
254

Type part name here:

My library was dukedom large enough. 
Shakespeare, The Tempest

I shall sleep, and move with the moving ships
Change as the winds change, veer with the tide.

Algernon Charles Swinburne

Since ‘tis Nature’s law to change, Constancy alone is 
strange.

Hon Wilmot, Earl of Rochester, A Dialogue between 
Strephon and Daphne

Setting up a framework 
project

Making a header file private

Installing a precompiled 
header

Providing backward 
compatibility

Adding public API

Verifying compatibility 
between two libraries

Building and Debugging

Creating Frameworks and

Dynamic Shared Libraries12



Creating Frameworks and Dynamic Shared Libraries

255

Setting up a framework project

A framework is a bundle containing a dynamic shared library. Both Framework 
and Library project types build dynamic shared libraries. The difference is that 
frameworks bundle the library file with its headers, documentation, and 
resources. 

1 Create a project with Framework 
as the project type.

2 Add header (.h) and 
implementation (.m) files to the 
project.

3 Specify which header files, if 
any, should be private.

A project linked against a
framework has easy
access to headers.

You create a framework
or library project from the
New panel, just like any
other project, but you must
do some additional set-up
using the Inspector and
the makefiles.

The Framework vs. the Library

Because of their convenience, you’ll want to create framework 
projects instead of library projects in most cases. However, if the 
project doesn’t use resources and doesn’t contain API that is 
public to your users (for example, if you distribute an application 
that uses a private library), you may choose to create a library 
project instead. If you need to create a static library (and you 
shouldn’t need to), you must create a library project instead of a 
framework.

Creating a library project is very similar to creating a framework 
project. The tasks described in this chapter are things you do when 
you create either type of project. The main differences between 
creating a library project and creating a framework project are: 

• The name of the binary file. For library projects. The name is 
libProjectName.MajorVersion.dylib. For framework projects it is 
just ProjectName. 

• Publishing header files. For framework projects, all header files 
are public by default. In Library projects, header files are private by 
default. To install them so that the library’s users may access them, 
you must use the File Attributes inspector to mark each header file 
as public, and you must specify where to install them using the 
PUBLIC_HEADER_DIR macro in the file Makefile.preamble. 



Making a header file private

256

Making a header file private

By default, all of a framework’s header files are public. When the framework is 
installed, the headers are installed in the framework’s Headers subdirectory and 
the framework’s users can see those headers from their projects. If you have a 
header that you don’t want your users to see, you must mark it as private. 

 

1 Select the header file in the 
project browser.

2 Click the Inspector button.

3 Choose File Attributes in the 
Inspector panel.

4 Deselect Public Header in the 
Inspector panel.

Select the header file you
want to make public.

Deselect Public Header.

Click here, or choose
Inspector from the
Tools menu.

Choose File Attributes.

A good reason to make a header 
file private is to make sure your 
users don’t use the API. This 
frees you to change it later. See 
“Tips and Tricks to Changing the 
Major Version” in this chapter.

Setting the Search Path for Frameworks and Libraries

When you link a program with a framework (or library), the 
framework binary’s full path is recorded in the program 
executable. By default, a program only looks in that one location 
for the binary. If it can’t find it, the program won’t launch. 

To have a program look in more than one location, set the 
environment variable DYLD_LIBRARY_PATH. This variable works 
like the PATH environment variable. For example, if you enter the 

following commands in a Terminal window, the Foo application 
will look for the binary file MyFramework in two locations: the 
recorded location and in the directory 
~/Library/MyFramework.framework.

% setenv DYLD_LIBRARY_PATH \
~/Library/MyFramework.framework
% Foo.app/Foo



Creating Frameworks and Dynamic Shared Libraries

257

Installing a precompiled header

You might want to install a precompiled header file so that your users’ projects 
compile faster. Installing a precompiled header is different from creating a 
precompiled header for a project because a header must be precompiled in its 
final location. When you create a precompiled header for a project, the header is 
compiled before the rest of the project. To install a precompiled header, you 
must first build and install the project in its destination, then precompile the 
header.

To precompile a header after it is installed, set these macros in Makefile.preamble:

Preamble Macro Description

PUBLIC_PRECOMPILED_HEADERS The names of the headers (.h extension) that should be 
precompiled after they are installed.

PUBLIC_PRECOMPILED_CFLAGS The flags besides -precomp to pass to cc when precompiling.

1 Select the Makefile.preamble 
file under Supporting Files.

2 Set the macros that affect the 
precompilation of a header after 
installation.

Select Makefile.preamble
under Supporting Files.

Set these macros.

Chapter 8 describes how to 
precompile a header for internal 
use by a project and the things to 
consider when you create the 
header file that is going to be 
precompiled.



Installing a precompiled header

258

Macros for the Makefile Hacker

The files Makefile.preamble and Makefile.postamble define 
several macros that affect frameworks and libraries. Using these 
macros, you can change the way a framework or library is built or 
installed. (See Chapter 9 for a description of the other macros in 
these files.)

By default, a framework project builds a bundle named 
ProjectName.framework with the subdirectories Headers, 
Resources, and Versions. Each major version is installed in a 
subdirectory under Versions along with its public headers, 
documentation, and resources in the appropriate subdirectories. 
Also under Versions is a subdirectory named Current, which 
contains links to the latest version. The subdirectories 
immediately under ProjectName.framework are really just 
symbolic links into Current. 

A library project creates a binary file named 
libProjectName.MajorVersion.dylib and a symbolic link to this file 
named libProjectName.dylib. Both are installed in /usr/lib. No 
headers are installed by default.

Makefile.preamble Macros

SECTORDER_FLAGS Arguments to the linker’s -sectorder 
option. See the ld(1) man page for more information.

OTHER_PUBLIC_HEADERS Header files that should be 
installed as public other than those marked as public in the File 
Attributes inspector.

OTHER_PRIVATE_HEADERS Header files that should be 
installed as private other than those included in the project.

PUBLIC_HEADER_DIR Location in which to install public 
headers. You must define this for library projects if you want 
header files to be installed when the library is installed. For 
frameworks, any header file marked as public is placed in the 
Headers subdirectory.

PUBLIC_PRECOMPILED_HEADERS Header files to be 
precompiled after installation. See “Installing a precompiled 
header” in this chapter.

PUBLIC_PRECOMPILED_HEADERS_CFLAGS See 
“Installing a precompiled header” in this chapter.

PRIVATE_HEADER_DIR Location in which to install private 
headers, which can be stripped away separately from your 
product build image. The default is not to install private headers.

PUBLIC_HEADER_DIR_SUFFIX Define this macro if a 
framework or library has a subproject whose public headers 
should be installed in a subdirectory of the parent’s public header 

directory. For example, if you define this macro as /sys, they are 
installed in Headers/sys. 

PRIVATE_HEADER_DIR_SUFFIX The same as 
PUBLIC_HEADER_DIR_SUFFIX, but for private headers. 

LIBRARY_STYLE If STATIC, builds a static archive library (.a 
extension) rather than a dynamic shared library. 

BUILD_OFILES_LIST_ONLY If YES, links the object files in the 
project together but does not call libtool to create a dynamic 
shared library from the object files. This macro is useful if you 
want to use the modules in another, larger library project.

Makefile.postamble Macros

CURRENTLY_ACTIVE_VERSION If YES, a symbolic link to the 
framework’s binary file is created in the directory 
Versions/Current. If NO, the link is not created. The default is YES. 
Set this to NO if you want to install a new version of a framework 
but you still want projects to link against the previously installed 
version. This macro does not affect library projects. Using this 
macro is the same as checking the current version box on the 
Project Attributes inspector.

DEPLOY_WITH_VERSION_NAME This is the same as 
changing the version name in the Project Attributes inspector. 
See “Providing backward compatibility” in this chapter.

CURRENT_PROJECT_VERSION The minor version number. See 
“CURRENT_PROJECT_VERSION: For That Extra Level of 
Checking” in this chapter.

COMPATIBILITY_PROJECT_VERSION The compatibility 
version number. See “Adding public API” in this chapter.

DYLIB_INSTALL_NAME The name of the binary file that is built. 
The default is libProjectName.MajorVersion.dylib for library 
projects, ProjectName for frameworks. 

DYLIB_INSTALL_DIR Sets the path recorded in the library’s 
binary file. $DYLIB_INSTALL_DIR/$DYLIB_INSTALL_NAME is 
passed as the argument to the -install_name option of libtool, 
which is used to set the name recorded in the library file to be 
something other than its path name. The default is not to use this 
option. 

LIBRARY_STRIP_OPTS Options to pass to strip for statically 
linked libraries. You shouldn’t have to create a static library, so 
you shouldn’t have to use this macro.

DYNAMIC_STRIP_OPTS Options to pass to strip for framework 
projects and dynamic shared library projects.



Creating Frameworks and Dynamic Shared Libraries

259

Providing backward compatibility

When you change a framework, you want to make sure not to break existing 
programs. If you do one of the following to your framework, you are in danger of 
breaking programs that link with it: 

Remove any public API.
Change any API, such as a method or function declaration or a class name.
Add instance variables to a class.
Rearrange the order of instance variables in a class.
Remove any of the architectures the framework is built for.

Whenever you make one of these changes, you should increment the 
framework’s major version letter and provide both the new and old binary to 
your users. That way, programs linked against the older version of the 
framework will still run. New programs or modified programs will link with the 
newer version of the framework. 

A dynamic shared library’s name contains the major version letter. This name is 
recorded in the executable when a program links with the library. Thus, any 
program that links with a dynamic shared library knows that library’s major 
version. The program won’t launch if it can’t find a library with the correct name.

For example, if the program MyProg links with version A of the framework Misc, 
the path /LocalLibrary/Frameworks/Misc.framework/Versions/A/Misc is recorded in 
MyProg. Suppose you add an instance variable to a class in Misc and change 
version to B. This builds Misc.framework/Versions/B/Misc but leaves Versions/A/Misc 
intact. Because version A still exists, MyProg can still run. If you change MyProg 
and rebuild it, it links with version B. 

1 Click the Inspector button. 

2 Choose Project Attributes from the 
Inspector panel. 

3 Set the Deploy with version name 
field in the Project Attributes 
inspector if you have removed or 
changed API. 

4 Build the project.

Change the value in this field if you added an instance variable or
changed or removed any other API.

Turn this box off if you still want newly built projects to link against the
previous version.

The Install in: field of the Build 
Attributes inspector provides the 
first half of the framework’s full 
name. Variables such as $(HOME) 
are expanded before the path 
name is recorded. For more 
information on the Build 
Attributes inspector, see 
Chapter 9. 



Providing backward compatibility

260

Tips and Tricks to Changing the Major Version

If you don’t change the framework’s major version number when 
you need to, programs linked with it will fail in unpredictable 
ways. If you change the major version number and you don’t need 
to, you’re cluttering up the system with compatible frameworks. 
You can avoid errors in changing the major version number if you 
follow a few simple tricks. 

Don’t Do It

The first trick is to avoid having to change the version number in 
the first place. Some ways to do this are:

• Pad classes and structs with reserved fields. Whenever you 
add an instance variable to a public class, you must change the 
major version number because subclasses depend on a 
superclass’s size. However, you can pad a class by defining an 
unused instance variable of type id. Then, if you need to add 
instance variables to the class, you can instead define a whole 
new class containing the storage you need and have your 
reserved instance variable point to it. 

• Don’t publish API unless you want your users to use it. You can 
freely change private API because you can be sure no 
programs are using it. Declare any API in danger of changing 
in a private header. See “Making a header file private” in this 
chapter.

• Don’t delete things. If a method or function no longer has any 
useful work to perform, leave it in the API for compatibility 
purposes. Make sure it returns some reasonable value. (Even 
if you add additional arguments to a method, leave the old form 
around if at all possible.)

• Remember that if you add API rather than change or delete it, 
you don’t have to change the major version number because 
the old API still exists. The exception to this rule is instance 
variables. (You do have to change the compatibility version 
number, however. See “Adding public API” in this chapter.)

If You Do, Don’t Clean It 

make clean deletes the entire .framework bundle in the project 
directory, which means it deletes the old binaries in addition to 
the current binary. The subsequent build creates only the current 
version. You have no way of retrieving the earlier versions.

If you must perform a make clean, you’ll need to create multiple 
copies of the project: one that builds the current version, and one 
for each of the previous versions. The projects that build the 
previous versions should set the CURRENTLY_ACTIVE_VERSION 
macro to NO so that the pointer to the current version is not 
changed when these older versions are installed. When you 
install, you’ll need to install all versions. 

Verify Whatever You Do

Use cmpdylib to make sure you did the right thing. If cmpdylib 
says the older library defines symbols that aren’t defined in the 
newer library, you need to change the major version number. See 
“Verifying compatibility between two libraries” in this chapter.

extern float aFunc(id a);

extern const int myConst;

@interface ClassA
(
   id a;

   id b;

   id reserved;

)
- (id)a;

- (id)b;

- (void)setA:(id)newA;

@end

extern int aFunc(id a);

extern const int aConst;

@interface ClassA
(
   id b;

   id a;

   

)
- (id)a;

- (id)b;

- (void)setA:(id)newA;

- (void)setB:(id)newB;

@end

extern float aFunc(id a);

extern const int aConst;

@interface ClassA
(
   id a;

   id b;

   id reserved;

)
- (id)a;

- (id)b;

- (ClassC *)c;
- (void)setA:(id)newA;

@end

@interface ClassC
(
   id d;
   id e;
   id f;
)
...

Version A Version B Version B
Changed
function
Changed
constant

Removed
method

Added and
reordered ivars

—Added API—
no major

version change



Creating Frameworks and Dynamic Shared Libraries

261

Adding public API

You shouldn’t change the major version number when you add API (for 
example, if you add a class, add a method to an existing class, or add a function 
or constant). Adding API doesn’t break existing programs. Existing programs are 
guaranteed to be using the older API and will still run because you’ve left the 
older API intact. However, new programs might use the new API, and therefore 
shouldn’t try to run against older versions of the framework, which don’t define 
that API. 

When you add API, increment the compatibility version number. The 
compatibility version number protects programs linked with newer versions of 
a library from running with older versions of the library. In order for a program 
to launch, the compatibility version number of the framework it runs with must 
be equal to or greater than the CURRENT_PROJECT_VERSION number of the 
framework it linked with. 

1 Change the compatibility project 
version number and the current 
project version number in 
Makefile.postamble.

2 Build the project.

Select Makefile.postamble
under Supporting Files.

Increment the value in
COMPATIBILITY_PROJECT_VERSION
and in CURRENT_PROJECT_VERSION
when you add API, such as methods,
classes, functions, or constants.

Remember that adding instance variables 
to a class is an incompatible change, 
which means you should change the 
version name instead of the compatibility 
version number. See “Tips and Tricks to 
Changing the Major Version” for an 
explanation.

Increment the value in 
CURRENT_PROJECT_VERSION 
whenever you change the compatibility 
version number. See 
“CURRENT_PROJECT_VERSION: 
For That Extra Level of Checking” in 
this chapter.



Adding public API

262

Why shouldn’t you just change the major version number when you add API? 
Because programs linked with the previous version of the framework still run 
with the new version. If you change the major version number, the previous 
version remains installed on your users’ systems. By changing the compatibility 
version number instead, you can install just one version.

main (
   AFrameworkClass *myObject;

   [myObject doSomething];
   ...
)

main (
   AFrameworkClass *myObject;

   [myObject doSomethingElse];
   ...
)

@interface AFrameworkClass
(
)
- doSomething;
@end

@interface AFrameworkClass
(
)
- (void)doSomething;
- (void)doSomethingElse;
@end

Program2

Program1

Program1 can use
either version of

AFramework

Program2 can only use
the newest version of

AFramework

Programs linked with AFramework AFramework

CURRENT_PROJECT_VERSION=1.0
COMPATIBILITY_PROJECT_VERSION=1.0

CURRENT_PROJECT_VERSION=1.1
COMPATIBILITY_PROJECT_VERSION=1.1

CURRENT_PROJECT_VERSION: For That Extra Level of Checking

In addition to the major version number, and the compatibility 
version number, a dynamic shared library has a third version 
number. This is the minor version number or current version 
number. You set the current version number in the macro 
CURRENT_PROJECT_VERSION, which is in Makefile.postamble. 

At the very least, increment CURRENT_PROJECT_VERSION every 
time you increment COMPATIBILITY_PROJECT_VERSION. The 
CURRENT_PROJECT_VERSION stored in a program’s executable 
is compared with the COMPATIBILITY_PROJECT_VERSION 
stored in the library’s binary file. The version in the program must 
be greater than or equal to the version in the library for the 
program to launch. 

The intent is that you increment CURRENT_PROJECT_VERSION 
every time you distribute the framework when you haven’t 
changed or added API. For example, if you fix a bug in the way a 

method works, you increment CURRENT_PROJECT_VERSION. 
Changes involving implementation only are almost always 
compatible. Programs linked against older versions of the 
framework can run against the new version and in fact are 
actually intended to run against the new version. Programs linked 
against the new version can still run against the old version (even 
though they will then encounter the bug that you have fixed).

In rare cases, someone may write a program that needs a fix from 
a certain version of the library. That program can use the function 
NSVersionOfRunTimeLibrary() to determine the current version 
of the library and take the appropriate action if the version isn’t 
the one it needs: put up an alert panel, disable some feature of the 
program, or disable the entire program. Because of these rare 
cases where a program may need to check the version number, 
you should always increment CURRENT_PROJECT_VERSION 
when you distribute a new framework.



Creating Frameworks and Dynamic Shared Libraries

263

Verifying compatibility between two libraries

cmpdylib is a verification tool that you can use to make sure you’ve made the right 
choices about version numbers. The syntax is:

cmpdylib oldLibName newLibName

If oldLibName and newLibName are compatible, this command returns nothing. 
If they aren’t compatible, it tells you why. 

cmpdylib considers two libraries compatible if:

They are built for the same architectures.
oldLibName defines a subset of the symbols that newLibName does.
newLibName defines symbols not in oldLibName and has a different 
compatibility version number. 

The two libraries are incompatible if:

They are built for different architectures.
oldLibName defines symbols that aren’t in newLibName.
newLibName defines symbols not in oldLibName and has the same 
compatibility version number. 

Currently, cmpdylib only checks C-level API and does not distinguish between 
public and private API. For example if you add a method, cmpdylib won’t detect 
the change. Also if you change a private class, cmpdylib will report the change as 
an incompatibility. 

1 Start up the Terminal application.

2 Perform the cmpdylib command.

These should have
different compatibility
versions because the
newer library has more
symbols.

These should have
different major versions
because the older library
has a symbol not defined
in the newer library.



Verifying compatibility between two libraries

264


