

Rhapsody Assembler Reference

Table of Contents

Using the Assembler 7

Command Syntax 9

Assembler Options 9
-o 9
-- 9
-f 9

-g 10

-v 10

-n 10

-I 10
-L 11
-W 11

Architecture Options 11

-arch 11
-arch_multiple 11

M68000-Specific Options 11

-l 11
-k 12
-mc68000 and -mc68010 12
-mc68020 12

Assembly Language Syntax 13

Elements of Assembly Language 15
Characters 15

Identifiers 15

Labels 16

Numeric Labels 16

The Scope of a Label 16

Constants 16

Numeric Constants 17

Character Constants 17

String Constants 17

Floating Point Constants 17

Assembly Location Counter 18

Expression Syntax 19
Operators 19

Terms 20

Expressions 21

Absolute Expressions 21

Relocatable Expressions 21

External Expressions 22

Assembly Language Statements 23

Label Field 25

Operation Code Field 26
Architecture- and Processor-Specific Caveats 26

M68000 (including MC68882) 26

Intel i386 Architecture 27

Operand Field 28
Architecture- and Processor-Specific Caveats 29

Intel 386 Architecture 29

Comment Field 29

Direct Assignment Statements 30

Assembler Directives 33

Directives for Designating the Current Section 35
.section 36

.zerofill 36

Section Types and Attributes 36

Type Identifiers 37

regular (S_REGULAR) 37

cstring_literals (S_CSTRING_LITERALS) 37

4byte_literals (S_4BYTE_LITERALS) 37

8byte_literals (S_8BYTE_LITERALS) 37

literal_pointers (S_LITERAL_POINTERS) 38

symbol_stubs (S_SYMBOL_STUBS) 38

lazy_symbol_pointers (S_LAZY_SYMBOL_POINTERS) 39

non_lazy_symbol_pointers (S_NON_LAZY_SYMBOL_POINTERS) 39

mod_init_funcs (S_MOD_INIT_FUNC_POINTERS) 41

Attribute Identifiers 41

none (0) 41

iii

pure_instructions (S_ATTR_PURE_INSTRUCTIONS) 41

S_ATTR_SOME_INSTRUCTIONS 41

Built-in Directives for Designating the Current Section 41
Designating Sections in the __TEXT Segment 41

.text 42

.const 42

.static_const 42

.cstring 43

.literal4 43

.literal8 43

.constructor 44

.fvmlib_init0 44

.fvmlib_init1 44

.symbol_stub 44

.picsymbol_stub 45

Designating Sections in the __DATA Segment 46

.data 47

.static_data 47

.non_lazy_symbol_ptr 47

.lazy_symbol_ptr 47

.dyld 47

.mod_init_func 47

.const_data 48

Designating Sections in the __OBJC Segment 48

Directives for Moving the Location Counter 49
.align 49

.org 49

Directives for Generating Data 50
.ascii and .asciz 50

.byte, .short, and .long 50

.single and .double 51

.fill 52

.space 52

.comm 52

.lcomm 53

iv

Directives for Dealing with Symbols 53
.globl 53

.indirect_symbol 54

.reference 54

.private_extern 54

.lazy_reference 55

.stabs, .stabn, and .stabd 55

.desc 56

.set 56

.lsym 56

Miscellaneous Directives 57
.abort 57

.file and .line 57

.if, .elseif, .else, and .endif 58

.include 58

.macro, .endmacro, .macros_on, and .macros_off 59

.abs 60

.dump and .load 60

Architecture- and Processor-specific Directives 61
M68000-Specific Directives 61

.word, .int, .quad, and .octa 61

Additional Processor-Specific Directives 61

PowerPC Addressing Modes and Assembler Instructions 63

PowerPC Registers and Addressing Modes 65
Registers 65

Operands and Addressing Modes 66

Extended Instruction Mnemonics & Operands 67

Branch Mnemonics 67

Branch Prediction 71

Trap Mnemonics 72

PowerPC Assembler Instructions 73
A 74

B 75

C 84

D 87

E 89

F 90

I 93

L 93

M 96

N 101

O 102

R 102

S 104

T 110

V 113

X 123

i386 Addressing Modes and Assembler Instructions 125

i386 Registers and Addressing Modes 127
Instruction Mnemonics 127

Registers 127

General Registers 127
Floating-Point Registers 128

Segment Registers 128

Other Registers 129

Operands and Addressing Modes 129

Register Operands 129

Immediate Operands 129

Direct Memory Operands 130

Indirect Memory Operands 130

i386 Assembler Instructions 131
A 132

B 133

C 134

D 136

E 137

F 137

H 143

I 143

J 145

L 147

M 149

N 151

O 151

P 152

R 153

S 156

T 161

V 161

W 161

X 161

Index 163

v

vi

Using the Assembler

Chapter 1

This chapter describes how to run the as assembler, which produces an
object file from one or more files of assembly language source code.

Note: Although a.out is the default file name that as gives to the object file
that’s created (as is conventional with many compilers), the format of the
object file is not standard 4.4BSD a.out format. Object files produced by the
assembler are in Mach-O (Mach object) file format.

Command Syntax

To run the assembler, type the following command in a shell window:

as [option] ... [file] ...

You can specify one or more command-line options. These assembler
options are described in the following section.

You can specify one or more files containing assembly language source code.
If no files are specified, as uses the standard input (stdin) for the assembly
source input.

Note: By convention, files containing assembly language source code should
have a .s extension.

Assembler Options

The following command-line options are recognized by the assembler:

-o
-o name

The name argument after -o is used as the name of the as output file, instead
of a.out.

--
--

Use the standard input (stdin) for the assembly source input.

-f
-f

9

Chapter 1

Using the Assembler

Fast; no need to run app (the assembler preprocessor). This option is intended
for use by compilers that produce assembly code in a strict “clean” format that
specifies exactly where whitespace can go. The app preprocessor needs to be run
on handwritten assembly files and on file that have been preprocessed by cpp
(the C preprocessor). This typically is needed when assembler files are
assembled through the use of the cc(1) command, which automatically runs the
C preprocessor on assembly source files. The assembler preprocessor strips out
excess spaces, turns each single-quoted character into a decimal constant, and
turns occurrences of

 # number filename level

into:

 .line number ;.file filename

The assembler preprocessor can also be turned off by starting the assembly file
with #NO_APP\n. When the assembler preprocessor has been turned off in this way,
it can be turned on and off with pairs of #APP\n and #NO_APP\n at the beginning of
lines. This is used by the compiler to wrap assembly statements produced from
asm() statements.

-g
-g

Produce debugging information for the symbolic debugger gdb(1) so the the
assembly source can be debugged symbolically. For include files (included by
the C preprocessor’s #include or by the assembler directive .include) that produce
instructions in the (__TEXT,__text) section, the include file must be included
while a .text directive is in effect (that is, there must be a .text directive before the
include) and end with the a .text directive in effect (at the end of the include file).
Otherwise the debugger will have trouble dealing with that assembly file.

-v
-v

Print the version of the assembler (both the Rhapsody version and the GNU
version that it is based on).

-n
-n

Don’t assume that the assembly file starts with a .text directive.

-I
-I dir

10

Assembler Options

Add dir to the list of directories to search for files included with the .include
directive. The default places to search are the current directory, and then
/usr/include.

-L
-L

Save defined labels beginning with an ‘L’ (the compiler generates these
temporary labels). Temporary labels are normally discarded to save space
in the resulting symbol table.

-W
-W

Suppress warnings.

Architecture Options
The program /bin/as is a driver that executes assemblers for specific target
architectures. If no target architecture is specified, it defaults to the
architecture of the host it is running on.

-arch
-arch arch_type

Specifies to the target architecture, arch_type, the assembler to be executed.
The target assemblers for each architecture are in /lib/arch_type/as.

-arch_multiple
-arch_multiple

This is used by the cc(1) driver program when it is run with multiple -arch
arch_type flags and instructs programs like as(1) that if it prints any messages
to precede the messages with one line stating the program name—in this
case as—and the architecture (from the -arch arch_type flag) to distinguish
which architecture the error messages refer to. This flag is accepted only by
the actual assemblers (in /lib/arch_type/as) and not by the assembler driver,
/bin/as.

M68000-Specific Options

-l
-l

For offsets from an address register that refers to an undefined symbol (as
in a6@(var) where var is not defined in the assembly file), make the offset and
the relocation entry width 32 bits rather than 16 bits.

11

Chapter 1

Using the Assembler

-k
-k

Produce a warning when a statement of the form

 .word symbol1 - symbol2 +offset

does not fit in a 16-bit word. This is only applicable on the 68000 processor,
where .word is 16 bits and all addresses are 16 bits; therefore, this option isn’t
applicable on OpenStep computers.

-mc68000 and -mc68010
-mc68000

-mc68010

Don’t generate branches that use 32-bit pc-relative displacements (which aren’t
implemented on the 68000 and 68010 processors). These options aren’t
applicable on NeXT computers.

-mc68020
-mc68020

Generate branches that use 32-bit pc-relative displacements. This is the default
behavior.

12

Assembly Language Syntax

Chapter 2

This chapter first describes the basic lexical elements of assembly language
programming, and then describes how those elements combine to form
complete assembly language expressions.

The following chapter goes on to explain how sequences of expressions are
put together to form the statements that make up an assembly language
program.

Elements of Assembly Language

This section describes the basic building blocks of an assembly language
program—these are characters, symbols, labels, and constants.

Characters
The following characters are used in assembly language programs

• alphanumeric characters—‘A’ through ‘Z’, ‘a’ through ‘z’, and ‘0’
through ‘9’

• other printable ASCII characters (such as #, $, :, ., +, -, *, /, !, and |)
• non-printing ASCII characters (such as space, tab, return, and newline)

Some of these characters have special meanings, which are described in the
section “Expression Syntax” and in the following chapter.

Identifiers
An identifier (also known as a symbol) can be used for several purposes:

• as the label for an assembler statement (see the following section,
“Labels”)

• as a location tag for data
• as the symbolic name of a constant

Each identifier consists of a sequence of alphanumeric characters (which
may include other printable ASCII characters such as ., _, and $). The first
character must not be numeric. Identifiers may be of any length, and all
characters are significant. Case of letters is significant—for example, the
identifier var is different from the identifier Var.

15

Chapter 2

Assembly Language Syntax

It is also possible to define a new identifier by enclosing multiple identifiers
within a pair of double quotes. For example:

"Object +new:":

.long "Object +new:"

Labels
A label is written as an identifier immediately followed by a colon (:). The label
represents the current value of the current location counter; it can be used in
assembler instructions as an operand.

Note: You may not use a single identifier to represent two different locations.

Numeric Labels
Local numeric labels allow compilers and programmers to use names
temporarily. A numeric label consists of a digit (between 0 and 9) followed by a
colon. These ten local symbol names can be reused any number of times
throughout the program. As with alphanumeric labels, a numeric label assigns
the current value of the location counter to the symbol.

Although multiple numeric labels with the same digit may be used within the
same program, only the next definition and the most recent previous definition
of a label can be referenced:

• To refer to the most recent previous definition of a local numeric label, write
digitb, (using the same digit as when you defined the label).

• To refer to the next definition of a numeric label, write digitf.

The Scope of a Label
The scope of a label is the distance over which it is visible to (and referenceable
by) other parts of the program. Normally, a label that tags a location or data is
visible only within the current assembly unit.

The .globl directive (described in Chapter 4) may be used to make a label
external. In this case, the symbol is visible to other assembly units at link time.

Constants
Four types of constants are available: numeric constants, character constants, string
constants, and floating point constants. All constants are interpreted as absolute
quantities when they appear in an expression.

16

Elements of Assembly Language

Numeric Constants
A numeric constant is a token that starts with a digit. Numeric constants can
be decimal, hexadecimal, or octal. The following restrictions apply:

• Decimal constants contain only digits between 0 and 9, and normally
aren’t longer than 32 bits—having a value between -2,147,483,648 and
2,147,483,647 (values that don’t fit in 32 bits are bignums, which are legal
but which should fit within the designated format). Decimal constants
cannot contain leading zeros or commas.

• Hexadecimal constants start with 0x (or 0X), followed by between one
and eight decimal or hexadecimal digits (0 through 9, ‘a’ through ‘f’,
and ‘A’ through ‘F’). Values that don’t fit in 32 bits are bignums.

• Octal constants start with 0, followed by from one to eleven octal digits
(0 through 7). Values that don’t fit in 32 bits are bignums.

Character Constants
A single-character constant consists of a single quote (') followed by any
ASCII character. The constant’s value is the code for the given character.

String Constants
A string constant is a sequence of 0 or more ASCII characters surrounded by
quotation marks ("characters").

Floating Point Constants
The general lexical form of a floating point number is:

0flt_char [{ +–}] dec ...[.][dec ...][exp_char [{ +–}][dec ...]]

where:

Item Description

flt_char a required type specification character (see the following table)

[{+-}] the optional occurrence of either + or –, but not both

 dec... a required sequence of 1 or more decimal digits

[.] a single optional “.”

[dec...] an optional sequence of 1 or more decimal digits

[exp_char] an optional exponent delimiter character (see the following table)

17

Chapter 2

Assembly Language Syntax

The type specification character, flt_char, specifies the type and representation
of the constructed number; the set of legal type specification characters with the
processor architecture, as shown here:

On the M68000 architecture, 0b can be used to specify an immediate
hexadecimal bit pattern. For example:

fmoves #0b7f80001,fp0

moves the signaling Nan into the register fp0 and

fmoves #0x7f80001,fp0

moves the decimal number 2,139,095,041 (0x7f80001 in hexadecimal) into the
register fp0.

When floating-point constants are used as arguments to the .single and .double
directives, the type specification character isn’t actually used in determining the
type of the number. For convenience, r or R can be used consistently to specify
all types of floating-point numbers.

Collectively, all floating point numbers, together with quad and octal scalars, are
called Bignums. When as requires a Bignum, a 32-bit scalar quantity may also
be used.

Floating point constants are internally represented as flonums, in a machine-
independent, precision-independent floating point format (for accurate cross-
assembly).

Assembly Location Counter
A single period (.), usually referred to as “dot,” is used to represent the current
location counter. There is no way to explicitly reference any other location
counters besides the current location counter.

Even if it occurs in the operand field of a statement, dot refers to the address of
the first byte of that statement; the value of dot isn’t updated until the next
machine instruction or assembler directive.

Architecture flt_char exp_char

M98000 {dDfF} {eE}

i386 {fFdDxX} {eE}

18

Expression Syntax

Expression Syntax

Expressions are combinations of operand terms (which can be numeric
constants or symbolic identifiers) and operators. This section lists the
available operators, and describes the rules for combining these operators
with operands in order to produce legal expressions.

Operators
Identifiers and numeric constants can be combined, through the use of
operators, to form expressions. Each operator operates on 32-bit values. If
the value of a term occupies 8 or 16 bits, it is sign extended to a 32-bit value.

The assembler provides both unary and binary operators. A unary operator
precedes its operand; a binary operator follows its first operand, and
precedes its second operand. For example:

!var | unary expression

var+5 | binary expression

The assembler recognizes the following unary operators:

The assembler recognizes the following binary operators:

Operator Desription

– Unary minus: the result is the two’s complement of the operand

~ One’s complement: the result is the one’s complement of the operand

! Logical negation: the result is 0 if the operand is non-zero, and 1 if the operand is 0

Operator Description

+ Addition: the result is the arithmetic addition of the two operands

– Subtraction: the result is the arithmetic subtraction of the two operands

* Multiplication: the result is the arithmetic multiplication of the two operands

/ Division: the result is the arithmetic division of the two operands; this is integer division, which
truncates towards zero

% Modulus: the result is the remainder that’s produced when the first operand is divided by the second
(this operator applies only to integral operands)

19

Chapter 2

Assembly Language Syntax

Terms
A term is a part of an expression; it may be:

• An identifier.

• A numeric constant (its 32-bit value is used). The assembly location counter
(.), for example, is a valid numeric constant.

• An expression or term enclosed in parentheses. Any quantity enclosed in
parentheses is evaluated before the rest of the expression. This can be used
to alter the normal evaluation of expressions—for example, to differentiate
between x * y + z and x * (y + z) or to apply a unary operator to an entire
expression—for example, –(x * y + z).

• A term preceded by a unary operator (for example, ~var). Multiple unary
operators may be used in a term (for example, !~var).

>> Right shift: the result is the value of the first operand shifted to the right, where the second operand
specifies the number of bit positions by which the first operand is to be shifted (this operator applies
only to integral operands). This is always an arithmetic shift since all operators operate on signed
operands.

<< Left shift: the result is the value of the first operand shifted to the left, where the second operand
specifies the number of bit positions by which the first operand is to be shifted (this operator applies
only to integral operands)

& Bitwise AND: the result is the bitwise AND function of the two operands (this operator applies only to
integral operands)

^ Bitwise exclusive OR: the result is the bitwise exclusive OR function of the two operands (this operator
applies only to integral operands)

| Bitwise inclusive OR: the result is the bitwise inclusive OR function of the two operands (this operator
applies only to integral operands); this operator can’t be used on the M68000 microprocessor family,
because the ‘|’ character is used there to mark the start of a comment

< Less than: the result is 1 if the first operand is less than the second operand, and 0 otherwise

> Greater than: the result is 1 if the first operand is greater than the second operand, and 0 otherwise

<= Less than or equal: the result is 1 if the first operand is less than or equal to the second operand, and
0 otherwise

>= Greater than or equal: the result is 1 if the first operand is greater than or equal to the second operand,
and 0 otherwise

== Equal: the result is 1 if the two operands are equal, and 0 otherwise

!= Not equal (same as <>): the result is 0 if the two operands are equal, and 1 otherwise

Operator Description

20

Expression Syntax

Expressions
Expressions are combinations of terms joined together by binary operators.
An expression is always evaluated to a 32-bit value, but in some situations a
different value will be used:

• If the operand requires a one-byte value (a .byte directive, for
example), the low-order eight bits of the expression are used.

• If the operand requires a 16-bit value (a .short directive or a movem
instruction, for example), the low-order 16 bits of the expression are
used.

All expressions are evaluated using the same operator precedence rules that
are used by the C programming language.

When an expression is evaluated its value is absolute, relocatable, or
external, as described below.

Absolute Expressions
An expression is absolute if its value is fixed. The following, for example,
are absolute:

• An expression whose terms are constants

• An identifier whose value is a constant via a direct assignment
statement

• A relocatable expression minus a relocatable term, if both items belong
to the same program section.

Relocatable Expressions
An expression (or term) is relocatable if its value is fixed relative to a base
address, but will have an offset value when it is linked or loaded into
memory. For example, all labels of a program defined in relocatable
sections are relocatable.

Expressions that contain relocatable terms must only add or subtract
constants to their value. For example, if the identifiers var and dat were

21

Chapter 2

Assembly Language Syntax

defined in a relocatable section of the program, then the following examples
demonstrate the use of relocatable expressions:

External Expressions
An expression is external (or global) if it contains an external identifier not defined
in the current program. In general, the same restrictions on expressions
containing relocatable identifiers apply to expressions containing external
identifiers. An exception is that the expression var–dat is incorrect when both
var and dat are external identifiers (that is, you cannot subtract two external
relocatable expressions). Also, you cannot multiply or divide any relocatable
expression.

Expression Description

var is a simple relocatable term. Its value is an offset from the base address of the current control
section.

var+5 is a simple relocatable expression. Since the value of var is an offset from the base address of the
current control section, adding a constant to it doesn’t change its relocatable status.

var*2 is not relocatable. Multiplying a relocatable term by a constant invalidates the relocatable status
of the expression.

2–var is not relocatable. The expression can’t be linked by adding var’s offset to it.

var-dat+5 is a relocatable expression if both var and dat are both defined in some section—that is, if neither
is undefined. This form of relocatable expression is used for position-independent code.

22

Assembly Language Statements

Chapter 3

This chapter describes the assembly language statements that make up an
assembly language program.

The general format of an assembly language statement is shown below.
Each of the fields shown here is described in detail in one of the following
sections.

[label_field] [opcode_field [operand_field]] [comment_field]

A line may contain multiple statements separated by semicolons, which
may then be followed by a single comment:

[statement [; statement ...]] [comment_field]

The following rules apply to the use of whitespace within a statement:

• Spaces or tabs are used to separate fields.
• At least one space or tab must occur between the opcode field and the

operand field.
• Spaces may appear within the operand field.
• Spaces and tabs are significant when they appear in a character string.

Label Field

Labels are identifiers that you use to tag the locations of program and data
objects. Each label is composed of an identifier and a terminating colon.
The format of the label field is:

identifier : [identifier :] ...

The optional label field can only occur first in a statement. The following
example shows a label field containing two labels, followed by a (M68000-
style) comment:

var: VAR: | two labels defined here

As shown here, letters in identifiers are case-sensitive, and both uppercase
and lowercase letters may be used.

25

Chapter 3

Assembly Language Statements

Operation Code Field

The operation code field of an assembly language statement identifies the
statement as a machine instruction, an assembler directive, or a macro defined
by the programmer:

• A machine instruction is indicated by an instruction mnemonic. An
assembly language statement that contains an instruction mnemonic is
intended to produce a single executable machine instruction. The
operation and use of each instruction is described in the manufacturer’s user
manual.

• An assembler directive (or pseudo-op) performs some function during the
assembly process. It doesn’t produce any executable code, but it may assign
space for data in the program.

• Macros are defined with the .macro directive (see Chapter 4 for more
information).

One or more spaces or tabs must separate the operation code field from the
following operand field in a statement. Spaces or tabs are optional between the
label and operation code fields, but they help to improve the readability of the
program.

Architecture- and Processor-Specific Caveats

M68000 (including MC68882)

• Many M68000 machine instructions can operate on byte, word, or long word
data. The desired size is indicated as part of the instruction mnemonic by
adding a trailing b, w, or l:

For instance, a movb instruction moves a byte of data, but a movw instruction
moves a 16-bit word of data. In general, the default size for data
manipulation instructions on the 68030 and 68040 processors is 16-bit
word.

Mnumonic Description

b byte (8-bit) data

w word (16-bit) data

l long word (32-bit) data

26

Operation Code Field

• Many 68882 instructions (as well as built-in floating-point instructions
on the 68040) can operate on other types of data besides byte, word, or
long word integer data. Again, the size required is specified as part of
the instruction mnemonic by a trailing letter:

Intel i386 Architecture

• As with the Motorola 68000 family, i386 instructions can operate on
byte, word, or long word data (the last is called “double word” by Intel).
The size can be indicated in the same way as it is for the MC68000. If
no size is specified, the assembler attempts to determine the size from
the operands. For example, if the 16-bit names for registers are used as
operands, a 16-bit operation will be performed. When both a size
specifier and a size-specific register name are given, the size specifier is
used. Thus, the following are all correct and result in the same
operation:

 movw %bx,%cx
 mov %bx,%cx
 movw %ebx,%ecx

• An i386 operation code can also contain optional prefixes, which are
separated from the operation code by a slash (‘/’) character. The prefix
mnemonics are:

Mnemonic Description

s single-precision (32-bit) floating-point data

d double-precision (64-bit) floating-point data

x extended-precision (96-bit) floating-point data

p packed decimal (96-bit) floating-point data (note that the assembler currently
doesn’t support packed immediate formats)

Prefix Description

data16 operation uses 16-bit data

addr16 operation uses 16-bit addresses

lock exclusive memory lock

wait wait for pending numeric exceptions

cs, ds, es, fs, gs, ss segment register override

rep, repe, repne repeat prefixes for string instructions

27

Chapter 3

Assembly Language Statements

More than one prefix may be specified for some operation codes. For
example:

lock/fs/xchgl %ebx,4(%ebp)

Segment register overrides and the 16-bit data specifications are usually
given as part of the operation code itself or of its operands. For example,
the following two lines of assembly generate the same instructions:

movw %bx,%fs:4(%ebp)
data16/fs/movl %bx,4(%ebp)

Not all prefixes are allowed with all instructions. The assembler does
check that the repeat prefixes for strings instructions are used correctly, but
doesn’t otherwise check for correct usage.

Operand Field

The operand field of an assembly language statement supplies the arguments to
the machine instruction, assembler directive, or macro.

The operand field may contain one or more operands, depending on the
requirements of the preceding machine instruction or assembler directive.
Some machine instructions and assembler directives don’t take any operand,
and some take two or more. If the operand field contains more than one
operand, the operands are generally separated by commas, as shown here:

[operand [, operand] ...]

The following types of objects can be operands:

• register operands
• register pairs
• address operands
• string constants
• floating-point constants
• register lists
• expressions

Register operands in a machine instruction refer to the machine registers of the
processor or coprocessor. Register names may appear in mixed case.

28

Comment Field

Architecture- and Processor-Specific Caveats

Intel 386 Architecture

• The Rhapsody assembler orders operand fields for i386 instructions in
the reverse order from Intel’s conventions. Intel’s convention is
destination first, source second; Rhapsody’s is source first, destination
second. Where Intel documentation would describe the Compare and
Exchange instruction for 32-bit operands as follows:

CMPXCHG r/m32 , r32 # Intel processor manual convention

The Rhapsody assembler syntax for this same instruction is:

cmpxchg r32 , r/m32 # OpenStep assembler syntax

So an example of actual assembly code for the Rhapsody would be:

cmpxchg %ebx,(%eax) # OpenStep assembly code

Comment Field

The assembler recognizes two types of comments in source code:

• A line whose first non-whitespace character is the hash character (#) is
a comment. This style of comment is useful for passing C preprocessor
output through the assembler. Note that comments of the form

 # line_number file_name level

get turned into

 .line line_number ; .file file_name

This can cause problems when comments of this form which aren’t
intended to specify line numbers precede assembly errors, since the
error will be reported as occurring on a line relative to that specified in
the comment. Suppose a program contains these two lines of assembly
source:

500
 .var

29

Chapter 3

Assembly Language Statements

If “.var” hasn’t been defined, this fragment will result in the following error
message:

var.s:500:Unknown pseudo-op: .var

• A comment field, appearing on a line after one or more statements. The
comment field consists of the appropriate comment character and all the
characters that follow it on the line:

An assembly language source line can consist of just the comment field; in
this case, it’s equivalent to using the hash character comment style:

This is a comment.

; This is a comment.

Note the warning given above for hash character comments beginning with
a number.

Direct Assignment Statements

This section describes direct assignment statements, which don’t conform to
the normal statement syntax described throughout this chapter. A direct
assignment statement can be used to assign the value of an expression to an
identifier. The format of a direct assignment statement is:

 identifier = expression

If expression in a direct assignment is absolute, identifier is also absolute, and it
may be treated as a constant in subsequent expressions. If expression is
relocatable, identifier is also relocatable, and it is considered to be declared in the
same program section as the expression.

The use of an assignment statement is analogous to using the .set directive
(described in the following chapter), except that the .set directive requires that
expression be absolute.

Character Description

| comment character for MC68000 processors

; comment character for PowerPC processors

comment character for i386 architecture processors

30

Direct Assignment Statements

Once an identifier has been defined by a direct assignment statement, it
may be redefined—its value is then the result of the last assignment
statement. There are a few restrictions, however, concerning the
redefinition of identifiers:

• Register identifiers may not be redefined.

• An identifier that has already been used as a label should not be
redefined, since this would amount to redefining the address of a place
in the program. Moreover, an identifier that has been defined in a direct
assignment statement cannot later be used as a label. Only the second
situation produces an assembler error message.

31

Chapter 3

Assembly Language Statements

32

Assembler Directives

Chapter 4

This chapter describes assembler directives (also known as pseudo
operations, or pseudo-ops), which allow control over the actions of the
assembler. For organizational purposes, the directives are grouped here
into the following functional categories:

• Directives for designating the current section
• Built-in directives for designating the current section
• Directives for moving the location counter
• Directives for generating data
• Directives for dealing with symbols
• Miscellaneous directives
• Processor-specific directives

Directives for Designating the Current Section

The assembler supports designation of arbitrary sections with the .section and
.zerofill directives (descriptions apear below). Only those sections specified
by a directive in the assembly file appear in the resulting object file
(including implicit .text directives—see “Built-in Directives for Designating
the Current Section”). Sections appear in the object file in the order their
directives first appear in the assembly file. When object files are linked by
the link editor, the output objects have their sections in the order the
sections first appear in the object files that are linked. See the ld(1)
Rhapsody man page for more details.

Associated with each section in each segment is an implicit location counter
which begins at zero and is incremented by 1 for each byte assembled into
the section. There is no way to explicitly reference a particular location
counter, but the directives described here can be used to “activate” the
location counter for a section, making it the current location counter. As a
result, the assembler begins assembling into the section associated with that
location counter.

Note: If the -n command line option isn’t used, the (__TEXT,__text) section
is used by default at the beginning of each file being assembled, just as if
each file began with the .text directive.

35

Chapter 4

Assembler Directives

.section
SYNOPSIS

.section segname , sectname [[[, type] , attribute] , sizeof_stub]

The .section directive causes the assembler to begin assembling into the section
given by segname and sectname. A section created with this directive contains
initialized data or instructions and is referred to as a content section. type and
attribute may be specified as described below under “Section Types and
Attributes.” If type is symbol_stubs, then the sizeof_stub field must be given as the
size in bytes of the symbol stubs contained in the section.

.zerofill
SYNOPSIS

.zerofill segname , sectname [, symbolname , size [, align_expression]]

The .zerofill directive causes symbolname to be created as uninitialized data in the
section given by segname and sectname, with a size in bytes given by size. A power
of 2 between 0 and 15 may be given for align_expression to indicate what
alignment should be forced on symbolname, which will then be placed on the
next expression boundary having the given alignment. See the description of
the .align built-in directive for more information.

Section Types and Attributes
A content section has a type, which informs the link editor about special
processing needed for the items in that section. The most common form of
special processing is for sections containing literals (strings, constants, and so on)
where only one copy of the literal is needed in the output file and the same
literal can be used by all references in the input files.

A section’s attributes record supplemental information about the section that
the link editor may use in processing that section. For example, the reloc_at_launch
attribute indicates that a section should be relocated immediately when a
program is launched.

A section’s type and attribute are recorded in a Mach-O file as the flags field in
the section header, using constants defined in the header file mach-o/loader.h. The
following paragraphs describe the various types and attributes by the names
used to identify them in a .section directive. The name of the related constant is
also given in parentheses following the identifier.

36

Directives for Designating the Current Section

Type Identifiers

regular (S_REGULAR)
A regular section may contain any kind of data and gets no special processing
from the link editor. This is the default section type. Examples of regular
sections include program instructions or initialized data.

cstring_literals (S_CSTRING_LITERALS)
A cstring_literals section contains null-terminated literal C language character
strings. The link editor places only one copy of each literal into the output
file’s section and relocates references to different copies of the same literal
to the one copy in the output file. There can be no relocation entries for a
section of this type, and all references to literals in this section must be
inside the address range for the specific literal being referenced. The last
byte in a section of this type must be a null byte, and the strings can’t
contain null bytes in their bodies. An example of a cstring_literals section is
one for the literal strings that appear in the body of an ANSI C function
where the compiler chooses to make such strings read-only.

4byte_literals (S_4BYTE_LITERALS)
A 4byte_literals section contains 4-byte literal constants. The link editor places
only one copy of each literal into the output file’s section and relocates
references to different copies of the same literal to the one copy in the
output file. There can be no relocation entries for a section of this type, and
all references to literals in this section must be inside the address range for
the specific literal being referenced. An example of a 4byte_literals section is
one in which single-precision floating-point constants are stored for a RISC
machine (these would normally be stored as immediates in CISC machine
code).

8byte_literals (S_8BYTE_LITERALS)
An 8byte_literals section contains 8-byte literal constants. The link editor
places only one copy of each literal into the output file’s section and
relocates references to different copies of the same literal to the one copy in
the output file. There can be no relocation entries for a section of this type,
and all references to literals in this section must be inside the address range
for the specific literal being referenced. An example of a 8byte_literals section
is one in which double-precision floating-point constants are stored for a
RISC machine (these would normally be stored as immediates in CISC
machine code).

37

Chapter 4

Assembler Directives

literal_pointers (S_LITERAL_POINTERS)
A literal_pointers section contains 4-byte pointers to literals in a literal section. The
link editor places only one copy of a pointer into the output file’s section for each
pointer to a literal with the same contents. The link editor also relocates
references to each literal pointer to the one copy in the output file. There must
be exactly one relocation entry for each literal pointer in this section, and all
references to literals in this section must be inside the address range for the
specific literal being referenced. The relocation entries can be external
relocation entries referring to undefined symbols if those symbols identify
literals in another object file. An example of a literal_pointers section is one
containing selector references generated by the Objective C compiler.

symbol_stubs (S_SYMBOL_STUBS)
A symbol_stubs section contains symbol stubs, which are sequences of machine
instructions (all the same size) used for lazily binding undefined function calls
at run time. If a call to an undefined function is made, the compiler outputs a
call to a symbol stub instead, and tags the stub with an indirect symbol that
indicates what symbol the stub is for. On transfer to a symbol stub, a program
executes instructions that eventually reach the code for the indirect symbol
associated with that stub. Here’s a sample of assemly code based on a function
func() containing only a call to the undefined function foo():

 .text

 .align 4, 0x90

_func:

 call _foo_stub

 ret

 .symbol_stub #

_foo_stub: #

 .indirect_symbol _foo #

 ljmp _foo_lazy_ptr # the symbol stub

_foo_stub_1: #

 pushl $_foo_lazy_ptr #

 jmp dyld_stub_binding_helper #

 .lazy_symbol_pointer #

_foo_lazy_ptr: # the symbol pointer

 .indirect_symbol _foo #

 .long_foo_stub_1 # to be replaced by _foo's address

In the assembly code, _func calls _foo_stub, which is responsible for finding the
definition of the function foo(). _foo_stub jumps to the contents of _foo_lazy_ptr,
initially causing the code at _foo_stub_1 to be executed. This value is initially the
address for _foo_stub1, which calls the dyld_stub_binding_helper() function to overwrite

38

Directives for Designating the Current Section

the contents of _foo_lazy_ptr with the address of the real function, _foo. This
way, jumps through _foo_lazy_ptr will immediately execute foo()’s code.

The indirect symbol entries for _foo provide information to the static and
dynamic linkers for binding the symbol stub. Each symbol stub and lazy
pointer entry must have exactly one such indirect symbol, associated with
the first address in the stub or pointer entry. See the description of the
.indirect_symbol directive for more information.

The static link editor places only one copy of each stub into the output file’s
section for a particular indirect symbol, and relocates all references to the
stubs with the same indirect symbol to the stub in the output file. Further,
the static link editor eliminates a stub if a definition of the indirect symbol
for that stub is present in the output file and that output file isn’t a
dynamically linked shared library file. The stub can refer only to itself, one
lazy symbol pointer (referring to the same indirect symbol as the stub), and
the dyld_stub_binding_helper() function. No global symbols can be defined in this
type of section.

lazy_symbol_pointers (S_LAZY_SYMBOL_POINTERS)
A lazy_symbol_pointers section contains 4-byte symbol pointers that will
eventually contain the value of the indirect symbol associated with the
pointer. These pointers are used by symbol stubs to lazily bind undefined
function calls at run time. A lazy symbol pointer initially contains an
address in the symbol stub of instructions that cause the symbol pointer to
be bound to the function definition (in the example above, the lazy pointer
_foo_lazy_ptr initially contains the address for _foo_stub_1 but gets overwritten
with the address for _foo). The dynamic link editor binds the indirect
symbol associated with the lazy symbol pointer by overwriting it with the
value of the symbol.

The static link editor only places a copy of a lazy pointer in the output file
if the corresponding symbol stub is in the output file. Only the
corresponding symbol stub can make a reference to a lazy symbol pointer,
and no global symbols can be defined in this type of section. There must
be one indirect symbol assocated with each lazy symbol pointer. An
example of a lazy_symbol_pointers section is one in which the compiler has
generated calls to undefined functions, each of which can be bound lazily at
the time of the first call to the function.

non_lazy_symbol_pointers (S_NON_LAZY_SYMBOL_POINTERS)
A non_lazy_symbol_pointers section contains 4-byte symbol pointers that will
contain the value of the indirect symbol associated with a pointer that may

39

Chapter 4

Assembler Directives

be set at any time before any code makes a reference to it. These pointers are
used by the code to reference undefined symbols. Initially these pointers have
no interesting value, but will get overwritten by the dynamic link editor with the
value of the symbol for the associated indirect symbol before any code can make
a reference to it.

The static link editor places only one copy of each non-lazy pointer for its
indirect symbol into the output file and relocates all references to the pointer
with the same indirect symbol to the pointer in the output file. The static link
editor futher can fill in the pointer with the value of the symbol if a definition of
the indirect symbol for that pointer is present in the output file. No global
symbols can be defined in this type of section. There must be one indirect
symbol assocated with each non-lazy symbol pointer. An example of a
non_lazy_symbol_pointers section is one in which the compiler has generated code to
indirectly reference undefined symbols to be bound at run time—this preserves
the sharing of the machine instructions by allowing the dynamic link editor to
update references without writing on the instructions.

Here's an example of assembly code referencing an element in the undefined
structure. The corresponding 'C' code would be:

struct s {

 int member1, member2;

 };

 extern struct s bar;

 int func()

 {

 return(bar.member2);

 }

The i386 assembly code might look like this:

 .text

 .align 4, 0x90

.globl _func

_func:

 movl _bar_non_lazy_ptr,%eax

 movl 4(%eax),%eax

 ret

 .non_lazy_symbol_pointer

_bar_non_lazy_ptr:

 .indirect_symbol _bar

 .long 0

40

Built-in Directives for Designating the Current Section

mod_init_funcs (S_MOD_INIT_FUNC_POINTERS)
A mod_init_funcs section contains 4-byte pointers to functions that are to be
called just after the module containing the pointer is bound into the
program by the dynamic link editor. The static link editor does no special
processing for this section type except for disallowing section ordering.
This is done to maintain the order the functions will be called (which is the
order their pointers appear in the original module). There must be exactly
one relocation entry for each pointer in this section. An example of a
mod_init_funcs section is one in which the compiler has generated code to call
C++ constructors for modules that get dynamicly bound at run time.

Attribute Identifiers

none (0)
No attributes for this section. This is the default section attribute.

pure_instructions (S_ATTR_PURE_INSTRUCTIONS)
The pure_instructions attribute means that this section contains nothing but
machine instructions. This attribute would be used for the
(__TEXT,__text) section of Rhapsody compilers and sections which have
a section type of symbol_stubs.

S_ATTR_SOME_INSTRUCTIONS
This attribute is set by the assembler whenever it assembles a machine
instruction in a section. There is no directive associated with it, since you
cannot set it yourself. It is used by the dynamic link editor together with the
S_ATTR_EXT_RELOC and S_ATTR_LOC_RELOC, set by the static link editor, to know it
must flush the cache and other processor related functions when it relocates
instructions by writing on them.

Built-in Directives for Designating the Current Section

The directives described here are simply built-in equivalents for .section
directives with specific arguments.

Designating Sections in the __TEXT Segment
The directives listed below cause the assembler to begin assembling into
the indicated section of the __TEXT segment. Note that the underscore

41

Chapter 4 Assembler Directives

before __TEXT, __text, and the rest of the segment names is actually two
underscore characters.

The following paragraphs describe the sections in the __TEXT segment and
the types of information that should be assembled into each of them:

.text
This is equivalent to .section __TEXT,__text,regular,pure_instructions

The compiler only places machine instructions in the (__TEXT,__text) section
(no read-only data, jump tables or anything else). With this the entire
(__TEXT,__text) section is pure instructions and tools that operate on object
files can take advantage of this and can locate the instructions of the program
and not get confused with data that could have been mixed in. To make this
work all run-time support code linked into the program must also obey this rule
(all OpenStep library code follows this rule).

.const
This is equivalent to .section __TEXT,__const

The compiler places all data declared const in this section and all jump tables it
generates for switch statements.

.static_const
This is equivalent to .section __TEXT,__static_const

Directive Section

.text (__TEXT,__text)

.const (__TEXT,__const)

.static_const (__TEXT,__static_const)

.cstring (__TEXT,__cstring)

.literal4 (__TEXT,__literal4)

.literal8 (__TEXT,__literal8)

.constructor (__TEXT,__constructor)

.destructor (__TEXT,__destructor)

.fvmlib_init0 (__TEXT,__fvmlib_init0)

.fvmlib_init1 (__TEXT,__fvmlib_init1)

.symbol_stub (__TEXT,__symbol_stub)

42

Built-in Directives for Designating the Current Section

This is not currently used by the compiler. It was added to the assembler
so that the compiler may separate global and static const data into separate
sections if it wished to.

.cstring
This is equivalent to .section __TEXT,__cstring, cstring_literals

This section is marked with the section type S_LITERAL_CSTRING,
which the link editor recognizes. The link editor merges the like literal C
strings in all the input object files to one unique C string in the output file.
Therefore this section must only contain C strings (a C string in a sequence
of bytes that ends in a null byte, '\0', and does not contain any other null
bytes except its terminator). The compiler places literal C strings found in
the code that are not initializers and do not contain any imbedded nulls in
this section.

.literal4
This is equivalent to .section __TEXT,__literal4,4byte_literals

This section is marked with the section type S_4BYTE_LITERALS,
which the link editor recognizes. The link editor then can merge the like 4
byte literals in all the input object files to one unique 4 byte literal in the
output file. Therefore this section must only contain 4 byte literals. This is
typically intended for single precision floating-point constants and the
compiler uses this section for that purpose. On some machines it is more
efficient to place these constants in line as immediates as part of the
instruction (this is what is done on OpenStep 68k machines when the
optimizer is turned on).

.literal8
This is equivalent to .section __TEXT,__literal8,8byte_literals

This section is marked with the section type S_8BYTE_LITERALS,
which the link editor recognizes. The link editor then can merge the like 8
byte literals in all the input object files to one unique 8 byte literal in the
output file. Therefore this section must only contain 8 byte literals. This is
typically intended for double precision floating-point constants and the
compiler uses this section for that purpose. On some machines it is more
efficient to place these constants in line as immediates as part of the
instruction (this is what is done on OpenStep 68k machines when the
optimizer is turned on).

43

Chapter 4 Assembler Directives

.constructor
This is equivalent to .section __TEXT,__constructor
(__TEXT,__destructor)

This is equivalent to .section __TEXT,__destructor

These sections are used by the C++ run-time system, and are reserved
exclusively for the C++ compiler.

.fvmlib_init0
This is equivalent to .section __TEXT,__fvmlib_init0

.fvmlib_init1
This is equivalent to .section __TEXT,__fvmlib_init1

These two sections are used by the fixed virtual memory shared library
initialization. The compiler doesn’t place anything in these sections, as they are
reserved exclusively for the shared library mechanism.

.symbol_stub
This is equivalent to .section __TEXT,__symbol_stub, symbol_stubs, pure_instructions,NBYTES

This section is of type symbol_stubs and has the attribute pure_instructions. The
compiler places symbol stubs in this section for undefined functions that are
called in the module. This is the standard symbol stub section for non position-
independent code. The value NBYTES is dependent on the target architecture.
The standard symbol stub for the PowerPC is 20 bytes and has an alignment of
4 bytes (.align 2) . For example, a stub for the symbol _foo would be (using a lazy
symbol pointer L_foo$lazy_ptr):

 symbol_stub

Lfoo$stub:

 .indirect_symbol _foo

 lis r11,ha16(L_foo$lazy_ptr)

 lwz r12,lo16(L_foo$lazy_ptr)(r11)

 mtctr r12

 addi r11,r11,lo16(L_foo$lazy_ptr)

 bctr

 .lazy_symbol_pointer

L_foo$lazy_ptr:

 .indirect_symbol _foo

 .long dyld_stub_binding_helper

44

Built-in Directives for Designating the Current Section

The standard symbol stub for the i386 is 16 bytes and has an alignment of
1 byte (.align 0). For example a stub for the symbol _foo would be (using a lazy
symbol pointer L_foo$lazy_ptr):

 .symbol_stub

Lfoo$stub:

 .indirect_symbol _foo

 ljmp L_foo$lazy_ptr

Lfoo$stub_binder:

 pushl L_foolazy_ptr

 jmp dyld_stub_binding_helper

 .lazy_symbol_pointer

L_foo$lazy_ptr:

 .indirect_symbol _foo

 .long Lfoo$stub_binder

.picsymbol_stub
This is equivalent to .section __TEXT, __picsymbol_stub, symbol_stubs, pure_instructions,
NBYTES

This section is of type symbol_stubs and has the attribute pure_instructions. The
compiler places symbol stubs in this section for undefined functions that are
called in the module. This is the standard symbol stub section for position-
independent code. The value of NBYTES is dependent on the target
architecture.

The standard position-independent symbol stub for the PowerPC is 36
bytes and has an alignment of 4 bytes (.align 2). For example a stub for the
symbol _foo would be (using a lazy symbol pointer L_foo$lazy_ptr):

 .picsymbol_stub

Lfoo$stub:

 .indirect_symbol _foo

 mflr 0

 bl LO$foo

LO$foo:

 mflr r11

 mtlr r0

 addis r11,r11,ha16(L_foo$lazy_ptr - LO$foo)

 lwz r12,lo16(L_foo$lazy_ptr - LO$foo)(r11)

 mtctr r12

 addi r11,r11,lo16(L_foo$lazy_ptr - LO$foo)

 bctr

 .lazy_symbol_pointer

L_foo$lazy_ptr:

45

Chapter 4 Assembler Directives

 .indirect_symbol _foo

 .long dyld_stub_binding_helper

The standard position-independent symbol stub for the i386 is 26 bytes and has
an alignment of 1 byte (.align 0). For example a stub for the symbol _foo would be
(using a lazy symbol pointer L_foo$lazy_ptr):

 .picsymbol_stub

Lfoo$stub:

 indirect_symbol _foo

 call L1foo$stub

L1foo$stub:

 popl %eax

 movl L_foo$lazy_ptr-L1foo$stub(%eax),%ebx

 jmp %ebx

Lfoo$stub_binder:

 lea L_foo$lazy_ptr-L1foo$stub(%eax),%eax

 pushl %eax

 jmp dyld_stub_binding_helper

 .lazy_symbol_pointer

L_foo$lazy_ptr:

 .indirect_symbol _foo

 .long Lfoo$stub_binder

Designating Sections in the __DATA Segment
These directives cause the assembler to begin assembling into the indicated
section of the __DATA segment:

The following paragraphs describe the sections in the __DATA segment and the
types of information that should be assembled into each of them:

Directive Section

.data (__DATA,__data)

.static_data (__DATA,__static_data)

.non_lazy_symbol_pointer (__DATA,__nl_symbol_pointer)

.lazy_symbol_pointer (__DATA,__la_symbol_pointer)

.dyld (__DATA,__dyld)

.mod_init_func (__DATA,__mod_init_func)

.const_data (__DATA,__const)

46

Built-in Directives for Designating the Current Section

.data

This is equivalent to .section __DATA, __data

The compiler places all non-const initialized data (even initialized to zero)
in this section.

.static_data

This is equivalent to .section __DATA, __static_data

This is not currently used by the compiler. It was added to the assembler
so that the compiler could separate global and static data symbol into
separate sections if it wished to.

.non_lazy_symbol_ptr
This is equivalent to .section __DATA, __nl_symbol_ptr,non_lazy_symbol_pointers

This section is of type non_lazy_symbol_pointers and has no attributes. The
compiler places a non-lazy symbol pointer in this section for each undefined
symbol referenced by the module (except for function calls). This section
has an alignment of 4 bytes (.align 2).

.lazy_symbol_ptr
This is equivalent to .section __DATA, __la_symbol_ptr,lazy_symbol_pointers

This section is of type lazy_symbol_pointers and has no attributes. The compiler
places a lazy symbol pointer in this section for each symbol stub it creates
for undefined functions that are called in the module. (See __TEXT,
__symbol_stub for examples.) This section has an alignment of 4 bytes
(.align 2).

.dyld
This is equivalent to .section __DATA, __dyld,regular

This section is of type regular and has no attributes. This section is used by
the dynamic link editor. The compiler doesn’t place anything in this
section, as it is reserved exclusively for the dynamic link editor.

.mod_init_func
This is equivalent to .section __DATA, __mod_init_func, mod_init_funcs

47

Chapter 4 Assembler Directives

This section is of type mod_init_funcs and has no attributes. The C++ compiler
places a pointer to a function in this section for each function it creates to call the
constructors (if the module has them).

.const_data
This is equivalent to .section __DATA, __const, regular.

This section is of type regular and has no attributes. This section is used when
dynamic code is being compiled for const data that must be initialized.

Designating Sections in the __OBJC Segment
These directives cause the assembler to begin assembling into the indicated
section of the __OBJC segment:

Directive Section

.objc_class (__OBJC,__class)

.objc_meta_class (__OBJC,__meta_class)

.objc_cat_cls_meth (__OBJC,__cat_cls_meth)

.objc_cat_inst_meth (__OBJC,__cat_inst_meth)

.objc_protocol (__OBJC,__protocol)

.objc_string_object (__OBJC,__string_object)

.objc_cls_meth (__OBJC,__cls_meth)

.objc_inst_meth (__OBJC,__inst_meth)

.objc_cls_refs (__OBJC,__cls_refs)

.objc_message_refs (__OBJC,__message_refs)

.objc_symbols (__OBJC,__symbols)

.objc_category (__OBJC,__category)

.objc_class_vars (__OBJC,__class_vars)

.objc_instance_vars (__OBJC,__instance_vars)

.objc_module_info (__OBJC,__module_info)

.objc_class_names (__OBJC,__class_names)

.objc_meth_var_names (__OBJC,__meth_var_names)

.objc_meth_var_types (__OBJC,__meth_var_types)

.objc_selector_strs (__OBJC,__selector_strs)

48

Directives for Moving the Location Counter

All sections in the __OBJC segment, including old sections that are no longer
used and future sections that may be added, are exclusively reserved for the
Objective C compiler’s use.

Directives for Moving the Location Counter

This section describes directives that advance the location counter to a
location higher in memory. They have the additional effect of setting the
intervening memory to some value.

.align
SYNOPSIS

.align expression [, fill_expression]

The .align directive advances the location counter to the next expression
boundary, if it isn’t currently on such a boundary. expression is a power of 2
between 0 and 15 (not the result of the power of 2; for example, the
argument of .align 3 means 2 to the third). The fill expression, if specified,
must be absolute. The space between the current value of the location
counter and the desired value is filled with the low-order byte of the fill
expression (or with zeros, if fill_expression isn’t specified).

Note: The assembler enforces no alignment for any bytes created in the
object file (data or machine instructions). You must supply the desired
alignment before any directive or instruction.

EXAMPLE:

.align 3

one: .double 0r1.0

.org
SYNOPSIS

.org expression [, fill_expression]

The .org directive sets the location counter to expression, which must be a
currently known absolute expression. This directive can only move the
location counter up in address. The fill expression, if specified, must be
absolute. The space between the current value of the location counter and
the desired value is filled with the low-order byte of the fill expression (or
with zeros, if fill_expression isn’t specified).

49

Chapter 4 Assembler Directives

Note: If the output file is later link-edited, the .org directive isn’t preserved.

EXAMPLE

.org 0x100,0xff

Directives for Generating Data

The directives described in this section all generate data (unless specified
otherwise, the data goes into the current section). In some respects they are
similar to the directives in the previous section, “Directives for Moving the
Location Counter”—they do have the effect of moving the location counter—
but this isn’t their primary purpose.

.ascii and .asciz
SYNOPSIS

.ascii [“string ”] [, “string ”] ...

.asciz [“string ”] [, “string ”] ...

These two directives translate character strings into their ASCII equivalents for
use in the source program. Each directive takes zero or more comma-separated,
quoted strings. Each string can contain any character or escape sequence that
can appear in a character string; the newline character cannot appear, but it can
be represented by the escape sequence \012 or \n.

• The .ascii directive generates a sequence of ASCII characters.

• The .asciz directive is similar, except that it automatically terminates the
sequence of ASCII characters with the null character, \0 (necessary when
generating strings usable by C programs).

If no strings are specified, the directive is ignored.

EXAMPLE

.ascii "Can't open the DSP.\0"

.asciz "%s has changes.\tSave them?"

.byte, .short, and .long
SYNOPSIS

.byte [expression] [, expression] ...

50

Directives for Generating Data

.short [expression] [, expression] ...

.long [expression] [, expression] ...

These directives reserve storage locations in the current section and
initialize them with specified values. Each directive takes zero or more
comma-separated absolute expressions and generates a sequence of bytes
for each expression. The expressions are truncated to the size generated by
the directive:

• .byte generates one byte per expression
• .short generates two bytes per expression
• .long generates four bytes per expression

EXAMPLE

.byte 74,0112,0x4A,0x4a,’J | all the same byte

.short 64206,0175316,0xface | all the same short

.long -1234,037777775456,0xfffffb2e | all the same long

.single and .double
SYNOPSIS

.single [number] [, number] ...

.double [number] [, number] ...

These two directives reserve storage locations in the current section and
initialize them with specified values. Each directive takes zero or more
comma-separated decimal floating-point numbers:

• .single takes IEEE single-precision floating point numbers; it reserves
four bytes for each number, and initializes them to the value of the
corresponding number

• .double takes IEEE double-precision floating point numbers; it reserves
eight bytes for each number, and initializes them to the value of the
corresponding number

EXAMPLE

.single 3.33333333333333310000e-01

.double 0.00000000000000000000e+00

.single +Infinity

.double -Infinity

.single NaN

51

Chapter 4 Assembler Directives

.fill
SYNOPSIS

.fill repeat_expression , fill_size , fill_expression

The .fill directive advances the location counter by repeat_expression times fill_size
bytes.

• fill_size is in bytes, and must have the value 1, 2, or 4
• repeat_expression must be an absolute expression greater than zero
• fill_expression may be any absolute expression (it gets truncated to the fill

size)

EXAMPLE

.fill 69,4,0xfeadface | put out 69 0xfeadface’s

.space
SYNOPSIS

.space num_bytes [, fill_expression]

The .space directive advances the location counter by num_bytes, where num_bytes
is an absolute expression greater than zero. The fill expression, if specified,
must be absolute. The space between the current value of the location counter
and the desired value is filled with the low-order byte of the fill expression (or
with zeros, if fill_expression isn’t specified).

EXAMPLE

ten_ones:

 .space 10,1

.comm
SYNOPSIS

.comm name , size

The .comm directive creates a common symbol named name of size bytes. If the
symbol isn’t defined elsewhere, its type is “common.”

The link editor allocates storage for common symbols that aren’t otherwise
defined. Enough space is left after the symbol to hold the maximum size (in
bytes) seen for each symbol in the (__DATA,__common) section.

The link editor will align each such symbol (based on its size aligned to the next
greater power of two) to the maximum alignment of the (__DATA,__common)

52

Directives for Dealing with Symbols

section. For information about how to change the maximum alignment, see
the description of -sectalign in the ld(1) Rhapsody manual page.

EXAMPLE

.comm _global_uninitialized,4

.lcomm
SYNOPSIS

.lcomm name, size [, align]

The .lcomm directive creates a symbol named name of size bytes in the
(__DATA,__bss) section. It will contain zeros at execution. The name isn’t
declared as global, and hence will be unknown outside the object module.

The optional align expression, if specified, causes the location counter to be
rounded up to an align power-of-two boundary before assigning the location
counter to the value of name.

EXAMPLE

.lcomm abyte,1 | or: .lcomm abyte,1,0

.lcomm padding,7

.lcomm adouble,8 | or: .lcomm adouble,8,3

These are the same as:

.zerofill __DATA,__bss,abyte,1

.lcomm __DATA,__bss,padding,7

.lcomm __DATA,__bss,adouble,8

Directives for Dealing with Symbols

This section describes directives that have an effect on symbols and the
symbol table.

.globl
SYNOPSIS

.globl symbol_name

The .globl directive makes symbol_name external. If symbol_name is otherwise
defined (by .set or by appearance as a label), it acts within the assembly
exactly as if the .globl statement were not given; however, the link editor may

53

Chapter 4 Assembler Directives

be used to combine this object module with other modules referring to this
symbol.

EXAMPLE

.globl abs

 .set abs,1

 .globl var

var: .long 2

.indirect_symbol
SYNOPSIS:

.indirect_symbol symbol_name

The .indirect_symbol directive creates an indirect symbol with symbol_name and
associates the current location with the indirect symbol. An indirect symbol
must be defined immediately before each item in a symbol_stub, lazy_symbol_pointers,
and non_lazy_symbol_pointers section. The static and dynamic linkers use
symbol_name to identify the symbol associated with the following item.

.reference
SYNOPSIS

.reference symbol_name

The .reference directive causes symbol_name to be an undefined symbol that will
be present in the output’s symbol table. This is useful in referencing a symbol
without generating any bytes to do it (used, for example, by the Objective C
run-time system to reference superclass objects).

EXAMPLE

.reference .objc_class_name_Object

.private_extern
SYNOPSIS:

.private_extern symbol_name

The .private_extern directive makes symbol_name a private external symbol. When
the link editor combines this module with other modules (and the
-keep_private_externs command-line option is not specified) the symbol turns it from
global to static.

54

Directives for Dealing with Symbols

.lazy_reference
SYNOPSIS

.lazy_reference symbol_name

The .reference directive causes symbol_name to be a lazy undefined symbol
that will be present in the output’s symbol table. This is useful in
referencing a symbol without generating any bytes to do it (used, for
example, by the Objective C run-time system with the dynamic linker to
reference superclass objects but to allow the runtime to bind them on first
use).

EXAMPLE

.lazy_reference .objc_class_name_Object

.stabs, .stabn, and .stabd
SYNOPSIS

.stabs n_name , n_type , n_other , n_desc , n_value

.stabn n_type , n_other , n_desc , n_value

.stabd n_type , n_other , n_desc

These three directives are used to place symbols in the symbol table for the
symbolic debugger (a “stab” is a symbol table entry).

• .stabs specifies all the fields in a symbol table entry. The n_name is the
name of a symbol; if the symbol name is null, the .stabn directive may be
used instead.

• .stabn is like .stabs, except that it uses a NULL ("") name.

• .stabd is like .stabn, except that it uses the value of the location counter
(.) as the n_value field.

In each case, the n_type field is assumed to contain a 4.3BSD-like value for
the N_TYPE bits. For .stabs and .stabn the n_sect field of the Mach-O file’s nlist
is set to the section number of the symbol for the specified n_value
parameter. For .stabd the n_sect field is set to the current section number for
the location counter. The nlist structure is defined in mach-o/nlist.h.

Note: The n_other field of a stab directive is ignored.

55

Chapter 4 Assembler Directives

EXAMPLE

.stabs "hello.c",100,0,0,Ltext

.stabn 192,0,0,LBB2

.stabd 68,0,15

.desc
SYNOPSIS

.desc symbol_name , absolute_expression

The .desc directive sets the n_desc field of the specified symbol to
absolute_expression.

EXAMPLE

.desc _main,0xface

.set
SYNOPSIS

.set symbol_name , absolute_expression

The .set directive creates the symbol symbol_name and sets its value to
absolute_expression. This is the same as using symbol_name = absolute_expression.

EXAMPLE

.set one,1

two = 2

.lsym
SYNOPSIS

.lsym symbol_name , expression

A unique and otherwise unreferenceable symbol of the (symbol_name, expression)
pair is created in the symbol table. Some Fortran 77 compilers use this
mechanism to communicate with the debugger.

56

Miscellaneous Directives

Miscellaneous Directives

This section describes additional directives that don’t fit into any of the previous
sections.

.abort
SYNOPSIS

.abort ["abort_string "]

The .abort directive causes the assembler to ignore all further input and quit
processing. No files are created. The directive would be used, for example,
in a pipe interconnected version of a compiler—the first major syntax error
would cause the compiler to issue this directive, saving unnecessary work in
assembling code that would have to be discarded anyway.

The optional "abort_string" is printed as part of the error message when the
.abort directive is encountered.

EXAMPLE

#ifndef VAR

 .abort "You must define VAR to assemble this file."

#endif

.file and .line
SYNOPSIS

.file file_name

.line line_number

The .file directive causes the assembler to report error messages as if it were
processing the file file_name.

The .line directive causes the assembler to report error messages as if it were
processing the line line_number. The next line after the .line directive is
assumed to be line_number.

The assembler turns C preprocessor comments of the form

line_number file_name level

into

.line line_number ; .file file_name

57

Chapter 4 Assembler Directives

EXAMPLE

.line 6

nop | this is line 6

.if, .elseif, .else, and .endif
SYNOPSIS

.if expression

.elseif expression

.else

.endif

These directives are used to delimit blocks of code that are to be assembled
conditionally, depending on the value of an expression. A block of conditional
code may be nested within another block of conditional code. Expression must
be an absolute expression.

For each .if directive,

• there must be a matching .endif
• there may be as many intervening .elseif’s as desired
• there may be no more than one intervening .else before the tailing .endif

Labels or multiple statements must not be placed on the same line as any of
these directives; otherwise, statements including these directives won’t be
recognized and will produce errors or incorrect conditional assembly.

EXAMPLE

.if a==1

.long 1

.elseif a==2

.long 2

.else

.long 3

.endif

.include
SYNOPSIS

.include " filename "

The .include directive causes the named file to be included at the current point in
the assembly. The -Idir option to the assembler specifies alternative paths to be
used in searching for the file if it isn’t found in the current directory (the default
path, /usr/include, is always searched last).

58

Miscellaneous Directives

EXAMPLE

.include "macros.h"

.macro, .endmacro, .macros_on, and .macros_off
SYNOPSIS

. macro

. endmacro

. macros_on

. macros_off

These directives allow your to define simple macros (once a macro is
defined, however, you can’t redefine it). For example:

.macro var

instruction_1 $0,$1

instruction_2 $2

 . . .

instruction_N

.long $n

.endmacro

$d (where d is a single decimal digit, 0 through 9) represents each
argument—there can be at most 10 arguments. $n is replaced by the actual
number of arguments the macro was invoked with.

When you use a macro, arguments are separated by a comma (except inside
matching parentheses—for example, xxx(1,3,4),yyy contains only two
arguments). You could use the macro defined above as follows:

var #0,@sp,4

This would be expanded to:

instruction_1 #0,@sp

instruction_2 4

 . . .

instruction_N

.long 3

59

Chapter 4 Assembler Directives

The directives .macros_on and .macros_off allow macros to be written that override
an instruction or directive while still using the instruction or directive. For
example:

.macro .long

.macros_off

.long $0,$0

.macros_on

.endmacro

If you don’t specify an argument, the macro will substitute nothing (also see the
.abs directive below).

.abs
SYNOPSIS

.abs symbol_name , expression

This directive sets the value of symbol_name to 1 if expression is an absolute
expression; otherwise, it sets the value to 0.

EXAMPLE

.macro var

.abs is_abs,$0

.if is_abs==1

.abort "must be absolute"

.endif

.endmacro

.dump and .load
SYNOPSIS

.dump filename

.load filename

These directives let you dump and load the absolute symbols and macro
definitions, for faster loading and faster assembly.

These work like this:

.include "big_file_1"

.include "big_file_2"

.include "big_file_3"

. . .

.include "big_file_N"

.dump "symbols.dump"

60

Architecture- and Processor-specific Directives

The .dump directive writes out all the N_ABS symbols and macros. You can
later use the .load directive to load all the N_ABS symbols and macros faster
than you could with .include:

.load "symbols.dump"

One useful side effect of loading symbols this way is that they aren’t written
out to the object file.

Architecture- and Processor-specific Directives

M68000-Specific Directives
The following directives are specific to the M68000 architecture.

.word, .int, .quad, and .octa
SYNOPSIS

.word [expression] [, expression] ...

.int [expression] [, expression] ...

.quad [expression] [, expression] ...

.octa [expression] [, expression] ...

These directives reserve storage locations in the current section and
initialize them with specified integral values. Each directive takes zero or
more comma-separated absolute expressions and generates a sequence of
bytes for each expression. The expressions are truncated to the size
generated by the directive:

• .word generates two bytes per expression
• .int generates four bytes per expression
• .quad generates eight bytes per expression
• .octa generates sixteen bytes per expression

Additional Processor-Specific Directives

The following processor-specific directives are synonyms for other standard
directives described earlier in this chapter; although they are listed here for
completeness, their use isn’t recommended; wherever possible, you should
use the standard directive instead.

61

Chapter 4 Assembler Directives

The following are M68000-specific directives:

The following are i386-specific directives:

M68000 Directive Standard Directive

.skip .space

.float .single

.even .align 1

.proc <<reserved for future use>>

i386 Directive Standard Directive

.ffloat .single

.dfloat .double

.tfloat [expression] ← 80-bit IEEE extended precision floating-point

.word .short

.value .short

.ident (ignored)

.def (ignored)

.optim (ignored)

.version (ignored)

.ln (ignored)

62

PowerPC Addressing Modes and
Assembler Instructions

5

65

PowerPC Addressing Modes and
Assembler Instructions

This chapter contains information specific to the PowerPC processor
architecture. The first section, “PowerPC Registers and Addressing
Modes,” lists the registers available and describes the addressing modes
used by assembler instructions. The second section, “PowerPC Assembler
Instructions,” lists each assembler instruction with Rhapsody assembler
syntax.

PowerPC Registers and Addressing Modes

This section describes the conventions used to specify addressing modes
and instruction mnemonics for the PowerPC series processor architecture.
The instructions themselves are detailed in the next section, “PowerPC
Assembler Instructions.”

Registers

Many instructions accept register names as operands. The available register
names are listed in this section. These are the user registers

For instructions that take either 0 or a general purpose register as an
operand,

r0

 may not be used as either a zero or a register operand; the literal
value

0

 must be used instead.

Register Description

r0

−

r31

General Purpose Registers

f0

−

f31

Floating-Point Registers

xer

Fixed-Point Exception Register

fpscr

Floating-Point Status and Control Register

cr

Condition Register

lr

Link Register

ctr

Count Register

5

66

These are the special registers

Operands and Addressing Modes

The PowerPC processor architecture has only one addressing mode for load and
store instructions: register plus displacement. The general form for address
operands is:

displacement

(

register

)

If there is no displacement, the parentheses around the register name must still
be used. For example, the first two of the following statements are legal, but the
last isn't:

lwz r12,4(r1)

lwz r12,(r1) ; same as displacement of 0

lwz r12,r1 ; INCORRECT

To specify an arbitrary 32-bit address, two instructions must be used, since all
instructions are 32 bits long and can't contain both an opcode and a full address.
A pair of instructions used to load or store data at an address falls into one of a
small set of idioms, using the assembler operators

lo16()

,

hi16()

, and

ha16()

 to isolate
the required portion of the 32-bit address expression. The idioms themselves
are discussed below

•

lo16(

expression

)

 evaluates to the low (least significant) 16 bits of

expression

,
with a relocation type of PPC_RELOC_LO16 or PPC_RELOC_LO14,
depending on the instruction the operator is used with.

•

hi16(

expression

)

 evaluates to the high (most significant) 16 bits of

expression

shifted right 16 bits, with a relocation type of PPC_RELOC_HI16.

•

ha16(

expression

)

 evaluates to the high (most significant) 16 bits of

expression

shifted right 16 bits, incremented by one if bit 15 of

expression

 is set (that is,
if the value given by

lo16(

expression

)

 is negative). This allows the address to
be properly reconstituted when the low 16 bit quantity of

expression

 is sign-
extended by some operators. It has a relocation type of
PPC_RELOC_HA16.

In specifying a 32-bit address, the desired result is that the 32-bit quantity be in
a register. To do this, the high and low 16 bits of the address are entered
separately with instructions suited to this task. Generally, the high 16 bits can

Registers Description

sr0

−

sr15

Segment Registers

PowerPC Registers and Addressing Modes

67

be entered into a register with the

addis

 (Add Immediate Shifted) operator.
For example, this instruction:

addis r2,0,hi16(

expr

)

adds the high 16 bits of

expr

 to 0, and enters the result into the high 16 bits
of register 2. The instruction that immediately follows can then combine
the low 16 bits with the high 16 bits in the register and perform whatever
other operation it does (if any).

For example, to load the

address

 of the global variable

spot

 into general
register 2, the instructions below would be used. The

ori

 instruction doesn't
sign-extend the displacement, so the high 16 bits of the address needn't be
adjusted, and the

hi16()

 assembler operator is used.

addis r2,0,hi16(spot) ; ori doesn't sign-extend

ori r2,r2,lo16(spot)

In loading the

data

 stored at

spot

 the

lwz

 operator is used, which does sign-
extend the displacement, the adjusted high 16 bits must be given, with the

ha16()

 assembler operator:

addis r2,0,ha16(spot) ; lwz sign-extends

lwz r3,lo16(spot)(r2)

lwz

 treats the sign-extended low 16 bits as a displacement, adding it to the
contents of register 2 to get a 32-bit address, and then loads the word at that
address into register 3.

Extended Instruction Mnemonics & Operands

Branch Mnemonics

The PowerPC processor family supports a rich variety of extended
mnemonics for its three conditional branch operators:

bc

,

bclr

, and

bcctr

.
Normally, the condition and the nature of the branch are specified by
numeric operands, but with the extended mnemonics, these numeric
operands are determined by the assembler from the mnemonic used.

Conditional branches can alter the contents of the Count Register (

ctr

), and
can take effect based on the resulting value in the Count Register, and on
whether a specified condition is true or false. The first table below
summarizes the extended mnemonics for branches that affect the Count
Register, while the second summarizes additional mnemonics for branches
on true and false conditions that don't affect the Count Register. The effect
of the branch is given on the left. The first four columns of each table are
for branches where the Link Register bit in the instruction is clear (not set);

5

68

the remaining columns are for branches where the Link Register bit in the
instruction is set. Each set of four columns gives mnemonics for relative and
absolute branches, and for branches to the Link Register or the Count Register.

The mnemonics in the table above encode specific values for the BO field of the
non-extended operators. The BO field controls the effect on the Count Register
and on what type of condition the branch is to be taken. The BI field, which
controls the specific condition to consider, must still be given, as the first
operand. The value of this operand indicates which field of the Condition
Register to use, and which bit within that field to consider.

The Condition Register has 8 fields, numbered 0 to 7, each of which contains a
bit for conditions

less than

,

greater than

,

equal

, and

summary overflow or unordered

.
The numeric value for field

n

 of the Condition Register is 4*

n

, and the numeric

Branch Type LR not set LR set

bc bca bclr bcctr bcl bcla bclrl bcctrl

Rel. Abs. to LR to CTR Rel. Abs. to LR to CTR

unconditional b ba blr bctr bl bla blrl bctrl

if condition true bt bta btlr btctr btl btla btlrl btctrl

if condition false bf bfa bflr bfctr bfl bfla bflrl bfctrl

decrement CTR,
branch if CTR non-zero

bdnz bdnza bdnzlr – bdnzl bdnzla bdnzlrl –

Decrement CTR,
branch if CTR non-zero
and condition true

bdnzt bdnzta bdnztlr – bdnztl bdnztla bdnztlrl –

Decrement CTR,
branch if CTR non-zero
and condition false

bdnzf bdnzfa bdnzflr – bdnzfl bdnzfla bdnzflrl –

Decrement CTR,
branch if CTR zero

bdz bdza bdzlr – bdzl bdzla bdzlrl –

Decrement CTR,
branch if CTR zero and
condition true

bdzt bdzta bdztlr – bdztl bdztla bdztlrl –

Decrement CTR,
branch if CTR zero and
condition false

bdzf bdzfa bdzflr – bdzfl bdzfla bdzflrl –

PowerPC Registers and Addressing Modes

69

values for the conditions are 0, 1, 2, and 3, respectively. The following
symbols may be used instead of numbers:

For example, a branch

if condition true

 for the condition

greater than

 in
Condition Register field 3 could be written in any of these ways:

bt cr3+gt,

target

bt 12+1,

target

bt 13,

target

Omitting the symbol for either the Condition Register field or the condition
is permitted, as long as the result of the expression is a number from 0

−

31:

bt gt,

target

 ; uses field 0

bt cr3,

target

 ; branches on less than in field 3

bt 13,

target

 ; branches on less than in field 3

Another way to specify these conditions is to use the extended mnemonics
in the second table, below. These mnemonics encode the actual condition
on which to take a branch. The second and third letters of the mnemonic
indicate that condition:

Symbol Value Meaning

lt 0 Less than

gt 1 Greater than

eq 2 Equal

so 3 Summary overflow

un 3 Unordered (after floating-point comparison)

cr0 0 Condition Register field 0

cr1 4 Condition Register field 1

cr2 8 Condition Register field 2

cr3 12 Condition Register field 3

cr4 16 Condition Register field 4

cr5 20 Condition Register field 5

cr6 24 Condition Register field 6

cr7 28 Condition Register field 7

Code Meaning

lt Less than

5

70

Some condition codes, such as

le

, are actually more compact codes for a false
result on the opposite condition in the set of conditions given previously (for
example,

le

 is equivalent to

if condition false

 on condition

greater than

).

By default, the extended mnemonics in the table below used Condition
Register field 0. An optional first operand can be given to specify another field,
in either numeric form or as a symbol of the form

cr

n

. For example:

bgt

target

 ; branch if cr0 shows "greater than"

bgt cr3,

target

 ; branch if cr3 shows "greater than"

le Less than or equal

eq Equal

ge Greater than or equal

gt Greater than

nl Not less than

ne Not equal

ng Not greater than

so Summary overflow

ns Not summary overflow

uo Unordered (after floating-point comparison)

nu Not unordered (after floating-point comparison)

Branch Type LR not set LR set

bc bca bclr bcctr bcl bcla bclrl bcctrl

Rel. Abs. to LR to CTR Rel. Abs. to LR to CTR

less than blt blta bltlr bltctr bltl bltla bltlrl bltctrl

less than or equal ble blea blelr blectr blel blela blelrl blectrl

equal beq beqa beqlr beqctr beql beqla beqlrl beqctrl

greater than or
equal

bge bgea bgelr bgectr bgel bgela bgerl bgectrl

greater than bgt bgta bgtlr bgtctr bgttl bgla bgtlrl bgtctrl

not less than bnl bnla bnllr bnlctr bnll bnlla bnllrl bnlctrl

not equal bne bnea bnelr bnectr bnel bnela bnelrl bnectrl

Code Meaning

PowerPC Registers and Addressing Modes

71

Branch Prediction

PowerPC processors attempt to determine whether a conditional branch is
likely to be taken or not. By default, its assumes the following about
conditional branches:

• A conditional branch with a negative displacement (that is, a branch to
a lower address) is predicted to be taken. This type of branch may, for
example, lead to the beginning of a loop that's repeated many times.

• A conditional branch with a non-negative displacement is predicted not
to be taken (that is, it falls through).

• A conditional branch to an address in the Link or Count Registers is
predicted not to be taken (that is, it falls through).

If the assembly language programmer knows the likely outcome of a
conditional branch, a suffix can be added to the mnemonic that indicates
which way the branch should be predicted to go: a `+' instructs the
processor to predict that the branch will be taken, while a `

−

' instructs it to
predict that the branch will not be taken. Where an operator allows a
prediction suffix, a `

±

' symbol appears after it in the table in “PowerPC
Assembler Instructions.”

Use the

jbsr

 pseudo instruction when you may not be able to reach the target
of a branch and link instruction with a

bl

 instruction. The

jbsr

 instruction uses
a sequence of code called a long branch stub which will always beable to
reach the target.

jbsr _foo,L1

 ...

L1: lis r12,hi16(_foo) ; long branch stub

 ori r12,r12,lo16(_foo)

not greater than bng bnga bnglr bngctr bngl bngla bnglrl bngctrl

summary overflow bso bsoa bsolr bsoctr bsol bsola bsolrl bsoctrl

not summary
overflow

bns bnsa bnslr bnsctr bnsl bnsla bnslrl bnsctrl

unordered bun buna bunlr bunctr bunl bunla bunlrl bunctrl

not unordered bnu bnua bnulr bnuctr bnul bnula bnulrl bnuctrl

Branch Type LR not set LR set

bc bca bclr bcctr bcl bcla bclrl bcctrl

Rel. Abs. to LR to CTR Rel. Abs. to LR to CTR

5

72

 mtctr r12

 bctr

The jbsr pseudo instruction assembles to a bl instruction targeted at L1. It also
generates a PPC_RELOC_JBSR relocation entry for the symbol _foo. Then
when the linker creates a non-relocatable output file it will change the target of
the bl instruction to _foo if the bl instruction's displacement will reach. Else it
will leave the bl instruction targeted at L1.

Trap Mnemonics

Like the branch-on-condition mnemonics above, the

trap

 operator also has
extended mnemonics which encode the numeric TO field as follows:

Code Meaning TO encoding

lt Less than 16

le Less than or equal 20

eq Equal 4

ge Greater than or equal 12

gt Greater than 8

nl Not less than 12

ne Not equal 24

ng Not greater than 20

llt Logically less than 2

lle Logically less than or equal 6

lge Logically greater than or equal 5

lgt Logically greater than 1

lnl Logically not less than 5

lng Logically not greater than 6

(none)

Unconditional 31

PowerPC Assembler Instructions

73

The condition is indicated from the third letter of the extended mnemonics
in the table below:

PowerPC Assembler Instructions

Note the following points about the information contained in the following
sections:

•

Operation Name

 is the name that appears in the PowerPC manuals, or the
effect of the operator for an extended mnemonic.

• The form of operands is that used in

 PowerPC Microprocessor Family:
The Programming Enviroments.

• The order of operands is

destination

←

source

.

Trap Type 64-bit comparison 32-bit-comparison

tdi td twi tw

Immediate Register Immediate Register

unconditional – – – trap

if less than tdlti tdlt twlti twlt

if less than or equal tdlei tdle twlei twle

if equal tdeqi tdeq tweqi tweq

if greater than or equal tdgei tdge twgei twge

if greater than tdgti tdgt twgti twgt

if not less than tdnli tdnl twnli twnl

if not equal tdnei tdne twnei twne

if not greater than tdngi tdng twngi twng

if logically less than tdllti tdllt twllti twllt

if logically less than or equal tdllei tdlle twllei twlle

if logically greater than or equal tdlgei tdlge twlgei twlge

if logically greater than tdlgti tdlgt twlgti twlgt

if logically not less than tdlnli tdlnl twlnli twlnl

if logically not greater than tdlngi tdlng twlngi twlng

5

74

A (Assembler Instructions)

Operator Operands Operation Name

abs RT,RA Absolute (601 specific)

abs. RT,RA

abso RT,RA

abso. RT,RA

add RT,RA,RB Add

add. RT,RA,RB

addo RT,RA,RB

addo. RT,RA,RB

addc RT,RA,RB Add Carrying

addc. RT,RA,RB

addco RT,RA,RB

addco. RT,RA,RB

adde RT,RA,RB Add Extended

adde. RT,RA,RB

addeo RT,RA,RB

addeo. RT,RA,RB

addi RT,RA,SI Add Immediate

addic RT,RA,SI Add Immediate Carrying

addic. RT,RA,SI Add Immediate Carrying and Record

addis RT,RA,UI Add Immediate Shifted

B (Assembler Instructions)

75

B (Assembler Instructions)

addme RT,RA Add To Minus One Extended

addme. RT,RA

addmeo RT,RA

addmeo. RT,RA

addze RT,RA Add To Zero Extended

addze. RT,RA

addzeo RT,RA

addzeo. RT,RA

and RA,RT,RB AND

and. RA,RT,RB

andc RA,RT,RB AND with Complement

andc. RA,RT,RB

andi. RA,RT,UI AND Immediate

andis. RA,RT,UI AND Immediate Shifted

Operator Operands Operation Name

b target_addr Branch

ba target_addr

bl target_addr

bla target_addr

bc± BO,BD,target_addr Branch Conditional

bca± BO,BD,target_addr

bcl± BO,BD,target_addr

5

76

bcla± BO,BD,target_addr

bclr± BO,BD Branch Conditional to Link Register

bclrl± BO,BD

bcctr± BO,BD Branch Conditional to Count Register

bcctrl± BO,BD

bctr Branch unconditionally to CTR

bctrl

bctr± BO,BD Equiv. to bctr± BO,BD

bctrl± BO,BD Equiv. to bctrl± BO,BD

bdnz± target_addr Decrement CTR, branch if CTR non-zero

bdnza± target_addr

bdnzl± target_addr

bdnzla± target_addr

bdnzlr± ...to LR

bdnzlrl±

bdnzf± CRF+COND,target_addr Decrement CTR, branch if CTR non-zero and condition false

bdnzfa± CRF+COND,target_addr

bdnzfl± CRF+COND,target_addr

bdnzfla± CRF+COND,target_addr

bdnzflr± CRF+COND ...to LR

bdnzflrl± CRF+COND

bdnzt± CRF+COND,target_addr Decrement CTR, branch if CTR non-zero and condition true

bdnzta± CRF+COND,target_addr

bdnztl± CRF+COND,target_addr

bdnztla± CRF+COND,target_addr

bdnztlr± CRF+COND ...to LR

B (Assembler Instructions)

77

bdnztlrl± CRF+COND

bdz± target_addr Decrement CTR, branch if CTR zero

bdza± target_addr

bdzl± target_addr

bdzla± target_addr

bdzf± CRF+COND,target_addr Decrement CTR, branch if CTR zero and condition false

bdzfa± CRF+COND,target_addr

bdzfl± CRF+COND,target_addr

bdzfla± CRF+COND,target_addr

bdzflr± CRF+COND ...to LR

bdzflrl± CRF+COND

bdzlr±

bdzlrl±

bdzt± CRF+COND,target_addr Decrement CTR, branch if CTR zero and condition false

bdzta± CRF+COND,target_addr

bdztl± CRF+COND,target_addr

bdztla± CRF+COND,target_addr

bdztlr± CRF+COND ...to LR

bdztlrl± CRF+COND

beq± CRF,target_addr Branch if equal

beq± target_addr

beqa± CRF,target_addr

beqa± target_addr

beql± CRF,target_addr

beql± target_addr

beqla± CRF,target_addr

beqla± target_addr

beqctr± CRF ...to CTR

5

78

beqctr±

beqctrl± CRF

beqctrl±

beqlr± CRF ...to LR

beqlr±

beqlrl± CRF

beqlrl±

bf± CRF+COND,target_addr Branch if condition false

bfa± CRF+COND,target_addr

bfl± CRF+COND,target_addr

bfla± CRF+COND,target_addr

bfctr± CRF+COND ...to CTR

bfctrl± CRF+COND

bflr± CRF+COND ...to LR

bflrl± CRF+COND

bge± CRF,target_addr Branch if greater than or equal

bge± target_addr

bgea± CRF,target_addr

bgea± target_addr

bgel± CRF,target_addr

bgel± target_addr

bgela± CRF,target_addr

bgela± target_addr

bgectr± CRF ...to CTR

bgectr±

bgectrl± CRF

bgectrl±

bgelr± CRF ...to LR

bgelr±

bgelrl± CRF

B (Assembler Instructions)

79

bgelrl±

bgt± CRF,target_addr Branch if greater than

bgt± target_addr

bgta± CRF,target_addr

bgta± target_addr

bgtl± CRF,target_addr

bgtl± target_addr

bgtla± CRF,target_addr

bgtla± target_addr

bgtctr± CRF ...to CTR

bgtctr±

bgtctrl± CRF

bgtctrl±

bgtlr± CRF ...to LR

bgtlr±

bgtlrl± CRF

bgtlrl±

ble± CRF,target_addr Branch if less than or equal

ble± target_addr

blea± CRF,target_addr

blea± target_addr

blel± CRF,target_addr

blel± target_addr

blela+± CRF,target_addr

blela± target_addr

blectr± CRF ...to CTR

blectr±

blectrl± CRF

blectrl±

blelr± CRF ...to LR

5

80

blelr±

blelrl± CRF

blelrl±

blr Branch unconditionally to LR

blrl

blt± CRF,target_addr Branch if less than

blt± target_addr

blta± CRF,target_addr

blta± target_addr

bltl± CRF,target_addr

bltl± target_addr

bltla± CRF,target_addr

bltla± target_addr

bltctr± CRF ...to CTR

bltctr±

bltctrl± CRF

bltctrl±

bltlr± CRF ...to LR

bltlr±

bltlrl± CRF

bltlrl±

bne± CRF,target_addr Branch if not equal

bne± target_addr

bnea± CRF,target_addr

bnea± target_addr

bnel± CRF,target_addr

bnel± target_addr

bnela± CRF,target_addr

bnela± target_addr

B (Assembler Instructions)

81

bnectr± CRF ...to CTR

bnectr±

bnectrl± CRF

bnectrl±

bnelr± CRF ...to LR

bnelr±

bnelrl± CRF

bnelrl±

bng± CRF,target_addr Branch if not greater than

bng± target_addr

bnga± CRF,target_addr

bnga± target_addr

bngl± CRF,target_addr

bngl± target_addr

bngla± CRF,target_addr

bngla± target_addr

bngctr± CRF ...to CTR

bngctr±

bngctrl± CRF

bngctrl±

bnglr± CRF ...to LR

bnglr±

bnglrl± CRF

bnglrl±

bnl± CRF,target_addr Branch if not less than

bnl± target_addr

bnla± CRF,target_addr

bnla± target_addr

bnll± CRF,target_addr

bnll± target_addr

5

82

bnlla± CRF,target_addr

bnlla± target_addr

bnlctr± CRF ...to CTR

bnlctr±

bnlctrl± CRF

bnlctrl±

bnllr± CRF ...to LR

bnllr±

bnllrl± CRF

bnllrl±

bns± CRF,target_addr Branch if not summary overflow

bns± target_addr

bnsa± CRF,target_addr

bnsa± target_addr

bnsl± CRF,target_addr

bnsl± target_addr

bnsla± CRF,target_addr

bnsla± target_addr

bnsctr± CRF ...to CTR

bnsctr±

bnsctrl± CRF

bnsctrl±

bnslr± CRF ...to LR

bnslr±

bnslrl± CRF

bnslrl±

bnu± CRF,target_addr Branch if not unordered

bnu± target_addr

bnua± CRF,target_addr

bnua± target_addr

B (Assembler Instructions)

83

bnul± CRF,target_addr

bnul± target_addr

bnula± CRF,target_addr

bnula± target_addr

bnuctr± CRF ...to CTR

bnuctr±

bnuctrl± CRF

bnuctrl±

bnulr± CRF ...to LR

bnulr±

bnulrl± CRF

bnulrl±

bso± CRF,target_addr Branch if summary overflow

bso± target_addr

bsoa± CRF,target_addr

bsoa± target_addr

bsol± CRF,target_addr

bsol± target_addr

bsola± CRF,target_addr

bsola± target_addr

bsoctr± CRF ...to CTR

bsoctr±

bsoctrl± CRF

bsoctrl±

bsolr± CRF ...to LR

bsolr±

bsolrl± CRF

bsolrl±

bt± CRF+COND,target_addr Branch if condition true

bta± CRF+COND,target_addr

5

84

C (Assembler Instructions)

btl± CRF+COND,target_addr

btla± CRF+COND,target_addr

btctr± CRF+COND ...to CTR

btctrl± CRF+COND

btlr± CRF+COND ...to LR

btlrl± CRF+COND

bun± CRF,target_addr Branch if unordered

bun± target_addr

buna± CRF,target_addr

buna± target_addr

bunl± CRF,target_addr

bunl± target_addr

bunla± CRF,target_addr

bunla± target_addr

bunctr± CRF ...to CTR

bunctr±

bunctrl± CRF

bunctrl±

bunlr± CRF ...to LR

bunlr±

bunlrl± CRF

bunlrl±

Operator Operands Operation Name

clcs RD,RA Cache Line Compute Size (601 specific)

clrldi ra,rs,n Macro: rldicl ra,rs,0,n

C (Assembler Instructions)

85

clrldi. ra,rs,n Macro: rldicl. ra,rs,0,n

clrlsldi ra,rs,b,n Macro: rldic ra,rs,n,b−n

clrlsldi. ra,rs,b,n Macro: rldic. ra,rs,n,b−n

clrlslwi ra,rs,b,n Macro: rlwinm ra,rs,n,b−n,31−n

clrlslwi. ra,rs,b,n Macro: rlwinm. ra,rs,n,b−n,31−n

clrlwi ra,rs,n Macro: rlwinm ra,rs,0,n,31

clrlwi. ra,rs,n Macro: rlwinm. ra,rs,0,n,31

clrrdi ra,rs,n Macro: rldicr ra,rs,0,63−n

clrrdi. ra,rs,n Macro: rldicr. ra,rs,0,63−n

clrrwi ra,rs,n Macro: rlwinm ra,rs,0,0,31−n

clrrwi. ra,rs,n Macro: rlwinm. ra,rs,0,0,31−n

cmp BF,L,RA,RB Compare

cmp CRF,L,RA,RB

cmp BF,RA,RB Equiv to cmp BF,0,RA,RB

cmp CRF,L,RA,RB Equiv. to cmp RF,0,RA,RB

cmpd RA,RB Equiv. to cmp 0,1,RA,RB

cmpd BF,RA,RB Equiv. to cmp BF,1,RA,RB

cmpd CRF,RA,RB Equiv. to cmp BF,1,RA,RB

cmpw RA,RB Equiv. to cmp 0,0,RA,RB

cmpw BF,RA,RB Equiv. to cmp BF,0,RA,RB

cmpw CRF,RA,RB Equiv. to cmp CRF,0,RA,RB

cmpi BF,L,RA,SI Compare Immediate

cmpi CRF,L,RA,SI

cmpi BF,RA,SI Equiv. to cmpi BF,0,RA,SI

cmpi CRF,RA,SI Equiv. to cmpi CRF,0,RA,SI

cmpdi RA,SI Equiv. to cmpi 0,1,RA,SI

cmpdi BF,RA,SI Equiv. to cmp BF,1,RA,SI

cmpdi CRF,RA,SI Equiv. to cmpi CRF,1,RA,SI

5

86

cmpwi RA,SI Equiv. to cmpi 0,0,RA,SI

cmpwi BF,RA,SI Equiv. to cmpi BF,0,RA,SI

cmpwi CRF,RA,SI Equiv. to cmpi CRF,0,RA,SI

cmpl BF,L,RA,RB Compare Logical

cmpl CRF,L,RA,RB

cmpl BF,RA,RB Equiv. to cmpl BF,0,RA,RB

cmpl CRF,RA,RB Equiv. to cmpl CRF,0,RA,RB

cmpld RA,RB Equiv. to cmpl 0,1,RA,RB

cmpld BF,RA,RB Equiv. to cmpl BF,1,RA,RB

cmpld CRF,RA,RB Equiv. to cmpl CRF,1,RA,RB

cmplw RA,RB Equiv. to cmpl 0,0,RA,RB

cmplw BF,RA,RB Equiv. to cmpl BF,0,RA,RB

cmplw CRF,RA,RB Equiv. to cmpl CRF,0,RA,RB

cmpli BF,L,RA,UI Compare Logical Immediate

cmpli CRF,L,RA,UI

cmpli BF,RA,UI Equiv. to cmpli BF,0,RA,UI

cmpli CRF,RA,UI Equiv. to cmpli CRF,0,RA,UI

cmpldi RA,UI Equiv. to cmpi 0,1,RA,UI

cmpldi BF,RA,UI Equiv. to cmpi BF,1,RA,UI

cmpldi CRF,RA,UI Equiv. to cmpi CRF,1,RA,UI

cmplwi BF,RA,UI Equiv. to cmpi BF,0,RA,UI

cmplwi CRF,RA,UI Equiv. to cmpi CRF,0,RA,UI

cmplwi RA,UI Equiv. to cmpi CRF,0,RA,UI

cntlzd RA,RT Count Leading Zeros Doubleword

cntlzd. RA,RT

cntlzw RA,RT Count Leading Zeros Word

cntlzw. RA,RT

D (Assembler Instructions)

87

D (Assembler Instructions)

crand BT,BA,BB Condition Register AND

crandc BT,BA,BB Condition Register AND with Complement

creqv BT,BA,BB Condition Register Equivalent

crmove BT,BA Condition Register Move (Equiv. to cror BT,BA,BA)

crnand BT,BA,BB Condition Register NAND

crnor BT,BA,BB Condition Register NOR

crnot BT,BA Condition Register NOT (Equiv. to crnor BT,BA,BA)

cror BT,BA,BB Condition Register OR

crorc BT,BA,BB Condition Register OR with Complement

crxor BT,BA,BB Condition Register XOR

Operator Operands Operation Name

dcbf RA,RB Data Cache Block Fluch

dcbi RA,RB Data Cache Block Invalidate

dcbst RA,RB Data Cache Block Store

dcbt RA,RB Data Cache Block Touch

5

88

dcbtst RA,RB Data Cache Block Touch for Store

dcbz RA,RB Data Cache Block Set to Zero

div RT,RA,RB Divide (601 specific)

div. RT,RA,RB

divo RT,RA,RB

divo. RT,RA,RB

divd RT,RA,RB Divide Doubleword

divd. RT,RA,RB

divdo RT,RA,RB

divdo. RT,RA,RB

divdu RT,RA,RB Divide Doubleword Unsigned

divdu. RT,RA,RB

divduo RT,RA,RB

divduo. RT,RA,RB

divs RT,RA,RB Divide Short (601 specific)

divs. RT,RA,RB

divso RT,RA,RB

divso. RT,RA,RB

divw RT,RA,RB Divide Word

divw. RT,RA,RB

divwo RT,RA,RB

divwo. RT,RA,RB

divwu RT,RA,RB Divide Word Unsigned

divwu. RT,RA,RB

divwuo RT,RA,RB

E (Assembler Instructions)

89

E (Assembler Instructions)

divwuo. RT,RA,RB

doz RT,RA,RB Difference or Zero (601 specific)

doz. RT,RA,RB

dozo RT,RA,RB

dozo. RT,RA,RB

dozi RT,RA,SI Difference or Zero Immediate (601 specific)

Operator Operands Operation Name

eciwx RT,RA,RB External Control In Word Indexed

ecowx RT,RA,RB External Control Out Word Indexed

eieio Enforce In-order Execution of I/O

eqv RA,RT,RB Equivalent

eqv. RA,RT,RB

extldi ra,rs,n,b Macro: rldicr ra,rs,b,n−1

extldi. ra,rs,n,b Macro: rldicr. ra,rs,b,n−1

extlwi ra,rs,n,b Macro: rlwinm ra,rs,b,0,n−1

extlwi. ra,rs,n,b Macro: rlwinm. ra,rs,b,0,n−1

extrdi ra,rs,n,b Macro: rldicl ra,rs,b+n,64−n

extrdi. ra,rs,n,b Macro: rldicl. ra,rs,b+n,64−n

extrwi ra,rs,n,b Macro: rlwinm ra,rs,b+n,32−n,31

extrwi. ra,rs,n,b Macro: rlwinm. ra,rs,b+n,32−n,31

5

90

F—I (Assembler Instructions)

extsb RA,RT Extend Sign Byte

extsb. RA,RT

extsh RA,RT Extend Sign Halfword

extsh. RA,RT

extsw RA,RT Extend Sign Word

extsw. RA,RT

Operator Operands Operation Name

fabs FRT, FRB Floating Absolute Value

fabs. FRT, FRB

fadd FRT,FRA,FRB Floating Add

fadd. FRT,FRA,FRB

fadds FRT,FRA,FRB

fadds. FRT,FRA,FRB

fcfid FRT,FRB Floating Convert From Integer Doubleword

fcfid. FRT,FRB

fcmpo BF,FRA,FRB Floating Compare Ordered

fcmpu BF,FRA,FRB Floating Compare Unordered

fctid FRT,FRB Floating Convert to Integer Doubleword

fctid. FRT,FRB

F—I (Assembler Instructions)

91

fctidz FRT,FRB Floating Convert to Integer Doubleword with Round toward Zero

fctidz. FRT,FRB

fctiw FRT,FRB Floating Convert to Integer Word

fctiw. FRT,FRB

fctiwz FRT,FRB Floating Convert to Integer Word with Round toward Zero

fctiwz. FRT,FRB

fdiv FRT,FRA,FRB Floating Divide

fdiv. FRT,FRA,FRB

fdivs FRT,FRA,FRB

fdivs. FRT,FRA,FRB

fmadd FRT,FRA,FRC,FRB Floating Multiply-Add [Single]

fmadd. FRT,FRA,FRC,FRB

fmadds FRT,FRA,FRC,FRB

fmadds. FRT,FRA,FRC,FRB

fmr FRT,FRB Floating Move Register

fmr. FRT,FRB

fmsub FRT,FRA,FRC,FRB Floating Multiply-Subtract

fmsub. FRT,FRA,FRC,FRB [Single]

fmsubs FRT,FRA,FRC,FRB

fmsubs. FRT,FRA,FRC,FRB

fmul FRT,FRA,FRC Floating Multiply

fmul. FRT,FRA,FRC

fmuls FRT,FRA,FRC

fmuls. FRT,FRA,FRC

5

92

fnabs FRT,FRB Floating Negative Absolute Value

fnabs. FRT,FRB

fneg FRT,FRB Floating Negate

fneg. FRT,FRB

fnmadd FRT,FRA,FRC,FRB Floating Negative Multiply-Add [Single]

fnmadd. FRT,FRA,FRC,FRB

fnmadds FRT,FRA,FRC,FRB

fnmadds. FRT,FRA,FRC,FRB

fnmsub FRT,FRA,FRC,FRB Floating Negative Multiply-Subtract [Single]

fnmsub. FRT,FRA,FRC,FRB

fnmsubs FRT,FRA,FRC,FRB

fnmsubs. FRT,FRA,FRC,FRB

fres FRT,FRB Floating Reciprocal Estimate Single

fres. FRT,FRB

frsp FRT,FRB Floating Round to Single-Precision

frsp. FRT,FRB

frsqrte FRT,FRB Floating Reciprocal Square Root Estimate

frsqrte. FRT,FRB

fsel FRT,FRA,FRC,FRB Floating Select

fsel. FRT,FRA,FRC,FRB

fsqrt FRT,FRB Floating Square Root (Double-Precision)

fsqrt. FRT,FRB

L (Assembler Instructions)

93

L (Assembler Instructions)

fsqrts FRT,FRB Floating Square Root Single

fsqrts. FRT,FRB

fsub FRT,FRA,FRB Floating Subtract

fsub. FRT,FRA,FRB

fsubs FRT,FRA,FRB

fsubs. FRT,FRA,FRB

icbi RA,RB Instruction Cache Block Invalidate

inslwi ra,rs,n,b Macro: rlwimi ra,rs,32−b,b,(b+n)−1

inslwi. ra,rs,n,b Macro: rlwimi. ra,rs,32−b,b,(b+n)−1

insrdi ra,rs,n,b Macro: rldimi ra,rs,64−(b+n),b

insrdi. ra,rs,n,b Macro: rldimi. ra,rs,64−(b+n),b

insrwi ra,rs,n,b Macro: rlwimi ra,rs,32−(b+n),b,(b+n)−1

insrwi. ra,rs,n,b Macro: rlwimi. ra,rs,32−(b+n),b,(b+n)−1

isync Instruction Synchronize

Operator Operands Operation Name

la RT,D(RA) Load Address (Equiv to addi RT,RA,D)

lbz RT,D(RA) Load Byte and Zero

lbzu RT,D(RA) Load Byte and Zero with Update

lbzux RT,RA,RB Load Byte and Zero with Update Indexed

5

94

lbzx RT,RA,RB Load Byte and Zero Indexed

ld RT,DS(RA) Load Doubleword

ldarx RT,RA,RB Load Doubleword and Reserve Indexed

ldu RT,DS(RA) Load Doubleword with Update

ldux RT,RA,RB Load Doubleword with Update Indexed

ldx RT,RA,RB Load Doubleword Indexed

lfd FRT,D(RA) Load Floating-Point Double

lfdu FRT,D(RA) Load Floating-Point Double with Update

lfdux FRT,RA,RB Load Floating-Point Double with Update Indexed

lfdx FRT,RA,RB Load Floating-Point Double Indexed

lfs FRT,D(RA) Load Floating-Point Single

lfsu FRT,D(RA) Load Floating-Point Single with Update

lfsux FRT,RA,RB Load Floating-Point Single with Update Indexed

lfsx FRT,RA,RB Load Floating-Point Single Indexed

lha RT,D(RA) Load Halfword Algebraic

lhau RT,D(RA) Load Halfword Algebraic with Update

L (Assembler Instructions)

95

lhaux RT,RA,RB Load Halfword Algebraic with Update Indexed

lhax RT,RA,RB Load Halfword Algebraic Indexed

lhbrx RT,RA,RB Load Halfword Byte-Reverse Indexed

lhz RT,D(RA) Load Halfword and Zero

lhzu RT,D(RA) Load Halfword and Zero with Update

lhzux RT,RA,RB Load Halfword and Zero with Update Indexed

lhzx RT,RA,RB Load Halfword and Zero Indexed

li Rx,value Load Immediate

li Rx,value

lis Rx,value

lis Rx,value

lmw RT,D(RA) Load Multiple Word

lscbx RT,RA,RB Load String and Compare Byte Indexed (601 specific)

lscbx. RT,RA,RB

lswi RT,RA,NB Load String Word Immediate

lswx RT,RA,RB Load String Word Indexed

lwa RT,DS(RA) Load Word Algebraic

lwarx RT,RA,RB Load Word and Reserve Indexed

5

96

M (Assembler Instructions)

lwaux RT,RA,RB Load Word Algebraic with Update Indexed

lwax RT,RA,RB Load Word Algebraic Indexed

lwbrx RT,RA,RB Load Word Byte-Reverse Indexed

lwz RT,D(RA) Load Word and Zero

lwzu RT,D(RA) Load Word and Zero with Update

lwzux RT,RA,RB Load Word and Zero with Update Indexed

lwzx RT,RA,RB Load Word and Zero Indexed

Operator Operands Operation Name

maskg RA,RS,RB Mask Generate (601 specific)

maskg. RA,RS,RB

maskir RA,RS,RB Mask Insert From Register (601 specific)

maskir. RA,RS,RB

mcrf CRF,CRF Move Condition Register Field

mcrfs BF,BFA Move to Condition Register from FPSCR

mcrfs CRF,BFA

mcrxr BF Move to Condition Register from XER

mcrxr CRF

M (Assembler Instructions)

97

mfcr RT Move From Condition Register

mfctr RT Move From Count Register

mffs FRT Move From FPSCR

mffs. FRT

mfmsr RT Move From Machine State Register

mfpmr RT Move From Program Mode Register

mfspr RT,SPR Move From Special Purpose Register

mfxer Rx Fixed-Point Exception Register (equiv. to mfspr 1,Rx)

mflr Rx Link Register (equiv. to mfspr 8,Rx)

mfctr Rx Count Register (equiv. to mfspr 8,Rx)

mfdsisr Rx Data Storage Interrupt Status Register (macro)

mfdar Rx Data Address Register (macro)

mfdec Rx Decrementer (macro)

mfear Rx Move from External Address (Equiv. to mfspr 282, Rx)

mfsdr1 Rx Storage Description Register 1 (macro)

mfsrr0 Rx Save/Restore Register 0 (macro)

mfsrr1 Rx Save/Restore Register 1 (macro)

mfsprg n,Rx Special Purpose Register n (macro)

mfasr Rx Address Space Register (macro)

mfmq Rx Move from MQ Regsiter (601 Only) (Equiv to mfspr 0,Rx)

mfrtcd Rx Real Time Clock Divisor (macro)

mfrtcl Rx Move from Real Time Clock Lower (601 Only) (Equiv. to mfspr 5, Rx)

mfrtcu Rx Move from Real Time Clock Upper (601 Only) (Equiv. to mfspr 4, Rx)

mfrtci Rx Real Time Clock Increment (macro)

mfpvr Rx Processor Version Register (macro)

mfibatu n,Rx IBAT Register n, Upper (macro)

mfibatl n,Rx IBAT Register n, Lower (macro)

5

98

mfdbatu n,Rx DBAT Register n, Upper (macro)

mfdbatl n,Rx DBAT Register n, Lower (macro)

mfsr RT,SR Move From Segment Register

mfsrin RT,RB Move From Segment Register Indirect

mftb RT Move from Time Base

mftb RT,TBR

mftbu RT Move from Time Base Upper

mr Rx,Ry Move Register

mr. Rx,Ry

mtcrf FXM,RT Move to Condition Register Fields

mtfsb0 BT Move to FPSCR Bit 0

mtfsb0. BT

mtfsb1 BT Move to FPSCR Bit 1

mtfsb1. BT

mtfsf FLM,FRB Move to FPSCR Fields

mtfsf. FLM,FRB

mtfsfi BF,U Move to FPSCR Field Immediate

mtfsfi. BF,U

mtfs Rx Equiv. to mtfsf 0xFF,Rx

mtfs. Rx Equiv. to mtfsf. OxFF, Rx

M (Assembler Instructions)

99

mtmsr RT Move to Machine State Register

mtpmr RT Move to Program Mode Register

mtspr SPR,RT Move To Special Purpose Register

mtxer Rx Fixed-Point Exception Register (equiv. to mtspr 1,Rx)

mtlr Rx Link Register (equiv. to mtspr 8,Rx)

mtctr Rx Count Register (equiv. to mtspr 8,Rx)

mtdsisr Rx Data Storage Interrupt Status Register (macro)

mtdar Rx Data Address Register (macro)

mtdec Rx Decrementer (macro)

mtear Rx Move to External Address Register (Equiv. to mtspr 282,Rx)

mtsdr1 Rx Storage Description Register 1 (macro)

mtsrr0 Rx Save/Restore Register 0 (macro)

mtsrr1 Rx Save/Restore Register 1 (macro)

mtsprg n,Rx Special Purpose Register n (macro)

mtasr Rx Address Space Register (macro)

mtmq Rx Move to MQ Register (601 Only) (Equiv. to mtspr 0,Rx)

mtrtcd Rx Real Time Clock Divisor (macro)

mtrtcl Rx Move to Real TimeClock Lower (601 Only) (Equiv. to mtspr 21,Rx)

mtrtcu Rx Move to Real TimeClock Upper (601 Only) (Equiv. to mtspr 20,Rx)

mtrtci Rx Real Time Clock Increment (macro)

mtibatu n,Rx IBAT Register n, Upper (macro)

mtibatl n,Rx IBAT Register n, Lower (macro)

mtdbatu n,Rx DBAT Register n, Upper (macro)

mtdbatl n,Rx DBAT Register n, Lower (macro)

mtsr SR,RT Move to Segment Register

mtsrin RT,RB Move to Segment Register Indirect

mttbu RB Move to Time Base Upper (Equiv. to mtspr 285,RB)

5

100

mttrbl RB Move to Time Base Lower (Equiv. to mtspr 284,RB)

mul RT,RA,RB Multiply (601 specific)

mul. RT,RA,RB

mulo RT,RA,RB

mulo. RT,RA,RB

mulhd RT,RA,RB Multiply High Doubleword

mulhd. RT,RA,RB

mulhdu RT,RA,RB Multiply High Doubleword Unsigned

mulhdu. RT,RA,RB

mulhw RT,RA,RB Multiply High Word

mulhw. RT,RA,RB

mulhwu RT,RA,RB Multiply High Word Unsigned

mulhwu. RT,RA,RB

mulld RT,RA,RB Multiply Low Doubleword

mulld. RT,RA,RB

mulldo RT,RA,RB

mulldo. RT,RA,RB

mullw RT,RA,RB Multiply Low

mullw. RT,RA,RB

mullwo RT,RA,RB

mullwo. RT,RA,RB

mulli RT,RA,SI Multiply Low Immediate

N–R (Assembler Instructions)

101

N–R (Assembler Instructions)

Operator Operands Operation Name

nabs RT,RA Negative Absolute (601 specific)

nabs. RT,RA

nabso RT,RA

nabso. RT,RA

nand RA,RT,RB NAND

nand. RA,RT,RB

neg RT,RA Negate

neg. RT,RA

nego RT,RA

nego. RT,RA

nop No-op

nor RA,RT,RB Nor

nor. RA,RT,RB

not RA,RT Not

not. RA,RT

or RA,RT,RB OR

or. RA,RT,RB

orc RA,RT,RB OR with Complement

orc. RA,RT,RB

ori RA,RT,UI OR Immediate

5

102

oris RA,RT,UI OR Immediate Shifted

rfi Return From Interrupt

rldcl RA,RS,RB,mb Rotate Left Doubleword then Clear Left

rldcl. RA,RS,RB,mb

rldcr RA,RS,RB,mb Rotate Left Doubleword then Clear Right

rldcr. RA,RS,RB,mb

rldic RA,RS,sh,mb Rotate Left Doubleword Immediate then Clear

rldic. RA,RS,sh,mb

rldicl RA,RS,sh,mb Rotate Left Doubleword Immediate then Clear Left

rldicl. RA,RS,sh,mb

rldicr RA,RS,sh,mb Rotate Left Doubleword Immediate then Clear

rldicr. RA,RS,sh,mb Right

rldimi RA,RS,sh,mb Rotate Left Doubleword then Mask Insert

rldimi. RA,RS,sh,mb

rlmi RA,RS,RB,MB,ME Rotate Left then Mask Insert (601 specific)

rlmi. RA,RS,RB,MB,ME

rlwimi RA,RS,SH,MB,ME Rotate Left Word Immediate then Mask Insert

rlwimi. RA,RS,SH,MB,ME

rlwinm RA,RS,SH,MB,ME Rotate Left Word Immediate then AND with Mask

rlwinm. RA,RS,SH,MB,ME

Operator Operands Operation Name

S (Assembler Instructions)

103

S (Assembler Instructions)

rlwnm RA,RS,RB,MB,ME Rotate Left Word then AND with Mask

rlwnm. RA,RS,RB,MB,ME

rotld ra,rs,rb Macro: rldicl ra,rs,rb,0

rotld. ra,rs,rb Macro: rldicl. ra,rs,rb,0

rotldi ra,rs,n Macro: rldicl ra,rs,n,0

rotldi. ra,rs,n Macro: rldicl. ra,rs,n,0

rotlw ra,rs,rb Macro: rlwnm ra,rs,rb,0,31

rotlw. ra,rs,rb Macro: rlwnm. ra,rs,rb,0,31

rotlwi ra,rs,n Macro: rlwinm ra,rs,n,0,31

rotlwi. ra,rs,n Macro: rlwinm. ra,rs,n,0,31

rotrdi ra,rs,n Macro: rldicl ra,rs,64-n,0

rotrdi. ra,rs,n Macro: rldicl. ra,rs,64-n,0

rotrwi ra,rs,n Macro: rlwinm ra,rs,32−n,0,31

rotrwi. ra,rs,n Macro: rlwinm. ra,rs,32−n,0,31

rrib RA,RS,RB Rotate Right and Insert Bit (601 specific)

rrib. RA,RS,RB

Operator Operands Operation Name

sc System Call

slbia Segment Lookaside Buffer Invalidate All

slbie RB Segment Lookaside Buffer Invalidate Entry

sld RA,RS,RB Shift Left Doubleword

5

104

sld. RA,RS,RB

sldi ra,rs,n Macro: rldicr ra,rs,n,63−n

sldi. ra,rs,n Macro: rldicr. ra,rs,n,63−n

slwi ra,rs,n Macro: rlwinm ra,rs,n,0,31−n

slwi. ra,rs,n Macro: rlwinm. ra,rs,n,0,31−n

sle RA,RS,RB Shift Left Extended (601 specific)

sle. RA,RS,RB

sleq RA,RS,RB Shift Left Extended with MQ (601 specific)

sleq. RA,RS,RB

sliq RA,RS,SH Shift Left Immediate with MQ (601 specific)

sliq. RA,RS,SH

slliq RA,RS,SH Shift Left Long Immediate with MQ (601 specific)

slliq. RA,RS,SH

sllq RA,RS,RB Shift Left Long with MQ (601 specific)

sllq. RA,RS,RB

slq RA,RS,RB Shift Left with MQ (601 specific)

slq. RA,RS,RB

slw RA,RS,RB Shift Left Word

slw. RA,RS,RB

srad RA,RS,RB Shift Right Algebraic Doubleword

srad. RA,RS,RB

S (Assembler Instructions)

105

sradi RA,RS,sh Shift Right Algebraic Doubleword Immediate

sradi. RA,RS,sh

sraiq RA,RS,SH Shift Right Algebraic Immediate with MQ (601 specific)

sraiq. RA,RS,SH

sraq RA,RS,RB Shift Right Algebraic with MQ (601 specific)

sraq. RA,RS,RB

sraw RA,RS,RB Shift Right Algebraic Word

sraw. RA,RS,RB

srawi RA,RS,SH Shift Right Algebraic Word Immeidate

srawi. RA,RS,SH

srd RA,RS,RB Shift Right Doubleword

srd. RA,RS,RB

srdi ra,rs,n Macro: rldicl ra,rs,64−n,n

srdi. ra,rs,n Macro: rldicl. ra,rs,64−n,n

srwi ra,rs,n Macro: rlwinm ra,rs,32−n,n,31

srwi. ra,rs,n Macro: rlwinm. ra,rs,32−n,n,31

sre RA,RS,RB Shift Right Extended (601 specific)

sre. RA,RS,RB

srea RA,RS,RB Shift Right Extended Algebraic (601 specific)

srea. RA,RS,RB

sreq RA,RS,RB Shift Right Extended with MQ (601 specific)

sreq. RA,RS,RB

5

106

sriq RA,RS,SH Shift Right Immediate with MQ (601 specific)

sriq. RA,RS,SH

srliq RA,RS,SH Shift Right Long Immediate with MQ (601 specific)

srliq. RA,RS,SH

srlq RA,RS,RB Shift Right Long with MQ (601 specific)

srlq. RA,RS,RB

srq RA,RS,RB Shift Right with MQ (601 specific)

srq. RA,RS,RB

srw RA,RS,RB Shift Right Word

srw. RA,RS,RB

stb RT,D(RA) Store Byte

stbu RT,D(RA) Store Byte with Update

stbux RT,RA,RB Store Byte with Update Indexed

stbx RT,RA,RB Store Byte Indexed

std RT,DS(RA) Store Doubleword

stdcx. RT,RA,RB Store Doubleword Conditional Indexed

stdu RT,DS(RA) Store Doubleword with Update

stdux RT,RA,RB Store Doubleword with Update Indexed

S (Assembler Instructions)

107

stdx RT,RA,RB Store Doubleword Indexed

stfd FRT,D(RA) Store Floating-Point Double

stfdu FRT,D(RA) Store Floating-Point Double with Update

stfdux FRT,RA,RB Store Floating-Point Double with Update Indexed

stfdx FRT,RA,RB Store Floating-Point Double Indexed

stfiwx FRT,RA,RB Store Floating-Point as Integer Word Indexed

stfs FRT,D(RA) Store Floating-Point Single

stfsu FRT,D(RA) Store Floating-Point Single with Update

stfsux FRT,RA,RB Store Floating-Point Single with Update Indexed

stfsx FRT,RA,RB Store Floating-Point Single Indexed

sth RT,D(RA) Store Halfword

sthbrx RT,RA,RB Store Halfword Byte-Reverse Indexed

sthu RT,D(RA) Store Halfword with Update

sthux RT,RA,RB Store Halfword with Update Indexed

sthx RT,RA,RB Store Halfword Indexed

stmd RT,DS(RA) Store Multiple Doubleword

5

108

stmw RT,D(RA) Store Multiple Word

stswi RT,RA,NB Store String Word Immediate

stswx RT,RA,RB Store String Word Indexed

stw RT,D(RA) Store Word

stwbrx RT,RA,RB Store Word Byte-Reverse Indexed

stwcx. RT,RA,RB Store Word Conditional Indexed

stwu RT,D(RA) Store Word with Update

stwux RT,RA,RB Store Word with Update Indexed

stwx RT,RA,RB Store Word Indexed

sub RT,RB,RA Equiv. to subf RT,RA,RB

sub. RT,RB,RA Equiv. to subf. RT,RA,RB

subo RT,RB,RA Equiv. to subfo RT,RA,RB

subo. RT,RB,RA Equiv. to subfo. RT,RA,RB

subc RT,RB,RA Equiv. to subfc RT,RA,RB

subc. RT,RB,RA Equiv. to subfc. RT,RA,RB

subco RT,RB,RA Equiv. to subfco RT,RA,RB

subco. RT,RB,RA Equiv. to subfco. RT,RA,RB

subf RT,RA,RB Subtract From

subf. RT,RA,RB

subfo RT,RA,RB

S (Assembler Instructions)

109

subfo. RT,RA,RB

subfc RT,RA,RB Subtract From Carrying

subfc. RT,RA,RB

subfco RT,RA,RB

subfco. RT,RA,RB

subfe RT,RA,RB Subtract From Extended

subfe. RT,RA,RB

subfeo RT,RA,RB

subfeo. RT,RA,RB

subfic RT,RA,SI Subtract From Immediate Carrying

subfme RT,RA Subtract From Minus One Extended

subfme. RT,RA

subfmeo RT,RA

subfmeo. RT,RA

subfze RT,RA Subtract From Zero Extended

subfze. RT,RA

subfzeo RT,RA

subfzeo. RT,RA

subi Rx,Ry,value Equiv. to addi Rx,Ry,−value

subic Rx,Ry,value Equiv. to addic Rx,Ry,−value

subic. Rx,Ry,value Equiv. to addic. Rx,Ry,−value

subis Rx,Ry,value Equiv. to addis Rx,Ry,−value

sync Synchronize

5

110

T–Z (Assembler Instructions)

Operator Operands Operation Name

td TO,RA,RB Trap Doubleword

tdeq RA,RB if equal

tdne RA,RB if not equal

tdgt RA,RB if greater than

tdge RA,RB if greater than or equal

tdng RA,RB if not greater than

tdlt RA,RB if less than

tdle RA,RB if less than or equal

tdnl RA,RB if not less than

tdlgt RA,RB if logically greater than

tdlge RA,RB if logically greater than or equal

tdlng RA,RB if logically not greater than

tdllt RA,RB if logically less than

tdlle RA,RB if logically less than or equal

tdlnl RA,RB if logically not less than

tdi TO,RA,SI Trap Doubleword Immediate

tdeqi RA,SI if equal

tdnei RA,SI if not equal

tdgti RA,SI if greater than

tdgei RA,SI if greater than or equal

tdngi RA,SI if not greater than

tdlti RA,SI if less than

tdlei RA,SI if less than or equal

tdnli RA,SI if not less than

tdlgti RA,SI if logically greater than

tdlgei RA,SI if logically greater than or equal

tdlngi RA,SI if logically not greater than

tdllti RA,SI if logically less than

T–Z (Assembler Instructions)

111

tdllei RA,SI if logically less than or equal

tdlnli RA,SI if logically not less than

tlbia Translation Lookaside Buffer Invalidate All

tlbie RB Translation Lookaside Buffer Invalidate Entry

tlbld RB Load Data TLB Entry (603 specific)

tlbli RB Load Instruction TLB Entry (603 specific)

tlbsync TLB Synchonize

trap Trap Unconditionally

tw TO,RA,RB Trap Word

tweq RA,RB if equal

twne RA,RB if not equal

twgt RA,RB if greater than

twge RA,RB if greater than or equal

twng RA,RB if not greater than

twlt RA,RB if less than

twle RA,RB if less than or equal

twnl RA,RB if not less than

twlgt RA,RB if logically greater than

twlge RA,RB if logically greater than or equal

twlng RA,RB if logically not greater than

twllt RA,RB if logically less than

twlle RA,RB if logically less than or equal

twlnl RA,RB if logically not less than

twi TO,RA,SI Trap Word Immdiate

tweqi RA,RB if equal

5

112

twnei RA,RB if not equal

twgti RA,RB if greater than

twgei RA,RB if greater than or equal

twngi RA,RB if not greater than

twlti RA,RB if less than

twlei RA,RB if less than or equal

twnli RA,RB if not less than

twlgti RA,RB if logically greater than

twlgei RA,RB if logically greater than or equal

twlngi RA,RB if logically not greater than

twllti RA,RB if logically less than

twllei RA,RB if logically less than or equal

twlnli RA,RB if logically not less than

xor RA,RT,RB XOR

xor. RA,RT,RB

xori RA,RT,UI XOR Immediate

xoris RA,RT,UI XOR Immediate Shifted

i386 Addressing Modes and Assembler
Instructions

6

i386 Addressing Modes and Assembler Instructions

This chapter contains information specific to the Intel i386 processor
architecture, which includes the i386, i486, and Pentium processors. The
first section, “i386 Registers and Addressing Modes,” lists the registers
available and describes the addressing modes used by assembler
instructions. The second section, “i386 Assembler Instructions,” lists each
assembler instruction with Rhapsody assembler syntax.

Note: Don’t confuse the i386 architecture with the i386 processor. Rhapsody
makes use of instructions specific to the i486 processor, and will not run on
an i386 processor.

i386 Registers and Addressing Modes

This section describes the conventions used to specify addressing modes
and instruction mnemonics for the Intel i386 processor architecture. The
instructions themselves are detailed in the next section, “i386 Assembler
Instructions.”

Instruction Mnemonics
The instruction mnemonics that the assembler uses are based on the
mnemonics described in the relevant Intel processor manuals.

Note: Branch instructions are always long (32 bits) for non-local labels on the
Rhapsody i386 architecture machines. This allows the link editor to do
procedure ordering (see the description of the -sectorder option in the ld(1)
man page).

Registers
Many instructions accept registers as operands. The available registers are
listed in this section. The Rhapsody assembler for Intel i386 processors
always uses names beginning with a percent sign (‘%’) for registers, so
naming conflicts with identifiers aren’t possible; further, all register names
are in lowercase letters.

115

6

i386 Addressing Modes and Assembler Instructions

General Registers

Each of the 32-bit general registers of the i386 architecture are accessible by
different names, which specify parts of that register to be used. For example,
the AX register can be accessed as a single byte (%ah or %al), a 16-bit value
(%ax), or a 32-bit value (%eax). The figure below shows the names of these
registers and their relation to the full 32-bit storage for each register:

Floating-Point Registers

Segment Registers

Register

%st

%st(0)–%st(7)

Register Description

%cs code segment register

%ss stack segment register

%ds data segment register

%es data segment register (string operation destination segment)

%fs data segment register

%gs data segment register

%ah

%dh

%ch

%bh %bl

%cl

%dl

%al

%bx

%cx

%dx

%ax

%ebx

%ecx

%edx

%eax

%bp

%si

%di

%sp %esp

%edi

%esi

%ebp frame base pointer

stack pointer

08|716|1531

accumulator

data

count

base

source index

destination index

16-bitlow-bytehigh-byte 32-bit default use

116

i386 Registers and Addressing Modes

Other Registers

Operands and Addressing Modes
The i386 architecture uses four kinds of instruction operands:

• Register
• Immediate
• Direct Memory
• Indirect Memory

Each type of operand corresponds to an addressing mode. Register
operands specify that the value stored in the named register is to be used by
the operator. Immediate operands are constant values specified in
assembler code. Direct memory operands are the memory location of
labels, or the value of a named register treated as an address. Indirect
memory operands are calculated at run time from the contents of registers
and optional constant values.

Register Operands
A register operand is given simply as the name of a register. It can be any
of the identifiers beginning with ‘%’ listed above; for example, %eax. When
an operator calls for a register operand of a particular size, the operand is
listed as r8, r16, or r32.

Immediate Operands
Immediate operands are specified as numeric values preceded by a dollar
sign (‘$’). They are decimal by default, but can be marked as hexadecimal
by beginning the number itself with ‘0x’. Simple calculations are allowed
if grouped in parentheses. Finally, an immediate operand can be given as a
label, in which case its value is the address of that label. Here are some
examples:

$100
$0x5fec4
$(10*6) # calculated by the assembler
$begloop

Register Description

%cr0–%cr3 control registers

%db0–%db7 debug registers

%tr3–%tr7 test registers

117

6

i386 Addressing Modes and Assembler Instructions

A reference to an undefined label is allowed, but that reference must be
resolved at link time.

Direct Memory Operands
Direct memory operands are references to labels in assembler source. They act
as static references to a single location in memory relative to a specific segment,
and are resolved at link time. Here’s an example:

 .data
var: .byte 0 # declare a byte-size variable labelled "var"
 .text
 .
 .
 .
 movb %al,var # move the low byte of the AX register into the
 # memory location specified by "var"

By default, direct memory operands use the %ds segment register. This can be
overridden by prefixing the operands with the segment register desired and a
colon:

 movb %es:%al,var # move the low byte of the AX register into the
 # memory location in the segment given by %es
 # and "var"

Note that the segment override applies only to the memory operands in an
instruction; “var” is affected, but not %al. The string instructions, which take
two memory operands, use the segment override for both. A less common way
of indicating a segment is to prefix the operator itself:

 es/movb %al,%var # same as above

Indirect Memory Operands
Indirect memory operands are calculated from the contents of registers at run
time. An indirect memory operand can contain a base register, and index
register, a scale, and a displacement. The most general form is:

displacement(base_register,index_register,scale)

displacement is an immediate value. The base and index registers may be any 32-
bit general register names, except that %esp can’t be used as an index register.
scale must be 1, 2, 4, or 8; no other values are allowed. The displacement and
scale can be omitted, but at least one register must be specified. Also, if items

118

i386 Assembler Instructions

from the end are omitted, the preceding commas can also be omitted, but
the comma following an omitted item must remain:

10(%eax,%edx)
(%eax)
12(,%ecx,2)
12(,%ecx)

The value of an indirect memory operand is the memory location given by
the contents of the register, relative to a segment’s base address. The
segment register used is %ss when the base register is %ebp or %esp, and %ds
for all other base registers. For example:

movl (%eax),%edx # default segment register here is %ds

The above assembler instruction moves 32 bits from the address given by
%eax into the %edx register. The address %eax is relative to the %ds segment
register. A different segment register from the default can be specified by
prefixing the operand with the segment register name and a colon (‘:’):

movl %es:(%eax),%edx

A segment override can also be specified as an operator prefix:

es/movl (%eax),%edx

i386 Assembler Instructions

Note the following points about the information contained in this section:

• Name is the name that appears in the upper left corner of a page in the
Intel manuals.

• Operation Name is the name that appears after the operator name in the
Intel manuals. Processor-specific instructions are marked as they occur.

• The form of operands is that used in Intel’s i486 Microprocessor
Programmer’s Reference Manual.

• The order of operands is source → destination, the opposite of the order in
Intel’s manuals.

119

6

i386 Addressing Modes and Assembler Instructions

A

Name Operator Operand Operation Name

aaa aaa ASCII Adjust after Addition

aad aad ASCII Adjust AX beforeDivision

aam aam ASCII Adjust AX after Division

aas aas ASCII Adjust AL after Subtraction

adc adc $imm8,r/m8 Add with Carry

adc $imm16,r/m16

adc $imm32,r/m32

adc $imm8,r/m16

adc $imm8,r/m32

adc r8,r/m8

adc r16,r/m16

adc r32,r/m32

adc r/m8,r8

adc r/m16,r16

adc r/m32,r32

add add $imm8,r/m8 Add

add $imm16,r/m16

add $imm32,r/m32

add $imm8,r/m16

add $imm8,r/m32

add r8,r/m8

add r16,r/m16

add r32,r/m32

add r/m8,r8

add r/m16,r16

120

i386 Assembler Instructions

B

add r/m32,r32

and and $imm8,r/m8 Logical AND

and $imm16,r/m16

and $imm32,r/m32

and $imm8,r/m16

and $imm8,r/m32

and r8,r/m8

and r16,r/m16

and r32,r/m32

and r/m8,r8

and r/m16,r16

and r/m32,r32

arpl arpl r16,r/m16 Adjust RPL Field of Selector

Name Operator Operand Operation Name

bound bound m16&16,r16 Check Array Index Against Bounds

bound m32&32,r32

bsf bsf r/m16,r16 Bit Scan Forward

bsf r/m32,r16

bsr bsr r/m16,r16 Bit Scan Reverse

bsr r/m32,r16

bswap bswap r32 Byte Swap (i486-specific)

bt bt r16,r/m16 Bit Test

bt r32,r/m32

bt $imm8,r/m16

121

6

i386 Addressing Modes and Assembler Instructions

C

bt $imm8,r/m32

btc btc r16,r/m16 Bit Test and Complement

btc r32,r/m32

btc $imm8,r/m16

btc $imm8,r/m32

btr btr r16,r/m16 Bit Test and Reset

btr r32,r/m32

btr $imm8,r/m16

btr $imm8,r/m32

bts bts r16,r/m16 Bit Test and Set

bts r32,r/m32

bts $imm8,r/m16

bts $imm8,r/m32

Name Operator Operand Operation Name

call call rel16 Call Procedure

call r/m16

call ptr16:16

call m16:16

call rel32

call r/m32

lcall $imm16,$imm32

lcall m16

lcall m32

cbw/cwde cbw Convert Byte to Word/

cwde Convert Word to Doubleword

122

i386 Assembler Instructions

clc clc Clear Carry Flag

cld cld Clear Direction Flag

cli cli Clear Interrupt Flag

clts clts Clear Task-Switched Flag inCR0

cmc cmc Complement Carry Flag

cmp cmp $imm8,r/m8 Compare Two Operands

cmp $imm16,r/m16

cmp $imm32,r/m32

cmp $imm8,r/m16

cmp $imm8,r/m32

cmp r8,r/m8

cmp r16,r/m16

cmp r32,r/m32

cmp r/m8,r8

cmp r/m16,r16

cmp r/m32,r32

cmps/cmpsb/cmpsw/cmpsd Compare String Operands

cmps m8,m8

cmps m16,m16

cmps m32,m32

cmpsb

cmpsw

cmpsd

(optional forms with segment override)

cmpsb %seg:0(%esi),%es:0(%edi)

cmpsw %seg:0(%esi),%es:0(%edi)

123

6 i386 Addressing Modes and Assembler Instructions

D

cmpsd %seg:0(%esi),%es:0(%edi)

cmpxchg cmpxchg r8,r/m8 Compare and Exchange (i486-specific)

cmpxchg r16,r/m16

cmpxchg r32,r/m32

cmpxchg8b cmpxchg8b m32 Compare and Exchange 8 Bytes
(Pentium-specific)

cpuid cpuid CPU Identification (Pentium-specific)

cwd/cdq cwd Convert Word to Doubleword/

cdq Convert Doubleword to Quadword

Name Operator Operand Operation Name

daa daa Decimal Adjust AL after Addition

das das Decimal Adjust AL after Subtraction

dec dec r/m8 Decrement by 1

dec r/m16

dec r/m32

dec r16

dec r32

div div r/m8,%al Unsigned Divide

div r/m16,%ax

div r/m32,%eax

124

i386 Assembler Instructions

E

F

Name Operator Operand Operation Name

enter enter $imm16,$imm8 Make Stack Frame for Procedure Parameters

Name Operator Operand Operation Name

f2xm1 f2xm1 Computer 2x–1

fabs fabs Absolute Value

fadd/faddp/fiadd Add

fadd m32real

fadd m64real

fadd ST(i),ST

fadd ST,ST(i)

faddp ST,ST(i)

fadd

fiadd m32int

fiadd m16int

fbld fbld m80dec Load Binary Coded Decimal

fbstp fbstp m80dec Store Binary Coded Decimal and Pop

fchs fchs Change Sign

fclex/fnclex fclex Clear Exceptions

fnclex

fcom/fcomp/fcompp Compare Real

fcom m32real

125

6 i386 Addressing Modes and Assembler Instructions

fcom m64real

fcom ST(i)

fcom

fcomp m32real

fcomp m64real

fcomp ST(i)

fcomp

fcompp

fcos fcos Cosine

fdecstp fdecstp Decrement Stack-Top Pointer

fdiv/fdivp/fidiv Divide

fdiv m32real

fdiv m64real

fdiv ST(i),ST

fdiv ST,ST(i)

fdivp ST,ST(i)

fdiv

fidiv m32int

fidiv m16int

fdivr/fdivpr/fidivr Reverse Divide

fdivr m32real

fdivr m64real

fdivr ST(i),ST

fdivr ST,ST(i)

fdivrp ST,ST(i)

fdivr

fidivr m32int

fidivr m16int

126

i386 Assembler Instructions

ffree ffree ST(i) Free Floating-Point Register

ficom/ficomp Compare Integer

ficom m16real

ficom m32real

ficomp m16int

ficomp m32int

fild filds m16int Load Integer

fildl m32int

fildq m64int

fincstp fincstp Increment Stack-Top Pointer

finit/fninit finit Initialize Floating-Point Unit

fninit

fist/fistp fists m16int Store Integer

fistl m32int

fistps m16int

fistpl m32int

fistpq m64int

fld flds m32real Load Real

fldl m64real

fldt m80real

fld ST(i)

fld1/fldl2t/fldl2e/fldpi/fldlg2/gldln2/fldz Load Constant

fld1

fld2t

127

6 i386 Addressing Modes and Assembler Instructions

fld2e

fldpi

fldlg2

fldln2

fldz

fldcw fldcw m2byte Load Control Word

fldenv fldenv m14/28byte Load FPU Environment

fmul/fmulp/fimul Multiply

fmul m32real

fmul m64real

fmul ST(i),ST

fmul ST(i),ST

fmulp ST,ST(i)

fmul

fimul m32int

fimul m16int

fnop fnop No Operation

fpatan fpatan Partial Arctangent

fprem fprem Partial Remainder

fprem1 fprem1 Partial Remainder

fptan fptan Partial Tangent

frndint frndint Round to Integer

128

i386 Assembler Instructions

frstor frstor m94/108byte Restore FPU State

fsave/fnsave Store FPU State

fsave m94/108byte

fnsave m94/108byte

fscale fscale Scale

fsin fsin Sine

fsincos fsincos Sine and Cosine

fsqrt fsqrt Square Root

fst/fstp fst m32real Store Real

fst m64real

fst ST(i)

fstp m32real

fstp m64real

fstp m80real

fstp ST(i)

fstcw/fnstcw Store Control Word

fstcw m2byte

fnstcw m2byte

fstenv/fnstenv Store FPU Environment

fstenv m14/28byte

fnstenv m14/28byte

fstsw/fnstsw Store Status Word

fstsw m2byte

129

6 i386 Addressing Modes and Assembler Instructions

fstsw %ax

fnstsw m2byte

fnstsw %ax

fsub/fsubp/fisub Subtract

fsub m32real

fsub m64real

fsub ST(i),ST

fsub ST,ST(i)

fsubp ST,ST(i)

fsub

fisub m32int

fisub m16int

fsubr/fsubpr/fisubr Reverse Subtract

fsubr m32real

fsubr m64real

fsubr ST(i),ST

fsubr ST,ST(i)

fsubpr ST,ST(i)

fsubr

fisubr m32int

fisubr m16int

ftst ftst Test

fucom/fucomp/fucompp Unordered Compare Real

fucom ST(i)

fucom

fucomp ST(i)

fucomp

fucompp

130

i386 Assembler Instructions

H

I

fwait fwait Wait

fxam fxam Examine

fxch fxch ST(i) Exchange Register Contents

fxch

fxtract fxtract Extract Exponent and Significand

fyl2x fyl2x Compute y × log2x

fyl2xp1 fyl2xp1 Compute y × log2(x+1)

Name Operator Operand Operation Name

hlt hlt Halt

Name Operator Operand Operation Name

idiv idiv r/m8 Signed Divide

idiv r/m16,%ax

idiv r/m32,%eax

imul imul r/m8 Signed Multiply

imul r/m16

imul r/m32

imul r/m16,r16

imul r/m32,r32

imul $imm8,r/m16,r16

imul $imm8,r/m32,r32

131

6 i386 Addressing Modes and Assembler Instructions

imul $imm8,r16

imul $imm8,r32

imul $imm16,r/m16,r16

imul $imm32,r/m32,r32

imul $imm16,r16

imul $imm32,r32

in in $imm8,%al Input from Port

in $imm8,%ax

in $imm8,%eax

in %dx,%al

in %dx,%ax

in %dx,%eax

inc inc r/m8 Increment by 1

inc r/m16

inc r/m32

inc r16

inc r32

ins/insb/insw/insd Input from Port to String

ins

insb

insw

insd

int/into int 3 Call to Interrupt Procedure

int $imm8

into

invd invd Invalidate Cache (i486-specific)

132

i386 Assembler Instructions

J

invlpg invlpg m Invalidate TLB Entry (i486-specific)

iret/iretd iret Interrupt Return

iretd

Name Operator Operand Operation Name

jcc Jump if Condition is Met

ja rel8 short if above

jae rel8 short if above or equal

jb rel8 short if below

jbe rel8 short if below or equal

jc rel8 short if carry

jcxz rel8 short if %cx register is 0

jecxz rel8 short if %ecx register is 0

je rel8 short if equal

jz rel8 short if 0

jg rel8 short if greater

jge rel8 short if greater or equal

jl rel8 short if less

jle rel8 short if less or equal

jna rel8 short if not above

jnae rel8 short if not above or equal

jnb rel8 short if not below

jnbe rel8 short if not below or equal

jnc rel8 short if not carry

jne rel8 short if not equal

jng rel8 short if not greater

jnge rel8 short if not greater or equal

jnl rel8 short if not less

jnle rel8 short if not less or equal

jno rel8 short if not overflow

133

6 i386 Addressing Modes and Assembler Instructions

jnp rel8 short if not parity

jns rel8 short if not sign

jnz rel8 short if not 0

jo rel8 short if overflow

jp rel8 short if parity

jpe rel8 short if parity even

jpo rel8 short if parity odd

js rel8 short if sign

jz rel8 short if zero

ja rel16/32 near if above

jae rel16/32 near if above or equal

jb rel16/32 near if below

jbe rel16/32 near if below or equal

jc rel16/32 near if carry

je rel16/32 near if equal

jz rel16/32 near if 0

jg rel16/32 near if greater

jge rel16/32 near if greater or equal

jl rel16/32 near if less

jle rel16/32 near if less or equal

jna rel16/32 near if not above

jnae rel16/32 near if not above or equal

jnb rel16/32 near if not below

jnbe rel16/32 near if not below or equal

jnc rel16/32 near if not carry

jne rel16/32 near if not equal

jng rel16/32 near if not greater

jnge rel16/32 near if not greater or less

jnl rel16/32 near if not less

jnle rel16/32 near if not less or equal

jno rel16/32 near if not overflow

Name Operator Operand Operation Name

134

i386 Assembler Instructions

L

jnp rel16/32 near if not parity

jns rel16/32 near if not sign

jnz rel16/32 near if not 0

jo rel16/32 near if overflow

jp rel16/32 near if parity

jpe rel16/32 near if parity even

jpo rel16/32 near if parity odd

js rel16/32 near if sign

jz rel16/32 near if 0

jmp jmp rel8 Jump

jmp rel16

jmp r/m16

jmp rel32

jmp r/m32

ljmp $imm16,$imm32

ljmp m16

ljmp m32

Name Operator Operand Operation Name

lahf lahf Load Flags into AH Register

lar lar r/m16,r16 Load Access Rights Byte

lar r/m32,r32

lea lea m,r16 Load Effective Address

lea m,r32

leave leave High Level Procedure Exit

Name Operator Operand Operation Name

135

6 i386 Addressing Modes and Assembler Instructions

lgdt/lidt lgdt m16&32 Load Global/Interrupt

lidt m16&32 Descriptor Table Register

lgs/lss/lds/les/lfs Load Full Pointer

lgs m16:16,r16

lgs m16:32,r32

lss m16:16,r16

lss m16:32,r32

lds m16:16,r16

lds m16:32,r32

les m16:16,r16

les m16:32,r32

lfs m16:16,r16

lfs m16:32,r32

lldt lldt r/m16 Load Local Descriptor Table Register

lmsw lmsw r/m16 Load Machine Status Word

lock lock Assert LOCK# Signal Prefix

lods/lodsb/lodsw/lodsd Load String Operand

lods m8

lods m16

lods m32

lodsb

lodsw

lodsd

(optional forms with segment override)

lodsb %seg:0(%esi),%al

lodsw %seg:0(%esi),%al

lodsd %seg:0(%esi),%al

136

i386 Assembler Instructions

M

loop/loopcond Loop Control with CX Counter

loop rel8

loope rel8

loopz rel8

loopne rel8

loopnz rel8

lsl lsl r/m16,r16 Load Segment Limit

lsl r/m32,r32

ltr ltr r/m16 Load Task Register

Name Operator Operand Operation Name

mov mov r8,r/m8 Move Data

mov r16,r/m16

mov r32,r/m32

mov r/m8,r8

mov r/m16,r16

mov r/m16,r16

mov Sreg,r/m16

mov r/m16,Sreg

mov moffs8,%al

mov moffs8,%ax

mov moffs8,%eax

mov %al,moffs8

mov %ax,moffs16

mov %eax,moffs32

mov $imm8,reg8

mov $imm16,reg16

mov $imm32,reg32

137

6 i386 Addressing Modes and Assembler Instructions

mov $imm8,r/m8

mov $imm16,r/m16

mov $imm32,r/m32

mov mov r32,%cr0 Move to/from Special Registers

mov %cr0/%cr2/%cr3,r32

mov %cr2/%cr3,r32

mov %dr0–3,r32

mov %dr6/%dr7,r32

mov r32,%dr0–3

mov r32,%dr6/%dr7

mov %tr4/%tr5/%tr6/%tr7,r32

mov r32,%tr4/%tr5/%tr6/%tr7

mov %tr3,r32

mov r32,%tr3

movs/movsb/movsw/movsd Move Data from String to String

movs m8,m8

movs m16,m16

movs m32,m32

movsb

movsw

movsd

(optional forms with segment override)

movsb %seg:0(%esi),%es:0(%edi)

movsw %seg:0(%esi),%es:0(%edi)

movsd %seg:0(%esi),%es:0(%edi)

movsx movsx r/m8,r16 Move with Sign-Extend

movsx r/m8,r32

Name Operator Operand Operation Name

138

i386 Assembler Instructions

N

O

movsx r/m16,r32

movzx movzx r/m8,r16 Move with Zero-Extend

movzx r/m8,r32

movzx r/m16,r32

mul mul r/m8,%al Unsigned Multiplication of AL or AX

mul r/m16,%ax

mul r/m32,%eax

Name Operator Operand Operation Name

neg neg r/m8 Two’s Complement Negation

neg r/m16

neg r/m32

nop nop No Operation

not not r/m8 One’s Complement Negation

not r/m16

not r/m32

Name Operator Operand Operation Name

or or $imm8,r/m8 Logical Inclusive OR

or $imm16,r/m16

or $imm32,r/m32

or $imm8,r/m16

or $imm8,r/m32

or r8,r/m8

or r16,r/m16

139

6 i386 Addressing Modes and Assembler Instructions

P

or r32,r/m32

or r/m8,r8

or r/m16,r16

or r/m32,r32

out out %al,$imm8 Output to Port

out %ax,$imm8

out %eax,$imm8

out %al,%dx

out %ax,%dx

out %eax,%dx

outs/outsb/outsw/outsd Output String to Port

outs r/m8,%dx

outs r/m16,%dx

outs r/m32,%dx

outsb

outsw

outsd

Name Operator Operand Operation Name

pop pop m16 Pop a Word from the Stack

pop m32

pop r16

pop r32

pop %ds

pop %es

pop %ss

pop %fs

pop %gs

Name Operator Operand Operation Name

140

i386 Assembler Instructions

R

popa/popad Pop all General Registers

popa

popad

popf/popfd popf Pop Stack into FLAGS or

popfd EFLAGS Register

push push m16 Push Operand onto the Stack

push m32

push r16

push r32

push $imm8

push $imm16

push $imm32

push Sreg

pusha/pushad Push all General Registers

pusha

pushad

pushf/pushfd Push Flags Register onto the Stack

pushf

pushfd

Name Operator Operand Operation Name

rcl/rcr/rol/ror Rotate

rcl 1,r/m8

rcl %cl,r/m8

rcl $imm8,r/m8

Name Operator Operand Operation Name

141

6 i386 Addressing Modes and Assembler Instructions

rcl 1,r/m16

rcl %cl,r/m16

rcl $imm8,r/m16

rcl 1,r/m32

rcl %cl,r/m32

rcl $imm8,r/m32

rcr 1,r/m8

rcr %cl,r/m8

rcr $imm8,r/m8

rcr 1,r/m16

rcr %cl,r/m16

rcr $imm8,r/m16

rcr 1,r/m32

rcr %cl,r/m32

rcr $imm8,r/m32

rol 1,r/m8

rol %cl,r/m8

rol $imm8,r/m8

rol 1,r/m16

rol %cl,r/m16

rol $imm8,r/m16

rol 1,r/m32

rol %cl,r/m32

rol $imm8,r/m32

ror 1,r/m8

ror %cl,r/m8

ror $imm8,r/m8

ror 1,r/m16

ror %cl,r/m16

ror $imm8,r/m16

ror 1,r/m32

Name Operator Operand Operation Name

142

i386 Assembler Instructions

ror %cl,r/m32

ror $imm8,r/m32

rdmsr rdmsr Read from Model-Specific Register
(Pentium-specific)

rdstc rdstc Read from Time Stamp Counter (Pentium-
specific)

rep/repe/repz/repne/repnz Repeat Following String

rep ins %dx,rm8 Operation

rep ins %dx,rm16

rep ins %dx,rm32

rep movs m8,m8

rep movs m16,m16

rep movs m32,m32

rep outs rm8,%dx

rep outs rm16,%dx

rep outs rm32,%dx

rep lods m8

rep lods m16

rep lods m32

rep stos m8

rep stos m16

rep stos m32

repe cmps m8,m8

repe cmps m16,m16

repe cmps m32,m32

repe scas m8

repe scas m16

repe scas m32

repne cmps m8,m8

Name Operator Operand Operation Name

143

6 i386 Addressing Modes and Assembler Instructions

S

repne cmps m16,m16

repne cmps m32,m32

repne scas m8

repne scas m16

repne scas m32

ret ret Return from Procedure

ret $imm16

rsm rsm Resume from System-Management Mode
(Pentium-specific)

Name Operator Operand Operation Name

sahf sahf Store AH into Flags

sal/sar/shl/shr Shift Instructions

sal 1,r/m8

sal %cl,r/m8

sal $imm8,r/m8

sal 1,r/m16

sal %cl,r/m16

sal $imm8,r/m16

sal 1,r/m32

sal %cl,r/m32

sal $imm8,r/m32

sar 1,r/m8

sar %cl,r/m8

sar $imm8,r/m8

sar 1,r/m16

sar %cl,r/m16

sar $imm8,r/m16

144

i386 Assembler Instructions

sar 1,r/m32

sar %cl,r/m32

sar $imm8,r/m32

shl 1,r/m8

shl %cl,r/m8

shl $imm8,r/m8

shl 1,r/m16

shl %cl,r/m16

shl $imm8,r/m16

shl 1,r/m32

shl %cl,r/m32

shl $imm8,r/m32

shr 1,r/m8

shr %cl,r/m8

shr $imm8,r/m8

shr 1,r/m16

shr %cl,r/m16

shr $imm8,r/m16

shr 1,r/m32

shr %cl,r/m32

shr $imm8,r/m32

sbb sbb $imm8,r/m8 Integer Subtraction with Borrow

sbb $imm16,r/m16

sbb $imm32,r/m32

sbb $imm8,r/m16

sbb $imm8,r/m32

sbb r8,r/m8

sbb r16,r/m16

sbb r32,r/m32

sbb r/m8,r8

sbb r/m16,r16

145

6 i386 Addressing Modes and Assembler Instructions

sbb r/m32,r32

scas/scasb/scasw/scasd Compare String Data

scas m8

scas m16

scas m32

scasb

scasw

scasd

(optional forms with segment override)

scasb %al,%seg:0(%edi)

scasw %ax,%seg:0(%edi)

scasd %eax,%seg:0(%edi)

setcc Byte Set on Condition

seta r/m8 above

setae r/m8 above or equal

setb r/m8 below

setbe r/m8 below or equal

setc r/m8 carry

sete r/m8 equal

setg r/m8 greater

setge r/m8 greater or equal

setl r/m8 less

setle r/m8 less or equal

setna r/m8 not above

setnae r/m8 not abover or equal

setnb r/m8 not below

setnbe r/m8 not below or equal

setnc r/m8 not carry

setne r/m8 not equal

146

i386 Assembler Instructions

setng r/m8 not greater

setnge r/m8 not greater or equal

setnl r/m8 not less

setnle r/m8 not less or equal

setno r/m8 not overflow

setnp r/m8 not parity

setns r/m8 not sign

setnz r/m8 not zero

seto r/m8 overflow

setp r/m8 parity

setpe r/m8 parity even

setpo r/m8 parity odd

sets r/m8 sign

setz r/m8 zero

sgdt/sidt sgdt m Store Global/Interrupt

sidt m Descriptor Table Register

shld shld $imm8,r16,r/m16 Double Precision Shift Left

shld $imm8,r32,r/m32

shld %cl,r16,r/m16

shld %cl,r32,r/m32

shrd shrd $imm8,r16,r/m16 Double Precision Shift Right

shrd $imm8,r32,r/m32

shrd %cl,r16,r/m16

shrd %cl,r32,r/m32

sldt sldt r/m16 Store Local Descriptor Table Register

smsw smsw r/m16 Store Machine Status Word

147

6 i386 Addressing Modes and Assembler Instructions

stc stc Set Carry Flag

std std Set Direction Flag

sti sti Set Interrupt Flag

stos/stosb/stosw/stosd Store String Data

stos m8

stos m16

stos m32

stosb

stosw

stosd

(optional forms with segment override)

stosb %al,%seg:0(%edi)

stosw %ax,%seg:0(%edi)

stosd %eax,%seg:0(%edi)

str str r/m16 Store Task Register

sub sub $imm8,r/m8 Integer Subtraction

sub $imm16,r/m16

sub $imm32,r/m32

sub $imm8,r/m16

sub $imm8,r/m32

sub r8,r/m8

sub r16,r/m16

sub r32,r/m32

sub r/m8,r8

sub r/m16,r16

sub r/m32,r32

148

i386 Assembler Instructions

T

V

W

X

Name Operator Operand Operation Name

test test $imm8,r/m8 Logical Compare

test $imm16,r/m16

test $imm32,r/m32

test r8,r/m8

test r16,r/m16

test r32,r/m32

Name Operator Operand Operation Name

verr, verw verr r/m16 Verify a Segment for Reading or Writing

 verw r/m16

Name Operator Operand Operation Name

wait wait Wait

wbinvd wbinvd Write-Back and Invalidate Cache (i486-
specific)

wrmsr wrmsr Write to Model-Specific Register (Pentium-
specific)

Name Operator Operand Operation Name

xadd xadd r8,r/m8 Exchange and Add (i486-specific)

xadd r16,r/m16

xadd r32,r/m32

xchg xchg r16,%ax Exchange Register/Memory

149

6 i386 Addressing Modes and Assembler Instructions

xchg %ax,r16 with Register

xchg %eax,r32

xchg r32,%eax

xchg r8,r/m8

xchg r/m8,r8

xchg r16,r/m16

xchg r/m16,r16

xchg r32,r/m32

xchg r/m32,r32

xlat/xlatb xlat m8 Table Look-up Translation

xlatb

xor xor $imm8,r/m8 Logical Exclusive OR

xor $imm16,r/m16

xor $imm32,r/m32

xor $imm8,r/m16

xor $imm8,r/m32

xor r8,r/m8

xor r16,r/m16

xor r32,r/m32

xor r/m8,r8

xor r/m16,r16

xor r/m32,r32

150

Index

Index

A

.abort assembler directive 57

.abs assembler directive 60

.align assembler directive 36, 49

.ascii assembler directive 50

.asciz assembler directive 50
assembler directives 35

B

.byte assembler directive 50

C

.comm assembler directive 52

.const assembler directive 42

.constructor assembler directive 42

.cstring assembler directive 42

D

data
generating 50

.data assembler directive 46
__DATA segment 46
.desc assembler directive 56
.destructor assembler directive 42
.double assembler directive 51
.dump assembler directive 60

E

.else assembler directive 58

.elseif assembler directive 58

.endif assembler directive 58

.endmacro assembler directive 59

.even assembler directive 62

F

.file assembler directive 57

.fill assembler directive 52

.float assembler directive 62

.fvmlib_init0 assembler directive 42

.fvmlib_init1 assembler directive 42

.mod_init_func assembler directive 46

.symbol_stub assembler directive 42

G

.globl assembler directive 53

I

.if assembler directive 58

.include assembler directive 58

.int assembler directive 61

L

.lcomm assembler directive 53

.line assembler directive 57

.literal4 assembler directive 42

.literal8 assembler directive 42

.load assembler directive 60
location counter 35

advancing 49
.long assembler directive 51
.lsym assembler directive 56

M

.macro assembler directive 59

.macros_off assembler directive 59

.macros_on assembler directive 59

O

__OBJC segment 48
.octa assembler directive 61
.org assembler directive 49

P

.proc assembler directive 62
pseudo-ops See assembler directives

Q

.quad assembler directive 61

R

.reference assembler directive 54, 55

S

.set assembler directive 56

.short assembler directive 51

.single assembler directive 51

.skip assembler directive 62

.space assembler directive 52

.stabd assembler directive 55

.stabn assembler directive 55

.stabs assembler directive 55

.static_const assembler directive 42

.static_data assembler directive 46

symbols 53

T

.text assembler directive 42
__TEXT segment 41

W

.word assembler directive 61

165

		Rhapsody Assembler Reference

		Table of Contents

		Using the Assembler

		Command Syntax

		Assembler Options

		Architecture Options

		M68000-Specific Options

		Assembly Language Syntax

		Elements of Assembly Language

		Characters

		Identifiers

		Labels

		Constants

		Assembly Location Counter

		Expression Syntax

		Operators

		Terms

		Expressions

		Assembly Language Statements

		Label Field

		Operation Code Field

		Architecture- and Processor-Specific Caveats

		Operand Field

		Architecture- and Processor-Specific Caveats

		Comment Field

		Direct Assignment Statements

		Assembler Directives

		PowerPC Addressing Modes and Assembler Instructions

		PowerPC Registers and Addressing Modes

		Registers

		Operands and Addressing Modes

		Extended Instruction Mnemonics & Operands

		Branch Prediction

		Trap Mnemonics

		PowerPC Assembler Instructions

		A (Assembler Instructions)

		B (Assembler Instructions)

		C (Assembler Instructions)

		D (Assembler Instructions)

		E (Assembler Instructions)

		F—I (Assembler Instructions)

		L (Assembler Instructions)

		M (Assembler Instructions)

		N–R (Assembler Instructions)

		S (Assembler Instructions)

		T–Z (Assembler Instructions)

		Directives for Designating the Current Section

		.section

		.zerofill

		Section Types and Attributes

		Built-in Directives for Designating the Current Section

		Designating Sections in the __TEXT Segment

		Designating Sections in the __DATA Segment

		Designating Sections in the __OBJC Segment

		Directives for Moving the Location Counter

		.align

		.org

		Directives for Generating Data

		.ascii and .asciz

		.byte, .short, and .long

		.single and .double

		.fill

		.space

		.comm

		.lcomm

		Directives for Dealing with Symbols

		.globl

		.indirect_symbol

		.reference

		.private_extern

		.lazy_reference

		.stabs, .stabn, and .stabd

		.desc

		.set

		.lsym

		Miscellaneous Directives

		.abort

		.file and .line

		.if, .elseif, .else, and .endif

		.include

		.macro, .endmacro, .macros_on, and .macros_off

		.abs

		.dump and .load

		Architecture- and Processor-specific Directives

		M68000-Specific Directives

		.word, .int, .quad, and .octa

		Additional Processor-Specific Directives

		i386 Addressing Modes and Assembler Instructions

		i386 Registers and Addressing Modes

		Instruction Mnemonics

		Registers

		Operands and Addressing Modes

		i386 Assembler Instructions

		A

		B

		C

		D

		E

		F

		H

		I

		J

		L

		M

		N

		O

		P

		R

		S

		T

		V

		W

		X

		Index

		A

		B

		C

		D

		E

		F

		G

		I

		L

		M

		O

		P

		Q

		R

		S

		T

		W

