
1

EOFaultHandler

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOControl/EOFault.h

Class Description

EOFaultHandler is the abstract class defining the mechanism that helps an EOFault to fire. Subclasses of
EOFaultHandler perform the specific steps necessary to get data for the EOFault and fire it. The Access
layer, for example, uses private subclasses to fetch data using an EODatabaseContext. Most of
EOFaultHandler’s methods are properly defined; you need only override completeInitializationOfObject:
to provide appropriate behavior. In addition, however, you can optionally implement faultWillFire: to
prepare for conversion, and shouldPerformInvocation: to intercept particular messages sent to the EOFault
without causing it to fire.

You create an EOFaultHandler using the standard alloc and init methods, possibly using a more specific
init method with your subclass. To create an EOFault, you invoke EOFault’s
makeObjectIntoFault:withHandler: class method with the object to turn into an EOFault and the
EOFaultHandler. An EOFaultHandler belongs exclusively to a single EOFault, and shouldn’t be shared or
used by any other object.

Firing an EOFault

When an EOFault receives a message that requires it to fire, it sends a completeInitializationOfObject:
method to its EOFaultHandler. This method is responsible for invoking EOFault’s clearFault: class method
to revert the EOFault to its original state, and then do whatever is necessary to complete initialization of the
object. Doing so typically involves fetching data from an external repository and passing it to the object.

As a trivial example, consider a subclass called FileFaultHandler, that simply stores a filename whose
contents it reads from disk. Its initialization and completeInitializationOfObject: methods might look like
these:

- (id)initWithFile:(NSString *)path

{

 self = [super init];

 filename = [path copy];

 return self;

}

2

- (void)completeInitializationOfObject:(id)anObject

{

 NSString *fileContents;

 [EOFault clearFault:anObject];

 // This releases self; be sure to retain if needed!

 fileContents = [NSString stringWithContentsOfFile:filename];

 [anObject takeValue:fileContents forKey:@"fileContents"];

 return;

}

initWithFile: just stores the path of the file to read in the instance variable filename.
completeInitializationOfObject: invokes EOFault’s clearFault: method, which reverts the EOFault into
its original state (and also releases the fault handler, so references to self after this are illegal). It then gets
the contents of the file it was created with and passes them to the reverted object. Note that this
implementation doesn’t assume the class of the cleared EOFault, instead using the generic
takeValue:forKey: method to assign the file contents to it.

Method Types

Setting the target class and extra data– setTargetClass:extraData:
– targetClass
– extraData

Reference counting – incrementExtraRefCount
– decrementExtraRefCountWasZero
– extraRefCount

Getting the original class – classForFault:

Firing a fault – completeInitializationOfObject:
– faultWillFire:
– shouldPerformInvocation:

Getting a description – descriptionForObject:

Checking class information – isKindOfClass:forFault:
– isMemberOfClass:forFault:
– conformsToProtocol:forFault:
– methodSignatureForSelector:forFault:
– respondsToSelector:forFault:

3

Instance Methods

classForFault:
– (Class)classForFault:(id)aFault

Returns the target class of the receiver’s EOFault, which must be passed as aFault in case the receiver needs
to fire it (EOFaultHandlers don’t store back pointers to their EOFaults). For example, to support entity
inheritance, the Access layer fires EOFaults for entities with subentities to confirm their precise class
membership.

See also: – completeInitializationOfObject:

completeInitializationOfObject:
– (void)completeInitializationOfObject: (id)aFault

Implemented by subclasses to revert aFault to its original state and complete its initialization in whatever
means is appropriate to the subclass. For example, the Access layer subclasses of EOFaultHandler fetch
data from the database and pass it to the object. This method is invoked automatically by an EOFault when
it’s sent a message that it can’t handle without reverting to its original class. EOFaultHandler’s
implementation merely raises an exception.

conformsToProtocol:forFault:
– (BOOL)conformsToProtocol:(Protocol *)aProtocol forFault: (id)aFault

Returns YES if the target class of the receiver’s EOFault conforms to aProtocol. This EOFault must be
passed as aFault in case the receiver needs to fire it (EOFaultHandlers don’t store back pointers to their
EOFaults). For example, to support entity inheritance, the Access layer fires EOFaults for entities with
subentities to confirm their precise class membership.

See also: – completeInitializationOfObject:

decrementExtraRefCountWasZero
– (BOOL)decrementExtraRefCountWasZero

Used by EOFaultHandler’s internal reference counting mechanism, this method functions as the
Foundation function NSDecrementExtraRefCountWasZero() for the receiver’s EOFault.

4

descriptionForObject:
– (NSString *)descriptionForObject:(id)aFault

Returns a string naming the original class of the receiver’s EOFault and giving aFault’s id, and also noting
that it’s a fault; for example: “<Employee (Fault 0x3a07)>”. (The EOFault must be passed as aFault
because EOFaultHandlers don’t store back pointers to their EOFaults.)

extraData
– (void *)extraData

Returns the bytes replaced by the receiver’s id in the original object’s state, as a pointer to void. When the
receiver’s EOFault is reverted to its original state, both its isa pointer and this data are replaced.

extraRefCount
– (unsigned int)extraRefCount

Used by EOFaultHandler’s internal reference counting mechanism, this method functions as the
Foundation function NSExtraRefCount() for the receiver’s EOFault.

faultWillFire:
– (void)faultWillFire: (id)aFault

Invoked from EOFault’s clearFault: method to inform the receiver that aFault is about to be reverted to its
original state. EOFaultHandler’s implementation does nothing.

incrementExtraRefCount
– (void)incrementExtraRefCount

Used by EOFaultHandler’s internal reference counting mechanism, this method functions as the
Foundation function NSIncrementExtraRefCount() for the receiver’s EOFault.

isKindOfClass:forFault:
– (BOOL)isKindOfClass:(Class)aClass forFault: (id)aFault

Returns YES if the target class of the receiver’s EOFault is aClass or a subclass of aClass. This EOFault
must be passed as aFault in case the receiver needs to fire it (EOFaultHandlers don’t store back pointers to

5

their EOFaults). For example, to support entity inheritance, the Access layer fires EOFaults for entities with
subentities to confirm their precise class membership.

See also: – completeInitializationOfObject:

isMemberOfClass:forFault:
– (BOOL)isMemberOfClass:(Class)aClass forFault: (id)aFault

Returns YES if the target class of the receiver’s EOFault is aClass. This EOFault must be passed as aFault
in case the receiver needs to fire it (EOFaultHandlers don’t store back pointers to their EOFaults). For
example, to support entity inheritance, the Access layer fires EOFaults for entities with subentities to
confirm their precise class membership.

See also: – completeInitializationOfObject:

methodSignatureForSelector:forFault:
– (NSMethodSignature *)methodSignatureForSelector:(SEL)aSelector forFault: (id)aFault

Returns the NSMethodSignature for aSelector in the target class of the receiver’s EOFault, which must be
passed as aFault in case the receiver needs to fire it (EOFaultHandlers don’t store back pointers to their
EOFaults). For example, to support entity inheritance, the Access layer fires EOFaults for entities with
subentities to confirm their precise class membership.

See also: – completeInitializationOfObject:

respondsToSelector:forFault:
– (BOOL)respondsToSelector:(SEL)aSelector forFault: (id)aFault

Returns YES if the target class of the receiver’s EOFault responds to aSelector. This EOFault must be
passed as aFault in case the receiver needs to fire it (EOFaultHandlers don’t store back pointers to their
EOFaults). For example, to support entity inheritance, the Access layer fires EOFaults for entities with
subentities to confirm their precise class membership.

See also: – completeInitializationOfObject:

6

setTargetClass:extraData:
– (void)setTargetClass:(Class)targetClass extraData:(void *)extraData

Stores targetClass and extraData as state of the original object overwritten when an EOFault is created by
EOFault’s makeObjectIntoFault:withHandler: method, which replaces targetClass with the EOFault
class, and extraData with the EOFaultHandler’s id.

shouldPerformInvocation:
– (BOOL)shouldPerformInvocation:(NSInvocation *)anInvocation

Overridden by subclasses to circumvent reversion of an EOFault to its original state. Returns YES if the
EOFault should revert and perform anInvocation, NO if it shouldn’t. If this method returns NO, the receiver
should set anInvocation’s return value appropriately. EOFaultHandler’s implementation returns YES.

See also: – setReturnValue: (NSInvocation class of the Foundation Framework)

targetClass
– (Class)targetClass

Returns the target class of the receiver’s EOFault. The EOFault may, however, be converted to a member of
this class or of a subclass of this class. For example, to support entity inheritance, the Access layer fires
EOFaults for entities with subentities into the appropriate class on fetching their data.

