
74

It could be said of me that in this book I have only made up
a bunch of other men’s flowers, providing of my own only
the string that binds them together.

Montaigne, Essais

Let him look to his bond.
Shakespeare, Merchant of Venice

Connecting objects

Making connections in outline
mode

Examining connections

Identifying objects in outline
mode

Enabling inter-field tabbing

Disconnecting objects

Copying interconnected
objects

Testing the interface

Making and Managing Connections

4

Chapter 4 Making and Managing Connections

75

Outlets

An outlet is an instance variable that points to another object.
Objects use outlets to communicate with other objects; they
simply send messages to the object identified by the outlet.

Using Interface Builder, you can declare and set outlets for the
custom objects in your application. You can also set ready-made
outlets in many Application Kit objects, such as browsers. Once
initialized, the connection information for the outlet is stored in the
nib file. At run time, the nib file is unarchived and the outlet is
reinitialized with the connection information.

The Application Kit defines two types of outlets that you can use
to establish specialized connections with other objects:
delegates and targets.

Delegates

A delegate is an object that acts on behalf of another object.
Many Application Kit classes define delegate outlets as an
alternative to subclassing. All your object must do is register itself
as a delegate of the Application Kit object. At important junctures
in its life cycle, the Application Kit object sends messages to its
delegate, giving it an opportunity to participate in processing and
sometimes the chance to veto behavior.

For example, browsers ask their delegates to supply the cells for
browser columns, and the application informs its delegate when
it is initialized, hidden, and activated.

Targets

Targets are a special kind of outlet. They identify objects that can
respond to action messages. When a user activates an NSControl
object (for instance, clicking a button or moving a slider), that
object sends an action message to the target. The action
message gives application-specific meaning to the original
mouse or key event. For example, you could connect a custom
object in your application as the target of a button so that when
the button is clicked, your object performs a method that fills all of
the text fields in the window with appropriate information.

Like a delegate, a target must implement methods to respond to
the messages it’s sent. But unlike a delegate, which receives
messages chosen from a limited set defined by another object, a
target responds to any action message you choose to define.

You can also make one object a target of a second object
programmatically by sending setTarget: to the second object.

Outlet

@interface Controller : Object
{
 id dataForm;
}

- storeData: sender;
.
.
.
@end

dataForm

Communicating With Other Objects: Outlets and Actions

76

Actions

When a user manipulates an NSControl object, the object
receives an event message, which it translates into a message
that is meaningful within the application. It then send this
message to another object. These application-specific messages
initiated by an NSControl object are called action messages, and
the methods they invoke are called action methods.

NSControl, an abstract class, defines for its many subclasses
(such as NSButton, NSScroller, NSTextField, and NSForm) a
paradigm for inter-object communication—action messages. But
NSControl objects don’t act alone: they always contain one or
more NSActionCells (or one of its subclasses). The NSActionCell
superclass defines instance variables for the two elements
essential to an action message:

• target the object that's responsible for responding to the
user’s action

• action the method that specifies what the target is to do

Action methods take a single argument, the id of the NSControl
object that sends the message. This argument enables the
receiver to ask the control for more information, if it’s needed.

An NSControl can send a different action message to a different
target for each NSActionCell it contains. Different NSControls
dispatch action messages differently; for instance, an NSButton
generally sends action messages on a mouse-up event, but an
NSSlider usually sends action messages continuously, as long as
the mouse button is pressed.

Action

@interface Controller : Object
{
 id dataForm;
}

- storeData: sender;
.
.
.
@end

storeData:

Chapter 4 Making and Managing Connections

77

Connecting objects

In an object-oriented application, isolated objects have little value; they need to
send messages to each other to get the work of the application done. Interface
Builder gives you a way to establish connections between objects.

When you Control-drag between two objects, the Inspector panel becomes the
key window. Its Connections display shows the current and potential
connections for the destination object.

1 Select an object.

2 Control-drag a connection to
another object.

3 In the Inspector panel’s
Connections display, select an
outlet or action.

4 Click the Connect button.

If the Connect button doesn’t
become active when you select
an outlet or action, you probably
have connections locked. See
“When You Don’t Want to
Disconnect” in this chapter.

Hold down the Control key and drag
the mouse from one object toward
the destination object. A line appears.

Release the mouse button when a
box encircles the destination object.

Select an outlet (The dimples indicate
outlets that are already connected to
other objects).

Click here to make the connection.

Connecting objects

78

Outlet Connections
In the previous example, the connection is made from a controller object—a
custom object that manages the application—to a text field. The controller
object (ConverterController) declares several outlets—identifiers of destination
objects—as instance variables.

The example shows a connection between an object in the nib file window
Instances display and an object in the interface. You can also make outlet
connections between two objects in the Instances display.

When you make a connection between objects, the first column of the
Connections display shows the source object’s outlets (“source” meaning the
object from which a connection line is drawn).

Action Connections
When you make a connection by dragging a line from an NSControl object in the
interface—a button, slider, text field, menu command, pop-up list, or matrix—
odds are that the destination object is a target

 and that you can complete the connection by selecting an action method.Outlets are destination objects
specified as instance variables.
Actions are methods that
NSControl objects (such as
buttons) invoke in another
object. See “Communicating
With Other Objects: Outlets and
Actions” in this chapter for more
information.

Chapter 6, “Subclassing,”
describes connecting the outlets
and actions of custom objects in
the context of creating a class.

Control-drag a connection line and release
the mouse button when a box appears
around the destination object.

Chapter 4 Making and Managing Connections

79

The destination object in an action connection is frequently a custom object
that manages the application or a particular window (controller object).

When you make a connection from an NSControl object, the Inspector panel
shows the Connections display for the destination object.

To make a connection involving an
action message, Control-drag a line
from an NSControl object to the
object that responds to the message
you want the NSControl to perform.

Click here to display actions currently
defined for the target object. Actions
appear listed under the second column.

Click to select an action.

Click to make the connection.

See “Compound Objects” in
Chapter 3 for descriptions of the
interaction between NSControl
objects and NSCell objects, and
of the role NSMatrix objects play.

Connecting objects

80

When the user manipulates the NSControl object, such as clicking a button or
moving a slider, the action message is sent to the destination object (the target).

Connections Within the Interface
Sometimes you can connect two objects on an interface. These connections can
involve both outlets and actions.

Connections within an interface can also involve two Application Kit objects.
Two examples are interconnecting text fields (so the user can tab from field to
field), and connecting a menu command such as Print to an NSText object.

Tip: To enable printing of an NSText object, drag a connection line from the Print
menu command (or other NSControl object that initiates printing) and select
the print: action in the Connections display.

Control-drag a connection line from
one object to another, then release the
mouse button.

You can connect text fields and
form fields so that when the user
presses the Tab key, the cursor
moves to another field. See
“Enabling inter-field tabbing” in
this chapter for information on
this procedure.

Chapter 4 Making and Managing Connections

81

Icon Mode

Top-level objects

Click to switch to outline mode.

The Modes of the Instances Display

When you open a nib file in Interface Builder, the Instances
display of the nib file window first shows objects as icons. This
icon mode doesn’t show all objects, just the top-level objects—
those objects that are not contained by another object. Windows
and panels and most controller objects (that is, objects that
manage an application or a window) are top-level objects;
although they may contain other objects (for instance, a window
contains one or more views), no other object contains them.

The graphical representation of objects in icon mode makes it an
ideal interface for many operations. Its simple, intuitive, and
uncluttered nature makes it easy to do the basic things, such as
making connections between top-level and interface objects.

For more complex operations, the Instances display has another
mode—outline mode—that shows more detail about objects in
the nib file, including their connections with each other.

The most important advantage of the outline mode is that it shows
all objects in the nib file, not merely the top-level objects. It also
shows all connections, both connections into an object and
connections from an object to other objects.

The outline mode starts by listing the top-level objects in the nib
file. By clicking the open button next to an instance, you can see
what other objects it contains. Click a connection button (triangle
button) to see what connections go into or out of an object.

You can connect objects in outline mode; there’s no need to drag
a connection line to the interface. Outline mode also has facilities
that make it easy to identify objects in the interface and to
disconnect objects.

Objects in outline mode are identified first by class name and
then, in parentheses, by title. If the title is obscured, you can
resize the nib file window until it is visible.

Outline Mode
Numbers indicate the number of
connections if more than one.

Click to switch to icon mode.
Click the triangle that points in to see
connections in to the object.

Click the triangle that points out to see
connections out from the object.

Drag this column divider sideways
to expose details of instances or
connections.

If this button is filled, click it to show,
in an indented list, all contained
objects. Click button again (now
unfilled) to collapse the expanded
list.

Connecting objects

82

Expanding Objects in Outline Mode

In outline mode, objects that contain other objects have a small
circle button to their left that is filled with gray. The subordinate
objects are usually subviews of a window, panel, or another view
object, but can be objects that are part of another object not
visible on the screen. You display these contained objects by
expanding the container object.

Click a circle button to expand an object into a list of its
component objects; click it again to collapse the list. Expansions
can be nested many levels. To expand everything within an object,
Command-click the circle button. Collapse the list back to the
original level by Command-clicking the circle button again.

See “The View Hierarchy” in this chapter for a description of the
relationship between superview and subview.

Click a filled circle button to
expand an object.

Click the now-unfilled button
again to collapse the
indented list.

Outline mode uses indentation to
represent objects contained by
other objects. The Fail button is a
subview of the Grade box, which
contains it.

Chapter 4 Making and Managing Connections

83

Making connections in outline mode

You can make connections between objects in the outline mode of the Instances
display as well as its icon mode. The connections can be between an object in
the outline and an object in the interface or between two objects listed in the
outline.

Before you make a connection involving an object in outline mode, make sure
that the object is visible in the display. (You might have to expand the object’s
“parents” in outline mode to do this.)

1 Select an object.

2 Control-drag a connection to
another object.

3 In the Inspector panel’s
Connections display, select an
outlet or action.

4 Click the Connect button.

When you Control-drag from the
selected object, a connection
line appears.

When the destination object is
outlined, release the mouse
button.

Select an unconnected outlet
(one without a dimple next to it).

Click here to make the connection.

Remember
Click here to
get outline
mode.

Making connections in outline mode

84

The outline mode offers a useful capability for making connections without
leaving the nib file window. In this example, the same connection is made as in
the previous example.

If necessary, expand the object’s parent
so that you can see both objects.

Control-drag a connection line between
two objects.

Complete the connection as before.

Chapter 4 Making and Managing Connections

85

Examining connections

Interface Builder gives you many ways to examine and verify connections
between objects. It makes it easy, for example, to discover what outlets and
actions are associated with an object in the interface.

You can also select an object in the Instances display (in both icon and outline
modes) and examine the Inspector panel as described above to find out what
object it is connected to.

E In the interface:
Select an object and look at the
Connections display of the
Inspector panel.

E In the Instances display:
Select an object and look at the
Connections display of the
Inspector panel.

E In the Connections display:
Click a dimpled outlet to see the
connection line drawn.

E In outline mode:
Click a triangle button in the
column to the right of an object. The outlet or action involved in

the connection is highlighted
and dimpled.

Select an object in the interface.

The connection, highlighted
here, shows the object on the
other side of the connection.

Examining connections

86

You can also examine object connections going in the other direction too, from
the Connections display to the interface and the Instances display.

The Connections display allows you to see one connection at a time. The
outline mode of the Instances display shows you all connections an object has,
both connections into the object and connections from that object to other
objects.

Click an object’s outlet or
action in the Connections
display (must have a dimple).

A line appears between the
objects that are connected
through the outlet or action.

If triangle is three-dimensional, but has
no number, the object has only one
connection in that direction.

This column displays, for each object,
the number of connections out (left) and
the number of connections in (right).

Click the left triangle to see details on
connections out of the object.

Triangles that are grayed out indicate
no connections in that direction.

Chapter 4 Making and Managing Connections

87

When you click a three-dimensional triangle, lines appear to show the
connections between objects. The name and class of each connected object is
highlighted in bold. Each connection is labelled with the name of an outlet or
action.

Note that an object may have multiple connections with another object, both in
and out, both outlets and actions. In these cases, the outline mode lets you
toggle between the connections.

To make the connection lines disappear, click the triangle button again.

The right-pointing triangle indicates
connection-out. Lines show you where
the connections lead to.

To see more of a column, drag the
column divider sideways.

The left-pointing triangle indicates
connection-in. The electrical outlet icon
represents an outlet;the name of the
outlet follows.

Indicates action.

Indicates outlet.

The cross-hairs icon represents a
connection involving an action.

Connections with colon-separated
numbers indicate multiple connections
(here it means "1 of 2"). Click the colon
to toggle between the connections.

Identifying objects in outline mode

88

Identifying objects in outline mode

In the outline mode of the Instances display, you might want to verify what an
object is before connecting it to another object. You have two graphical ways to
identify an interface object. One technique displays an image representing the
selected object.

When you Alternate-click non-view objects in outline mode, the images that
represent them in icon mode are displayed (cubes for custom objects, mini-
windows for panels and windows). The File’s Owner, First Responder, and
Main Menu objects don’t display icons.

The second technique locates an object in the interface with a large arrow.

Control-Shift-Clicking the File’s Owner, First Responder, and Main Menu
objects has no effect.

E To see a representation of an
object, Alternate-click it in
outline mode of the Instances
display.

E To have an arrow point at the
interface object, Control-Shift-
click the object in outline mode.

Make sure the object is exposed before
you Alternate-click it.

If the object is a view, interface Builder
displays it beneath the cursor.

See “The Modes of the Instances
Display” in this chapter for an
introduction to outline mode.

While pressing Control and Shift,
click an object.

An arrow points at the object in
the interface.

Chapter 4 Making and Managing Connections

89

infoPanel

Standard Objects in the Instances Display: File’s Owner, First Responder, and Font Manager

File’s Owner

Every nib file has one owner, represented by the File’s Owner icon.
The owner is an object, external to the nib file, that channels
messages between the objects unarchived from the nib file and
the other objects in your application.

Not only must the owning object be external to its nib file, it must
exist before the nib file is unarchived. This is because the same
method that loads a nib file (loadNibNamed:owner: and its
variants) also specifies the file’s owner.

The typical owner of an auxiliary nib file (such as one containing
an Info panel) is an instance of the class you assign to File’s
Owner in Interface Builder. This class is almost always a custom
class, and is frequently the class of the object that manages your
application. Once you make the assignment, File’s Owner serves
as a proxy instance of your class, which you can then connect to
the interface. (By the way, the typical owner of an application’s
main nib file is NSApp, the global NSApplication object.)

See Chapter 11, “Dynamic Loading,” for more on the role of File’s
Owner in the loading of auxiliary nib files and for details on
assigning classes to File’s Owner.

First Responder

The First Responder is the object within a window that first
receives keyboard events, mouse-moved events, and action
messages from NSControl objects that don’t have an explicit
target (for example, cut and paste). The First Responder object is
the active window’s focus for future events. Although technically
an object, First Responder is really a status conferred on an
object.

Usually, when you click an object that accepts key events (such
as a text field), that object becomes the window’s First Responder.
First Responder status also changes when you make another
window key in your application. (Because of this, First Responder
can be useful when you build multiple-document applications.)
Over time, many different objects can become the First
Responder, but at any one time only one object has this status.
The First Responder icon stands for the object that currently has
this status, no matter which actual object it is within your
application.

File’s Owner

Controller

Identifying objects in outline mode

90

First Responder

The First Responder figures into the event-handling behavior
defined by the NSResponder class. In a window, objects
inheriting from NSResponder (including NSView, NSApplication,
and NSWindow) are part of a linked list of event-handling objects
called a responder chain. The responder chain contains (in this
general order) a view, the view’s superview, the view’s window,
the main window, and then the application. (The application and
window delegates are in this chain as well, although they aren’t
NSResponders.) If the First Responder can’t respond to an event
message, its next responder is given a chance to respond. If an
NSResponder can’t handle the message, the message continues
to be passed up the chain from object to object in search of an
NSResponder that can. Messages are passed in one direction
only: up the view hierarchy toward the window and application.

In Interface Builder you can connect an NSControl object in the
interface to the First Responder icon. Thereafter, when the user
manipulates this NSControl (say, by clicking a menu item entitled
Copy) an action message (copy:) is sent to the object that is
currently First Responder. If you examine in Interface Builder the
default connections from the Edit menu, you'll discover that its
menu cells are all connected to First Responder.

Font Manager

The Font Manager icon represents an instance of the
NSFontManager class that is shared among the objects of an
application. Interface Builder automatically creates and adds this
object to your project when you drag the Font menu into your
application’s menu. The Font Manager is the center of activity for
font conversion. It accepts messages from font conversion user-
interface objects (such as the Font menu or the Font panel) and
appropriately converts the current font in the selection by
sending a changeFont: message up the responder chain. See the
documentation on the NSFontManager class for more
information.

Chapter 4 Making and Managing Connections

91

Enabling inter-field tabbing

In OPENSTEP applications, users can navigate between fields and controls on
the interface solely through use of the keyboard. Users can change the first
responder by pressing the Tab key or Shift-Tab, can navigate through cells in a
matrix by pressing the arrow key, and can change the state of a button or select
a cell in a matrix by pressing the Spacebar.

You get most of this keyboard navigation feature in your application for free; you
don’t have to do anything special to allow users to navigate between cells in a
matrix or fields in a form. However, you’ll want to control what the Tab key does,
that is, which view the cursor should go to next when the user presses the Tab
key. You do this by connecting NSView objects to each other through the
nextKeyView outlet.

First, decide which view should respond to keyboard events when the window
becomes key, and connect the NSWindow initialFirstResponder outlet to that view.

1 Control-drag between the
window and a view object.

2 In the Connections display of the
Inspector panel, select
initialFirstResponder and click
Connect.

3 Control-drag between two view
objects.

4 In the Connections display,
select nextKeyView and click
Connect.

Control-drag a connection from
the window to the object in the
window that should initially take
keyboard events.

Select the initialFirstResponder
outlet.

Click here to make the connection.

Enabling inter-field tabbing

92

Next, use NSView’s nextKeyView outlet to connect view objects to each other.

Don’t connect views that the user cannot select or edit. In the example above,
we skip over the gray text field because it exists to show the result of the
Convert button’s action. The user cannot enter text into this text field, so it does
not make sense to make a nextKeyView connection to it. You also should be careful
not to connect to NSCell objects. For example, you shouldn’t connect to an
individual cell of a matrix or form; instead hook the preceding object to the
entire matrix or form. The NSMatrix and NSForm objects determine the
keyboard navigation between their own cells.

You should also assign key
equivalents to buttons. The
default button typically has a
Return key equivalent, and the
Cancel button typically has the
Esc key equivalent. See
Chapter 3 for more information.

If you don’t make nextKeyView
connections, default connections
are made at run time. You can use
Interface Builder’s Test Interface
command to see if these
connections are satisfactory. See
“Testing the interface” in this
chapter.

If you want users to be able to tab
from one view to the next, Control
drag between the two views.

Select the nextKeyView outlet.

Click here to make the connection.

WRONG:
Connecting an
NSView to an
NSCell.

RIGHT:
Connecting an
NSView to an
NSView (NSMatrix
in this case).

Chapter 4 Making and Managing Connections

93

Disconnecting objects

Interface Builder gives you two ways to break the connections between objects.
The first method uses the Inspector panel.

You can also initiate this procedure by selecting objects in icon mode of the
Instances display, and then disconnecting them in the Inspector panel as above.

1 Select an object in the interface.

2 In the Connections display of the
Inspector panel, select a
connection.

3 Click Disconnect.

Or

1 In the nib file window’s outline
mode, click a triangle button to
display a connection.

2 Control-click the connection
line.

Verify the connection before you
break it (the item on the right is the
object on the other side of the
connection).

Select an outlet or action with a
dimple next to it (indicating a
connection).

If the Inspector is not already
displayed, choose Inspector from
the Tools menu and choose
Connections here.

Make sure a single object is selected.

Click here to break the connection.

See “Examining connections” in
this chapter to learn how to use
outline mode to display the
connections between objects.

Disconnecting objects

94

The alternative method for disconnecting objects allows you to perform the
operation in one place: in the outline mode of the nib file window’s Instances
display. First show connections for an object by clicking a three-dimensional
triangle button.

You must Control-click on the right side of the column divider (nearest the
connection-out and connection-in triangle buttons) to get the scissors to appear,
and thus be able to break the connection. When you Control-click on the left
side of the column divider, it begins a connection operation.

Click to show the connections for an
object (left triangle for connections out,
right triangle for connections in).

Control-click a connection line to server
connection.

When You Don’t Want to Disconnect

After all of the objects in your interface are
connected the way you want them, you may
want to make sure that they stay that way.
When you delete an object from the
interface, all of the connections to that object
are broken. If all you’re doing is fine-tuning
the interface’s appearance, you want to
make sure this doesn’t happen.

To prevent someone from accidentally
changing connections, set the Lock all
connections preference on the General
preferences panel display. (Choose
Preferences from the Info menu to bring up
the Preferences panel.) When this
preference is set, you can’t connect objects,

disconnect objects, or delete objects that
have connections.

When you’re localizing an application, it’s a
good time to use this connection locking
feature. When you localize a nib file, you
want the interface objects to behave the
same way, but you want their titles to
change. Sometimes, it’s necessary to move
and resize the interface objects to make
room for titles in other languages that tend to
have longer words. By locking connections,
you make sure that you don’t make a change
to the interface that will change the way the
application behaves.

Chapter 4 Making and Managing Connections

95

Copying interconnected objects

You can easily copy objects—with their connections— between nib files. You’ll
probably use this feature most often to copy a window and its views along with
the custom object that manages those views.

Notice the icon representing the copied objects in the example above. Under
the cursor is the icon representing the object that is actually dragged. The plus
sign indicates that more than one object is involved in the operation. When the
copying process completes, the new nib file window holds duplicates of the
objects that include their connections to each other.

You can use the same basic technique to copy connected objects on an interface.
In the next example, an instance of an NSView subclass is connected to the Run
and Stop buttons. You can copy these objects and their connections by
Alternate-dragging them onto a window in another nib file.

1 Select the objects that are
connected.

2 Alternate-drag the objects into
another nib file window or onto
another window or panel.

Shift-click the connected
objects in succession.

Alternate-drag the objects
into the other nib file window.

The various scenarios for copying
objects and their connections
between nib files is quite similar
to the procedures for copying
objects to dynamic palettes. See
Chapter 5, “Using Dynamic
Palettes,” for more information
on this Interface Builder feature.

Copying interconnected objects

96

Another occasion for copying connected interface objects is when you want to
make copies of text fields or form fields and preserve the connections between
fields.

From the outline mode of the Instances display, you can copy an individual view
object, a custom non-view object, and the connections between the two.

Select a group of connected objects.

Alternate-drag the grouped objects to
the new window or panel.

Release the mouse button when the
group is positioned in its new location.

You can also copy interconnected
interface objects to another
window in the same nib file. See
“Moving objects to other
windows” in Chapter 2.

Release the mouse button when the
view object is over the window of the
other nib file. The plus sign indicates
that the custom object is included in
the copy.

Shift-click to select the custom object
and the view object. Begin Alternate-
dragging the objects with the mouse
over the view object.

Chapter 4 Making and Managing Connections

97

Testing the interface

After you create an interface, Interface Builder lets you see how it works from
the user’s perspective.

Interface Builder’s menu, windows, and panels disappear, leaving only the
actual interface and (if you are testing the application’s main nib file) the main
menu. Give your interface a test ride. Here’s some of the things you might try:

Verify that the cursor moves from field to field when you press Tab.

Verify that you can copy, cut, and paste text (First Responder actions).

See if you can print (the Print menu item must be connected to an
appropriate view object’s print: action method).

Note: When you test your interface, the behavior provided by your custom classes
is not called into play (with the exception of static, compiled palette objects).
You can only test the behavior that OpenStep and static palette objects exhibit
in themselves and when they send messages to each other. To test all
components of your application, you must compile and run it.

When you are finished testing the interface, exit from test mode.

1 Choose Test Interface from the
Document menu.

2 Check the functioning of
OpenStep objects.

3 Choose Quit from the application
menu or double-click the switch
icon in the application dock.

If testing the mainnib file:

Click here to end test
mode and return to
Interface Builder.

If testing an auxiliarynib file:

Double-click the test mode
icon in the application dock
to exit test mode.

Testing the interface

98

The View Hierarchy

When you expand an NSWindow object in outline mode and then
expand the NSView objects indented beneath, you are looking at
a view hierarchy. All the NSView objects within a window are
linked together in this hierarchy, an abstract tree structure similar
to the class inheritance hierarchy.

Within every window’s content rectangle—the area enclosed by
the border, title bar, and resize bar— is its content view. The
content view is at the top of the view hierarchy. All other views of
the window descend from it. Each view has one other view as its
superview and can be the superview for any number of subviews.

What physically determines a view’s place in the hierarchy is
enclosure. A superview encloses its subviews. NSView stores
pointers to three objects that reflect a view’s physical
relationships to other views in the window and locate the view in
the hierarchy:

• window identifies the view’s window (the window points to
the content view)

• superview identifies the view’s superview

• subviews a list of the view’s subviews

The defining relationship of enclosure makes it easier to draw a
view:

• It allows you to construct a view object (the superview) from its
subviews.

myWindow

nextResponder (nil)
contentView

frontView

nextResponder
superview

subviews (nil)
window

backView

nextResponder
superview
subviews
window

myContents

nextResponder
superview
subviews
window

longView

nextResponder
superview

subviews (nil)
window

• Views are positioned within the coordinates of their
superviews, so when a view is moved or its coordinate system
is transformed, all its subviews are moved and transformed
with it.

• Each view has its own coordinate system for drawing. Since a
view draws within its own coordinate system, its drawing
instructions can remain constant no matter where it or its
superview moves on the screen.

Two other attributes, the frame and bounds rectangles, set the
location, dimensions, and coordinate systems of a view. frame
holds the position and size of a view within its superview’s
coordinate system. The frame rectangle defines the area in which
drawing can occur. The origin point of a frame locates the lower-
left corner of the rectangle in the superview’s coordinates. The
bounds rectangle occupies the same area as the frame rectangle,
but it is stated in a different coordinate system; the frame’s origin
becomes the origin (0.0, 0.0) of the view’s drawing coordinates
(bounds.origin). The bounds rectangle is thus expressed in the
view’s own drawing coordinates.

Another attribute, inherited from the NSResponder class,
determines how events are handled within the view hierarchy.
The nextResponder by default identifies a view’s superview. If a
view receives an event message (for example, mouseDown:) and
cannot handle it, that message is passed on to the view identified
by nextResponder. See the specifications of the Application Kit’s
NSView and NSResponder classes in the Application Kit
Reference for more information on the view hierarchy and event
handling.

Window

C Subview of A

A Subview of Content View

B Subview of A

D Subview of B

