
236

Type part name here:

...to divide is not to take away.
Percy Bysshe Shelly

Choosing each stone, and poising every weight,
Trying the measures of the breadth and height;
Here pulling down, and there erecting new,
Founding a firm state by proportions true.

Matthew Arnold

How many things I can do without!
Socrates

Loading nib files dynamically:
an info panel

Displaying an attention panel

Creating a window with
multiple displays

Creating dynamically loadable
bundles

Special Tasks in the Development Environment

Dynamic Loading

11

Chapter 11 Dynamic Loading

237

Multiple Nib Files: Good Things in Small Pieces

Why have multiple nib files in an application? Why not put
everything in the main nib file? The answer is simple: Because
multiple nib files enhance the performance of the application.

You can strategically store the resources of an application
(including pieces of the interface) in several nib files. When the
application needs a resource, it loads the nib file containing it.
Because you don’t have to load the entire application into
memory at once, the program is more efficient. The application
also will launch faster.

When many sophisticated applications start up, they load only a
minimum of resources in the main nib file—the main menu and
perhaps a window. They display other windows (and load other
nib files) only when users request it or when conditions warrant it.

Types of Auxiliary Nib Files

Nib files other than an application’s main nib file are sometimes
called auxiliary nib files. There are two general types of auxiliary
nib files: special-use and document.

Special-use nib files contain objects (and other resources) that
might be used in the normal operation of the application (like a
Preferences panel). Document nib files contain objects that
represent some repeatable entity, such as a word-processor
document. A document nib file functions as a template for
documents: it contains the UI objects and other resources
needed to make a document. (Creating document nib files is
described at length in the book Discovering OPENSTEP.)

File’s Owner

The key step in creating applications with multiple nib files is
assigning the auxiliary nib file’s File’s Owner. The file’s owner
object is always external to the nib file it owns. It channels
messages between the objects unarchived from the nib file to the
other objects in your application.

The global NSApplication object owns the main nib file. Special-
use nib files are often owned by the application’s controller
object, which you typically define in the main nib file. A document
nib file is typically owned by a separate controller object, a
document controller.

The main job of the File’s Owner object is to load the auxiliary nib
file. To do so, it sends the message loadNibNamed:owner: to the
NSBundle class object. In the main nib file you define an action
method in the controller class and hook that action up to a control
in the interface. That action method’s implementation sends the
loadNibNamed:owner: message. In this way, the nib file is loaded
only if the user requests it.

Creating Auxiliary Nib Files

To create an auxiliary nib file, you use one of the commands on the
New Modules menu (which is under the Document menu) in
Interface Builder. New Modules gives you several choices of the
type of nib file to create:

• New Info Panel Creates an info panel.

• New Attention Panel Creates an attention panel.

• New Empty Creates an empty nib file.

• New Palette Creates a static palette.

• New Inspector Creates an inspector panel.

The last two commands (New Palette and New Inspector) are
used when creating static palettes. If you’re not working on a
palette project, you use the New Empty command to create a nib
file, unless you’re specifically creating an info panel or an
attention panel.

You might have noticed that the New Application command also
creates a nib file. This command creates a main nib file—one that
contains a main menu and is owned by the NSApplication object.
However, you usually let Project Builder create the main nib file
for you when you create an application project.

Loading nib files dynamically: an info panel

238

Loading nib files dynamically: an info panel

The steps you follow to create, load, and manage an Info Panel are common to
creating any special-use nib file. First, in the main nib file, you create an object
that knows about the Info Panel. Usually, this object is the application’s
controller object. Define the class of this object in the Classes display of the
main nib file. When you do, specify the necessary outlet and action for the Info
Panel.

Instantiate the controller class, and connect the action to the menu command.

1 Create an outlet for the Info Panel
and an action method that
displays the Info panel in the
application’s controller class.

2 Connect the Info Panel command
to the controller object.

3 Choose Document New
Modules New Info Panel to
create a nib file for the Info Panel.

4 Add the controller class to the
new nib file.

5 Assign the controller class to
File’s Owner.

6 Connect the Info Panel to the
File’s Owner outlet for the panel.

7 Implement the action method
that loads the Info Panel’s nib file.

Specify an outlet to identify the panel and
an action message that the Info Panel
command sends when users click it.

Chapter 6, “Subclassing,”
describes how to add outlets and
actions to your custom class and
shows how to connect them to
instances of your class.

Control-drag a connection line to the
application’s controller object.

When the box encloses the controller
object, release the mouse button.
Connect to the action in the
Connections display.

Chapter 11 Dynamic Loading

239

Now choose the New Info Panel command. When you do, Interface Builder
displays a template panel and creates an untitled nib file to contain it. Be sure to
save the file (as, for instance, InfoPanel.nib).

You cannot connect the Info Panel to the controller object in the main nib file
because the panel is in the new auxiliary nib file. You must assign the controller
class to File’s Owner in the auxiliary nib file and then make the outlet
connection between File’s Owner and the panel. The first step in this direction
is to insert the class definition of the controller class into the auxiliary nib file.

Modify the template Info Panel to contain
the application icon and name, your name,
and version and copyright information.

From Project Builder, drag
the header file or the
implementation file for the
controller class and drop it
over the nib file window.

You can also copy a class
definition between nib files
using the Edit menu’s Copy
and Paste commands.
Copy the class in one
Classes display, select the
superclass in the other
Classes display, and then
paste the class into the nib
file.

Loading nib files dynamically: an info panel

240

Next, assign the controller class to File’s Owner.

Now make a connection in Interface Builder between File’s Owner and the title
bar of the panel. Select the info panel outlet in the Connections display and
click Connect.

The final step is to write the code (in the .m file of the controller class) that
implements the action method invoked by the Info Panel command.

Notes on the code: Once an Info Panel is loaded, it is kept in memory until the user quits the application.
The code tests the infoPanel outlet to determine if the auxiliary nib file containing the panel has already
been loaded. If it hasn’t, it loads it with loadNibNamed:owner:. It is important to specify self as owner
(self being the object that implements the method). Display the panel by sending it the
makeKeyAndOrderFront: message.

Click to select File’s Owner.

Click to select the class.

- (void)showInfoPanel:(id)sender

{

 if (!infoPanel)

[NSBundle loadNibNamed:@"InfoPanel" owner:self];

 [infoPanel makeKeyAndOrderFront:self];

}

Chapter 11 Dynamic Loading

241

Displaying an attention panel

When you can accomplish an end programmatically or in Interface Builder, the
recommended course is almost always Interface Builder. A notable exception is
displaying attention panels. You display attention panels to tell the user
something about the current context (such as an error that occurred), to clarify
or complete an action the user is taking, or to give the user a chance to take
corrective steps.

Displaying Attention Panels Programmatically
For most situations requiring attention panels, the easiest and most appropriate
thing to do is call a function: NSRunAlertPanel(). In the following example, the
application informs users that, because of hardware incompatibility, it cannot
proceed:

Notes on the code: The arguments of NSRunAlertPanel() determine what appears on the panel. The first
argument is the heading (above the dividing line), and the second is the text (below the line). The next
three arguments are the titles of the buttons that appear across the bottom of the panel. The first of these
titles goes to the default button, which has a carriage return associated with it. You can remove a button
by giving nil as its title, but you must specify something for all three arguments. The declaration of
NSRunAlertPanel() permits a variable number of arguments, so you can have printf()-style format
specifiers in the panel heading and text and variables following the third button argument.

The call to NSRunAlertPanel() in the example above creates the following panel:

E Call NSRunAlertPanel().
Or

E Create an attention panel in
Interface Builder and load it
dynamically.

if(![LiveVideoView doesWindowSupportVideo:bufWindow

 standard:&type size:&vidSize])

 {

 NSRunAlertPanel(@"No Video Present", @"This machine is not

capable of running video applications. Since this program

is exclusively for Video,it will now exit.", @"OK", nil, nil);

 [self terminate:self];

 }

The Application Kit defines
other functions related to
NSRunAlertPanel(). For more
information on these functions,
see the “Functions” section of
the Application Kit Reference.

Displaying an attention panel

242

Loading Attention Panels Created in Interface Builder
The panel created by NSRunAlertPanel() might not be adequate for certain
situations. For example, you might want to display an attention panel that has a
special view object, say one that shows the progress of some lengthy process
(such as a progress bar for loading or copying files). And you want to give the user
the options of aborting or pausing that process. You’d want something like this:

To implement a custom attention panel, you perform almost identical steps as
you do to create an Info panel:

1. Pick a custom class, typically the application’s controller, to manage the
panel.

2. Specify an action and outlet in the controller class.
3. Connect the action in the main nib file.
4. Create a nib file for the attention panel by choosing Document New

Modules New Attention Panel.
5. Compose the text, graphics, and other UI elements of the panel.
6. Drag the controller’s header file to the attention panel’s nib file window.
7. Assign the controller class to File’s Owner.
8. Assign the attention panel to the File’s Owner attention panel outlet.
9. In the action method, load the panel’s nib file with loadNibNamed:owner:.

There are some important differences between attention panels and Info
panels. With attention panels, you typically load the nib file not as the result of
a user action (for instance, clicking an panel Panel command), but because of
internal conditions in your code. Also, you dismiss an Info Panel by clicking its
close box; you usually dismiss an attention panel by clicking a button on the
panel. This means that, for custom attention panels, you will have to define and
implement action methods for the buttons on the panels. (This is something
NSRunAlertPanel() simulates by returning a code indicating the button clicked.)

Custom attention panels break the
restrictions of NSRunAlertPanel(); they
allow things like custom views.

Define and implement action methods
for the buttons on the panel.

Chapter 11 Dynamic Loading

243

Creating a window with multiple displays

One common interface style is to have a window whose display changes upon a
user action, such as clicking a button. For example, Interface Builder’s Inspector
panel changes its display when you choose a different item in the pop-up list.
Another example is Project Builder’s Preferences panel. Both of these panels
have infrequently-used displays, thus it makes sense to store these displays in
nib files that are loaded only if needed.

The key to creating a window with multiple displays is the content view
attribute. NSBox, NSScrollView, and NSWindow all have a content view
attribute. The content view is the superview of all of the view objects, such as
button and text fields, inside of the box, scroll view, or window. You can send a
setContentView: message to a box to swap out the entire contents of the box and
replace them with new contents. The rest of this task uses the window shown
above to show you how to create a window with multiple displays.

You can define each of the window’s displays in separate nib files. In the main
nib file, place a box in the area that you want to be changeable.

1 In a nib file, create a window
with an empty box in the place
where the display should
change.

2 Add control objects that allow
the user to change the display,
and hook them to action methods
in a controller class.

3 For each display, use Document
 New Modules New Empty

to create a nib file containing a
window with just that display.

4 Assign the controller to be the
nib file’s owner and connect one
of its outlets to the display.

5 In the action method’s
implementation, load the
appropriate nib file.

When the user selects an item from this list...

...the middle portion of the window changes.

Creating a window with multiple displays

244

Also in the main nib file, define the controller class. Give the controller class an
outlet for each view (in this example, Business Info, Personal Info, and Notes)
plus outlets for the main window and the box on the main window. Also define
an action for the controller class, named something like setContents:, and connect
the pop-up list to that action.

Next, use the New Empty command to create a nib file for each of the displays
that the window can show. In each of these nib files, create a window by
dragging one from the Windows palette. Your application never displays these
windows; they exist only to hold the view objects that the main window will
display.

Tip: Use the Size display of the Inspector panel to make sure that this box is just
smaller than the box on the main window. It also helps to make the auxiliary nib
file’s window the same size as the main nib file’s window.

Drag a box from the Views palette
and resize it to be the same width as
the window. In the Attributes
inspector, set the box to have no title
and no border.

“Grouping objects” in Chapter 2
describes how to group objects
inside of a box. “Setting box
(group) attributes” in Chapter 3
describes the box’s Attributes
display in the Inspector panel.

Place interface objects in a box in the
auxiliary nib file’s main window.
When you’re done, make the box
invisible by choosing no border and
no title in the Attributes display.

Chapter 11 Dynamic Loading

245

Now you need to connect this display to the controller class. Add the controller
class to the nib file and assign it to the File’s Owner object. Then, connect File’s
Owner to the box you just created.

In this example, we would create two more auxiliary nib files, one for the
“Personal Info” display and one for the “Notes” display, in the same manner as
the BizInfo.nib file shown above.

Note: If one of the displays is going to be used frequently, you might want to
create it in an off-screen panel in the main nib file rather than creating a separate
nib file and incurring the overhead of reading it in.

Assign it to one of the display
outlets, in this case bizView.

Connect File’s Owner (your
application’s controller class) to
the box on the window.

Creating a window with multiple displays

246

After all of the nib files have been created, implement the action method that
you connected to the pop-up list. In this example, the action method is named
setContents:. Its implementation is shown here.

Notes on the code: Based on the pop-up list’s selection, this method loads the appropriate nib file, if
necessary, then sets the contents of the box to the view defined in that nib file. As a view becomes the
box’s content view, it is removed from the window in its nib file. The setContentView: method releases
the box’s previous content view and retains the new one. To ensure that the previous content view isn’t
deallocated before the next user event, you must retain each view. By preventing the views from being
deallocated, you allow your users to switch back and forth between them. (Be sure to release the views
in your class’s dealloc method.)

- (void)setContents:(id)sender

{

switch((InfoType)[[sender selectedItem] tag]) {

 case BUSINESS:

if (!bizView) {

[NSBundle loadNibNamed:@"BizInfo" owner:self];

[bizView retain];

}

[theBox setContentView:bizView];

break;

 case PERSONAL:

if (!persView) {

[NSBundle loadNibNamed:@"PersInfo" owner:self];

[persView retain];

}

[theBox setContentView:persView];

break;

 case NOTES:

if (!notesView) {

[NSBundle loadNibNamed:@"Notes" owner:self];

[notesView retain];

}

[theBox setContentView:notesView];

break;

}

}

This method uses an
enumerated type (InfoType) to
give meaning to the pop-up list
items’ tags. For more information
on using tags, see “Using tags” in
Chapter 3, “Setting an Object’s
Attributes.”

Chapter 11 Dynamic Loading

247

Finally, you need to have the Business Info display appear when the application
starts up. To set this up, in the main nib file assign your Controller class to be the
NSApplication delegate (NSApplication is the main nib file’s owner).
Implement the delegate method applicationDidFinishLaunching: as shown:

Notes on the code: This method is invoked immediately after the NSApplication object has finished
initializing itself. It invokes setContents: to load the nib file for the default display (Business Info) and set
the contents of the box on the main window to be the view defined in that nib file. Then it displays the
main window.

Tip: Make sure that the main window’s “Visible at launch time” attribute is
deselected. Otherwise, there will be a slight lag between the time the window
appears on the screen and the time that the box’s contents appear on screen.

- (void)applicationDidFinishLaunching:(NSNotification *)notify

{

 [self setContents:popUp];

 [mainWindow makeKeyAndOrderFront:self];

}

Creating a window with multiple displays

248

Inside the NSBundle Class

If you look at the NSBundle class specification in the Foundation
Framework Reference, you’ll notice that NSBundle can tell you a
lot of useful things: where your program’s resources are, where
its frameworks are, which framework defines a particular class.
It can even tell you how your application’s interface ought to be
localized. Why is it so smart?

Every bundle contains a property list that defines the bundle’s
attributes. This property list is the real brains behind the
NSBundle class; NSBundle is simply reading the property list and
returning the information it contains. Project Builder uses the
information you specify in Project Builder’s Inspector panel to
create and update this property list.

The Principal Class

At the very least, the property list contains the name of the
bundle’s executable. Most property lists (in fact, all of them
besides those used for frameworks) must contain one other
important piece of information: the principal class’s name.

The principal class is the class that performs the main work of the
bundle. For applications, the principal class is either
NSApplication or a subclass of NSApplication. NSApplication
runs the application event loop, during which the custom code
you have written for your application is executed.

For Loadable Bundle projects, the principal class is often a
controller-style class. It knows about all of the other objects
inside of the bundle and can send them messages to have them
perform work. If the bundle contains a nib file, the bundle’s
principal class is often the appropriate choice for the owner of
that nib file (just as NSApplication owns the main nib file of an
application bundle).

The principal class is important because the NSBundle class
uses it to load a bundle into memory. Loading a bundle is typically
a two step process. First you create an NSBundle object using the
location of the bundle in the file system as input. Then, you send
that bundle the message principalClass. This method returns the
principal class in the bundle. In order to do this, it must read the
property list, which in turn means it must load the bundle into
memory if that bundle has not already been loaded. Thus, asking
an NSBundle for its principal class is the main way you load a
bundle into memory. From there, you can create an instance of the
principal class and send it a message to have it perform work.

If NSBundle can’t find out the name of the principal class from the
property list, it assumes that the first class loaded is the principal
class. This is determined by the order in which the object files are
linked.

Application Property Lists

A simple application project contains two more pieces of
information in addition to the executable name and principal class
name: the name of the main nib file, and a list of file formats the
application can read and write. Most applications also have a line
that identifies the application’s icon.

Adding Information to the Property List

Your project is not limited to the information that Project Builder
stores in the property list. You can use this list to store other
information specific to your application. However, because
Project Builder maintains this list, you should never update it
directly. Instead, create a file named CustomInfo.plist and add it
to the project under Other Resources. Project Builder looks for
such a file and merges it with the other information to create
property list. Two reasons that you would create a
CustomInfo.plist file are to advertise a service that your
application performs (on the Services menu of other applications)
or to add on-line help to your application.

Chapter 11 Dynamic Loading

249

Creating dynamically loadable bundles

The other tasks in this chapter show how to separate the interface into multiple
nib files so that infrequently used parts of the interface are loaded only if
needed. You can do the same thing with the application’s executable code—
divide it into wholly contained pieces that are loaded only if needed.

To separate out a portion of executable code, you create a loadable bundle.
Loadable bundles are file packages that can contain executable code, resources,
and nib files. The main difference between a loadable bundle and an application
is that an application has a main() function and an NSApplication instance.
Loadable bundles typically don’t have main() functions.

The key attribute of a bundle project is its principal class. The principal class is
essentially the controller class for the bundle. You must specify the principal
class in the bundle project’s attributes inspector.

Loading the Bundle Programmatically
Because a loadable bundle doesn’t have a main() function, you must write code
that loads the bundle and starts executing. The following method does just that:

1 Create a project or subproject of
type Loadable Bundle.

2 In the Project Attributes
Inspector, enter the name of the
bundle’s controller class in the
Principal Class field.

3 Add classes, interfaces, and
resources as you would for any
other project.

4 Create a class outside of the
bundle that loads the bundle.

In Project Builder, click here.

Choose Project Attributes.

Type the name of the pricipal
class here.

Although Loadable Bundle
projects can be stand-alone
projects, they are often created as
subprojects of an application or
framework. For more on
subprojects, see “Grouping
projects” in Chapter 1.

Creating dynamically loadable bundles

250

Notes on the code: This method loads the bundle into memory. It starts by telling the NSBundle class
where to find the bundle. In this case, the bundle is in a subproject, which means it resides in the
Resources directory inside the main bundle, so sending pathForResource:ofType: to the main bundle
returns the correct location. The principalClass method finds out the bundle’s principal class, loading the
bundle if necessary. Once the principal class is known, this method creates an instance of that class and
sends it a message. (In this example, the message is to load a panel defined in the bundle.)

Adding a Nib File to a Bundle Project
Because loadable bundles can contain nib files, it’s often convenient to create a
bundle containing an infrequently used part of the interface and the code that
controls it. For example, you could put the Preferences panel and an object that
controls it in a separate bundle project.

To create a nib file in a bundle project, use the Interface Builder command
Document New Module New Empty. Add the bundle’s principal class to
the nib file and set the File’s Owner to be that class.

- (void)showPreferences:(id)sender

{

 Class bundleClass;

 id newInstance;

 NSBundle *bundleToLoad =

[NSBundle bundleWithPath:[[NSBundle mainBundle]

pathForResource:@"Preferences" ofType:@"bundle"]];

 if (bundleClass = [bundleToLoad principalClass]) {

 newInstance = [[bundleClass alloc] init];

 [newInstance loadPanel];

 }

}

“Loading nib files dynamically:
an info panel” in this chapter
walks through the major steps of
creating a nib file from the New
Module menu and assigning the
File’s Owner.

Chapter 11 Dynamic Loading

251

You’ll need to connect this part of the interface to the main nib file. To do so,
have the application’s controller object load the bundle in response to an action
message. In the example shown here, the bundle is loaded when the user
chooses the Preferences command. (showPreferences: method is shown above.)

Click to select File’s Owner.

Assign the bundle’s
principal class to the
File’s Owner.

In the application’s
main nib file, assign
the action message to
a control object. In this
example, the first time
the user chooses the
Preferences command,
it will load the bundle.

Creating dynamically loadable bundles

252

