

The PostScript Previewers: Yap and pft

1

Yap is an interactive PostScript previewer for developers who want to write
and test PostScript code. Yap lets you enter, edit, and execute PostScript
code on the fly and allows you to read and write text files so the code can be
used elsewhere. Yap is intended for experimenting with short, hand-
created segments of PostScript. It’s not useful for previewing page-oriented
documents, because it ignores all Encapsulated PostScript comments (such
as %%BoundingBox and %%Page). For viewing page-oriented documents, use
the Preview application located in /System/Applications.

The chapter also contains information about a related program, pft, which
you can use if you need to communicate with the PostScript Window
Server. pft is a command-line utility that runs in a Terminal window, so for
general-purpose PostScript editing and viewing it’s easier to use Yap.

Using Yap

Yap is straightforward to use. Choose the Open or New command in the
Document menu to open a document window. Select the Execute
command in the Document menu to execute the PostScript code that’s in
the main window.

The result is displayed in the Output window, and PostScript errors are
reported in the title bar of the Output window. If there are no errors in the
execution of your code, the execution time is reported in the title bar
instead.

There’s only one Output window. Its PostScript rendering area can be
resized using the Preferences panel (choose the Preferences command in
the Info menu). The Preferences panel also contains options for showing
and clearing the PostScript cache.

If you change the font in a Yap window, that font will be used in Yap
windows created after that as well. The font will also be written to your
defaults database and be used the next time you launch Yap.

Yap can paste PostScript from the pasteboard; this is useful when
debugging programs that write PostScript on the pasteboard. The Paste
menu command first checks the pasteboard for PostScript data, then for text
data.

7

Chapter

1

The PostScript Previewers: Yap and pft

Yap Command Reference

This section describes the application-specific menus and commands available
in Yap. For descriptions of standard menus and commands, see the User’s Guide.

Commands in the Main Menu
Yap’s main menu contains the standard Info, Edit, Windows, Print, Services,
Hide, and Quit commands. The Format menu contains the Font command for
bringing up the Font menu, and the Page Layout command.

Commands in the Document Menu
The Document menu provides the standard Open, New, Save, and Save As
commands for working with PostScript document windows, plus the Execute
command described here.

The NEXTSTEP Window Server Interface: pft

pft is a simple shell-based utility for communicating with the NEXTSTEP
Window Server. You start up the pft program by typing the program name in a
shell window. pft first forms a connection to the Window Server. pft then sends
the Window Server PostScript code that you type in the shell window, and prints
out data received from the Window Server. (pft displays both error messages and
values returned by the Window Server on the standard output, in the same
window where you type.) Use Control-D to quit pft.

The following command-line options are available:

Command Description

Execute Executes the PostScript code contained in the main window and displays the results in the
Output window.

Option Description

-NXHost hostname Directs pft to connect to the Window Server running on the machine hostname. If this
option isn’t used, the local Window Server is assumed.

-f file Causes the contents of file to be sent to the Window Server before user input is accepted.

-s Causes pft to exit after a file specified with -f is sent to the Window Server.

8

The NEXTSTEP Window Server Interface: pft

pft sends one line of PostScript to the Window Server at a time, and each line
is interpreted by the Window Server immediately after you press Return.

Starting the pft Program
To run the pft program, enter its name in a shell window:

pft

When pft responds with “Connection to PostScript established,” it’s ready
to accept PostScript code. If you’re running pft in a Terminal window, you
can cut and paste PostScript code from another application.

When you’re finished, quit by typing Control-D (or Control-C) in the shell
window that pft is running in.

Executing PostScript Code from a File
To execute PostScript commands that are contained in a file, you can start
pft using the -f option:

pft -f file

The file argument must be an absolute pathname (that is, starting with
either / or ~), as shown in these two examples:

pft -f /me/myProgram.ps

pft -f ~/myProgram.ps

Alternatively, once you’ve started running pft the contents of a PostScript
file can be executed using the PostScript run operator:

(file) run

In this case, the file name must be an absolute pathname that doesn’t start
with ~:

(/me/myProgram.ps) run

-NXPSName string Sets the string that pft uses to find the Window Server that it will connect to. This should
be the name that the Window Server used to register itself with nmserver, the Network
Message Server. If this option isn’t used, the default Window Server name is assumed.

Option Description

9

Chapter

1

The PostScript Previewers: Yap and pft

Setting Up a Window
The first thing you’ll probably want to do in pft, once it has established a
connection to the Window Server, is set up a window to draw in. There are two
ways to do this:

• Obtain the window number of a window the Server has already set up for
some other application (usually one you are using pft to debug), and do your
drawing in that window.

• Set up a new window using the PostScript window operator.

To create a window with the window operator, pass it arguments for its origin, size,
and type:

x y width height type window window

where type is one of Retained, Nonretained, or Buffered:

The window operator returns a unique ID number for the window, and places this
number on the operand stack. You’ll need this number in order to refer to the
window; for ease of reference you can assign the returned window number to a
variable, as follows:

/myWindow
100 100 500 500 Buffered window
def

The new window isn’t in the screen list yet, and therefore doesn’t appear on the
screen and doesn’t receive user events. You can add the window to the screen
list with the orderwindow operator:

place otherwindow window orderwindow -

The location of the window in the screen list is specified by place, which can be
one of Below, Out, or Above:

Type Value

Retained (0)

Nonretained (1)

Buffered (2)

Place Value

Below (−1)

10

The NEXTSTEP Window Server Interface: pft

otherwindow should be another window number, or 0 if you want to place the
new window above or below all windows currently in the window list.

Once the window is in the screen list it appears on the screen, but before
you can draw in the window you need to use the windowdeviceround operator to
make the window the current window:

window windowdeviceround -

Once the window is the current window, the results of any drawing code you
enter will be displayed:

newpath
20 20 moveto
40 40 lineto
stroke
flushgraphics % necessary if window is buffered

Flushing the Server’s Output Buffer
The connection between pft and the Window Server is buffered in both
directions. pft flushes its input buffer, so none of the PostScript you send to
the Window Server is ever caught in the buffer. However, you must flush
the Window Server’s output buffer yourself using the PostScript flush
operator.

Here’s a one-line example showing how to create a 500-pixel by 500-pixel
window whose lower left corner is at the lower left corner of the screen.
This example removes the window number from the stack and flushes the
Window Server’s output buffer:

0 0 500 500 Buffered window = flush

Out (0)

Above (1)

Place Value

11

Chapter

1

The PostScript Previewers: Yap and pft

Summary Example
In summary, this simple series of PostScript commands demonstrates how to
create a window, draw in the window, and then remove the window:

/myWindow % Create a variable called myWindow
100 100 50 50 Buffered window % Create a window, and assign the returned
def % window number to the myWindow variable

Above 0 myWindow orderwindow % Order myWindow at front of screen list
myWindow windowdeviceround % Make myWindow the current window

newpath % Now draw something to myWindow
25 25 15 0 360 arc
fill
flushgraphics % Flushing is required for buffered windows

myWindow termwindow % Mark myWindow for destruction
nulldevice % Remove references to myWindow

12

		The PostScript Previewers: Yap�and pft

		Using Yap

		Yap Command Reference

		Commands in the Main Menu

		Commands in the Document Menu

		The NEXTSTEP Window Server Interface: pft

		Starting the pft Program

		Executing PostScript Code from a File

		Setting Up a Window

		Flushing the Server’s Output Buffer

		Summary Example

