
1

EOEntity

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOEntity.h

Class Description

An EOEntity describes a table, file or collection in a database, and associates a name internal to the
Framework with an external name—by which the table is known to the database. An EOEntity maintains a
group of attributes and relationships, which are collectively called properties. These are represented by the
EOAttribute and EORelationship classes, respectively; see their specifications for more information.

You usually define entities in your EOModel with the EOModeler application, which is documented in the
Enterprise Objects Framework Developer’s Guide. EOEntity objects are primarily used by the Enterprise
Objects Framework for mapping tables in the database to enterprise objects; your code will probably make
limited use of them unless you're specifically working with models.

An EOEntity is associated with a specific class whose instances are used to represent records (rows) from
the database in applications using layers at or above the database layer of the Enterprise Objects
Framework. If an EOEntity doesn’t have a specific class associated with it, instances of EOGenericRecord
are created.

An EOEntity may be marked as read-only, in which case any changes to rows or objects for that entity made
by the database level objects are denied.

You can define an external query for an EOEntity to be used when a selection is attempted with an
unrestricted qualifier (one that would select all rows in the entity’s table). An external query is sent unaltered
to the database server and so can use database-specific features such as stored procedures; external queries
are thus useful for hiding records or invoking database-specific features. You can also assign stored
procedures to be invoked upon particular database operations through the use of EOEntity’s
setStoredProcedure:forOperation: method.

Like the other major modeling classes, EOEntity provides a user dictionary for your application to store any
application-specific information related to the entity.

Class Properties, Primary Keys, and Locking

An EOEntity’s EOAttributes are usually intended to have their values fetched from the database and
presented to enterprise object. However, there may be times when you want to define an attribute that your
enterprise objects never see; for example, you may have a special attribute used only for locking records

2

during updates that means nothing to your objects. To allow this masking of attributes, the EOEntity can
define an EOAttribute as a class property, meaning that an EODatabaseChannel hands enterprise objects
the value for the attribute whenever data is fetched for the object. (Note that “class property” here has a
more specific meaning than the usual definition of “any quality or characteristic of a class.”) If an
EOAttribute isn’t defined as a class property, the database channel never hands its values to enterprise
objects. You use the setClassProperties: method to establish the set of attributes used as class properties.

In addition to being defined as a class property, an EOEntity can define an EOAttribute as being part of its
primary key. The values for the attributes composing a primary key must uniquely identify their enterprise
object (and hence a row in the entity’s table). You define an EOEntity’s primary key attributes with the
setPrimaryKeyAttributes: method. Note that a primary key is usually not a class property.

Finally, to support locking of records during updating, an EOEntity defines a set of attributes to be recorded
in snapshots any time an enterprise object is fetched. These attributes are compared when an object is
updated according to the descriptions in the EODatabaseContext class specification. You establish the set
of attributes used for locking with the setAttributesUsedForLocking: method. Note that an attribute used
for locking doesn’t have to be a class property; it will be recorded in the snapshot, but the enterprise object
won’t see it.

EOEntity provides methods for checking whether an attribute can be used in a primary key or for locking.
Only attributes corresponding directly to a column in the database server’s table are eligible for these
purposes—flattened and derived attributes can’t be used as a primary key or for locking. The methods for
checking are isValidPrimaryKeyAttribute: and isValidAttributeUsedForLocking: . You can also check
whether a given property can be defined as a class property with the isValidClassProperty: method.

Creating an Entity

An EOEntity requires at least the following to be usable:

• A name
• The name of a table in the database (the external name)
• The name of an enterprise object class
• A set of attributes to be used as the primary key

Note that if an entity has no enterprise object class name, the database-level objects use EOGenericRecord.
This code excerpt gives an example of creating an EOEntity and adding it to an EOModel:

EOModel *myModel; /* Assume this exists. */

NSArray *keyAttributes; /* Assume this exists. */

EOEntity *employeeEntity;

BOOL result;

employeeEntity = [[[EOEntity alloc] init] autorelease];

[employeeEntity setName:@"employee"];

[employeeEntity setExternalName:@"EMPLOYEE"];

[employeeEntity setClassName:@"Employee"];

3

/* Create at least the primary key attributes. */

result = [employeeEntity setPrimaryKeyAttributes:keyAttributes];

/* Add the entity to the model. */

[myModel addEntity:employeeEntity];

Method Types

Setting the name – beautifyName
– name
– setName:
– validateName:

Getting the model – model

Getting a qualifier – isQualifierForPrimaryKey:
– qualifierForPrimaryKey:
– restrictingQualifier
– setRestrictingQualifier:

Accessing attributes – addAttribute:
– anyAttributeNamed:
– attributeNamed:
– attributes
– removeAttribute:

Accessing relationships – addRelationship:
– anyRelationshipNamed:
– relationships
– relationshipNamed:
– removeRelationship:

Checking referential integrity – externalModelsReferenced
– referencesProperty:

Getting primary keys – globalIDForRow:
– isPrimaryKeyValidInObject:
– primaryKeyForGlobalID:
– primaryKeyForRow:

Getting primary key attributes – isValidPrimaryKeyAttribute:
– primaryKeyAttributeNames
– primaryKeyAttributes
– primaryKeyRootName
– setPrimaryKeyAttributes:

4

Setting class properties – classProperties
– classPropertyNames
– setClassProperties:

Checking whether a property is valid– isValidClassProperty:

Setting the enterprise object class – classDescriptionForInstances
– className
– setClassName:

Setting locking attributes – attributesUsedForLocking
– isValidAttributeUsedForLocking:
– setAttributesUsedForLocking:

Setting external information – externalName
– externalQuery
– setExternalName:
– setExternalQuery:

Setting status – isAbstractEntity
– isReadOnly
– setIsAbstractEntity:
– setReadOnly:

Setting the user dictionary – setUserInfo:
– userInfo

Working with stored procedures – setStoredProcedure:forOperation:
– storedProcedureForOperation:

Working with entity inheritance hierarchies
– addSubEntity:
– parentEntity
– removeSubEntity:
– subEntities

Specifying fault behavior – maxNumberOfInstancesToBatchFetch
– setMaxNumberOfInstancesToBatchFetch:

Caching objects – setCachesObjects:
– cachesObjects

5

Instance Methods

addAttribute:
– (void)addAttribute: (EOAttribute *)anAttribute

Adds anAttribute to the receiver. Raises an NSInvalidArgumentException if anAttribute’s name is already
in use by another attribute or relationship. Sets anAttribute’s entity to self.

See also: – removeAttribute: , –attributeNamed:

addRelationship:
– (void)addRelationship:(EORelationship *)aRelationship

Adds aRelationship to the receiver. Raises an NSInvalidArgumentException if aRelationship’s name is
already in use by another attribute or relationship. Sets aRelationship’s entity to self.

See also: – removeRelationship:, – relationshipNamed:

addSubEntity:
– (void)addSubEntity:(EOEntity *)child

Causes the child entity to “inherit” from the receiver. This is the first step in setting up an inheritance
hierarchy between entities.

See also: – subEntities

anyAttributeNamed:
– (EOAttribute *)anyAttributeNamed:(NSString *)attributeName

Returns the user-created attribute with the given name. If no such attribute exists, this method looks through
the “hidden” attributes created by the Enterprise Objects Framework for one with the given name. If none
is found, nil is returned. Hidden attributes are used for such things as primary keys on target entities of
flattened attributes.

See also: – attributeNamed:, –attributes

6

anyRelationshipNamed:
– (EORelationship *)anyRelationshipNamed:(NSString *)relationshipName

Returns the user-created relationship with the given name. If none exists, this method looks through the
“hidden” relationships created by the Enterprise Objects Framework for one with the given name. If none
is found, nil is returned.

See also: – relationshipNamed:

attributeNamed:
– (EOAttribute *)attributeNamed:(NSString *)attributeName

Returns the attribute named attributeName, or nil if no such attribute exists.

See also: – anyAttributeNamed: , –attributes, – relationshipNamed:

attributes
– (NSArray *)attributes

Returns all of the receiver’s attributes, or nil if the receiver has none.

See also: – anyAttributeNamed: , –attributeNamed:

attributesUsedForLocking
– (NSArray *)attributesUsedForLocking

Returns an array containing those properties whose values must match a snapshot any time a row is updated.

Attributes used for locking are those whose values are compared when a database-level object performs an
update. When the database-level classes fetch an enterprise object, they cache these attributes’ values in a
snapshot. Later, when the enterprise object is updated, the values of these attributes in the object are
checked with those in the snapshot—if they differ, the update fails. See the EODatabaseContext class
specification for more information.

7

beautifyName
– (void)beautifyName

Makes the receiver’s name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”.

See also: – setName:, –validateName:

cachesObjects
– (BOOL)cachesObjects

Returns YES if all of the objects from the receiver are to be cached in memory and queries are to be
evaluated in-memory using this cache rather than in the database. This method should only be used for fairly
small tables of read-only objects, since the first access to the receiver will trigger fetching the entire table.
You should generally restrict this method to read-only entities to avoid cached data getting out of sync with
database data. Also, you shouldn’t use this method if your application will be making queries against the
entity that can’t be evaluated in memory.

See also: – setCachesObjects:

classDescriptionForInstances
– (EOClassDescription *)classDescriptionForInstances

Returns the EOClassDescription associated with the receiver. The EOClassDescription class provides a
mechanism for extending classes by giving them access to the metadata contained in an EOModel (or
another external source of information). In an application, EOClassDescriptions are registered on demand
for the EOEntity on which an enterprise object is based. For more information, see the class specifications
for EOClassDescription and EOEntityClassDescription.

className
– (NSString *)className

Returns the name of the enterprise object class associated with the receiver. When a row is fetched for the
receiver by a database-level object, it’s returned as an instance of this class. This class might not be present
in the run-time system, and in fact your application may have to load it on demand. If your application
doesn't load a class, EOGenericRecord is used.

An enterprise object class other than EOGenericRecord can be mapped to only one entity.

See also: – databaseChannel:failedToLookupClassNamed: (EODatabaseChannel, “Methods
Implemented by the Delegate”)

8

classProperties
– (NSArray *)classProperties

Returns an array containing the properties that are bound to the receiver’s class (so that instances of the class
will be passed values corresponding to those properties). This is a subset of the receiver’s attributes and
relationships.

See also: – classPropertyNames

classPropertyNames
– (NSArray *)classPropertyNames

Returns an array containing the names of those properties that are bound to the receiver’s class (so that
instances of the class will be passed values corresponding to those properties). This is a subset of the
receiver’s attributes and relationships.

See also: – classProperties.

externalModelsReferenced
– (NSArray *)externalModelsReferenced

Examines each of the receiver’s relationships and returns a list of all external models referenced by the
receiver.

See also: – referencesProperty:

externalName
– (NSString *)externalName

Returns the name of the receiver as understood by the database server.

externalQuery
– (NSString *)externalQuery

Returns a query statement that’s used by an EOAdaptorChannel to select rows for the receiver when a
qualifier is empty, or nil if the receiver has no external query. An empty qualifier is one that specifies only
the entity, and would thus fetch all enterprise objects for that entity.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the

9

EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

See also: – isEmpty (EOQualifier), –setExternalQuery:,
– selectAttributes:describedByQualifier:fetchOrder:lock: (EOAdaptorChannel)

globalIDForRow:
– (EOGlobalID *)globalIDForRow: (NSDictionary *)aRow

Constructs a global identifier from the specified row for the receiver.

See also: – primaryKeyForGlobalID:

isAbstractEntity
– (BOOL)isAbstractEntity

Returns YES to indicate that the receiver is abstract, NO otherwise. An abstract entity is one that has no
corresponding enterprise objects in your application. Abstract entities are used to model inheritance
relationships. For example, you might have a Person abstract entity that acts as the parent of Customer and
Employee entities. Customer and Employee would inherit certain characteristics from Person (such as name
and address attributes). However, though your application might have Customer and Employee objects, it
would never have a Person object.

See also: – setIsAbsractEntity:

isPrimaryKeyValidInObject:
– (BOOL)isPrimaryKeyValidInObject: (id)anObject

Returns YES if every key attribute is present in anObject and has a value that is not nil . Returns NO
otherwise. This method uses the key-value coding protocol so a dictionary may be substituted for anObject.

See also: – primaryKeyForRow:

isQualifierForPrimaryKey:
– (BOOL)isQualifierForPrimaryKey: (EOQualifier *)aQualifier

 Returns YES if aQualifier describes the primary key and nothing but the primary key, NO otherwise.

10

isReadOnly
– (BOOL)isReadOnly

Returns YES if the receiver can’t be modified, NO if it can. If an entity can’t be modified, then enterprise
objects fetched for that entity also can’t be modified (that is, inserted, deleted, or updated).

isValidAttributeUsedForLocking:
– (BOOL)isValidAttributeUsedForLocking: (EOAttribute *)anAttribute

Returns NO if anAttribute isn’t an EOAttribute, if the EOAttribute doesn’t belong to the receiver, or if
anAttribute is derived. Otherwise returns YES. An attribute that isn’t valid for locking will cause
setAttributesUsedForLocking: to fail.

See also: – attributesUsedForLocking

isValidClassProperty:
– (BOOL)isValidClassProperty:(id)aProperty

Returns NO if either aProperty isn’t an EOAttribute or EORelationship, or if aProperty doesn’t belong to
the receiver. Otherwise returns YES. Note that this method doesn’t tell you whether aProperty is a member
of the array returned by classProperties. In other words, unlike classProperties, classPropertyNames,
and setClassProperties:, this method doesn’t interact with the properties bound to the entity's enterprise
object class.

isValidPrimaryKeyAttribute:
– (BOOL)isValidPrimaryKeyAttribute: (EOAttribute *)anAttribute

Returns NO if anAttribute isn’t an EOAttribute, doesn’t belong to the receiver, or is derived. Otherwise
returns YES.

See also: – setPrimaryKeyAttributes:

maxNumberOfInstancesToBatchFetch
– (unsigned int)maxNumberOfInstancesToBatchFetch

Returns the maximum number of to-one EOFaults from the receiver to fire at one time. See the method
description for setMaxNumberOfInstancesToBatchFetch: for more explanation of what this means.

11

model
– (EOModel *)model

Returns the model that contains the receiver.

See also: – addEntity: (EOModel)

name
– (NSString *)name

Returns the receiver’s name.

parentEntity
– (EOEntity *)parentEntity

Returns the entity from which the receiver inherits.

See also: – subEntities

primaryKeyAttributeNames
– (NSArray *)primaryKeyAttributeNames

Returns an array containing the names of the attributes that make up the receiver’s primary key.

See also: – primaryKeyAttributes

primaryKeyAttributes
– (NSArray *)primaryKeyAttributes

Returns an array of those attributes that make up the receiver’s primary key.

See also: – primaryKeyAttributeNames

primaryKeyForGlobalID:
– (NSDictionary *)primaryKeyForGlobalID: (EOKeyGlobalID *)globalID

Returns the primary key for the object identified by globalID.

See also: – globalIDForRow:

12

primaryKeyForRow:
– (NSDictionary *)primaryKeyForRow: (NSDictionary *)aRow

Returns the primary key for aRow, or nil if the primary key can’t be computed. The primary key is an
NSDictionary whose keys are attribute names and whose values are values for those attributes.

See also: – primaryKeyForGlobalID:

primaryKeyRootName:
– (NSString *)primaryKeyRootName

Returns the external name (that is, the name as it’s understood by the database) of the receiver’s root entity.
If the receiver has no parent entity, returns the receiver’s external name.

See also: – externalName, –name, –parentEntity

qualifierForPrimaryKey:
– (EOQualifier *)qualifierForPrimaryKey: (NSDictionary *)aRow

Returns a qualifier for the receiver that can be used to fetch an instance of the receiver with the primary key
extracted from aRow.

See also: – isQualifierForPrimaryKey: , – restrictingQualifier

referencesProperty:
– (BOOL)referencesProperty:(id)aProperty

Returns YES if any of the receiver’s attributes or relationships reference aProperty, NO otherwise. A
property can be referenced by a flattened attribute or by a relationship. For example, suppose a model has
an Employee entity with a toDepartment relationship. If you flatten the department’s name attribute into
the Employee entity, creating a departmentName attribute, that flattened attribute references the
toDepartment relationship.

If an entity has any outstanding references to a property, you shouldn’t remove the property.

See also: – removeAttribute: , – removeRelationship:

13

relationshipNamed:
– (EORelationship *)relationshipNamed:(NSString *)name

Returns the relationship named name, or nil if the receiver has no such relationship.

See also: – anyRelationshipNamed:, –attributeNamed:, – relationships

relationships
– (NSArray *)relationships

Returns all of the receiver’s relationships, or nil if the receiver has none.

See also: – attributes

removeAttribute:
– (void)removeAttribute: (EOAttribute *)name

Removes the attribute named name if it exists. You should always use referencesProperty: to check that an
attribute isn’t referenced by another property before removing it.

See also: – addAttribute: , –attributes

removeRelationship:
– (void)removeRelationship:(EORelationship *)name

Removes the relationship named name if it exists. You should always use referencesProperty: to check that
a relationship isn’t referenced by another property before removing it.

See also: – addRelationship:, – relationships

removeSubEntity:
– (void)removeSubEntity:(EOEntity *)child

Removes child from the receiver’s list of sub-entities.

See also: – subEntities

14

restrictingQualifier
– (EOQualifier *)restrictingQualifier

Returns the qualifier used to restrict all queries made against the receiver. Restricting qualifiers are useful
when there is not a one-to-one mapping between an entity and a particular database table, or when you
always want to filter the data that’s returned for a particular entity.

For example, if you’re using the “one table” inheritance model in which parent and child data is contained
in the same table, you’d use a restricting qualifier to fetch objects of the appropriate type. To give a
non-inheritance example, for an Employees table you might create a “Sales” entity that has a restricting
qualifier that only fetches employees who are in the Sales department.

See also: – setRestrictingQualifier:

setAttributesUsedForLocking:
– (BOOL)setAttributesUsedForLocking:(NSArray *)attributes

Sets attributes as the attributes used when an EODatabaseChannel locks enterprise objects for updates.
Returns NO and doesn’t set the attributes used for locking if any of the attributes in attributes responds NO
to isValidAttributeUsedForLocking: ; returns YES otherwise. See the EODatabase, EODatabaseContext,
and EODatabaseChannel class specifications for information on locking.

setCachesObjects:
– (void)setCachesObjects:(BOOL)flag

Sets according to flag whether all of the receiver’s objects are cached the first time the associated table is
queried.

See also: – cachesObjects

setClassName:
– (void)setClassName:(NSString *)name

Sets the name of the class associated with the receiver to name. This class need not be present in the
run-time system when this message is sent. When an EODatabaseChannel fetches objects for the receiver,
they’re created as instances of this class. Your application may have to load the class on demand if it isn’t
present in the run-time system; if it doesn’t load the class, EOGenericRecord will be used.

Note: If you set the class name to nil , the className method returns “EOGenericRecord”.

15

An enterprise object class other than EOGenericRecord can be mapped to only one entity.

See also: – className, –databaseChannel:failedToLookupClassNamed:(EODatabaseChannel,
“Methods Implemented by the Delegate”)

setClassProperties:
– (BOOL)setClassProperties:(NSArray *)properties

Sets the receiver’s class properties to the EOAttributes and EORelationships in properties and returns YES,
unless the receiver responds NO to isValidClassProperty: for any of the objects in the array. In this event,
the receiver’s class properties aren’t changed and NO is returned.

setExternalName:
– (void)setExternalName:(NSString *)name

Sets the name of the receiver as understood by the database server to name. For example, though your
application may know the entity as “JobTitle” the database may require a form such as “JOB_TTL”. An
adaptor uses the external name to communicate with the database; your application should never need to
use the external name.

setExternalQuery:
– (void)setExternalQuery:(NSString *)aQuery

Sets the query statement used for selecting rows from the receiver when there is no qualifier.

External queries are useful for hiding records or invoking database-specific features such as stored
procedures when an application attempts to select all records for an entity. You can also use the
EOStoredProcedure class to work with stored procedures; for more information see the EOStoredProcedure
class specification.

An external query is sent unaltered to the database server, and so must contain the external (column) names
instead of the names of EOAttributes. However, to work properly with the adaptor the external query must
use the columns in alphabetical order by their corresponding EOAttributes’ names.

See also: – columnName (EOAttribute), –isEmpty (EOQualifier), –externalQuery,
– selectAttributes:describedByQualifier:fetchOrder:lock: (EOAdaptorChannel)

16

setIsAbstractEntity:
– (void)setIsAbstractEntity: (BOOL)flag

Sets according to flag whether the receiver is an abstract entity. For more discussion of abstract entities, see
the method description for isAbstractEntity .

setMaxNumberOfInstancesToBatchFetch:
– (void)setMaxNumberOfInstancesToBatchFetch:(unsigned int)size

Sets the maximum number of EOFaults from the receiver to trigger at one time. By default, only one object
is fetched from the database when you trigger an EOFault. You can optionally use this method to set to size
the number of EOFaults of the same entity should be fetched from the database along with the first one.
Using this technique helps to optimize performance by taking advantage of round trips to the database.

See also: – maxNumberOfInstancesToBatchFetch

setName:
– (void)setName:(NSString *)name

Sets the receiver’s name to name. Raises an NSInvalidArgumentException if name is already in use by
another entity in the same EOModel or if name is not a valid entity name.

See also: – beautifyName:, –validateName:

setPrimaryKeyAttributes:
– (BOOL)setPrimaryKeyAttributes: (NSArray *)keys

If the receiver responds NO to isValidPrimaryKeyAttribute: for any of the objects in the array, returns NO.
Otherwise, sets the primary key attributes to the attributes in keys and returns YES.

You should exercise care in choosing primary key attributes. Floating-point numbers, for example, can’t be
reliably compared for equality, and are thus unsuitable for use in primary keys. Integer and string types are
the safest choice for primary keys. NSDecimalNumbers will work, but they’ll entail more overhead than
integers.

See also: – isValidPrimaryKeyAttribute:

17

setReadOnly:
– (void)setReadOnly:(BOOL)flag

Sets according to flag whether the database rows for the receiver can be modified by the database level
objects.

setRestrictingQualifier:
– (void)setRestrictingQualifier:(EOQualifier *)qualifier

Sets the qualifier used to restrict all queries made against the receiver. The restricting qualifier can be used
to map an entity to a subset of the rows in a table. For more discussion of this subject, see the description
for restrictingQualifier .

setStoredProcedure:forOperation:
– (void)setStoredProcedure:(EOStoredProcedure *)storedProcedure

forOperation: (NSString *)operation

Sets storedProcedure for operation. operation can be one of the following:

EOFetchAllProcedureOperation
EOFetchWithPrimaryKeyProcedureOperation
EOInsertProcedureOperation
EODeleteProcedureOperation
EONextPrimaryKeyProcedureOperation

This information is used when changes from the object graph have been transformed into
EODatabaseOperations that are being used to construct EOAdaptorOperations. At this point, Enterprise
Objects Framework checks the entities associated with the changed objects to see if the entities have any
stored procedures defined for the operation being performed.

See also: – storedProcedureForOperation:

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types (that is, NSDictionaries, NSStrings, NSArrays, and NSDatas).

18

storedProcedureForOperation:
– (EOStoredProcedure *)storedProcedureForOperation:(NSString *)operation

Returns the stored procedure for the specified operation, if one has been set. Otherwise, returns nil .

See also: – parameterDirection: (EOEntity), –storedProcedure (EOEntity)

subEntities
– (NSArray *)subEntities

Returns a list of those entities which inherit from the receiver.

See also: – parentEntity

userInfo
– (NSDictionary *)userInfo

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

validateName:
– (NSException *)validateName:(NSString *)name

Validates name and returns nil if it is a valid name, or an exception if it isn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a character other
than a letter, a number, “@”, “#”, “_”, or “$”.

setName: uses this method to validate its argument.

