
1

 

EOUndoManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOControl/EOUndoManager.h

Class Description

EOUndoManager is a general purpose recorder of operations for undo and redo. You register an undo 
operation by specifying the object that’s changing (or the owner of that object), along with a method to 
invoke to revert its state, and the arguments for that method. EOUndoManager automatically groups all 
operations within a single cycle of the run loop, so that performing an undo reverts all changes that occurred 
during the loop. Also, when performing undo an EOUndoManager saves the operations reverted so that you 
can redo the undos.

Operations and Groups

An undo operation is a method for reverting a change to an object, along with the arguments needed to revert 
the change (for example, its state before the change). Undo operations are typically collected into undo 
groups, which represent whole undoable actions. Redo operations and groups are simply undo operations 
stored on a separate stack (described below). When an EOUndoManager performs undo or redo, it’s 
actually undoing or redoing an entire group of operations. To undo a single operation, it must be packaged 
in a group.

EOUndoManager normally creates undo groups automatically during the run loop. The first time it’s asked 
to record an undo operation in the run loop, it creates a new group. Then, at the end of the loop, it closes 
the group. You can create additional, nested undo groups within these default groups using the 
beginUndoGrouping and endUndoGrouping methods. You can also turn off the default grouping 
behavior using setGroupsByEvent:.

The Undo and Redo Stacks

Undo groups are stored on a stack, with the oldest groups at the bottom and the newest at the top. The undo 
stack is unlimited by default, but you can restrict it to a maximum number of groups using the 
setLevelsOfUndo: method. When the stack exceeds the maximum, the oldest undo groups are dropped 
from the bottom.

Initially, both stacks are empty. Recording undo operations adds to the undo stack, but the redo stack 
remains empty until undo is performed. Performing undo causes the undo operations in the latest group to 



2

be applied to their objects. Since these operations cause changes to the objects’ states, the objects 
presumably register new operations with the EOUndoManager, this time in the reverse direction from the 
original operations. Since the EOUndoManager is in the process of performing undo, it records these 
operations as redo operations on the redo stack. Consecutive undos add to the redo stack. Subsequent redo 
operations pull the operations off the redo stack and apply them to the objects.

The redo stack’s contents last as long as undo and redo is performed. However, because applying a new 
change to objects invalidates the previous changes, as soon as a new undo operation is registered, the redo 
stack is cleared. This prevents redo from returning objects to an inappropriate prior state. You can check for 
the ability to undo and redo with the canUndo and canRedo methods.

Registering Undo Operations

EOUndoManager supports two types of undo operations: one based on a simple selector with a single object 
argument, and one based on a general NSInvocation (which allows any number and type of arguments). The 
first method is commonly used by EOEditingContext for changes to enterprise objects. When an object 
changes, the EOEditingContext records a simple undo operation with an NSDictionary containing the old 
property values of the object. Performing undo then applies this object snapshot via the key-value coding 
protocol’s takeValues:forKeys: method. Invocation-based undo is useful for undoing specific 
state-changing methods, such as a document object’s setFont:color:. This more general undo operation is 
useful for already-defined methods, especially when their arguments aren’t objects.

Regardless of the type of operations recorded, a single instance of EOUndoManager typically belongs to a 
single document or container of objects, called the EOUndoManager’s client. Each EOEditingContext in 
an application, for example, has its own private EOUndoManager. This keeps each pair of undo and redo 
stacks separate so that when an undo is performed, it applies to the focal document in the application 
(typically the one displayed in the key window). It also relieves the individual objects from having to know 
the identity of their EOUndoManager.

In order to use undo effectively, either the client must claim exclusive right to alter its undoable objects—
in order to record undo operations for all changes—or the objects themselves must participate in recording 
their changes. The first case is exemplified by a text document that holds a private NSTextView, handling 
all text operations by registering undo operations and forwarding the change to the NSTextView. For the 
second case, the willChange method defined by Enterprise Objects Framework allows any object to notify 
observers that it’s about to change. EOEditingContexts, being containers for enterprise objects, receive 
these change notifications and record undo operations (among many other things). Even in this case, 
interaction with the EOUndoManager is handled exclusively by the container object.

Simple Undo

To record a simple undo operation, you need only invoke registerUndoWithTarget:selector:arg:, giving 
the object to be sent the undo operation selector, the selector to invoke, and an argument to pass with that 
message. The target object is rarely the actual object whose state is changing; instead, it’s the client object, 
a document or container that holds many undoable objects. An object like EOEditingContext, for example, 



3

 

can record an undo operation for insertObject: by registering a deleteObject: message with the object 
inserted (undoManager is an instance variable):

[undoManager registerUndoWithTarget:self selector:@selector(deleteObject:)

    arg:anObject];

An update might be recorded for undo like so:

NSDictionary *updateDict = [NSDictionary dictionaryWithObjectsAndKeys:anObject,

    @"object", [anObject snapshot], @"snapshot"];

[undoManager registerUndoWithTarget:self

    selector:@selector(revertUpdate:)

    arg:updateDict];

This fragment is likely to be executed as a result of anObject invoking the standard willChange method, 
which announces that the object’s state is going to change. Since it hasn’t changed yet, the state can be 
recorded for later undo. This fragment, then, registers the client (self) to be sent a revertUpdate: message 
with the object and its old state when undo is performed. The old values are retrieved with a snapshot 
message. revertUpdate: can be implemented to pass the old state back to the object:

- (void)revertUpdate:(NSDictionary *)updateDict

{

    [[updateDict objectForKey:@"object"]

        udpateFromSnapshot:[updateDict objectForKey:@"snapshot"]];

    return;

}

Both snapshot and updateFromSnapshot: are methods added to NSObject by the Framework. See the 
NSObject Additions specification for more information.

Invocation-Based Undo

For other changes involving specific methods or arguments that aren’t objects, you can use invocation-based 
undo, which records an actual message to revert the target object’s state. As with simple undo, you record 
a message that reverts the object to its state before the change. However, in this case you do so by sending 
the message directly to the EOUndoManager, after preparing it with a special message to note the target:

[[myUndoManager prepareWithInvocationTarget:textObject]

    setFont:[textObject font] color:[textObject textColor]];

[textObject setFont:newFont color:newColor];

prepareWithInvocationTarget:  records the argument as the target of the undo operation about to be 
established. Following this, you send the message that will revert the target’s state—in this case, 
setFont:color:. Because EOUndoManager doesn’t respond to this method, forwardInvocation:  is 
invoked, which EOUndoManager implements to record the NSInvocation containing the target, selector, 
and all arguments. Performing undo later results in textObject being sent a setFont:color: message with 
the old values.



4

Performing Undo and Redo

Performing undo and redo is usually as simple as sending undo and redo messages to the 
EOUndoManager. undo closes the last open undo group and then applies all of the undo operations in that 
group (recording any undo operations as redo operations instead). redo likewise applies all of the redo 
operations on the top redo group.

undo is intended for undoing top-level groups, and shouldn’t be used for nested undo groups. If any 
unclosed, nested undo groups are on the stack when undo is invoked, it raises an exception. To undo nested 
groups, you must use explicitly close the group with an endUndoGrouping message, then use 
undoNestedGroup to undo it. Note also that if you turn off automatic grouping by event with 
setGroupsByEvent:, you must explicitly close the current undo group with endUndoGrouping before 
invoking either undo method.

Cleaning the Undo Stack

EOUndoManager doesn’t retain the targets of undo operations, for several reasons. Foremost is that the 
client—the object registering operations—typically owns the EOUndoManager, so retaining it would 
create cycles. The EOUndoManager does contain references to the targets of undo operations, however, 
which it uses to send undo messages when undo is performed. If a target object has been deallocated, this 
will cause errors.

To remedy this, the client must take care to clear undo operations for targets that are being deallocated. This 
typically occurs in one of three ways:

• The client is the exclusive owner of the EOUndoManager and the target of all undo operations. In this 
case the client can simply release the EOUndoManager in its dealloc method.

• The client shares the EOUndoManager with other clients. To handle this the client should send 
forgetAllWithTarget:  to the EOUndoManager before releasing it in its dealloc method.

• The client registers objects other than itself for undo operations. Here either the client must watch for the 
other objects being deallocated in order to send forgetAllWithTarget: , or the other objects must do so 
themselves when deallocated (which requires that they have a reference to the EOUndoManager). This 
is likely to be needed with invocation-based undo.

In a more general sense, it sometimes makes sense to clear all undo and redo operations. Some applications 
might want to do this when saving a document, for example. To this end, EOUndoManager defines the 
forgetAll  method, which clears both stacks.

Undo Checkpoint Notifications

Objects sometimes delay performing changes, for various reasons. This means they may also delay 
registering undo operations for those changes. Because EOUndoManager collects individual operations 
into groups, it must be sure to synchronize its client with the creation of these groups so that operations are 
entered into the proper undo groups. To this end, whenever an EOUndoManager opens or closes a new undo 



5

 

group (except when it opens a top-level group), it posts an EOUndoManagerCheckpointNotification so that 
observers can apply their pending undo operations to the group in effect. The EOUndoManager’s client 
should register itself as an observer for this notification and record undo operations for all pending changes 
upon receiving it.

Method Types

Registering undo operations – registerUndoWithTarget:selector:arg:
– prepareWithInvocationTarget:
– forwardInvocation:

Checking undo ability – canUndo
– canRedo

Performing undo and redo – undo
– undoNestedGroup
– redo

Limiting the undo stack – setLevelsOfUndo:
– levelsOfUndo

Creating undo groups – beginUndoGrouping
– endUndoGrouping
– setGroupsByEvent:
– groupsByEvent

Disabling undo – disableUndoRegistration
– reenableUndoRegistration

Checking whether undo or redo is being performed
– isUndoing
– isRedoing

Clearing undo operations – forgetAll
– forgetAllWithTarget:

Instance Methods

beginUndoGrouping
– (void)beginUndoGrouping

Marks the beginning of an undo group. All individual undo operations before a subsequent 
endUndoGrouping message are grouped together and reversed by a later undo message. Undo groups can 
be nested, thus providing functionality similar to nested transactions.



6

This method posts an EOUndoManagerCheckpointNotification.

canRedo
– (BOOL)canRedo

Returns YES if the receiver has any actions to redo, NO if it doesn’t.

Because any undo operation registered clears the redo stack, this method posts an 
EOUndoManagerCheckpointNotification to allow clients to apply their pending operations before testing 
the redo stack.

See also: – canUndo, – redo

canUndo
– (BOOL)canUndo

Returns YES if the receiver has any actions to undo, NO if it doesn’t. This does not mean that you can safely 
invoke undo or undoNestedGroup; you may have to close open undo groups first.

See also: – canRedo, –endUndoGrouping, – registerUndoWithTarget:selector:arg:

disableUndoRegistration
– (void)disableUndoRegistration

Disables the recording of undo operations, whether by registerUndoWithTarget:selector:arg: or by 
invocation-based undo. This method can be invoked multiple times; reenableUndoRegistration must be 
invoked an equal number of times to actually reenable undo registration.

endUndoGrouping
– (void)endUndoGrouping

Marks the end of an undo group. All individual undo operations back to the matching beginUndoGrouping 
message are grouped together and reversed by a later undo or undoNestedGroup message. Undo groups 
can be nested, thus providing functionality similar to nested transactions. Raises an 
NSInternalInconsistencyException if there’s no beginUndoGrouping message in effect.

This method posts an EOUndoManagerCheckpointNotification.

See also: – levelsOfUndo



7

 

forgetAll
– (void)forgetAll

Clears the undo and redo stacks and reenables the receiver.

See also: – reenableUndoRegistration, – forgetAllWithTarget:

forgetAllWithTarget:
– (void)forgetAllWithTarget: (id)target

Clears the undo and redo stacks of all operations involving target as the recipient of the undo message. 
Doesn’t reenable the receiver if it’s disabled. An object that shares an EOUndoManager with other clients 
should invoke this message in its implementation of dealloc.

See also: – reenableUndoRegistration, – forgetAll

forwardInvocation:
– (void)forwardInvocation: (NSInvocation *)anInvocation

Overrides NSObject’s implementation to record anInvocation as an undo operation. Also clears the redo 
stack. Raises an NSInternalInconsistencyException if prepareWithInvocationTarget:  wasn’t invoked 
before this method; this method then clears the prepared invocation target. See “Invocation-Based Undo” 
in the class description for more information.

Raises an NSInternalInconsistencyException if invoked when no undo group has been established using 
beginUndoGrouping. Undo groups are normally set by default, so you should rarely need to begin a top-level 
undo group explicitly.

See also: – undoNestedGroup, – registerUndoWithTarget:selector:arg:, –groupsByEvent

groupsByEvent
– (BOOL)groupsByEvent

Returns YES if the receiver automatically creates undo groups around each pass of the run loop, NO if it 
doesn’t. The default is YES.

See also: – beginUndoGrouping, –setGroupsByEvent:



8

isUndoing
– (BOOL)isUndoing

Returns YES if the receiver is in the process of performing its undo or undoNestedGroup method, NO 
otherwise.

See also: – isRedoing

isRedoing
– (BOOL)isRedoing

Returns YES if the receiver is in the process of performing its redo method, NO otherwise.

See also: – isUndoing

levelsOfUndo
– (unsigned int)levelsOfUndo

Returns the maximum number of top-level undo groups the receiver will hold. When ending an undo group 
results in the number of groups exceeding this limit, the oldest groups are dropped from the stack. A limit 
of zero indicates no limit, so that old undo groups are never dropped. The default is zero.

See also: – endUndoGrouping, –setLevelsOfUndo:

prepareWithInvocationTarget:
– (id)prepareWithInvocationTarget: (id)target

Prepares the receiver for invocation-based undo with target as the subject of the next undo operation and 
returns self. See “Invocation-Based Undo” in the class description for more information.

See also: – forwardInvocation:

redo
– (void)redo

Performs the operations in the last group on the redo stack, if there are any, recording them on the undo 
stack as a single group.

This method posts an EOUndoManagerCheckpointNotification.

See also: – redo, – registerUndoWithTarget:selector:arg:



9

 

reenableUndoRegistration
– (void)reenableUndoRegistration

Balances a prior disableUndoRegistration message. Undo registration isn’t actually reenabled until a 
reenable message balances the last disable message in effect. Raises an NSInternalInconsistencyException 
if invoked while no disableUndoRegistration message is in effect.

registerUndoWithTarget:selector:arg:
– (void)registerUndoWithTarget:(id)target selector:(SEL)aSelector arg:(id)anObject

Records a single undo operation for target, so that when undo is performed it’s sent aSelector with anObject 
as the sole argument. Also clears the redo stack. Doesn’t retain target. See “Simple Undo” in the class 
description for more information.

Raises an NSInternalInconsistencyException if invoked when no undo group has been established using 
beginUndoGrouping. Undo groups are normally set by default, so you should rarely need to begin a top-level 
undo group explicitly.

See also: – undoNestedGroup, – forwardInvocation: , –groupsByEvent

setGroupsByEvent:
– (void)setGroupsByEvent:(BOOL)flag

Sets whether the receiver automatically groups undo operations during the run loop. If flag is YES, the 
receiver creates undo groups around each pass through the run loop; if flag is NO it doesn’t. The default is 
YES.

If you turn automatic grouping off, you must close groups explicitly before invoking either undo or 
undoNestedGroup.

See also: – groupsByEvent

setLevelsOfUndo:
– (void)setLevelsOfUndo:(unsigned int)anInt

Sets the maximum number of top-level undo groups the receiver will hold to anInt. When ending an undo 
group results in the number of groups exceeding this limit, the oldest groups are dropped from the stack. A 
limit of zero indicates no limit, so that old undo groups are never dropped. The default is zero.

If invoked with a limit below the prior limit, old undo groups are immediately dropped.

See also: – endUndoGrouping, – levelsOfUndo



10

undo
– (void)undo

Closes the top-level undo group if necessary and invokes undoNestedGroup. Raises an 
NSInternalInconsistencyException if more than one undo group is open (that is, if the last group isn’t at the 
top level).

This method posts an EOUndoManagerCheckpointNotification.

See also: – endUndoGrouping, –groupsByEvent

undoNestedGroup
– (void)undoNestedGroup

Performs the undo operations in the last undo group (whether top-level or nested), recording the operations 
on the redo stack as a single group. Raises an NSInternalInconsistencyException if any undo operations 
have been registered since the last endUndoGrouping message.

This method posts an EOUndoManagerCheckpointNotification.

See also: – undo

Notifications 

EOUndoManagerCheckpointNotification

Posted whenever an EOUndoManager opens or closes an undo group (except when it opens a top-level 
group), and when checking the redo stack in canRedo. The notification contains:

Notification Object The EOUndoManager

Userinfo nil


