
1

EODataSource

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOControl/EODataSource.h

Class Description

EODataSource is an abstract class that defines a basic interface for providing enterprise objects. It exists
primarily as a simple means for an EODisplayGroup or other higher-level class to access a store of objects.
EODataSource defines functional implementations of very few methods; concrete subclasses, such as
EODatabaseDataSource and EODetailDataSource, define working data sources by implementing the
others. EODatabaseDataSource, for example, provides objects held by an EOEditingContext, while
EODetailDataSource provides objects from a relationship property of a master object.

An EODataSource provides its objects all at once, with its fetchObjects method. insertObject: and
deleteObject: add and remove individual objects, and createObject instantiates a new object. A few other
methods provide more general information about the objects, as described below.

Creating a Subclass

The job of an EODataSource is to provide objects that share a set of properties, so that they can be managed
uniformly by its client, such as an EODisplayGroup. Typically these objects are all of the same class, or
share a superclass that defines the common properties managed by the client. All that’s needed, however, is
that every object have the properties expected by the client. For example, if an EODataSource provides
Member and Guest objects, they can be implemented as subclasses of a more general Customer class, or
they can be independent classes defining the same properties (lastName, firstName, and address, for
example). You typically specify the kind of objects an EODataSource provides when you initialize it.
Subclasses usually define a special init... method whose arguments describe the objects.
EODatabaseDataSource, for example, defines initWithEditingContext:entityName: , which uses an
EOEntity to describe the set of objects. Another subclass might use an EOClassDescription, a class or
superclass for the objects, or even a collection of existing instances.

A subclass can provide two other pieces of information about its objects, using methods declared by
EODataSource. First, if your subclass keeps its objects in an EOEditingContext, it should override the
editingContext method to return that EOEditingContext. It doesn’t have to use an EOEditingContext,
though, in which case it can just use the default implementation of editingContext, which returns nil . Keep
in mind, however, the amount of work EOEditingContexts do for you, especially when using
EODisplayGroups. For example, EODisplayGroups depend on change notifications from
EOEditingContexts to update changes in the objects displayed. If your subclass or its clients depend on

2

change notification, you should use an EOEditingContext for object storage and change notification. If you
don’t use one, you’ll have to implement that functionality yourself. For more information, see these class
specifications:

EOObjectStore
EOEditingContext
EODisplayGroup
EODelayedObserverQueue
EODelayedObserver

The other piece of information—also optional—is an EOClassDescription for the objects. Interface Builder
uses an EOClassDescription to get the keys it displays in its Connections Inspector, and EODataSource uses
it by default when creating new objects. Your subclass should override classDescriptionForObjects to
return the class description if it uses one and if it’s providing objects of a single superclass. Your subclass
can either record an EOClassDescription itself, or get it from some other object, such as an EOEntity or
from the objects it provides (through the added NSObject method classDescription). If it doesn’t use an
EOClassDescription at all it can use the default implementation, which returns nil .

Manipulating Objects

A concrete subclass of EODataSource must at least provide objects by implementing fetchObjects. If it
supports insertion of new objects, it should implement insertObject:, and if it supports deletion it should
also implement deleteObject:. An EODataSource that implements its own store must define these methods
from scratch. An EODataSource that uses another object as a store can forward these messages to that store.
For example, an EODatabaseDataSource turns these three requests into
objectsWithFetchSpecification:editingContext:, insertObject:, and deleteObject: messages to its
EOEditingContext.

Implementing Master-Detail Data Sources

An EODataSource subclass can also implement a pair methods that allow it to be used in master-detail
configurations. The first method, dataSourceQualifiedByKey:, should create and return a new data source,
set up to provide objects of the destination class for a relationship in a master-detail setup. In a master-detail
setup, changes to the detail apply to the objects in the master; for example, adding an object to the detail
also adds it to the relationship of the master object. The standard EODetailDataSource class works well for
this purpose, so you can simply implement dataSourceQualifiedByKey: to create and return one of these.
Once you have a detail EODataSource, you can set the master object by sending the detail a
qualifyWithRelationshipKey:ofObject: message. The detail then uses the master object in evaluating the
relationship, and applies inserts and deletes to that master object.

Another kind of paired EODataSource setup, called master-peer, is exemplified by the
EODatabaseDataSource class. In a master-peer setup, the two EODataSources are independent, so that
changes to one don’t affect the other. Inserting into the “detail,” for example, has no effect on the master
object. See that class description for more information.

3

Method Types

Getting the objects – fetchObjects

Inserting and deleting objects – createObject
– insertObject:
– deleteObject:

Creating detail EODataSources – dataSourceQualifiedByKey:
– qualifyWithRelationshipKey:ofObject:

Getting the editing context – editingContext

Getting the class description – classDescriptionForObjects

Instance Methods

classDescriptionForObjects
– (EOClassDescription *)classDescriptionForObjects

Implemented by subclasses to return an EOClassDescription that provides information about the objects
provided by the receiver. EODataSource’s implementation returns nil .

createObject
– (id)createObject

Creates a new object, inserts it in the receiver’s collection of objects if appropriate, and returns the object.
Returns nil if the receiver can’t create the object or can’t insert it. You should invoke insertObject: after
this method to actually add the new object to the receiver.

As a convenience, EODataSource’s implementation sends the receiver’s EOClassDescription a
createInstanceWithEditingContext:globalID:zone: to create the object. If this succeeds and the receiver
has an EOEditingContext, it sends the EOEditingContext an insertObject: message to register the new
object with the EOEditingContext (note well that this does not insert the object into the EODataSource).
Subclasses that don’t use EOClassDescriptions or EOEditingContexts should override this method without
invoking super’s implementation.

See also: – classDescriptionForObjects, –editingContext

4

dataSourceQualifiedByKey:
– (EODataSource *)dataSourceQualifiedByKey:(NSString *)relationshipKey

Implemented by subclasses to return a detail EODataSource that provides the destination objects of the
relationship named by relationshipKey. The detail EODataSource can be qualified using
qualifyWithRelationshipKey:ofObject: to set a specific master object (or to change the relationship key).
EODataSource’s implementation merely raises an NSInvalidArgumentException; subclasses shouldn’t
invoke super’s implementation.

deleteObject:
– (void)deleteObject:(id)anObject

Implemented by subclasses to delete anObject. EODataSource’s implementation merely raises an
NSInvalidArgumentException; subclasses shouldn’t invoke super’s implementation.

editingContext
– (EOEditingContext *)editingContext

Implemented by subclasses to return the receiver’s EOEditingContext. EODataSource’s implementation
returns nil .

fetchObjects
– (NSArray *)fetchObjects

Implemented by subclasses to fetch and return the objects provided by the receiver. EODataSource’s
implementation returns nil .

insertObject:
– (void)insertObject:(id)object

Implemented by subclasses to insert anObject. EODataSource’s implementation merely raises an
NSInvalidArgumentException; subclasses shouldn’t invoke super’s implementation.

5

qualifyWithRelationshipKey:ofObject:
– (void)qualifyWithRelationshipKey: (NSString *)key ofObject:(id)sourceObject

Implemented by subclasses to qualify the receiver, a detail EODataSource, to display destination objects
for the relationship named key belonging to sourceObject. key should be the same as the key specified in the
dataSourceQualifiedByKey: message that created the receiver. If sourceObject is nil , the receiver qualifies
itself to provide no objects. EODataSource’s implementation merely raises an
NSInvalidArgumentException; subclasses shouldn’t invoke super’s implementation.

