
1

EOModel

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOModel.h

Class Description

An EOModel represents a mapping between a database model and a set of classes based on the
entity-relationship model. The model contains a number of EOEntity objects representing the entities
(tables) of the database model. Each EOEntity object has a number of EOAttribute and EORelationship
objects representing the properties (columns or fields) of the entity in the database model. See
EOAttribute.h and EORelationship.h for more information on attributes and relationships.

An EOModel maintains a mapping between each of its EOEntity objects and a corresponding enterprise
object class for use with the database level of the Enterprise Objects Framework. You can determine the
EOEntity for a particular enterprise object with the entityForObject: method.

An EOModel is specific to a particular database server, and stores information needed to connect to that
server. This includes the name of an adaptor framework to load so that the Enterprise Objects Framework
can communicate with the database. Models are stored in the file system in a manner similar to adaptor
framework; see “Loading a Model File” below for more information.

Models can have relationships that reference other models in the same model group. The other models may
map to different databases and types of servers.

Models are organized into model groups; see the EOModelGroup class specification for more information.

Loading a Model File

EOModels are usually loaded from model files built with the EOModeler application rather than built
programmatically. EOModel files are typically stored in a project or a framework.

You use initWithContentsOfFile: to load an EOModel. However, loading an EOModel doesn’t have the
effect of loading all of its entities. EOModel files can be quite large, so to reduce start-up time, entity
definitions are only loaded as needed. This incremental model loading is possible because an EOModel
actually consists of one global file, with a separate file for each entity. Models have an .eomodeld file
wrapper (which is actually a directory), and the individual entity files within the model are in ASCII format.
The global file has the name index.eomodeld, and it contains the connection dictionary, the adaptor name,
and a list of all of the entities in the model. It is this file that gets loaded when you use

2

initWithContentsOfFile: . Thereafter, when an entity is loaded, EOModel posts an
EOEntityLoadedNotification.

Some of the EOModel methods contain the string “TableOfContents”. An EOModel’s “table of contents”
corresponds to its global index.eomodeld file, which is used to access the model’s entities.
index.eomodeld is just the ASCII representation of a model’s table of contents.

Creating an EOModel Programmatically

The EOAdaptorChannel class declares methods for reading basic schema information from a relational
database. You can use this information to build up an EOModel programmatically, and then enhance that
model by defining extra relationships, flattening attributes, and so on. See the class description in the
EOAdaptorChannel class specification for information on reading basic schema information, and see the
other modeling classes’ specifications for information on creating additional attributes and relationships.

Method Types

Initializing an EOModel instance – initWithContentsOfFile:
– initWithTableOfContentsPropertyList:path:

Saving an EOModel – encodeTableOfContentsIntoPropertyList:
– writeToFile:

Loading a model’s objects – loadAllModelObjects

Getting a model’s entities – addEntity:
– entities
– entityNamed:
– entityNames

Removing entities – removeEntity:
– removeEntityAndReferences:

Getting the name – beautifyNames
– name
– path
– setName:

Checking references – referencesToProperty:
– externalModelsReferenced

Getting an object’s entity – entityForObject:

Setting the adaptor bundle – adaptorName
– setAdaptorName:

Setting the connection dictionary – connectionDictionary
– setConnectionDictionary:

3

Setting the user dictionary – userInfo
– setUserInfo:

Working with stored procedures – addStoredProcedure:
– removeStoredProcedure:
– storedProcedureNames
– storedProcedureNamed:
– storedProcedures

Getting the model’s group – modelGroup
– setModelGroup:

Instance Methods

adaptorName
– (NSString *)adaptorName

Returns the name of the adaptor for the receiver. This name can be used with EOAdaptor’s
adaptorWithName: class method to create an adaptor.

addEntity:
– (void)addEntity: (EOEntity *)anEntity

Adds anEntity to the receiver. Raises an NSInvalidArgumentException if an error occurs (for example, if
anEntity doesn’t exist, if the entity belongs to another model, or if an entity of the same name is already in
the receiver).

See also: – entities, – removeEntityNamed:

addStoredProcedure:
– (void)addStoredProcedure:(EOStoredProcedure *)storedProcedure

Adds storedProcedure to the receiver. Raises an NSInvalidArgumentException if an error occurs (for
example, if a stored procedure of the same name is already in the receiver).

See also: – removeStoredProcedures, –storedProcedures

4

beautifyNames
– (void)beautifyNames

Makes all of the receiver’s named components conform to a standard convention. Names that conform to
this style are all lower-case except for the initial letter of each embedded word other than the first, which is
upper case. Thus, “NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”.

See also: – name

connectionDictionary
– (NSDictionary *)connectionDictionary

Returns a dictionary containing information used to connect to the database server. The connection
dictionary is the place to specify default login information for applications using the model. See the
EOAdaptor class specification for more information.

encodeTableOfContentsIntoPropertyList:
– (void)encodeTableOfContentsIntoPropertyList:(NSMutableDictionary *)propertyList

Encodes the receiver into a propertyList representation. This method is used to get an ASCII representation
of an EOModel in property list format.

See also: – initWithTableOfContentsPropertyList:path:

entities
– (NSArray *)entities

Returns an array containing the receiver’s entities. Note that this method loads every entity, and thus defeats
the benefits of incremental model loading.

See also: – entityNames

entityForObject:
– (EOEntity *)entityForObject: (id)anEO

Returns the entity associated with anEO, whether anEO is an instance of an enterprise object class, an
instance of EOGenericRecord, or a fault object (see the EOFault class specification for information on
faults). Returns nil if anEO has no associated entity.

5

entityNamed:
– (EOEntity *)entityNamed:(NSString *)name

Returns the entity named name, or nil if no such entity exists. Posts an EOEntityLoadedNotification when
the entity is loaded.

See also: – entityNames

entityNames
– (NSArray *)entityNames

Returns an array containing the names of the EOModel’s entities.

See also: – entities

externalModelsReferenced
– (NSArray *)externalModelsReferenced

Returns an array containing those models that are referenced by this model.

See also: – referencesToProperty:

initWithContentsOfFile:
– initWithContentsOfFile: (NSString *)path

Initializes a newly-allocated EOModel by reading the contents of the file named path as a model archive.
The file specified by path can either be an old-style (.eomodel) or new-style (.eomodeld) model file. Sets
the EOModel’s name and path. initWithContentsOfFile: raises an NSInvalidArgumentException if for any
reason it cannot initialize the model from the file specified by path.

See also: – name, –path

initWithTableOfContentsPropertyList:path:
– initWithTableOfContentsPropertyList: (NSDictionary *)tableOfContents path:(NSString *)path

Uses tableOfContents (which is the property list representation of an EOModel) with the file name path to
initialize the receiver.

See also: – encodeTableOfContentsIntoPropertyList:

6

loadAllModelObjects
– (void)loadAllModelObjects

Loads any of the receiver’s entities, stored procedures, attributes, and relationships that have not yet been
loaded.

See also: – attributes (EOEntity), –entities, – relationships (EOEntity), –storedProcedures

modelGroup
– (EOModelGroup *)modelGroup

Returns the model group of which the receiver is a part.

See also: – setModelGroup:

name
– (NSString *)name

Returns the receiver’s name.

See also: – path

path
– (NSString *)path

Returns the name of the EOModel file used to create the receiver, or nil if the model wasn't initialized from
a file.

See also: – name

referencesToProperty:
– (NSArray *)referencesToProperty:(id)aProperty

Returns an array of all properties in the receiver that reference aProperty, whether derived attributes,
relationships that reference aProperty, and so on. Returns nil if aProperty isn’t referenced by any of the
properties in the model.

See also: – externalModelsReferenced

7

removeEntity:
– (void)removeEntity:(EOEntity *)name

Removes the entity with the given name without performing any referential integrity checking.

See also: – addEntity:, – removeEntityAndReferences:

removeEntityAndReferences:
– (void)removeEntityAndReferences:(EOEntity *)entity

Removes entity and any attributes or relationships in other entities that reference entity.

See also: – removeEntity:, –addEntity:

removeStoredProcedure:
– (void)removeStoredProcedure:(EOStoredProcedure *)storedProcedure

Removes the specified stored procedure without checking to see if an entity uses it.

See also: – addStoredProcedure:, storedProcedures

setAdaptorName:
– (void)setAdaptorName:(NSString *)adaptorName

Sets the name of the receiver’s adaptor to adaptorName.

setConnectionDictionary:
– (void)setConnectionDictionary:(NSDictionary *)connectionDictionary

Sets the dictionary containing information used to connect to the database to connectionDictionary. See the
EOAdaptor class specification for more information on working with setConnectionDictionary:.

setModelGroup:
– (void)setModelGroup:(EOModelGroup *)group

Sets the model group of which the receiver should be a part.

8

Note: You shouldn’t change an EOModel’s model group after it has been bound to other models in its
group.

See also: – modelGroup

setName:
– (void)setName:(NSString *)name

Sets the name of the receiver to name.

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types (that is, NSDictionaries, NSStrings, NSArrays, and NSDatas).

storedProcedureNamed:
– (EOStoredProcedure *)storedProcedureNamed:(NSString *)name

Returns the stored procedure named name, or nil if the model doesn’t contain a stored procedure with the
given name.

See also: – storedProcedureNames, –storedProcedures

storedProcedureNames
– (NSArray *)storedProcedureNames

Returns an array containing the names of all of the model’s stored procedures.

See also: – storedProcedureNamed:, –storedProcedures

storedProcedures
– (NSArray *)storedProcedures

Returns an array containing all of the model’s stored procedures. Note that this method loads each of the
model’s stored procedures, thus defeating the benefits of incremental model loading.

See also: – storedProcedureNames, –storedProcedureNamed:

9

userInfo
– (NSDictionary *)userInfo

Returns a dictionary of user data. You can use this to store any auxiliary information it needs.

writeToFile:
– (void)writeToFile: (NSString *)path

Saves the receiver in the directory specified by path. If the file specified by path already exists, a backup
copy is first created (using path with a “~” character appended). As a side-effect, this method resets the
current path.

writeToFile: raises an NSInvalidArgumentException on any error which prevents the file from being
written.

See also: – path

Notifications

EOModel declares and posts the following notification.

EOEntityLoadedNotification

Posted after an EOEntity is loaded into memory.

The notification contains:

Notification Object The entity that was loaded.

