
1

 

NSObject Additions

Inherits From: none (NSObject is a root class)

Declared In: EOControl/EOClassDescription.h
EOControl/EOEditingContext.h
EOControl/EOKeyValueCoding.h
EOControl/EOObserver.h



2

Class at a Glance

Purpose
Defines basic functionality for all enterprise objects.

Principal Attributes
• EOClassDescription

Creation
– init Designated initializer.
– initWithEditingContext:classDescription:globalID: Optional initializer.
– awakeFromFetchInEditingContext: Additional initialization after being fetched.
– awakeFromInsertionInEditingContext: Additional initialization after being created in memory.

Commonly Used Methods
– willChange Notifies observers of a change in state.
– editingContext Returns the receiver’s EOEditingContext.
– addObject:toPropertyWithKey: Adds an object to a relationship property.
– removeObject:fromPropertyWithKey: Removes an object from a relationship property.
– addObject:toBothSidesOfRelationshipWithKey: Adds an object to a relationship property and the receiver 

to the reciprocal relationship.
– removeObject:fromBothSidesOfRelationshipWithKey:

Removes an object from a relationship property and the 
receiver from the reciprocal relationship.

Methods to Implement or Override

These methods are invoked by the Framework. 



3

 

– setKey: Sets the value for the property named key.
– key Retrieves the value for the property named key.
– addToKey: Adds an object to a relationship property named key.
– removeFromKey: Removes an object from the property named key.
– handleTakeValue:forUnboundKey: Handles a failure of takeValue:forKey:  to find a property.
– handleQueryWithUnboundKey: Handles a failure of valueForKey: to find a property.
– unableToSetNilForKey: Handles an attempt to set a non-object property’s value to nil .
– validateKey: Validates a value for the property named key.
– validateForDelete Validates all properties before deleting the receiver.
– validateForInsert Validates all properties before inserting the receiver.
– validateForSave Validates all properties before saving the receiver.
– validateForUpdate Validates all properties before updating the receiver.

Class Description

Enterprise Objects Framework adds a number of methods to NSObject for supporting operations common 
to all enterprise objects. Among these are methods for initializing instances, announcing changes, setting 
and retrieving property values, and performing validation of state. Some of these methods are for enterprise 
objects to implement or override, and some are meant to be used as defined by the Framework. Many 
methods are used internally by the Framework and rarely invoked by application code. The implementation 
or use of each method is highlighted in the following sections, which describe the major functional groups.

Initialization Methods

Enterprise objects are initialized using the initWithEditingContext:classDescription:globalID: , which 
by default simply invokes init . You can place your custom initialization code in init , or you can override 
initWithEditingContext:classDescription:globalID:  to take advantage of the extra information available 
with this method.

After initialization, an enterprise object receives an awake... message. The particular message depends on 
whether the object has been fetched from a database or created anew in the application. In the former case, 
it receives an awakeFromFetchInEditingContext: message. In the latter, it receives an 
awakeFromInsertionInEditingContext:  message. The receiver can override either method to perform 
extra initialization—such as setting default values—based on how it was created.



4

Announcing Changes

For the Framework to keep all areas of an application synchronized, enterprise objects must notify their 
observers when their state changes. Objects do this by simply invoking willChange before altering any 
instance variable or other kind of state. This method informs all observers that the invoker is about to 
change. See the EOObserverCenter class specification for more information on change notification.

The primary observer of changes in an object is its EOEditingContext. EOEditingContext is a subclass of 
EOObjectStore that manages collections of objects in memory, tracking inserts, deletes, and updates, and 
propagating changes to the persistent store as needed. You can get the EOEditingContext that contains an 
object by sending the object an editingContext message.

Getting Object and Class Metadata

One of the larger groups of methods added to NSObject provides information about an object’s properties. 
Most of these methods consult an EOClassDescription to provide their answers. The classDescription 
method return an object’s EOClassDescription. See that class specification for the methods it implements. 
Methods you can send directly to any object include entityName, which provides the name of the entity 
mapped to the receiver’s class; allPropertyKeys, which returns the names of all the receiver’s class 
properties, attributes and relationships alike; and attributeKeys, which returns just the names of the 
attributes.

Some methods return information about relationships. toOneRelationshipKeys and 
toManyRelationshipKeys return the names of the receiver’s relationships, while isToManyKey: tells 
which kind a particular relationship is. deleteRuleForRelationshipKey: indicates what should happen to 
the receiver’s relationships when it’s deleted. Similarly, ownsDestinationObjectsForRelationshipKey: 
indicates what should happen when another object is added to or removed from the receiver’s relationship. 
Another method, classDescriptionForDestinationKey:, returns the EOClassDescription for the objects at 
the destination of a relationship.

These methods are all properly implemented in terms of the receiver’s EOClassDescription, so unless your 
object class doesn’t have an EOClassDescription, there’s little need to override them. One method you 
might override in your enterprise object class, however, is inverseForRelationshipKey:. Given the name 
of one of the receiver’s relationships, this method finds the destination object’s class data and determines 
the name of the relationship that points back at the receiver. The default implementation of this method 
looks for a relationship predicated on the same attributes in both the source and destination, which works 
correctly in most cases. If, however, you define a reciprocal pair of relationships on different attributes, you 
should override this method to take that into account. See the method description for an example.

Key-Value Coding Methods

A special set of methods form the Framework’s main data transport mechanism, in which the properties of 
an enterprise object are accessed indirectly by name (or key), rather than directly through invocation of an 
accessor method or as instance variables. Thus, any object’s state can be accessed in a consistent manner.



5

 

The basic methods for accessing an enterprise object’s values are takeValue:forKey:  and valueForKey:. 
These two methods are defined by NSObject to use the accessor methods normally implemented by objects 
(or to access instance variables directly if need be), so that you don’t have to write special code simply to 
integrate your enterprise objects into the Framework. Another pair of methods, 
takeValuesFromDictionary: and valuesForKeys:, gives access to groups of properties. Lastly, 
valueForKeyPath: and valueForKeyPath: give access to flattened properties, of the form 
relationship.property; for example, “department.name”.

Default Implementations; Handling Access Errors

The Framework provides default implementations of takeValue:forKey:  and valueForKey: that work for 
all objects. The other four access methods are implemented in terms of these two. These implementations 
are general enough that your enterprise object classes should rarely need to override either key-value coding 
method. In accessing an object’s property, the default NSObject implementations of the key-value coding 
methods use the class definition as follows:

1. The key-value coding method looks for an accessor method based on the key. For example, with a key of 
“lastName”, takeValue:forKey:  looks for a method named setLastName: (note that the first letter of the 
property name is made uppercase), and valueForKey: looks for a method of the form lastName.

2. If the key-value coding method doesn’t find an accessor method, and the class responds YES to an 
accessInstanceVariablesDirectly message (which it does by default), it looks for an instance variable whose 
name is the same as the key and sets or retrieves its value directly. In setting an instance variable that’s an 
object, takeValue:forKey:  retains the new value and autoreleases the old one.

3. If neither an accessor method nor an instance variable can be found, the default implementations invoke 
methods that your custom objects can override to handle failures. handleTakeValue:forUnboundKey: is 
invoked from takeValue:forKey: , and handleQueryWithUnboundKey: is invoked from valueForKey:. 
Normally these methods raise an exception, but you can implement them to set or get a value in whatever way 
is needed.

The key-value coding methods cache attribute bindings for both accessor methods and instance variables, 
making lookups efficient. If you need to clear these bindings—as when you add or remove a class from the 
run-time system—you can invoke flushAllKeyBindings to do so.

Some subclasses of NSObject override the default implementations. EOGenericRecord’s implementations, 
for example, simply store and retrieve the properties in an NSDictionary object held by the 
EOGenericRecord. NSDictionary and NSMutableDictionary, though not suitable for use as enterprise 
objects, meaningfully implement these methods by directly accessing their key-value pairs.

Type Checking and Type Conversion

The default implementations of the key-value coding methods accept any object as a value, and do no type 
checking or type conversion among object classes. It’s possible, for example, to pass an NSString to 
takeValue:forKey:  as the value for a property the receiver expects to be an NSDate. The sender of a 
key-value coding message is thus responsible for ensuring that a values is of the proper class, typically by 



6

using the validateValue:forKey:  method to coerce it to the proper type. The interface layer’s 
EODisplayGroup uses this on all values received from interface user objects, for example, as well as relying 
on number and date formatters to interpret string values typed by the user. For more information on the 
validateValue:forKey:  method, see the EOClassDescription and EOEntityClassDescription class 
specifications.

The key-value coding methods handle one special case with regard to value types. For enterprise objects 
that access numeric values as C scalar types, these methods automatically convert between the scalar types 
and NSNumber objects. For example, suppose your enterprise object defines these accessor methods:

– (void)setSalary:(unsigned int)salary
– (unsigned int)salary

For the setSalary: method, takeValue:forKey:  converts the object value for the “salary” key in the 
dictionary to an unsigned int and passes it as salary. Similarly, valueForKey: converts the return value of 
the salary method to an NSNumber and returns that.

The default implementations support the following scalar types:

char unsigned char
short unsigned short
int unsigned int
long unsigned long
float double

Object values are converted to these types with the standard messages charValue, intValue, floatValue, 
and so on. Note that the key-value coding methods don’t check that an object value actually responds to 
these messages; this can result in a run-time error if the object doesn’t respond to the appropriate message.

One type of conversion these methods can’t perform is that from a nil  object value to a scalar value. C scalar 
values define no equivalent of a database system’s NULL value, so these must be handled by the object 
itself. Upon encountering an nil  while setting a scalar value, the takeValue:forKey:  invokes 
unableToSetNilForKey:, which by default simply raises an exception. Enterprise object classes that use 
scalar values which may be NULL in the database should override this method to substitute the appropriate 
scalar value for nil , reinvoking takeValue:forKey:  to set the substitute value. This method works in general 
to handle setting scalar properties to nil .

EONull in Collections

Because collection objects such as NSArray and NSDictionary can’t contain nil  as a value, it must 
represented by a special object, EONull. EONull provides a single instance that represents the NULL value 
for object attributes. The default implementations of takeValuesFromDictionary: and valuesForKeys: 
translate EONull and nil  between NSDictionaries and enterprise objects, removing the need for your 
objects to explicitly test for EONull values. 



7

 

Relationship Accessor Methods

Building on the key-value coding methods, another group of methods allows you to modify relationship 
properties by adding and removing single objects, rather than replacing the entire content of the 
relationship, and to modify relationships so that reciprocal relationships are automatically adjusted. 
addObject:toPropertyWithKey:  and removeObject:fromPropertyWithKey:  handle the first situation, 
doing all the work of altering arrays for to-many relationships. They both check first for a method you might 
implement, addToKey: or removeFromKey:, invoking that method if it’s implemented, otherwise using the 
basic key-value coding methods to do the work.

Reciprocal relationships are handled by addObject:toBothSidesOfRelationshipWithKey: and 
removeObject:fromBothSidesOfRelationshipWithKey:. For example, when you add an Employee to a 
Department’s employees relationship, or remove it, you also want the Employee’s department relationship 
altered to suit. These two methods take care of tracing the inverse relationship and use 
addObject:toPropertyWithKey:  and removeObject:fromPropertyWithKey:  to alter both relationships, 
whether they’re to-one or to-many. Unless you have specific reasons to do otherwise, you should always 
use the methods that handle reciprocal relationships so that back pointers are properly updated.

Two other methods that affect relationships are typically used internally by the Framework. You should 
rarely have a need either to invoke or override them. propagateDeleteWithEditingContext: applies an 
object’s delete rule to the destinations of its relationships. The delete rule specifies whether a destination 
object should be ignored, also deleted, or whether the deletion should be disallowed if a destination exists. 
clearProperties simply sets all of the receiver’s relationship properties to nil . An EOEditingContext uses 
this method to break circular references between its objects when the context is deallocated.

Snapshots

The key-value coding methods define a general mechanism for accessing an object’s properties, but you first 
have to know what those properties are. Sometimes, however, you just want to preserve an object’s entire 
state for later use, whether to undo changes to the object, compare the values that have changed, or just keep 
a record of the changes. The snapshotting methods provide this service, extracting or setting all properties 
at once and performing the necessary conversions for proper behavior. snapshot returns an NSDictionary 
containing all the receiver’s properties, with EONull substituted for nil  and arrays reproduced as shallow, 
immutable copies. updateFromSnapshot: sets properties of the receiver to the values in a snapshot, 
converting EONull to nil , and making shallow, mutable copies of any array values (allowing the object to 
add to and remove from the array).

Validation

Validating new values is a vital part of business logic. Several methods added to NSObject support 
validation at different stages of an object’s life. Validation methods check for illegal value types, values 
outside of established limits, illegal relationships, and so on. All validation methods return nil  if the values 
under consideration are valid, or an NSException indicating how the values aren’t valid.



8

There are two kinds of validation methods that you can override. The first covers individual properties, 
when it’s important to validate a value before it changes. These methods are invoked automatically by the 
Framework when it changes a property value, such as when the user makes an edit in the user interface. 
These methods are dynamically invoked based on the property name. The second kind covers operations to 
the external store—inserting, updating, and deleting. These methods are invoked when the associated 
operation is performed. You can override these methods in your custom enterprise object classes to perform 
delayed validation of properties, to compare multiple properties against one another, and to allow or refuse 
the operation based on property values. For example, a Fee object might refuse to be deleted if it hasn’t been 
paid yet.

Immediate Validation of Individual Properties

The most general method, validateValue:forKey: , is used by the Framework when an EODisplayGroup 
passes an updated value to the object and when the object is saved. This method does two things: coerce the 
value into an appropriate type for the object, and validate it according to the object’s rules. Coercion is 
performed automatically for you, so all you need handle is validation itself.

The default implementation of validateValue:forKey:  consults the object’s EOClassDescription for basic 
errors, such as a nil  value when that isn’t allowed. If no basic errors exist, this method then examines the 
object’s class itself for a method of the form validateKey: and invokes that. These are the methods that your 
custom classes can implement to validate individual properties, such as validateAge: to check that the value 
the user entered is within acceptable limits.

For example, suppose that Member objects have an age attribute stored as an integer. This attribute has an 
lower limit of 16, defined by the Member class. Now, suppose the user types “12” into a text field for the 
age. Before the EODisplayGroup updates the selected object, it sends the object a validateValue:forKey:  
message. The object uses its EOEntityClassDescription to convert the string “12” into an NSNumber, then 
invokes validateAge: with that NSNumber. Member’s implementation of this method compares the age to 
its limit of 16 and returns an EOValidationException:

- (NSException *)validateAge:(NSNumber *)age

{

    if ([age intValue] < 16) {

        return [NSException

            validationExceptionWithFormat:@"Age of %@ is below minimum.", age];

    }

    return nil;

}

The Framework adds the validationExceptionWithFormat:  method to NSException for convenient 
creation of validation exceptions. The userInfo dictionaries in the exceptions raised by these methods 
contain the enterprise object being validated and the key (where applicable).



9

 

Validation for Specific Operations

The other validation methods are invoked at specific times—such as before the object is written to or deleted 
from the external store—and are particularly useful when properties must be compared or when expensive 
calculation is necessary. The methods are validateForInsert, validateForUpdate, validateForSave, and 
validateForDelete, and they’re invoked automatically for the operations indicated by the method name. 
You can override these methods to check values individually or in groups; for example, you might verify 
that a pair of dates is in the proper temporal order:

- (NSException *)validateForSave

{

    if ([startDate compare:endDate] == NSOrderedDescending) {

        return [NSException

            validationExceptionWithFormat:@"Start date must not follow end date."];

    }

    return [super validateForSave];

}

Note that this method also invokes super’s implementation. This is important, as the default 
implementations of the validateFor... pass the check on to the object’s EOClassDescription, which 
performs basic checking among properties. The access layer’s EOEntityClassDescription class verifies 
constraints based on an EOModel, such as delete rules. For example, the delete rule for a Department object 
might state that it can’t be deleted if it still contains Employee objects.

validateForSave is the generic validation method for when an object is written to the external store. The 
default implementations of validateForInsert and validateForUpdate both invoke this method. If an 
object performs validation that isn’t specific to insertion or to updating, it should go in validateForSave.

Method Types

Initializing enterprise objects – initWithEditingContext:classDescription:globalID:
– awakeFromFetchInEditingContext:
– awakeFromInsertionInEditingContext:

Announcing changes – willChange

Getting an object’s EOEditingContext
– editingContext



10

Getting class description information– allPropertyKeys
– attributeKeys
– classDescription
– classDescriptionForDestinationKey:
– deleteRuleForRelationshipKey:
– entityName
– inverseForRelationshipKey:
– isToManyKey:
– ownsDestinationObjectsForRelationshipKey:
– toManyRelationshipKeys
– toOneRelationshipKeys

Key-value coding – takeValue:forKey:
– valueForKey:
– takeValuesFromDictionary:
– valuesForKeys:
– takeValue:forKeyPath:
– valueForKeyPath:
– handleQueryWithUnboundKey:
– handleTakeValue:forUnboundKey:
– unableToSetNilForKey:
+ accessInstanceVariablesDirectly
+ flushClassKeyBindings
+ flushAllKeyBindings

Modifying relationships – addObject:toPropertyWithKey:
– removeObject:fromPropertyWithKey:
– addObject:toBothSidesOfRelationshipWithKey:
– removeObject:fromBothSidesOfRelationshipWithKey:
– propagateDeleteWithEditingContext:
– clearProperties

Working with snapshots – snapshot
– updateFromSnapshot:

Validating values – validateForDelete
– validateForInsert
– validateForSave
– validateForUpdate
– validateValue:forKey:

Getting descriptions – eoDescription
– eoShallowDescription



11

 

Class Methods

accessInstanceVariablesDirectly
+ (BOOL)accessInstanceVariablesDirectly

Returns YES if the default implementations of the key-value coding methods, on finding no accessor 
method for a property, should access the corresponding instance variable directly. Returns NO if they 
shouldn’t. NSObject’s implementation of this method returns YES. Subclasses can override it to return NO, 
in which case the other methods won’t access instance variables.

flushAllKeyBindings
+ (void)flushAllKeyBindings

Invalidates the cached key binding information for all classes (caches are kept of key-to-method or instance 
variable bindings in order to make key-value coding efficient).

See also: + flushClassKeyBindings

flushClassKeyBindings
+ (void)flushClassKeyBindings

Invalidates the cached key binding information for the receiving class. This method should be invoked 
whenever a class is modified or removed from the run-time system.

See also: + flushAllKeyBindings

Instance Methods

addObject:toBothSidesOfRelationshipWithKey:
– (void)addObject:(id)anObject toBothSidesOfRelationshipWithKey:(NSString *)key

Sets or adds anObject as the destination for the receiver’s relationship identified by key, and also sets or adds 
the receiver for anObject’s reciprocal relationship if there is one. For a to-one relationship, anObject is set 
using takeValue:forKey: . For a to-many relationship, anObject is added using 
addObject:toPropertyWithKey: .

This method also properly handles removing self and anObject from their previous relationship as needed. 
For example, if an Employee object belongs to the Research department, invoking this method with the 
Maintenance department removes the Employee from the Research department as well as setting the 
Employee’s department to Maintenance.

See also: – removeObject:fromBothSidesOfRelationshipWithKey:



12

addObject:toPropertyWithKey:
– (void)addObject:(id)anObject toPropertyWithKey: (NSString *)key

Adds anObject to the receiver’s to-many relationship identified by key, without setting any reciprocal 
relationship. Similar to takeValue:forKey: , this method first attempts to invoke a method of the form 
addToKey:. If the receiver doesn’t have such a method, this method gets the property array using 
valueForKey: and operates directly on that.

If the array is mutable, this method simply adds anObject using addObject:. Otherwise it constructs a new 
array containing any existing objects and anObject, then sets it using takeValue:forKey: .

See also: – removeObject:fromPropertyWithKey: , –addObject:toBothSidesOfRelationshipWithKey:

allPropertyKeys
– (NSArray *)allPropertyKeys

Returns all of the receiver’s property keys, as returned by attributeKeys, toOneRelationshipKeys, and 
toManyRelationshipKeys.

attributeKeys
– (NSArray *)attributeKeys

Returns the names of the receiver’s attributes, as determined from the EOClassDescription. You might wish 
to override this method to add keys for attributes not defined by the EOClassDescription. The access layer’s 
subclass of EOClassDescription, EOEntityClassDescription, returns the names of attributes designated as 
class properties.

See also: – toOneRelationshipKeys, – toManyRelationshipKeys., 
– attributeKeys (EOClassDescription)

awakeFromFetchInEditingContext:
– (void)awakeFromFetchInEditingContext:(EOEditingContext *)anEditingContext

Overridden by subclasses to perform additional initialization upon being fetched from the external 
repository into anEditingContext. NSObject’s implementation merely sends an 
awakeObject:fromFetchInEditingContext:  to the receiver’s EOClassDescription. Subclasses should 
invoke super’s implementation before performing their own initialization.

See also: – awakeFromInsertionInEditingContext:



13

 

awakeFromInsertionInEditingContext:
– (void)awakeFromInsertionInEditingContext: (EOEditingContext *)anEditingContext

Overridden by subclasses to perform additional initialization upon being inserted into anEditingContext. 
This is commonly used to assign default values or record the time of insertion. NSObject’s implementation 
merely sends an awakeObject:fromInsertionInEditingContext:  to the receiver’s EOClassDescription. 
Subclasses should invoke super’s implementation before performing their own initialization.

See also: – awakeFromFetchInEditingContext:

classDescription
– (EOClassDescription *)classDescription

Returns the EOClassDescription registered for the receiver’s class. If none is found, posts an 
EOClassDescriptionNeededNotification on behalf of the receiver’s class, allowing an observer to register a 
an EOClassDescription. See the EOClassDescription class specification for more information.

See also: + registerClassDescription:forClass:(EOClassDescription)

classDescriptionForDestinationKey:
– (EOClassDescription *)classDescriptionForDestinationKey:(NSString *)key

Returns the EOClassDescription for the destination objects of the relationship identified by key. If none is 
found, posts an EOClassDescriptionNeededNotification on behalf of the destination objects’ class, 
allowing an observer to register a an EOClassDescription. See the EOClassDescription class specification 
for more information.

See also: + registerClassDescription:forClass:(EOClassDescription), 
– classDescriptionForDestinationKey:

clearProperties
– (void)clearProperties

Sets all of the receiver’s to-one and to-many relationships to nil . EOEditingContexts use this method to 
break circular references among objects when they’re deallocated. You should never need to invoke this 
method or override it.

See also: – toOneRelationshipKeys, – toManyRelationshipKeys, – takeValue:forKey:



14

deleteRuleForRelationshipKey:
– (EODeleteRule)deleteRuleForRelationshipKey:(NSString *)relationshipKey

Returns a rule indicating how to handle the destination of the receiver’s relationship named by 
relationshipKey when the receiver is deleted. The delete rule is one of:

EODeleteRuleNullify
EODeleteRuleCascade
EODeleteRuleDeny

For example, an Invoice object might return EODeleteRuleCascade for the relationship named “lineItems”, 
since when an invoice is deleted, its line items should be as well.

See also: – propagateDeleteWithEditingContext:, –validateForDelete, 
– deleteRuleForRelationshipKey:(EOClassDescription)

editingContext
– (EOEditingContext *)editingContext

Returns the EOEditingContext that holds the receiver.

entityName
– (NSString *)entityName

Returns the name of the receiver’s entity, or nil  if it doesn’t have one.

See also: – entityName (EOClassDescription)

eoDescription
– (NSString *)eoDescription

Returns a full description of the receiver’s property values by extracting them via the key-value coding 
methods. An object referenced through relationships is listed with the results of an eoShallowDescription 
message (to avoid infinite recursion through cyclical relationships).

This method is useful for debugging. You can define your enterprise object’s description method to invoke 
this one, so that the debugger’s print-object command (po on the command line) automatically displays this 
description. You can also invoke this method directly on the command line.

See also: – eoShallowDescription



15

 

eoShallowDescription
– (NSString *)eoShallowDescription

Returns a string containing the receiver’s class and entity names, along with the memory address of its id.

See also: – eoDescription

handleQueryWithUnboundKey:
– (id)handleQueryWithUnboundKey:(NSString *)key

Invoked from valueForKey: when it finds no property binding for key. NSObject’s implementation raises 
an NSInvalidArgumentException. Subclasses can override it to handle the query in some other way.

See also: – handleTakeValue:forUnboundKey:

handleTakeValue:forUnboundKey:
– (void)handleTakeValue:(id)value forUnboundKey: (NSString *)key

Invoked from takeValue:forKey:  when it finds no property binding for key. NSObject’s implementation 
raises an NSInvalidArgumentException. Subclasses can override it to handle the request in some other way.

See also: – handleQueryWithUnboundKey:

initWithEditingContext:classDescription:globalID:
– initWithEditingContext: (EOEditingContext *)anEditingContext

classDescription:(EOClassDescription *)aClassDescription
globalID: (EOGlobalID *)globalID

Overridden by subclasses to perform initialization with the extra arguments provided. NSObject’s 
implementation simply invokes init .

See also: – createInstanceWithEditingContext:classDescription:globalID:(EOClassDescription), 

inverseForRelationshipKey:
– (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey

Returns the name of the relationship pointing back to the receiver’s class or entity from that named by 
relationshipKey, or nil  if there isn’t one. With EOEntity and EORelationship, for example, reciprocality is 
determined by the join attributes of the two EORelationships.



16

You might override this method for reciprocal relationships that aren’t defined using the same join 
attributes. For example, if a Member object has a relationship to CreditCard based on the card number, but 
a CreditCard has a relationship to Member based on the Member’s primary key, both classes need to 
override this method. This is how Member might implement it:

- (NSString *)inverseForRelationshipKey:(NSString *)relationshipKey

{

    if ([relationshipKey isEqual:@"creditCard"]) return @"member";

    return [super inverseForRelationshipKey:relationshipKey];

}

See also: – inverseForRelationshipKey:(EOClassDescription)

isToManyKey:
– (BOOL)isToManyKey:(NSString *)key

Returns YES if the receiver has a to-many relationship identified by key, NO otherwise.

See also: – toManyRelationshipKeys, – toOneRelationshipKeys

ownsDestinationObjectsForRelationshipKey:
– (BOOL)ownsDestinationObjectsForRelationshipKey:(NSString *)key

Returns YES if the receiver has a relationship identified by key that owns its destination, NO otherwise. If 
an object owns the destination for a relationship, then when that destination object is removed from the 
relationship, it’s automatically deleted. Ownership of a relationship thus contrasts with a delete rule, in that 
the first applies when the destination is removed and the second applies when the source is deleted.

See also: – deleteRuleForRelationshipKey:, 
– ownsDestinationObjectsForRelationshipKey:(EOClassDescription), 
– ownsDestination(EORelationship)

propagateDeleteWithEditingContext:
– (void)propagateDeleteWithEditingContext:(EOEditingContext *)anEditingContext

Sends a propagateDeleteForObject:editingContext: message to the receiver’s EOClassDescription. This 
causes the destination objects of the receiver’s relationships to be deleted according to the delete rule for 
each relationship:



17

 

Delete Rule Action

EODeleteRuleNullify The destination object is simply removed from the relationship,
and the receiver is likewise removed from the destination’s
reciprocal relationship if there is one.

EODeleteRuleCascade As above, but the destination object is also deleted and
sent a propagateDeleteWithEditingContext: message.

EODeleteRuleDeny Applied in validateForDelete, not in this method.

See also: – deleteRuleForRelationshipKey:

removeObject:fromBothSidesOfRelationshipWithKey:
– (void)removeObject:(id)anObject fromBothSidesOfRelationshipWithKey:(NSString *)key

Removes anObject from the receiver’s relationship identified by key, and also removes the receiver from 
anObject’s reciprocal relationship if there is one. For a to-one relationship, anObject is removed using 
takeValue:forKey:  with nil  as the value. For a to-many relationship, anObject is removed using 
removeObject:fromPropertyWithKey: .

See also: – addObject:toBothSidesOfRelationshipWithKey:

removeObject:fromPropertyWithKey:
– (void)removeObject:(id)anObject fromPropertyWithKey: (NSString *)key

Removes anObject from the receiver’s to-many relationship identified by key, without modifying any 
reciprocal relationship. Similar to takeValue:forKey: , this method first attempts to invoke a method of the 
form removeFromKey:. If the receiver doesn’t have such a method, this method gets the property array 
using valueForKey: and operates directly on that.

If the array is mutable, this method simply locates anObject and removes it using removeObjectAtIndex:. 
Otherwise it constructs a new array containing any existing objects minus anObject, then sets it using 
takeValue:forKey: .

See also: – addObject:toPropertyWithKey: , – removeObject:fromBothSidesOfRelationshipWithKey:

snapshot
– (NSDictionary *)snapshot

Returns an NSDictionary whose keys are those of the receiver’s attributes, to-one relationships, and 
to-many relationships, and whose values are the values of those properties, with EONull substituted for nil . 



18

For to-many relationships, the dictionary contains shallow copies of the arrays to preserve the ids of the 
contents.

See also: – updateFromSnapshot:, –allPropertyKeys, –valueForKey:

takeValue:forKey:
– (void)takeValue:(id)value forKey: (NSString *)key

Sets the value for the property identified by key to value. NSObject’s implementation does so by first 
checking the receiver for a selector of the form setKey:, invoking it if there is one. If there’s no such method, 
and accessInstanceVariablesDirectly returns YES, NSObject’s implementation checks for an instance 
variable named key and sets the value directly, autoreleasing the old value and retaining the new one.

If there’s neither an accessor method nor an instance variable matching key, NSObject’s implementation 
invokes handleTakeValue:forUnboundKey: as a fallback mechanism. Subclasses can override 
handleTakeValue:forUnboundKey: to handle the request in some other way.

See also: – takeValue:forKeyPath:, – takeValuesFromDictionary:, –valueForKey:

takeValue:forKeyPath:
– (void)takeValue:(id)value forKeyPath: (NSString *)keyPath

Sets the value for the derived property identified by keyPath to value. A key path has the form 
relationship.property (with one or more relationships); for example “department.name”. NSObject’s 
implementation of this method gets the destination object for each relationship using valueForKey:, and 
sends the final object a takeValue:forKey:  message with value and property.

See also: – takeValuesFromDictionary:, –valueForKeyPath:

takeValuesFromDictionary:
– (void)takeValuesFromDictionary:(NSDictionary *)aDictionary

Sets properties of the receiver with values from aDictionary, using their keys to identify the properties. 
NSObject’s implementation invokes takeValue:forKey:  for each key-value pair, substituting nil  for 
EONull values in aDictionary.

See also: – updateFromSnapshot:, – takeValue:forKeyPath:, –valuesForKeys:



19

 

toManyRelationshipKeys
– (NSArray *)toManyRelationshipKeys

Returns the names of the receiver’s to-many relationships, as determined from the EOClassDescription. 
You might wish to override this method to add keys for relationships not defined by the 
EOClassDescription. The access layer’s subclass of EOClassDescription, EOEntityClassDescription, 
returns the names of to-many relationships designated as class properties.

See also: – toOneRelationshipKeys., –attributeKeys, –attributeKeys, 
– toManyRelationshipKeys(EOClassDescription)

toOneRelationshipKeys
– (NSArray *)toOneRelationshipKeys

Returns the names of the receiver’s to-one relationships, as determined from the EOClassDescription. You 
might wish to override this method to add keys for relationships not defined by the EOClassDescription. 
The access layer’s subclass of EOClassDescription, EOEntityClassDescription, returns the names of to-one 
relationships designated as class properties.

See also: – toManyRelationshipKeys., –attributeKeys, –attributeKeys, 
– toOneRelationshipKeys(EOClassDescription)

unableToSetNilForKey:
– (void)unableToSetNilForKey:(NSString *)key

Invoked from takeValue:forKey:  when it’s given a nil  value for a scalar property (such as an int  or a float). 
NSObject’s implementation raises an NSInvalidArgumentException. Subclasses can override it to handle 
the request in some other way, such as by substituting zero or a sentinel value and invoking 
takeValue:forKey:  again.

updateFromSnapshot:
– (void)updateFromSnapshot:(NSDictionary *)aSnapshot

Takes the values from aSnapshot, setting each one according to its key using takeValue:forKey: . In the 
process, EONull values are converted to nil , and array values are set as shallow mutable copies to preserve 
the ids of the contents.

See also: – takeValuesFromDictionary:, –snapshot



20

validateForDelete
– (NSException *)validateForDelete

Confirms that the receiver can be deleted in its current state, returning nil  if it can or an NSException that 
the sender may raise if it can’t. For example, an object can’t be deleted if it has a relationship with a delete 
rule of EODeleteRuleDeny and that relationship has a destination object.

NSObject’s implementation sends the receiver’s EOClassDescription a validateObjectForDelete: 
message (which performs basic checking based on the presence or absence of values). Subclasses should 
invoke super’s implementation before performing their own validation, and should combine any exception 
returned by super’s implementation with their own:

- (NSException *)validateForDelete

{

    NSException *exception = [super validateForDelete];

    if (/* some other violation */ ) {

        NSException *newException = /* the extra exception */;

        exception = [NSException aggregateExceptionWithExceptions:[NSArray

             arrayWithObjects:exception, newException, nil]];

    }

    return exception;

}

See also: – validateForInsert, –validateForSave, –validateForUpdate, –validateValue:forKey: , 
+ validationExceptionWithFormat: (NSException Additions)

validateForInsert
– (NSException *)validateForInsert

Confirms that the receiver can be inserted in its current state, returning nil  if it can or an NSException that 
can be raised if it can’t. NSObject’s implementation simply invokes validateForSave.

See also: – validateForDelete, –validateForSave, –validateForUpdate, –validateValue:forKey: , 
+ validationExceptionWithFormat: (NSException Additions)

validateForSave
– (NSException *)validateForSave

Confirms that the receiver can be saved in its current state, returning nil  if it can or an NSException that the 
sender may raise if it can’t. NSObject’s implementation sends the receiver’s EOClassDescription a 
validateObjectForSave: message, then iterates through all of the receiver’s properties, invoking 
validateValue:forKey:  for each one. If this results in more than one exception, the exception returned 



21

 

contains the additional ones in its userInfo dictionary under the EOAdditionalExceptions key. Subclasses 
should invoke super’s implementation before performing their own validation, and should combine any 
exception returned by super’s implementation with their own:

- (NSException *)validateForSave

{

    NSException *exception = [super validateForSave];

    if (/* some other violation */ ) {

        NSException *newException = /* the extra exception */;

        exception = [NSException aggregateExceptionWithExceptions:[NSArray

             arrayWithObjects:exception, newException, nil]];

    }

    return exception;

}

Enterprise objects can implement this method to check that certain relations between properties hold; for 
example, that the end date of a vacation period follows the begin date. To validate an individual property, 
you can simply implement a method for it as described under validateValue:forKey: .

See also: – validateForDelete, –validateForInsert, –validateForUpdate, 
+ validationExceptionWithFormat: (NSException Additions), 
+ aggregateExceptionWithExceptions:(NSException Additions)

validateForUpdate
– (NSException *)validateForUpdate

Confirms that the receiver can be updated in its current state, returning nil  if it can or an NSException that 
the sender may raise if it can’t. NSObject’s implementation simply invokes validateForSave.

See also: – validateForDelete, –validateForInsert, –validateForSave, –validateValue:forKey: , 
+ validationExceptionWithFormat: (NSException Additions)

validateValue:forKey:
– (NSException *)validateValue:(id *)valuePointer forKey: (NSString *)key

Confirms that the value referenced by valuePointer is legal for the receiver, returning nil  if it can or an 
EOValidationException that the sender may raise if it can’t. NSObject’s implementation sends a 
validateValue:forKey:  message to the receiver’s EOClassDescription. If that message doesn’t return an 
exception, it checks for a method of the form validateKey: (for example, validateBudget: for a key of 
“budget”) and invokes it, returning the result.



22

Enterprise objects can implement individual validateKey: methods to check limits, test for nonsense values, 
and otherwise confirm individual properties. To validate multiple properties based on relations among them, 
override the appropriate validateFor... method.

See also: – validateForDelete, –validateForInsert, –validateForSave, –validateForUpdate, 
+ validationExceptionWithFormat: (NSException Additions)

valueForKey:
– (id)valueForKey:(NSString *)key

Returns the value for the property identified by key. NSObject’s implementation does so by first checking 
the receiver for a method named key, invoking it if there is one. If there’s no such method, and 
accessInstanceVariablesDirectly returns YES, NSObject’s implementation checks for an instance 
variable named key and returns the instance variable.

If there’s neither an accessor method nor an instance variable matching key, NSObject’s implementation 
invokes handleQueryWithUnboundKey: as a fallback mechanism. Subclasses can override 
handleQueryWithUnboundKey: to handle the request in some other way.

See also: – valueForKeyPath:, –valuesForKeys:, – takeValue:forKey:

valueForKeyPath:
– (id)valueForKeyPath:(NSString *)keyPath

Returns the value for the derived property identified by keyPath. A key path has the form 
relationship.property (with one or more relationships); for example “department.name”. NSObject’s 
implementation of this method gets the destination object for each relationship using valueForKey:, and 
returns the result of a valueForKey: message to the final object.

See also: – valuesForKeys:, – takeValue:forKeyPath:

valuesForKeys:
– (NSDictionary *)valuesForKeys:(NSArray *)keys

Returns an NSDictionary containing the property values identified by each of keys. NSObject’s 
implementation invokes valueForKey: for each key in keys, substituting EONull in the NSDictionary for 
returned nil  values.

See also: – valueForKeyPath:, – takeValuesFromDictionary:



23

 

willChange
– (void)willChange

Notifies any observers that the receiver’s state is about to change, by sending each an objectWillChange: 
message. See the EOObserverCenter class specification for more information.


