Class Clusters

The Foundation Frameork’s architecture mas extensice use of class clusters. Class
clusters group a number of pate, concrete subclasses under a public, abstract
superclass. The grouping of classes in thigngimplifies the publicly visible
architecture of an object-oriented frawmrk without reducing its functional richness.

Simple Concept, Complex Interface

To illustrate the class cluster architecture and its benefits, consider the problem of
constructing a class hierargthat defines objects to store numbers ofatint types
(chars, ints, floats, doubleg. Since numbers of dérent types ha maly features in
common (thg can be coverted from one type to another and can be represented as
strings, for @ample), thg could be represented by a single classvéer, their

storage requirements fiif, so it's ineficient to represent them all by the same class.
This suggests the folldng architecture:

Number I
CharI Int Float I Double I

Figure 1-1. A Simple Hierarcly for Number Classes

Number is the abstract superclass that declares in its methods the operations common
to its subclasses. M@ver, it doesnt declare an instancesiable to store a number

The subclasses declare such instaadailes and share in the programmatic iatef
declared by Number

So far, this design is relatiely simple. Havever, if the commonly used modifications
of these basic C types are &kinto account, the diagram looks moredithis:

Number I

—— N

Char UnsignedChar Short UnsignedShort Int Unsignedint I Longlnt I
_I _I _I _I ® 00

Figure 1-2. A More Complete Number Class Hierargh

Topics in OpenStep Programming

The simple concept—creating a class to hold numddees—can easilyuageon to
over adozen classes. The class cluster architecture presents a design that reflects the
simplicity of the concept.

Simple Concept, Simple Interface

Applying the class cluster design to this problem yields the faflag hierarcly
(private classes are in gray):

/WI
3 e e ey e

Figure 1-3. Class Cluster Architecture Applied to Number Classes

Users of this hierarchsee only one public class, Numbhso hav is it possible to
allocate instances of the proper subclass? The answer is indlyaive abstract
superclass handles instantiation.

Creating Instances

The abstract superclass in a class cluster must declare methods for creating instances
of its private subclasses. $tthe superclassresponsibility to dispense an object of

the proper subclass based on the creation method that yoker—you dont, and

cant, choose the class of the instance.

In the Foundation Framaork, you generally create an object byisking a

+ className. method or thealloc...andinit... methods. &king the undation
Framavork’s NSNumber class as amample, you could send these messages to
create number objects:

NSNumber *aChar = [NSNumber numberWithChar:'a’;
NSNumber *anint = [NSNumber numberWithint:1];
NSNumber *aFloat = [NSNumber numberWithFloat:1.0];
NSNumber *aDouble = [NSNumber numberWithDouble:1.0];

(This style of instantiation creates objects that will be deallocated automatically—
See “Object Ownership and Automatic Disposal” for more information. flan
classes also pruide the standardlloc...andinit... methods to create objects that
require you to manage their deallocation.)

Each object returned-aChar, anint, aFloat, andaDouble—may belong to a
different prvate subclass (and i€t does). Although each objestlass

membership is hidden, its intade is public, being the intarfe declared by the
abstract superclass, NSNumb&though it is not precisely correct sttovenient to
consider theChar, anint, aFloat, andaDoubleobjects to be instances of the
NSNumber class, since tfiee created by NSNumber class methods and accessed
through instance method declared by NSNumber

Class Clusters With Multiple Public Superclasses

In the xample abwe, one abstract public class declares the terfor multiple
private subclasses. This is a class cluster in the purest serasolpossible, and often
desirable, to hae two (or possibly more) abstract public classes that declare the
interface for the clusteilhis is @ident in the Bundation Frameork, which includes
these clusters:

Class Cluster Public Superclasses
NSData NSData
NSMutableData
NSArray NSArray
NSMutableArray
NSDictionary NSDictionary
NSMutableDictionary
NSString NSString
NSMutableString

Other clusters of this type alskigt, but these clearly illustrate tnawo abstract nodes
cooperate in declaring the programmatic inded to a class clustdn each of these

clusters, one public node declares methods that all cluster objects can respond to, and
the other node declares methods that are only appropriate for cluster objectsihat allo
their contents to be modified.

This factoring of the clustes’interface helps makan object-oriented framerk’s
programmatic inteeice more gpressie. For example, imagine a Book object that
declares this method:

- (NSString *) title

The book object could return itevn instance &riable or create a westring object and
return that—it doest’'matter It's clear from this declaration that the returned string
cant be modified. Aty attempt to modify the returned object will elicit a compiler
warning.

Topics in OpenStep Programming

Creating Subclasses Within a Class Cluster

The class cluster architectureatves a trade-débetween simplicity and

extensibility: Having a fev public classes stand in for a multitude of/até ones

males it easier to learn and use the classes in avrarkéut some&vhat harder to

create subclasses withinyaof the clusters. Hoever, if it' s rarely necessary to create

a subclass, then the cluster architecture is clearly beneficial. Clusters are used in the
Foundation Frameork in just these situations.

If you find that a cluster doesiprovide the functionality your program needs, then

a subclass may be in ordeor example, imagine that youamt to create an array

object whose storage is file-based rather than memory-based, as in the NSArray class
cluster Since you are changing the underlying storage mechanism of the clags, you’
have to create a subclass.

On the other hand, in some cases it might tiicairit (and easier) to define a class
that embeds within it an object from the clustet’s say that your program needs
to be alerted whener some data is modified. In this case, creating a simpé co
for a data object that theo&ndation Framgork defines may be the best approach.
An object of this class could inteawe in messages that modify the data, intercepting
the messages, acting on them, and then &oring them to the embedded data
object.

In summaryif you need to manage your objeststorage, create a true subclass.
Otherwise, create a composite object, one that embeds a starmlanddtion
Framavork object in an object of yourwn design. The sections belagive more
detail on these tw approaches.

ATrue Subclass
A new class that you create within a class cluster must:

« Beasubclass of the cluster’ s abstract superclass
e Declare its own storage
= Override the superclass’s primitive methods (described below)

Since the clustes’abstract superclass is the only publicly visible node in the ctuster’
hierarcly, the first point is olnous. This implies that the wesubclass will inherit the
clusters interface lut no instance ariables, since the abstract superclass declares
none. Thus the second point: The subclass must declarenatance ariables it
needs. Finallythe subclass musterride aty method it inherits that directly
accesses an objexinstance ariables. Such methods are caletinitive methods

A classs primitive methods form the basis for its ingexé. or example, tak the

NSArray class, which declares the inded to objects that manage arrays of objects.

In concept, an array stores a number of data items, each of which is accessibbe by inde
NSArray expresses this abstract notion through itotprimitive methodsgcount and
objectAtindex: . With these methods as a base, other methods+ved methods-

can be implemented, for@ample:

Derived Method Possible Implementation

lastObject Find the last object by sending the array object this message: [self
objectAtindex:[self count] —1].

containsObject: Find an object by repeatedly sending the array object an
objectAtindex: message, each time incrementing the index until all
objects in the array have been tested.

The diision of an interfice between primite and dexied methods mals creating
subclasses easi&our subclass musverride inherited primities, lut havzing done so
can be sure that all deréd methods that it inherits will operate properly

The primitive-derved distinction applies to the intexe of a fully initialized object.
The question of ha init... methods should be handled in a subclass also needs to be
addressed.

In general, a cluster'abstract superclass declares a numbaitof and+ className
methods. As described in “Creating InstancesVabtihe abstract class decides which
concrete subclass to instantiate based your choiggtof or + classNamenethod.

You can consider that the abstract class declares these methods foveheenor of
the subclass. Since the abstract class has no instariablgs, it has no need of
initialization methods.

Your subclass should declare itgroinit... (if it needs to initialize its instance
variables) and possiblyclassNamenethods. It should not rely onyaof those that it
inherits. © maintain its link in the initialization chain, it shoulddke its superclass’
designated initializer within itswen designated initializer method. (See thbject-
Oriented Pogramming and the Objective-C Langgananual for a discussion of the
designated initializers.) fthin a class clustethe designated initializer of the abstract
superclass is alaysinit .

True Subclasses: An Example

An example will help clarify the forgoing discussion. Let’say that you ant to create
a subclass of NSArragpamed MonthArrgythat returns the name of a monthegi its
index position. Hovever, a MonthArray object wn't actually store the array of month
names as an instancariable. Instead, the method that returns a naves gin inde

Topics in OpenStep Programming

position pbjectAtindex:) will return constant strings. Thus, only twelstring
objects will be allocated, no mattenvihanary MonthArray objectsdst in an
application.

The MonthArray class is declared as:

#import <foundation/foundation.h>
@interface MonthArray : NSArray

{
}

+ monthArray;
- (unsigned)count;
- objectAtindex:(unsigned)index;

@end

Note that the MonthArray class doesmeclare atinit... method since it has no
instance ariables to initialize. Theount andobjectAtindex: methods simply
cover the inherited primiie methods, as described abo

The implementation of the MonthArray class looke likis:
#import "MonthArray.h"
@implementation MonthArray

static MonthArray *sharedMonthArray = nil;

static NSString *months[] = { @"January", @"February", @"March",
@"April', @"May", @"June", @"July", @"August”, @"September",
@"October", @"November", @"December" };

+ monthArray

if (IsharedMonthArray) {
sharedMonthArray = [[MonthArray alloc] init];
}

return sharedMonthArray;

}

- (unsigned)count

return 12;

}

- objectAtIndex:(unsigned)index
{

if (index >= [self count])

[NSException raise:NSRangeException format:@"***%s: index
(%d) beyond bounds (%d)", sel_getName(_cmd), index,
[self count] - 1];

else
return monthsfindex];

}

@end

Since MonthArray werrides the inherited primi# methods, the degd methods that
it inherits will work properly without being eerridden. NSArrays lastObject,
containsObject;, sortedArrayUsingSelector; objectEnumerator, and other
methods verk without problems for MonthArray objects.

A Composite Object

By embedding a pviate cluster object in an object of youwa design, you create a
composite object. This composite object can rely on the cluster object for its basic
functionality, only intercepting messages thatdtnis to handle in some particulaayw
Using this approach reduces the amount of code you must write and lets yau tak
adwantage of the tested code pided by the Foundation Frameork.

A composite object can be weed in this way:

/ composite object
primitive methods e -
<> - setlvar: € ombedded
messages to and <> - ivar: D — object
from other objects 7 :
<«—>
AN

Figure 1-4. Embedding a Cluster Object

The composite object must declare itself to be a subclass of the slabtract node.
As a subclass, it musterride the superclassprimitive methods. It can alse@rride
derived methods, Uit this isnt necessary since the dexd methods wark through the
primitive ones.

Using NSArrays count method as an@mple, the interening objecs
implementation of a method iverrides can be as simple as:

- (unsigned)count

{

return [embeddedObject count];

}

Topics in OpenStep Programming

However, your object could put code for itevn purposes in the implementation of
ary method it @errides.

A Composite Object: An Example

To illustrate the use of a composite object, imagine yarnt & mutable array object
that tests changesaigst some alidation criteria before alwing ary modification
to the arrays contents. Thexample that follevs describes a class called
ValidatingArray which contains a standard mutable array objeadtdatingArray
overrides all of the primitie methods declared in its superclasses, NSArray and
NSMutableArraylt also declares tharray, validatingArray , andinit methods,
which can be used to create and initialize an instance:

#import <foundation/foundation.h>

@interface ValidatingArray : NSMutableArray
{

}

NSMutableArray *embeddedArray;

+ validatingArray;

- init;

- (unsigned)count;

- objectAtindex:(unsigned)index;

- (void)addObject:object;

- (void)replaceObjectAtindex:(unsigned)index withObject:object;
- (void)removeLastObject;

- (void)insertObject:object atindex:(unsigned)index;

- (void)removeObjectAtindex:(unsigned)index;

@end

The implementation file sks haw, in a \alidatingArraysinit method, the

embedded object is created and assigned tentfveddedAry variable. Messages

that simply access the arraytlilont modify its contents are relayed to the

embedded object. Messages that could change the contents are scrutinized (here in
pseudo-code) and relayed only if yheass the ypothetical alidation test.

#import "ValidatingArray.h"
@implementation ValidatingArray

- init
{

embeddedArray = [[NSMutableArray allocWithZone:[self zone]]
init];

return self;

}

+ validatingArray
{

return [[[self alloc] init] autorelease];

}

- (unsigned)count
{

return [embeddedArray count];

}

- objectAtindex:(unsigned)index
{

return [embeddedArray objectAtindex:index];

}

- (void)addObject:object
{
if (/* modification is valid */) {
[embeddedArray addObject:object];
}
}

- (void)replaceObjectAtindex:(unsigned)index withObject:object;
{
if (/* modification is valid */) {
[embeddedArray replaceObjectAtindex:index withObject:object];
}
}

- (void)removeLastObject;
{
if (/* modification is valid */) {
[embeddedArray removelLastObject];
}
}
- (void)insertObject:object atindex:(unsigned)index;
{
if (/* modification is valid */) {
[embeddedArray insertObject:object atindex:index];
}
}
- (void)removeObjectAtindex:(unsigned)index;
{
if (/* modification is valid */) {
[embeddedArray removeObjectAtindex:index];
}
}

Topics in OpenStep Programming

10

