
1

EODatabaseContext

Inherits From: EOCooperatingObjectStore : EOObjectStore : NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabaseContext.h

Class Description

EODatabaseContext is an EOObjectStore for relational databases, creating and saving objects based on
EOEntity definitions in an EOModel.

An EODatabaseContext represents a single connection to a database server, and it determines the updating
and locking strategy used by its EODatabaseChannel objects. An EODatabaseContext has a corresponding
EODatabase object. If the server supports multiple concurrent transactions, the EODatabase object may
have several EODatabaseContexts. If the server and adaptor support it, an EODatabaseContext may in turn
have several EODatabaseChannels, which handle access to the data on the server.

The relationship between EODatabaseContext and other classes in the control and access layers is
illustrated in the following diagram.

2

As a subclass of EOCooperatingObjectStore, EODatabaseContext acts as one of possibly several
EOCooperatingObjectStores for an EOObjectStoreCoordinator, which mediates between
EOEditingContexts and EOCooperatingObjectStores.

An EODatabaseContext creates an EOAdaptorContext when initialized, and uses this object to
communicate with the database server.

Creating and Using an EODatabaseContext

Though you can create an EODatabaseContext explicitly by using the method
registeredDatabaseContextForModel:editingContext:, you should rarely need to do so. When you
create an EODatabaseDataSource, it registers an EODatabaseContext that’s capable of fetching objects for
the data source’s entities. If objects fetched into an EOEditingContext (described more in the following
section) have references to objects from EOModels that are based on another database, the
EODatabaseContext creates and registers an EODatabaseContext for each of the additional databases.

EODatabaseContexts are created on demand when an EOObjectStoreCoordinator posts an
EOCooperatingObjectStoreNeeded notification. The EODatabaseContext class registers for the

Relational
Database

EOModel
Group

EODatabase
Channel

EODatabase

EODatabase
Context

EOObjectStore
Coordinator

EOEditing
Context

EOAdaptor
Context

EOAdaptorEOAdaptor
Channel

3

notification, and it provides the EOObjectStoreCoordinator with a new EODatabaseContext instance that
can handle the request. For more discussion of this topic, see the chapter "Application Configuratons" in
the Enterprise Objects Framework Developer’s Guide.

For the most part, you don’t need to programmatically interact with an EODatabaseContext. However,
some of the reasons you might want to are as follows:

• To implement your own locking strategy, either application-wide, or on a per-fetch basis. This is
described in the section “Updating And Locking Strategies.”

• To do performance tuning. This is described in the section “Faulting.”

• To intervene when objects are created and fetched to provide custom behavior. This is described in the
section “Delegate Methods,” and in the individual delegate method descriptions.

Fetching and Saving Objects

Conceptually, an EODatabaseContext fetches and saves objects on behalf of an EOEditingContext.
However, the two objects don’t interact with each other directly—an EOObjectStoreCoordinator acts as a
mediator between them. The relationship between EOEditingContext, EOObjectStoreCoordinator, and
EODatabaseContext is illustrated in the following figure. This configuration includes one
EOObjectStoreCoordinator, and can include one or more EOEditingContexts, and one or more
EODatabaseContexts.

When an EOEditingContext fetches objects, the request is passed through the EOObjectStoreCoordinator,
which forwards it to the appropriate EODatabaseContext based on the fetch specification or global ID.
When the EODatabaseContext receives a request to fetch or write information to the database, it tries to use
one of its EODatabaseChannels. If all of its channels are busy, it broadcasts an
EODatabaseChannelNeededNotification in the hopes that an observer can provide a new channel or that an
existing channel can be freed up. This observer could be a manager that decides how many database cursors
can be opened by a particular client.

EODatabase
Context

EODatabase
Context

EOObjectStore
Coordinator

EOEditing
Context

EOEditing
Context

EOEditing
Context

4

EODatabaseContext knows how to interact with other EOCooperatingObjectStores to save changes made
to an object graph in more than one database server. For a more detailed discussion of this subject, see the
class specifications for EOObjectStoreCoordinator and EOCooperatingObjectStore.

Setting a Fetch Limit

EODatabaseContext defines a hint for use with an EOFetchSpecification in the
objectsWithFetchSpecification:editingContext: method. Named by the key EOFetchLimitHintKey, the
hint's value is an NSNumber containing an unsigned integer value indicating the maximum number of
objects to fetch. Depending on the value of the EOPromptAfterFetchLimitKey (YES or NO), the
EODatabaseContext will either stop fetching objects when this limit is reached or it will ask the
EOEditingContext's message handler to ask the user whether it should continue fetching.

Faulting

When an EODatabaseContext fetches an object, it examines the relationships defined in the model and
creates objects representing the destinations of the fetched object’s relationships. For example, if you fetch
an employee object, you can ask for its manager and immediately receive an object; you don’t have to get
the manager’s employee ID from the object you just fetched and fetch the manager yourself.

EODatabaseContext doesn’t immediately fetch data for the destination objects of relationships, however,
since fetching is fairly expensive. To avoid this waste of time and resources, the destination objects of the
class EOFault are created as placeholders. EOFaults come in two varieties: single object faults for to-one
relationships, and array faults for to-many relationships.

When an EOFault is accessed (sent a message), it triggers its EODatabaseContext to fetch its data and
transform it into an instance of the appropriate object class. This preserves both the object’s id and its
EOGlobalID.

You can fine-tune faulting behavior for additional performance gains by using two different mechanisms:
batch faulting, and prefetching relationships.

Batch Faulting

When you access an EOFault, its data is fetched from the database. However, triggering one fault has no
effect on other faults—it just fetches the object or array of objects for the one fault. You can take advantage
of this expensive round trip to the database server by batching faults together. EODatabaseContext provides
the batchFetchRelationship:forSourceObjects:editingContext: method for doing this. For example,
given an array of Employee objects, this method can fetch all of their departments with one round trip to
the server, rather than asking the server for each of the employee’s departments individually. You can use
the delegate methods databaseContext:shouldFetchArrayFault: and
databaseContext:shouldFetchObjectFault: to fine-tune batch faulting behavior.

You can also set batch faulting in an EOModel. In that approach, you specify the number of faults that
should be triggered along with the first fault; you don’t actually control which faults are triggered the way

5

you do with batchFetchRelationship:forSourceObjects:editingContext:. For more information on
setting batch faulting in an EOModel, see the chapter “Using EOModeler” in the Enterprise Objects
Framework Developer’s Guide.

Prefetching Relationships

EODatabaseContext defines a hint for use with an EOFetchSpecification in the
objectsWithFetchSpecification:editingContext: method. Named by the key
EOPrefetchingRelationshipHintKey, the hint’s value is an NSArray of relationship paths whose
destinations should be fetched along with the objects specified. For example, when fetching Movies, you
can provide a prefetching hint for “directors”, “roles.talent”, and “plotSummary” to force these objects to
be fetched as well, as opposed to having faults created for them. Although prefetching increases the initial
fetch cost, it can improve overall performance by reducing the number of round trips made to the database
server.

Delegate Methods

An EODatabaseContext shares its delegate with its EODatabaseChannel. These delegate methods are
actually sent from EODatabaseChannel, but they’re defined in EODatabaseContext for ease of access:

– databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:
– databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:
– databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID:channel:
– databaseContext:shouldUsePessimisticLockWithFetchSpecification: databaseChannel:

You can use the EODatabaseContext methods to intervene when objects are created and when they’re
fetched from the database. This gives you more fine-grained control over such issues as how an object’s
primary key is generated (databaseContext:newPrimaryKeyForObject:entity:), how and if objects are
locked (databaseContext:shouldLockObjectWithGlobalID:snapshot:), what fetch specification is used
to fetch objects (databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:),
how batch faulting is performed (databaseContext:shouldFetchArrayFault: and
databaseContext:shouldFetchObjectFault:), and so on. For more information, see the individual
delegate method descriptions.

Snapshots

An EODatabase records snapshots for its EODatabaseContexts. These snapshots form the application’s
view of the current state of the database server. This global view is overridden locally by
EODatabaseContexts, which form their own snapshots as they make changes during a transaction. When
an EODatabaseContext commits its top-level transaction, it reconciles all changed snapshots with the
global view of the database object, so that other EODatabaseContexts (except those with open transactions)
immediately use the new snapshots as well.

6

Updating And Locking Strategies

EODatabaseContext supports two updating strategies defined by the EOUpdateStrategy type:
EOUpdateWithOptimisticLocking , and EOUpdateWithPessimisticLocking.

EOUpdateWithOptimisticLocking is the default update strategy. Under optimistic locking, objects aren’t
locked immediately on being fetched from the server. Instead, whenever you attempt to save updates to an
object in the database, the object’s snapshot is used to ensure that the values in the corresponding database
row haven’t changed since the object was fetched. As long as the snapshot matches the values in the
database, the update is allowed to proceed.

The EOUpdateWithPessimisticLocking strategy causes objects to be locked in the database when they’re
selected. This ensures that no one else can modify the objects until the transaction ends. However, this
doesn’t necessarily mean that either the select or the update operation will succeed.

EODatabaseContext also supports “on-demand” locking, in which specific optimistic locks can be
promoted to database locks during the course of program execution. You can either use
lockObjectWithGlobalID:editingContext: to lock a database row for a particular object, or
objectsWithFetchSpecification:editingContext: to fetch objects with a fetch specification that includes
locking.

Method Types

Initializing instances – initWithDatabase:

Fetching objects – objectsWithFetchSpecification:editingContext:
– objectsForSourceGlobalID:relationshipName:editingContext:
– arrayFaultWithSourceGlobalID:relationshipName:editingContext:
– faultForGlobalID:editingContext:
– batchFetchRelationship:forSourceObjects:editingContext:

Getting the adaptor context – adaptorContext

Getting the database object – database

Getting the coordinator – coordinator

Managing channels – availableChannel
– registerChannel:
– registeredChannels
– unregisterChannel:

Setting the delegate – setDelegate:
– delegate

7

Committing or discarding changes – invalidateAllObjects
– invalidateObjectsWithGlobalIDs:
– rollbackChanges
– saveChangesInEditingContext:
– commitChanges
– performChanges
– prepareForSaveWithCoordinator:editingContext:
– recordUpdateForObject:changes:
– recordChangesInEditingContext
– refaultObject:withGlobalID:editingContext:

Determining if the EODatabaseContext is responsible for a particular operation
– ownsObject:
– ownsGlobalID:
– handlesFetchSpecification:

Managing Snapshots – forgetSnapshotForGlobalID:
– localSnapshotForGlobalID:
– recordSnapshot:forGlobalID:
– recordSnapshots:
– snapshotForGlobalID:

Initializing objects – initializeObject:withGlobalID:editingContext:

Obtaining an EODatabaseContext + registeredDatabaseContextForModel:editingContext:

Locking objects – setUpdateStrategy:
– updateStrategy
– registerLockedObjectWithGlobalID:
– isObjectLockedWithGlobalID:
– isObjectLockedWithGlobalID:editingContext:
– forgetAllLocks
– forgetLocksForObjectsWithGlobalIDs:
– lockObjectWithGlobalID:editingContext:

Returning information about objects – valuesForKeys:object:

8

Class Methods

registeredDatabaseContextForModel:editingContext:
+ (EODatabaseContext *)registeredDatabaseContextForModel:(EOModel *)aModel

editingContext:(EOEditingContext *)anEditingContext

Finds the EOObjectStoreCoordinator for anEditingContext and checks to see if it already contains an
EODatabaseContext cooperating object store for aModel. If it does, it returns that EODatabaseContext.
Otherwise it instantiates a new EODatabaseContext, adds it to the EOObjectStoreCoordinator, and returns
the EODatabaseContext.

Instance Methods

adaptorContext
– (EOAdaptorContext *)adaptorContext

Returns the EOAdaptorContext used by the EODatabaseContext for communication with the database
server.

arrayFaultWithSourceGlobalID:relationshipName:editingContext:
– (NSArray *)arrayFaultWithSourceGlobalID: (EOGlobalID *)globalID

relationshipName:(NSString *)name
editingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method
arrayFaultWithSourceGlobalID:relationshipName:editingContext: to create a to-many fault for
anEditingContext. name must correspond to an EORelationship in the EOEntity for the specified globalID.

See also: – faultForGlobalID:editingContext:

availableChannel
– (EODatabaseChannel *)availableChannel

Returns an EODatabaseChannel that’s registered with the receiver and that isn’t busy. If the method can’t
find a channel that meets these criteria, it posts an EODatabaseChannelNeededNotification in the hopes that
someone will provide a new channel. After posting the notification, the receiver checks its list of channels
again. If there are still no available channels, the receiver creates an EODatabaseChannel itself. However,
if the list is not empty and there are no available channels, the method returns nil .

See also: – registerChannel:, – registeredChannels, –unregisterChannel:

9

batchFetchRelationship:forSourceObjects:editingContext:
(void)batchFetchRelationship:(EORelationship *)relationship

forSourceObjects:(NSArray *)objects
editingContext:(EOEditingContext *)anEditingContext

Clear all the faults for the relationship of anEditingContext’s objects and performs a single, efficient, fetch
(at most two fetches, if the relationship is many-to-many). This method provides a way to fetch the same
relationship for multiple objects. For example, given an array of Employee objects, this method can fetch
all of their departments with one round trip to the server, rather than asking the server for each of the
employee’s departments individually.

commitChanges
– (void)commitChanges

Overrides the EOCooperatingObjectStore method commitChanges to instruct the adaptor to commit the
transaction. If the commit is successful, any primary and foreign key changes are written back to the saved
objects, database locks are released, and an EOObjectsChangedInStoreNotification (defined in
EOObjectStore) is posted describing the committed changes. Raises an exception if the adaptor is unable
to commit the transaction; the error message indicates the nature of the problem. You should never need to
invoke this method directly.

See also: – performChanges, – rollbackChanges

coordinator
– (EOObjectStoreCoordinator *)coordinator

Returns the receiver’s EOObjectStoreCoordinator or nil if there is none. This method is only valid during
a save operation.

database
– (EODatabase *)database

Returns the receiver’s EODatabase.

10

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

faultForGlobalID:editingContext:
– (id)faultForGlobalID: (EOGlobalID *)globalID

editingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method faultForGlobalID:editingContext: to create a to-one fault for the
object identified by globalID and register it in anEditingContext.

See also: – arrayFaultWithSourceGlobalID:relationshipName:editingContext:

forgetAllLocks
– (void)forgetAllLocks

Clears all of the receiver’s locks. Doesn’t cause the locks to be forgotten in the server, only in the receiver.
This method is useful when something has happened to cause the server to forget the locks and the receiver
needs to be synched up. This method is invoked whenever a transaction is committed or rolled back.

See also: – registerLockedObjectWithGlobalID: , – isObjectLockedWithGlobalID: ,
– isObjectLockedWithGlobalID:editingContext: , – forgetLocksForObjectsWithGlobalIDs: ,
– lockObjectWithGlobalID:editingContext: , – lockObject: (EOEditingContext)

forgetLocksForObjectsWithGlobalIDs:
(void)forgetLocksForObjectsWithGlobalIDs: (NSArray *)globalIDs

Clears the locks made for the enterprise objects identified by each of the EOGlobalIDs globalIDs. Doesn’t
cause the locks to be forgotten in the server, only in the receiver.

See also: – registerLockedObjectWithGlobalID: , – isObjectLockedWithGlobalID: ,
– isObjectLockedWithGlobalID:editingContext: , – forgetAllLocks ,
– lockObjectWithGlobalID:editingContext: , – lockObject: (EOEditingContext)

11

forgetSnapshotForGlobalID:
– (void)forgetSnapshotForGlobalID:(EOGlobalID *)globalID

Deletes the snapshot made for the enterprise object identified by globalID.

See also: – recordSnapshot:forGlobalID:, – localSnapshotForGlobalID:, – recordSnapshots:,
– snapshotForGlobalID:

handlesFetchSpecification:
– (BOOL)handlesFetchSpecification:(EOFetchSpecification *)fetchSpecification

Overrides the EOCooperatingObjectStore handlesFetchSpecification: method to return YES if the
receiver is responsible for fetching the objects described by the entity name in fetchSpecification.

See also: – ownsObject:, –ownsGlobalID:

initializeObject:withGlobalID:editingContext:
– (void)initializeObject: (id)object

withGlobalID: (EOGlobalID *)globalID
editingContext:(EOEditingContext *)anEditingContext

Overrides EOObjectStore’s initializeObject:withGlobalID:editingContext: to initialize object for
anEditingContext by filling it with properties based on row data fetched from the adaptor. The snapshot for
globalID is looked up and those attributes in the snapshot that are marked as class properties in the
EOEntity are assigned to object. For relationship class properties, faults are constructed and assigned to the
object.

initWithDatabase:
– initWithDatabase:(EODatabase *)aDatabase

Initializes a newly allocated EODatabaseContext with aDatabase as the EODatabase object it works with.
The new EODatabaseContext retains aDatabase. Returns self, or nil if unable to create another
EOAdaptorContext for the EOAdaptor of aDatabase. This is the designated initializer for the
EODatabaseContext class.

invalidateAllObjects
– (void)invalidateAllObjects

Overrides the EOObjectStore method invalidateAllObjects to discard all snapshots in the receiver’s
EODatabase, forget all locks, and post an EOAllObjectsChangedInObjectStoreNotification, as well as an

12

EOObjectsChangedInStoreNotification with the invalidated global IDs in the userInfo dictionary. Both of
these notifications are defined in EOObjectStore. This method works by invoking
invalidateObjectsWithGlobalIDs: for all of the snapshots in the receiver’s EODatabase.

invalidateObjectsWithGlobalIDs:
– (void)invalidateObjectsWithGlobalIDs: (NSArray *)globalIDs

Overrides the EOObjectStore method invalidateObjectsWithGlobalIDs: to discard the snapshots for the
objects identified by the EOGlobalIDs globalIDs and broadcasts an EOObjectsChangedInStoreNotification
(defined in EOObjectStore), which causes the EOEditingContext containing objects fetched from the
receiver to refault those objects. The result is that these objects will be refetched from the database the next
time they’re accessed.

isObjectLockedWithGlobalID:
– (BOOL)isObjectLockedWithGlobalID: (EOGlobalID *)globalID

Returns YES if the enterprise object identified by globalID is locked, NO otherwise.

See also: – registerLockedObjectWithGlobalID: , – forgetAllLocks ,
– isObjectLockedWithGlobalID:editingContext: , – forgetLocksForObjectsWithGlobalIDs: ,
– lockObjectWithGlobalID:editingContext: , – lockObject: (EOEditingContext)

isObjectLockedWithGlobalID:editingContext:
– (BOOL)isObjectLockedWithGlobalID: (EOGlobalID *)globalID

editingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method isObjectLockedWithGlobalID:editingContext: to return YES if
the database row corresponding to globalID has been locked in an open transaction held by the receiver.

See also: – registerLockedObjectWithGlobalID: , – isObjectLockedWithGlobalID: , – forgetAllLocks ,
– forgetLocksForObjectsWithGlobalIDs: , – lockObjectWithGlobalID:editingContext: ,
– lockObject: (EOEditingContext)

13

localSnapshotForGlobalID:
– (NSDictionary *)localSnapshotForGlobalID:(EOGlobalID *)globalID

Returns the snapshot for the object identified by globalID, if there is one; else returns nil . Only searches
locally (in the transaction scope), not in the EODatabase.

See also: – recordSnapshot:forGlobalID:, – forgetSnapshotForGlobalID:, – recordSnapshots:,
– snapshotForGlobalID:

lockObjectWithGlobalID:editingContext:
– (void)lockObjectWithGlobalID: (EOGlobalID *)globalID

editingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method lockObjectWithGlobalID:editingContext: to attempt to lock the
database row corresponding to globalID in the underlying database server, on behalf of anEditingContext.
If a transaction is not already open at the time of the lock request, the transaction is begun and is held open
until either commitChanges or invalidateAllObjects is called. At that point all locks are released. Raises
an NSInternalInconsistencyException if unable to obtain the lock.

See also: – registerLockedObjectWithGlobalID: , – isObjectLockedWithGlobalID: , – forgetAllLocks ,
– forgetLocksForObjectsWithGlobalIDs: , – isObjectLockedWithGlobalID:editingContext: ,
– lockObject: (EOEditingContext)

objectsForSourceGlobalID:relationshipName:editingContext:
– (NSArray *)objectsForSourceGlobalID:(EOGlobalID *)globalID

relationshipName:(NSString *)name
editingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method objectsForSourceGlobalID:relationshipName:editingContext: to
service a to-many fault. The snapshot for the source object identified by globalID is located and the
EORelationship named name is used to construct a qualifier from that snapshot. This qualifier is then used
to fetch the requested objects into anEditingContext using the method
objectsWithFetchSpecification:editingContext:.

objectsWithFetchSpecification:editingContext:
– (NSArray *)objectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification

editingContext:(EOEditingContext *)anEditingContext

Overrides EOObjectStore’s objectsWithFetchSpecification:editingContext: method to fetch objects
from an external store into anEditingContext. The receiver obtains an available EODatabaseChannel and
issues a fetch with fetchSpecification. If one of these objects is already present in memory, by default this

14

method doesn’t overwrite its values with the new values from the database (you can change this behavior;
see the setRefreshesRefetchedObjects: method in the EOFetchSpecification class specification).

You can use a prefetching hint in fetchSpecification’s hints dictionary (as discussed under “Prefetching
Relationships” in the class description), to fetch the destinations of relationships along with the objects
specified.

You can use this method to implement “on-demand” locking by using a fetchSpecification that includes
locking. For more discussion of this subject, see “Updating And Locking Strategies” in the class
description.

Raises an exception if an error occurs; the error message indicates the nature of the problem.

See also: – objectsWithFetchSpecification: (EOEditingContext)

ownsGlobalID :

– (BOOL)ownsGlobalID:(EOGlobalID *)globalID

Overrides the EOCooperatingObjectStore method ownsGlobalID: to return YES if the receiver is
responsible for fetching and saving the object identified by globalID, NO otherwise. The receiver is
determined to be responsible if globalID is a subclass of EOKeyGlobalID and globalID has an entity from
one of the receiver’s EODatabase’s EOModels.

See also: – handlesFetchSpecification:, –ownsObject:

ownsObject:
– (BOOL)ownsObject:(id)object

Overrides the EOCooperatingObjectStore method ownsObject: to return YES if the receiver is responsible
for fetching and saving object, NO otherwise. The receiver is determined to be responsible if the entity
corresponding to object is in one of the receiver’s EODatabase’s EOModels.

See also: – ownsGlobalID:, –handlesFetchSpecification:

performChanges
– (void)performChanges

Overrides the EOCooperatingObjectStore method performChanges to construct EOAdaptorOperations
from the EODatabaseOperations produced during recordChangesInEditingContext and
recordUpdateForObject:changes:. Invokes the delegate method
databaseContext:willOrderAdaptorOperationsFromDatabaseOperations: to give the delegate an
opportunity to construct alternative EOAdaptorOperations from the EODatabaseOperations. Then invokes
the delegate method databaseContext:willPerformAdaptorOperations: to let the delegate substitute its

15

own array of EOAdaptorOperations. Gives the EOAdaptorOperations to an available EOAdaptorChannel
for execution. If the save succeeds, updates the snapshots in the receiver to reflect the new state of the server.
You should never need to invoke this method directly.

This method raises an exception if the adaptor is unable to perform the operations. The exception’s userInfo
dictionary contains these keys:

• EODatabaseContextKey

The EODatabaseContext object that was trying to save to its underlying repository when the exception
was raised.

• EODatabaseOperationsKey

The list of database operations the EODatabaseContext was trying to perform when the failure occurred.

• EOFailedDatabaseOperationKey

The database operation the EODatabaseContext failed to perform.

The userInfo dictionary may also contain some of the keys listed in the method description for the
EOAdaptorChannel method performAdaptorOperation: . For more information, see the
EOAdaptorChannel class specification.

See also: – commitChanges, – rollbackChanges

prepareForSaveWithCoordinator:editingContext:
– (void)prepareForSaveWithCoordinator:(EOObjectStoreCoordinator *)coordinator

editingContext:(EOEditingContext *)anEditingContext

Overrides the EOCooperatingObjectStore method prepareForSaveWithCoordinator:editingContext: to
do whatever is necessary to prepare to save changes. If needed, generates primary keys for any new objects
in anEditingContext that are owned by the receiver. This method is invoked before the object graph is
analyzed and foreign key assignments are performed. You should never need to invoke this method directly.

recordChangesInEditingContext
– (void)recordChangesInEditingContext

Overrides the EOCooperatingObjectStore method recordChangesInEditingContext to construct a list of
EODatabaseOperations for all changes to objects in the EOEditingContext that are owned by the receiver.
Forwards any relationship changes discovered but not owned by the receiver to the
EOObjectStoreCoordinator. This method is typically invoked in the course of an
EOObjectStoreCoordinator saving changes through its saveChangesInEditingContext: method. It’s
invoked after prepareForSaveWithCoordinator:editingContext: and before performChanges. You
should never need to invoke this method directly.

16

recordSnapshot:forGlobalID:
– (void)recordSnapshot:(NSDictionary *)snapshot forGlobalID: (EOGlobalID *)globalID

Records aSnapshot under globalID.

See also: – forgetSnapshotForGlobalID:, – localSnapshotForGlobalID:, – recordSnapshots:,
– snapshotForGlobalID:

recordSnapshots:
– (void)recordSnapshots:(NSDictionary *)snapshots

Records the objects in snapshots, which should be snapshot NSDictionaries, under EOGlobalIDs.

See also: – recordSnapshot:forGlobalID:, – localSnapshotForGlobalID:,
– forgetSnapshotForGlobalID:, –snapshotForGlobalID:

recordUpdateForObject:changes:
– (void)recordUpdateForObject:(id)object changes:(NSDictionary *)changes

Overrides the EOCooperatingObjectStore method recordUpdateForObject:changes: to communicate to
the receiver from another EOCooperatingObjectStore (through the EOObjectStoreCoordinator) that
changes need to be made to an object in the receiver. For example, an insert of an object in a relationship
property might require changing a foreign key property in an object owned by another
EOCooperatingObjectStore. This method can be invoked any time after
prepareForSaveWithCoordinator:editingContext: and before performChanges.

refaultObject:withGlobalID:editingContext:
– (void)refaultObject: (id)anObject

withGlobalID: (EOGlobalID *)globalID
editingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method refaultObject:withGlobalID:editingContext: to refault the
enterprise object object identified by globalID in anEditingContext. (You don’t refault to-many relationship
arrays, you just recreate them.) This method should be used with caution since refaulting an object doesn’t
remove the object snapshot from the undo stack. Newly inserted objects should not be refaulted since they
can’t be refetched from the external store. If you attempt to do this, an exception will be raised.

17

registerChannel:
– (void)registerChannel:(EODatabaseChannel *)channel

Registers channel, which means that it adds it to the availableChannel pool used to service fetch and fault
requests. Registered channels are retained by the receiver. You use this method if you need to perform more
than one fetch simultaneously.

See also: – availableChannel, – registeredChannels, –unregisterChannel:

registeredChannels
– (NSArray *)registeredChannels

Returns all of the EODatabaseChannels that have been registered for use with the receiver.

See also: – registerChannel:, –availableChannel, –unregisterChannel:

registerLockedObjectWithGlobalID:
– (void)registerLockedObjectWithGlobalID: (EOGlobalID *)globalID

Registers as a locked object the enterprise object identified by globalID.

See also: – forgetAllLocks , – isObjectLockedWithGlobalID: ,
– isObjectLockedWithGlobalID:editingContext: , – forgetLocksForObjectsWithGlobalIDs: ,
– lockObjectWithGlobalID:editingContext: , – lockObject: (EOEditingContext)

rollbackChanges
– (void)rollbackChanges

Overrides the EOCooperatingObjectStore method rollbackChanges to instruct the adaptor to roll back the
transaction. Rolls back any changed snapshots, and releases all locks.

See also: – performChanges, –commitChanges

saveChangesInEditingContext:
– (void)saveChangesInEditingContext:(EOEditingContext *)anEditingContext

Overrides the EOObjectStore method saveChangesInEditingContext: to save the changes made in
anEditingContext. This message is sent by an EOEditingContext to its EOObjectStore to commit changes.
Normally an EOEditingContext doesn’t send this message to an EODatabaseContext, but to an
EOObjectStoreCoordinator. Raises an exception if an error occurs; the error message indicates the nature
of the problem.

18

setDelegate:
– (void)setDelegate:(id)delegate

Sets the receiver’s delegate to delegate, and propagates the delegate to all of the receiver’s
EODatabaseChannels. EODatabaseChannels share the delegate of their EODatabaseContext.

See also: – delegate

setUpdateStrategy:
– (void)setUpdateStrategy:(EOUpdateStrategy)strategy

Sets the update strategy used by the EODatabaseContext to strategy. See “Updating And Locking
Strategies” in the class description for information on update strategies. Raises an
NSInvalidArgumentException if the receiver has any transactions in progress or if you try to set strategy to
EOUpdateWithPessimisticLocking and the receiver’s EODatabase already has snapshots.

See also: – updateStrategy

snapshotForGlobalID:
– (NSDictionary *)snapshotForGlobalID:(EOGlobalID *)globalID

Returns the snapshot for the object identified by globalID, if there is one; else returns nil . Searches first
locally (in the transaction scope) and then in the EODatabase.

See also: – recordSnapshot:forGlobalID:, – localSnapshotForGlobalID:,
– forgetSnapshotForGlobalID:, – recordSnapshots:

unregisterChannel:
– (void)unregisterChannel:(EODatabaseChannel *)channel

Unregisters the EODatabaseChannel channel, which means that it removes it from the availableChannel
pool used for database communication (for example, to service fetch and fault requests).

See also: – registerChannel:, – registeredChannels, –availableChannel

19

updateStrategy
– (EOUpdateStrategy)updateStrategy

Returns the update strategy used by the receiver. The default strategy is
EOUpdateWithOptimisticLocking . See the class description for information on update strategies.

See also: – setUpdateStrategy:

valuesForKeys:object:
– (NSDictionary *)valuesForKeys:(NSArray *)keys object:(id)object

Overrides the EOCooperatingObjectStore method valuesForKeys:object: to return values for the specified
keys from the snapshot of object. The returned values are used primarily by another EODatabaseContext to
extract foreign key properties for objects owned by the receiver.

Methods Implemented By the Delegate

databaseContext:didFetchObjects:fetchSpecification:editingContext:
– (void)databaseContext:(EODatabaseContext *)aDatabaseContext

didFetchObjects:(NSArray *)objects
fetchSpecification:(EOFetchSpecification *)fetchSpecification
editingContext:(EOEditingContext *)anEditingContext

Invoked from objectsWithFetchSpecification:editingContext: after aDatabaseContext fetches objects
using the criteria defined in fetchSpecification on behalf of anEditingContext.

databaseContext:didSelectObjectsWithFetchSpecification:databaseChannel:
– (void)databaseContext:(EODatabaseContext *)aDatabaseContext

didSelectObjectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification
databaseChannel:(EODatabaseChannel *)channel

Invoked from the EODatabaseChannel method selectObjectsDescribedByQualifier:... to tell the delegate
that channel selected the objects on behalf of aDatabaseContext as specified by fetchSpecification.

20

databaseContext:failedToFetchObject:globalID:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

failedToFetchObject:(id)object
globalID: (EOGlobalID *)globalID

Sent when a to-one fault cannot find its data in the database. The object is a cleared fault identified by
globalID. If this method returns YES, aDatabaseContext assumes that the delegate has handled the
situation to its satisfaction, in whatever way it deemed appropriate (for example, by displaying an alert
panel or initializing a fault object with new values). If it returns NO or if the delegate method is not
implemented, aDatabaseContext raises an NSInternalInconsistencyException.

databaseContext:newPrimaryKeyForObject:entity:
– (NSDictionary *)databaseContext:(EODatabaseContext *)aDatabaseContext

newPrimaryKeyForObject: (id)object
entity: (EOEntity *)entity

Sent when a newly inserted enterprise object doesn’t already have a primary key set. This delegate method
can be used to implement custom primary key generation. If the delegate is not implemented or returns nil ,
then aDatabaseContext will send an EOAdaptorChannel a primaryKeyForNewRowWithEntity: entity
message in an attempt to generate the key.

databaseContext:shouldFetchArrayFault:
– (BOOL)databaseContext:(EODatabaseContext *)databaseContext

shouldFetchArrayFault: (id)fault

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the array themselves (for example, by using the EODatabaseContext method
batchFetchRelationship:forSourceObjects:editingContext:) and return NO, or return YES to allow the
databaseContext to do the fetch itself. If databaseContext performs the fetch it will batch fault according
to the batch count on the relationship being fetched.

See also: – databaseContext:shouldFetchObjectFault:

databaseContext:shouldFetchObjectFault:
– (BOOL)databaseContext:(EODatabaseContext *)databaseContext

shouldFetchObjectFault:(id)fault

Invoked when a fault is fired, this delegate method lets you fine-tune the behavior of batch faulting.
Delegates can fetch the fault themselves (for example, by using the EODatabaseContext method
objectsWithFetchSpecification:editingContext:) and return NO, or return YES to allow databaseContext

21

to perform the fetch. If databaseContext performs the fetch, it will batch fault according to the batch count
on the entity being fetched.

See also: – databaseContext:shouldFetchArrayFault:

databaseContext:shouldFetchObjectsWithFetchSpecification:editingContext:
– (NSArray *)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldFetchObjectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification
editingContext:(EOEditingContext *)anEditingContext

Invoked from objectsWithFetchSpecification:editingContext: to give the delegate the opportunity to
satisfy anEditingContext’s fetch request (using the criteria specified in fetchSpecification) from a local
cache. If the delegate returns nil , aDatabaseContext performs the fetch. Otherwise, the returned array is
returned as the fetch result.

databaseContext:shouldInvalidateObjectWithGlobalID:snapshot:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldInvalidateObjectWithGlobalID: (EOGlobalID *)globalId
snapshot:(NSDictionary *)snapshot

Invoked from invalidateObjectsWithGlobalIDs: . Delegate can cause aDatabaseContext’s object as
identified by globalID to not be invalidated and that object’s snapshot to not be cleared by returning NO.

databaseContext:shouldLockObjectWithGlobalID:snapshot:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldLockObjectWithGlobalID: (EOGlobalID *)globalID
snapshot:(NSDictionary *)snapshot

Invoked from lockObjectWithGlobalID:editingContext: . The delegate should return YES if it wants the
operation to proceed or NO if it doesn’t. Values from snapshot are used to create a qualifier from the
attributes used for locking specified for the object’s entity (that is, the object identified by globalID).
Delegates can override the locking mechanism by implementing their own locking procedure and returning
NO. Methods that override the locking mechanism should raise an exception on the failure to lock exactly
one object.

22

databaseContext:shouldRaiseExceptionForLockFailure:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldRaiseExceptionForLockFailure:(NSException *)exception

Invoked from lockObjectWithGlobalID:editingContext: . This method allows the delegate to suppress an
exception that has occurred during aDatabaseContext’s attempt to lock the object.

databaseContext:shouldSelectObjectsWithFetchSpecification:databaseChannel:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldSelectObjectsWithFetchSpecification:(EOFetchSpecification *)fetchSpecification
databaseChannel:(EODatabaseChannel *)channel

Invoked from the EODatabaseChannel method selectObjectsDescribedByQualifier:... to tell the delegate
that channel will select objects on behalf of aDatabaseContext as specified by fetchSpecification. The
delegate should not modify the qualifier or fetch order. If the delegate returns YES the channel will go ahead
and select the object; if the delegate returns NO (possibly after issuing custom SQL against the adaptor) the
channel will skip the select and return.

databaseContext:shouldUpdateCurrentSnapshot:newSnapshot:globalID:channel:
– (NSDictionary *)databaseContext:(EODatabaseContext *)aDatabaseContext

shouldUpdateCurrentSnapshot:(NSDictionary *)currentSnapshot
newSnapshot:(NSDictionary *)newSnapshot
globalID: (EOGlobalID *)globalID
channel:(EODatabaseChannel *)channel

Invoked from the EODatabaseChannel method fetchObject when aDatabaseContext already has a
snapshot (currentSnapshot) for a row fetched from the database. This method is invoked without first
checking whether the snapshots are equivalent (the check would be too expensive to do in the common
case), so the receiver may be passed equivalent snapshots. The default behavior is to not update an older
snapshot with newSnapshot. The delegate can override this behavior by returning an NSDictionary
(possibly newSnapshot) that will be recorded as the updated snapshot. This will result in an
EOObjectsChangedInStoreNotification being broadcast, causing the object store hierarchy to invalidate
existing objects (as identified by globalID) built from the obsolete snapshot. Returning nil raises an
exception. Returning currentSnapshot causes the aDatabaseContext to perform the default behavior (that
is, not updating the older snapshot).

23

databaseContext:shouldUsePessimisticLockWithFetchSpecification:
databaseChannel:

– (BOOL)databaseContext:(EODatabaseContext *)databaseContext
shouldUsePessimisticLockWithFetchSpecification:(EOFetchSpecification *)fetchSpecification
databaseChannel:(EODatabaseChannel *)channel

Invoked from the EODatabaseChannel method selectObjectsDescribedByQualifier:... regardless of the
update strategy specified on channel’s databaseContext. The delegate should not modify the qualifier or
fetch order contained in fetchSpecification. If the delegate returns YES the channel locks the rows being
selected; if the delegate returns NO the channel selects the rows without locking.

databaseContext:willOrderAdaptorOperationsFromDatabaseOperations:
– (NSArray *)databaseContext:(EODatabaseContext *)aDatabaseContext

willOrderAdaptorOperationsFromDatabaseOperations:(NSArray *)databaseOperations

Sent from performChanges. If the delegate responds to this message, it must return an array of
EOAdaptorOperations that aDatabaseContext can then submit to an EOAdaptorChannel for execution. The
delegate can fabricate its own array by asking each of the databaseOperations for its list of
EOAdaptorOperations, and adding them to the array which will eventually be returned by this method. The
delegate is free to optimize, order, or transform the list in whatever way it deems necessary. This method is
useful for applications that need a special ordering of the EOAdaptorOperations so as not to violate any
database referential integrity constraints.

databaseContext:willPerformAdaptorOperations:adaptorChannel:
– (NSArray *)databaseContext:(EODatabaseContext *)aDatabaseContext

willPerformAdaptorOperations: (NSArray *)adaptorOperations
adaptorChannel:(EOAdaptorChannel *)adaptorChannel

Sent from performChanges. The delegate can return a new adaptorOperations array which
aDatabaseContext will hand to adaptorChannel for execution in place of the old array of
EOAdaptorOperations. This method is useful for applications that need a special ordering of the
EOAdaptorOperations so as not to violate any database referential integrity constraints.

databaseContext:willRunLoginPanelToOpenDatabaseChannel:
– (BOOL)databaseContext:(EODatabaseContext *)aDatabaseContext

willRunLoginPanelToOpenDatabaseChannel:(EODatabaseChannel *)channel

When aDatabaseContext is about to use a channel, it checks to see if the channel's corresponding
EOAdaptorChannel is open. If it isn’t, it attempts to open the EOAdaptorChannel by sending it an
openChannel message. If that doesn’t succeed, aDatabaseContext will ask the EOAdaptorChannel’s

24

adaptor to run the login panel and open the channel. aDatabaseContext gives the delegate a chance to
intervene in this by invoking this delegate method. The delegate can return NO to stop aDatabaseContext
from running the login panel. In this case, the delegate is responsible for opening the channel. If the delegate
returns YES, aDatabaseContext runs the login panel.

Notifications

The following notification is declared and posted by EODatabaseContext.

EODatabaseChannelNeededNotification

Notification Object The EODatabaseContext.

userInfo Dictionary None.

This notification is broadcast whenever an EODatabaseContext is asked to perform an object store
operation and it doesn’t have an available EODatabaseChannel. Subscribers can create a new channel
and add it to the EODatabaseContext at this time.

