
1

EOEntityClassDescription

Inherits From: EOClassDescription : NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOEntity.h

Class Description

EOEntityClassDescription is the subclass of EOClassDescription provided by the Enterprise Objects
Framework access layer. The EOClassDescription class provides a mechanism for extending classes by
giving them access to metadata not available in the Objective-C run-time system.
EOEntityClassDescription extends the behavior of enterprise objects by deriving information about them
(such as NULL constraints and referential integrity rules) from an associated EOModel file.

In the typical scenario in which an enterprise object has a corresponding model file, the first time a
particular operation is performed on a class (such as validating a value), an EOClassDescriptionNeeded
notification is broadcast. When an EOModel object receives this notification it registers the metadata (class
description) for the EOEntity on which the enterprise object is based. This class description is used from
that point on.

For a more detailed discussion of this subject, see the EOClassDescription class specification.

Method Types

Initializing an EOEntityClassDescription
– initWithEntity:

Returning an EOEntityClassDescription’s entity
– entity

Allocating new object instances – createInstanceWithEditingContext:globalID:zone:

2

Returning information from the EOEntityClassDescription
– entityName
– attributeKeys
– classDescriptionForDestinationKey:
– toManyRelationshipKeys
– toOneRelationshipKeys
– inverseForRelationshipKey:
– ownsDestinationObjectsForRelationshipKey:
– deleteRuleForRelationshipKey:

Performing validation – validateObjectForDelete:
– validateObjectForSave:
– validateValue:forKey:

Handling newly inserted objects – awakeObject:fromInsertionInEditingContext:

Instance Methods

attributeKeys
– (NSArray *)attributeKeys

Overrides EOClassDescription’s attributeKeys method to return all of the EOAttributes that are class
properties of the receiver’s EOEntity.

See also: – entityName, – toOneRelationshipKeys, – toManyRelationshipKeys

awakeObject:fromInsertionInEditingContext:
– (void)awakeObject:(id)object

fromInsertionInEditingContext: (EOEditingContext *)anEditingContext

Overrides EOClassDescription’s awakeObject:fromInsertionInEditingContext: method to propagate
inserts for the newly inserted object in anEditingContext. More specifically, if object has a relationship (or
relationships) that propagates the object’s primary key and if no object yet exists at the destination of that
relationship, creates the new object at the destination of the relationship.

classDescriptionForDestinationKey:
– (EOClassDescription *)classDescriptionForDestinationKey:(NSString *)detailKey

Overrides EOClassDescription’s classDescriptionForDestinationKey: method to return the
EOClassDescription for objects at the destination of the EORelationship identified by detailKey. For
example, the statement:

3

[project classDescriptionForDestinationKey:@"leader"] ;

might return the class description for the Employee entity.

createInstanceWithEditingContext:globalID:zone:
– (id)createInstanceWithEditingContext:(EOEditingContext *)anEditingContext

globalID: (EOGlobalID *)globalID zone:(NSZone *)zone

Overrides EOClassDescription’s createInstanceWithEditingContext:globalID:zone: method to allocate
an object of the appropriate class in anEditingContext, with globalID, in zone. Enterprise Objects
Framework uses this method to allocate new instances of objects when fetching existing enterprise objects
or inserting new ones in an EODisplayGroup.

deleteRuleForRelationshipKey:
– (EODeleteRule)deleteRuleForRelationshipKey:(NSString *)relationshipKey

Overrides EOClassDescription’s deleteRuleForRelationshipKey: method to return the EODeleteRule for
the EORelationship specified by relationshipKey. This EORelationship is defined for an EOEntity in the
receiver. The returned EODeleteRule is one of the following:

EODeleteRuleNullify
EODeleteRuleCascade
EODeleteRuleDeny

For example, suppose you have a department with multiple employees. When a user tries to delete the
department, your application could:

• Delete the department and remove any back pointers from the employee to the department (nullify)
• Delete the department and all of the employees it contains (cascade)
• Refuse the deletion if the department contains employees (deny)

entity
– (EOEntity *)entity

Returns the entity associated with the receiver.

4

entityName
– (NSString *)entityName

Overrides EOClassDescription’s entityName method to return the name of the receiver’s EOEntity.

See also: – attributeKeys, – toOneRelationshipKeys, – toManyRelationshipKeys

initWithEntity:
– initWithEntity: (EOEntity *)anEntity

Initializes a newly allocated EOEntityClassDescription with anEntity. Returns self.

inverseForRelationshipKey:
– (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey

Overrides EOClassDescription’s inverseForRelationshipKey: method to return the name of the
EORelationship pointing back at the receiver from the destination of the EORelationship specified by
relationshipKey. This method works by returning the name of the EORelationship returned by the
corresponding EORelationship’s inverseRelationship method.

For example, suppose an Employee object has a relationship called department to a Department object,
and Department has a relationship called employees back to Employee. The statement

[employee inverseForRelationshipKey:@"department"] ;

returns the string “employees”.

ownsDestinationObjectsForRelationshipKey:
– (BOOL)ownsDestinationObjectsForRelationshipKey:(NSString *)relationshipKey

Overrides EOClassDescription’s ownsDestinationObjectsForRelationshipKey: method to return YES or
NO to indicate whether the objects at the destination of the EORelationship specified by relationshipKey
should be deleted if they are removed from the relationship (and not transferred to the corresponding
relationship of another object). For example, an Invoice object owns its line items. If a LineItem object is
removed from an Invoice it should be deleted since it can’t exist outside of an Invoice.

This method works by returning the result of the EORelationship’s ownsDestination method.

5

toManyRelationshipKeys
– (NSArray *)toManyRelationshipKeys

Overrides EOClassDescription’s toManyRelationshipKeys method to return all of the to-many
EORelationships that are marked as class properties in the receiver’s EOEntity.

See also: – entityName, – toOneRelationshipKeys, – attributeKeys

toOneRelationshipKeys
– (NSArray *)toOneRelationshipKeys

Overrides EOClassDescription’s toOneRelationshipKeys method to return all of the to-one
EORelationships that are marked as class properties in the receiver’s EOEntity.

See also: – entityName, – toManyRelationshipKeys, – attributeKeys

validateObjectForDelete:
– (NSException *)validateObjectForDelete:(id)object

Overrides EOClassDescription’s validateObjectForDelete: method to determine whether it’s permissible
to delete the object. Returns nil if the delete operation should proceed, or an unevaluated exception
containing a user-presentable (localized) error message if not.

validateObjectForSave:
– (NSException *)validateObjectForSave:(id)object

Overrides EOClassDescription’s validateObjectForSave: method to determine whether the values being
saved for the object are acceptable. Returns nil if the values are acceptable and the save operation should
therefore proceed, or an unevaluated exception containing a user-presentable (localized) error message if
not.

validateValue:forKey:
– (NSException *)validateValue:(id *)valueP forKey: (NSString *)key

Overrides EOClassDescription’s validateValue:forKey: method to validate the value associated with key,
and pointed to by valueP. Looks up the corresponding EORelationship or EOAttribute in the EOEntity for
the receiver and forwards the validation request to it. For example, for an EOAttribute this method checks
that the data type for the value matches the type in the EOModel and that width and “allows NULL”
constraints have not been violated.

6

Returns nil if the value is acceptable, or an unevaluated exception containing a user-presentable (localized)
error message if not.

