
1

EOAssociation

Inherits From: EODelayedObserver : NSObject

Conforms To: NSCoding
EOObserving (EODelayedObserver)
NSObject (NSObject)

Declared In: EOInterface/EOAssociation.h

Class at a Glance

Purpose
An EOAssociation maintains a two-way binding between the properties of a display object, typically a control,
and the properties of one or more enterprise objects contained in one or more EODIsplayGroups. You typically
set them up using Interface Builder, using the programmatic interface most often when defining subclasses. See
these subclass specifications for information on the different kinds of EOAssociations:

• EOActionAssociation • EOActionInsertionAssociation
• EOColumnAssociation • EOTableViewAssociation
• EOControlAssociation • EOActionCellAssociation
• EODetailSelectionAssociation • EOPickTextAssociation
• EOMasterDetailAssociation • EOMasterPeerAssociation
• EOPopUpAssociation • EOTextAssociation

Principal Attributes
• Monitors a single display object
• Has multiple aspects that control state of the display object
• Can be bound to multiple EODisplayGroups

Creation
Interface Builder
– initWithObject: Designated initializer.

2

Class Description

EOAssociation defines the mechanism that transfers values between EODisplayGroups and the user
interface of an application. An EOAssociation instance is tied to a single display object, a user-interface
object or other kind of object that manages values intended for display. The EOAssociation takes over
certain outlets of the display object and sets its value according to the selection in the EODisplayGroup. An
EOAssociation also has various aspects, which define the different parameters of the display object that it
controls, such as the value or values displayed and whether the display object is enabled or editable. Each
aspect can be bound to an EODisplayGroup with a key denoting a property of the enterprise objects in the
EODisplayGroup. The value or values of this property determine the value for the EOAssociation’s aspect.

EOAssociation is an abstract class, defining only the general mechanism for binding display objects to
EODisplayGroups. You always instantiate instances of its various subclasses, which define behavior
specific to different kinds of display objects. See the listing in the Class at a Glance section for standard
EOAssociation subclasses.

You normally set up EOAssociations using Interface Builder; “Setting up an EOAssociation
Programmatically” below shows how to set them up in code. EOAssociation’s programmatic interface is
more important when defining custom EOAssociation subclasses. “Creating a Subclass of EOAssociation”
discusses this process in detail.

How EOAssociations Work

An EOAssociation monitors its display object for changes in its value and for other events, and monitors its
EODisplayGroups for changes in the selection or in the contents (the enterprise objects). A change at either
end causes the EOAssociation to query the object at that end for whatever needs to be done, and to take
action on the object at the other end. For example, when the selection changes in the EODisplayGroup, the
EOAssociation gets the new value from the selected enterprise object and puts it in the display object. The
following sections describe in detail how the EOAssociation works with the object at either end.

The Display Object

An EOAssociation is tied to a single display object, which owns it. Each EOAssociation subclass takes over
a particular set of the display object’s outlets, such as its target, delegate, or data source, and acts in that role
by receiving the messages defined for it. For example, an EOControlAssociation sets itself as the target of
its display object, an NSControl, and assigns the control’s action method to a method that it implements.
When the control is acted upon, it sends its action to the EOAssociation, which takes the control’s value and
sends it to the EODisplayGroup to update the selected enterprise object. An EOControlAssociation also sets
itself as the control’s delegate to receive various editing and validation delegate messages.

Because the EOAssociation takes over various outlets of its display object, these outlets can’t be set or used
for other purposes. EOAssociation’s objectKeysTaken class method returns the names of these outlets.
Interface Builder also disables them in its Connections Inspector when a display object has an
EOAssociation assigned to it. For example, a button with an EOControlAssociation has its target outlet
dimmed in the inspector.

3

Although display objects are typically user-interface objects such as text fields and pop-up lists, they can in
fact be any kind of object. Two notable examples of non-interface display objects are EODisplayGroups in
master-detail and master-peer configurations. These configurations result in the detail or peer
EODisplayGroup displaying the destination values for a to-many relationship selected in the master
EODisplayGroup. See the EOMasterDetailAssociation, EOMasterPeerAssociation, and
EODetailSelectionAssociation class specifications for more information on master-detail and master-peer
configurations.

Bindings: Aspects, EODisplayGroups, and Keys

Though an EOAssociation has only one display object, it can have any number of aspects, which define
what the EOAssociation monitors in its EODisplayGroups. Aspects are bound to EODisplayGroups
through keys describing class properties or other properties of the enterprise objects in the
EODisplayGroups. Depending on the type of EOAssociation, there may be only one aspect or several
aspects. Where there are several, they can be optional or mandatory; they may all have to be bound to a
single EODisplayGroup; they may be bound to different EODisplayGroups; or they may be mutually
exclusive, in that if one is used the other must not be used.

An aspect reflects a characteristic of the EOAssociation’s display object: the value it displays, the list of
possible values it can contain, whether it’s enabled or editable, and so on. Most EOAssociations have a
“value” aspect, for example. The aspect’s value is determined by the values of enterprise object properties
in the EODisplayGroup that the aspect is bound to. The value can be taken from all of the enterprise objects
in the EODisplayGroup, or from just the selected ones. Some aspects are “read-only” from the
EODisplayGroup, merely causing changes in the display object when the EODisplayGroup changes; others
affect the properties of enterprise objects in the EODisplayGroup when the EOAssociation’s display object
changes.

For example, an EOControlAssociation defines the aspects “value” and “enabled”. To set up a text field so
that it displays the salary for the selected enterprise object, you create an EOControlAssociation for the text
field, and bind its “value” aspect to the “salary” key of the EODisplayGroup containing the enterprise
objects. You can also bind its “enabled” aspect to some key such as “eligibleForRaise”, so that if this
property has a non-zero value the user can edit the salary value in the text field. Then, when the user presses
the Return key or otherwise finishes editing, the new value is sent to the EODisplayGroup.

A multi-valued aspect can represent the destination of a to-many relationship, or it can define the range of
possible values for an individual object’s property. One such EOAssociation subclass,
EOPopUpAssociation, has a “titles” aspect that’s set to all of the possible values for a given key; these
values then make up the list of items in the pop-up list. It also has a “selectedObject” aspect, bound to an
EODisplayGroup whose entities use those value, that selects the pop-up list item for the value of the
selected enterprise object in the EODisplayGroup. Binding the “titles” aspect to the “name” key of a
Department entity’s EODisplayGroup, for example, results in a pop-up list containing the names of all
departments.

EOAssociations register themselves with their EODisplayGroups in order to be notified of changes in their
enterprise objects. When an EODisplayGroup changes its selection or contents, its EOAssociations are sent

4

a subjectChanged message. This message doesn’t indicate which EODisplayGroup has changed, so the
EOAssociation must query each of its EODisplayGroup as described below under “Monitoring Changes
from the EODisplayGroup.” When the EOAssociation needs to send a change to an EODisplayGroup, it
typically does so by invoking setValue:forAspect:. This process is described under “Monitoring Changes
from the Display Object.”

Setting up an EOAssociation Programmatically

Though you normally set up EOAssociations with the Interface Builder application, you can do so
programmatically as well. Because EOAssociations coordinate the actions of many objects, linking a
display object to a control group is a multi-step process, as shown by this code fragment:

NSTextField *salaryField; /* Assume this exists. */

EODisplayGroup *employeeGroup; /* Assume this exists. */

EOControlAssociation *myAssoc;

myAssoc = [[EOControlAssociation alloc] initWithObject:salaryField];

[myAssoc bindAspect:@"value" displayGroup:employeeGroup key:@"salary"];

[myAssoc bindAspect:@"enabled" displayGroup:employeeGroup key:@"eligibleForRaise"];

[myAssoc establishConnection];

[myAssoc release];

This example first allocates an EOAssociation subclass and initializes it with the display object it monitors,
in this case salaryField. At this point the EOAssociation is tenuously linked to salaryField; it hasn’t
appropriated any of the field’s outlets, and hasn’t been retained by the field. Before this can happen, the
EOAssociation must have at least one aspect bound to an EODisplayGroup. This is accomplished by the
two bindAspect:displayGroup:key: messages, which define the nature of the field’s interaction with
employeeGroup. Now all of the potential connections have been put in place, and an establishConnection
message causes them to be confirmed: salaryField is made to assume myAssoc as its target and delegate,
and myAssoc is registered as an observer of employeeGroup. At this point myAssoc is retained by the
field, so it can be safely released.

Creating a Subclass of EOAssociation

If none of the standard EOAssociation subclasses meets your needs, you can create a new one without much
effort. To do so, you need to define four areas of functionality:

• What your subclass monitors and which display objects is can work with.
• How your subclass establishes its connections with its display object and its EODisplayGroups.
• How it monitors the EODisplayGroups and updates the display object.
• How it monitors the display object and updates the EODisplayGroups.

The following four sections describe how to do each of these.

5

Defining Capabilities

A significant part of creating an EOAssociation subclass is defining and advertising what the subclass works
with. This allows Interface Builder to make your subclass available in its Connections Inspector pop-up list,
just like any other. The characteristics that your subclass should define are:

Aspects (required). Your EOAssociation subclass must define an aspects class method that returns
an NSArray of aspect names, as NSStrings. Some standard aspects are:

Aspect Name Use

value The value of an attribute or relationship
enabled Whether the control should be enabled
titles All existing values for an attribute
selectedTitle The value of the selected attribute (bound to the same key as “titles”)

What the subclass works with (required). Interface Builder asks each EOAssociation subclass if it
can work with a given object when it displays its Connections Inspector. Your subclass should
implement the isUsableWithObject: class method to examine the object provided and return YES
if it can work with that object. This method can examine the class of the object provided, or any of
its attributes, to determine whether it can work with the object. For example, EOPopUpAssociation
verifies that the object is an NSPopUpButton, while EOMasterDetailAssociation checks that the
object is an EODisplayGroup whose data source is an EODetailDataSource.

Aspect signatures (optional). Aspects by default are made available for any kind of property—
single-valued attributes, to-one relationships, and to-many relationships. If your subclass has aspects
that only have meaning for one or two of these, it should define an aspectSignatures class method
that returns an NSArray of NSStrings corresponding to the aspects. Each string should contain a
subset of the string “A1M”, where “A” indicates that the aspect can be used with attributes (where
the value is a value-bearing object such as NSString or NSNumber), “1” that it can be used with
to-one relationships (where the value is an enterprise object), and “M” indicates that the aspect can
be used with to-many relationships (where the value is an array of enterprise objects).
EOControlAssociation only displays single attributes, so its aspect signature for “value” and
“enabled” is “A”, “A”. EOMasterDetailAssociation only works with relationships, so its aspect
signature for “parent” is “1M”.

Which outlets it uses (optional). Interface Builder disables connections to outlets used by an
EOAssociation, so if your subclass uses any it should advertise them by defining the
objectKeysTaken class method to return an NSArray containing the names of the outlets. These are
typically the standard “target”, “delegate”, “dataSource”, and so on.

EOAssociation classes superseded (optional). If your EOAssociation subclass applies uniquely to
display objects that other kinds of EOAssociations simply happen to work with, it should implement
the associationClassesSuperseded class method to return an array of these classes.
EOPopUpAssociation, for example, works with EOPopUpButton, which as a subclass of NSControl
is also eligible for the EOControlAssociation. Since this isn’t a meaningful or useful EOAssociation
for a pop-up button, EOPopUpAssociation supersedes it, and Interface Builder doesn’t present it in
its Connections Inspector when a pop-up button is selected.

6

Display name (optional). If you want your subclass to be listed in Interface Builder’s Associations
pop-up list with a name other than that of its class, it can override the displayName to return that
name. This is often done to truncate long names so they fit in the pop-up button.

Primary aspect (optional). If your subclass implements the primaryAspect class method, Interface
Builder automatically selects it the first time the user drags a connection from the display object and
chooses your EOAssociation subclass in the Connections Inspector.

Binding ability (optional). If your subclass defines aspects that are mutually exclusive, available
only for a particular kind of display object, or are otherwise not always available, you might want to
implement the instance method canBindAspect:displayGroup:key: to check these types of
conditions. Interface Builder uses this information to enable and disable aspects, to guide the user in
property setting up EOAssociations.

Priority (optional). EOAssociation uses the default EODelayedObserver priority of
EODelayedObserverPriorityThird. If your subclass need a higher or lower priority, it should override
the priority method appropriately. EOMasterDetailAssociation, for example, uses
EODelayedObserverPrioritySecond to catch updates before other EOAssociations based on it.

Setting Up

EOAssociation’s designated initializer is initWithObject: , but you rarely need to override this method.
Instead, you override establishConnection, which is where the real initialization takes place, as described
above in “Setting up an EOAssociation Programmatically.” Your implementation of this method should
invoke super’s implementation to establish the aspect bindings, which makes the EOAssociation an
observer of its EODisplayGroups, then set the outlets and other state of the display object (and any
associated objects). This usually takes the form of setTarget:, setDelegate:, and other messages to plug in
the outlets, along with messages such as setAction: to register a method that your EOAssociation subclass
implements and that should be invoked by the display object. For display objects that work with others, such
as NSControls and NSCells, your subclass might even need to get the companion object to set something.

Once your EOAssociation object has tied itself to its EODisplayGroups and its display object, it’s ready to
work.

Monitoring Changes from the EODisplayGroup

An EOAssociation is notified of changes in its EODisplayGroups through the subjectChanged method.
This lets the EOAssociation object know that one or more of its EODisplayGroups has changed its selection
or its contents, or both. Your EOAssociation can then query each of its EODisplayGroups for what’s
changed, and update its display object accordingly. To get the EODisplayGroup for a given aspect, you can
use the displayGroupForAspect: method, and to get the key it’s bound to, use
displayGroupKeyForAspect:.

How your EOAssociation handles this message depends on whether the aspect represents a single value, as
a text field does, or multiple values, as a table column or matrix does. A single-value aspect needs only to
be updated with the new value. Your EOAssociation can do this by invoking its own valueForAspect:

7

method and passing that value to the display object in whatever way necessary, such as with a
setObjectValue: or setEnabled: message.

A multi-valued aspect requires a bit more care for efficiency’s sake. In this case, your EOAssociation should
send the EODisplayGroup contentsChanged and selectionChanged messages to determine what has
changed. If the contents have changed, your EOAssociation should reload all values for the aspect in
question and update its display object accordingly. If only the selection has changed, your EOAssociation
should simply get the selection indexes from the EODisplayGroup and update the selection in its display
object, if appropriate. For aspects that don’t reflect the selection, your EOAssociation need do nothing.

Monitoring Changes from the Display Object

Changes in the display object make their way to your EOAssociation through whatever messages are
defined for the outlets the EOAssociation took over. A control EOAssociation sends its display object a
setAction: message to register an action method, which is then invoked when the uses clicks the button,
edits text and presses Return, or otherwise operates the control. This method should then perform whatever
operation is necessary, whether that be to update a value in the EODisplayGroup or send a message to the
EODisplayGroup or to its enterprise objects. For example, an EOAssociation used to display a value must
update the value of the selected enterprise object by invoking setValue:forAspect: with the “value” aspect.
Another EOAssociation might be tied to a Grant Raise button that sends a raiseSalary message to the
selected enterprise objects when the button is clicked.

EOAssociations that work with multiple EODisplayGroups and enterprise objects might need to interact
more directly with the EODisplayGroups. They can retrieve the EODisplayGroup for a particular aspect
using displayGroupForAspect:, and the key it’s bound by with displayGroupKeyForAspect:. Once it
has these, the EOAssociation can send the EODisplayGroup setSelectedObjectValue:forKey:,
setValue:forObject:key:, or setValue:forObjectAtIndex:key: messages as needed to effect its changes.

For display objects that must be edited to change their values, such as text fields, the EOAssociation must
respond to messages indicating that the display object has begun and ended editing, and inform the
EODisplayGroup for its primary or value aspect with associationDidBeginEditing: and
associationDidEndEditing: messages. EODisplayGroups may need to end editing themselves, such as
when saving changes. Your EOAssociation subclass should implement endEditing to handle this case by
sending whatever value it currently has back to the EOAssociation using a setValue:forAspect: message.
If it can’t do this, the EOAssociation should return NO to disallow whatever operation invoked endEditing.

EOAssociations for display objects that present multiple values must also monitor the selection in the
display object, updating the EODisplayGroup with a setSelectionIndexes: message any time the selection
changes in the display object.

Validation

Although validation of values entered by the user can happen in several places, EOAssociations generally
concern themselves only with data entry errors. These errors are typically caught by the display object or
an NSFormatter, and result in a message to the delegate of the display object. For example, an NSControl

8

sends control:isValidObject: and control:didFailToFormatString:errorDescription: to its delegate,
allowing the delegate to validate values itself or to handle errors caught by an NSFormatter. Your
implementation of a method such as control:isValidObject: should simply try to save the new value, using
EOAssociation’s setValue:forAspect: or setValue:forAspect:atIndex:, returning YES or NO as that
message does. For control:didFailToFormatString:errorDescription: , the typical response should be to
invoke shouldEndEditingForAspect:invalidInput:errorDescription: or
shouldEndEditingForAspect:invalidInput:errorDescription:index: .

Adopted Protocols

NSCoding – encodeWithCoder:
– initWithCoder:

Method Types

Declaring capabilities + aspects
+ aspectSignatures
+ objectKeysTaken
+ isUsableWithObject:
+ associationClassesSuperseded
+ displayName
+ primaryAspect
– canBindAspect:displayGroup:key:

Getting all possible EOAssociations for a display object
+ associationClassesForObject:

Creating and configuring instances – initWithObject:
– bindAspect:displayGroup:key:
– establishConnection
– breakConnection
– copyMatchingBindingsFromAssociation:

Getting the display object – object

Examining bindings – displayGroupForAspect:
– displayGroupKeyForAspect:

Updating values – subjectChanged
– endEditing

9

Accessing enterprise object values – setValue:forAspect:
– setValue:forAspect:atIndex:
– valueForAspect:
– valueForAspect:atIndex:

Handling validation errors – shouldEndEditingForAspect:invalidInput:errorDescription:
– shouldEndEditingForAspect:invalidInput:errorDescription:index:

Class Methods

aspects
+ (NSArray *)aspects

Overridden by subclasses to return the names of the receiving class’s aspects, as NSStrings. Subclasses
should include their superclass’s aspects and add their own when overriding this method.

See also: + aspectSignatures

aspectSignatures
+ (NSArray *)aspectSignatures

Overridden by subclasses to return the signatures of the receiver’s aspects, an array of string objects
matching its aspects array index for index. Each signature string can contain the following characters:

Signature Character Meaning

A The aspect can be bound to attributes.
1 (one) The aspect can be bound to to-one relationships.
M The aspect can be bound to to-many relationships.

An aspect signature string of “A1”, for example, means the corresponding aspect can be bound to either
attributes or to-one relationships. An empty signature indicates that the corresponding aspect can be bound
to an EODisplayGroup without a key (that is, the key is irrelevant). Interface Builder uses aspect signatures
to enable and disable keys in its Connections inspectors.

EOAssociation’s implementation of this method returns an array of “A1M” of the length of its aspects array.

See also: + aspects

10

associationClassesForObject:
+ (NSArray *)associationClassesForObject:(id)aDisplayObject

Returns the subclasses of EOAssociation usable with aDisplayObject. Sends isUsableWithObject: to
every loaded subclass of EOAssociation, adding those that respond YES to the array. Subclasses shouldn’t
override this method; override isUsableWithObject: instead.

associationClassesSuperseded
+ (NSArray *)associationClassesSuperseded

Overridden by subclasses to return the other EOAssociation classes that the receiver supplants. This allows
a subclass to mask its superclasses from the Connection Inspector’s pop-up list in Interface Builder, since
the subclass always includes the aspects and functionality of its superclasses. For example,
EOPopUpAssociation supersedes EOControlAssociation, because for pop-up buttons an
EOPopUpAssociation is always more appropriate to use.

displayName
+ (NSString *)displayName

Returns the name used by Interface Builder in the Connection Inspector’s pop-up list. EOAssociation’s
implementation simply returns the name of the receiving class.

isUsableWithObject:
+ (BOOL)isUsableWithObject:(id)aDisplayObject

Overridden by subclasses to return YES if instances of the receiving class are usable with aDisplayObject,
NO if they aren’t. The receiving class can examine any relevant characteristic of aDisplayObject—its class,
configuration (such as whether an NSMatrix operates in radio mode), and so on.

objectKeysTaken
+ (NSArray *)objectKeysTaken

Overridden by subclasses to return the names of display object outlets that instances assume control of, such
as “target” and “delegate”. Interface Builder uses this information to disable connections from these outlets
in its Connections Inspector.

11

primaryAspect
+ (NSString *)primaryAspect

Overridden by subclasses to return the default aspect, usually one denoting the displayed value, which by
convention is named “value”. EOAssociation’s implementation returns nil .

Instance Methods

bindAspect:displayGroup:key:
– (void)bindAspect:(NSString *)aspectName

displayGroup:(EODisplayGroup *)aDisplayGroup
key:(NSString *)key

Defines the receiver’s link between its display object and aDisplayGroup. aspectName is the name of the
aspect it observer in its display object, and key is the name of the property it observes in aDisplayGroup.
Invoke establishConnection after this method to finish setting up the binding. See “Setting up an
EOAssociation Programmatically” in the class description for more information.

See also: – initWithObject: , –establishConnection

breakConnection
– (void)breakConnection

Removes the receiver from its EODisplayGroup and display object. This causes it to be released, so be sure
to retain the EOAssociation before invoking this method if you want to keep it for another use. Subclasses
should override this method to remove the receiver from any outlets of the display object, such as target or
delegate, and invoke super’s implementation at the end.

See also: – establishConnection

canBindAspect:displayGroup:key:
– (BOOL)canBindAspect:(NSString *)aspectName

displayGroup:(EODisplayGroup *)aDisplayGroup
key:(NSString *)key

Overridden by subclasses to return YES if the receiver can tie an aspect named aspectName from its display
object to the property identified by key in aDisplayGroup, NO if it can’t. aspectName should name an aspect
supported by the receiver’s class.

12

Interface Builder uses this information to disable aspects in its Connections Inspector. Subclasses can
override this method to base their answers on other binds already made, or on characteristics of the
receiver’s display object or of aDisplayGroup. EOAssociation’s implementation always returns YES.

See also: + aspects, – localKeys(EODisplayGroup), –attributeKeys (EOClassDescription),
– toOneRelationshipKeys(EOClassDescription),
– toManyRelationshipKeys(EOClassDescription)

copyMatchingBindingsFromAssociation:
– (void)copyMatchingBindingsFromAssociation:(EOAssociation *)anAssociation

Duplicates the bindings of anAssociation in the receiver. For each aspect of anAssociation that has an
EODisplayGroup, invokes bindAspect:displayGroup:key: with the EODisplayGroup and key for that
aspect.

See also: – displayGroupForAspect:, –displayGroupKeyForAspect:

displayGroupForAspect:
– (EODisplayGroup *)displayGroupForAspect:(NSString *)aspectName

Returns the EODisplayGroup bound to the receiver for aspectName, or nil if there’s no such object.

See also: – displayGroupKeyForAspect:

displayGroupKeyForAspect:
– (NSString *)displayGroupKeyForAspect:(NSString *)aspectName

Returns the EODisplayGroup key bound to the receiver for aspectName, or nil if there’s no
EODisplayGroup.

See also: – displayGroupForAspect:

endEditing
– (BOOL)endEditing

Overridden by subclasses to pass the value of the receiver’s display object to the EODisplayGroup, by
invoking setValue:forAspect: with the display object’s value and the appropriate aspect (typically
“value”). Returns YES if successful, NO if not—specifically if setValue:forAspect: returns NO. The
receiver should also send an associationDidEndEditing: message to its EODisplayGroup.

13

Subclasses whose display objects immediately pass their changes back to the EOAssociation—such as a
button or pop-up list—need not override this method. It’s only needed when the display object’s value is
edited rather than simply set.

EOAssociation’s implementation does nothing but return YES.

establishConnection
– (void)establishConnection

Overridden by subclasses to attach the receiver to the outlets of its display object, and to otherwise configure
the display object (such as by setting its action method). EOAssociation’s implementation subscribes the
receiver as an observer of its EODisplayGroups and causes the display object to retain the receiver.
Subclasses should invoke super’s implementation after establishing their own connections.

See “Setting up an EOAssociation Programmatically” in the class description for more information.

See also: – breakConnection

initWithObject:
– (id)initWithObject: (id)aDisplayObject

Initializes the receiver to monitor and update the value in aDisplayObject, which is typically a
user-interface object or an EODisplayGroup. This is the designated initializer for the EOAssociation class.
Returns self.

Note: Because of the way that EOAssociations are set up, this method doesn’t retain aDisplayObject. See
“Setting up an EOAssociation Programmatically” in the class description for more information.

See also: – bindAspect:displayGroup:key:, –establishConnection

object
– (id)object

Returns the receiver’s display object.

See also: – initWithObject:

14

setValue:forAspect:
– (BOOL)setValue:(id)value forAspect:(NSString *)aspectName

Sets a value of the selected enterprise object in the EODisplayGroup bound to aspectName. Retrieves the
EODisplayGroup and key bound to aspectName, and sends the EODisplayGroup a
setSelectedObjectValue:forKey: message with value and the key as arguments. Returns YES if
successful, or if there’s no EODisplayGroup bound to aspectName. Returns NO if there’s an
EODisplayGroup and it doesn’t accept the new value.

See also: – setValue:forAspect:atIndex:, –valueForAspect:

setValue:forAspect:atIndex:
– (BOOL)setValue:(id)value

forAspect:(NSString *)aspectName
atIndex:(unsigned int)index

Sets a value of the enterprise object at index in the EODisplayGroup bound to aspectName. Retrieves the
EODisplayGroup and key bound to aspectName, and sends the EODisplayGroup a
setValue:forObjectAtIndex:key: message with value, index, and the key as arguments. Returns YES if
successful, or if there’s no EODisplayGroup bound to aspectName. Returns NO if there’s an
EODisplayGroup and it doesn’t accept the new value.

See also: – setValue:forAspect:, –valueForAspect:atIndex:

shouldEndEditingForAspect:invalidInput:errorDescription:
– (BOOL)shouldEndEditingForAspect:(NSString *)aspectName

invalidInput: (NSString *)inputString
errorDescription: (NSString *)errorDescription

Invoked by subclasses when the display object fails to validate its input, this method informs the
EODisplayGroup bound to aspectName with an
association:failedToValidateValue:forKey:object:errorDescription: message, using the
EODisplayGroup’s selected object. Returns the result of that message, or YES if there’s no
EODisplayGroup.

For example, an EOAssociation tied to an NSControl object receives a
control:didFailToFormatString:errorDescription: delegate message when the control’s formatter fails
to format the input string. Its implementation of that method invokes
shouldEndEditingForAspect:invalidInput:errorDescription: .

See also: – shouldEndEditingForAspect:invalidInput:errorDescription:index:

15

shouldEndEditingForAspect:invalidInput:errorDescription:index:
– (BOOL)shouldEndEditingForAspect:(NSString *)aspectName

invalidInput: (NSString *)inputString
errorDescription: (NSString *)errorDescription
index:(unsigned int)index

Works in the same manner as shouldEndEditingForAspect:invalidInput:errorDescription: , but allows
you to specify a particular object by index rather than implicitly specifying the selected object.

subjectChanged
– (void)subjectChanged

Overridden by subclasses to update its state based on its EODisplayGroups, whose selection or contents
may have changed. This method is invoked automatically anytime an EODisplayGroup bound to the
receiver changes. The receiver can query its EODisplayGroup with selectionChanged and
contentsChanged messages to determine how it needs to update.

valueForAspect:
– (id)valueForAspect:(NSString *)aspectName

Returns a value of the selected enterprise object in the EODisplayGroup bound to aspectName. Retrieves
the EODisplayGroup and key bound to aspectName, and sends the EODisplayGroup a
selectedObjectValueForKey: message with the key. Returns nil if there’s no EODisplayGroup or key
bound to aspectName.

See also: – valueForAspect:atIndex:, –setValue:forAspect:

valueForAspect:atIndex:
– (id)valueForAspect:(NSString *)aspectName atIndex:(unsigned int)index

Returns a value of the enterprise object at index in the EODisplayGroup bound to aspectName. Retrieves
the EODisplayGroup and key bound to aspectName, and sends the EODisplayGroup a
valueForObjectAtIndex:key: message with index and the key. Returns nil if there’s no EODisplayGroup
or key bound to aspectName.

See also: – valueForAspect:, –setValue:forAspect:atIndex:

