining/releasing.

Note that you can make your own call back by picking fields among the above call backs.
15



Language-Dependent Information

DECLARED IN Foundation/NSUserDefaults.h

SYNOPSIS extern NSString *NSWeekDayNameArray;
extern NSString *NSShortWeekDayNameArray;
extern NSString *NSMonthNameArray;
extern NSString *NSShortMonthNameArray;
extern NSString *NSTimeFormatString;
extern NSString *NSDateFormatString;
extern NSString *NSTimeDateFormatString;
extern NSString *NSShortTimeDateFormatString;
extern NSString *NSCurrencySymbol;
extern NSString *NSDecimalSeparator;
extern NSString *NSThousandsSeparator;
extern NSString *NSInternationalCurrencyString ;
extern NSString *NSCurrencyString;
extern NSString *NSDecimalDigits;
extern NSString *NSAMPMDesignation;
extern NSString *NSHourNameDesignations;
extern NSString *NSYearMonthWeekDesignations;
extern NSString *NSEarlierTimeDesignations;
extern NSString *NSLaterTimeDesignations;
extern NSString *NSThisDayDesignations;
extern NSString *NSNextDayDesignations;
extern NSString *NSNextNextDayDesignations;
extern NSString *NSPriorDayDesignations;
extern NSString *NSDateTimeOrdering;
16



Map Table Key Call Backs

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS extern const NSMapTableKeyCallBacks NSIntMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerOrNullMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSOwnedPointerMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSObjectMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonRetainedObjectMapKeyCallBacks;

DESCRIPTION NSIntMapKeyCallBacks are for keys that are pointer-sized quantities or smaller (for example, 
ints, longs, or unichars).

NSNonOwnedPointerMapKeyCallBacks are for keys that are pointers not freed.

NSNonOwnedPointerOrNullMapKeyCallBacks are for keys that are pointers not freed, or 
NULL.

NSOwnedPointerMapKeyCallBacks are for keys that are pointers, with transfer of ownership 
upon insertion.

NSObjectMapKeyCallBacks are for keys that are objects

NSNonRetainedObjectMapKeyCallBacks are for sets of objects, but without 
retaining/releasing.

Note that you can make your own call back by picking fields among the above call backs.

Map Table Value Call Backs

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS extern const NSMapTableValueCallBacks NSIntMapValueCallBacks;
extern const NSMapTableValueCallBacks NSNonOwnedPointerMapValueCallBacks;
extern const NSMapTableValueCallBacks NSOwnedPointerMapValueCallBacks;
extern const NSMapTableValueCallBacks NSObjectMapValueCallBacks;

DESCRIPTION NSIntMapValueCallBacks are for values that are pointer-sized quantities, such as ints.
17



NSNonOwnedPointerMapValueCallBacks are for values that are not owned pointers.

NSOwnedPointerMapValueCallBacks are for values that are owned pointers.

NSObjectMapValueCallBacks are for values that are objects.

Note that you can make your own call back by picking fields among the above call backs.

NSConnectionReplyMode

DECLARED IN NSConnection.h

SYNOPSIS extern NSString *NSConnectionReplyMode;

NSDefaultRunLoopMode

DECLARED IN Foundation/NSRunLoop.h

SYNOPSIS extern NSString *NSDefaultRunLoopMode;

Port Notification Names

DECLARED IN Foundation/NSPort.h

SYNOPSIS extern NSString *NSPortDidBecomeInvalidNotification;
18



PPL Notification Names

DECLARED IN Foundation/NPPL.h

SYNOPSIS extern NSString *NSPPLDidBecomeDirtyNotification;
extern NSString *NSPPLDidSaveNotification;

Thread Notification Names

DECLARED IN Foundation/NSThread.h

SYNOPSIS extern NSString *NSBecomingMultiThreaded;
extern NSString *NSThreadExiting;

User Defaults

DECLARED IN Foundation/NSUserDefaults.h

SYNOPSIS extern NSString *NSGlobalDomain;
extern NSString *NSArgumentDomain;
extern NSString *NSRegistrationDomain;

Zero Constants

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS extern const NSPoint NSZeroPoint;
extern const NSSize NSZeroSize;
extern const NSRect NSZeroRect;
19



 

1

 

Functions and Macros

 

This section describes the functions and macros found in the Foundation Kit.

 

NSAllHashTableObjects

 

SUMMARY

 

This function returns all of the elements in the specified hash table.

 

DECLARED IN

 

Foundation/NSHashTable.h

 

SYNOPSIS

 

NSArray *

 

NSAllHashTableObjects

 

(NSHashTable *

 

table

 

)

 

DESCRIPTION

 

Returns an array object containing all the elements of 

 

table

 

. This function should be called only 
when the table elements are objects, not when they’re any other data type.

 

SEE ALSO

 

NSCreateHashTable, NSFreeHashTable

 

NSAllMapTableKeys

 

SUMMARY

 

This function returns all of the keys in the specified map table.

 

DECLARED IN

 

Foundation/NSMapTable.h

 

SYNOPSIS

 

NSArray *

 

NSAllMapTableKeys

 

(NSMapTable *

 

table

 

)

 

DESCRIPTION

 

NSAllMapTableKeys

 

 Returns an array object containing all the keys in 

 

table

 

. This function 
should be called only when the table keys are objects, not when they’re any other type of pointer.

 

SEE ALSO

 

NSMapMember, NSMapGet, NSEnumerateMapTable, NSNextMapEnumeratorPair, 
NSAllMapTableValues



 

2

 

NSAllMapTableValues

 

SUMMARY

 

This function returns all of the values in the specified table.

 

DECLARED IN

 

Foundation/NSMapTable.h

 

SYNOPSIS

 

NSArray *

 

NSAllMapTableValues

 

(NSMapTable *

 

table

 

)

 

DESCRIPTION

 

NSAllMapTableValues

 

 Returns an array object containing all the values in 

 

table

 

. This function 
should be called only when the table values are objects, not when they’re any other type of pointer.

 

SEE ALSO

 

NSMapMember, NSMapGet, NSEnumerateMapTable, NSNextMapEnumeratorPair, 
NSAllMapTableKeys

 

NSAllocateMemoryPages

 

SUMMARY

 

This function allocates a new block of memory.

 

DECLARED IN

 

Foundation/NSZone.h

 

SYNOPSIS

 

void *

 

NSAllocateMemoryPages

 

(unsigned int 

 

byteCount

 

)

 

DESCRIPTION

 

NSAllocateMemoryPages

 

 allocates the integral number of pages whose total size is closest to, 
but not less than, 

 

byteCount

 

. The allocated pages are guaranteed to be filled with zeros. 

 

SEE ALSO

 

NSCopyMemoryPages, NSDeallocateMemoryPages



 

3

 

NSAllocateObject

 

SUMMARY

 

This function creates new objects.

 

DECLARED IN

 

Foundation/NSObject.h

 

SYNOPSIS

 

id <NSObject> 

 

NSAllocateObject(

 

Class 

 

aClass

 

, unsigned int 

 

extraBytes

 

, NSZone *

 

zone

 

)

 

DESCRIPTION

 

NSAllocateObject allocates and returns a pointer to an instance of 

 

aClass

 

, created in the specified 

 

zone

 

 (or in the default zone, if 

 

zone

 

 is NULL). The 

 

extraBytes

 

 argument (usually zero) states the 
number of extra bytes required for indexed instance variables. Returns 

 

nil

 

 on failure.

 

SEE ALSO

 

NSCopyObject, NSDeallocateObject

 

NSAssert

 

SUMMARY

 

This macro generates an assertion if the given condition is false.

 

DECLARED IN

 

Foundation/NSExceptions.h

 

SYNOPSIS

 

NSAssert(

 

condition

 

, 

 

NSString *

 

description

 

)

 

DESCRIPTION

 

Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes the method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

The 

 

NSAssert

 

 macro evaluates the condition and serves as a front end to the assertion handler. 
This macro should be used only within Objective-C methods. 

 

NSAssert

 

 takes no arguments other 
than the condition and format string.

 

condition

 

 must be an expression that evaluates to true or false. 

 

description

 

 is a 

 

printf

 

-style format 
string that contains the error message describing the failure condition.



 

4

 

Assertions are disabled if the preprocessor macro 

 

NS_BLOCK_ASSERTIONS

 

 is defined. All 
macros return 

 

void

 

.

 

SEE ALSO

 

NSLog, NSLogv, NSAssert1, NSCAssert, NSCParameterAssert, NSParameterAssert

 

NSAssert1

 

SUMMARY

 

NSAssert1 is one of a series of macros, as listed in the SYNOPSIS section, that generate assertions 
if the given condition is false.

 

DECLARED IN

 

Foundation/NSExceptions.h

 

SYNOPSIS

 

NSAssert1(

 

condition

 

, 

 

NSString *

 

description

 

, 

 

arg1

 

 )
NSAssert2(

 

condition

 

, 

 

NSString *

 

description

 

, 

 

arg1

 

,

 

 

 

arg2

 

)
NSAssert3(

 

condition

 

, 

 

NSString *

 

description

 

, 

 

arg1

 

, 

 

arg2

 

, 

 

arg3

 

)
NSAssert4(

 

condition

 

, 

 

NSString *

 

description

 

, 

 

arg1

 

,

 

 

 

arg2

 

, 

 

arg3

 

, 

 

arg4

 

)
NSAssert5(

 

condition

 

, 

 

NSString *

 

description

 

, 

 

arg1

 

, 

 

arg2

 

, 

 

arg3

 

, 

 

arg4

 

, 

 

arg5

 

)

 

DESCRIPTION

 

Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes the method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

The 

 

NSAssert

 

n macros evaluate the condition and serve as a front end to the assertion handler. 
These macros should be used only within Objective-C methods. NSAssertn takes the number of 
format-string arguments indicated by n.

condition must be an expression that evaluates to true or false. description is a printf -style format 
string that contains the error message describing the failure condition. Each arg parameter is an 
argument to be inserted, in place, into the description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert, NSCParameterAssert, NSParameterAssert



5

NSAssert2

SUMMARY See NSAssert1.

NSAssert3

SUMMARY See NSAssert1.

NSAssert4

SUMMARY See NSAssert1.

NSAssert5

SUMMARY See NSAssert1.

NSCAssert

SUMMARY This macro generates an assertion if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSCAssert(condition, NSString *description)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 



6

assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

The NSCAssert macro evaluates the condition and serves as a front end to the assertion handler. 
This macro should be used only within C functions. NSCAssert takes no arguments other than the 
condition and format string.

condition must be an expression that evaluates to true or false. description is a printf -style format 
string that describes the failure condition. 

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert1, NSCParameterAssert, NSParameterAssert

NSCAssert1

SUMMARY NSCAssert1 is one of a series of macros, as listed in the SYNOPSIS section, that generate 
assertions if the given condition is false.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSCAssert1(condition, NSString *description, arg1)
NSCAssert2(condition, NSString *description, arg1, arg2)
NSCAssert3(condition, NSString *description, arg1, arg2, arg3)
NSCAssert4(condition, NSString *description, arg1, arg2, arg3, arg4)
NSCAssert5(condition, NSString *description, arg1, arg2, arg3, arg4, arg5)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

The NSCAssertn macros evaluate the condition and serve as a front end to the assertion handler. 
These macros should be used only within Objective-C methods. NSCAssertn takes the number of 
format-string arguments indicated by n.



7

condition must be an expression that evaluates to true or false. description is a printf -style format 
string that describes the failure condition. Each arg is an argument to be inserted, in place, into the 
description.

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSCAssert, NSCParameterAssert, NSParameterAssert

NSCAssert2

SUMMARY See NSCAssert1.

NSCAssert3

SUMMARY See NSCAssert1.

NSCAssert4

SUMMARY See NSCAssert1.

NSCAssert5

SUMMARY See NSCAssert1.



8

NSClassFromString

SUMMARY This function obtains a class by name.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS Class NSClassFromString(NSString *aClassName)

DESCRIPTION NSClassFromString returns the class object named by aClassName, or nil  if no class by that 
name is currently loaded.

SEE ALSO NSStringFromClass

NSCompareHashTables

SUMMARY This function compares the elements of two hash tables for equality.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS BOOL NSCompareHashTables(NSHashTable *table1, NSHashTable *table2)

DESCRIPTION Returns YES if the two hash tables are equal—that is, if each element of table1 is in table2, and 
the two tables are the same size.

SEE ALSO NSCreateHashTable, NSCreateHashTableWithZone

NSCompareMapTables

SUMMARY This function compares the elements of two map tables for equality.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS BOOL NSCompareMapTables(NSMapTable *table1, NSMapTable *table2)



9

DESCRIPTION Returns YES if each key of table1 is in table2, and the two tables are the same size. Note that this 
function does not compare values, only keys.

SEE ALSO NSCreateMapTable, NSCreateMapTableWithZone

NSContainsRect

SUMMARY This function determines whether one rectangle completely encloses another.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSContainsRect(NSRect aRect, NSRect bRect)

DESCRIPTION Returns YES if aRect completely encloses bRect. For this condition to be true, bRect cannot be 
empty and its sides must not touch the sides of aRect.

NSConvertHostDoubleToSwapped

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSConvertHostDoubleToSwapped(double x)

DESCRIPTION Converts the double value in x to a value whose bytes can be swapped. This function does not 
actually swap the bytes of x. You should not need to call this method directly. 

SEE ALSO NSSwapHostDoubleToBig, NSSwapHostDoubleToLittle



10

NSConvertHostFloatToSwapped

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSConvertHostFloatToSwapped(float x)

DESCRIPTION Converts the float value in x to a value whose bytes can be swapped. This function does not 
actually swap the bytes of x. You should not need to call this method directly.

SEE ALSO NSSwapHostFloatToBig, NSSwapHostFloatToLittle

NSConvertSwappedDoubleToHost

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS double NSConvertSwappedDoubleToHost(NSSwappedDouble x)

DESCRIPTION Converts the value in x to a double value. This function does not actually swap the bytes of x. You 
should not need to call this method directly.

SEE ALSO NSSwapBigDoubleToHost, NSSwapLittleDoubleToHost

NSConvertSwappedFloatToHost

SUMMARY This function performs a type conversion.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS float NSConvertSwappedFloatToHost(NSSwappedFloat x)



11

DESCRIPTION Converts the value in x to a float value. This function does not actually swap the bytes of x. You 
should not need to call this method directly.

SEE ALSO NSSwapBigFloatToHost, NSSwapLittleFloatToHost

NSCopyHashTableWithZone

SUMMARY This function performs a shallow copy of the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashTable *NSCopyHashTableWithZone(NSHashTable *table, NSZone *zone)

DESCRIPTION Returns a pointer to a new copy of table, created in zone and containing pointers to the data 
elements of table. If zone is NULL, the new table is created in the default zone. 

The new table adopts the callback functions of table and calls the hash and retain callback 
functions as appropriate when inserting elements into the new table.

SEE ALSO NSCreateHashTable, NSCreateHashTableWithZone, NSHashTableCallBacks (structure)

NSCopyMapTableWithZone

SUMMARY This function performs a shallow copy of the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapTable *NSCopyMapTableWithZone(NSMapTable *table, NSZone *zone)

DESCRIPTION Returns a pointer to a new copy of table, created in zone and containing pointers to the keys and 
values of table. If zone is NULL, the new table is created in the default zone. 



12

The new table adopts the callback functions of table and calls the hash and retain callback 
functions as appropriate when inserting elements into the new table.

SEE ALSO NSCreateMapTable, NSCreateMapTableWithZone, NSMapTableKeyCallBacks 
(structure), NSMapTableValueCallBacks (structure)

NSCopyMemoryPages

SUMMARY This function copies a block of memory.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSCopyMemoryPages(const void *source, void *destination, unsigned int byteCount)

DESCRIPTION Copies (or copies-on-write) byteCount bytes from source to destination.

SEE ALSO NSAllocateMemoryPages, NSDeallocateMemoryPages

NSCopyObject

SUMMARY This function creates exact copies of objects.

DECLARED IN Foundation/NSObject.h

SYNOPSIS id <NSObject> NSCopyObject(id <NSObject> anObject, unsigned int extraBytes, 
NSZone *zone)

DESCRIPTION Creates and returns a new object that's an exact copy of anObject, created in the specified zone (or 
in the default zone, if zone is NULL). The extraBytes argument (usually zero) states the number 
of extra bytes required for indexed instance variables. Returns nil  if anObject is nil  or if anObject 
could not be copied.

SEE ALSO NSAllocateObject, NSDeallocateObject



13

NSCountHashTable

SUMMARY This function returns the number of elements in a hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS unsigned int NSCountHashTable(NSHashTable *table)

DESCRIPTION Returns the number of elements currently in table. 

NSCountMapTable

SUMMARY This function returns the number of elements in a map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS unsigned int NSCountMapTable(NSMapTable *table)

DESCRIPTION Returns the number of key/value pairs currently in table.

NSCParameterAssert  

SUMMARY This macro evaluates the specified parameter.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSCParameterAssert(condition)

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.



14

This macro validates a parameter for a C-function. Simply provide the parameter as the condition 
argument. The macro evaluates the parameter and, if the parameter evaluates to false, logs an error 
message which includes the parameter and then raises an exception. 

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined. All 
macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert, NSParameterAssert

NSCreateHashTable

SUMMARY This function creates a new hash table in the default zone.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashTable *NSCreateHashTable(NSHashTableCallBacks callBacks, unsigned int capacity)

DESCRIPTION NSCreateHashTable creates and returns a pointer to an NSHashTable in the default zone. 

The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small hash 
table is created. The NSHashTableCallBacks structure callBacks has five pointers to functions 
(documented under “Types and Constants”), with the following defaults: pointer hashing, if hash 
is NULL; pointer equality, if isEqual is NULL; no call-back upon adding an element, if retain is 
NULL; no call-back upon removing an element, if release is NULL; and a function returning a 
pointer’s hexadecimal value as a string, if describe is NULL. The hashing function must be 
defined such that if two data elements are equal, as defined by the comparison function, the values 
produced by hashing on these elements must also be equal. Also, data elements must remain 
invariant if the value of the hashing function depends on them; for example, if the hashing function 
operates directly on the characters of a string, that string can’t change.

SEE ALSO NSCopyHashTableWithZone, NSCreateHashTableWithZone



15

NSCreateHashTableWithZone

SUMMARY This function creates a new hash table in the specified zone.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashTable *NSCreateHashTableWithZone(NSHashTableCallBacks callBacks, 
unsigned int capacity, NSZone *zone)

DESCRIPTION This function creates a new hash table in the specified zone. If zone is NULL, the hash table is 
created in the default zone. 

The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small hash 
table is created. The NSHashTableCallBacks structure callBacks has five pointers to functions 
(documented under “Types and Constants”), with the following defaults: pointer hashing, if hash 
is NULL; pointer equality, if isEqual is NULL; no call-back upon adding an element, if retain is 
NULL; no call-back upon removing an element, if release is NULL; and a function returning a 
pointer’s hexadecimal value as a string, if describe is NULL. The hashing function must be 
defined such that if two data elements are equal, as defined by the comparison function, the values 
produced by hashing on these elements must also be equal. Also, data elements must remain 
invariant if the value of the hashing function depends on them; for example, if the hashing function 
operates directly on the characters of a string, that string can’t change.

SEE ALSO NSCreateHashTable

NSCreateMapTable

SUMMARY This function creates a new map table in the default zone.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapTable *NSCreateMapTable(NSMapTableKeyCallBacks keyCallBacks, 
NSMapTableValueCallBacks valueCallBacks, unsigned int capacity)

DESCRIPTION NSCreateMapTable creates, and returns a pointer to, an NSMapTable in the default zone; the 
table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small map table 
is created. The NSMapTableKeyCallBacks arguments are structures (documented under “Types 



16

and Constants”) that are very similar to the call-back structure used by NSCreateHashTable; in 
fact, they have the same defaults as documented for that function.

SEE ALSO NSCopyMapTableWithZone, NSCreateMapTableWithZone

NSCreateMapTableWithZone

SUMMARY This function creates a new map table in the specified zone.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapTable *NSCreateMapTableWithZone(NSMapTableKeyCallBacks keyCallBacks, 
NSMapTableValueCallBacks valueCallBacks, unsigned int capacity, NSZone *zone)

DESCRIPTION This function creates a new map table in the specified zone. If zone is NULL, the hash table is 
created in the default zone. 

The table’s size is dependent on (but generally not equal to) capacity. If capacity is 0, a small map 
table is created. The NSMapTableKeyCallBacks arguments are structures (documented under 
“Types and Constants”) that are very similar to the call-back structure used by 
NSCreateHashTable; in fact, they have the same defaults as documented for that function.

SEE ALSO NSCopyMapTableWithZone, NSCreateMapTable

NSCreateZone

SUMMARY Creates a new zone

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSZone *NSCreateZone(unsigned int startSize, unsigned int granularity, BOOL canFree)



17

DESCRIPTION Creates and returns a pointer to a new zone of startSize bytes, which will grow and shrink by 
granularity bytes. If canFree is zero, the allocator will never free memory, and malloc will be fast.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSSetZoneName

NSDeallocateMemoryPages

SUMMARY This function deallocates the specified block of memory.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSDeallocateMemoryPages(void *pointer, unsigned int byteCount)

DESCRIPTION This function deallocates memory that was allocated with NSAllocateMemoryPages.

SEE ALSO NSCopyMemoryPages, NSAllocateMemoryPages

NSDeallocateObject

SUMMARY This function destroys an existing object.

DECLARED IN Foundation/NSObject.h

SYNOPSIS void NSDeallocateObject(id <NSObject> anObject)

DESCRIPTION This function deallocates anObject, which must have been allocated using NSAllocateObject.

SEE ALSO NSCopyObject, NSAllocateObject



18

NSDecimalAdd

SUMMARY This function adds two decimal values.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalAdd(NSDecimal *result, const NSDecimal *leftOperand, const 
NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Adds leftOperand to rightOperand, and stores the sum in result. 

An NSDecimal can represent a number with up to 38 significant digits. If a number is more precise 
than that, it must be rounded off. roundingMode determines how to round it off. There are four 
possible rounding modes:

• NSRoundDown. The number rounds down.
• NSRoundUp. The number rounds up.
• NSRoundPlain. The number rounds to the closest 38-digit approximation. If the number is 

halfway between two positive numbers, it round up; if it’s halfway between two negative 
numbers, it rounds down.

• NSRoundBankers. The number rounds to the closest 38-digit approximation. If it is caught 
halfway between two possibilities, it rounds to the one whose last digit is even. In practice, this 
means that, over the long run, numbers will be rounded up as often as they are rounded down; 
there will be no systematic bias.

The return value indicates whether any machine limitations were encountered in the addition. If 
none were encountered, the function returns NSCalculationNoError. Otherwise it may return one 
of the following values: NSCalculationLossOfPrecision, NSCalculationOverflow or 
NSCalculationUnderflow. For descriptions of all these error conditions, see 
exceptionDuringOperation:error:leftOperand:rightOperand:  in the protocol specification 
for NSDecimalNumberBehaviors.



19

NSDecimalCompact

SUMMARY This function compacts the decimal structure for efficiency.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS void NSDecimalCompact(NSDecimal *number)

DESCRIPTION Formats number so that calculations using it will take up as little memory as possible. All the 
NSDecimal... arithmetic functions expect compact NSDecimal arguments.

NSDecimalCompare

SUMMARY This function compares two decimal values.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSComparisonResult NSDecimalCompare(const NSDecimal *leftOperand, const NSDecimal 
* rightOperand)

DESCRIPTION Compares leftOperand to rightOperand, with three possible return values.

• If leftOperand is bigger, the function returns NSOrderedDescending. 
• If rightOperand is bigger, the the function returns NSOrdered Ascending. 
• If the two operands are equal, the function returns NSOrderedSame.

NSDecimalCopy

SUMMARY This function copies the value of a decimal number.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS void NSDecimalCopy(NSDecimal *destination, const NSDecimal *source)



20

DESCRIPTION Copies the value in source to destination.

NSDecimalDivide

SUMMARY This function divides one decimal value by another.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalDivide(NSDecimal *result, const NSDecimal *leftOperand, 
const NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Divides leftOperand by rightOperand, and stores the quotient, possibly rounded off according to 
roundingMode, in result. If rightOperand is 0, returns NSDivideByZero.

For explanations of the other possible return values, and of all the possible roundingMode’s, see 
NSDecimalAdd, above.

Note that this function can’t precisely represent a non-decimal fraction like 1/3.

NSDecimalIsNotANumber

SUMMARY This function determines if the specified decimal contains a valid number.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS BOOL NSDecimalIsNotANumber(const NSDecimal *decimal)

DESCRIPTION Returns YES if the value in decimal represents a valid number, otherwise returns NO.



21

NSDecimalMultiply

SUMMARY This function multiplies two decimal numbers together.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalMultiply (NSDecimal *result, const NSDecimal *leftOperand, 
const NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Multiplies rightOperand by leftOperand, and stores the product, possibly rounded off according 
to roundingMode, in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.

NSDecimalMultiplyByPowerOf10

SUMMARY This function multiplies a decimal by the specified power of 10.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalMultiplyByPowerOf10(NSDecimal *result, const NSDecimal 
*number, short power, NSRoundingMode roundingMode)

DESCRIPTION Multiplies number by 10power, and stores the product, possibly rounded off according to 
roundingMode, in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.



22

NSDecimalNormalize

SUMMARY This function normalizes the internal format of two decimal numbers to simplify later operations.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalNormalize(NSDecimal *number1, NSDecimal *number2, 
NSRoundingMode roundingMode)

DESCRIPTION An NSDecimal is represented in memory as a mantissa and an exponent, expressing the value 
mantissa x 10exponent. A number can have many NSDecimal representations; for example, the 
following table lists several valid NSDecimal representations for the number 100:

NSDecimalNormalize formats number1 and number2 so that they have equal exponents. This 
format makes addition and subtraction very convenient. Both NSDecimalAdd and 
NSDecimalSubtract call NSDecimalNormalize. You may want to use it if you write more 
complicated addition or subtraction routines.

For explanations of the function’s possible return values, see NSDecimalAdd, above.

NSDecimalPower

SUMMARY This function raises the decimal value to the specified power.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalPower(NSDecimal *result, const NSDecimal *number, 
unsigned int power, NSRoundingMode roundingMode)

Mantissa Exponent

100 0

10 1

1 2



23

DESCRIPTION Raises number to power, possibly rounding off according to roundingMode, and stores the 
resulting value in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.

NSDecimalRound

SUMMARY This function rounds off the decimal value.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS void NSDecimalRound(NSDecimal *result, const NSDecimal *number, int scale, 
NSRoundingMode roundingMode)

DESCRIPTION Rounds number off according to the parameters scale and rounding mode, and stores the result in 
result.

scale specifies the number of digits result can have after its decimal point. roundingMode specifies 
the way that number is rounded off. There are four possible values for roundingMode: 
NSRoundDown, NSRoundUp, NSRoundPlain, and NSRoundBankers. For thorough discussions 
of scale and roundingMode, see the scale and roundingMode in the protocol specification for 
NSDecimalNumberBehaviors.

NSDecimalString

SUMMARY This function returns a string representation of the decimal value.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSString *NSDecimalString(const NSDecimal *decimal, NSDictionary *locale)

DESCRIPTION Returns a string representation of decimal. locale determines the format of the decimal separator. 



24

NSDecimalSubtract

SUMMARY This function subtracts one decimal value from another.

DECLARED IN Foundation/NSDecimal.h

SYNOPSIS NSCalculationError NSDecimalSubtract(NSDecimal *result, const NSDecimal *leftOperand, 
const NSDecimal *rightOperand, NSRoundingMode roundingMode)

DESCRIPTION Subtracts rightOperand from leftOperand, and stores the difference, possibly rounded off 
according to roundingMode, in result. 

For explanations of the possible return values and roundingMode’s, see NSDecimalAdd, above.

NSDecrementExtraRefCountWasZero

SUMMARY This function decrements the specified object’s reference count.

DECLARED IN Foundation/NSObject.h

SYNOPSIS BOOL NSDecrementExtraRefCountWasZero(id anObject)

DESCRIPTION This function decrements the “extra reference” count of an object. Newly created objects have 
only one actual reference, so that a single release message results in the object being deallocated. 
Extra references are those beyond the single original reference, and are usually created by sending 
the object a retain message. Your code should generally not use these functions unless it is 
overriding the retain or release methods. 

This function returns NO if anObject had an extra reference count. If anObject didn’t have an extra 
referenct count, it returns YES, indicating that the object should be deallocated (with dealloc).

SEE ALSO NSExtraRefCount, NSIncrementExtraRefCount



25

NSDefaultMallocZone

SUMMARY Returns the default zone

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSZone *NSDefaultMallocZone(void)

DESCRIPTION Returns the default zone, which is created automatically at startup. This is the zone used by the 
standard C function malloc.

SEE ALSO NSCreateZone

NSDivideRect

SUMMARY This function divides a rectangle into two new rectangles.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS void NSDivideRect(NSRect inRect, NSRect *slice, NSRect *remainder, float amount, 
NSRectEdge edge)

DESCRIPTION Creates two rectangles, slice and remainder, from inRect, by dividing inRect with a line that’s 
parallel to one of inRect’s sides (namely, the side specified by edge—either NSMinXEdge, 
NSMinYEdge, NSMaxXEdge, or NSMaxYEdge). The size of slice is determined by amount, 
which measures the distance from edge.

SEE ALSO NSInsetRect, NSIntegralRect, NSOffsetRect



26

NSEnumerateHashTable

SUMMARY This function creates an enumerator for the specified hash table. 

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSHashEnumerator NSEnumerateHashTable(NSHashTable *table)

DESCRIPTION Returns an NSHashEnumerator structure that will cause successive elements of table to be 
returned each time this enumerator is passed to NSNextHashEnumeratorItem.

SEE ALSO NSNextHashEnumeratorItem

NSEnumerateMapTable

SUMMARY This function creates an enumerator for the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSMapEnumerator NSEnumerateMapTable(NSMapTable *table)

DESCRIPTION NSEnumerateMapTable returns an NSMapEnumerator structure that will cause successive 
key/value pairs of table to be visited each time this enumerator is passed to 
NSNextMapEnumeratorPair.

SEE ALSO NSNextMapEnumeratorPair, NSMapMember, NSMapGet, NSAllMapTableKeys, 
NSAllMapTableValues



27

NSEqualPoints

SUMMARY This function tests the two points for equality.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSEqualPoints(NSPoint aPoint, NSPoint bPoint)

DESCRIPTION Returns YES if the two points aPoint and bPoint are identical, and NO otherwise.

NSEqualRanges

SUMMARY This function tests the two range values for equality.

DECLARED IN Foundation/NSRange.h

SYNOPSIS BOOL NSEqualRanges(NSRange range1, NSRange range2)

DESCRIPTION Returns YES if range1 and range2 have the same locations and lengths.

NSEqualRects

SUMMARY This function tests the two rectangles for equality.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSEqualRects(NSRect aRect, NSRect bRect)

DESCRIPTION Returns YES if the two rectangles aRect and bRect are identical, and NOotherwise.



28

NSEqualSizes

SUMMARY This function tests the two size values for equality.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSEqualSizes(NSSize aSize, NSSize bSize)

DESCRIPTION Returns YES if the two sizes aSize and bSize are identical, and NO otherwise.

NSExtraRefCount

SUMMARY This function returns the specified object’s reference count.

DECLARED IN Foundation/NSObject.h

SYNOPSIS unsigned int NSExtraRefCount(id object)

DESCRIPTION Returns the current reference count of object. This function is used in conjunction with 
NSIncrementExtraRefCount and NSDecrementExtraRefCountWasZero in situations where 
you need to override an object’s retain and release methods.

NSFreeHashTable

SUMMARY This function deletes the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSFreeHashTable(NSHashTable *table)

DESCRIPTION NSFreeHashTable releases each element of the specified hash table and frees the table itself.

SEE ALSO NSResetHashTable



29

NSFreeMapTable

SUMMARY This function deletes the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSFreeMapTable(NSMapTable *table)

DESCRIPTION NSFreeMapTable releases each key and value of the specified map table and frees the table itself. 

SEE ALSO NSResetMapTable

NSFullUserName

SUMMARY This function returns the full name of the current user.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSFullUserName(void)

DESCRIPTION Returns a string containing the full name of the current user. 

SEE ALSO NSUserName

NSGetSizeAndAlignment

SUMMARY This function returns the type and size of the specified data type.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS const char *NSGetSizeAndAlignment(const char *typePtr, 
unsigned int *sizep, 
unsigned int *alignp)



30

DESCRIPTION Gets the next type code from typePtr and returns the size and alignment of that data type in sizep 
and alignp, respectively. You can specify 0 for either sizep or alignp to ignore the corresponding 
information. This function returns a new pointer to the string specified by typePtr; the new pointer 
points to the character just past the type code that was read.

NSGetUncaughtExceptionHandler

SUMMARY This function returns the top-level error handler.

DECLARED IN Foundation/NSException.h

SYNOPSIS NSUncaughtExceptionHandler *NSGetUncaughtExceptionHandler(void)

DESCRIPTION NSGetUncaughtExceptionHandler returns a pointer to the function serving as the top-level 
error handler. This handler will process exceptions raised outside of any exception-handling 
domain.

SEE ALSO NSSetUncaughtExceptionHandler

NSHashGet

SUMMARY This function returns an element of the hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void *NSHashGet(NSHashTable *table, const void *pointer)

DESCRIPTION Returns the pointer in the table that matches pointer (as defined by the isEqual call-back 
function). If there is no matching element, the function returns NULL



31

NSHashInsert

SUMMARY This function adds an element to the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSHashInsert(NSHashTable *table, const void *pointer)

DESCRIPTION NSHashInsert inserts pointer, which must not be NULL, into table. If pointer matches an item 
already in the table, the previous pointer is released using the release call-back function that was 
specified when the table was created.

SEE ALSO NSHashRemove, NSHashInsertKnownAbsent, NSHashInsertIfAbsent

NSHashInsertIfAbsent

SUMMARY This function adds an element to the specified hash table only if the table does not already contain 
the element.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void *NSHashInsertIfAbsent(NSHashTable *table, const void *pointer)

DESCRIPTION If pointer matches an item already in table, NSHashInsertIfAbsent returns the pre-existing 
pointer; otherwise, it adds pointer to the table and returns NULL. You must not specify NULL for 
pointer.

SEE ALSO NSHashRemove, NSHashInsert, NSHashInsertKnownAbsent



32

NSHashInsertKnownAbsent

SUMMARY This function adds an element to the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSHashInsertKnownAbsent(NSHashTable *table, const void *pointer)

DESCRIPTION NSHashInsertKnownAbsent inserts pointer, which must not be NULL, into table. Unike 
NSHashInsert, this function raises NSInvalidArgumentException if table already includes an 
element that matches pointer.

SEE ALSO NSHashRemove, NSHashInsert, NSHashInsertIfAbsent

NSHashRemove

SUMMARY This function removes an element from the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSHashRemove(NSHashTable *table, const void *pointer)

DESCRIPTION If pointer matches an item already in table, this function releases the pre-existing item.

SEE ALSO NSHashInsert, NSHashInsertKnownAbsent, NSHashInsertIfAbsent

NSHeight

SUMMARY This function returns the height of the specified rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSHeight(NSRect aRect)



33

DESCRIPTION Returns the height of aRect. 

SEE ALSO NSMaxX, NSMaxY, NSMidX, NSMidY, NSMinX, NSMinY, NSWidth

NSHomeDirectory

SUMMARY This function getsinformation about a user.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSHomeDirectory(void)

DESCRIPTION NSHomeDirectory returns a path to the current user’s home directory.

SEE ALSO NSFullUserName, NSUserName, NSHomeDirectoryForUser

NSHomeDirectoryForUser

SUMMARY Get information about a user

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSHomeDirectoryForUser(NSString *userName)

DESCRIPTION NSHomeDirectoryForUser returns a path to the home directory for the user specified by 
userName.

SEE ALSO NSFullUserName, NSUserName, NSHomeDirectory



34

NSHostByteOrder

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSHostByteOrder(void)

DESCRIPTION Returns the endian format, either NSLittleEndian or NSBigEndian, supported by the current 
platform.

NSIncrementExtraRefCount

SUMMARY This function increments the specified object’s reference count.

DECLARED IN Foundation/NSObject.h

SYNOPSIS void NSIncrementExtraRefCount(id anObject)

DESCRIPTION This function increments the “extra reference” count of an object. Newly created objects have only 
one actual reference, so that a single release message results in the object being deallocated. Extra 
references are those beyond the single original reference, and are usually created by sending the 
object a retain message. Your code should generally not use these functions unless it is overriding 
the retain or release methods.

SEE ALSO NSExtraRefCount, NSDecrementExtraRefCountWasZero

NSInsetRect

SUMMARY This function insets the rectangle by the specified amount.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSInsetRect(NSRect aRect, float dX, float dY)



35

DESCRIPTION NSInsetRect returns a copy of the rectangle aRect, altered by moving the two sides that are 
parallel to the y-axis inwards by dX, and the two sides parallel to the x-axis inwards by dY.

SEE ALSO NSDivideRect, NSIntegralRect, NSOffsetRect

NSIntegralRect

SUMMARY This function adjusts the sides of the rectangle to integer values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSIntegralRect(NSRect aRect)

DESCRIPTION NSIntegralRect returns a copy of the rectangle aRect, expanded outwards just enough to ensure 
that none of its four defining values (x, y, width, and height) have fractional parts. If aRect’s width 
or height is zero or negative, this function returns a rectangle with origin at (0.0, 0.0) and with zero 
width and height.

SEE ALSO NSDivideRect, NSInsetRect, NSOffsetRect

NSIntersectionRange

SUMMARY This function returns the intersection of the specified ranges.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSIntersectionRange(NSRange range1, NSRange range2)

DESCRIPTION NSIntersectionRange returns a range describing the intersection of range1 and range2—that is, 
a range containing the indices that exist in both ranges. If the returned range’s length field is zero, 
then the two ranges don’t intersect, and the value of the location field is undefined.

SEE ALSO NSUnionRange



36

NSIntersectionRect

SUMMARY This function calculates the intersection of two rectangles.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSIntersectionRect(NSRect aRect, NSRect bRect)

DESCRIPTION NSIntersectionRect returns the graphic intersection of aRect and bRect. If the two rectangles 
don’t overlap, the returned rectangle has its origin at (0.0, 0.0) and zero width and height. (This 
includes situations where the intersection is a point or a line segment.)

SEE ALSO NSUnionRect

NSIntersectsRect

SUMMARY This function tests whether two rectangles intersect.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSIntersectsRect(NSRect aRect, NSRect bRect)

DESCRIPTION Returns YES if aRect intersects bRect, otherwise returns NO. This function returns NO if either 
aRect and bRect has a width or height that is 0.

SEE ALSO NSIntersectionRect



37

NSIsEmptyRect

SUMMARY This function tests whether the specified rectangle is empty.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSIsEmptyRect(NSRect aRect)

DESCRIPTION Returns YES if the rectangle encloses no area at all—that is, if its width or height is zero or 
negative.

NSJavaBundleCleanup

SYNOPSIS void NSJavaBundleCleanup(NSBundle *bundle, NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaBundleSetup

SYNOPSIS id NSJavaBundleSetup(NSBundle *bundle, NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaNeedsToLoadClasses

SYNOPSIS BOOL NSJavaNeedsToLoadClasses(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>



38

NSJavaNeedsVirtualMachine

SYNOPSIS BOOL NSJavaNeedsVirtualMachine(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaProvidesClasses

SYNOPSIS BOOL NSJavaProvidesClasses(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaSetup

SYNOPSIS id NSJavaSetup(NSDictionary *plist)

DESCRIPTION <<Description Forthcoming>>

NSJavaVirtualMachineSetup

SYNOPSIS id NSJavaVirtualMachineSetup(BOOL *vmNeeded)

DESCRIPTION <<Description Forthcoming>>



39

NSLocationInRange

SUMMARY This function verifies that the specified position is in the given range.

DECLARED IN Foundation/NSRange.h

SYNOPSIS BOOL NSLocationInRange(unsigned int index, NSRange aRange)

DESCRIPTION NSLocationInRange returns YES if the given index lies within aRange—that is, if it’s greater 
than or equal to aRange.location and less than aRange.location plus aRange.length.

NSLog

SUMMARY This function logs error messages to stderr.

DECLARED IN Foundation/NSUtilities.h

SYNOPSIS void NSLog(NSString *format, ...)

DESCRIPTION NSLog simply calls NSLogv, passing it a variable number of arguments. 

SEE ALSO NSLogv

NSLogPageSize

SUMMARY This function returns the binary log of the page size.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSLogPageSize(void)



40

DESCRIPTION NSLogPageSize returns the binary log of the current page size. 

SEE ALSO NSRoundDownToMultipleOfPageSize, NSRoundUpToMultipleOfPageSize, NSPageSize

NSLogv 

SUMMARY This function logs error messages to stderr.

DECLARED IN Foundation/NSUtilities.h

SYNOPSIS void NSLogv(NSString *format, va_list args)

DESCRIPTION NSLogv logs an error message. The message consists of a timestamp and the process ID prefixed 
to the string you pass in. You compose this string with a format string , format, and one or more 
arguments to be inserted into the string. The format specification allowed by these functions is that 
which is understood by NSString’s formatting capabilities (which is not necessarily the set of 
format escapes and flags understood by printf ). 

In general, you should use the NSLog function instead of calling this function directly. If you do 
use this function directly, you must have prepared the the variable argument list in the args 
parameter by calling the standard C macro va_start. Upon completion, you must similarly call the 
standard C macro va_end for this list.

On HP-UX, Solaris, and Mach, NSLogv writes the log to STDERR_FILENO if the file descriptor 
is open. If that fails, the message is sent to the syslog subsystem, if it exists on a platform, with the 
LOG_USER facility (or default facility if LOG_USER doesn't exist on a platform), with priority 
LOG_ERR (or similar, depending on what the platform supports). If both of these attempts to 
write the message fail, the message is discarded.

On Windows platforms, the message is written to the STD_ERROR_HANDLE, if that handle is 
valid, on Windows platforms that support that standard handle. It is also written to the Windows 
Event Log on Windows platforms that support that, or to a file c:\fndation.log on Windows 
platforms that do not, if that file can be opened. If all of these attempts fail, the message is 
discarded. On some Windows platforms, the message to the Event Log may be truncated if there 
is a limit to the size of a message that the Event Log can accept. On Windows platforms that 
support an application discovering whether or not it’s running under a debugger, NSLogv may 
only send the message to the debugger for its handling, via standard WIN32 mechanisms, and not 
also write the message to STD_ERROR_HANDLE and the Event Log. Note that a debugger may 



41

choose to not display message thus sent to it, or may choose not to display all of the message—
that has nothing to do with NSLogv.

Output from NSLogv is serialized, in that only one thread in a process can be doing the 
writing/logging described above at a time. All attempts at writing/logging a message complete 
before the next thread can begin its attempts.

The effects of NSLogv are not serialized with subsystems other than those discussed above (such 
as the standard I/O package) and do not produce side effects on those subsystems (such as causing 
buffered output to be flushed, which may be undesirable).

SEE ALSO NSLog

NSMakePoint

SUMMARY This function creates a new NSPoint from the specified values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSPoint NSMakePoint(float x, float y)

DESCRIPTION Creates an NSPoint having the coordinates x and y.

NSMakeRange

SUMMARY This function creates a new NSRange from the specified values.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSMakeRange(unsigned int location, unsigned int length)

DESCRIPTION Creates an NSRange having the specified location and length.



42

NSMakeRect

SUMMARY This function creates a new NSRect from the specified values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSMakeRect(float x, float y, float w, float h)

DESCRIPTION Creates an NSRect having the specified origin and size.

NSMakeSize

SUMMARY This function creates a new NSSize from the specified values.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSSize NSMakeSize(float w, float h)

DESCRIPTION Creates an NSSize having the specified width and height.

NSMapGet

SUMMARY This function returns a map-table value for the specified key.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void *NSMapGet(NSMapTable *table, const void *key)

DESCRIPTION Returns the value that table maps to key, or NULL if the table doesn’t contain key.

SEE ALSO NSMapMember, NSEnumerateMapTable, NSNextMapEnumeratorPair, 
NSAllMapTableKeys, NSAllMapTableValues



43

NSMapInsert

SUMMARY This function inserts a key/value pair into the specified table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSMapInsert(NSMapTable *table, const void *key, const void *value)

DESCRIPTION NSMapInsert inserts key and value into table. If key matches a key already in the table, value is 
retained and the previous value is released, using the retain and release call-back functions that 
were specified when the table was created. Raises InvalidArgumentException if key is equal to the 
notAKeyMarker  field of the table’s NSMapTableKeyCallBacks structure.

SEE ALSO NSMapRemove, NSMapInsertIfAbsent, NSMapInsertKnownAbsent

NSMapInsertIfAbsent

SUMMARY This function inserts a key/value pair into the specified table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void *NSMapInsertIfAbsent(NSMapTable *table, const void *key, const void *value)

DESCRIPTION If key matches a key already in table, NSMapInsertIfAbsent returns the pre-existing key; 
otherwise, it adds key and value to the table and returns NULL. Raises 
NSInvalidArgumentException if key is equal to the notAKeyMarker  field of the table’s 
NSMapTableKeyCallBacks structure.

SEE ALSO NSMapRemove, NSMapInsert, NSMapInsertKnownAbsent



44

NSMapInsertKnownAbsent

SUMMARY This function inserts a key/value pair into the specified table if the pair had not been previously 
added.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSMapInsertKnownAbsent(NSMapTable *table, const void *key, const void *value)

DESCRIPTION NSMapInsertKnownAbsent inserts key (which must not be notAKeyMarker ) and value into 
table. Unlike NSMapInsert, this function raises NSInvalidArgumentException if table already 
includes a key that matches key.

SEE ALSO NSMapRemove, NSMapInsert, NSMapInsertIfAbsent

NSMapMember

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS BOOL NSMapMember(NSMapTable *table, const void *key, void **originalKey, void **value)

DESCRIPTION Returns YES if table contains a key equal to key. If so, originalKey is set to key, and value is set to 
the value that the table maps to key.

SEE ALSO NSMapGet, NSEnumerateMapTable, NSNextMapEnumeratorPair, NSAllMapTableKeys, 
NSAllMapTableValues

NSMapRemove

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSMapRemove(NSMapTable *table, const void *key)



45

DESCRIPTION If key matches a key already in table, this function release the pre-existing key and its 
corresponding value.

SEE ALSO NSMapInsert, NSMapInsertIfAbsent, NSMapInsertKnownAbsent

NSMaxRange

DECLARED IN Foundation/NSRange.h

SYNOPSIS unsigned int NSMaxRange(NSRange range)

DESCRIPTION Returns range.location + range.length—in other words, the number one greater than the 
maximum value within the range.

NSMaxX

SUMMARY This function returns the largest x-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMaxX(NSRect aRect)

DESCRIPTION NSMaxX returns the largest x-coordinate value within aRect. 

SEE ALSO NSWidth, NSHeight, NSMaxY



46

NSMaxY

SUMMARY This function returns the largest y-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMaxY(NSRect aRect)

DESCRIPTION NSMaxY returns the largest y-coordinate value within aRect. 

SEE ALSO NSWidth, NSHeight, NSMaxX

NSMidX

SUMMARY This function returns the x-coordinate of a rectangle’s midpoint.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMidX (NSRect aRect)

DESCRIPTION NSMidX  returns the x-coordinate of the center of the rectangle. 

SEE ALSO NSWidth, NSHeight, NSMidY

NSMidY

SUMMARY This function returns the y-coordinate of a rectangle’s midpoint.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMidY (NSRect aRect)



47

DESCRIPTION NSMidY  returns the y-coordinate of the rectangle’s center point.

SEE ALSO NSWidth, NSHeight, NSMidX

NSMinX

SUMMARY This function returns the smallest x-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMinX (NSRect aRect)

DESCRIPTION NSMinX  returns the smallest x-coordinate value within aRect.

SEE ALSO NSWidth, NSHeight, NSMinY

NSMinY

SUMMARY This function returns the smallest y-coordinate of a rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSMinY (NSRect aRect)

DESCRIPTION NSMinY  returns the smallest y-coordinate value within aRect .

SEE ALSO NSWidth, NSHeight, NSMinX



48

NSMouseInRect

SUMMARY This function tests whether the point is in the specified rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSMouseInRect(NSPoint aPoint, NSRect aRect, BOOL flipped)

DESCRIPTION Returns YES if the point represented by aPoint is located within the rectangle represented by 
aRect. It assumes an unscaled and unrotated coordinate system; the argument flipped should be 
YES if the coordinate system has been flipped so that the positive y-axis extends downward. This 
function is used to determine whether the hot spot of the cursor lies inside a given rectangle.

NSNextHashEnumeratorItem

SUMMARY This function returns the next hash-table element in the enumeration.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void *NSNextHashEnumeratorItem(NSHashEnumerator *enumerator)

DESCRIPTION NSNextHashEnumeratorItem returns the next element in the table that enumerator is associated 
with, or NULL if enumerator has already iterated over all the elements.

SEE ALSO NSEnumerateHashTable



49

NSNextMapEnumeratorPair

SUMMARY This function returns the next map-table pair in the enumeration

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS BOOL NSNextMapEnumeratorPair(NSMapEnumerator *enumerator, void **key, void 
** value) 

DESCRIPTION NSNextMapEnumeratorPair returns NO if enumerator has already iterated over all the 
elements in the table that enumerator is associated with. Otherwise, this function sets key and 
value to match the next key/value pair in the table, and returns YES.

SEE ALSO NSEnumerateMapTable, NSMapMember, NSMapGet, NSAllMapTableKeys, 
NSAllMapTableValues

NSOffsetRect

SUMMARY This function insets the rectangle by the specified amount.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSOffsetRect(NSRect aRect, float dX, float dY)

DESCRIPTION NSOffsetRect returns a copy of the rectangle aRect, with its location shifted by dX along the 
x-axis and by dY along the y-axis.

SEE ALSO NSDivideRect, NSInsetRect, NSIntegralRect



50

NSOpenStepRootDirectory

SUMMARY This function returns the root directory of the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSOpenStepRootDirectory(void)

DESCRIPTION Returns a string identifying the root directory of the user’s system.

SEE ALSO NSHomeDirectory, NSHomeDirectoryForUser

NSPageSize

SUMMARY This function returns the number of bytes in a page.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSPageSize(void)

DESCRIPTION NSPageSize returns the number of bytes in a page.

SEE ALSO NSRoundDownToMultipleOfPageSize, NSRoundUpToMultipleOfPageSize, 
NSLogPageSize

NSParameterAssert

SUMMARY This macro validates the specified parameter.

DECLARED IN Foundation/NSExceptions.h

SYNOPSIS NSParameterAssert(condition)



51

DESCRIPTION Assertions evaluate a condition and, if the condition evaluates to false, call the assertion handler 
for the current thread, passing it a format string and a variable number of arguments. Each thread 
has its own assertion handler, which is an object of class NSAssertionHandler. When invoked, an 
assertion handler prints an error message that includes method and class names (or the function 
name). It then raises an exception of type NSInternalInconsistencyException.

This macro validates a parameter for an Objective-C method. Simply provide the parameter as the 
condition argument. The macro evaluates the parameter and, if it is false, it logs an error message 
which includes the parameter and then raises an exception. 

Assertions are disabled if the preprocessor macro NS_BLOCK_ASSERTIONS is defined.All 
assertion macros return void.

SEE ALSO NSLog, NSLogv, NSAssert, NSCAssert, NSCParameterAssert

NSPointFromString

SUMMARY This function returns a point from a text-based representation.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSPoint NSPointFromString(NSString *aString)

DESCRIPTION Scans aString for text of the form “{x=a; y=b}” and returns the values for a and b in a new 
NSPoint object. If aString does not contain this text, this function returns an NSPoint object whose 
x- and y-coordinates are both 0.

SEE ALSO NSStringFromPoint



52

NSPointInRect

SUMMARY This function tests whether the specified point is in the rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS BOOL NSPointInRect(NSPoint aPoint, NSRect aRect)

DESCRIPTION  Performs the same test as NSMouseInRect, but assumes a flipped coordinate system.

NSRangeFromString

SUMMARY This function returns a range from a text-based representation.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSRangeFromString(NSString *aString)

DESCRIPTION Returns aString for text of the form: “{location = a; length = b}” and returns the values for a and 
b in a new NSRange object. If aString does not contain this text, this function returns an NSRange 
object whose location and length values are both 0.

SEE ALSO NSStringFromRange

NSRealMemoryAvailable

SUMMARY This function returns information about the user’s system.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSRealMemoryAvailable(void)

DESCRIPTION NSRealMemoryAvailable returns the number of bytes available in RAM.



53

NSRectFromString

SUMMARY This function returns a rectangle from a text-based representation.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSRectFromString(NSString *aString)

DESCRIPTION Scans aString for text of the form “{x=a; y=b; width=c; height=d}”, and returns the values for a, 
b, c, and d in a new NSRect object. If aString does not contain the specified text, this function 
returns an NSRect object with a rectangle whose origin is (0, 0) and width and height are both 0. 

SEE ALSO NSStringFromRect

NSRecycleZone

SUMMARY This function frees memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSRecycleZone(NSZone *zone)
void NSZoneFree(NSZone *zone, void *pointer)

DESCRIPTION NSRecycleZone frees zone after adding any of its pointers still in use to the default zone. (This 
strategy prevents retained objects from being inadvertently destroyed.)

NSZoneFree returns the memory indicated by pointer to zone. The standard C function free does 
the same, but spends time finding which zone the memory belongs to.

RETURN Both functions return void.

SEE ALSO NSCreateZone, NSZoneMalloc



54

NSResetHashTable

SUMMARY This function deletes the elements of the specified hash table.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS void NSResetHashTable(NSHashTable *table)

DESCRIPTION NSResetHashTable releases each element but doesn't deallocate the table. This is useful for 
preserving the table's capacity.

SEE ALSO NSFreeHashTable

NSResetMapTable

SUMMARY This function deletes the elements of the specified map table.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS void NSResetMapTable(NSMapTable *table)

DESCRIPTION NSResetMapTable releases each key and value but doesn’t deallocate the table. This is useful for 
preserving the table’s capacity.

SEE ALSO NSFreeMapTable

NSRoundDownToMultipleOfPageSize

SUMMARY This function returns the number of pages that correspond to the specified number of bytes.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSRoundDownToMultipleOfPageSize(unsigned int byteCount)



55

DESCRIPTION NSRoundDownToMultipleOfPageSize returns the multiple of the page size that is closest to, but 
not greater than, byteCount.

SEE ALSO NSPageSize, NSLogPageSize, NSRoundUpToMultipleOfPageSize

NSRoundUpToMultipleOfPageSize

SUMMARY This function returns the number of pages that correspond to the specified number of bytes.

DECLARED IN Foundation/NSZone.h

SYNOPSIS unsigned int NSRoundUpToMultipleOfPageSize(unsigned int byteCount)

DESCRIPTION NSRoundUpToMultipleOfPageSize returns the multiple of the page size that is closest to, but 
not less than, byteCount.

SEE ALSO NSPageSize, NSLogPageSize, NSRoundDownToMultipleOfPageSize

NSSearchPathForDirectoriesInDomains

SYNOPSIS NSArray *NSSearchPathForDirectoriesInDomains (NSSearchPathDirectory directory, 
NSSearchPathDomainMask domainMask, BOOL expandTilde)

DESCRIPTION <<Description forthcoming>>



56

NSSelectorFromString

SUMMARY This function obtains a selector by name.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS SEL NSSelectorFromString(NSString *aSelectorName)

DESCRIPTION NSSelectorFromString returns the selector named by aSelectorName, or zero if none by this 
name exists.

SEE ALSO NSStringFromSelector

NSSetUncaughtExceptionHandler

SUMMARY This function changes the top level error handler.

DECLARED IN Foundation/NSException.h

SYNOPSIS void NSSetUncaughtExceptionHandler(NSUncaughtExceptionHandler *handler)

DESCRIPTION NSSetUncaughtExceptionHandler sets the top-level error-handling function to handler. If 
handler is NULL or this function is never invoked, the default top-level handler is used.

SEE ALSO NSGetUncaughtExceptionHandler

NSSetZoneName

SUMMARY This function sets the name of the specified zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSSetZoneName(NSZone *zone, NSString *name)



57

DESCRIPTION NSSetZoneName sets the specified zone’s name to name, which can aid in debugging.

SEE ALSO NSZoneName

NSShouldRetainWithZone

SUMMARY This function indicates whether an object should be retained.

DECLARED IN Foundation/NSObject.h

SYNOPSIS BOOL NSShouldRetainWithZone(id <NSObject> anObject, NSZone *requestedZone)

DESCRIPTION Returns YES if requestedZone is NULL, the default zone, or the zone in which anObject was 
allocated. This function is typically called from inside an NSObject’s copyWithZone: method, 
when deciding whether to retain anObject as opposed to making a copy of it.

NSSizeFromString

SUMMARY This function returns an NSSize from a text-based representation.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSSize NSSizeFromString(NSString *aString)

DESCRIPTION Scans aString for text of the form “{width=a; height=b}” and returns the values for a and b in an 
NSSize object. If aString does not contain the specified text, this function returns an NSSize object 
whose width and height are both 0. 

SEE ALSO NSStringFromSize



58

NSStandardApplicationPaths

SUMMARY This function returns the application paths for the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSArray* NSStandardApplicationPaths(void)

DESCRIPTION Returns an array of strings, each string specifying one of the standard paths to the OpenStep 
applications.

SEE ALSO NSStandardLibraryPaths

NSStandardLibraryPaths

SUMMARY This function returns the library paths for the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSArray* NSStandardLibraryPaths(void)

DESCRIPTION Returns an array of strings, each string specifying one of the standard paths to the OpenStep 
libraries. 

SEE ALSO NSStandardApplicationPaths

NSStringFromClass

SUMMARY This function obtains the name of a class

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS NSString *NSStringFromClass(Class aClass)



59

DESCRIPTION This function returns an NSString containing the name of aClass.

SEE ALSO NSClassFromString

NSStringFromHashTable

SUMMARY This function returns a string describing the hash table’s contents.

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS NSString *NSStringFromHashTable(NSHashTable *table)

DESCRIPTION Returns a string describing the hash table’s contents. The function iterates over the table’s 
elements, and for each one appends the string returned by the describe call-back function. If 
NULL was specified for the call-back function, the hexadecimal value of each pointer is added to 
the string.

NSStringFromMapTable

SUMMARY This function returns a string describing the map table’s contents.

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS NSString *NSStringFromMapTable(NSMapTable *table)

DESCRIPTION Returns a string describing the map table’s contents. The function iterates over the table’s 
key/value pairs, and for each one appends the string “a = b;\n”, where a and b are the key and value 
strings returned by the corresponding describe call-back functions. If NULL was specified for the 
call-back function, a and b are the key and value pointers, expressed as hexadecimal numbers.



60

NSStringFromPoint

SUMMARY This function returns a string representation of a point.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSString *NSStringFromPoint(NSPoint aPoint)

DESCRIPTION Returns a string of the form “{x=a; y=b}”, where a and b are the x- and y-coordinates of aPoint.

SEE ALSO NSPointFromString

NSStringFromRange

SUMMARY This function returns a string representation of a range.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSString *NSStringFromRange(NSRange aRange)

DESCRIPTION Returns a string of the form: “{location = a; length = b}”, where a and b are non-negative integers 
representing aRange.

NSStringFromRect

SUMMARY This function returns a string representation of a rect.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSString *NSStringFromRect(NSRect aRect)



61

DESCRIPTION Returns a string of the form “{x=a; y=b; width=c; height=d}”, where a, b, c, and d are the x- and 
y-coordinates and the width and height, respectively, of aRect.

SEE ALSO NSRectFromString

NSStringFromSelector

SUMMARY This function returns the name of a selector.

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS NSString *NSStringFromSelector(SEL aSelector)

DESCRIPTION NSStringFromSelector returns an NSString containing the name of aSelector.

SEE ALSO NSSelectorFromString

NSStringFromSize

SUMMARY This function returns a string representation of a size.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSString *NSStringFromSize(NSSize aSize)

DESCRIPTION Returns a string of the form “{width=a; height=b}”, where a and b are the width and height of 
aSize.

SEE ALSO NSSizeFromString



62

NSSwapBigDoubleToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS double NSSwapBigDoubleToHost(NSSwappedDouble x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapDouble to 
perform the swap.

SEE ALSO NSSwapHostDoubleToBig, NSSwapLittleDoubleToHost

NSSwapBigFloatToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS float NSSwapBigFloatToHost(NSSwappedFloat x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapFloat to 
perform the swap.

SEE ALSO NSSwapHostFloatToBig, NSSwapLittleFloatToHost



63

NSSwapBigIntToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapBigIntToHost(unsigned int x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapInt to perform 
the swap.

SEE ALSO NSSwapHostIntToBig, NSSwapLittleIntToHost

NSSwapBigLongLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapBigLongLongToHost(unsigned long long x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapLongLong to 
perform the swap.

SEE ALSO NSSwapHostLongLongToBig, NSSwapLittleLongLongToHost



64

NSSwapBigLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapBigLongToHost(unsigned long x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapLong to 
perform the swap.

SEE ALSO NSSwapHostLongToBig, NSSwapLittleLongToHost

NSSwapBigShortToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapBigShortToHost(unsigned short x)

DESCRIPTION Converts the big-endian value in x to the endian format of the current platform and returns the 
resulting value. If it is necessary to swap the bytes of x, this function calls NSSwapShort to 
perform the swap.

SEE ALSO NSSwapHostShortToBig, NSSwapLittleShortToHost



65

NSSwapDouble 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSSwapDouble(NSSwappedDouble x)

DESCRIPTION Swaps the bytes of x and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of x are 
numbered from 1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes 
4 and 5.

SEE ALSO NSSwapLongLong, NSSwapFloat

NSSwapFloat 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSSwapFloat(NSSwappedFloat x)

DESCRIPTION Swaps the bytes of x and returns the resulting value.Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of x are 
numbered from 1 to 4, this function swaps bytes 1 and 4, and swaps bytes 2 and 3.

SEE ALSO NSSwapLong, NSSwapDouble



66

NSSwapHostDoubleToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSSwapHostDoubleToBig(double x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapDouble to perform the swap.

SEE ALSO NSSwapBigDoubleToHost, NSSwapHostDoubleToLittle

NSSwapHostDoubleToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedDouble NSSwapHostDoubleToLittle(double x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapDouble to perform the swap.

SEE ALSO NSSwapLittleDoubleToHost, NSSwapHostDoubleToBig



67

NSSwapHostFloatToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSSwapHostFloatToBig(float x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapFloat to perform the swap.

SEE ALSO NSSwapBigFloatToHost, NSSwapHostFloatToLittle

NSSwapHostFloatToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS NSSwappedFloat NSSwapHostFloatToLittle(float x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapFloat to perform the swap.

SEE ALSO NSSwapLittleFloatToHost, NSSwapHostFloatToBig



68

NSSwapHostIntToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapHostIntToBig(unsigned int x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls NSSwapInt 
to perform the swap.

SEE ALSO NSSwapBigIntToHost, NSSwapHostIntToLittle

NSSwapHostIntToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapHostIntToLittle(unsigned int x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapInt to perform the swap.

SEE ALSO NSSwapLittleIntToHost, NSSwapHostIntToBig



69

NSSwapHostLongLongToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapHostLongLongToBig(unsigned long long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLongLong to perform the swap.

SEE ALSO NSSwapBigLongLongToHost, NSSwapHostLongLongToLittle

NSSwapHostLongLongToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapHostLongLongToLittle(unsigned long long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLongLong to perform the swap.

SEE ALSO NSSwapLittleLongLongToHost, NSSwapHostLongLongToBig



70

NSSwapHostLongToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapHostLongToBig(unsigned long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLong to perform the swap.

SEE ALSO NSSwapBigLongToHost, NSSwapHostLongToLittle

NSSwapHostLongToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapHostLongToLittle(unsigned long x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLong to perform the swap.

SEE ALSO NSSwapLittleLongToHost, NSSwapHostLongToBig



71

NSSwapHostShortToBig 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapHostShortToBig(unsigned short x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to big-endian format 
and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapShort to perform the swap.

SEE ALSO NSSwapBigShortToHost, NSSwapHostShortToLittle

NSSwapHostShortToLittle 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapHostShortToLittle(unsigned short x)

DESCRIPTION Converts the value in x, specified in the endian format of the current platform, to little-endian 
format and returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapShort to perform the swap.

SEE ALSO NSSwapLittleShortToHost, NSSwapHostShortToBig



72

NSSwapInt 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapInt (unsigned int inv)

DESCRIPTION Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of inv 
are numbered from 1 to 4, this function swaps bytes 1 and 4, and swaps bytes 2 and 3.

SEE ALSO NSSwapShort, NSSwapLong, NSSwapLongLong

NSSwapLittleDoubleToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS double NSSwapLittleDoubleToHost(NSSwappedDouble x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapDouble to perform the swap.

SEE ALSO NSSwapHostDoubleToLittle, NSSwapBigDoubleToHost, 
NSConvertSwappedDoubleToHost



73

NSSwapLittleFloatToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS float NSSwapLittleFloatToHost(NSSwappedFloat x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapFloat to perform the swap.

SEE ALSO NSSwapHostFloatToLittle, NSSwapBigFloatToHost, NSConvertSwappedFloatToHost

NSSwapLittleIntToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned int NSSwapLittleIntToHost(unsigned int x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes, this function calls NSSwapInt to 
perform the swap.

SEE ALSO NSSwapHostIntToLittle, NSSwapBigIntToHost



74

NSSwapLittleLongLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapLittleLongLongToHost(unsigned long long x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes, this function calls 
NSSwapLongLong to perform the swap.

SEE ALSO NSSwapHostLongLongToLittle, NSSwapBigLongLongToHost

NSSwapLittleLongToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapLittleLongToHost(unsigned long x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapLong to perform the swap.

SEE ALSO NSSwapHostLongToLittle, NSSwapBigLongToHost, NSSwapLong



75

NSSwapLittleShortToHost 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapLittleShortToHost(unsigned short x)

DESCRIPTION Converts the little-endian formatted value in x to the endian format of the current platform and 
returns the resulting value. If it is necessary to swap the bytes of x, this function calls 
NSSwapShort to perform the swap.

SEE ALSO NSSwapHostShortToLittle, NSSwapBigShortToHost

NSSwapLong 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long NSSwapLong(unsigned long inv)

DESCRIPTION Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of inv 
are numbered from 1 to 4, this function swaps bytes 1 and 4, and swaps bytes 2 and 3.

SEE ALSO NSSwapLongLong, NSSwapInt, NSSwapFloat



76

NSSwapLongLong 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned long long NSSwapLongLong(unsigned long long inv)

DESCRIPTION Swaps the bytes of inv and returns the resulting value. Bytes are swapped from each low-order 
position to the corresponding high-order position and vice versa. For example, if the bytes of inv 
are numbered from 1 to 8, this function swaps bytes 1 and 8, bytes 2 and 7, bytes 3 and 6, and bytes 
4 and 5.

SEE ALSO NSSwapLong, NSSwapDouble

NSSwapShort 

SUMMARY This function is a utility for swapping the bytes of a number.

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS unsigned short NSSwapShort (unsigned short inv)

DESCRIPTION Swaps the low-order and high-order bytes of inv and returns the resulting value.

SEE ALSO NSSwapInt, NSSwapLong



77

NSTemporaryDirectory

SUMMARY This function returns the temporary directory on the user’s system.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSTemporaryDirectory(void)

DESCRIPTION Returns a string containing the path of the current temporary directory. If no such directory is 
currently available, this function returns nil .

SEE ALSO NSStandardApplicationPaths, NSStandardLibraryPaths, NSHomeDirectory

NSUnionRange

SUMMARY This function returns the intersection of the specified ranges.

DECLARED IN Foundation/NSRange.h

SYNOPSIS NSRange NSUnionRange(NSRange range1, NSRange range2)

DESCRIPTION NSUnionRange returns a range covering all indices in and between range1 and range2. If one 
range is completely contained in the other, the returned range is equal to the larger range.

SEE ALSO NSIntersectionRange

NSUnionRect

SUMMARY This function calculates the union of two rectangles.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS NSRect NSUnionRect(NSRect aRect, NSRect bRect)



78

DESCRIPTION NSUnionRect returns the smallest rectangle that completely encloses both aRect and bRect. If one 
of the rectangles has zero (or negative) width or height, a copy of the other rectangle is returned; 
but if both have zero (or negative) width or height, the returned rectangle has its origin at (0.0, 0.0) 
and has zero width and height.

SEE ALSO NSIntersectionRect

NSUserName

SUMMARY This function gets information about a user.

DECLARED IN Foundation/NSPathUtilities.h

SYNOPSIS NSString *NSUserName(void)

DESCRIPTION NSUserName returns the logon name of the current user.

SEE ALSO NSFullUserName, NSHomeDirectory, NSHomeDirectoryForUser

NSWidth

SUMMARY This function returns the width of the specified rectangle.

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS float NSWidth(NSRect aRect)

DESCRIPTION NSWidth returns the width of aRect.

SEE ALSO NSMaxX, NSMaxY, NSMidX, NSMidY, NSMinX, NSMinY, NSHeight



79

NSZoneCalloc

SUMMARY This function allocates memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSZoneCalloc(NSZone *zone, unsigned int numElems, unsigned int byteSize)

DESCRIPTION NSZoneCalloc allocates enough memory from zone for numElems elements, each with a size 
numBytes bytes, and returns a pointer to the allocated memory. The memory is initialized with 
zeros. This function returns nil  if it was unable to allocate the requested memory.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSZoneFree, NSZoneMalloc, NSZoneRealloc

NSZoneFree

SUMMARY This function deallocates a block of memory in the specified zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void NSZoneFree(NSZone *zone, void *pointer)

DESCRIPTION Returns memory to the zone from which it was allocated. The standard C function free does the 
same, but spends time finding which zone the memory belongs to.

SEE ALSO NSRecycleZone, NSZoneMalloc, NSZoneCalloc, NSZoneRealloc



80

NSZoneFromPointer

SUMMARY This function gets the zone for a given block of memory

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSZone *NSZoneFromPointer(void *pointer)

DESCRIPTION Returns the zone for the block of memory indicated by pointer, or NULL if the block was not 
allocated from a zone. The pointer must be one that was returned by a prior call to an allocation 
function.

RETURN Returns the zone for the indicated block of memory, or NULL if the block was not allocated from 
a zone.

SEE ALSO NSZoneCalloc, NSZoneMalloc, NSZoneRealloc

NSZoneMalloc

SUMMARY This function allocates memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSZoneMalloc(NSZone *zone, unsigned int size)

DESCRIPTION NSZoneMalloc allocates size bytes in zone, and returns a pointer to the allocated memory. This 
function returns nil  if it was unable to allocate the requested memory.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSZoneFree, NSZoneCalloc, NSZoneRealloc



81

NSZoneName

SUMMARY This function returns the name of the specified zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS NSString *NSZoneName(NSZone *zone)

DESCRIPTION Returns a string containing the name associated with zone, If zone is nil , the default zone is used. 
If no name is associated with zone, the returned string is empty.

SEE ALSO NSSetZoneName

NSZoneRealloc

SUMMARY This function allocates memory in a zone.

DECLARED IN Foundation/NSZone.h

SYNOPSIS void *NSZoneRealloc(NSZone *zone, void *ptr, unsigned int size)

DESCRIPTION NSZoneRealloc changes the size of the block of memory pointed to by ptr to size bytes. It may 
allocate new memory to replace the old, in which case it moves the contents of the old memory 
block to the new block, up to a maximum of size bytes. ptr may be NULL. This function returns 
nil  if it was unable to allocate the requested memory.

SEE ALSO NSDefaultMallocZone, NSRecycleZone, NSZoneFree, NSZoneCalloc, NSZoneMalloc



 

1

 

Locales

 

A locale is a set of defaults whose values are determined by the user’s preferred 
language. The locale defaults are stored in the NSUserDefault’s preferred language 
domain. 

Certain classes from the Foundation Framework (for example, NSCalendarDate, 
NSDate, NSTimeZone, NSString, and NSScanner) use information from the locale 
to determine their values. For example, when you request an NSString representation 
of an NSCalendarDate, the NSCalendarDate looks at the locale to determine what 
the months and the days of the week are called in the user’s preferred language. 

The actual attributes for the locale keys are contained in 

 

NextLibrary/Frameworks/Foundation.framework/Resources/Languages

 

. If a given 
language does not define one of the locale attributes, the value for that attribute 
defaults to the one defined for the default language (US English). 

The Foundation Framework defines these locale dictionary keys. Other frameworks 
may add other keys to the locale dictionary. 



 

Chapter 2

 

Topics in NEXTSTEP Programming

 

2

 

Key Description

 

NSAMPMDesignation An array of strings that specify how the morning and afternoon 

 

designations are printed. The default is AM and PM.

NSCurrencySymbol A string that specifies the symbol used to denote currency in this 

 

language. The default is "$". 

NSDateFormatString A format string that specifies how dates are printed using the date 
format specifiers. (See the NSCalendarDate class specification for a 
list of these.) The default is to use weekday names with full month 

 

names and full years, as in “Sunday, January 01, 1995.”

NSDateTimeOrdering A string that specifies how to use ambiguous numbers in date strings. 
Specify this value as a permutation of the letters M (month), D (day), 
Y (year), and H (hour). For example, MDYH treats “2/3/95 10” as the 
3rd day of February 1995 at 10:00am, whereas DMYH treats the same 
value as the 2nd day of March 1995 at 10:00am. If fewer numbers are 
specified than are needed, the numbers are prioritized to satisfy day 
first, then the month, and then the year. For example, if you supply 
only the value 12, it means the 12th day of this month in this year 
because the day must be specified. If you supply “2 12” it means either 
February 12 or December 2, depending on if the ordering is “MDYH” 

 

or “DMYH.” 

NSDecimalDigits Strings that identify the decimal digits in addition to or instead of the 

 

ASCII digits. 

NSDecimalSeparator A string that specifies the decimal separator. The decimal separator 

 

separates the ones place from the tenths place. The default is “.”. 

NSEarlierTimeDesignations An array of strings that denote a time in the past. These are adjectives 
that modify values from NSYearMonthWeekDesignations. The 

 

defaults are “prior,” “last,” “past,” and “ago.”

NSHourNameDesignations Strings that identify the time of day. These strings should be bound to 
an hour. The default is this array of arrays: (0, midnight), (12, noon, 

 

lunch), (10, morning), (14, afternoon), (19, dinner).

NSInternationalCurrencyString A string containing three letter abbreviation for currency, following 

 

the ISO 4217 standard.

NSLaterTimeDesignations An array of strings that denote a time in the future. This is an adjective 
that modifies a value from NSYearMonthWeekDesignations. The 

 

default is “next.”.

 

NSMonthNameArray An array that specifies the full names for the months.

 

NSNextDayDesignations A string that identifies the day after today. The default is “tomorrow.”

NSNextNextDayDesignations A string that identifies the day after tomorrow. The default is 

 

“nextday”. 

 

NSPriorDayDesignations A string that identifies the day before today. The default is “yesterday.”

NSShortDateFormatString A format string that specifies how dates are abbreviated. (See the 



 

3

 

NSCalendarDate class specification for a list of the date format 
specifiers to use.) The default is to separate the day month and year 

 

with slashes and to put the day first, as in 31/10/95. 

 

NSShortMonthNameArray An array that specifies the abbreviations for the months.

NSShortWeekDayNameArray An array that specifies the abbreviations for the days of the week. 

 

Sunday should be the first day of the week.

NSShortTimeDateFormatString A format string that specifies how times and dates are abbreviated. 
(See the NSCalendarDate class specification for a list of the date 
format specifiers.) The default is to use dashes to separate the day, 

 

month, and year and to use a 12-hour clock, as in “31-Jan-95 1:30 PM. 

 

NSThisDayDesignations A string that identifies what this day is called. The default is “today.”

NSThousandsSeparator A string that specifier the separator character for the thousands place 

 

of a decimal number. The default is a comma.

NSTimeDateFormatString A format string how dates with times are printed.(See the 
NSCalendarDate class specification for a list of the date format 
specifiers.) The default is to use abbreviated months and days with a 

 

24 hour clock, as in “Sun Jan 01 23:00:00 +6 2001.”

NSTimeFormatString A format string how dates with times are printed.(See the 
NSCalendarDate class specification for a list of the date format 

 

specifiers.) The default is to use a 24 hour clock, as in 13:30:25.

NSWeekDayNameArray An array that gives the names for the days of the week. Sunday should 

 

be the first day of the week.

NSYearMonthWeekDesignationsAn array of strings that specify the word for year, month, and week in 

 

the current locale. The defaults are “year,” “month,” and “week.”



 

1

Protocol: NSCoding

 

NSCoding

 

Adopted By:

 

Various OpenStep classes

 

Declared In:

 

Foundation/NSObject.h

 

Protocol Description

 

The NSCoding protocol declares the two methods that a class must implement so that instances of that class 
can be encoded and decoded. This capability provides the basis for archiving (where objects and other 
structures are stored on disk) and distribution (where objects are copied to different address spaces). See 
the NSCoder and NSArchiver class specifications for an introduction to coding.

In keeping with object-oriented design principles, an object being encoded or decoded is responsible for 
encoding and decoding its instance variables. A coder instructs the object to do so by invoking 

 

encodeWithCoder:

 

 or 

 

initWithCoder:

 

. 

 

encodeWithCoder:

 

 instructs the object to encode its instance 
variables to the coder provided; an object can receive this method any number of times. 

 

initWithCoder:

 

 
instructs the object to initialize itself from data in the coder provided; as such, it replaces any other 
initialization method and is only sent once per object. Any object class that should be codable must adopt 
the NSCoding protocol and implement its methods.

When an object receives an 

 

encodeWithCoder:

 

 message, it should encode all of its vital instance variables, 
after sending a message to 

 

super

 

 if its superclass also conforms to the NSCoding protocol. An object 
doesn’t have to encode all of its instance variables. Some values may not be important to reestablish and 
others may be derivable from related state upon decoding. Other instance variables should be encoded only 
under certain conditions (for example, with 

 

encodeConditionalObject:

 

, as described in the NSArchiver 
class specification).

For example, suppose you were creating a fictitious MapView class that displays a legend and a map at 
various magnifications. The MapView class defines several instance variables, including the name of the 
map and the current magnification. The MapView class also contains instance variables for several related 
views. The 

 

encodeWithCoder:

 

 method of MapView might look like the following:

 

- (void)encodeWithCoder:(NSCoder *)coder

{

[super encodeWithCoder:coder];

[coder encodeValueOfObjCType:@encode(char *) at:mapName];

[coder encodeValueOfObjCType:@encode(unsigned int) at:&magnification];

[coder encodeObject:legendView];

[coder encodeConditionalObject:auxiliaryView];

return;

}



 

2

 

This example assumes that the superclass of MapView also supports the NSCoding protocol. If the 
superclass of your class does not support NSCoding, you should omit the line that invokes super’s 

 

encodeWithCoder:

 

 method.

 

encodeValueOfObjCType:at:

 

 and 

 

encodeObject:

 

 are coder methods that you can use to encode instance 
variables of your class. You can use these and other methods of the coder to encode id’s, scalars, C arrays, 
structs, strings, and pointers to any of these types. The coder also defines corresponding methods for 
decoding values. See the NSCoder, NSArchiver, and NSUnarchiver class specifications for a list of 
methods.

The 

 

@encode()

 

 compiler directive generates an Objective-C type code from a type expression. See 

 

Object-Oriented Programming and the Objective-C Language

 

 for more information.

Similarly, in 

 

initWithCoder:

 

 the object should first send a message to 

 

super

 

 (if appropriate) to initialize 
inherited instance variables, and then it should decode and initialize its own. MapView’s implementation 
of 

 

initWithCoder:

 

 might look like this:

 

- (id)initWithCoder:(NSCoder *)coder

{

self = [super initWithCoder:coder];

[coder decodeValueOfObjCType:@encode(char *) at:mapName];

[coder decodeValueOfObjCType:@encode(unsigned int) at:&magnification];

legendView = [[coder decodeObject] retain];

auxiliaryView = [[coder decodeObject] retain];

return self;

}

 

Note the assignment of the return value of 

 

initWithCoder:

 

 to 

 

self

 

 in the example above. This is done in the 
subclass because the superclass, in its implementation of 

 

initWithCoder:

 

, may decide to return a object 
other than itself. If the superclass of your class does not support NSCoding, you should invoke super’s 
designated initializer instead of 

 

initWithCoder:

 

.

 

Making Substitutions During Coding

 

During encoding or decoding a coder object invokes methods that allow the object being coded to substitute 
a replacement class or instance for itself. This allows archives to be shared among implementations with 
different class hierarchies or simply different versions of a class (for example, class clusters take advantage 
of this feature). It also allows classes that should maintain unique instances to enforce this policy on 
decoding (for example, there need only be a single NSFont instance for a given typeface and size).



 

3

Protocol: NSCoding

 

Substitution methods are declared by NSObject, and come in two flavors: generic and specialized. The 
generic methods are these:

The specialized substitution methods are analogous to 

 

classForCoder

 

 and 

 

replacementObjectForCoder:

 

,

 

 

 

but they’re designed for (and invoked by) a specific, concrete coder subclass.  NSArchiver invokes 

 

classForArchiver:

 

 and 

 

replacementObjectForArchiver:

 

, while NSPortCoder invokes 

 

classForPortCoder

 

 and 

 

replacementObjectForPortCoder:

 

.  (There isn’t a specialized version of 

 

awakeAfterUsingCoder:

 

.)  By implementing these specialized methods, your class can base its coding 
behavior on the specific coder class being used. For more information on these methods, see their method 
descriptions in the NSObject class specification, as well as the class description in the NSPortCoder class 
specification.

 

Method Types

 

Encoding and decoding objects
– encodeWithCoder:
– initWithCoder:

 

nstance Methods

encodeWithCoder:

 

– (void)

 

encodeWithCoder:

 

(NSCoder *)

 

encoder

 

Encodes the receiver using 

 

encoder

 

.

 

Method Typical Use

 

classForCoder
Allows an object, before being encoded, to substitute a class other than 
its own. For example, the private subclasses of a class cluster substitute 
the name of their public superclass when being archived.

replacementObjectForCoder:
Allows an object, before being encoded, to substitute another instance in 
its place.

awakeAfterUsingCoder:

Allows an object, after being decoded, to substitute another object for 
itself. For example, an object that represents a font might, upon being 
decoded, release itself and return an existing object having the same 
font description as itself. In this way, redundant objects can be 
eliminated.



 

4

 

initWithCoder:

 

– (id)

 

initWithCoder:

 

(NSCoder *)

 

decoder

 

Initializes a newly allocated instance from data in 

 

decoder

 

. Returns 

 

self

 

.



 

1

Protocol: NSCopying

 

NSCopying

 

Adopted By:

 

Various OpenStep classes

 

Declared In:

 

Foundation/NSObject.h

 

Protocol Description

 

The NSCopying protocol declares a method for providing functional copies of an object. The exact 
meaning of “copy” can vary from class to class, but a copy must be a functionally independent object with 
values identical to the original at the time the copy was made. A copy produced with NSCopying is 
implicitly retained by the sender, who is responsible for releasing it. 

NSCopying declares one method, 

 

copyWithZone:

 

, but copying is commonly invoked with the convenience 
method 

 

copy

 

. The 

 

copy

 

 method is defined for all NSObjects and simply invokes 

 

copyWithZone:

 

 with the 
default zone.

 

Using NSCopying

 

NSCopying is frequently used to copy 

 

value

 

 objects—objects that represent attributes. C-type variables can 
usually be substituted for value objects, but value objects have the advantage of encapsulating convenient 
utilities for common manipulations. For example, NSString objects are used instead of character pointers 
because they encapsulate encoding and storage. Despite NSString functionality, the role played by 
NSStrings parallels the role played by character pointers.

When value objects are passed as method arguments or returned from a method, it is common to use a copy 
instead of the object itself. For example, consider the following method for assigning a string to an object’s 

 

name

 

 instance variable.

 

- (void)setName:(NSString *)aName

{

[name autorelease];

name = [aName copy];

}

 

Storing a copy of 

 

aName

 

 has the effect of producing an object that’s independent of the original, but has 
the same contents. Subsequent changes to the copy don’t affect the original, and changes to the original 
don’t affect the copy. Similarly, it is common to return a copy of an instance variable instead of the instance 
variable itself. For example, this method returns a copy of the 

 

name

 

 instance variable:

 

- (NSString *)name

{

return [[name copy] autorelease];

}



 

2

 

Implementing NSCopying

 

There are two basic approaches to creating copies. You can use 

 

alloc

 

 and 

 

init...

 

, or you can use 

 

NSCopyObject()

 

. To choose the one that’s right for your class, you need to consider the following 
questions:

• “What kind of copying—deep or shallow—does your class need?”
• “Does your class’s superclass implement NSCopying?”
• “Are you familiar with the implementations of your class’s superclasses?”

These areas are described in the following sections.

 

What kind of copying—deep or shallow—does your class need?

 

Generally, copying an object involves creating a new instance and initializing it with the values in the 
original object. Copying the values for non-pointer instance variables, such as booleans, integers, and 
floating points, is straightforward. When copying pointer instance variables there are two approaches. One 
approach, called a 

 

shallow copy

 

, copies the pointer value from the original object into the copy. Thus, the 
original and the copy share referenced data. The other approach, called a 

 

deep copy

 

, duplicates the data 
referenced by the pointer and assigns it to the copy’s instance variable.

The implementation of an instance variable’s set method should reflect the kind of copying you need to use. 
You should deeply copy the instance variable if the corresponding set method copies the new value as in 
this method:

 

- (void)setMyVariable:(id)newValue

{

[myVariable autorelease];

myVariable = [newValue copy];

}

 

You should shallowly copy the instance variable if the corresponding set method retains the new value as 
in this method:

 

- (void)setMyVariable:(id)newValue

{

[myVariable autorelease];

myVariable = [newValue retain];

}

 

Similarly, you should shallowly copy the instance variable if its set method simply assigns the new value 
to the instance variable without copying or retaining it as in this method:

 

- (void)setMyVariable:(id)newValue

{

myVariable = newValue;

}



 

3

Protocol: NSCopying

 

To produce a copy of an object that’s truly independent of the original, the entire object must be deeply 
copied. Every instance variable must be duplicated. If the instance variables themselves have instance 
variables, those too must be duplicated, and so on. In many cases, a mixed approach is more useful. Pointer 
instance variables that can be thought of as data containers are generally deeply copied, while more 
sophisticated instance variables like delegates are shallowly copied.

For example, a Product class adopts NSCopying. Product instances have a name, a price, and a delegate as 
declared in this interface.

 

@interface Product : NSObject <NSCopying>

{

NSString *productName;

float price;

id delegate;

}

@end

 

Copying a Product instance produces a deep copy of 

 

productName

 

 because it represents a flat data value. 
On the other hand, the 

 

delegate

 

 instance variable is a more complex object capable of functioning properly 
for both Products. The copy and the original should therefore share the delegate. The following figure 
represents the images of a Product instance and a copy in memory.

 

The different pointer values for 

 

productName

 

 illustrate that the original and the copy each have their own 

 

productName

 

 string object. The pointer values for 

 

delegate

 

 are the same, indicating that the two product 
objects share the same object as their delegate.

 

Does your class’s superclass implement NSCopying?

 

If the superclass does not implement NSCopying, your class’s implementation will have to copy the 
instance variables it inherits as well as those declared in your class. Generally, the safest way to do this is 
by using 

 

alloc

 

, 

 

init...

 

, and set methods. On the other hand, if your class inherits NSCopying behavior, its 
implementation only has to copy instance variables declared in your class. It invokes the superclass’s 
implementation to copy inherited instance variables.

original 0xf2ae4

isa 0x8028
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
productName 0xe81f4
price 0.00
delegate 0xe83c8



 

4

 

Are you familiar with the implementations of your class’s superclasses?

 

If your class inherits NSCopying behavior, how you handle the new instance variables in 

 

copyWithZone:

 

 
depends on your familiarity with the superclass’s implementation

 

. 

 

There are essentially two ways to make 
a copy of an object, using 

 

alloc

 

 and 

 

init...

 

 or using the function 

 

NSCopyObject()

 

. If the superclass used or 
might have used 

 

NSCopyObject()

 

, you must handle instance variables differently than you would 
otherwise.

 

Using the alloc, init... Approach

 

If a class does not inherit NSCopying behavior, you should implement 

 

copyWithZone:

 

 using 

 

alloc

 

, 

 

init...

 

, 
and set methods. For example, an implementation of 

 

copyWithZone:

 

 for the Product class described above 
might be implemented in the following way:

- (id)copyWithZone:(NSZone *)zone

{

Product *copy = [[Product alloc] 

initWithProductName:[self productName]

price:[self price]];

[copy setDelegate:[self delegate]];

return copy;

}

Because implementation details associated with inherited instance variables are encapsulated in the 
superclass, it is generally better to implement NSCopying with the alloc, init... approach. Doing so uses 
policy implemented in set methods to determine the kind of copying needed of instance variables.

Using NSCopyObject()

When a class inherits NSCopying behavior, you must consider the possibility that the superclass’s 
implementation uses NSCopyObject(). NSCopyObject() creates an exact shallow copy of an object by 
copying instance variable values but not the data they point to. For example, NSCell’s implementation of 
copyWithZone: could be defined in the following way.

- (id)copyWithZone:(NSZone *)zone

{

NSCell *cellCopy = NSCopyObject(self, 0, zone);

/* Assume that other initialization takes place here. */

cellCopy->image = nil;

[cellCopy setImage:[self image]];

return cellCopy;

}



5

Protocol: NSCopying

In the implementation above, NSCopyObject() creates an exact shallow copy of the original cell. This 
behavior is desirable for copying instance variables that aren’t pointers or are pointers to non-retained data 
that is shallowly copied. Pointer instance variables for retained objects need additional treatment.

In the copyWithZone: example above, image is a pointer to a retained object. The policy to retain the image 
is reflected in the following implementation of the setImage: accessor method.

- (void)setImage:(NSImage *)anImage

{

[image autorelease];

image = [anImage retain];

}

Notice that setImage: autoreleases image before it reassigns it. If the above implementation of 
copyWithZone: hadn’t explicitly set the copy’s image instance variable to nil  before invoking setImage:, 
the image referenced by the copy and the original would be released without a corresponding retain.

Even though image points to the right object, it is conceptually uninitialized. Unlike the instance variables 
that are created with alloc and init..., these uninitialized variables aren’t nil-valued. You should explicitly 
assign initial values to these variables before using them. In this case, cellCopy’s image instance variable 
is set to nil , then it is set using the setImage: method.

The effects of NSCopyObject() extend to a subclass’s implementation. For example, an implementation of 
NSSliderCell could copy a new titleCell  instance variable in the following way.

- (id)copyWithZone:(NSZone *)zone

{

NSSliderCell *cellCopy = [super copyWithZone:zone];

/* Assume that other initialization takes place here. */

cellCopy->titleCell = nil;

[cellCopy setTitleCell:[self titleCell]];

return cellCopy;

}

The superclass’s copyWithZone: method is invoked to copy inherited instance variables. When you invoke 
a superclass’s copyWithZone: method, assume that new object instance variables are uninitialized if there’s 
any chance that the superclass implementation uses NSCopyObject(). Explicitly assign a value to them 
before using them. In this example, titleCell  is explicitly set to nil  before setTitleCell: is invoked.

The implementation of an object’s retain count is another consideration when using NSCopyObject(). If an 
object stores its retain count in an instance variable, the implementation of copyWithZone: must correctly 
initialize the copy’s retain count. The following figure illustrates the process.



6

 

The first object represents a Product instance in memory. The value in refCount indicates that the instance 
has been retained three times. The second object is a copy of the Product instance produced with 
NSCopyObject(). Its refCount value matches the original. The third object represents the copy returned 
from copyWithZone: after refCount is correctly initialized. After copyWithZone: creates the copy with 
NSCopyObject(), it assigns the value 1 to the refCount instance variable. The sender of copyWithZone: 
implicitly retains the copy and is responsible for releasing it.

NSCopying and Immutable Classes

Where the concept “immutable vs. mutable” applies to an object, NSCopying produces immutable copies 
whether the original is immutable or not. See the NSMutableCopying protocol for details on making 
mutable copies.

Immutable classes can implement NSCopying very efficiently. Since immutable objects don’t change, there 
is no need to duplicate them. Instead, NSCopying can be implemented to retain the original. For example, 
copyWithZone: for an immutable string class can be implemented in the following way.

- (id)copyWithZone:(NSZone *)zone

{

return [self retain];

}

Summary

• Implement NSCopying using alloc and init... in classes that don’t inherit copyWithZone:.

• Implement NSCopying by invoking the superclass’s copyWithZone: when NSCopying behavior is 
inherited. If the superclass implementation might use NSCopyObject(), make explicit assignments to 
pointer instance variables for retained objects.

• Implement NSCopying by retaining the original instead of creating a new copy when the class and its 
contents are immutable.

original 0xf2ae4

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 1
productName 0xe81f4
price 0.00
delegate 0xe83c8

The copy produced by
NSCopyObject

The copy after unitialized
instance variables are assigned
in copyWithZone:



7

Protocol: NSCopying

nstance Methods

copyWithZone:
– (id)copyWithZone:(NSZone *)zone

Returns a new instance that’s a copy of the receiver. Memory for the new instance is allocated from zone, 
which may be NULL. If zone is NULL, the new instance is allocated from the default zone, which is 
returned from NSDefaultMallocZone(). The returned object is implicitly retained by the sender, who is 
responsible for releasing it. The copy returned is immutable if the consideration “immutable vs. mutable” 
applies to the receiving object; otherwise the exact nature of the copy is determined by the class. 

See also: – mutableCopyWithZone: (NSMutableCopying protocol), – copy (NSObject)



1

Classes: 

NSDecimalNumberBehaviors

Adopted By: NSDecimalNumberHandler

Declared In: Foundation/NSDecimalNumber.h

Protocol Description

The NSDecimalBehaviors protocol declares three methods that control the discretionary aspects of working 
with NSDecimalNumbers. The scale and roundingMode methods determine the precision of 
NSDecimalNumber’s return values, and the way in which those values should be rounded to fit that 
precision. The exceptionDuringOperation:error:leftOperand:rightOperand:  determines the way in 
which an NSDecimalNumber should handle different calculation errors.

For an example of a class that adopts the NSDecimalBehaviors protocol, see the specification for 
NSDecimalNumberHandler.

Method Types

Rounding
– roundingMode
– scale

Handling errors
– exceptionDuringOperation:error:leftOperand:rightOperand:

nstance Methods 

exceptionDuringOperation:error:leftOperand:rightOperand:
– (NSDecimalNumber *)exceptionDuringOperation:(SEL)method 

error: (NSCalculationError)error 
leftOperand:(NSDecimalNumber *)leftOperand 
rightOperand: (NSDecimalNumber *)rightOperand

Specifies what an NSDecimalNumber will do when, in the course of applying method to leftOperand and 
rightOperand, it encounters error. 

There are four possible values for error. The first three have to do with limits on NSDecimalNumber’s 
ability to represent decimal numbers. An NSDecimalNumber can represent any number that can be 



2

expressed as mantissa x 10exponent , where mantissa is a decimal integer up to 38 digits long, and exponent 
is between -256 and 256. If these limits are exceeded, the NSDecimalNumber returns one of the following 
errors:

• NSCalculationLossOfPrecision. The number can’t be represented in 38 significant digits.

• NSCalculationOverflow. The number is too large to represent.

• NSCalculationUnderflow. The  number is too small to represent.

The last error is simpler:

• NSCalculationDivideByZero. The caller tried to divide by zero.

In implementing exceptionDuringOperation:error:leftOperand:rightOperand , you can handle each of 
these errors in several ways:

• Raise an exception. For an explantion of exceptions, see the NSException class description in the 
Foundation Framework Reference.

• Return nil . The calling method will return its value as though no error had occurred. If error is 
NSCalculationLossOfPrecision, method will return an imprecise value—that is, one constrained to 38 
significant digits. If error is NSCalculationUnderflow or NSCalculationOverflow, method will return 
NSDecimalNumber’s notANumber. You shouldn’t return nil  if error is NSDivideByZero.

• Correct the error and return a valid NSDecimalNumber. The calling method will use this as its own return 
value.

roundingMode
– (NSRoundingMode)roundingMode

Returns the way that NSDecimalNumber’s decimalNumberBy... methods round their return values. There 
are four possible NSRoundingModes: 

• NSRoundDown. The methods round their return values down.
• NSRoundUp. The methods round their return values up.
• NSRoundPlain. The methods round to the closest possible return value. When they are caught halfway 

between two positive numbers, they round up; when caught between two negative numbers, they round 
down.

• NSRoundBankers. The methods round to the closest possible return value. When they are caught halfway 
between two possibilities, they return the possibility whose last digit is even. In practice, this means that, 
over the long run, numbers will be rounded up as often as they are rounded down; there will be no 
systematic bias.

The rounding mode only matters if the scale method sets a limit on the precision of NSDecimalNumber 
return values. It has no effect if scale returns NSDecimalNoScale.



3

Classes: 

Assuming that scale returns 1, the NSRoundingMode has the following effects on various original values:

scale
– (short)scale

Limits the precision of the values returned by NSDecimalNumber’s decimalNumberBy... methods. 

Specifically, scale returns the number of digits allowed after the decimal separator. If scale returns a 
negative value, it affects the digits before the decimal separator as well. If scale returns 
NSDecimalNoScale, the number of digits is unlimited.

Assuming that roundingMode returns NSRoundPlain, different values of scale have the following effects 
on the number 123.456:

Original value NSRoundDown NSRoundUp NSRoundPlain NSRoundBankers

1.24 1.2 1.3 1.2 1.2

1.26 1.2 1.3 1.3 1.3

1.25 1.2 1.3 1.3 1.2

1.35 1.3 1.4 1.4 1.4

-1.35 -1.4 -1.3 -1.4 -1.4

Scale Return value

NSDecimalNoScale 123.456

2 123.45

0 123

-2 100



1

Protocol: NSLocking

NSLocking 

Adopted By: NSConditionLock
NSLock
NSRecursiveLock 

Declared In: Foundation/NSLock.h 

Protocol Description

The NSLocking protocol declares the elementary methods adopted by classes that define lock objects. A 
lock object is used to coordinate the actions of multiple threads of execution within a single application. By 
using a lock object, an application can protect critical sections of code from being executed simultaneously 
by separate threads, thus protecting shared data and other shared resources from corruption.

For example, consider a multithreaded application in which each thread updates a shared counter. If two 
threads simultaneously fetch the current value into local storage, increment it, and then write the value back, 
the counter will be incremented only once, losing one thread’s contribution. However, if the code that 
manipulates the shared data (the critical section of code) must be locked before being executed, only one 
thread at a time can perform the updating operation, and collisions are prevented.

A lock object is either locked or unlocked. You acquire a lock by sending the object a lock message, thus 
putting the object in the locked state. You relinquish a lock by sending an unlock message, and thus putting 
the object in the unlocked state. (The NEXTSTEP classes that adopt this protocol define additional ways to 
acquire and relinquish locks.)

The lock method as declared in this protocol is blocking. That is, the thread that sends a lock message is 
blocked from further execution until the lock is acquired (presumably because some other thread 
relinquishes its lock). Classes that adopt this protocol typically add methods that offer nonblocking 
alternatives.

These NEXTSTEP classes conform to the NSLocking protocol: 

Class Adds these features to the basic protocol

NSLock
A nonblocking lock method; the ability to limit the duration of a locking 
attempt.

NSConditionLock The ability to postpone entry to a critical section until a condition is met.

NSRecursiveLock
The ability for a single thread to acquire a lock more than once without 
deadlocking.



2

The locking mechanism that these classes use causes a thread to sleep while waiting to acquire a lock rather 
than to poll the system constantly. Thus, lock objects can be used to lock time-consuming operations 
without causing system performance to degrade. See the class specifications for these classes for further 
information on their behavior and usage.

There is some performance cost in acquiring a lock, so it’s best to avoid the overhead if possible. An 
application developer has control over whether the application will execute with multiple threads, so it’s 
clear when locking is appropriate. A library developer doesn’t necessarily know whether library code will 
execute in a multithreaded environment. In this case, it’s best to test whether the code is executing in a 
multithreaded environment before attempting to acquire a lock. The following example illustrates how this 
is done.

Assume your application uses a Counter object to record various operations. Here’s one design that lets the 
Counter know whether it is multithreaded:

+ (void)initialize 

{

    if ([NSThread isMultiThreaded]) {

[self taskNowMultiThreaded:nil];

} else {

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(taskNowMultiThreaded:)

name:NSWillBecomeMultiThreadedNotification object:nil];

}

}

In the initialize method (which, by definition, is invoked before any Counter objects are created), the 
Counter class object first checks whether the application has already become multithreaded and if so 
invokes its own taskNowMultiThreaded:  method. Otherwise, it registers as an observer of 
NSWillBecomeMultiThreadedNotification so that taskNowMultiThreaded:  will be invoked when the 
application becomes multithreaded. 

Counter’s taskNowMultiThreaded:  method creates a lock object that the threads use to coordinate their 
activities:

+ (void)taskNowMultiThreaded:(NSNotification *)event 

{

if (!theLock)

theLock = [[NSLock alloc] init];

}

theLock, a static variable declared in the class implementation file, is assigned a value of nil  until 
taskNowMultiThreaded:  is invoked. Since messages sent to nil  are permitted and have no effect, code 
within Counter that acts on shared data can be written like this:

[theLock lock];

/* Operate on shared data */

[theLock unlock];



3

Protocol: NSLocking

With this approach, the overhead associated with lock operations is only incurred if the application is 
multithreaded. This code, however, raises another issue. What happens if one of the statements between the 
lock and unlock messages cause the application to become multithreaded? Then the unlock message 
wouldn’t be paired with the preceding lock.

In normal usage, locking and unlocking messages are paired. However, as in the example above, it might 
be convenient to unlock a lock object that hasn’t yet been locked. This is permitted with two restrictions. 
First, you can send an unpaired unlocking message to a lock object as long as the object has never before 
been locked. Second, of the NEXTSTEP classes that conform to the NSLocking protocol, only 
NSConditionLock and NSLock allow an unpaired unlocking message. NSRecursiveLock requires locking 
and unlocking messages to be paired.

NEXTSTEP’s locking classes are designed to work in a well-behaved, multithreaded environment: The 
protection they offer can be subverted by the use of signal handlers. A signal handler can interrupt a thread, 
execute code that affects shared data, and then let the thread resume without alerting the thread that the 
application has, in effect, become multithreaded. For this reason, it’s recommended that you don’t use 
signal handlers in multithreaded NEXTSTEP applications.

nstance Methods

lock
– (void)lock

Attempts to acquire a lock. This method blocks a thread’s execution until the lock can be acquired.

An application protects a critical section of code by requiring a thread to acquire a lock before executing 
the code. Once the critical section is past, the thread relinquishes the lock by invoking unlock.

unlock
– (void)unlock

Relinquishes a previously acquired lock. 



1

Protocol: NSMutableCopying

NSMutableCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

The NSMutableCopying protocol declares a method for providing mutable copies of an object. Only 
classes that define an “immutable vs. mutable” distinction should adopt this protocol. Classes that don’t 
define such a distinction should adopt NSCopying instead.

NSMutableCopying declares one method, mutableCopyWithZone:, but mutable copying is commonly 
invoked with the convenience method mutableCopy. The mutableCopy method is defined for all 
NSObjects and simply invokes mutableCopyWithZone: with the default zone.

See the NSCopying protocol for details on implementing copying behavior.

nstance Methods

mutableCopyWithZone:
– mutableCopyWithZone:(NSZone *)zone

Returns a new instance that’s a mutable copy of the receiver. Memory for the new instance is allocated from 
zone, which may be NULL. If zone is NULL, the new instance is allocated from the default zone, which is 
returned by NSDefaultMallocZone(). The returned object is implicitly retained by the sender, who is 
responsible for releasing it.  The copy returned is mutable whether the original is mutable or not.

See also: – copyWithZone: (NSCopying protocol), – mutableCopy (NSObject)



1

Protocol: NSObjCTypeSerializationCallBack

NSObjCTypeSerializationCallBack

Adopted By: No OpenStep classes

Declared In: Foundation/NSSerialization.h

Protocol Description 

An object conforms to the NSObjCTypeSerializationCallBack protocol so that it can intervene in the 
serialization and deserialization process. The primary purpose of this protocol is to allow for the 
serialization of objects and other data types that aren’t directly supported by OpenStep’s serialization 
facility. (See the NSSerializer class specification for information on serialization.) 

NSMutableData declares the method that’s used to begin the serialization process:

- (void)serializeDataAt:(const void *)data

ofObjCType:(const char *)type

context:(id <NSObjCTypeSerializationCallBack>)callback

This method can serialize all standard Objective C types (int , float, character strings, and so on) except for 
objects, union, and void *. If, during the serialization process, an object is encountered, the object passed 
as the callback argument above is asked to provide the serialization.

Suppose that the type being serialized is a structure of this description:

struct stockRecord {

NSString *stockName;

float value;

};

The Objective C type code for this structure is {@f}, so the serialization process begins with this message: 
(Assume that theData is the NSMutableData object that’s doing the serialization and helper is an object 
that conforms to the NSObjCTypeSerializationCallBack protocol.)

struct stockRecord aRecord = {@ "aCompany", 34.7};

[theData serializeDataAt:&aRecord ofObjCType: "{@f}"  context:helper];

Since the first field of the structure is an unsupported type, the helper object is sent a serializeObjectAt:
ofObjCType:intoData:  message, letting it serialize the object. helper might implement the method in this 
way:



2

- (void)serializeObjectAt:(id *)objectPtr

ofObjCType:(const char *)type

intoData:(NSMutableData *)theMutableData

{

NSString *nameObject;

char *companyName

nameObject = *objectPtr;

companyName = [nameObject cString];

[theData serializeDataAt:&companyName ofObjCType:@encode(typeof(companyName))

context:nil];

}

The callback object is free to serialize the target object as it wishes. In this case, helper simply extracts the 
company name from the NSString object and then has that character string serialized. Once this callback 
method finishes executing, the original method (serializeDataAt:ofObjCType:context:) resumes execution 
and serializes the second field of the structure. Since this second field contains a supported type (float), the 
callback method is not invoked again.

Deserialization follows a similar pattern, except in this case NSData declares the central method 
deserializeDataAt:ofObjCType:atCursor:context:. The deserialization of the example structure starts with 
a message to the NSData object that contains the serialized data:

(unsigned *)cursor = 0;

[theData deserializeDataAt:&aRecord ofObjCType:"{@f}" cursor:&cursor

context:helper];

(The cursor argument is a pointer to zero since we’re starting at the beginning of the data in the NSData 
object.) 

When this method is invoked, the callback object receives a deserializeObjectAt:ofObjCType:fromData:
atCursor:  message, as declared in this protocol. The callback object can then reestablish the first field of 
the structure. For example, helper might implement the method in this way:

- (void) deserializeObjectAt:(id *)objectPtr

ofObjCType:(const char *)type

fromData:(NSData *)data

atCursor:(unsigned *)cursor

{

char *companyName;

[theData deserializeDataAt:&companyName ofObjCType:"*" atCursor:cursor

context:nil];

*objectPtr = [[NSString stringWithCString:companyName] retain];

}



3

Protocol: NSObjCTypeSerializationCallBack

nstance Methods

deserializeObjectAt:ofObjCType:fromData:atCursor:
– (void)deserializeObjectAt:(id *)object

ofObjCType:(const char *)type
fromData:(NSData *)data
atCursor:(unsigned *)cursor 

The implementor of this method decodes the referenced object (which should always be of type "@") 
located at the cursor position in the data object. The decoded object is not autoreleased.

See also:  – deserializeDataAt:ofObjCType:atCursor:context: (NSData)

serializeObjectAt:ofObjCType:intoData:
– (void)serializeObjectAt:(id *)object

ofObjCType:(const char *)type
intoData:(NSMutableData *)data 

The implementor of this method encodes the referenced object (which should always be of type "@") in the 
data object. 

See also: – serializeDataAt:ofObjCType:context: (NSMutableData)



1

Classes: 

NSObject

Adopted By: NSObject

Declared In: Foundation/NSObject.h

Protocol Description

The NSObject protocol groups methods that are fundamental to all Objective-C objects. If an object 
conforms to this protocol, it can be considered a first-class object in NEXTSTEP. Such an object can be 
asked about its: 

• Class, and the place of its class in the inheritance hierarchy 
• Conformance to protocols
• Ability to respond to a particular message

In addition, objects that conform to this protocol—with its retain, release, and autorelease methods—can 
also integrate with the object-management and deallocation scheme defined in the Foundation Kit. (See the 
introduction to the Foundation Kit for more information.) Thus, an object that conforms to the NSObject 
protocol can be managed by container objects like those defined by NSArray and NSDictionary.

NEXTSTEP’s root class, NSObject, adopts this protocol, so virtually all objects in NEXTSTEP have the 
features described by this protocol.

Method Types

Identifying classes
– class
– superclass

Identifying and comparing objects
– isEqual:
– hash
– self

Determining allocation zones
– zone



2

Managing reference counts
– retain
– release
– autorelease
– retainCount

Testing class functionality
– respondsToSelector:

Testing inheritance relationships
– isKindOfClass:
– isMemberOfClass:

Testing protocol conformance
– conformsToProtocol:

Describing objects
– description

Sending messages
– performSelector:
– performSelector:withObject:
– performSelector:withObject:withObject:

Identifying proxies
– isProxy

nstance Methods

autorelease
– (id)autorelease

Adds the receiver to the current autorelease pool and returns self. You add an object to an autorelease pool 
so that it will receive a release message—and thus might be deallocated—when the pool is destroyed. For 
more information on the autorelease mechanism, see the NSAutoreleasePool class specification.

See also: – retain, – retainCount

class
– (Class)class

Returns the class object for the receiver’s class.

See also: + class (NSObject class)



3

Classes: 

conformsToProtocol:
– (BOOL)conformsToProtocol:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol, NO otherwise.  This method works identically to 
the conformsToProtocol: class method declared in NSObject.  It’s provided as a convenience so that you 
don’t need to get the class object to find out whether an instance can respond to a given set of messages.

See also: + conformsToProtocol: (NSObject class)

description
– (NSString *)description

Returns an NSString object that describes the contents of the receiver.  The debugger’s print-object  
command indirectly invokes this method to produce a textual description of an object.

hash
– (unsigned)hash

Returns an integer that can be used as a table address in a hash table structure.  If two objects are equal (as 
determined by the isEqual: method), they must have the same hash value. This last point is particularly 
important if you define hash in a subclass and intend to put instances of that subclass into a collection.

If a mutable object is added to a collection that uses hash values to determine the object’s position in the 
collection, the value returned by the hash method of the object must not change while the object is in the 
collection. To accomplish this, either the hash method must not rely on any of the object’s internal state 
information or you must make sure that the object’s internal state information does not change while the 
object is in the collection. (Note that it can be difficult to know whether or not a given object is in a 
collection.)

isEqual:
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal, NO otherwise.  This method defines what it means for 
an instance to be equal.  For example, a container object might define two containers as equal if their 
corresponding objects all respond YES to an isEqual: request.  See the NSData, NSDictionary, NSArray, 
and NSString class specifications for examples of the use of this method.



4

isKindOfClass:
– (BOOL)isKindOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass or an instance of any class that inherits from aClass, 
NO otherwise.  For example, in this code, isKindOfClass: would return YES because, in the Foundation 
Kit, the NSArchiver class inherits from NSCoder:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];

id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];

if ( [anArchiver isKindOfClass:[NSCoder class]] )

...

Because instance methods defined in the root class can be sent to class objects, when the receiver is a class 
object, this method returns YES if aClass is NSObject, NO otherwise.

See also: – isMemberOfClass:

isMemberOfClass:
– (BOOL)isMemberOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass, NO otherwise.  For example, in this code, 
isMemberOfClass: would return NO:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];

id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];

if ([anArchiver isMemberOfClass:[NSCoder class]])

...

When the receiver is a class object, this method returns NO.  Class objects are not “members of” any class.

See also: – isKindOfClass:

isProxy
– (BOOL)isProxy

Returns NO if the receiver really descends from NSObject, YES otherwise. This method is necessary 
because sending isKindOfClass: or isMemberOfClass: to an NSProxy object will test the object that the 
proxy stands-in for, not itself. Use this method to test if the receiver is a proxy (or a member of some other 
root class).



5

Classes: 

performSelector:
– (id)performSelector:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message.  If aSelector is NULL, an 
NSInvalidArgumentException is raised.

performSelector: is equivalent to sending an aSelector message directly to the receiver.  For example, all 
three of the following messages do the same thing:

id myClone = [anObject copy];

id myClone = [anObject performSelector:@selector(copy)];

id myClone = [anObject performSelector:sel_getUid("copy")];

However, the performSelector: method allows you to send messages that aren’t determined until run time.  
A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();

[anObject performSelector:myMethod];

aSelector should identify a method that takes no arguments.  For methods that return anything other than an 
object, use NSInvocation.

See also: – performSelector:withObject: , – performSelector:withObject:withObject:

performSelector:withObject:
– (id)performSelector:(SEL)aSelector withObject: (id)anObject

Sends an aSelector message to the receiver with anObject as the argument.  If aSelector is NULL, an 
NSInvalidArgumentException is raised.

This method is the same as performSelector: except that you can supply an argument for  aSelector.  
aSelector should identify a method that takes a single argument of type id. For methods with other argument 
types and return values, use NSInvocation.

See also:  – performSelector:withObject:withObject: , – methodForSelector: (NSObject class)

performSelector:withObject:withObject:
– (id)performSelector:(SEL)aSelector

withObject: (id)anObject
withObject: (id)anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments. If aSelector is 
NULL, an NSInvalidArgumentException is raised. This method is the same as performSelector: except 



6

that you can supply two arguments for  aSelector. aSelector should identify a method that can take two 
arguments of type id. For methods with other argument types and return values use NSInvocation.

See also: – performSelector:withObject:, – methodForSelector: (NSObject class)

release
– (oneway void)release

Decrements the receivers’s reference count, and sends it a dealloc message when its reference count reaches 
0.

You send release messages only to objects that you “own."  By definition, you own objects that you create 
using one of the alloc... or copy... methods.  These methods return objects with an implicit reference count 
of one.  You also own (or perhaps share ownership in) an object that you send a retain message to because 
retain increments the object’s reference count.  Each retain message you send an object should be balanced 
eventually with a release or autorelease message, so that the object can be deallocated.  For more 
information on the automatic deallocation mechanism, see the introduction to the Foundation Kit.

You would only implement this method to define your own reference-counting scheme.  Such 
implementations should not invoke the inherited method; that is, they should not include a release message 
to super.

See also: – retainCount

respondsToSelector:
– (BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to aSelector messages,  NO 
otherwise.  The application is responsible for determining whether a NO response should be considered an 
error.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to respond 
to the message, albeit indirectly, even though this method returns NO.

See also: – forwardInvocation:  (NSObject class), + instancesRespondToSelector:(NSObject class)

retain
– (id)retain

Increments the receiver’s reference count.  You send an object a retain message when you want to prevent 
it from being deallocated without your express permission.



7

Classes: 

An object is deallocated automatically when its reference count reaches 0.  retain messages increment the 
reference count, and release messages decrement it.  For more information on this mechanism, see the 
introduction to the Foundation Kit.

As a convenience, retain returns self because it is often used in nested expressions:

NSString *systemApps = [[NSString

stringWithCString:”/System/Applications”] retain];

You would only implement this method if you were defining your own reference-counting scheme.  Such 
implementations must return self and should not invoke the inherited method by sending a retain message 
to super.

See also: – autorelease, – release, – retainCount

retainCount
– (unsigned)retainCount

Returns the receiver’s reference count for debugging purposes.  You rarely send a retainCount message; 
however, you might implement this method in a class to implement your own reference-counting scheme.  
For objects that never get released (that is, their release method does nothing), this method should return 
UINT_MAX, as defined in <limits.h>.

See also: – autorelease, – retain

self
– (id)self

Returns the receiver.

See also: – class

superclass
– (Class)superclass

Returns the class object for the receiver’s superclass.

See also: + superclass (NSObject class)



8

zone
– (NSZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created without specifying a 
zone are allocated from the default zone.

See also: + allocWithZone: (NSObject class)



 

1

 Protocol: NSCoding

 

NSCoding

 

Adopted By:

 

Various OpenStep classes

 

Declared In:

 

Foundation/NSObject.h

 

Protocol Description

 

The NSCoding protocol declares the two methods that a class must implement so that instances of that class 
can be encoded and decoded. This capability provides the basis for archiving (where objects and other 
structures are stored on disk) and distribution (where objects are copied to different address spaces). See 
the NSCoder and NSArchiver class specifications for an introduction to coding.

In keeping with object-oriented design principles, an object being encoded or decoded is responsible for 
encoding and decoding its instance variables. A coder instructs the object to do so by invoking 

 

encodeWithCoder:

 

 or 

 

initWithCoder:

 

. 

 

encodeWithCoder:

 

 instructs the object to encode its instance 
variables to the coder provided; an object can receive this method any number of times. 

 

initWithCoder:

 

 
instructs the object to initialize itself from data in the coder provided; as such, it replaces any other 
initialization method and is only sent once per object. Any object class that should be codable must adopt 
the NSCoding protocol and implement its methods.

When an object receives an 

 

encodeWithCoder:

 

 message, it should encode all of its vital instance variables, 
after sending a message to 

 

super

 

 if its superclass also conforms to the NSCoding protocol. An object 
doesn’t have to encode all of its instance variables. Some values may not be important to reestablish and 
others may be derivable from related state upon decoding. Other instance variables should be encoded only 
under certain conditions (for example, with 

 

encodeConditionalObject:

 

, as described in the NSArchiver 
class specification).

For example, suppose you were creating a fictitious MapView class that displays a legend and a map at 
various magnifications. The MapView class defines several instance variables, including the name of the 
map and the current magnification. The MapView class also contains instance variables for several related 
views. The 

 

encodeWithCoder:

 

 method of MapView might look like the following:

 

- (void)encodeWithCoder:(NSCoder *)coder

{

[super encodeWithCoder:coder];

[coder encodeValueOfObjCType:@encode(char *) at:mapName];

[coder encodeValueOfObjCType:@encode(unsigned int) at:&magnification];

[coder encodeObject:legendView];

[coder encodeConditionalObject:auxiliaryView];

return;

}



 

2

 

This example assumes that the superclass of MapView also supports the NSCoding protocol. If the 
superclass of your class does not support NSCoding, you should omit the line that invokes super’s 

 

encodeWithCoder:

 

 method.

 

encodeValueOfObjCType:at:

 

 and 

 

encodeObject:

 

 are coder methods that you can use to encode instance 
variables of your class. You can use these and other methods of the coder to encode id’s, scalars, C arrays, 
structs, strings, and pointers to any of these types. The coder also defines corresponding methods for 
decoding values. See the NSCoder, NSArchiver, and NSUnarchiver class specifications for a list of 
methods.

The 

 

@encode()

 

 compiler directive generates an Objective-C type code from a type expression. See 

 

Object-Oriented Programming and the Objective-C Language

 

 for more information.

Similarly, in 

 

initWithCoder:

 

 the object should first send a message to 

 

super

 

 (if appropriate) to initialize 
inherited instance variables, and then it should decode and initialize its own. MapView’s implementation 
of 

 

initWithCoder:

 

 might look like this:

 

- (id)initWithCoder:(NSCoder *)coder

{

self = [super initWithCoder:coder];

[coder decodeValueOfObjCType:@encode(char *) at:mapName];

[coder decodeValueOfObjCType:@encode(unsigned int) at:&magnification];

legendView = [[coder decodeObject] retain];

auxiliaryView = [[coder decodeObject] retain];

return self;

}

 

Note the assignment of the return value of 

 

initWithCoder:

 

 to 

 

self

 

 in the example above. This is done in the 
subclass because the superclass, in its implementation of 

 

initWithCoder:

 

, may decide to return a object 
other than itself. If the superclass of your class does not support NSCoding, you should invoke super’s 
designated initializer instead of 

 

initWithCoder:

 

.

 

Making Substitutions During Coding

 

During encoding or decoding a coder object invokes methods that allow the object being coded to substitute 
a replacement class or instance for itself. This allows archives to be shared among implementations with 
different class hierarchies or simply different versions of a class (for example, class clusters take advantage 
of this feature). It also allows classes that should maintain unique instances to enforce this policy on 
decoding (for example, there need only be a single NSFont instance for a given typeface and size).



 

3

 Protocol: NSCoding

 

Substitution methods are declared by NSObject, and come in two flavors: generic and specialized. The 
generic methods are these:

The specialized substitution methods are analogous to 

 

classForCoder

 

 and 

 

replacementObjectForCoder:

 

,

 

 

 

but they’re designed for (and invoked by) a specific, concrete coder subclass.  NSArchiver invokes 

 

classForArchiver:

 

 and 

 

replacementObjectForArchiver:

 

, while NSPortCoder invokes 

 

classForPortCoder

 

 and 

 

replacementObjectForPortCoder:

 

.  (There isn’t a specialized version of 

 

awakeAfterUsingCoder:

 

.)  By implementing these specialized methods, your class can base its coding 
behavior on the specific coder class being used. For more information on these methods, see their method 
descriptions in the NSObject class specification, as well as the class description in the NSPortCoder class 
specification.

 

Method Types

 

Encoding and decoding objects
– encodeWithCoder:
– initWithCoder:

 

Instance Methods

encodeWithCoder:

 

– (void)

 

encodeWithCoder:

 

(NSCoder *)

 

encoder

 

Encodes the receiver using 

 

encoder

 

.

 

Method Typical Use

 

classForCoder
Allows an object, before being encoded, to substitute a class other than 
its own. For example, the private subclasses of a class cluster substitute 
the name of their public superclass when being archived.

replacementObjectForCoder:
Allows an object, before being encoded, to substitute another instance in 
its place.

awakeAfterUsingCoder:

Allows an object, after being decoded, to substitute another object for 
itself. For example, an object that represents a font might, upon being 
decoded, release itself and return an existing object having the same 
font description as itself. In this way, redundant objects can be 
eliminated.



 

4

 

initWithCoder:

 

– (id)

 

initWithCoder:

 

(NSCoder *)

 

decoder

 

Initializes a newly allocated instance from data in 

 

decoder

 

. Returns 

 

self

 

.



 

1

 Protocol: NSCopying

 

NSCopying

 

Adopted By:

 

Various OpenStep classes

 

Declared In:

 

Foundation/NSObject.h

 

Protocol Description

 

The NSCopying protocol declares a method for providing functional copies of an object. The exact 
meaning of “copy” can vary from class to class, but a copy must be a functionally independent object with 
values identical to the original at the time the copy was made. A copy produced with NSCopying is 
implicitly retained by the sender, who is responsible for releasing it. 

NSCopying declares one method, 

 

copyWithZone:

 

, but copying is commonly invoked with the convenience 
method 

 

copy

 

. The 

 

copy

 

 method is defined for all NSObjects and simply invokes 

 

copyWithZone:

 

 with the 
default zone.

 

Using NSCopying

 

NSCopying is frequently used to copy 

 

value

 

 objects—objects that represent attributes. C-type variables can 
usually be substituted for value objects, but value objects have the advantage of encapsulating convenient 
utilities for common manipulations. For example, NSString objects are used instead of character pointers 
because they encapsulate encoding and storage. Despite NSString functionality, the role played by 
NSStrings parallels the role played by character pointers.

When value objects are passed as method arguments or returned from a method, it is common to use a copy 
instead of the object itself. For example, consider the following method for assigning a string to an object’s 

 

name

 

 instance variable.

 

- (void)setName:(NSString *)aName

{

[name autorelease];

name = [aName copy];

}

 

Storing a copy of 

 

aName

 

 has the effect of producing an object that’s independent of the original, but has 
the same contents. Subsequent changes to the copy don’t affect the original, and changes to the original 
don’t affect the copy. Similarly, it is common to return a copy of an instance variable instead of the instance 
variable itself. For example, this method returns a copy of the 

 

name

 

 instance variable:

 

- (NSString *)name

{

return [[name copy] autorelease];

}



 

2

 

Implementing NSCopying

 

There are two basic approaches to creating copies. You can use 

 

alloc

 

 and 

 

init...

 

, or you can use 

 

NSCopyObject()

 

. To choose the one that’s right for your class, you need to consider the following 
questions:

• “What kind of copying—deep or shallow—does your class need?”
• “Does your class’s superclass implement NSCopying?”
• “Are you familiar with the implementations of your class’s superclasses?”

These areas are described in the following sections.

 

What kind of copying—deep or shallow—does your class need?

 

Generally, copying an object involves creating a new instance and initializing it with the values in the 
original object. Copying the values for non-pointer instance variables, such as booleans, integers, and 
floating points, is straightforward. When copying pointer instance variables there are two approaches. One 
approach, called a 

 

shallow copy

 

, copies the pointer value from the original object into the copy. Thus, the 
original and the copy share referenced data. The other approach, called a 

 

deep copy

 

, duplicates the data 
referenced by the pointer and assigns it to the copy’s instance variable.

The implementation of an instance variable’s set method should reflect the kind of copying you need to use. 
You should deeply copy the instance variable if the corresponding set method copies the new value as in 
this method:

 

- (void)setMyVariable:(id)newValue

{

[myVariable autorelease];

myVariable = [newValue copy];

}

 

You should shallowly copy the instance variable if the corresponding set method retains the new value as 
in this method:

 

- (void)setMyVariable:(id)newValue

{

[myVariable autorelease];

myVariable = [newValue retain];

}

 

Similarly, you should shallowly copy the instance variable if its set method simply assigns the new value 
to the instance variable without copying or retaining it as in this method:

 

- (void)setMyVariable:(id)newValue

{

myVariable = newValue;

}



 

3

 Protocol: NSCopying

 

To produce a copy of an object that’s truly independent of the original, the entire object must be deeply 
copied. Every instance variable must be duplicated. If the instance variables themselves have instance 
variables, those too must be duplicated, and so on. In many cases, a mixed approach is more useful. Pointer 
instance variables that can be thought of as data containers are generally deeply copied, while more 
sophisticated instance variables like delegates are shallowly copied.

For example, a Product class adopts NSCopying. Product instances have a name, a price, and a delegate as 
declared in this interface.

 

@interface Product : NSObject <NSCopying>

{

NSString *productName;

float price;

id delegate;

}

@end

 

Copying a Product instance produces a deep copy of 

 

productName

 

 because it represents a flat data value. 
On the other hand, the 

 

delegate

 

 instance variable is a more complex object capable of functioning properly 
for both Products. The copy and the original should therefore share the delegate. The following figure 
represents the images of a Product instance and a copy in memory.

 

The different pointer values for 

 

productName

 

 illustrate that the original and the copy each have their own 

 

productName

 

 string object. The pointer values for 

 

delegate

 

 are the same, indicating that the two product 
objects share the same object as their delegate.

 

Does your class’s superclass implement NSCopying?

 

If the superclass does not implement NSCopying, your class’s implementation will have to copy the 
instance variables it inherits as well as those declared in your class. Generally, the safest way to do this is 
by using 

 

alloc

 

, 

 

init...

 

, and set methods. On the other hand, if your class inherits NSCopying behavior, its 
implementation only has to copy instance variables declared in your class. It invokes the superclass’s 
implementation to copy inherited instance variables.

original 0xf2ae4

isa 0x8028
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
productName 0xe81f4
price 0.00
delegate 0xe83c8



 

4

 

Are you familiar with the implementations of your class’s superclasses?

 

If your class inherits NSCopying behavior, how you handle the new instance variables in 

 

copyWithZone:

 

 
depends on your familiarity with the superclass’s implementation

 

. 

 

There are essentially two ways to make 
a copy of an object, using 

 

alloc

 

 and 

 

init...

 

 or using the function 

 

NSCopyObject()

 

. If the superclass used or 
might have used 

 

NSCopyObject()

 

, you must handle instance variables differently than you would 
otherwise.

 

Using the alloc, init... Approach

 

If a class does not inherit NSCopying behavior, you should implement 

 

copyWithZone:

 

 using 

 

alloc

 

, 

 

init...

 

, 
and set methods. For example, an implementation of 

 

copyWithZone:

 

 for the Product class described above 
might be implemented in the following way:

 

- (id)copyWithZone:(NSZone *)zone

{

Product *copy = [[Product alloc] 

initWithProductName:[self productName]

price:[self price]];

[copy setDelegate:[self delegate]];

return copy;

}

 

Because implementation details associated with inherited instance variables are encapsulated in the 
superclass, it is generally better to implement NSCopying with the 

 

alloc

 

, 

 

init...

 

 approach. Doing so uses 
policy implemented in set methods to determine the kind of copying needed of instance variables.

 

Using NSCopyObject()

 

When a class inherits NSCopying behavior, you must consider the possibility that the superclass’s 
implementation uses 

 

NSCopyObject()

 

. 

 

NSCopyObject()

 

 creates an exact shallow copy of an object by 
copying instance variable values but not the data they point to. For example, NSCell’s implementation of 
copyWithZone: could be defined in the following way.

- (id)copyWithZone:(NSZone *)zone

{

NSCell *cellCopy = NSCopyObject(self, 0, zone);

/* Assume that other initialization takes place here. */

cellCopy->image = nil;

[cellCopy setImage:[self image]];

return cellCopy;

}



5

 Protocol: NSCopying

In the implementation above, NSCopyObject() creates an exact shallow copy of the original cell. This 
behavior is desirable for copying instance variables that aren’t pointers or are pointers to non-retained data 
that is shallowly copied. Pointer instance variables for retained objects need additional treatment.

In the copyWithZone: example above, image is a pointer to a retained object. The policy to retain the image 
is reflected in the following implementation of the setImage: accessor method.

- (void)setImage:(NSImage *)anImage

{

[image autorelease];

image = [anImage retain];

}

Notice that setImage: autoreleases image before it reassigns it. If the above implementation of 
copyWithZone: hadn’t explicitly set the copy’s image instance variable to nil  before invoking setImage:, 
the image referenced by the copy and the original would be released without a corresponding retain.

Even though image points to the right object, it is conceptually uninitialized. Unlike the instance variables 
that are created with alloc and init..., these uninitialized variables aren’t nil-valued. You should explicitly 
assign initial values to these variables before using them. In this case, cellCopy’s image instance variable 
is set to nil , then it is set using the setImage: method.

The effects of NSCopyObject() extend to a subclass’s implementation. For example, an implementation of 
NSSliderCell could copy a new titleCell  instance variable in the following way.

- (id)copyWithZone:(NSZone *)zone

{

NSSliderCell *cellCopy = [super copyWithZone:zone];

/* Assume that other initialization takes place here. */

cellCopy->titleCell = nil;

[cellCopy setTitleCell:[self titleCell]];

return cellCopy;

}

The superclass’s copyWithZone: method is invoked to copy inherited instance variables. When you invoke 
a superclass’s copyWithZone: method, assume that new object instance variables are uninitialized if there’s 
any chance that the superclass implementation uses NSCopyObject(). Explicitly assign a value to them 
before using them. In this example, titleCell  is explicitly set to nil  before setTitleCell: is invoked.

The implementation of an object’s retain count is another consideration when using NSCopyObject(). If an 
object stores its retain count in an instance variable, the implementation of copyWithZone: must correctly 
initialize the copy’s retain count. The following figure illustrates the process.



6

 

The first object represents a Product instance in memory. The value in refCount indicates that the instance 
has been retained three times. The second object is a copy of the Product instance produced with 
NSCopyObject(). Its refCount value matches the original. The third object represents the copy returned 
from copyWithZone: after refCount is correctly initialized. After copyWithZone: creates the copy with 
NSCopyObject(), it assigns the value 1 to the refCount instance variable. The sender of copyWithZone: 
implicitly retains the copy and is responsible for releasing it.

NSCopying and Immutable Classes

Where the concept “immutable vs. mutable” applies to an object, NSCopying produces immutable copies 
whether the original is immutable or not. See the NSMutableCopying protocol for details on making 
mutable copies.

Immutable classes can implement NSCopying very efficiently. Since immutable objects don’t change, there 
is no need to duplicate them. Instead, NSCopying can be implemented to retain the original. For example, 
copyWithZone: for an immutable string class can be implemented in the following way.

- (id)copyWithZone:(NSZone *)zone

{

return [self retain];

}

Summary

• Implement NSCopying using alloc and init... in classes that don’t inherit copyWithZone:.

• Implement NSCopying by invoking the superclass’s copyWithZone: when NSCopying behavior is 
inherited. If the superclass implementation might use NSCopyObject(), make explicit assignments to 
pointer instance variables for retained objects.

• Implement NSCopying by retaining the original instead of creating a new copy when the class and its 
contents are immutable.

original 0xf2ae4

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 3
productName 0xf2bd8
price 0.00
delegate 0xe83c8

copy 0x104074

isa 0x8028
refCount 1
productName 0xe81f4
price 0.00
delegate 0xe83c8

The copy produced by
NSCopyObject

The copy after unitialized
instance variables are assigned
in copyWithZone:



7

 Protocol: NSCopying

Instance Methods

copyWithZone:
– (id)copyWithZone:(NSZone *)zone

Returns a new instance that’s a copy of the receiver. Memory for the new instance is allocated from zone, 
which may be NULL. If zone is NULL, the new instance is allocated from the default zone, which is 
returned from NSDefaultMallocZone(). The returned object is implicitly retained by the sender, who is 
responsible for releasing it. The copy returned is immutable if the consideration “immutable vs. mutable” 
applies to the receiving object; otherwise the exact nature of the copy is determined by the class. 

See also: – mutableCopyWithZone: (NSMutableCopying protocol), – copy (NSObject)



1

 Classes: 

NSDecimalNumberBehaviors

Adopted By: NSDecimalNumberHandler

Declared In: Foundation/NSDecimalNumber.h

Protocol Description

The NSDecimalBehaviors protocol declares three methods that control the discretionary aspects of working 
with NSDecimalNumbers. The scale and roundingMode methods determine the precision of 
NSDecimalNumber’s return values, and the way in which those values should be rounded to fit that 
precision. The exceptionDuringOperation:error:leftOperand:rightOperand:  determines the way in 
which an NSDecimalNumber should handle different calculation errors.

For an example of a class that adopts the NSDecimalBehaviors protocol, see the specification for 
NSDecimalNumberHandler.

Method Types

Rounding
– roundingMode
– scale

Handling errors
– exceptionDuringOperation:error:leftOperand:rightOperand:

Instance Methods 

exceptionDuringOperation:error:leftOperand:rightOperand:
– (NSDecimalNumber *)exceptionDuringOperation:(SEL)method 

error: (NSCalculationError)error 
leftOperand:(NSDecimalNumber *)leftOperand 
rightOperand: (NSDecimalNumber *)rightOperand

Specifies what an NSDecimalNumber will do when, in the course of applying method to leftOperand and 
rightOperand, it encounters error. 

There are four possible values for error. The first three have to do with limits on NSDecimalNumber’s 
ability to represent decimal numbers. An NSDecimalNumber can represent any number that can be 



2

expressed as mantissa x 10exponent , where mantissa is a decimal integer up to 38 digits long, and exponent 
is between -256 and 256. If these limits are exceeded, the NSDecimalNumber returns one of the following 
errors:

• NSCalculationLossOfPrecision. The number can’t be represented in 38 significant digits.

• NSCalculationOverflow. The number is too large to represent.

• NSCalculationUnderflow. The  number is too small to represent.

The last error is simpler:

• NSCalculationDivideByZero. The caller tried to divide by zero.

In implementing exceptionDuringOperation:error:leftOperand:rightOperand , you can handle each of 
these errors in several ways:

• Raise an exception. For an explantion of exceptions, see the NSException class description in the 
Foundation Framework Reference.

• Return nil . The calling method will return its value as though no error had occurred. If error is 
NSCalculationLossOfPrecision, method will return an imprecise value—that is, one constrained to 38 
significant digits. If error is NSCalculationUnderflow or NSCalculationOverflow, method will return 
NSDecimalNumber’s notANumber. You shouldn’t return nil  if error is NSDivideByZero.

• Correct the error and return a valid NSDecimalNumber. The calling method will use this as its own return 
value.

roundingMode
– (NSRoundingMode)roundingMode

Returns the way that NSDecimalNumber’s decimalNumberBy... methods round their return values. There 
are four possible NSRoundingModes: 

• NSRoundDown. The methods round their return values down.
• NSRoundUp. The methods round their return values up.
• NSRoundPlain. The methods round to the closest possible return value. When they are caught halfway 

between two positive numbers, they round up; when caught between two negative numbers, they round 
down.

• NSRoundBankers. The methods round to the closest possible return value. When they are caught halfway 
between two possibilities, they return the possibility whose last digit is even. In practice, this means that, 
over the long run, numbers will be rounded up as often as they are rounded down; there will be no 
systematic bias.

The rounding mode only matters if the scale method sets a limit on the precision of NSDecimalNumber 
return values. It has no effect if scale returns NSDecimalNoScale.



3

 Classes: 

Assuming that scale returns 1, the NSRoundingMode has the following effects on various original values:

scale
– (short)scale

Limits the precision of the values returned by NSDecimalNumber’s decimalNumberBy... methods. 

Specifically, scale returns the number of digits allowed after the decimal separator. If scale returns a 
negative value, it affects the digits before the decimal separator as well. If scale returns 
NSDecimalNoScale, the number of digits is unlimited.

Assuming that roundingMode returns NSRoundPlain, different values of scale have the following effects 
on the number 123.456:

Original value NSRoundDown NSRoundUp NSRoundPlain NSRoundBankers

1.24 1.2 1.3 1.2 1.2

1.26 1.2 1.3 1.3 1.3

1.25 1.2 1.3 1.3 1.2

1.35 1.3 1.4 1.4 1.4

-1.35 -1.4 -1.3 -1.4 -1.4

Scale Return value

NSDecimalNoScale 123.456

2 123.45

0 123

-2 100



1

 Protocol: NSLocking

NSLocking 

Adopted By: NSConditionLock
NSLock
NSRecursiveLock 

Declared In: Foundation/NSLock.h 

Protocol Description

The NSLocking protocol declares the elementary methods adopted by classes that define lock objects. A 
lock object is used to coordinate the actions of multiple threads of execution within a single application. By 
using a lock object, an application can protect critical sections of code from being executed simultaneously 
by separate threads, thus protecting shared data and other shared resources from corruption.

For example, consider a multithreaded application in which each thread updates a shared counter. If two 
threads simultaneously fetch the current value into local storage, increment it, and then write the value back, 
the counter will be incremented only once, losing one thread’s contribution. However, if the code that 
manipulates the shared data (the critical section of code) must be locked before being executed, only one 
thread at a time can perform the updating operation, and collisions are prevented.

A lock object is either locked or unlocked. You acquire a lock by sending the object a lock message, thus 
putting the object in the locked state. You relinquish a lock by sending an unlock message, and thus putting 
the object in the unlocked state. (The NEXTSTEP classes that adopt this protocol define additional ways to 
acquire and relinquish locks.)

The lock method as declared in this protocol is blocking. That is, the thread that sends a lock message is 
blocked from further execution until the lock is acquired (presumably because some other thread 
relinquishes its lock). Classes that adopt this protocol typically add methods that offer nonblocking 
alternatives.

These NEXTSTEP classes conform to the NSLocking protocol: 

Class Adds these features to the basic protocol

NSLock
A nonblocking lock method; the ability to limit the duration of a locking 
attempt.

NSConditionLock The ability to postpone entry to a critical section until a condition is met.

NSRecursiveLock
The ability for a single thread to acquire a lock more than once without 
deadlocking.



2

The locking mechanism that these classes use causes a thread to sleep while waiting to acquire a lock rather 
than to poll the system constantly. Thus, lock objects can be used to lock time-consuming operations 
without causing system performance to degrade. See the class specifications for these classes for further 
information on their behavior and usage.

There is some performance cost in acquiring a lock, so it’s best to avoid the overhead if possible. An 
application developer has control over whether the application will execute with multiple threads, so it’s 
clear when locking is appropriate. A library developer doesn’t necessarily know whether library code will 
execute in a multithreaded environment. In this case, it’s best to test whether the code is executing in a 
multithreaded environment before attempting to acquire a lock. The following example illustrates how this 
is done.

Assume your application uses a Counter object to record various operations. Here’s one design that lets the 
Counter know whether it is multithreaded:

+ (void)initialize 

{

    if ([NSThread isMultiThreaded]) {

[self taskNowMultiThreaded:nil];

} else {

[[NSNotificationCenter defaultCenter] addObserver:self

selector:@selector(taskNowMultiThreaded:)

name:NSWillBecomeMultiThreadedNotification object:nil];

}

}

In the initialize method (which, by definition, is invoked before any Counter objects are created), the 
Counter class object first checks whether the application has already become multithreaded and if so 
invokes its own taskNowMultiThreaded:  method. Otherwise, it registers as an observer of 
NSWillBecomeMultiThreadedNotification so that taskNowMultiThreaded:  will be invoked when the 
application becomes multithreaded. 

Counter’s taskNowMultiThreaded:  method creates a lock object that the threads use to coordinate their 
activities:

+ (void)taskNowMultiThreaded:(NSNotification *)event 

{

if (!theLock)

theLock = [[NSLock alloc] init];

}

theLock, a static variable declared in the class implementation file, is assigned a value of nil  until 
taskNowMultiThreaded:  is invoked. Since messages sent to nil  are permitted and have no effect, code 
within Counter that acts on shared data can be written like this:

[theLock lock];

/* Operate on shared data */

[theLock unlock];



3

 Protocol: NSLocking

With this approach, the overhead associated with lock operations is only incurred if the application is 
multithreaded. This code, however, raises another issue. What happens if one of the statements between the 
lock and unlock messages cause the application to become multithreaded? Then the unlock message 
wouldn’t be paired with the preceding lock.

In normal usage, locking and unlocking messages are paired. However, as in the example above, it might 
be convenient to unlock a lock object that hasn’t yet been locked. This is permitted with two restrictions. 
First, you can send an unpaired unlocking message to a lock object as long as the object has never before 
been locked. Second, of the NEXTSTEP classes that conform to the NSLocking protocol, only 
NSConditionLock and NSLock allow an unpaired unlocking message. NSRecursiveLock requires locking 
and unlocking messages to be paired.

NEXTSTEP’s locking classes are designed to work in a well-behaved, multithreaded environment: The 
protection they offer can be subverted by the use of signal handlers. A signal handler can interrupt a thread, 
execute code that affects shared data, and then let the thread resume without alerting the thread that the 
application has, in effect, become multithreaded. For this reason, it’s recommended that you don’t use 
signal handlers in multithreaded NEXTSTEP applications.

Instance Methods

lock
– (void)lock

Attempts to acquire a lock. This method blocks a thread’s execution until the lock can be acquired.

An application protects a critical section of code by requiring a thread to acquire a lock before executing 
the code. Once the critical section is past, the thread relinquishes the lock by invoking unlock.

unlock
– (void)unlock

Relinquishes a previously acquired lock. 



1

 Protocol: NSMutableCopying

NSMutableCopying

Adopted By: Various OpenStep classes

Declared In: Foundation/NSObject.h

Protocol Description

The NSMutableCopying protocol declares a method for providing mutable copies of an object. Only 
classes that define an “immutable vs. mutable” distinction should adopt this protocol. Classes that don’t 
define such a distinction should adopt NSCopying instead.

NSMutableCopying declares one method, mutableCopyWithZone:, but mutable copying is commonly 
invoked with the convenience method mutableCopy. The mutableCopy method is defined for all 
NSObjects and simply invokes mutableCopyWithZone: with the default zone.

See the NSCopying protocol for details on implementing copying behavior.

Instance Methods

mutableCopyWithZone:
– mutableCopyWithZone:(NSZone *)zone

Returns a new instance that’s a mutable copy of the receiver. Memory for the new instance is allocated from 
zone, which may be NULL. If zone is NULL, the new instance is allocated from the default zone, which is 
returned by NSDefaultMallocZone(). The returned object is implicitly retained by the sender, who is 
responsible for releasing it.  The copy returned is mutable whether the original is mutable or not.

See also: – copyWithZone: (NSCopying protocol), – mutableCopy (NSObject)



1

 Protocol: NSObjCTypeSerializationCallBack

NSObjCTypeSerializationCallBack

Adopted By: No OpenStep classes

Declared In: Foundation/NSSerialization.h

Protocol Description 

An object conforms to the NSObjCTypeSerializationCallBack protocol so that it can intervene in the 
serialization and deserialization process. The primary purpose of this protocol is to allow for the 
serialization of objects and other data types that aren’t directly supported by OpenStep’s serialization 
facility. (See the NSSerializer class specification for information on serialization.) 

NSMutableData declares the method that’s used to begin the serialization process:

- (void)serializeDataAt:(const void *)data

ofObjCType:(const char *)type

context:(id <NSObjCTypeSerializationCallBack>)callback

This method can serialize all standard Objective C types (int , float, character strings, and so on) except for 
objects, union, and void *. If, during the serialization process, an object is encountered, the object passed 
as the callback argument above is asked to provide the serialization.

Suppose that the type being serialized is a structure of this description:

struct stockRecord {

NSString *stockName;

float value;

};

The Objective C type code for this structure is {@f}, so the serialization process begins with this message: 
(Assume that theData is the NSMutableData object that’s doing the serialization and helper is an object 
that conforms to the NSObjCTypeSerializationCallBack protocol.)

struct stockRecord aRecord = {@ "aCompany", 34.7};

[theData serializeDataAt:&aRecord ofObjCType: "{@f}"  context:helper];

Since the first field of the structure is an unsupported type, the helper object is sent a serializeObjectAt:
ofObjCType:intoData:  message, letting it serialize the object. helper might implement the method in this 
way:



2

- (void)serializeObjectAt:(id *)objectPtr

ofObjCType:(const char *)type

intoData:(NSMutableData *)theMutableData

{

NSString *nameObject;

char *companyName

nameObject = *objectPtr;

companyName = [nameObject cString];

[theData serializeDataAt:&companyName ofObjCType:@encode(typeof(companyName))

context:nil];

}

The callback object is free to serialize the target object as it wishes. In this case, helper simply extracts the 
company name from the NSString object and then has that character string serialized. Once this callback 
method finishes executing, the original method (serializeDataAt:ofObjCType:context:) resumes execution 
and serializes the second field of the structure. Since this second field contains a supported type (float), the 
callback method is not invoked again.

Deserialization follows a similar pattern, except in this case NSData declares the central method 
deserializeDataAt:ofObjCType:atCursor:context:. The deserialization of the example structure starts with 
a message to the NSData object that contains the serialized data:

(unsigned *)cursor = 0;

[theData deserializeDataAt:&aRecord ofObjCType:"{@f}" cursor:&cursor

context:helper];

(The cursor argument is a pointer to zero since we’re starting at the beginning of the data in the NSData 
object.) 

When this method is invoked, the callback object receives a deserializeObjectAt:ofObjCType:fromData:
atCursor:  message, as declared in this protocol. The callback object can then reestablish the first field of 
the structure. For example, helper might implement the method in this way:

- (void) deserializeObjectAt:(id *)objectPtr

ofObjCType:(const char *)type

fromData:(NSData *)data

atCursor:(unsigned *)cursor

{

char *companyName;

[theData deserializeDataAt:&companyName ofObjCType:"*" atCursor:cursor

context:nil];

*objectPtr = [[NSString stringWithCString:companyName] retain];

}



3

 Protocol: NSObjCTypeSerializationCallBack

Instance Methods

deserializeObjectAt:ofObjCType:fromData:atCursor:
– (void)deserializeObjectAt:(id *)object

ofObjCType:(const char *)type
fromData:(NSData *)data
atCursor:(unsigned *)cursor 

The implementor of this method decodes the referenced object (which should always be of type "@") 
located at the cursor position in the data object. The decoded object is not autoreleased.

See also:  – deserializeDataAt:ofObjCType:atCursor:context: (NSData)

serializeObjectAt:ofObjCType:intoData:
– (void)serializeObjectAt:(id *)object

ofObjCType:(const char *)type
intoData:(NSMutableData *)data 

The implementor of this method encodes the referenced object (which should always be of type "@") in the 
data object. 

See also: – serializeDataAt:ofObjCType:context: (NSMutableData)



1

 Classes: 

NSObject

Adopted By: NSObject

Declared In: Foundation/NSObject.h

Protocol Description

The NSObject protocol groups methods that are fundamental to all Objective-C objects. If an object 
conforms to this protocol, it can be considered a first-class object in NEXTSTEP. Such an object can be 
asked about its: 

• Class, and the place of its class in the inheritance hierarchy 
• Conformance to protocols
• Ability to respond to a particular message

In addition, objects that conform to this protocol—with its retain, release, and autorelease methods—can 
also integrate with the object-management and deallocation scheme defined in the Foundation Kit. (See the 
introduction to the Foundation Kit for more information.) Thus, an object that conforms to the NSObject 
protocol can be managed by container objects like those defined by NSArray and NSDictionary.

NEXTSTEP’s root class, NSObject, adopts this protocol, so virtually all objects in NEXTSTEP have the 
features described by this protocol.

Method Types

Identifying classes
– class
– superclass

Identifying and comparing objects
– isEqual:
– hash
– self

Determining allocation zones
– zone



2

Managing reference counts
– retain
– release
– autorelease
– retainCount

Testing class functionality
– respondsToSelector:

Testing inheritance relationships
– isKindOfClass:
– isMemberOfClass:

Testing protocol conformance
– conformsToProtocol:

Describing objects
– description

Sending messages
– performSelector:
– performSelector:withObject:
– performSelector:withObject:withObject:

Identifying proxies
– isProxy

Instance Methods

autorelease
– (id)autorelease

Adds the receiver to the current autorelease pool and returns self. You add an object to an autorelease pool 
so that it will receive a release message—and thus might be deallocated—when the pool is destroyed. For 
more information on the autorelease mechanism, see the NSAutoreleasePool class specification.

See also: – retain, – retainCount

class
– (Class)class

Returns the class object for the receiver’s class.

See also: + class (NSObject class)



3

 Classes: 

conformsToProtocol:
– (BOOL)conformsToProtocol:(Protocol *)aProtocol

Returns YES if the receiving class conforms to aProtocol, NO otherwise.  This method works identically to 
the conformsToProtocol: class method declared in NSObject.  It’s provided as a convenience so that you 
don’t need to get the class object to find out whether an instance can respond to a given set of messages.

See also: + conformsToProtocol: (NSObject class)

description
– (NSString *)description

Returns an NSString object that describes the contents of the receiver.  The debugger’s print-object  
command indirectly invokes this method to produce a textual description of an object.

hash
– (unsigned)hash

Returns an integer that can be used as a table address in a hash table structure.  If two objects are equal (as 
determined by the isEqual: method), they must have the same hash value. This last point is particularly 
important if you define hash in a subclass and intend to put instances of that subclass into a collection.

If a mutable object is added to a collection that uses hash values to determine the object’s position in the 
collection, the value returned by the hash method of the object must not change while the object is in the 
collection. To accomplish this, either the hash method must not rely on any of the object’s internal state 
information or you must make sure that the object’s internal state information does not change while the 
object is in the collection. (Note that it can be difficult to know whether or not a given object is in a 
collection.)

isEqual:
– (BOOL)isEqual:(id)anObject

Returns YES if the receiver and anObject are equal, NO otherwise.  This method defines what it means for 
an instance to be equal.  For example, a container object might define two containers as equal if their 
corresponding objects all respond YES to an isEqual: request.  See the NSData, NSDictionary, NSArray, 
and NSString class specifications for examples of the use of this method.



4

isKindOfClass:
– (BOOL)isKindOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass or an instance of any class that inherits from aClass, 
NO otherwise.  For example, in this code, isKindOfClass: would return YES because, in the Foundation 
Kit, the NSArchiver class inherits from NSCoder:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];

id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];

if ( [anArchiver isKindOfClass:[NSCoder class]] )

...

Because instance methods defined in the root class can be sent to class objects, when the receiver is a class 
object, this method returns YES if aClass is NSObject, NO otherwise.

See also: – isMemberOfClass:

isMemberOfClass:
– (BOOL)isMemberOfClass:(Class)aClass

Returns YES if the receiver is an instance of aClass, NO otherwise.  For example, in this code, 
isMemberOfClass: would return NO:

NSMutableData *myData = [NSMutableData dataWithCapacity:30];

id anArchiver = [[NSArchiver alloc] initForWritingWithMutableData:myData];

if ([anArchiver isMemberOfClass:[NSCoder class]])

...

When the receiver is a class object, this method returns NO.  Class objects are not “members of” any class.

See also: – isKindOfClass:

isProxy
– (BOOL)isProxy

Returns NO if the receiver really descends from NSObject, YES otherwise. This method is necessary 
because sending isKindOfClass: or isMemberOfClass: to an NSProxy object will test the object that the 
proxy stands-in for, not itself. Use this method to test if the receiver is a proxy (or a member of some other 
root class).



5

 Classes: 

performSelector:
– (id)performSelector:(SEL)aSelector

Sends an aSelector message to the receiver and returns the result of the message.  If aSelector is NULL, an 
NSInvalidArgumentException is raised.

performSelector: is equivalent to sending an aSelector message directly to the receiver.  For example, all 
three of the following messages do the same thing:

id myClone = [anObject copy];

id myClone = [anObject performSelector:@selector(copy)];

id myClone = [anObject performSelector:sel_getUid("copy")];

However, the performSelector: method allows you to send messages that aren’t determined until run time.  
A variable selector can be passed as the argument:

SEL myMethod = findTheAppropriateSelectorForTheCurrentSituation();

[anObject performSelector:myMethod];

aSelector should identify a method that takes no arguments.  For methods that return anything other than an 
object, use NSInvocation.

See also: – performSelector:withObject: , – performSelector:withObject:withObject:

performSelector:withObject:
– (id)performSelector:(SEL)aSelector withObject: (id)anObject

Sends an aSelector message to the receiver with anObject as the argument.  If aSelector is NULL, an 
NSInvalidArgumentException is raised.

This method is the same as performSelector: except that you can supply an argument for  aSelector.  
aSelector should identify a method that takes a single argument of type id. For methods with other argument 
types and return values, use NSInvocation.

See also:  – performSelector:withObject:withObject: , – methodForSelector: (NSObject class)

performSelector:withObject:withObject:
– (id)performSelector:(SEL)aSelector

withObject: (id)anObject
withObject: (id)anotherObject

Sends the receiver an aSelector message with anObject and anotherObject as arguments. If aSelector is 
NULL, an NSInvalidArgumentException is raised. This method is the same as performSelector: except 



6

that you can supply two arguments for  aSelector. aSelector should identify a method that can take two 
arguments of type id. For methods with other argument types and return values use NSInvocation.

See also: – performSelector:withObject:, – methodForSelector: (NSObject class)

release
– (oneway void)release

Decrements the receivers’s reference count, and sends it a dealloc message when its reference count reaches 
0.

You send release messages only to objects that you “own."  By definition, you own objects that you create 
using one of the alloc... or copy... methods.  These methods return objects with an implicit reference count 
of one.  You also own (or perhaps share ownership in) an object that you send a retain message to because 
retain increments the object’s reference count.  Each retain message you send an object should be balanced 
eventually with a release or autorelease message, so that the object can be deallocated.  For more 
information on the automatic deallocation mechanism, see the introduction to the Foundation Kit.

You would only implement this method to define your own reference-counting scheme.  Such 
implementations should not invoke the inherited method; that is, they should not include a release message 
to super.

See also: – retainCount

respondsToSelector:
– (BOOL)respondsToSelector:(SEL)aSelector

Returns YES if the receiver implements or inherits a method that can respond to aSelector messages,  NO 
otherwise.  The application is responsible for determining whether a NO response should be considered an 
error.

Note that if the receiver is able to forward aSelector messages to another object, it will be able to respond 
to the message, albeit indirectly, even though this method returns NO.

See also: – forwardInvocation:  (NSObject class), + instancesRespondToSelector:(NSObject class)

retain
– (id)retain

Increments the receiver’s reference count.  You send an object a retain message when you want to prevent 
it from being deallocated without your express permission.



7

 Classes: 

An object is deallocated automatically when its reference count reaches 0.  retain messages increment the 
reference count, and release messages decrement it.  For more information on this mechanism, see the 
introduction to the Foundation Kit.

As a convenience, retain returns self because it is often used in nested expressions:

NSString *systemApps = [[NSString

stringWithCString:”/System/Applications”] retain];

You would only implement this method if you were defining your own reference-counting scheme.  Such 
implementations must return self and should not invoke the inherited method by sending a retain message 
to super.

See also: – autorelease, – release, – retainCount

retainCount
– (unsigned)retainCount

Returns the receiver’s reference count for debugging purposes.  You rarely send a retainCount message; 
however, you might implement this method in a class to implement your own reference-counting scheme.  
For objects that never get released (that is, their release method does nothing), this method should return 
UINT_MAX, as defined in <limits.h>.

See also: – autorelease, – retain

self
– (id)self

Returns the receiver.

See also: – class

superclass
– (Class)superclass

Returns the class object for the receiver’s superclass.

See also: + superclass (NSObject class)



8

zone
– (NSZone *)zone

Returns a pointer to the zone from which the receiver was allocated. Objects created without specifying a 
zone are allocated from the default zone.

See also: + allocWithZone: (NSObject class)



 

1

 

Defined Types

 

NSBTreeComparator

 

DECLARED IN

 

Foundation/NSByteStore.h

 

SYNOPSIS

 

typedef int 

 

NSBTreeComparator

 

(NSData *, NSData *, const void *);

 

NSComparisonResult

 

DECLARED IN

 

Foundation/NSObject.h

 

SYNOPSIS

 

typedef enum _NSComparisonResult {

 

NSOrderedAscending

 

 = -1,

 

NSOrderedSame

 

,

 

NSOrderedDescending

 

} 

 

NSComparisonResult

 

;

 

DESCRIPTION

 

An 

 

NSComparisonResult

 

 indicates how items in a request are ordered, from the first one given 
in a method invocation or function call to the last (that is, left-to-right in code).



 

2

 

NSHashTableCallBacks

 

DECLARED IN

 

Foundation/NSHashTable.h

 

SYNOPSIS

 

typedef struct {
unsigned (*

 

hash

 

)(NSHashTable *table, const void *);
BOOL (*

 

isEqual

 

)(NSHashTable *table, const void *, const void *);
void (*

 

retain

 

)(NSHashTable *table, const void *);
void (*

 

release

 

)(NSHashTable *table, void *);
NSString *(*

 

describe

 

)(NSHashTable *table, const void *);
} 

 

NSHashTableCallBacks

 

;

 

NSMapTableKeyCallBacks

 

DECLARED IN

 

Foundation/NSMapTable.h

 

SYNOPSIS

 

typedef struct {
unsigned (*

 

hash

 

)(NSMapTable *table, const void *);
BOOL (*

 

isEqual

 

)(NSMapTable *table, const void *, const void *);
void (*

 

retain

 

)(NSMapTable *table, const void *);
void (*

 

release

 

)(NSMapTable *table, void *);
NSString *(*

 

describe

 

)(NSMapTable *table, const void *);
 const void *

 

notAKeyMarker

 

;
} 

 

NSMapTableKeyCallBacks

 

;

 

NSMapTableValueCallBacks

 

DECLARED IN

 

Foundation/NSMapTable.h

 

SYNOPSIS

 

typedef struct {
void (*

 

retain

 

)(NSMapTable *table, const void *);
void (*

 

release

 

)(NSMapTable *table, void *);
NSString *(*

 

describe

 

)(NSMapTable *table, const void *);
} 

 

NSMapTableValueCallBacks

 

;



 

3

 

NSNotificationCoalescing

 

DECLARED IN

 

Foundation/NSNotificationQueue.h

 

SYNOPSIS

 

typedef enum {

 

NSNotificationNoCoalescing

 

 = 0,

 

NSNotificationCoalescingOnName

 

 = 1,

 

NSNotificationCoalescingOnSender

 

 = 2,
} 

 

NSNotificationCoalescing

 

;

 

NSObjCValue

 

DECLARED IN

 

Foundation/NSInvocation.h

 

SYNOPSIS

 

typedef struct {
enum _NSObjCValueType type;
union {

char 

 

charValue

 

;
short 

 

shortValue

 

;
long 

 

longValue

 

;
long long 

 

longlongValue

 

;
float 

 

floatValue

 

;
double 

 

doubleValue

 

;
SEL 

 

selectorValue

 

;
id 

 

objectValue

 

;
void *

 

pointerValue

 

;
void *

 

structLocation

 

;
char *

 

cStringLocation

 

;
} value;

} 

 

NSObjCValue

 

;



 

4

 

NSPoint

 

DECLARED IN

 

Foundation/NSGeometry.h

 

SYNOPSIS

 

typedef struct _NSPoint {
    float x;
    float y;
} 

 

NSPoint

 

;

 

NSPosixFileActivity

 

DECLARED IN

 

Foundation/NSPosixFileDescriptor.h

 

SYNOPSIS

 

typedef enum {

 

NSPosixNoActivity

 

 = 0,

 

NSPosixReadableActivity

 

 = 1,

 

NSPosixWritableActivity

 

 = 2,

 

NSPosixExceptionalActivity

 

 = 4
} 

 

NSPosixFileActivity

 

;

 

NSPostingStyle

 

DECLARED IN

 

Foundation/NSNotificationQueue.h

 

SYNOPSIS

 

typedef enum {

 

NSPostWhenIdle

 

 = 1,

 

NSPostASAP

 

 = 2,

 

NSPostNow

 

 = 3
} 

 

NSPostingStyle

 

;



 

5

 

NSRange

 

DECLARED IN

 

Foundation/NSRange.h

 

SYNOPSIS

 

typedef struct _NSRange {
unsigned int location;
unsigned int length;

} 

 

NSRange

 

;

 

DESCRIPTION

 

An 

 

NSRange

 

 describes a portion of a series—such as characters in a string or objects in an 
NSArray.  Its 

 

location

 

 member gives the start index (0 is the first, as in C arrays), and its 

 

length

 

 
member gives the number of items in the range (and can be zero).

 

NSRect

 

DECLARED IN

 

Foundation/NSGeometry.h

 

SYNOPSIS

 

typedef struct _NSRect {
NSPoint origin;
NSSize size;

} 

 

NSRect

 

;

 

NSRectEdge

 

DECLARED IN

 

Foundation/NSGeometry.h

 

SYNOPSIS

 

typedef enum _NSRectEdge {

 

NSMinXEdge

 

 = 0,

 

NSMinYEdge

 

 = 1,

 

NSMaxXEdge

 

 = 2,

 

NSMaxYEdge

 

 = 3
} 

 

NSRectEdge

 

;

 

DESCRIPTION

 

This enumeration identifies the sides of a rectangle represented by an NSRect.



 

6

 

NSSize

 

DECLARED IN

 

Foundation/NSGeometry.h

 

SYNOPSIS

 

typedef struct _NSSize {
float width;
float height;

} 

 

NSSize

 

;

 

DESCRIPTION

 

The values for width and height should never be negative.

NSStringEncoding

DECLARED IN Foundation/NSString.h

SYNOPSIS typedef unsigned NSStringEncoding;

NSTimeInterval

DECLARED IN Foundation/NSDate.h

SYNOPSIS typedef double NSTimeInterval;

DESCRIPTION Always in seconds; yields sub-millisecond precision over a range of 10000 years.

NSUncaughtExceptionHandler

DECLARED IN Foundation/NSException.h

SYNOPSIS typedef volatile void NSUncaughtExceptionHandler(NSException *exception);



7

Enumerations

NSByteOrder

DECLARED IN Foundation/NSByteOrder.h

SYNOPSIS enum NSByteOrder {
NS_UnknownByteOrder,
NS_LittleEndian,
NS_BigEndian

};

DESCRIPTION

NSNotFound

DECLARED IN Foundation/NSObjCRuntime.h

SYNOPSIS enum {
NSNotFound = 0x7fffffff

};

DESCRIPTION A method or function return value of NSNotFound indicates that the item requested couldn’t be 
found or doesn’t exist.  It’s typically used by various methods and functions that search for items 
in serial data and return indices, such as characters in a string object or ids in an NSArray.



8

NSOpenStepUnicodeReservedBase

DECLARED IN Foundation/NSCharacterSet.h

SYNOPSIS enum {
NSOpenStepUnicodeReservedBase = 0xF400

};

DESCRIPTION  

ObjC Types

DECLARED IN Foundation/NSInvocation.h

SYNOPSIS enum _NSObjCValueType {
NSObjCNoType = 0,
NSObjCVoidType = 'v',
NSObjCCharType = 'c',
NSObjCShortType = 's',
NSObjCLongType = 'l',
NSObjCLonglongType = 'q',
NSObjCFloatType = 'f',
NSObjCDoubleType = 'd',
NSObjCSelectorType = ':',
NSObjCObjectType = '@',
NSObjCStructType = '{',
NSObjCPointerType = '^',
NSObjCStringType = '*',
NSObjCArrayType  = '[', 
NSObjCUnionType = '(', 
NSObjCBitfield  = 'b', 

};



9

Search Types

DECLARED IN Foundation/NSString.h

SYNOPSIS enum {
NSCaseInsensitiveSearch = 1,
NSLiteralSearch = 2,
NSBackwardsSearch = 4,
NSAnchoredSearch = 8

};

DESCRIPTION These values represent the options available to many of the string classes’ searching and 
comparison methods.  See the NSString class cluster description for details on the effects of these 
options.

String Encodings

DECLARED IN Foundation/NSString.h

SYNOPSIS enum {
NSASCIIStringEncoding = 1,
NSNEXTSTEPStringEncoding = 2,
NSJapaneseEUCStringEncoding = 3,
NSUTF8StringEncoding = 4,
NSISOLatin1StringEncoding = 5,
NSSymbolStringEncoding = 6,
NSNonLossyASCIIStringEncoding = 7,
NSShiftJISStringEncoding = 8,
NSISOLatin2StringEncoding = 9,
NSUnicodeStringEncoding = 10,
NSWindowsCP1251StringEncoding = 11,
NSWindowsCP1252StringEncoding = 12, 
NSWindowsCP1253StringEncoding = 13, 
NSWindowsCP1254StringEncoding = 14, 
NSWindowsCP1250StringEncoding = 15,
NSISO2022JPStringEncoding = 21 

};



10

DESCRIPTION These values represent the various character encodings supported by the NSString classes.  These 
encodings are documented more fully elsewhere; here are some short descriptions: 

Encoding Description

NSASCIIStringEncoding Strict 7-bit ASCII encoding within 8-bit chars

NSNEXTSTEPStringEncoding 8-bit ASCII encoding with NEXTSTEP extensions 
(see Appendix C of the NEXTSTEP General 
Reference)

NSUnicodeStringEncoding The canonical Unicode encoding for string objects

NSISOLatin1StringEncoding 8-bit ISO Latin 1 encoding

NSISOLatin2StringEncoding 8-bit ISO Latin 2 encoding

NSSymbolStringEncoding 8-bit Adobe Symbol encoding vector

NSJapaneseEUCStringEncoding 8-bit EUC encoding for Japanese text

NSShiftJISStringEncoding 8-bit Shift-JIS encoding for Japanese text

NSUTF8StringEncoding An 8-bit representation of Unicode characters, 
suitable for transmission or storage by ASCII-based 
systems

NSNonLossyASCIIStringEncoding 7-bit verbose ASCII to represent all Unicode 
characters. 

NSWindowsCP1250StringEncoding Microsoft Windows codepage 1250; equivalent to 
WinLatin2 

NSWindowsCP1251StringEncoding Microsoft Windows codepage 1251, encoding 
Cyrillic characters; equivalent to 
AdobeStandardCyrillic font encoding 

NSWindowsCP1252StringEncoding Microsoft Windows codepage 1252; equivalent to 
WinLatin1 

NSWindowsCP1253StringEncoding Microsoft Windows codepage 1253, encoding Greek 
characters

NSWindowsCP1254StringEncoding Microsoft Windows codepage 1254, encoding 
Turkish characters

NSISO2022JPStringEncoding ISO 2022 Japanese encoding for electronic mail



11

Global Variables

Archiving Exception Names

DECLARED IN Foundation/NSArchiver.h

SYNOPSIS extern NSString *NSInconsistentArchiveException;

Bundle Notification Names

DECLARED IN Foundation/NSBundle.h

SYNOPSIS extern NSString *NSBundleLoaded;

Byte Store Exception Names

DECLARED IN Foundation/NSByteStore.h

SYNOPSIS extern NSString *NSByteStoreLockedException;
extern NSString *NSByteStoreVersionException;
extern NSString *NSBTreeStoreKeyTooLargeException;
extern NSString *NSByteStoreDamagedException;



12

Connection Exception Names

DECLARED IN Foundation/NSConnection.h

SYNOPSIS extern NSString *NSFailedAuthenticationException;

Connection Notification Names

DECLARED IN Foundation/NSConnection.h

SYNOPSIS extern NSString *NSConnectionDidDieNotification;

File Attribute Keys

DECLARED IN Foundation/NSFileManager.h

SYNOPSIS extern NSString *NSFileType;
extern NSString *NSFileTypeDirectory;
extern NSString *NSFileTypeRegular;
extern NSString *NSFileTypeSymbolicLink;
extern NSString *NSFileTypeSocket;
extern NSString *NSFileTypeCharacterSpecial;
extern NSString *NSFileTypeBlockSpecial;
extern NSString *NSFileTypeUnknown;
extern NSString *NSFileSize;
extern NSString *NSFileModificationDate;
extern NSString *NSFileReferenceCount;
extern NSString *NSFileDeviceIdentifier;
extern NSString *NSFileOwnerAccountNumber;
extern NSString *NSFileGroupOwnerAccountNumber;
extern NSString *NSFilePosixPermissions;
extern NSString *NSFileSystemNumber;
extern NSString *NSFileSystemFileNumber;



13

DESCRIPTION Keys to access the file attribute values contained in the NSDictionary returned from 
NSFileManager’s  fileAttributesAtPath:follow: . See the class specification for NSFileManager 
for details of usage. NSFileDeviceIdentifier is used to access the identifier of a remote device.

File Exception Names

DECLARED IN Foundation/NSPosix.h

SYNOPSIS extern NSString *NSPosixFileOperationException;

File System Attribute Keys

DECLARED IN Foundation/NSFileManager.h

SYNOPSIS extern NSString *NSFileSystemSize;
extern NSString *NSFileSystemFreeSize;
extern NSString *NSFileSystemNodes;
extern NSString *NSFileSystemFreeNodes;



14

General Exception Names

DECLARED IN Foundation/NSException.h

SYNOPSIS extern NSString *NSGenericException;
extern NSString *NSRangeException;
extern NSString *NSInvalidArgumentException;
extern NSString *NSInternalInconsistencyException;
extern NSString *NSMallocException;
extern NSString *NSObjectInaccessibleException;
extern NSString *NSObjectNotAvailableException;
extern NSString *NSDestinationInvalidException;
extern NSString *NSPortTimeoutException;
extern NSString *NSInvalidSendPortException;
extern NSString *NSInvalidReceivePortException;
extern NSString *NSPortSendException;
extern NSString *NSPortReceiveException;
extern NSString *NSOldStyleException;
extern NSString *NSInvalidSendPort;
extern NSString *NSInvalidReceivePort;
extern NSString *NSPortSendError;
extern NSString *NSPortReceiveError;
extern NSString *NSCharacterConversionException;

Hash Table Call Backs

DECLARED IN Foundation/NSHashTable.h

SYNOPSIS extern const NSHashTableCallBacks NSIntHashCallBacks;
extern const NSHashTableCallBacks NSNonOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSOwnedPointerHashCallBacks;
extern const NSHashTableCallBacks NSPointerToStructHashCallBacks;
extern const NSHashTableCallBacks NSObjectHashCallBacks;
extern const NSHashTableCallBacks NSNonRetainedObjectHashCallBacks;;

DESCRIPTION NSIntHashCallBacks are for sets of pointer-sized quantities or samller (for example, ints, longs, 
or unichars).



15

NSNonOwnedPointerHashCallBacks are for sets of pointers, hashed by address.

NSOwnedPointerHashCallBacks are for sets of pointers, with transfer of ownership upon 
insertion.

NSPointerToStructHashCallBacks are for sets of pointers to structs, when the first field of the 
struct is int-sized.

NSObjectHashCallBacks are for sets of objects (similar to NSSet)

NSNonRetainedObjectHashCallBacks are for sets of objects, but without retaining/releasing.

Note that you can make your own call back by picking fields among the above call backs.



16

Language-Dependent Information

DECLARED IN Foundation/NSUserDefaults.h

SYNOPSIS extern NSString *NSWeekDayNameArray;
extern NSString *NSShortWeekDayNameArray;
extern NSString *NSMonthNameArray;
extern NSString *NSShortMonthNameArray;
extern NSString *NSTimeFormatString;
extern NSString *NSDateFormatString;
extern NSString *NSTimeDateFormatString;
extern NSString *NSShortTimeDateFormatString;
extern NSString *NSCurrencySymbol;
extern NSString *NSDecimalSeparator;
extern NSString *NSThousandsSeparator;
extern NSString *NSInternationalCurrencyString ;
extern NSString *NSCurrencyString;
extern NSString *NSDecimalDigits;
extern NSString *NSAMPMDesignation;
extern NSString *NSHourNameDesignations;
extern NSString *NSYearMonthWeekDesignations;
extern NSString *NSEarlierTimeDesignations;
extern NSString *NSLaterTimeDesignations;
extern NSString *NSThisDayDesignations;
extern NSString *NSNextDayDesignations;
extern NSString *NSNextNextDayDesignations;
extern NSString *NSPriorDayDesignations;
extern NSString *NSDateTimeOrdering;



17

Map Table Key Call Backs

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS extern const NSMapTableKeyCallBacks NSIntMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonOwnedPointerOrNullMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSOwnedPointerMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSObjectMapKeyCallBacks;
extern const NSMapTableKeyCallBacks NSNonRetainedObjectMapKeyCallBacks;

DESCRIPTION NSIntMapKeyCallBacks are for keys that are pointer-sized quantities or smaller (for example, 
ints, longs, or unichars).

NSNonOwnedPointerMapKeyCallBacks are for keys that are pointers not freed.

NSNonOwnedPointerOrNullMapKeyCallBacks are for keys that are pointers not freed, or 
NULL.

NSOwnedPointerMapKeyCallBacks are for keys that are pointers, with transfer of ownership 
upon insertion.

NSObjectMapKeyCallBacks are for keys that are objects

NSNonRetainedObjectMapKeyCallBacks are for sets of objects, but without 
retaining/releasing.

Note that you can make your own call back by picking fields among the above call backs.

Map Table Value Call Backs

DECLARED IN Foundation/NSMapTable.h

SYNOPSIS extern const NSMapTableValueCallBacks NSIntMapValueCallBacks;
extern const NSMapTableValueCallBacks NSNonOwnedPointerMapValueCallBacks;
extern const NSMapTableValueCallBacks NSOwnedPointerMapValueCallBacks;
extern const NSMapTableValueCallBacks NSObjectMapValueCallBacks;

DESCRIPTION NSIntMapValueCallBacks are for values that are pointer-sized quantities, such as ints.



18

NSNonOwnedPointerMapValueCallBacks are for values that are not owned pointers.

NSOwnedPointerMapValueCallBacks are for values that are owned pointers.

NSObjectMapValueCallBacks are for values that are objects.

Note that you can make your own call back by picking fields among the above call backs.

NSConnectionReplyMode

DECLARED IN NSConnection.h

SYNOPSIS extern NSString *NSConnectionReplyMode;

NSDefaultRunLoopMode

DECLARED IN Foundation/NSRunLoop.h

SYNOPSIS extern NSString *NSDefaultRunLoopMode;

Port Notification Names

DECLARED IN Foundation/NSPort.h

SYNOPSIS extern NSString *NSPortDidBecomeInvalidNotification;



19

PPL Notification Names

DECLARED IN Foundation/NPPL.h

SYNOPSIS extern NSString *NSPPLDidBecomeDirtyNotification;
extern NSString *NSPPLDidSaveNotification;

Thread Notification Names

DECLARED IN Foundation/NSThread.h

SYNOPSIS extern NSString *NSBecomingMultiThreaded;
extern NSString *NSThreadExiting;

User Defaults

DECLARED IN Foundation/NSUserDefaults.h

SYNOPSIS extern NSString *NSGlobalDomain;
extern NSString *NSArgumentDomain;
extern NSString *NSRegistrationDomain;

Zero Constants

DECLARED IN Foundation/NSGeometry.h

SYNOPSIS extern const NSPoint NSZeroPoint;
extern const NSSize NSZeroSize;
extern const NSRect NSZeroRect;


	Foundation Framework Intro
	The Foundation Framework

	Classes
	NSArchiver
	NSArray Class Cluster
	NSAssertionHandler
	NSAttributedString Class Cluster
	NSAutoreleasePool
	NSBundle
	NSCalendarDate
	NSCharacterSet Class Cluster
	NSCoder
	NSConditionLock
	NSConnection
	NSCountedSet
	NSData Class Cluster
	NSDate Class Cluster
	NSDateFormatter
	NSDecimalNumber
	NSDecimalNumberHandler
	NSDeserializer
	NSDictionary Class Cluster
	NSDirectoryEnumerator
	NSDistantObject
	NSDistantObjectRequest
	NSDistributedLock
	NSDistributedNotificationCenter
	NSEnumerator
	NSException
	NSFileHandle Class Cluster
	NSFileManager
	NSFormatter
	NSHost
	NSInvocation
	NSLock
	NSMethodSignature
	NSNotification
	NSNotificationCenter
	NSNotificationQueue
	NSNumber
	NSNumberFormatter
	NSObject
	NSPipe Class Cluster
	NSPort
	NSPortCoder
	NSPortMessage
	NSPortNameServer
	NSProcessInfo
	NSProtocolChecker
	NSProxy
	NSRecursiveLock
	NSRunLoop
	NSScanner Class Cluster
	NSSerializer
	NSSet Class Cluster
	NSString Class Cluster
	NSTask
	NSThread
	NSTimer
	NSTimeZone Class Cluster
	NSUnarchiver
	NSUndoManager
	NSUserDefaults
	NSValue

	Functions
	Functions and Macros
	NSAllHashTableObjects
	NSAllMapTableKeys
	NSAllMapTableValues
	NSAllocateMemoryPages
	NSAllocateObject
	NSAssert
	NSAssert1
	NSAssert2
	NSAssert3
	NSAssert4
	NSAssert5
	NSCAssert
	NSCAssert1
	NSCAssert2
	NSCAssert3
	NSCAssert4
	NSCAssert5
	NSClassFromString
	NSCompareHashTables
	NSCompareMapTables
	NSContainsRect
	NSConvertHostDoubleToSwapped
	NSConvertHostFloatToSwapped
	NSConvertSwappedDoubleToHost
	NSConvertSwappedFloatToHost
	NSCopyHashTableWithZone
	NSCopyMapTableWithZone
	NSCopyMemoryPages
	NSCopyObject
	NSCountHashTable
	NSCountMapTable
	NSCParameterAssert
	NSCreateHashTable
	NSCreateHashTableWithZone
	NSCreateMapTable
	NSCreateMapTableWithZone
	NSCreateZone
	NSDeallocateMemoryPages
	NSDeallocateObject
	NSDecimalAdd
	NSDecimalCompact
	NSDecimalCompare
	NSDecimalCopy
	NSDecimalDivide
	NSDecimalIsNotANumber
	NSDecimalMultiply
	NSDecimalMultiplyByPowerOf10
	NSDecimalNormalize
	NSDecimalPower
	NSDecimalRound
	NSDecimalString
	NSDecimalSubtract
	NSDecrementExtraRefCountWasZero
	NSDefaultMallocZone
	NSDivideRect
	NSEnumerateHashTable
	NSEnumerateMapTable
	NSEqualPoints
	NSEqualRanges
	NSEqualRects
	NSEqualSizes
	NSExtraRefCount
	NSFreeHashTable
	NSFreeMapTable
	NSFullUserName
	NSGetSizeAndAlignment
	NSGetUncaughtExceptionHandler
	NSHashGet
	NSHashInsert
	NSHashInsertIfAbsent
	NSHashInsertKnownAbsent
	NSHashRemove
	NSHeight
	NSHomeDirectory
	NSHomeDirectoryForUser
	NSHostByteOrder
	NSIncrementExtraRefCount
	NSInsetRect
	NSIntegralRect
	NSIntersectionRange
	NSIntersectionRect
	NSIntersectsRect
	NSIsEmptyRect
	NSJavaBundleCleanup
	NSJavaBundleSetup
	NSJavaNeedsToLoadClasses
	NSJavaNeedsVirtualMachine
	NSJavaProvidesClasses
	NSJavaSetup
	NSJavaVirtualMachineSetup
	NSLocationInRange
	NSLog
	NSLogPageSize
	NSLogv
	NSMakePoint
	NSMakeRange
	NSMakeRect
	NSMakeSize
	NSMapGet
	NSMapInsert
	NSMapInsertIfAbsent
	NSMapInsertKnownAbsent
	NSMapMember
	NSMapRemove
	NSMaxRange
	NSMaxX
	NSMaxY
	NSMidX
	NSMidY
	NSMinX
	NSMinY
	NSMouseInRect
	NSNextHashEnumeratorItem
	NSNextMapEnumeratorPair
	NSOffsetRect
	NSOpenStepRootDirectory
	NSPageSize
	NSParameterAssert
	NSPointFromString
	NSPointInRect
	NSRangeFromString
	NSRealMemoryAvailable
	NSRectFromString
	NSRecycleZone
	NSResetHashTable
	NSResetMapTable
	NSRoundDownToMultipleOfPageSize
	NSRoundUpToMultipleOfPageSize
	NSSearchPathForDirectoriesInDomains
	NSSelectorFromString
	NSSetUncaughtExceptionHandler
	NSSetZoneName
	NSShouldRetainWithZone
	NSSizeFromString
	NSStandardApplicationPaths
	NSStandardLibraryPaths
	NSStringFromClass
	NSStringFromHashTable
	NSStringFromMapTable
	NSStringFromPoint
	NSStringFromRange
	NSStringFromRect
	NSStringFromSelector
	NSStringFromSize
	NSSwapBigDoubleToHost
	NSSwapBigFloatToHost
	NSSwapBigIntToHost
	NSSwapBigLongLongToHost
	NSSwapBigLongToHost
	NSSwapBigShortToHost
	NSSwapDouble
	NSSwapFloat
	NSSwapHostDoubleToBig
	NSSwapHostDoubleToLittle
	NSSwapHostFloatToBig
	NSSwapHostFloatToLittle
	NSSwapHostIntToBig
	NSSwapHostIntToLittle
	NSSwapHostLongLongToBig
	NSSwapHostLongLongToLittle
	NSSwapHostLongToBig
	NSSwapHostLongToLittle
	NSSwapHostShortToBig
	NSSwapHostShortToLittle
	NSSwapInt
	NSSwapLittleDoubleToHost
	NSSwapLittleFloatToHost
	NSSwapLittleIntToHost
	NSSwapLittleLongLongToHost
	NSSwapLittleLongToHost
	NSSwapLittleShortToHost
	NSSwapLong
	NSSwapLongLong
	NSSwapShort
	NSTemporaryDirectory
	NSUnionRange
	NSUnionRect
	NSUserName
	NSWidth
	NSZoneCalloc
	NSZoneFree
	NSZoneFromPointer
	NSZoneMalloc
	NSZoneName
	NSZoneRealloc


	OtherFeatures
	Locales

	Protocols
	NSCoding
	NSCopying
	NSDecimalNumberBehaviors
	NSLocking
	NSMutableCopying
	NSObjCTypeSerializationCallBack
	NSObject

	TypesAndConstants
	Defined Types
	NSBTreeComparator
	NSComparisonResult
	NSHashTableCallBacks
	NSMapTableKeyCallBacks
	NSMapTableValueCallBacks
	NSNotificationCoalescing
	NSObjCValue
	NSPoint
	NSPosixFileActivity
	NSPostingStyle
	NSRange
	NSRect
	NSRectEdge
	NSSize
	NSStringEncoding
	NSTimeInterval
	NSUncaughtExceptionHandler

	Enumerations
	NSByteOrder
	NSNotFound
	NSOpenStepUnicodeReservedBase
	ObjC Types
	Search Types
	String Encodings

	Global Variables
	Archiving Exception Names
	Bundle Notification Names
	Byte Store Exception Names
	Connection Exception Names
	Connection Notification Names
	File Attribute Keys
	File Exception Names
	File System Attribute Keys
	General Exception Names
	Hash Table Call Backs
	Language-Dependent Information
	Map Table Key Call Backs
	Map Table Value Call Backs
	NSConnectionReplyMode
	NSDefaultRunLoopMode
	Port Notification Names
	PPL Notification Names
	Thread Notification Names
	User Defaults
	Zero Constants



