
AppKit.pdf

The Application Kit

Framework:

Library/Frameworks/AppKit.framework

Header File Directories:

Library/Frameworks/AppKit.framework/Headers

Introduction

The Application Kit is a framework containing all the objects you need to implement your graphical,
event-driven user interface: windows, panels, buttons, menus, scrollers, and text fields. The Application
Kit handles all the details for you as it efficiently draws on the screen, communicates with hardware
devices and screen buffers, clears areas of the screen before drawing, and clips views. The number of
classes in the Application Kit may seem daunting at first. However, most Application Kit classes are
support classes that you use indirectly. You also have the choice at which level you use the Application
Kit:

• Use Interface Builder to create connections from user interface objects to your application objects. In
this case, all you need to do is implement your application classes—implement those action and
delegate methods. For example, implement the method that is invoked when the user selects a menu
item.

• Control the user interface programmatically which requires more familiarity with Application Kit
classes and protocols. For example, allowing the user to drag an icon from one window to another
requires some programming and familiarity with the NSDragging... protocols.

• Implement your own objects by subclassing NSView or other classes. When subclassing NSView you
write your own drawing methods using graphics functions. Subclassing requires a deeper
understanding of how the Application Kit works.

To learn more about the Application Kit, review the NSApplication, NSWindow, and NSView class
specifications paying close attention to delegate methods. For a deeper understanding of how the

2

Application Kit works, see the specifications for NSResponder and NSRunLoop (NSRunLoop is in the
Foundation Framework).

Application Kit Classes and Protocols

The Application Kit is large; it comprises more than 100 classes and protocols. The classes all descend from
the Foundation Framework’s NSObject class (see Figure 1). The following sections briefly describe some
of the topics that the Application Kit addresses through its classes and protocols.

3

Classes:

Figure 1

The Application Kit class inheritance

4

Encapsulating an Application

Every application uses a single instance of NSApplication to control the main event loop, keep track of the
application’s windows and menus, distribute events to the appropriate objects (that is, itself or one of its
windows), setup autorelease pools, and receive notification of application-level events. An NSApplication
object has a delegate (an object that you assign) that is notified when the application starts or terminates, is
hidden or activated, should open a file selected by the user, and so forth. By setting the NSApplication
object’s delegate and implementing the delegate methods, you customize the behavior of your application
without having to subclass NSApplication.

General Event Handling and Drawing

The NSResponder class defines the responder chain, an ordered list of objects that respond to user events.
When the user clicks the mouse or presses a key, an event is generated and passed up the responder chain
in search of an object that can “respond” to it. Any object that handles events must inherit from the
NSResponder class. The core Application Kit classes, NSApplication, NSWindow, and NSView, inherit
from NSResponder.

An NSApplication object maintains a list of NSWindow objects—one for each window belonging to the
application—and each NSWindow object maintains a hierarchy of NSView objects. The view hierarchy is
used for drawing and handling events within a window. NSWindow objects handle window-level events,
distribute other events to its views, and provide a drawing area for its views. An NSWindow object also has
a delegate allowing you to customize its behavior.

NSView is an abstract class for all objects displayed in a window. All subclasses implement a drawing
method using graphics functions; this is the primary method you override when creating a new NSView.

Panels

The NSPanel class is a subclass of NSWindow that you use to display transient, global, or pressing
information. For example, you would use an instance of NSPanel, rather than an instance of NSWindow, to
display error messages, or to query the user for a response to remarkable or unusual circumstances. The
Application Kit implements some common panels for you such as the Save, Open and Print panels, used to
save, open, and print documents. Using these panels gives the user a consistent “look and feel” across
applications for common operations.

Menus and Cursors

The NSMenu, NSMenuItem, and NSCursor classes define the look and behavior of the menus and cursors
that your application displays to the user.

Grouping and Scrolling Views

The NSBox, NSScrollView, and NSSplitView classes provide graphic “accessories” to other view objects
or collection of views in windows. With the NSBox class, you can group elements in windows and draw a

5

Classes:

border around the entire group. The NSSplitView class lets you “stack” views vertically or horizontally,
apportioning to each view some amount of a common territory; a sliding control bar lets the user redistribute
the territory among views. The NSScrollView class, and its helper class, NSClipView, provide a scrolling
mechanism as well as the graphic objects that let the user initiate and control a scroll. The NSRulerView
class allows you to add a ruler and markers to a scrollview.

Controlling an Application

The NSControl and NSCell classes, and their subclasses, define a common set of user interface objects such
as buttons, sliders, and browsers that the user can manipulate graphically to control some aspect of your
application. Just what a particular control affects is up to you: When a control is “touched,” it sends an
action message to a target object. You typically use Interface Builder to set these targets and actions by
control-dragging from the control object to your application or other object. You can also set targets and
actions programmatically.

An NSControl object is associated with one or more NSCell objects that implement the details of drawing
and handling events. For example, a button comprises both an NSButton object and an NSButtonCell
object. The reason for this separation of functionality is primarily to allow NSCell classes to be reused by
NSControl classes. For example, NSMatrix and NSTableView can contain multiple NSCell objects of
different types.

Tables

The NSTableView class displays data in row and column form. NSTableView is ideal, but not limited to,
displaying database records, where rows correspond to each record and columns contain record attributes.
The user can edit individual cells and rearrange the columns. You control the behavior and content of an
NSTableView object by setting its delegate and data source objects.

Text and Fonts

The NSTextField class implements a simple editable text field, and the NSTextView class provides more
comprehensive editing features for larger text bodies.

NSTextView, a subclass of the abstract NSText class, defines the interface to OpenStep’s extended text
system. (Use only the methods defined by NSText if you are programming strictly according to the
OpenStep Specification.) NSTextView supports rich text, attachments (graphics, file, and other), input
management and key binding, and marked text attributes. NSTextView works with the font panel and menu,
rulers and paragraph styles, the Services facility (for example, the spell-checking service), and the
pasteboard. NSTextView also allows customizing through delegation and notifications—you rarely need to
subclass NSTextView. You rarely create instances of NSTextView programmatically either since objects on
Interface Builder’s palettes, such as NSTextField, NSForm and NSScrollView, already contain NSTextView
objects.

It is also possible to do more powerful and more creative text manipulation (such as displaying text in a
circle) using NSTextStorage, NSLayoutManager, NSTextContainer, and related classes.

6

The NSFont and NSFontManager classes encapsulate and manage font families, sizes, and variations. The
NSFont class defines a single object for each distinct font; for efficiency, these objects, which can be rather
large, are shared by all the objects in your application. The NSFontPanel class defines the font-specification
panel that’s presented to the user.

Graphics and Color

The classes NSImage and NSImageRep encapsulate graphic data, allowing you to easily and efficiently
access images stored in files on the disk and displayed on the screen. NSImageRep subclasses each know
how to draw an image from a particular kind of source data. The presentation of an image is greatly
influenced by the hardware that it’s displayed on. For example, a particular image may look good on a color
monitor, but may be too “rich” for monochrome. Through the image classes, you can group representations
of the same image, where each representation fits a specific type of display device—the decision of which
representation to use can be left to the NSImage class itself.

Color is supported by the classes NSColor, NSColorPanel, NSColorList, NSColorPicker, and
NSColorWell. NSColor supports a rich set of color formats and representations including custom ones. The
other classes are mostly interface classes: They define and present panels and views that allow the user to
select and apply colors. For example, the user can drag colors from the Color panel to any color well. The
NSColorPicking protocol lets you extend the standard Color panel.

Dragging

With very little programming on your part, custom view objects can be dragged and dropped anywhere.
Objects become part of this dragging mechanism by conforming to NSDragging... protocols: draggable
objects conform to the NSDraggingSource protocol, and destination objects (receivers of a drop) conform
to the NSDraggingDestination protocol. The Application Kit hides all the details of tracking the mouse and
displaying the dragged image.

Printing and Faxing

The NSPrinter, NSPrintPanel, NSPageLayout, and NSPrintInfo classes work together to provide the means
for printing and faxing the information that your application displays in its windows and views. You can
also create an EPS representation of an NSView. This is easily done because the same representation,
Postscript, is used for printing, faxing, and displaying.

Accessing the File System

Use the NSFileWrapper class to create objects that correspond to files or directories on disk.
NSFileWrapper will hold the contents of the file in memory so that it can be displayed, changed, or
transmitted to another application. It also provides an icon for dragging the file or representing it as an
attachment (see “Text and Fonts”). Or use the NSFileManager class in the Foundation Framework to access
and enumerate file and directory contents. The NSOpenPanel and NSSavePanel classes also provide a
convenient and familiar user interface to the file system.

7

Classes:

Sharing Data with Other Applications

The NSPasteboard class defines the pasteboard, a repository for data that’s copied from your application,
making this data available to any application that cares to use it. NSPasteboard implements the familiar
cut-copy-paste operation. The NSServicesRequest protocol uses the pasteboard to communicate data that’s
passed between applications by a registered service.

Spell-Checking

The NSSpellServer class lets you define a spell-checking service and provide it as a service to other
applications. To connect your application to a spell-checking service, you use the NSSpellChecker class.
The NSIgnoreMisspelledWords and NSChangeSpelling protocols support the spell-checking mechanism.

Localization

If an application is to be used in more than one part of the world, its resources may need to be customized,
or “localized,” for language, country, or cultural region. For example, an application may need to have
separate Japanese, English, French, and German versions of character strings, icons, nib files, or context
help. Resource files specific to a particular language are grouped together in a subdirectory of the bundle
directory (the directories with the “.lpro

j

” extension). Usually you setup localization resource files using
Interface Builder. See the specifications for NSBundleAdditions and NSBundle class for more information
on localization (NSBundle is in the Foundation Framework).

1

 Classes: NSActionCell

NSActionCell

Inherits From:

NSCell : NSObject

Conforms To:

NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In:

 AppKit/NSActionCell.h

Class Description

An NSActionCell defines an active area inside a control (an instance of NSControl or one of its subclasses).
As an NSControl’s active area, an NSActionCell does three things: it usually performs display of text or an
icon; it provides the NSControl with a target and an action; and it handles mouse (cursor) tracking by
properly highlighting its area and sending action messages to its target based on cursor movement. The only
way to specify the NSControl for a particular NSActionCell is to send the NSActionCell a

drawWithFrame:inView:

 message, passing the NSControl as the argument for the

inView:

 keyword of
the method.

NSActionCell implements the target object and action method as defined by its superclass, NSCell. As a
user manipulates an NSControl, NSActionCell’s

trackMouse:inRect:ofView:untilMouseUp:

 method
(inherited from NSCell) updates its appearance and sends the action message to the target object with the
NSControl object as the only argument. See "Target and Action" below for more on this paradigm.

Usually, the responsibility for an NSControl’s appearance and behavior is completely given over to a
corresponding NSActionCell. (NSMatrix, and its subclass NSForm, are NSControls that don’t follow this
rule.)

A single NSControl may have more than one NSActionCell. To help identify it in this case, every
NSActionCell has an integer tag. Note, however, that no checking is done by the NSActionCell object itself
to ensure that the tag is unique. See the NSMatrix class for an example of a subclass of NSControl that
contains multiple NSActionCells.

Many of the methods that define the contents and look of an NSActionCell, such as

setFont:

 and

setBordered:

, are reimplementations of methods inherited from NSCell. They’re overriden to ensure that
the NSActionCell is redisplayed when "visual" attributes change.

Target and Action

Target objects and action methods (or messages) are part of the mechanism by which NSControls respond
to user actions and enable users to communicate their intentions to an application. A target is an object that
an NSControl uses as the receiver of action messages. The target’s class defines an action method to enable
its instances to respond to these messages, which are sent as users click or otherwise manipulate the

2

NSControl. NSControl’s

sendAction:to:

 asks the NSApplication object, NSApp, to send an action
message to the NSControl’s target object.

An action method takes only one argument: the

id

 of the sender. The sender may be either the NSControl
that sends the action message or, on occassion, another object that the target should treat as the sender.
When it receives an action message, a target can return messages to the sender requesting additional
information about its status.

You can also set the target to

nil

 and allow it to be determined at run time. When the target is

nil

, the
NSApplication object must look for an appropriate receiver. It conducts its search in a prescribed order, by
following the responder chain until it finds an object that can respond to the message:

• It begins with the first responder in the key window and follows

nextResponder

 links up the responder
chain to the NSWindow’s content view.

• It tries the NSWindow object and then the NSWindow’s delegate.

• If the main window is different from the key window, it then starts over with the first responder in the
main window and works its way up the main window’s responder chain to the NSWindow object and its
delegate.

• Next, the NSApplication object tries to respond itself. If it can’t respond, it tries its own delegate. NSApp
and its delegate are the receivers of last resort.

NSControl provides methods for setting and using the target object and the action method. However, these
methods require that an NSControl’s cell (or cells) be NSActionCells or custom cells that hold action and
target as instance variables and can respond to the NSControl methods.

Method Types

 Configuring an NSActionCell
– setAlignment:
– setBezeled:
– setBordered:
– setEnabled:
– setFloatingPointFormat:left:right:
– setFont:
– setImage:

Obtaining and setting cell values
– doubleValue
– floatValue
– intValue
– stringValue
– setObjectValue:

3

 Classes: NSActionCell

Displaying the NSActionCell
– drawWithFrame:inView:
– controlView

Assigning target and action
– setAction:
– action
– setTarget:
– target

Assigning a tag
– setTag:
– tag

Instance Methods

action

– (SEL)

action

Returns the NSActionCell’s action-message selector.

See also:

–

setAction:

, –

setTarget:

, –

target

controlView

– (NSView *)

controlView

Returns the view (normally an NSControl) in which the NSActionCell was last drawn or

nil

 if the
NSActionCell has no control view (usually because it hasn’t yet been placed in the view hierarchy).

See also:

–

drawWithFrame:inView:

doubleValue

– (double)

doubleValue

Returns the NSActionCell’s value as a

double

 after validating any editing of cell content. If the receiver is
not a text-type cell or the cell value is not scannable, the method returns zero.

See also:

–

validateEditing

 (NSControl)

4

drawWithFrame:inView:

– (void)

drawWithFrame:

(NSRect)

cellFrame

inView:

(NSView *)

controlView

Draws the NSActionCell's regular or bezeled border (if those attributes are set) and then draws the interior
of the cell. NSActionCell's method overrides this method to replace its controlling control with

controlView

(if they're different) before invoking NSCell's

drawWithFrame:inView:

.

See also:

– controlView

floatValue

– (float)

floatValue

Returns the NSActionCell’s value as a

float

 after validating any editing of cell content. If the receiver is not
a text-type cell or the cell value is not scannable, the method returns zero.

See also:

–

validateEditing

 (NSControl)

intValue

– (int)

intValue

Returns the NSActionCell’s value as a

int

 after validating any editing of cell content. If the receiver is not
a text-type cell or the cell value is not scannable, the method returns zero.

See also:

–

validateEditing

 (NSControl)

setAction:

– (void)

setAction:

(SEL)

aSelector

Sets the selector used for the action message to

aSelector

.

See also:

–

action

, –

setTarget:

, –

target

setAlignment:

– (void)

setAlignment:

(NSTextAlignment)

mode

Sets the alignment of text in the receiving NSActionCell;

mode

 is one of five constants:
NSLeftTextAlignment, NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment,
NSNaturalTextAlignment (the default alignment for the text). The method marks the receiving
NSActionCell as needing redisplay after discarding any editing changes that were being made to cell text.

5

 Classes: NSActionCell

setBezeled:

– (void)

setBezeled:

(BOOL)

flag

Sets whether the NSActionCell draws itself with a bezeled border and marks it as needing redisplay. The

setBezeled:

 and

setBordered:

 methods are mutually exclusive (that is, a border can be only plain or
bezeled).

setBordered:

– (void)

setBordered:

(BOOL)

flag

Sets whether the receiver draws itself outlined with a plain border and marks it as needing redisplay. The

setBezeled:

 and

setBordered:

 methods are mutually exclusive (that is, a border can be only plain or
bezeled).

setEnabled:

– (void)

setEnabled:

(BOOL)

flag

Sets whether the receiver is enabled or disabled. The text of disabled cells is changed to gray. If a cell is
disabled, it cannot be highlighted, does not support mouse tracking (and thus cannot participate in
target/action functionality), and cannot be edited. The method marks the receiving NSActionCell as
needing redisplay after discarding any editing changes that were being made to cell text.

setFloatingPointFormat:left:right:

– (void)

setFloatingPointFormat:

(BOOL)

autoRange

left:

(unsigned int)

leftDigits

right:

(unsigned int)

rightDigits

Sets the NSActionCell’s floating point format as described in the NSCell class specification for the

setFloatingPointFormat:left:right:

 method. NSActionCell’s implementation of the method supplements
NSCell’s by marking the receiving NSActionCell as needing redisplay after discarding any editing changes
that were being made to cell text.

setFont:

– (void)

setFont:

(NSFont *)

fontObj

Sets the font to be used when the NSActionCell displays text. If the receiver is not a text-type cell, the
method converts it to that type. If

fontObj

 is

nil

 and the receiver is a text-type cell, the font currently held
by the receiver is autoreleased. NSActionCell supplements NSCell’s implementation of this method by

6

marking the updated cell as needing redisplay; if the receiving NSActionCell was converted to a text-type
cell and is selected, it also updates the field editor with

fontObj

.

setImage:

– (void)

setImage:

(NSImage *)

image

Sets the image to be displayed in the receiver. If

image

 is

nil

, the image currently displayed by the receiver
is removed.

setObjectValue:

– (void)

setObjectValue:

(id)

object

Discards any editing of the receiving NSActionCell’s text and sets its object value to

object

. If the object
value is afterwards different from what it was before the method was invoked, the method marks the
NSActionCell as needing redisplay.

setTag:

– (void)

setTag:

(int)

anInt

Sets the receiving NSActionCell’s tag to

anInt

.

See also: – tag

setTarget:
– (void)setTarget:(id)anObject

Sets the receiving NSActionCell’s target object to anObject.

See also: – action, – setAction:, – target

stringValue
– (NSString *)stringValue

Returns the receiving NSActionCell’s value as a string object as converted by the cell’s formatter, if one
exists. If no formatter exists and the value is an NSString, returns the value as an plain, attributed or
localized formatted string. If the value is not an NSString or can’t be converted to one, returns an empty

7

 Classes: NSActionCell

string. The method supplements NSCell’s implementation by validating and retaining any editing changes
being made to cell text.

See also: – validateEditing (NSControl)

tag
– (int)tag

Returns the receiving NSActionCell’s tag.

See also: – setTag:

target
– (id)target

Returns the receiving NSActionCell’s target object.

See also: – action, – setAction:, – setTarget:

1

 Classes: NSAffineTransform

NSAffineTransform

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSAffineTransform.h

Class Description

The NSAffineTransform class provides methods for creating, concatenating, and applying affine
transformations. A transformation specifies how points in one coordinate system are transformed to points
in another coordinate system. An affine transformation is a special type of transformation that preserves
parallel lines in a path but does not necessarily preserve lengths or angles. Scaling, rotation, and translation
are the most commonly used manipulations supported by affine trasforms, but shearing is also possible.

Graphic transformations rely on a matrix of values to specify how a path will be changed. Points being
transformed are multiplied through the matrix to obtain the resulting (transformed) point. You do not need
to know anything about matrices and matrix multiplication to use the NSAffineTransform class.
NSAffineTransform provides methods that allow you to set scaling, rotation, and translation factors while
leaving the matrix mathematics to the transform object.

Creating Transforms

To create a new instance of NSAffineTransform, you can use either the transform class method or you can
allocate a new transform object and initialize it using the initWithTransform: method. When you use the
transform class method to create a new instance of NSAffineTransform, the new object’s matrix is
initialized to the identity matrix (which transforms any point to itself). When you use the
initWithTransform: method, the new object’s matrix is set to the matrix of the specified affine transform.

NSAffineTransform provides direct support for setting scaling, rotation, and translation factors. Use the
translateXBy:yBy: method to set translation factors independently for each axis. Use the
rotateByDegrees: and rotateByRadians: methods to set rotation factors either in degrees or in radians.
Use the scaleBy: method to set the same scaling factor for both x and y axes, or use the scaleXBy:yBy:
method to set independent scaling factors for each axis. If you want to set a combination of factors all at
once (or if you want to set shearing factors), you can use the setTransformStruct: method to specify the
matrix values directly.

For more information on the mathematics involved in transform manipulations, see “Manipulating
Transform Values”.

2

Using Transforms

Transforms are used most commonly to adjust a view’s drawing area by translating the view’s origin to
some prescribed location on the screen. However, you can also use transforms to arbitrarily scale or rotate
paths within their view. Because transformations occur relative to the origin of the local coordinate system,
several transforms may need to be concatenated together to generate the proper effect. For example, Figure
1 shows a rectangular path and the result of rotating it 45 degrees. In order to rotate the rectangle around its
origin, you would need to translate that origin to the center of its coordinate system, apply the rotation, and
then translate the rectangle back to its original location. You may need to apply similar techniques when
scaling a path.

Figure 1 Rotating a rectangular path 45 degrees

Rather than applying separate transforms to translate, scale, and rotate a single path you can combine a
group of transforms into a single transform and apply only that transform. To do this, you must combine the
transforms by appending them together with the appendTransform: method. The effects of the appended
transform occur after the effects of the original transform. Similarly, you can prepend one transform to
another using the prependTransform: method.

Once you have constructed your transform object and set the appropriate scaling, translation, and rotation
factors, you can apply the transformation to one or more points. To apply the transform to a single point,
use the transformPoint: method. To transform an entire path, use the transformBezierPath: method,
which returns a copy of the transformed path leaving the original untouched. You can also transform NSSize
values using the transformSize: method, although NSSize values are not affected by translations.

You can also apply a transform to all of the current drawing operations using the concat method. This
method appends the transform’s matrix to the transformation matrix stored in the current graphic context.

Note: By the time the drawRect: method is invoked, the current transformation is already a concatenation
of the screen’s, window’s and any superview’s transformations. Concatenating your transformation
to the current transformation modifies subsequent drawing operations within the bounds of your
NSView object.

To cancel the effects of a matrix, simply invoke its invert method and apply it again.

y

x

a) Unmodified rectangle

y

x

y ' x '

b) Rectangle rotated 45°

3

 Classes: NSAffineTransform

Manipulating Transform Values

An NSAffineTransform object uses a 3x3 transformation matrix of the form shown in Figure

Figure 2 A 3x3 matrix

where a point (x,y) is transformed into another point (x',y') using these linear equations:

x' = (m11)x + (m21)y + tx
y' = (m12)x + (m22)y + ty

Concatenation, translation, rotation, and scaling are performed by matrix multiplication. The order in which
transformations are multiplied is important because matrix operations are associative, but not commutative
(matrix1 × matrix2 ≠ matrix2 × matrix1).

You can specify the matrix values directly using the NSAffineTransformStruct, which lets you specify the
six values for m11, m12, m21, m22, tx, and ty. You can then use the setTransformStruct: method to
associate your matrix values with the transform object. FigureXX shows the standard set of matrices used
to implement different effects. You can multiply these matrices together to obtain the formulae for a

m

m

t

11

21

x

m

m

t

12

22

y

0

0

1

4

complex set of translations, scales, rotations, and shears. For translations, scales, and shears, the subscripts
of matrix elements indicate the axis affected by values at that location.

Figure 3 Matrices for translation, rotation, scaling, and shearing

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

Method Types

Creating an NSAffineTransform object
+ transform
– initWithTransform:

tx ty 1

1 0 0

00 1

0 0 1

cos Θ sin Θ 0

0-sin Θ cos ΘT =

a) Translation matrix

R(Θ) =

b) Rotation matrix (with Θ
measured in radians)

0 0 1

sx 0 0

00 sy

0 0 1

1 shy 0

0shx 1S =

c) Scaling matrix

SH =

d) Shearing matrix

5

 Classes: NSAffineTransform

Accumulating Transformations
– rotateByDegrees:
– rotateByRadians:
– scaleBy:
– scaleXBy:yBy:
– translateXBy:yBy:
– appendTransform:
– prependTransform:
– invert

Setting the Current Transform in the Current Graphics State
– set
– concat

Transforming Data and Objects
– transformBezierPath:
– transformPoint:
– transformSize:

Transformation Struct
– transformStruct
– setTransformStruct:

Class Methods

transform
+ (NSAffineTransform *)transform

Creates and returns a new instance of NSAffineTransform initialized to the identity matrix. The identity
matrix transforms any point to itself.

See also: – initWithTransform:

Instance Methods

appendTransform:
– (void)appendTransform:(NSAffineTransform *)aTransform

Performs a multiplication of the receiver’s matrix and aTransform’s matrix, and replaces the receiver’s
matrix with the result. This has the effect of applying aTransform’s matrix after the receiver’s matrix.

See also: – prependTransform:

6

concat
– (void)concat

Appends the receiver’s matrix to the current transformation matrix stored in the current graphics context
replacing the current transformation matrix with the result (concatenation is performed by matrix
multiplication, see Class Description above).

If this method is invoked from within an NSView’s drawRect: method, then the current transformation
matrix is an accumulation of the screen, window and any superview’s transformation matrices. Invoking
this method defines a new user coordinate system whose coordinates are mapped into the former coordinate
system according to the receiver’s transformation matrix. To undo the concatenation, you must invert the
receiver’s matrix and invoke this method again.

See also: – set, – invert

initWithTransform:
– (id)initWithTransform: (NSAffineTransform *)aTransform

Initializes the receiver’s matrix to the matrix in aTransform and returns the receiver.

See also: + transform

invert
– (void)invert

Replaces the receiver’s matrix with its inverse matrix. Inverse matrices are useful for undoing the effects of
a matrix. If a previous point (x,y) was transformed to (x’,y’), inverting the matrix and applying it to point
(x’,y’) will yield the point (x,y).

You can also use them in conjunction with the concat method to remove the effects of concatenating the
matrix to the current transformation matrix of the current graphic context.

See also: – concat

prependTransform:
– (void)prependTransform:(NSAffineTransform *)aTransform

Prepends the matrix of aTransform to the receiver’s matrix. Multiplies aTransform and the receiver’s
matrix, and replaces the receiver’s matrix with the result. This has the effect of applying aTransform before
the receiver’s transform.

See also: – appendTransform:

7

 Classes: NSAffineTransform

rotateByDegrees:
– (void)rotateByDegrees:(float)angle

Replaces the receiver’s transformation matrix with a matrix thar applies a rotation of angle degrees. Any
previous transformations associated with the matrix are lost and replaced by the rotation.

After invoking this method, applying the receiver’s matrix will turn the axes counterclockwise about the
current origin by angle degrees.

See also: – rotateByRadians:, – scaleBy:, – scaleXBy:yBy:, – translateXBy:yBy:

rotateByRadians:
– (void)rotateByRadians:(float)angle

Replaces the receiver’s transformation matrix with a matrix thar applies a rotation of angle radians. Any
previous transformations associated with the matrix are lost and replaced by the rotation.

After invoking this method, applying the receiver’s matrix will turn the axes counterclockwise about the
current origin by angle radians.

See also: – rotateByDegrees:, – scaleBy:, – scaleXBy:yBy:, – translateXBy:yBy:

scaleBy:
– (void)scaleBy:(float)scale

Replaces the receiver’s transformation matrix with a matrix that applies the specified scaling factor along
both x and y axes. Any previous transformations associated with the matrix are lost and replaced by the new
scaling factor.

Hereafter, applying the receiver’s matrix will modify the unit lengths along the current x and y axes by a
factor of scale.

See also: – rotateByDegrees:, – rotateByRadians:, – scaleXBy:yBy:, – translateXBy:yBy:

scaleXBy:yBy:
– (void)scaleXBy:(float)scaleX yBy:(float)scaleY

Replaces the receiver’s transformation matrix with a matrix that applies the scaleX factor along the x axis
and the scaleY factor along the y axis. Any previous transformations associated with the matrix are lost and
replaced by the new scaling factors.

8

After invoking this method, applying the receiver’s matrix will modify the unit length on the x axis by a
factor of scaleX and the y axes by a factor of scaleY.

See also: – rotateByDegrees:, – rotateByRadians:, – scaleBy:, – translateXBy:yBy:

set
– (void)set

Sets the current transformation matrix to the receiver’s transformation matrix. The current transformation
is stored in the current graphics context and will be applied to subsequent drawing operations. You should
use this method sparingly because it removes the existing transformation matrix, which is an accumulation
of transformation matrices for the screen, window and any superviews. Instead use the concat method to
add this transformation matrix to the current transformation matrix.

setTransformStruct:
– (void)setTransformStruct:(NSAffineTransformStruct)aTransformStruct

Sets the receiver’s transformation matrix using the values in aTransformStruct where the matrix is of the
form shown in Figure 2 and the six-element structure defined by an NSAffineTransformStruct is of the
form:

{ m11, m12, m21, m22, tx, ty }

NSAffineTransformStruct is an alternate representation of a transformation matrix that can be used to
specify matrix values directly.

See also: – initWithTransform: , – transformStruct

transformBezierPath:
– (NSBezierPath *)transformBezierPath:(NSBezierPath *)aPath

Creates and returns a new NSBezierPath object with each point in aPath transformed by the receiver. The
original aPath is not modified.

See also: – transformPoint: , – transformSize:

9

 Classes: NSAffineTransform

transformPoint:
– (NSPoint)transformPoint: (NSPoint)aPoint

Returns the result of applying the receiver’s transform to aPoint.

See also: – transformBezierPath:, – transformSize:

transformSize:
– (NSSize)transformSize:(NSSize)aSize

Returns the result of applying the receiver’s transform to aSize. Since aSize specifies a width and height,
not an x and y coordinate, translation factors are not applied. This method is useful for transforming delta
or distance values when you need to take scaling factors into account

See also: – transformBezierPath:, – transformPoint:

transformStruct
– (NSAffineTransformStruct)transformStruct

Returns the NSAffineTransformationStruct equivalent to the receiver’s matrix where the matrix is of the
form shown in Figure 2 and the six-element structure defined by an NSAffineTransformStruct is of the
form:

{ m11, m12, m21, m22, tx, ty }

NSAffineTransformStruct is an alternate representation of a transformation matrix that can be used to
specify matrix values directly.

See also: – initWithTransform: , – setTransformStruct:

translateXBy:yBy:
– (void)translateXBy:(float)deltaX yBy:(float)deltaY

Replaces the receiver’s transformation matrix with a matrix that applies the specified translation factors.
Subsequent transformations will cause coordinates to be shifted by deltaX units along the x-axis and by
deltaY units along the y-axis. Any previous transformations associated with the matrix are lost and replaced
by the new scaling factors.

Translation factors do not affect NSSize values, which specify a differential between points.

See also: – rotateByDegrees:, – rotateByRadians:, – scaleBy:, – scaleXBy:yBy:

1

 Classes: NSApplication

NSApplication

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSApplication.h
AppKit/NSColorPanel.h
AppKit/NSDataLinkPanel.h
AppKit/NSHelpManager.h
AppKit/NSPageLayout.h

2

Class at a GlanceˇClass at a Glance

Purpose
An NSApplication object manages an application’s main event loop in addition to resources used by all of that
application’s objects.

Principal Attributes
• Delegate
• Key window
• DPS context
• List of windows
• Main window

Creation

Commonly Used Methods

Class Description

The NSApplication class provides the central framework for your application’s execution. Every
application must have exactly one instance of NSApplication (or a subclass of NSApplication). Your
program’s main() function should create this instance by invoking the sharedApplication class method.
After creating the NSApplication object, the main() function should load your application’s main nib file
and then start the event loop by sending the NSApplication object a run message. If you create an
Application project in Project Builder, this main() function is created for you. The main() function that

Project Builder

+ sharedApplication Creates the shared application instance (global variable NSApp).

– keyWindow Returns an NSWindow representing the key window.

– mainWindow Returns an NSWindow representing the main window.

– registerServicesMenuSendTypes:returnTypes: Specifies which services are valid for this application.

– runModalForWindow: Runs a modal event loop for the specified NSWindow.

3

 Classes: NSApplication

Project Builder creates begins by calling a function named NSApplicationMain() , which is functionally
similar to the following:

void NSApplicationMain(int argc, char *argv[]) {

[NSApplication sharedApplication];

[NSBundle loadNibNamed:@"myMain" owner:app];

[NSApp run];

}

The sharedApplication class method initializes the PostScript environment and connects your program to
the Window Server and the Display PostScript server. The NSApplication object maintains a list of all the
NSWindows that the application uses, so it can retrieve any of the application’s NSViews.
sharedApplication also initializes the global variable NSApp, which you use to retrieve the NSApplication
instance. sharedApplication only performs the initialization once; if you invoke it more than once, it
simply returns the NSApplication object that it created previously.

NSApplication’s main purpose is to receive events from the Window Server and distribute them to the
proper NSResponders. NSApp translates an event into an NSEvent object, then forwards the NSEvent to
the affected NSWindow object. All keyboard and mouse events go directly to the NSWindow associated
with the event. The only exception to this rule is if the Command key is pressed when a key-down event
occurs; in this case, every NSWindow has an opportunity to respond to the event. When an NSWindow
receives an NSEvent from NSApp, it distributes it to the objects in its view hierarchy.

The NSApplication class sets up autorelease pools (instances of the NSAutoreleasePool class) during
initialization and inside the event loop—specifically, within its init (or sharedApplication) and run
methods. Similarly, the methods that the Application Kit adds to NSBundle employ autorelease pools
during the loading of nib files. These autorelease pools aren’t accessible outside the scope of the respective
NSApplication and NSBundle methods. Typically, an application creates objects either while the event loop
is running or by loading objects from nib files, so this usually isn’t a problem. However, if you do need to
use OpenStep classes within the main() function itself (other than to load nib files or to instantiate
NSApplication), you should create an autorelease pool before using the classes and then release the pool
when you’re done. For more information, see the NSAutoreleasePool class specification in the Foundation
Framework Reference.

Subclassing NSApplication

Rarely do you need to create a custom NSApplication subclass. In general, a better design is to separate the
code that embodies your program’s functionality into a number of custom objects. Usually, those custom
objects are subclasses of NSObject. Methods defined in your custom objects can be invoked from a small
dispatcher object without being closely tied to NSApp. The only reason to subclass NSApplication is if you
need to provide your own special response to messages that are routinely sent to NSApp. (Even then,
NSApp’s delegate is often given a chance to respond to such messages, so it’s more appropriate to
implement the delegate methods.) To use a custom subclass of NSApplication, simply send
sharedApplication to your custom class rather than directly to NSApplication. If you create your
application in Project Builder, set the application class on the Project Attributes inspector, and Project

4

Builder will update the main() function accordingly. As mentioned previously, NSApp uses autorelease
pools in its init and run methods; if you override these methods, you’ll need to create your own autorelease
pools.

The Delegate and Notifications

You can assign a delegate to NSApp. The delegate responds to certain messages on behalf of NSApp. Some
of these messages, such as application:openFile:, ask the delegate to open a file. Another message,
applicationShouldTerminate:, lets the delegate determine whether the application should be allowed to
quit. The NSApplication class sends these messages directly to its delegate.

NSApp also posts notifications to the application’s default notification center. Any object may register to
receive one or more of the notifications posted by NSApp by sending the message addObserver:selector:
name:object: to the default notification center (an instance of the NSNotificationCenter class). NSApp’s
delegate is automatically registered to receive these notifications if it implements certain delegate methods.
For example, NSApp posts notifications when it is about to be done launching the application and when it
is done launching the application (NSApplicationWillFinishLaunchingNotification and
NSApplicationDidFinishLaunchingNotification). The delegate has an opportunity to respond to these
notifications by implementing the methods applicationWillFinishLaunching: and
applicationDidFinishLaunching: . If the delegate wants to be informed of both events, it implements both
methods. If it only needs to know when the application is finished launching, it implements only
applicationDidFinishLaunching: . For more information on notifications, see the NSNotificationCenter
class specification in the Foundation Framework Reference.

Method Types

Creating and initializing an NSApplication
+ sharedApplication
– finishLaunching

Changing the active application
– activateIgnoringOtherApps:
– isActive
– deactivate

5

 Classes: NSApplication

Running the event loop
– run
– isRunning
– stop:
– runModalForWindow:
– stopModal
– stopModalWithCode:
– abortModal
– beginModalSessionForWindow:
– runModalSession:
– endModalSession:
– sendEvent:

Getting, removing, and posting events
– currentEvent
– nextEventMatchingMask:untilDate:inMode:dequeue:
– discardEventsMatchingMask:beforeEvent:
– postEvent:atStart:

Managing windows
– keyWindow
– mainWindow
– windowWithWindowNumber:
– windows
– makeWindowsPerform:inOrder:
– setWindowsNeedUpdate:
– updateWindows
– miniaturizeAll:
– preventWindowOrdering

Hiding all windows
– hide:
– isHidden
– unhide:
– unhideWithoutActivation

Setting the application’s icon
– setApplicationIconImage:
– applicationIconImage

Getting the main menu
– setMainMenu:
– mainMenu

6

Managing the Window menu
– setWindowsMenu:
– windowsMenu
– arrangeInFront:
– addWindowsItem:title:filename:
– changeWindowsItem:title:filename:
– removeWindowsItem:
– updateWindowsItem:

Managing the Services menu
– setServicesMenu:
– servicesMenu
– registerServicesMenuSendTypes:returnTypes:
– validRequestorForSendType:returnType:
– setServicesProvider:
– servicesProvider

Showing standard panels
– orderFrontColorPanel:
– orderFrontDataLinkPanel:
– runPageLayout:

Displaying help
– showHelp:
– activateContextHelpMode:

Sending action messages
– sendAction:to:from:
– tryToPerform:with:
– targetForAction:

Getting the Display PostScript context
– context

Reporting an exception
– reportException:

Terminating the application
– terminate:

Assigning a delegate
– setDelegate:
– delegate

Microsoft Windows® specific methods
– applicationHandle
– windowWithWindowHandle:
+ setApplicationHandle:previousHandle:commandLine:show:
+ useRunningCopyOfApplication

7

 Classes: NSApplication

Class Methods

setApplicationHandle:previousHandle:commandLine:show:
+ (void)setApplicationHandle:(void *)hInstance

previousHandle:(void *)prevInstance
commandLine:(NSString *)cmdLine
show:(int)cmdShow

On Microsoft Windows platforms, informs the NSApplication class of the values for the arguments passed
to the WinMain() function. This message should be sent once, as the first line of the WinMain() function.
If you create your application using Project Builder, this is done for you. You only need to invoke this
method if you implement your own WinMain() function. Don’t override this method in NSApplication
subclasses.

This method is not implemented on the Mach platform.

See also: – applicationHandle

sharedApplication
+ (NSApplication *)sharedApplication

Returns the NSApplication instance (the global NSApp), creating it if it doesn’t exist yet. This method also
makes a connection to the Window Server and completes other initialization. Your program should invoke
this method as one of the first statements in main(); this is done for you if you create your application with
Project Builder. To retrieve the NSApplication instance after it has been created, you use the global variable
NSApp or invoke this method.

See also: – run , – terminate:

useRunningCopyOfApplication
+ (void)useRunningCopyOfApplication

On Microsoft Windows platforms, attempts to find an already running copy of the application at startup.
This method is invoked in the WinMain() function. If the command used to start the application contains
the option -NSUseRunningCopy YES and the application is already running, this method causes that
version of the application to be activated rather than start up a new copy.

The method returns if the -NSUseRunningCopy YES option was not specified, if there was no previously
running copy, or if the running copy was unable to be used (for any reason). If a running copy is successfully
found and used, this method exits with a code of 0.

You never need to invoke this method directly. If you need to prevent the system from using an already
running copy of the application, write your own WinMain() function, removing this method invocation.
NSApplication subclasses should not override this method.

8

This method is not defined for the Mach platform.

Instance Methods

abortModal
– (void)abortModal

Aborts the event loop started by runModalForWindow: by raising an NSAbortModalException, which is
caught by runModalForWindow: . Because this method raises an exception, it never returns;
runModalForWindow: , when stopped with this method, returns NSRunAbortedResponse. abortModal
is typically sent by objects registered with the default NSRunLoop; for example, by objects that have
registered a method to be repeatedly invoked by the NSRunLoop through the use of an NSTimer object.

This method can also abort a modal session created by beginModalSessionForWindow:, provided the
loop that runs the modal session (by invoking runModalSession:) catches NSAbortModalException.

See also: – endModalSession:, – stopModal, – stopModalWithCode:

activateContextHelpMode:
– (void)activateContextHelpMode:(id)sender

Places the application in context-sensitive help mode. In this mode, the cursor becomes a question mark,
and help appears for any user interface item that the user clicks. This method is typically invoked on
Microsoft Windows platforms when the user selects the What’s This menu item. (An application also enters
context-sensitive help mode on Microsoft Windows platforms when the user presses Shift-F1.)

On Mach platforms, most applications don’t use this method. Instead, applications enter context-sensitive
mode when the user presses the Help key. On either platform, applications exit context-sensitive help mode
upon the first event after a help window is displayed.

See also: – showHelp:

activateIgnoringOtherApps:
– (void)activateIgnoringOtherApps:(BOOL)flag

Makes the receiver the active application. If flag is NO, the application is activated only if no other
application is currently active. If flag is YES, the application activates regardless.

On Mach platforms, flag is normally set to NO. When the Workspace Manager launches an application,
using a value of NO for flag allows the application to become active if the user waits for it to launch, but
the application remains unobtrusive if the user activates another application. Regardless of the setting of

9

 Classes: NSApplication

flag, there may be a time lag before the application activates; you should not assume that the application
will be active immediately after sending this message.

On Microsoft Windows platforms, flag is normally set to YES. Setting flag to NO has no effect.

You rarely need to invoke this method. Under most circumstances, the Application Kit takes care of proper
activation. However, you might find this method useful if you implement your own methods for
interapplication communication.

You don’t need to send this message to make one of the application’s NSWindows key. When you send a
makeKeyWindow message to an NSWindow, you simply ensure that the NSWindow will be the key
window when the application is active.

See also: – deactivate, – isActive

addWindowsItem:title:filename:
– (void)addWindowsItem:(NSWindow *)aWindow

title: (NSString *)aString
filename:(BOOL)isFilename

Adds an item to the Window menu for aWindow. If isFilename is NO, aString appears literally in the menu.
If isFilename is YES, aString is assumed to be a converted path name with the name of the file preceding
the path (the way NSWindow’s setTitleWithRepresentedFilename: method shows a title). If an item for
aWindow already exists in the Window menu, this method has no effect. You rarely invoke this method
because an item is placed in the Window menu for you whenever an NSWindow’s title is set.

See also: – changeWindowsItem:title:filename:, – setTitle: (NSWindow)

applicationHandle
- (void *)applicationHandle

On Microsoft Windows platforms, returns the application’s Win32 instance handle, which is a required
parameter for some Win32 function calls. This method is not defined for the Mach platform.

See also: + setApplicationHandle:previousHandle:commandLine:show:

applicationIconImage
– (NSImage *)applicationIconImage

Returns the NSImage used for the application’s icon, which represents the application in the Workspace
Manager on Mach platforms or in the Program Manager on Microsoft Windows platforms.

See also: – setApplicationIconImage:

10

arrangeInFront:
– (void)arrangeInFront: (id)sender

Arranges all of the windows listed in the Window menu in front of all other windows. Windows associated
with the application but not listed in the Window menu are not ordered to the front.

See also: – addWindowsItem:title:filename:, – removeWindowsItem:, – makeKeyAndOrderFront:
 (NSWindow)

beginModalSessionForWindow:
– (NSModalSession)beginModalSessionForWindow:(NSWindow *)aWindow

Sets up a modal session with the NSWindow aWindow and returns an NSModalSession structure
representing the session. In a modal session, the application receives mouse events only if they occur in
aWindow. The NSWindow is made key and ordered to the front.

beginModalSessionForWindow: only sets up the modal session. To actually run the session, use
runModalSession:. beginModalSessionForWindow: should be balanced by endModalSession:. Make
sure that these two messages are sent within the same exception handling scope. That is, if you send
beginModalSessionForWindow: inside of an NS_DURING construct, you must send endModalSession:
before NS_ENDHANDLER.

If an exception is raised, beginModalSessionForWindow: arranges for proper cleanup. Do not use
NS_DURING constructs to send an endModalSession: message in the event of an exception.

A loop using these methods is similar to a modal event loop run with runModalForWindow: , except that
the application can continue processing between method invocations.

changeWindowsItem:title:filename:
– (void)changeWindowsItem:(NSWindow *)aWindow title: (NSString *)aString filename:

(BOOL)isFilename

Changes the item for aWindow in the Window menu to aString. If aWindow doesn’t have an item in the
Window menu, this method adds the item. If isFilename is NO, aString appears literally in the menu. If
isFilename is YES, aString is assumed to be a converted path name with the file’s name preceding the path
(the way NSWindow’s setTitleWithRepresentedFilename: places a title).

See also: – addWindowsItem:title:filename:, – removeWindowsItem:, – setTitle: (NSWindow),
– setTitleWithRepresentedFilename: (NSWindow)

11

 Classes: NSApplication

context
– (NSDPSContext *)context

Returns the receiver’s Display PostScript context.

currentEvent
– (NSEvent *)currentEvent

Returns the current event, the last event the receiver retrieved from the event queue. NSApp receives events
and forwards the current event to the affected NSWindow object, which then distributes it to the objects in
its view hierarchy.

See also: – discardEventsMatchingMask:beforeEvent:, – postEvent:atStart:, – sendEvent:

deactivate
– (void)deactivate

Deactivates the application. Normally, you shouldn’t invoke this method; the Application Kit is responsible
for proper deactivation.

See also: – activateIgnoringOtherApps:

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

discardEventsMatchingMask:beforeEvent:
– (void)discardEventsMatchingMask:(unsigned int)mask beforeEvent:(NSEvent *)lastEvent

Removes from the event queue all events matching those specified in mask that were generated before
lastEvent. Typically, you send this message to an NSWindow rather than to NSApp.

mask can contain these constants:

Constant Description

NSLeftMouseDownMask The left mouse button was pressed.

12

Use this method to ignore certain events that occurred after a particular event. For example, suppose your
application has a tracking loop that you exit when the user releases the mouse button, and you want to
discard all of the events that occurred during that loop. You use NSAnyEvent as the mask argument and pass
the mouse up event as the lastEvent argument. Passing the mouse-up event as lastEvent ensures that any
events that might have occurred after the mouse-up event (that is, that appear in the queue after the
mouse-up event) don’t get discarded.

See also: – nextEventMatchingMask:untilDate:inMode:dequeue:

NSLeftMouseUpMask The left mouse button was released.

NSRightMouseDownMask The right mouse button was pressed.

NSRightMouseUpMask The right mouse button was released.

NSMouseMovedMask The user moved the mouse.

NSLeftMouseDraggedMask The user moved the mouse while the left button was pressed.

NSRightMouseDraggedMask The user moved the mouse while the right button was pressed.

NSMouseEnteredMask The mouse entered a tracking rectangle.

NSMouseExitedMask The mouse exited a tracking rectangle.

NSKeyDownMask A key on the keyboard was pressed.

NSKeyUpMask A key on the keyboard was released.

NSFlagsChangedMask A Shift, Command, Alternate, or Escape key was pressed or released.

NSPeriodicMask A periodic event occurred.

NSCursorUpdateMask Cursor update.

NSAnyEventMask Any event.

Constant Description

13

 Classes: NSApplication

encodeWithCoder:
@protocol NSCoding

– (void)encodeWithCoder:(NSCoder *)aCoder

Raises an NSInvalidArgumentException. You cannot encode an NSApplication instance.

See also: – initWithCoder:

endModalSession:
– (void)endModalSession:(NSModalSession)session

Finishes a modal session. The argument session should be the return value from a previous invocation of
beginModalSessionForWindow:.

See also: – runModalSession:

finishLaunching
– (void)finishLaunching

Activates the application, opens any files specified by the “NSOpen” user default, and unhighlights the
application’s icon. The run method invokes this method before it starts the event loop. When this method
begins, it posts an NSApplicationWillFinishLaunchingNotification to the default notification center. When
it successfully completes, it posts an NSApplicationDidFinishLaunchingNotification. If you override
finishLaunching, the subclass method should invoke the superclass method.

See also: – applicationWillFinishLaunching: (delegate method), – applicationDidFinishLaunching:
 (delegate method)

hide:
– (void)hide:(id)sender

Hides all the application’s windows. This method is usually invoked when the user chooses Hide in the
application’s main menu. When this method begins, it posts an NSApplicationWillHideNotification to the
default notification center. When it completes successfully, it posts an NSApplicationDidHideNotification.

See also: – applicationDidHide: (delegate method), – applicationWillHide: (delegate method),
– miniaturizeAll: , – unhide:, – unhideWithoutActivation

14

initWithCoder:
@protocol NSCoding

– (id)initWithCoder: (NSCoder *)aDecoder

Raises an NSInvalidArgumentException. You cannot encode an NSApplication instance.

See also: – encodeWithCoder:

isActive
– (BOOL)isActive

Returns YES if this is the active application, NO otherwise.

See also: – activateIgnoringOtherApps:, – deactivate

isHidden
– (BOOL)isHidden

Returns YES if the application is hidden, NO otherwise.

See also: – hide:, – unhide:, – unhideWithoutActivation

isRunning
– (BOOL)isRunning

Returns YES if the main event loop is running, NO otherwise. NO means the stop: method was invoked.

See also: – run , – terminate:

keyWindow
– (NSWindow *)keyWindow

Returns the key window, the NSWindow that receives keyboard events. This method returns nil if there is
no key window, if the application’s nib file hasn’t finished loading yet, or if the key window belongs to
another application.

See also: – mainWindow, – isKeyWindow (NSWindow)

15

 Classes: NSApplication

mainMenu
– (NSMenu *)mainMenu

Returns the application’s main menu.

See also: – setMainMenu:

mainWindow
– (NSWindow *)mainWindow

Returns the main window. This method returns nil if there is no main window, if the application’s nib file
hasn’t finished loading, if the main window belongs to another application, or if the application is hidden.

See also: – keyWindow, – isMainWindow (NSWindow)

makeWindowsPerform:inOrder:
– (NSWindow *)makeWindowsPerform:(SEL)aSelector inOrder: (BOOL)flag

Sends the aSelector message to each NSWindow in the application in turn until one of them returns a value
other than nil . Returns that NSWindow, or nil if all of the NSWindows returned nil for aSelector.

If flag is YES, the NSWindows receive the aSelector message in the front-to-back order in which they
appear in the Window Server’s window list. If flag is NO, NSWindows receive the message in the order they
appear in NSApp’s window list. This order is unspecified.

The method designated by aSelector can’t take any arguments.

See also: – sendAction:to:from: , – tryToPerform:with: , – windows

miniaturizeAll:
– (void)miniaturizeAll: (id)sender

Miniaturizes all the receiver’s windows.

See also: – hide:

16

nextEventMatchingMask:untilDate:inMode:dequeue:
– (NSEvent *)nextEventMatchingMask:(unsigned int)mask

untilDate: (NSDate *)expiration
inMode:(NSString *)mode
dequeue:(BOOL)flag

Returns the next event matching mask, or nil if no such event is found before the expiration date. If flag is
YES, the event is removed from the queue. See the method description for discardEventsMatchingMask:
beforeEvent: for a list of the possible values for mask.

The mode argument names an NSRunLoop mode that determines what other ports are listened to and what
timers may fire while NSApp is waiting for the event. The possible modes available in the Application Kit
are:

Events that are skipped are left in the queue.

You can use this method to short circuit normal event dispatching and get your own events. For example,
you may want to do this in response to a mouse-down event in order to track the mouse while it’s down. In
this case, you would set mask to accept mouse-dragged or mouse-up events and use the
NSEventTrackingRunLoopMode.

See also: – postEvent:atStart:, – run , – runModalForWindow:

orderFrontColorPanel:
– (void)orderFrontColorPanel: (id)sender

Brings up the color panel, an instance of NSColorPanel. If the NSColorPanel does not exist yet, it creates
one. This method is typically invoked when the user chooses Colors from a menu.

Mode Description

NSDefaultRunLoopMode Main event loop.

NSEventTrackingRunLoopMode Modal event loops.

NSModalPanelRunLoopMode Loops that operate while a modal panel is up.

NSConnectionReplyMode Loops that operate while NSConnection is waiting for reply.

17

 Classes: NSApplication

orderFrontDataLinkPanel:
– (void)orderFrontDataLinkPanel: (id)sender

Brings up the data link panel, an instance of NSDataLinkPanel. If the NSDataLinkPanel does not exist yet,
it creates one. This method is typically invoked when the user chooses an appropriate command from the
application’s menu. For example, the Edit application invokes this method when the user chooses Link
Inspector from the Link menu.

postEvent:atStart:
– (void)postEvent:(NSEvent *)anEvent atStart: (BOOL)flag

Adds anEvent to the application’s event queue. If flag is YES, the event is added to the front of the queue,
otherwise the event is added to the back of the queue.

See also: – currentEvent, – sendEvent:

preventWindowOrdering
– (void)preventWindowOrdering

Suppresses the usual window ordering in handling the most recent mouse-down event. This method is only
useful for mouse-down events when you want to prevent the window that receives the event from being
ordered to the front.

registerServicesMenuSendTypes:returnTypes:
– (void)registerServicesMenuSendTypes:(NSArray *)sendTypes returnTypes:

(NSArray *)returnTypes

Registers the pasteboard types that the application can send and receive in response to service requests. If
the application has a Services menu, a menu item is added for each service provider that can accept one of
the specified sendTypes or return one of the specified returnTypes. You should typically invoke this method
at application start-up time or when an object that can use services is created. You can invoke it more than
once; its purpose is to ensure that there is a menu item for every service that the application may use. The
event-handling mechanism will dynamically enable the individual items to indicate which services are
currently appropriate. All of the NSResponders in your application (typically NSViews) should register
every possible type that they can send and receive by sending this message to NSApp.

See also: – validRequestorForSendType:returnType:, – readSelectionFromPasteboard:
 (NSServicesRequests protocol), – writeSelectionToPasteboard:types:
 (NSServicesRequests protocol)

18

removeWindowsItem:
– (void)removeWindowsItem:(NSWindow *)aWindow

Removes the Window menu item for aWindow. This method doesn’t prevent the item from being
automatically added again. Use NSWindow’s setExcludedFromWindowsMenu: method if you want the
item to remain excluded from the Window menu.

See also: – addWindowsItem:title:filename:, – changeWindowsItem:title:filename:

reportException:
– (void)reportException:(NSException *)anException

Logs anException by calling NSLog(). This method does not raise the exception. Use it inside of an
exception handler to record that the exception occurred.

run
– (void)run

Starts the main event loop. The loop continues until a stop: or terminate: message is received. Upon each
iteration through the loop, the next available event from the Window Server is stored and is then dispatched
by sending the event to NSApp using sendEvent:.

Send a run message as the last statement from main(), after the application’s objects have been initialized.

See also: – applicationDidFinishLaunching: (delegate method), – runModalForWindow: ,
– runModalSession:

runModalForWindow:
– (int)runModalForWindow: (NSWindow *)aWindow

Starts a modal event loop for aWindow. Until the loop is broken by a stopModal, stopModalWithCode:,
or abortModal message, the application won’t respond to any mouse, keyboard, or window-close events
unless they’re associated with aWindow. If stopModalWithCode: is used to stop the modal event loop, this
method returns the argument passed to stopModalWithCode:. If stopModal is used, it returns the constant
NSRunStoppedResponse. If abortModal is used, it returns the constant NSRunAbortedResponse. This
method is functionally similar to the following:

19

 Classes: NSApplication

NSModalSession session = [NSApp beginModalSessionForWindow:theWindow];

for (;;) {

if ([NSApp runModalSession:session] != NSRunContinuesResponse)

break;

}

[NSApp endModalSession:session];

The window aWindow is placed on the screen and made key as a result of the runModalForWindow:
message. Do not send makeKeyAndOrderFront: to aWindow.

See also: – run , – runModalSession:

runModalSession:
– (int)runModalSession:(NSModalSession)session

Runs a modal session represented by session, as defined in a previous invocation of
beginModalSessionForWindow:. A loop using this method is similar to a modal event loop run with
runModalForWindow: , except that with this method the application can continue processing between
method invocations. When you invoke this method, events for the NSWindow of this session are dispatched
as normal; this method returns when there are no more events. You must invoke this method frequently
enough that the window remains responsive to events.

If the modal session was not stopped, this method returns NSRunContinuesResponse. If stopModal was
invoked as the result of event processing, NSRunStoppedResponse is returned. If stopModalWithCode:
was invoked, this method returns the value passed to stopModalWithCode:. The NSAbortModalException
raised by abortModal isn’t caught, so abortModal will not stop the loop.

The window is placed on the screen and made key as a result of the runModalSession: message. Do not
send a separate makeKeyAndOrderFront: message.

See also: – endModalSession:, – run

runPageLayout:
– (void)runPageLayout:(id)sender

Displays the application’s page layout panel, an instance of NSPageLayout. If the NSPageLayout instance
does not exist, it creates one. This method is typically invoked when the user selects Page Layout from the
application’s menu.

20

sendAction:to:from:
– (BOOL)sendAction:(SEL)anAction to:(id)aTarget from: (id)sender

Sends the message anAction to aTarget. If aTarget is nil , NSApp looks for an object that can respond to the
message—that is, an object that implements a method matching anAction. It begins with the first responder
of the key window. If the first responder can’t respond, it tries the first responder’s next responder and
continues following next responder links up the responder chain. If none of the objects in the key window’s
responder chain can handle the message, NSApp attempts to send the message to the key window’s
delegate.

If the delegate doesn’t respond and the main window is different from the key window, NSApp begins again
with the first responder in the main window. If objects in the main window can’t respond, NSApp attempts
to send the message to the main window’s delegate. If still no object has responded, NSApp tries to handle
the message itself. If NSApp can’t respond, it attempts to send the message to its own delegate.

Returns YES if the action is successfully sent; otherwise returns NO.

See also: – targetForAction: , – tryToPerform:with: , – makeWindowsPerform:inOrder:

sendEvent:
– (void)sendEvent:(NSEvent *)anEvent

Dispatches anEvent to other objects. You rarely invoke sendEvent: directly although you might want to
override this method to perform some action on every event. sendEvent: messages are sent from the main
event loop (the run method). sendEvent: is the method that dispatches events to the appropriate
responders; NSApp handles application events, the NSWindow indicated in the event record handles
window related events, and mouse and key events are forwarded to the appropriate NSWindow for further
dispatching.

See also: – currentEvent, – postEvent:atStart:

servicesMenu
– (NSMenu *)servicesMenu

Returns the Services menu or nil if no Services menu has been created.

See also: – setServicesMenu:

21

 Classes: NSApplication

servicesProvider
– (id)servicesProvider

Returns the object that provides the services that this application advertises in the Services menu of other
applications.

See also: – setServicesProvider:

setApplicationIconImage:
– (void)setApplicationIconImage:(NSImage *)anImage

Sets the application’s icon to anImage.

See also: – applicationIconImage

setDelegate:
– (void)setDelegate:(id)anObject

Makes anObject the receiver’s delegate. The messages that a delegate can expect to receive are listed at the
end of this specification. The delegate doesn’t need to implement all the methods.

See also: – delegate

setMainMenu:
– (void)setMainMenu:(NSMenu *)aMenu

Makes aMenu the application’s main menu.

See also: – mainMenu

setServicesMenu:
– (void)setServicesMenu:(NSMenu *)aMenu

Makes aMenu the application’s Services menu.

See also: – servicesMenu

22

setServicesProvider:
– (void)setServicesProvider:(id)aProvider

Registers the object aProvider as the service provider. The service provider is an object that performs all of
the services that the application provides to other applications. When another application requests a service
from the receiver, it sends the service request to aProvider.

For more information on registering services, see the on-line document
/NextLibrary/Documentation/NextDev/TasksAndConcepts/ProgrammingTopics/Services.rtf.

See also: – servicesProvider

setWindowsMenu:
– (void)setWindowsMenu:(NSMenu *)aMenu

Makes aMenu the application’s Window menu.

See also: – windowsMenu

setWindowsNeedUpdate:
– (void)setWindowsNeedUpdate:(BOOL)flag

Sets whether the application’s windows need updating when the application has finished processing the
current event. This method is especially useful for making sure menus are updated to reflect changes not
initiated by user actions, such as messages received from remote objects.

See also: – updateWindows

showHelp:
– (void)showHelp:(id)sender

Brings up the application’s help file by sending a request to the shared NSWorkspace object to open the file
using the default application for the help file’s type. (You set the application’s help file using Project
Builder.) This method is typically invoked when the user chooses the Help command or one of the
commands from the Help menu.

On Microsoft Windows platforms, the help file is typically an HLP file, so this method brings up Microsoft
Windows help. On Mach platforms, the help file is typically an RTF file and is displayed using Edit, but the
help file can be anything. For example, Project Builder on Mach brings up a Digital Librarian bookshelf in
response to its Help command.

23

 Classes: NSApplication

For more information on providing on-line help for your application, see the NSHelpManager class
specification.

See also: – activateContextHelpMode:

stop:
– (void)stop:(id)sender

Stops the main event loop. This method will break the flow of control out of the run method, thereby
returning to the main() function. A subsequent run message will restart the loop.

If this method is invoked during a modal event loop, it will break that loop but not the main event loop.

See also: – runModalForWindow: , – runModalSession:, – terminate:

stopModal
– (void)stopModal

Stops a modal event loop. This method should always be paired with a previous invocation of
runModalForWindow: or beginModalSessionForWindow:. When runModalForWindow: is stopped
with this method, it returns NSRunStoppedResponse. This method will stop the loop only if it’s executed
by code responding to an event. If you need to stop a runModalForWindow: loop from a method
registered with the current NSRunLoop (for example, a method repeatedly invoked by an NSTimer object),
use the abortModal method.

See also: – runModalSession:, – stopModalWithCode:

stopModalWithCode:
– (void)stopModalWithCode:(int)returnCode

Like stopModal, except the argument returnCode allows you to specify the value that
runModalForWindow: will return.

See also: – abortModal

targetForAction:
– (id)targetForAction: (SEL)aSelector

Returns the object that receives the action message aSelector.

See also: – sendAction:to:from: , – tryToPerform:with:

24

terminate:
– (void)terminate:(id)sender

Terminates the application. This method is typically invoked when the user chooses Quit or Exit from the
application’s menu. Each use of terminate: invokes applicationShouldTerminate: to notify the delegate
that the application will terminate. If applicationShouldTerminate: returns NO, control is returned to the
main event loop, and the application isn’t terminated. Otherwise, this method posts an
NSApplicationWillTerminateNotification to the default notification center. Don’t put final cleanup code in
your application’s main() function; it will never be executed. If cleanup is necessary, have the delegate
respond to applicationWillTerminate: and perform the cleanup in that method.

See also: – run , – stop:

tryToPerform:with:
– (BOOL)tryToPerform: (SEL)aSelector with: (id)anObject

Dispatches action messages. The receiver tries to perform the method aSelector using its inherited
NSResponder method tryToPerform:with: . If the receiver doesn’t perform aSelector, the delegate is given
the opportunity to perform it using its inherited NSObject method performSelector:withObject: . If either
the receiver or its delegate accept aSelector, this method returns YES; otherwise it returns NO.

See also: – respondsToSelector: (NSObject)

unhide:
– (void)unhide:(id)sender

Restores hidden windows to the screen and makes the application active. Invokes
unhideWithoutActivation .

See also: – activateIgnoringOtherApps:, – hide:

unhideWithoutActivation
– (void)unhideWithoutActivation

Restores hidden windows without activating their owner (the receiver). When this method begins, it posts
an NSApplicationWillUnhideNotification to the default notification center. If it completes successfully, it
posts an NSApplicationDidUnhideNotification.

See also: – activateIgnoringOtherApps:, – applicationDidUnhide: (delegate method),
– applicationWillUnhide: (delegate method), – hide:

25

 Classes: NSApplication

updateWindows
– (void)updateWindows

Sends an update message to each on-screen NSWindow. This method is invoked automatically in the main
event loop after each event. If the NSWindow has automatic updating turned on, its update method will
redraw all of the NSWindow’s NSViews that need redrawing. If automatic updating is turned off, the
update message does nothing. (You turn automatic updating on and off by sending setAutodisplay: to an
NSWindow.)

When this method begins, it posts an NSApplicationWillUpdateNotification to the default notification
center. When it successfully completes, it posts an NSApplicationDidUpdateNotification.

See also: – applicationWillUpdate: (delegate method), – applicationDidUpdate: (delegate method),
– setWindowsNeedUpdate:, – setAutodisplay: (NSWindow)

updateWindowsItem:
– (void)updateWindowsItem:(NSWindow *)aWindow

Updates the Window menu item for aWindow to reflect the edited status of aWindow. You rarely need to
invoke this method because it is invoked automatically when the edit status of an NSWindow is set.

See also: – changeWindowsItem:title:filename:, – setDocumentEdited: (NSWindow)

validRequestorForSendType:returnType:
– (id)validRequestorForSendType:(NSString *)sendType returnType: (NSString *)returnType

Indicates whether the receiver can send and receive the specified pasteboard types. This message is sent to
all responders in a responder chain. NSApp is typically the last item in the responder chain, so it usually
only receives this message if none of the current responders can send sendType data and accept back
returnType data.

The receiver passes this message on to its delegate if the delegate can respond (and isn’t an NSResponder
with its own next responder). If the delegate can’t respond or returns nil , this method returns nil . If the
delegate can find an object that can send sendType data and accept back returnType data, that object is
returned.

See also: – validRequestorForSendType:returnType: (NSResponder),
– registerServicesMenuSendTypes:returnTypes:, – readSelectionFromPasteboard:
 (NSServicesRequests protocol), – writeSelectionToPasteboard:types: (NSServicesRequests
protocol)

26

windows
– (NSArray *)windows

Returns an NSArray of the application’s NSWindows, including off-screen windows.

windowsMenu
– (NSMenu *)windowsMenu

Returns the Window menu or nil if no Window menu has been created.

See also: – setWindowsMenu:

windowWithWindowHandle:
– (NSWindow *)windowWithWindowHandle: (void *)hWnd

On Microsoft Windows platforms, returns the NSWindow object associated with the Win32 window handle
hWnd. If the application does not own hWnd or hWnd does not have an NSWindow associated with it, this
method returns nil . This method is for Microsoft Windows platforms only. windowWithWindowHandle:
is not defined for the Mach platform.

See also: – windowHandle (NSWindow)

windowWithWindowNumber:
– (NSWindow *)windowWithWindowNumber: (int)windowNum

Returns the NSWindow object corresponding to windowNum.

Notifications

NSApplicationDidBecomeActiveNotification

Posted immediately after the application becomes active. This notification contains a notification object but
no userInfo dictionary. The notification object is NSApp.

NSApplicationDidFinishLaunchingNotification

Posted at the end of the finishLaunching method to indicate that the application has completed launching
and is ready to run. This notification contains a notification object but no userInfo dictionary. The
notification object is NSApp.

27

 Classes: NSApplication

NSApplicationDidHideNotification

Posted at the end of the hide: method to indicate that the application is now hidden. This notification
contains a notification object but no userInfo dictionary. The notification object is NSApp.

NSApplicationDidResignActiveNotification

Posted immediately after the application gives up its active status to another application. This notification
contains a notification object but no userInfo dictionary. The notification object is NSApp.

NSApplicationDidUnhideNotification

Posted at the end of the unhideWithoutActivation method to indicate that the application is now visible.
This notification contains a notification object but no userInfo dictionary. The notification object is NSApp.

NSApplicationDidUpdateNotification

Posted at the end of the updateWindows method to indicate that the application has finished updating its
windows. This notification contains a notification object but no userInfo dictionary. The notification object
is NSApp.

NSApplicationWillBecomeActiveNotification

Posted immediately after the application becomes active. This notification contains a notification object but
no userInfo dictionary. The notification object is NSApp.

NSApplicationWillFinishLaunchingNotification

Posted at the start of the finishLaunching method to indicate that the application has completed its
initialization process and is about to finish launching. This notification contains a notification object but no
userInfo dictionary. The notification object is NSApp.

NSApplicationWillHideNotification

Posted at the start of the hide: method to indicate that the application is about to be hidden. This notification
contains a notification object but no userInfo dictionary. The notification object is NSApp.

28

NSApplicationWillResignActiveNotification

Posted immediately before the application gives up its active status to another application. This notification
contains a notification object but no userInfo dictionary. The notification object is NSApp.

NSApplicationWillTerminateNotification

Posted by the terminate: method to indicate that the application will terminate. Posted only if the delegate
method applicationShouldTerminate: returns YES. This notification contains a notification object but no
userInfo dictionary. The notification object is NSApp.

NSApplicationWillUnhideNotification

Posted at the start of the unhideWithoutActivation method to indicate that the application is about to be
visible. This notification contains a notification object but no userInfo dictionary. The notification object is
NSApp.

NSApplicationWillUpdateNotification

Posted at the start of the updateWindows method to indicate that the application is about to update its
windows. This notification contains a notification object but no userInfo dictionary. The notification object
is NSApp.

Methods Implemented By the Delegate

application:openFile:
– (BOOL)application:(NSApplication *)theApplication openFile:(NSString *)filename

Sent directly by theApplication to the delegate. The method should open the file filename, returning YES if
the file is successfully opened, and NO otherwise.

Note: If the user has started up the application by double-clicking a file, the delegate receives the
application:openFile: message before receiving applicationDidFinishLaunching: .
(applicationWillFinishLaunching: is sent before application:openFile:.)

See also: – application:openFileWithoutUI: , – application:openTempFile:,
– applicationOpenUntitledFile:

29

 Classes: NSApplication

application:openFileWithoutUI:
– (BOOL)application:(NSApplication *)sender openFileWithoutUI: (NSString *)filename

Sent directly by sender to the delegate to request that the file filename be opened as a linked file. The method
should open the file without bringing up its application’s user interface; that is, work with the file is under
programmatic control of sender, rather than under keyboard control of the user. Returns YES if the file was
successfully opened, NO otherwise.

See also: – application:openFile:, – application:openTempFile:, – application:printFile: ,
– applicationOpenUntitledFile:

application:openTempFile:
– (BOOL)application:(NSApplication *)theApplication openTempFile:(NSString *)filename

Sent directly by theApplication to the delegate. The method should attempt to open the file filename,
returning YES if the file is successfully opened, and NO otherwise.

By design, a file opened through this method is assumed to be temporary; it’s the application’s
responsibility to remove the file at the appropriate time.

See also: – application:openFile:, – application:openFileWithoutUI: , – applicationOpenUntitledFile:

application:printFile:
– (BOOL)application:(NSApplication *)theApplication printFile: (NSString *)filename

Sent when the user starts up the application on the command line with the -NSPrint option. Sent directly
by theApplication to the delegate.

The method should attempt to print the file filename, returning YES if the file was successfully printed, and
NO otherwise. The application terminates (using the terminate: method) after this method returns.

If at all possible, this method should print the file without displaying the user interface. For example, if you
pass the -NSPrint option to the TextEdit application, TextEdit assumes you want to print the entire contents
of the specified file. However, if the application opens more complex documents, you may want to display
a panel that lets user choose exactly what they want to print.

See also: – application:openFileWithoutUI:

30

applicationDidBecomeActive:
– (void)applicationDidBecomeActive:(NSNotification *)aNotification

Sent by the default notification center immediately after the application becomes active. aNotification is
always an NSApplicationDidBecomeActiveNotification. You can retrieve the NSApplication object by
sending the object method to aNotification.

See also: – applicationDidFinishLaunching: , – applicationDidResignActive:,
– applicationWillBecomeActive:

applicationDidFinishLaunching:
– (void)applicationDidFinishLaunching: (NSNotification *)aNotification

Sent by the default notification center after the application has been launched and initialized but before it
has received its first event. aNotification is always an NSApplicationDidFinishLaunchingNotification. You
can retrieve the NSApplication object in question by sending object to aNotification. The delegate can
implement this method to perform further initialization.

Note: If the user has started up the application by double-clicking a file, the delegate receives the
application:openFile: message before receiving applicationDidFinishLaunching: .
(applicationWillFinishLaunching: is sent before application:openFile:.)

See also: – applicationDidBecomeActive:, – finishLaunching (NSApplication class)

applicationDidHide:
– (void)applicationDidHide: (NSNotification *)aNotification

Sent by the default notification center immediately after the application is hidden. aNotification is always
an NSApplicationDidHideNotification. You can retrieve the NSApplication object in question by sending
object to aNotification.

See also: – applicationWillHide: , – applicationDidUnhide:, – hide: (NSApplication class)

applicationDidResignActive:
– (void)applicationDidResignActive:(NSNotification *)aNotification

Sent by the default notification center immediately after the application is deactivated. aNotification is
always an NSApplicationDidResignActiveNotification. You can retrieve the NSApplication object in
question by sending object to aNotification.

See also: – applicationDidBecomeActive:, – applicationWillResignActive:

31

 Classes: NSApplication

applicationDidUnhide:
– (void)applicationDidUnhide:(NSNotification *)aNotification

Sent by the default notification center immediately after the application is made visible. aNotification is
always an NSApplicationDidUnhideNotification. You can retrieve the NSApplication object in question by
sending object to aNotification.

See also: – applicationDidHide: , – applicationWillUnhide: , – unhide: (NSApplication class)

applicationDidUpdate:
– (void)applicationDidUpdate:(NSNotification *)aNotification

Sent by the default notification center immediately after the NSApplication object updates its NSWindows.
aNotification is always an NSApplicationDidUpdateNotification. You can retrieve the NSApplication
object in question by sending object to aNotification.

See also: – applicationWillUpdate: , – updateWindows (NSApplication class)

applicationOpenUntitledFile:
– (BOOL)applicationOpenUntitledFile:(NSApplication *)theApplication

Sent directly by theApplication to the delegate to request that a new, untitled file be opened. Returns YES
if the file was successfully opened, NO otherwise.

See also: – application:openFile:, – application:openFileWithoutUI: , – application:openTempFile:

applicationShouldTerminate:
– (BOOL)applicationShouldTerminate:(NSApplication *)sender

Invoked from within the terminate: method immediately before the application terminates. sender is the
NSApplication to be terminated. If this method returns NO, the application is not terminated, and control
returns to the main event loop. Return YES to allow the application to terminate.

See also: – applicationShouldTerminateAfterLastWindowClosed:, – applicationWillTerminate: ,
– terminate: (NSApplication class)

applicationShouldTerminateAfterLastWindowClosed:
– (BOOL)applicationShouldTerminateAfterLastWindowClosed:(NSApplication *)theApplication

Invoked when the user closes the last window that the application has open on.

32

This method is intended for the Microsoft Windows platform. On Microsoft Windows, the default behavior
is to terminate the application if the user closes the last window. Most application use this default behavior;
however, you may choose to have applicationShouldTerminateAfterLastWindowClosed: perform some
other function, such as display a panel that gives the user a choice of exiting the application or opening a
new window.

If this method returns NO, the application is not terminated, and control returns to the main event loop.
Return YES to allow the application to terminate. Note that applicationShouldTerminate: is invoked if
this method returns YES.

See also: – terminate: (NSApplication class)

applicationWillBecomeActive:
– (void)applicationWillBecomeActive:(NSNotification *)aNotification

Sent by the default notification center immediately before the application becomes active. aNotification is
always an NSApplicationWillBecomeActiveNotification. You can retrieve the NSApplication object in
question by sending object to aNotification.

See also: – applicationDidBecomeActive:, – applicationWillFinishLaunching: ,
– applicationWillResignActive:

applicationWillFinishLaunching:
– (void)applicationWillFinishLaunching: (NSNotification *)aNotification

Sent by the default notification center immediately before the NSApplication object is initialized.
aNotification is always an NSApplicationWillFinishLaunchingNotification. You can retrieve the
NSApplication object in question by sending object to aNotification.

See also: – applicationDidFinishLaunching: , – applicationWillBecomeActive:, – finishLaunching
(NSApplication class)

applicationWillHide:
– (void)applicationWillHide: (NSNotification *)aNotification

Sent by the default notification center immediately after the application is hidden. aNotification is always
an NSApplicationWillHideNotification. You can retrieve the NSApplication object in question by sending
object to aNotification.

See also: – applicationDidHide: , – hide: (NSApplication class)

33

 Classes: NSApplication

applicationWillTerminate:
– (void)applicationWillTerminate: (NSNotification *)aNotification

Sent by the default notification center immediately before the application terminates. aNotification is
always an NSApplicationWillTerminateNotification. You can retrieve the NSApplication object in question
by sending object to aNotification. Put any necessary cleanup code in this method.

See also: – applicationShouldTerminate:, – terminate: (NSApplication class)

applicationWillResignActive:
– (void)applicationWillResignActive:(NSNotification *)aNotification

Sent by the default notification center immediately after the application is deactivated. aNotification is
always an NSApplicationWillResignActiveNotification. You can retrieve the NSApplication object in
question by sending object to aNotification.

See also: – applicationWillBecomeActive:, – applicationDidResignActive:

applicationWillUnhide:
– (void)applicationWillUnhide: (NSNotification *)aNotification

Sent by the default notification center immediately after the application is unhidden. aNotification is always
an NSApplicationWillUnhideNotification. You can retrieve the NSApplication object in question by
sending object to aNotification.

See also: – applicationDidUnhide:, – applicationWillHide: , – unhide: (NSApplication class)

applicationWillUpdate:
– (void)applicationWillUpdate: (NSNotification *)aNotification

Sent by the default notification center immediately before the NSApplication object updates its
NSWindows. aNotification is always an NSApplicationWillUpdateNotification. You can retrieve the
NSApplication object in question by sending object to aNotification.

See also: – applicationDidUpdate:, – updateWindows (NSApplication class)

1

 Classes: NSAttributedString Class Cluster Additions

c NSAttributedString Class Cluster Additions

Class Cluster Description

NSAttributedString objects manage character strings and associated sets of attributes (for example, font and
kerning) that apply to individual characters or ranges of characters in the string. An association of characters
and their attributes is called an attributed string. The cluster’s two public classes, NSAttributedString and
NSMutableAttributedString, declare the programmatic interface for read-only attributed strings and
modifiable attributed strings, respectively. The Foundation Kit defines the basic functionality for attributed
strings, while the remainder is defined here in the Application Kit. The Application Kit also uses a subclass
of NSMutableAttributedString, called NSTextStorage, to provide the storage for the extended text-handling
system.

Note: NSAttributedString is not a subclass of NSString. It contains a string object to which it applies
attributes. This protects users of attributed strings from ambiguities caused by the semantic
differences between simple and attributed string. For example, equality can’t be simply defined
between an NSString and an attributed string.

Because of the nature of class clusters, attributed string objects are not actual instances of the
NSAttributedString or NSMutableAttributedString classes, but are instances of one of their private concrete
subclasses. Although an attributed string object’s class is private, its interface is public, as declared by these
abstract superclasses, NSAttributedString and NSMutableAttributedString. The attributed string classes
adopt the NSCopying and NSMutableCopying protocols, making it convenient to convert an attributed
string from one type to the other.

You create an NSAttributedString object from scratch by using one of initWithString: , initWithString:
attributes: , or initWithAttributedString: . These methods initialize an attributed string with data you
provide. You can also create an attributed string from RTF data using initWithRTF:documentAttributes:
, initWithRTFD:documentAttributes: , initWithRTFDFileWrapper:documentAttributes: , or
initWithPath:documentAttributes: . See “RTF Document Attributes” for more details on reading RTF.

An attributed string provides basic access to its contents with the string and attributesAtIndex:
effectiveRange: methods, which yield characters and attributes, respectively. These two primitive methods
are used by the other access methods to retrieve attributes individually by name, by functional group (font
or ruler attributes, for example), and so on.

Feature Overview

NSAttributedString and NSMutableAttributedString add a number of features to the basic content storage
of NSString:

• Association of arbitrary, programmer-defined attributes with ranges of characters
• Preservation of attribute-to-character mapping after changes (NSMutableAttributedString)

2

• Support for RTF, including file attachments and graphics
• Drawing in NSView objects (note that the Application Kit adds drawing methods to NSString as well)
• Linguistic unit (word) and line calculation

An attributed string identifies attributes by name, storing their values as opaque ids in an NSDictionary. For
example, the text font is stored as an NSFont object under the name given by NSFontAttributeName. You
can associate any object value, by any name, with a given range of characters in the attributed string. The
basic attributes defined by NSAttributedString are described under “Accessing Attributes” below.

A mutable attributed string keeps track of the attribute mapping as characters are added to and deleted from
it and as attributes are changed. It allows you to group batches of edits with the beginEditing and
endEditing methods, and to consolidate changes to the attribute-to-character mapping with the fix...
methods. See “Changing a Mutable Attributed String” below for more information.

An attributed string can be created from rich text (RTF) or rich text with attachments (RTFD), and can write
its contents as RTF or RTFD data. Three initialization methods, initWithRTF:documentAttributes: ,
initWithRTFD:documentAttributes: , and initWithRTFDFileWrapper:documentAttributes: ,
interpret rich text data. The methods for writing rich text are RTFFromRange:documentAttributes: and
RTFDFromRange:documentAttributes:, which return rich text data for any legal range within the
attributed string, and RTFDFileWrapperFromRange:documentAttributes: , which returns the attributed
string as an NSFileWrapper. NSAttributedString provides limited support for some document-level
attributes, as described under “RTF Document Attributes” below. Additional support for rich text is
provided by other text-handling classes such as NSTextView.

You can draw an attributed string in a focused NSView by invoking either the drawAtPoint: or
drawInRect: method. Note that the Application Kit defines drawing methods for NSString as well,
allowing any string object to draw itself. These methods, drawAtPoint:withAttributes: and drawInRect:
withAttributes: , are described in the NSString Additions class specification.

An attributed string supports the typical behavior of editors in selecting a word on a double-click with the
doubleClickAtIndex: method, and finds word breaks with nextWordFromIndex:forward: . It also
calculates line breaks with the lineBreakBeforeIndex:withinRange: method.

Accessing Attributes

An attributed string identifies attributes by name, storing an id value under the attribute name in an
NSDictionary, which is in turn associated with an NSRange that indicates the characters to which the
dictionary’s attributes apply. You can assign any attribute name/value pair you wish to a range of characters,
in addition to these standard attributes:

Attribute Identifier Value Class Default Value

NSFontAttributeName NSFont Helvetica 12-point

NSForegroundColorAttributeName NSColor black

3

 Classes: NSAttributedString Class Cluster Additions

The identifiers listed are actually global NSString variables containing the attribute names. The value class
is what users of an attributed string should expect the attribute values to be presented as. The default values
are what they should assume if no attribute value has been explicitly set for the requested character range.

The natures of several attributes aren’t obvious from name alone:

• The underline attribute has only one value defined, NSSingleUnderlineStyle. All characters with this
attribute value should be drawn with a single line just below the baseline.

• The superscript attribute indicates an abstract level for both super- and subscripts. The user of the
attributed string can interpret this as desired, adjusting the baseline by the same or a different amount for
each level, changing the font size, or both.

• The baseline offset attribute is a literal distance by which the characters should be shifted above the
baseline (for positive offsets) or below (for negative offsets).

• The kerning attribute indicates how much the following character should be shifted from its default offset
as defined by the current character’s font; a positive kern indicates a shift farther along and a negative
kern indicates a shift closer to the current character.

• The ligature attribute determines what kinds of ligatures should be used when displaying the string. A
value of 0 indicates that only ligatures essential for proper rendering of text should be used, 1 indicates
that standard ligatures should be used, and 2 indicates that all available ligatures should be used. Which
ligatures are standard depends on the script and possibly the font. Arabic text, for example, requires
ligatures for many character sequences, but has a rich set of additional ligatures that combine characters.
English text has no essential ligatures, and typically has only two standard ligatures, those for “fi” and
“fl”—all others being considered more advanced or fancy.

NSBackgroundColorAttributeName NSColor none (no background drawn)

NSUnderlineStyleAttributeName NSNumber, as an int none (no underline)

NSSuperscriptAttributeName NSNumber, as an int 0

NSBaselineOffsetAttributeName NSNumber, as a float 0.0

NSKernAttributeName NSNumber, as a float 0.0

NSLigatureAttributeName NSNumber, as an int 1 (standard ligatures)

NSParagraphStyleAttributeName NSParagraphStyle
(as returned by NSParagraphStyle’s
defaultParagraphStyle method)

NSAttachmentAttributeName NSTextAttachment none (no attachment)

Attribute Identifier Value Class Default Value

4

With an immutable attributed string, you assign all attributes on creating the string using methods such as
initWithRTF:documentAttributes: , which interprets attributes from the RTF data, initWithString:
attributes: , which explicitly takes an NSDictionary of name/value pairs, or initWithString: , which assigns
no attributes. See “Changing a Mutable Attributed String” below for information on assigning attributes
with a mutable attributed string.

To retrieve attribute values from either type of attributed string, use any of these methods:

– attributesAtIndex:effectiveRange:
– attributesAtIndex:longestEffectiveRange:inRange:
– attribute:atIndex:effectiveRange:
– attribute:atIndex:longestEffectiveRange:inRange:
– fontAttributesInRange:
– rulerAttributesInRange:

The first two methods return all attributes at a given index, the attribute:... methods return the value of a
single named attribute, and fontAttributesInRange: and rulerAttributesInRange: return attributes
defined to apply only to characters or to whole paragraphs, respectively (see the individual method
descriptions for more information).

The first four methods also return by reference the effective range and the longest effective range of the
attributes. These ranges allow you to determine the extent of attributes. Conceptually, each character in an
attributed string has its own collection of attributes; however, it’s often useful to know when the attributes
and values are the same over a series of characters. This allows a routine to progress through an attributed
string in chunks larger than a single character. In retrieving the effective range, an attributed string simply
looks up information in its attribute mapping, essentially the dictionary of attributes that apply at the index
requested. In retrieving the longest effective range, the attributed string continues checking characters past
this basic range as long as the attribute values are the same. This extra comparison increases the execution
time for these methods but guarantees a precise maximal range for the attributes requested.The code
fragment below progresses through an attributed string in chunks based on the effective range. The fictitious
analyzer object here counts the number of characters in each font. The while loop progresses as long as the
effective range retrieved doesn’t include the end of the attributed string, retrieving the font in effect just past
the latest retrieved range. For each font attribute retrieved, analyzer is asked to tally the number of
characters in the effective range. In this example, it’s possible that consecutive invocations of attribute:
atIndex:effectiveRange: will return the same value.

5

 Classes: NSAttributedString Class Cluster Additions

NSAttributedString *attrStr;

unsigned int length;

NSRange effectiveRange;

id attributeValue;

length = [attrStr length];

effectiveRange = NSMakeRange(0, 0);

while (NSMaxRange(effectiveRange) < length) {

attributeValue = [attrStr attribute:NSFontAttributeName

atIndex:NSMaxRange(effectiveRange) effectiveRange:&effectiveRange];

[analyzer tallyCharacterRange:effectiveRange font:attributeValue];

}

In contrast, the next code fragment progresses through the attributed string according to the maximum
effective range for each font. In this case, analyzer counts font changes, which may not be represented by
merely retrieving effective ranges. In this case the while loop is predicated on the length of the limiting
range, which begins as the entire length of the attributed string and is whittled down as the loop progresses.
After analyzer records the font change, the limit range is adjusted to account for the longest effective range
retrieved.

NSAttributedString *attrStr;

NSRange limitRange;

NSRange effectiveRange;

id attributeValue;

limitRange = NSMakeRange(0, [attrStr length]);

while (limitRange.length > 0) {

attributeValue = [attrStr attribute:NSFontAttributeName

atIndex:limitRange.location longestEffectiveRange:&effectiveRange

inRange:limitRange];

[analyzer recordFontChange:attributeValue];

limitRange = NSMakeRange(NSMaxRange(effectiveRange),

NSMaxRange(limitRange) - NSMaxRange(effectiveRange));

}

Note that the second code fragment is more complex. Because of this, and because attribute:atIndex:
longestEffectiveRange:inRange: is somewhat slower than attribute:atIndex:effectiveRange:, you
should typically use it only when absolutely necessary for the work you’re performing. In most cases
working by effective range is enough.

Changing a Mutable Attributed String

NSMutableAttributedString declares a number of methods for changing both characters and attributes, such
as the primitive replaceCharactersInRange:withString: and setAttributes:range:, or the more
convenient methods addAttribute:value:range: , applyFontTraits:range: , setAlignment:range:, and so

6

on. All of the methods for changing a mutable attributed string properly update the mapping between
characters and attributes, but after a change some inconsistencies can develop. Here are some examples of
attribute consistency requirements:

• Paragraph styles must apply to entire paragraphs.

• Scripts may only be assigned fonts that support them. For example, Kanji and Arabic characters can’t be
assigned the Times-Roman font, and must be reassigned fonts that support these scripts.

• Deleting attachment characters from the string requires the corresponding attachment objects to be
released. Similarly, removing attachment objects requires the corresponding attachment characters to be
removed from the string.

• A code editing application that displays all language keywords in boldface can automatically assign this
attribute as the user changes the font or edits the text.

NSMutableAttributedString defines methods to fix these inconsistencies as changes are made. This allows
the attributes to be cleaned up at a low level, hiding potential problems from higher levels and providing for
very clean update of display as attributes change. There are six methods for fixing attributes:

– fixAttributesInRange:
– fixAttachmentAttributeInRange:
– fixFontAttributeInRange:
– fixParagraphStyleAttributeInRange:
– beginEditing
– endEditing

The first method, fixAttributesInRange: , invokes the other three fix... methods to clean up deleted
attachment references, font attributes, and paragraph attributes, respectively. The individual method
descriptions explain what cleanup entails for each case.

The beginEditing and endEditing methods are provided for subclasses of NSMutableAttributedString to
override. Their default implementations do nothing. These methods allow instances of a subclass to record
or buffer groups of changes and clean themselves up on receiving an endEditing message. endEditing also
allows the receiver to notify any observers that it has been changed. NSTextStorage’s implementation of
endEditing, for example, fixes changed attributes and then notifies its NSLayoutManagers that they need
to re-lay and redisplay their text.

RTF Document Attributes

Attributed strings keep attribute information for their text only, while RTF allows for more general attributes
of a document, especially regarding paper size and layout. To support higher-level objects that use attributed

7

 Classes: NSAttributedString Class Cluster Additions

strings, the methods that work with RTF also read and write some RTF directives for document attributes,
stored in an NSDictionary under these keys:

The init methods, such as initWithRTF:documentAttributes: , return by reference a dictionary containing
the attributes read from the RTF data, which your application can then use to set up its page layout.
Similarly, RTF extraction methods such as RTFFromRange:documentAttributes:, accept a dictionary
containing those attributes and writes them into the RTF data, thus preserving the page layout information.

Attachments

Attachments, such as embedded images or files, are represented in an attributed string by both a special
character and an attribute. The character is identified by the global name NSAttachmentCharacter, and
indicates the presence of an attachment at its location in the string. The attribute, identified in the string by
the attribute name NSAttachmentAttributeName, is an NSTextAttachment object. An NSTextAttachment
contains the data for the attachment itself, as well as an image to display when the string is drawn. You can
use NSAttributedString’s attributedStringWithAttachment: class method to construct an attachment
string, which you can then add to a mutable attributed string using appendAttributedString: or
insertAttributedString:atIndex: .

Attribute Key Value Class

PaperSize NSValue, as an NSSize

LeftMargin NSNumber, as a float

RightMargin NSNumber, as a float

TopMargin NSNumber, as a float

BottomMargin NSNumber, as a float

8

i NSAttributedString Additions

Inherits From: NSObject

Declared In: AppKit/NSAttributedString.h
AppKit/NSStringDrawing.h
AppKit/NSTextAttachment.h

Class Description

The Application Kit extends the Foundation Kit’s NSAttributedString class by adding:

• Support for RTF, with or without attachments
• Graphic attributes, including font and ruler attributes
• Methods for drawing attributed strings
• Methods for calculating significant linguistic units

Method Types

Creating an NSAttributedString
– initWithRTF:documentAttributes:
– initWithRTFD:documentAttributes:
– initWithRTFDFileWrapper:documentAttributes:
– initWithPath:documentAttributes:
– initWithHTML:documentAttributes:
+ attributedStringWithAttachment:

Retrieving attribute information
– fontAttributesInRange:
– rulerAttributesInRange:
– containsAttachments

Calculating linguistic units
– doubleClickAtIndex:
– lineBreakBeforeIndex:withinRange:
– nextWordFromIndex:forward:

Drawing the string
– drawAtPoint:
– drawInRect:
– size

9

 Classes: NSAttributedString Class Cluster Additions

Generating RTF data
– RTFFromRange:documentAttributes:
– RTFDFileWrapperFromRange:documentAttributes:
– RTFDFromRange:documentAttributes:

Class Methods

attributedStringWithAttachment:
+ (NSAttributedString *)attributedStringWithAttachment: (NSTextAttachment *)attachment

Returns an NSAttributedString object containing only the attachment marker character
(NSAttachmentCharacter), which is assigned an attribute whose name is NSTextAttachmentName and
whose value is attachment. Use this method, along with appendAttributedString: or
insertAttributedString:atIndex: , to add an attachment to an attributed string.

Instance Methods

containsAttachments
– (BOOL)containsAttachments

Returns YES if the receiver contains any attachment attributes, NO otherwise. This method checks only for
attachment attributes, not for NSAttachmentCharacter.

doubleClickAtIndex:
– (NSRange)doubleClickAtIndex: (unsigned)index

Returns the range of characters that form a word (or other linguistic unit) surrounding index, taking
language characteristics into account. Raises an NSRangeException if index lies beyond the end of the
receiver’s characters.

See also: – nextWordFromIndex:forward:

drawAtPoint:
– (void)drawAtPoint: (NSPoint)point

Draws the receiver with its font and other display attributes at point in the currently focused NSView. Text
is drawn in such a way that the upper left corner of its bounding box lies at point, regardless of the line
sweep direction or whether the NSView is flipped.

10

Don’t invoke this method while no NSView is focused.

See also: – lockFocus (NSView), – size, – drawInRect:

drawInRect:
– (void)drawInRect: (NSRect)rect

Draws the receiver with its font and other display attributes within rect in the currently focused NSView,
clipping the drawing to this rectangle. Text is drawn within rect according to its line sweep direction; for
example, Arabic text will begin at the right edge and potentially be clipped on the left.

Don’t invoke this method while no NSView is focused.

See also: – lockFocus (NSView), – drawAtPoint:

fontAttributesInRange:
– (NSDictionary *)fontAttributesInRange: (NSRange)aRange

Returns the font attributes in effect for the character at aRange.location. Font attributes are all those listed
under “Accessing Attributes” in the class cluster description except NSParagraphStyleAttributeName and
NSAttachmentAttributeName. Use this method to obtain font attributes that are to be copied or pasted with
“copy font” operations. Raises an NSRangeException if any part of aRange lies beyond the end of the
receiver’s characters.

See also: – rulerAttributesInRange:

initWithHTML:documentAttributes:
– (id)initWithPath: (NSData *)data documentAttributes:(NSDictionary **)docAttributes

Initializes and returns a new NSAttributedString from HTML contained in the object data. Also returns by
reference in docAttributes a dictionary containing document-level attributes:

11

 Classes: NSAttributedString Class Cluster Additions

Key

Title
BaseURL
BackgroundImageURL
BackgroundColor
TextColor
LinkColor
ActiveLinkColor
VisitedLinkColor
LeftMargin
TopMargin

The parameter docAttributes can be NULL, in which case no document attributes are returned. Returns nil
if the file at path can’t be decoded.

initWithPath:documentAttributes:
– (id)initWithPath: (NSString *)path documentAttributes:(NSDictionary **)docAttributes

Initializes a new NSAttributedString from RTF or RTFD data contained in the file at path. Also returns by
reference in docAttributes a dictionary containing document-level attributes, as listed in the class cluster
description under the “RTF Document Attributes” heading. docAttributes may be NULL, in which case no
document attributes are returned. Returns self, or nil if the file at path can’t be decoded.

initWithRTF:documentAttributes:
– (id)initWithRTF: (NSData *)rtfData documentAttributes:(NSDictionary **)docAttributes

Initializes a new NSAttributedString by decoding the stream of RTF commands and data contained in
rtfData. Also returns by reference in docAttributes a dictionary containing document-level attributes, as
listed in the class cluster description under the “RTF Document Attributes” heading. docAttributes may be
NULL, in which case no document attributes are returned. Returns self, or nil if rtfData can’t be decoded.

initWithRTFD:documentAttributes:
– (id)initWithRTFD: (NSData *)rtfdData documentAttributes:(NSDictionary **)docAttributes

Initializes a new NSAttributedString by decoding the stream of RTFD commands and data contained in
rtfdData. Also returns by reference in docAttributes a dictionary containing document-level attributes, as
listed in the class cluster description under the “RTF Document Attributes” heading. docAttributes may be
NULL, in which case no document attributes are returned. Returns self, or nil if rtfData can’t be decoded.

12

initWithRTFDFileWrapper:documentAttributes:
– (id)initWithRTFDFileWrapper: (NSFileWrapper *)wrapper documentAttributes:

(NSDictionary **)docAttributes

Initializes a new NSAttributedString from wrapper an NSFileWrapper object containing an RTFD
document. Also returns by reference in docAttributes a dictionary containing document-level attributes, as
listed in the class cluster description under the ““RTF Document Attributes” heading. docAttributes may be
NULL, in which case no document attributes are returned. Returns self, or nil if wrapper can’t be
interpreted as an RTFD document.

lineBreakBeforeIndex:withinRange:
– (unsigned)lineBreakBeforeIndex:(unsigned)index withinRange:(NSRange)aRange

Returns the index of the closest character before index and within aRange that can be placed on a new line
when laying out text. In other words, finds the appropriate line break when the character at index won’t fit
on the same line as the character at the beginning of aRange. Returns NSNotFound if no line break is
possible before index.

Raises an NSRangeException if index or any part of aRange lies beyond the end of the receiver’s characters.

See also: – nextWordFromIndex:forward:

nextWordFromIndex:forward:
– (unsigned)nextWordFromIndex: (unsigned)index forward: (BOOL)flag

Returns the index of the first character of the word after or before index. If flag is YES, this is the first
character after index that begins a word; if flag is NO, it’s the first character before index that begins a word,
whether index is located within a word or not. If index lies at either end of the string and the search direction
would progress past that end, it’s returned unchanged. This method is intended for moving the insertion
point during editing, not for linguistic analysis or parsing of text.

Raises an NSRangeException if index lies beyond the end of the receiver’s characters.

See also: – lineBreakBeforeIndex:withinRange:

RTFDFileWrapperFromRange:documentAttributes:
– (NSFileWrapper *)RTFDFileWrapperFromRange:(NSRange)aRange documentAttributes:

(NSDictionary *)docAttributes

Returns an NSFileWrapper object that contains an RTFD document corresponding to the characters and
attributes within aRange. The file wrapper also includes the document-level attributes in docAttributes, as
explained in the class cluster description under the “RTF Document Attributes” heading. If there are no

13

 Classes: NSAttributedString Class Cluster Additions

document-level attributes, docAttributes can be nil . Raises an NSRangeException if any part of aRange lies
beyond the end of the receiver’s characters.

You can save the file wrapper using NSFileWrapper’s writeToFile:atomically:updateFilenames: method.

See also: – RTFDFromRange:documentAttributes:, – RTFFromRange:documentAttributes:

RTFDFromRange:documentAttributes:
– (NSData *)RTFDFromRange:(NSRange)aRange documentAttributes:

(NSDictionary *)docAttributes

Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes
within aRange. Also writes the document-level attributes in docAttributes, as explained in the class cluster
description under the “RTF Document Attributes” heading. If there are no document-level attributes,
docAttributes can be nil . Raises an NSRangeException if any part of aRange lies beyond the end of the
receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s
setData:forType: method, with a second argument of NSRTFDPboardType.

See also: – RTFFromRange:documentAttributes:, – RTFDFileWrapperFromRange:
documentAttributes:

RTFFromRange:documentAttributes:
– (NSData *)RTFFromRange:(NSRange)aRange documentAttributes:

(NSDictionary *)docAttributes

Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within
aRange, omitting all attachment attributes. Also writes the document-level attributes in docAttributes, as
explained in the class cluster description under the “RTF Document Attributes” heading. If there are no
document-level attributes, docAttributes can be nil . Raises an NSRangeException if any part of aRange lies
beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s
setData:forType: method, with a second argument of NSRTFPboardType.

Although this method strips attachments, it leaves the attachment characters in the text itself. NSText’s
RTFFromRange: method, on the other hand, does strip attachment characters when extracting RTF.

See also: – RTFDFromRange:documentAttributes:, – RTFDFileWrapperFromRange:
documentAttributes:

14

rulerAttributesInRange:
– (NSDictionary *)rulerAttributesInRange: (NSRange)aRange

Returns the ruler (paragraph) attributes in effect for the characters within aRange. The only ruler attribute
currently defined is that named by NSParagraphStyleAttributeName. Use this method to obtain attributes
that are to be copied or pasted with “copy ruler” operations. Raises an NSRangeException if any part of
aRange lies beyond the end of the receiver’s characters.

See also: – fontAttributesInRange:

size
– (NSSize)size

Returns the bounding box of the marks that the receiver draws.

See also: – drawAtPoint: , – drawInRect:

15

 Classes: NSAttributedString Class Cluster Additions

i NSMutableAttributedString

Inherits From: NSAttributedString : NSObject

Declared In: AppKit/NSAttributedString.h
AppKit/NSStringDrawing.h
AppKit/NSTextAttachment.h

Class Description

Additions to the NSMutableAttributedString class primarily involve setting graphical attributes, such as
font, super- or subscripting, and alignment, and making these attributes consistent after changes. See the
class cluster description for more information.

Method Types

Changing attributes – applyFontTraits:range:
– setAlignment:range:
– subscriptRange:
– superscriptRange:
– unscriptRange:

Updating attachment contents
– updateAttachmentsFromPath:

Fixing attributes after changes – fixAttributesInRange:
– fixAttachmentAttributeInRange:
– fixFontAttributeInRange:
– fixParagraphStyleAttributeInRange:

Instance Methods

applyFontTraits:range:
– (void)applyFontTraits: (NSFontTraitMask)mask range:(NSRange)aRange

Apply the font attributes specified by mask to the characters in aRange. See the NSFontManager class
specification for a description of the font traits available. Raises an NSRangeException if any part of
aRange lies beyond the end of the receiver’s characters.

See also: – setAlignment:range:

16

fixAttachmentAttributeInRange:
– (void)fixAttachmentAttributeInRange: (NSRange)aRange

Cleans up attachment attributes in aRange, removing all attachment attributes assigned to characters other
than NSAttachmentCharacter. Raises an NSRangeException if any part of aRange lies beyond the end of
the receiver’s characters.

See also: – fixFontAttributeInRange: , – fixParagraphStyleAttributeInRange: ,
– fixAttributesInRange:

fixAttributesInRange:
– (void)fixAttributesInRange: (NSRange)aRange

Invokes the other fix... methods, allowing you to clean up an attributed string with a single message. Raises
an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – fixAttachmentAttributeInRange: , – fixFontAttributeInRange: ,
– fixParagraphStyleAttributeInRange:

fixFontAttributeInRange:
– (void)fixFontAttributeInRange: (NSRange)aRange

Fixes the font attribute in aRange, assigning default fonts to characters with illegal fonts for their scripts
and otherwise correcting font attribute assignments. For example, Kanji characters in assigned a Latin font
are reassigned an appropriate Kanji font. Raises an NSRangeException if any part of aRange lies beyond
the end of the receiver’s characters.

See also: – fixParagraphStyleAttributeInRange: , – fixAttachmentAttributeInRange: ,
– fixAttributesInRange:

fixParagraphStyleAttributeInRange:
– (void)fixParagraphStyleAttributeInRange: (NSRange)aRange

Fixes the paragraph style attributes in aRange, assigning the first paragraph style attribute value in each
paragraph to all characters of the paragraph. This method extends the range as needed to cover the last
paragraph partially contained. A paragraph is delimited by any of these characters, the longest possible
sequence being preferred to any shorter:

U+000D (\r or CR) U+2028 (Unicode line separator)

U+000A (\n or LF) U+2029 (Unicode paragraph separator) \r\n , in that order (also known as CRLF)

17

 Classes: NSAttributedString Class Cluster Additions

Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – fixFontAttributeInRange: , – fixAttachmentAttributeInRange: , – fixAttributesInRange:

setAlignment:range:
– (void)setAlignment:(NSTextAlignment)alignment range:(NSRange)aRange

Sets the alignment characteristic of the paragraph style attribute for the characters in aRange to alignment.
When attribute fixing takes place, this change will only affect paragraphs whose first character was included
in aRange. Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s
characters.

See also: – applyFontTraits:range:, – fixParagraphStyleAttributeInRange:

subscriptRange:
– (void)subscriptRange:(NSRange)aRange

Decrements the value of the superscript attribute for characters in aRange by 1. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – superscriptRange:, – unscriptRange:

superscriptRange:
– (void)superscriptRange:(NSRange)aRange

Increments the value of the superscript attribute for characters in aRange by 1. Raises an
NSRangeException if any part of aRange lies beyond the end of the receiver’s characters.

See also: – subscriptRange:, – unscriptRange:

unscriptRange:
– (void)unscriptRange:(NSRange)aRange

Removes the superscript attribute from the characters in aRange. Raises an NSRangeException if any part
of aRange lies beyond the end of the receiver’s characters.

See also: – subscriptRange:, – superscriptRange:

18

updateAttachmentsFromPath:
– (void)updateAttachmentsFromPath:(NSString *)path

Updates all attachments based on files contained in the RTFD file package at path.

See also: – updateFromPath: (NSFileWrapper)

1

 Classes: NSBezierPath

NSBezierPath

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSBezierPath.h

Class Description

An NSBezierPath object allows you to create paths using PostScript-style commands. Paths consist of
straight and curved line segments joined together. Paths can form recognizable shapes such as rectangles,
ovals, arcs, and glyphs; they can also form complex polygons using either straight or curved line segments.
A single path can be closed by connecting its two endpoints or it can be left open.

An NSBezierPath object can contain multiple disconnected paths, whether they are closed or open. Each of
these paths is referred to as a subpath of the NSBezierPath object. The subpaths of an NSBezierPath object
must be manipulated as a group. The only way to manipulate subpaths individually is to create separate
NSBezierPath objects for each.

For a given NSBezierPath object, you can stroke the path’s outline or fill the region occupied by the path.
You can also use the path as a clipping region for views or other regions. Using methods of NSBezierPath,
you can also perform hit detection on the filled or stroked path. Hit detection is needed to implement
interactive graphics, as in rubberbanding and dragging operations.

Constructing Paths

You can create an instance of NSBezierPath using either of the class methods bezierPath or
bezierPathWithRect:. The bezierPath method initializes a new bezier-path object with an empty path
while the bezierPathWithRect: method creates a path with the specified rectangle. (You can also allocate
memory for a new instance of NSBezierPath and use the default initializer, the init method, to initialize it
to an empty path).

To add path information to an NSBezierPath object, you must invoke a sequence of path construction
methods such as the moveToPoint:, lineToPoint:, and curveToPoint:controlPoint1:controlPoint2:
methods. For example, to create a polygon path, send a moveToPoint: message, followed by a series of
lineToPoint: messages, to the NSBezierPath object. When you are done adding points to the path and want
to form a closed path, send a closePath message to connect the last point back to the starting point.

The order in which path construction methods are invoked is significant. Line segments connect only if they
are defined consecutively and the second segment starts where the first segment ends. A path may be made

2

up of one or more disconnected subpaths, which can themselves be either open or closed. The current point
is the last point of the most recently added line segment.

Most construction methods implicitly use the current point as the starting point of the next segment. If you
want to create a new subpath, you must explicitly invoke moveToPoint: first. For example, lineToPoint:
adds a line segment from the current point to the specified point. Some methods may implicitly invoke
moveToPoint:, thereby creating a new subpath automatically. See the method descriptions for more
information.

Convenience methods are provided for appending paths and common shapes to an existing path. The
new path is usually discontiguous from the receiver’s original path, although the
appendBezierPathWithPoints:count: method creates a contiguous path from the specified points.
Use the appendBezierPath... methods to append a path to an NSBezierPath object as in this example
which uses appendBezierPathWithOvalInRect: to create a circle:NSRect aRect =

NSMakeRect(0.0, 0.0, 50.0, 50.0);

aPath = [[NSBezierPath bezierPath] appendBezierPathWithOvalInRect:aRect];

Path Elements

No matter which construction methods you use, all paths are reduced to a sequence of data points and
common element types corresponding to the methods: moveToPoint:, lineToPoint:, curveToPoint:
controlPoint1:controlPoint2: and closePath. The element types are as follows can be specified with the
following constants from the enumerated type NSBezierPathElementType:

• NSBezierPathElementMoveTo
• NSBezierPathElementLineTo
• NSBezierPathElementCurveTo
• NSBezierPathElementClose

Every element except NSBezierPathElementClose has at least one data point associated with it. The only
element that has more than one data point is NSBezierPathElementCurveTo (which maintains additional
control points to define the shape of the curve). NSBezierPath defines several methods for obtaining
information about the path elements (and their associated points) directly, including pointAtIndex: ,
elementAtIndex:, and elementTypeAtIndex:associatedPoints: among others. You could use these
methods together with the removeLastElement method to break down a path and reconstruct it point by
point.

Drawing Paths

You typically render NSBezierPath objects inside an NSView’s drawRect: method (unless you are drawing
outside of the bounds of an NSView object, as in a rubberbanding operation). At the time the drawRect:
method is invoked, the focus is locked on the view and all drawing operations are clipped to that view.
Therefore, most of the time you will want to construct paths whose points are specified in the view’s
coordinate system. You could also construct a path using an arbitrary coordinate system and transform the

3

 Classes: NSBezierPath

path to a view’s coordinate system using an NSAffineTransform object. An NSAffineTransform object can
translate, scale, and rotate paths (see the NSAffineTransform class specification for details).

Before filling or stroking an NSBezierPath object, you should set the graphics attributes to use for the path.
You can use the set... methods of NSBezierPath to set such attributes as the line cap style, line join style,
line width, miter limit, curve flatness, and halftone phase. Other attributes must be set using the appropriate
objects. For example, you set the color in the current graphics context by sending set to an NSColor object.

You can use either the stroke, or fill methods to render a path. The stroke method draws a line along the
receiver’s path using the color, line width, cap and join styles, and curve flatness drawing attributes in the
current graphics context. The fill method renders the path by painting the region enclosed by the path and
uses the color and curve flatness attributes. The fill method will perform a close operation (invoke
closePath) if the path is not already closed. (A subpath is closed if the ending point is connected to the
starting point, otherwise the subpath is opened).

As a convenience, some class methods are provided for drawing immediate shapes without the creation of
a NSBezierPath object. For example, use the fillRect: and strokeRect: class methods to draw a filled
rectangle or outline of a rectangle, and use the strokeLineFromPoint:toPoint: class method to draw a line
segment.

Winding Rules and Filling Paths

Simple paths like an oval or rectangle are easy to fill; however, there are several ways to fill complex paths
that contain intersecting line segments or that contain a subpath enclosed by another subpath (i.e., a
doughnut shape). You can specify how complex paths are filled using the setWindingRule: method and the
constants NSWindingRuleNonZero or NSWindingRuleEvenOdd.The rules that govern the effects of each
constant are as follows:

For example, given a path with two nested circles, Figure 1 shows the results of using each winding rule. If
the winding rule is NSWindingRuleNonZero, the direction of the paths is used to determine whether or not
a segment should be filled. When the two paths are traveling in the same direction, the entire area of both
circles is filled, but when the paths travel counter to each other the interior circle is left unfilled. When the

Winding Rule Description

NSWindingRuleNonZero
A point is outside if drawing a ray from that point in any direction results in a crossing
count of 0, where crossing a left-to-right path adds 1 and crossing a right-to-left path
subtracts 1. Otherwise, the point is inside.

NSWindingRuleEvenOdd
A point is inside if drawing a ray from that point in any direction and counting the
number of path segments that the ray crosses is odd, otherwise the point is outside.
Inside points are filled, outside points are not.

4

winding rule is NSWindingRuleEvenOdd, the interior circle is left unfilled regardless of which direction
the paths travel.

Figure 1 Winding rule examples

Hit Detection

Hit detection is necessary if you want the user to be able to select your paths or graphical shapes. The
Application Kit notifies your application know if the user clicked within the bounds of an NSView object
by invoking one of the NSResponder mouse... methods. You use the NSBezierPath isHitByPoint: method
to determine if the user clicked a filled path, and the isStrokeHitByPoint: method to determine if the user
clicked on a stroked path. The isHitByRect: and isStrokeHitByRect: methods are useful if the user has
selected a region (for example, by rubberbanding a rectangle) and you want to determine which paths lie
inside that region.

Setting Path Styles

NSBezierPath includes several methods for setting the current drawing style to be used for rendering paths.
Most drawing styles are global attributes, set using class methods of NSBezierPath. The one exception to
this is the winding rule attribute, which is local to a particular path. The global attributes include
path-related attributes such as the line width, miter limit, line join style, line cap style, and curve flatness.
For information about setting the winding rule of a path, see “Winding Rules and Filling Paths”.

To set other attributes of the path, such as the color, you must use the methods of the appropriate class. For
example, to set the color of the path, you would need to create a new instance of NSColor and invoke its set
method.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

a) Non-zero winding rule b) Even-odd winding rule

5

 Classes: NSBezierPath

Method Types

Creating an NSBezierPath object
+ bezierPath
+ bezierPathWithRect:

Contructing paths
– moveToPoint:
– lineToPoint:
– curveToPoint:controlPoint1:controlPoint2:
– closePath
– reset
– relativeMoveToPoint:
– relativeLineToPoint:
– relativeCurveToPoint:controlPoint1:controlPoint2:

Appending paths and some common shapes
– appendBezierPath:
– appendBezierPathWithRect:
– appendBezierPathWithPoints:count:
– appendBezierPathWithOvalInRect:
– appendBezierPathWithArcWithCenter:radius:startAngle:

endAngle:
– appendBezierPathWithGlyph:inFont:
– appendBezierPathWithGlyphs:count:inFont:
– appendBezierPathWithPackedGlyphs:

Setting attributes
– setWindingRule:
– windingRule
+ setLineCapStyle:
+ setLineJoinStyle:
+ setLineWidth:
+ setMiterLimit:
+ setFlatness:
+ setHalftonePhase:

Drawing paths
– stroke
– fill
+ fillRect:
+ strokeRect:
+ strokeLineFromPoint:toPoint:
+ drawPackedGlyphs:atPoint:

6

Clipping paths
– addClip
– setClip
+ clipRect:

Hit detection
– isHitByPoint:
– isHitByRect:
– isHitByPath:
– isStrokeHitByPoint:
– isStrokeHitByRect:
– isStrokeHitByPath:

Querying paths
– bounds
– controlPointBounds
– currentPoint

Accessing elements of a path
– elementCount
– elementTypeAtIndex:
– elementTypeAtIndex:associatedPoints:
– removeLastElement
– pointCount
– pointAtIndex:
– setPointAtIndex:toPoint:
– pointIndexForPathElementIndex:
– pathElementIndexForPointIndex:

Caching paths
– cachesBezierPath
– setCachesBezierPath:

Class Methods

bezierPath
+ (NSBezierPath *)bezierPath

Creates and returns a new NSBezierPath object. The path is initially empty.

7

 Classes: NSBezierPath

bezierPathWithRect:
+ (NSBezierPath *)bezierPathWithRect:(NSRect)aRect

Creates and returns a new NSBezierPath object with a rectangular path specified by aRect. The path starts
at the origin of aRect, and is constructed counterclockwise.

See also: + bezierPath, – appendBezierPathWithRect:, + fillRect: , + strokeRect:

clipRect:
+ (void)clipRect:(NSRect)aRect

Intersects the current clipping path, stored in the current graphics context, with the rectangle referred to by
aRect, and replaces the current clipping path with the resulting path.

See also: – addClip, – setClip

drawPackedGlyphs:atPoint:
+ (void)drawPackedGlyphs:(const char *)packedGlyphs atPoint:(NSPoint)aPoint

Draws the characters in packedGlyphs at aPoint in the current graphic context’s coordinate system. The
glyphs are drawn immediately.

See also: – appendBezierPathWithGlyph:inFont:, – appendBezierPathWithGlyphs:count:inFont:,
– appendBezierPathWithPackedGlyphs:, – set (NSColor)

fillRect:
+ (void)fillRect: (NSRect)aRect

Fills a rectangular path specified by aRect with the current color (stored in the current graphics context).

See also: – appendBezierPathWithRect:, + bezierPathWithRect:, – set (NSColor), + strokeRect:

setFlatness:
+ (void)setFlatness:(float)flatness

Sets the current graphics context’s flatness attribute to flatness. The flatness attribute is the accuracy (or
smoothness) with which curves are rendered. flatness is the maximum error tolerance, measured in pixels,
where smaller numbers give smoother curves at the expense of more computation. The exact interpretation
may vary slightly on different rendering devices.

8

The default flatness value for a graphic context is 1.0. Flatness values that are less than 0.2 or greater than
100 are normalized to those boundaries.

setHalftonePhase:
+ (void)setHalftonePhase:(NSPoint)aPoint

Sets the current graphics context’s halftone phase to aPoint. The halftone phase is a shift in the device-space
alignment of halftone and pattern cells to compensate for window system operations that involve scrolling.
For example, if your application performs a scroll by (dx, dy) pixels in device space, you should simply add
dx and dy to the halftone phase parameters.

This is a device dependent property. The default value is (0, 0).

setLineCapStyle:
+ (void)setLineCapStyle:(NSLineCapStyle)lineCap

Sets the current graphics context’s line cap style to lineCap. The line cap style specifies the shape of the
endpoints of an open path when stroked. Figure 2 shows the appearance of the available line cap styles.

Figure 2 Line cap styles

See also: + setLineJoinStyle:, + setLineWidth:

NSLineCapButt

NSLineCapRound

NSLineCapProjectingSquare

9

 Classes: NSBezierPath

setLineJoinStyle:
+ (void)setLineJoinStyle:(NSLineJoinStyle)lineJoinStyle

Sets the current graphics context’s line join style to lineJoinStyle. The line join style specifies the shape of
the joints between connected segments of a stroked path. Figure 3 shows the appearance of the available
line join styles.

Figure 3 Line join styles

See also: + setLineCapStyle:, + setLineWidth: , + setMiterLimit:

setLineWidth:
+ (void)setLineWidth: (float)width

Sets the current graphics context’s line width to width points. The line width is the thickness of stroked
paths. A width of zero is interpreted as the thinnest line that can be rendered on a particular device. The
actual rendered line width may vary from width by as much as two device pixels, depending on the position
of the line with respect to the pixel grid. The width of the line may also be affected by scaling factors
specified in the current transformation matrix of the active graphics context.

See also: + setLineCapStyle:, + setLineJoinStyle:

NSLineJoinMiter

NSLineJoinRound

NSLineJoinBevel

10

setMiterLimit:
+ (void)setMiterLimit: (float)limit

Sets the current graphics context’s miter limit to limit. Setting the miter limit avoids spikes produced by line
segments that join at sharp angles. If the ratio of the miter length—the diagonal length of the miter—to the
line thickness exceeds the miter limit, the corner is treated as a bevel join instead of a miter join. The default
miter limit value is 10, which cuts off miters at angles less than 11 degrees.

See also: + setLineJoinStyle:

strokeLineFromPoint:toPoint:
+ (void)strokeLineFromPoint: (NSPoint)point1 toPoint:(NSPoint)point2

Strokes a line from point1 to point2 using the current graphics context’s drawing attributes (for example,
color, line cap style, and line width).

See also: – lineToPoint:, – moveToPoint:, + setLineCapStyle:, + setLineWidth:, – stroke

strokeRect:
+ (void)strokeRect:(NSRect)aRect

Strokes a rectangular path specified by aRect using the current graphics context’s drawing style and color.
The path is stroked beginning at the rectangle’s origin and proceeding in a counterclockwise direction.

See also: – appendBezierPathWithRect:,+ bezierPathWithRect:, + fillRect:, – set (NSColor),
+ setLineJoinStyle:, + setLineWidth:

Instance Methods

addClip
– (void)addClip

Intersects the current clipping path, stored in the current graphics context, with the receiver’s path, and
replaces the current clipping path with the resulting path. The current winding rule is applied to determine
the clipping area of the receiver. This method does not affect the receiver’s path.

See also: + clipRect:,– setClip

11

 Classes: NSBezierPath

appendBezierPath:
– (void)appendBezierPath:(NSBezierPath *)aPath

Appends aPath to the receiver’s path. This method adds the operations used to create aPath to the end of
the receiver’s path. This method does not explicitly try to connect the two paths, although the operations in
aPath may still cause this effect.

appendBezierPathWithArcWithCenter:radius:startAngle:endAngle:
– (void)appendBezierPathWithArcWithCenter: (NSPoint)center

radius:(float)radius
startAngle:(float)startAngle
endAngle:(float)endAngle

Appends an arc of a circle to the receiver’s path. The circle is centered at center with radius radius. The arc
lies on the perimeter of the circle, between startAngle and endAngle, measured in degrees counterclockwise
from the x-axis.

appendBezierPathWithGlyph:inFont:
– (void)appendBezierPathWithGlyph:(NSGlyph)aGlyph inFont: (NSFont *)fontObj

Appends an outline of aGlyph in fontObj to the receiver’s path. If aGlyph is not encoded in fontObj—that
is, the font does not have an entry for the specified glyph—then no path is appended to the receiver.

See also: – appendBezierPathWithGlyphs:count:inFont:, – appendBezierPathWithPackedGlyphs:,
+ drawPackedGlyphs:atPoint:

appendBezierPathWithGlyphs:count:inFont:
– (void)appendBezierPathWithGlyphs:(NSGlyph *)glyphs

count:(int)count
inFont: (NSFont *)fontObj

Appends the outlines of the NSGlyphs in the glyphs array to the receiver’s path. The glyphs must be
encoded using the font in fontObj. The count parameter specifies the number of NSGlyphs in glyphs. If an
NSGlyph is not encoded in fontObj—that is, the font does not have an entry for the specified glyph—then
no path is appended for that glyph.

See also: – appendBezierPathWithGlyph:inFont:, – appendBezierPathWithPackedGlyphs:,
+ drawPackedGlyphs:atPoint:

12

appendBezierPathWithOvalInRect:
– (void)appendBezierPathWithOvalInRect:(NSRect)aRect

Appends an oval path, inscribed in the rectangle aRect, to the receiver’s path. If aRect specifies a square,
the inscribed path is a circle. The inscribed path starts at the top center of aRect and arc segments are
constructed counterclockwise to complete the oval.

appendBezierPathWithPackedGlyphs:
– appendBezierPathWithPackedGlyphs:(const char *)packedGlyphs

Appends the packedGlyphs to the receiver’s path. You should not use this method directly. Instead, use the
appendBezierPathWithGlyph:inFont: and appendBezierPathWithGlyphs:count:inFont: methods to
append glyphs to a path.

See also: – appendBezierPathWithGlyph:inFont:, – appendBezierPathWithGlyphs:count:inFont:,
+ drawPackedGlyphs:atPoint:

appendBezierPathWithPoints:count:
– (void)appendBezierPathWithPoints:(NSPoint *)points count:(int)count

Appends a series of line segments with count number of vertices in points to the receiver’s path. If the
receiver’s path is empty, this method simply creates a new path from the supplied points. If the receiver
contains an existing path (or even a single point), this method appends the points to the existing path,
creating a line segment from the last point in the receiver’s path to the first point in the points array.

This method does not close the receiver’s path. If you wish to create a closed path, you must do so by
explicitly invoking the receiver’s closePath method.

See also: – closePath

appendBezierPathWithRect:
– (void)appendBezierPathWithRect:(NSRect)aRect

Appends a rectangular path, specified by aRect, to the receiver’s path. The path starts at the origin of aRect
and line segments are added proceeding counterclockwise from the origin, ending with a message to
closePath to complete the path.

See also: + bezierPathWithRect:, + fillRect: , + strokeRect:, – closePath

13

 Classes: NSBezierPath

bounds
– (NSRect)bounds

Returns the bounding box of the receiver’s path. If the path contains curve segments, the bounding box
encloses the curve but may not enclose the control points used to calculate the curve.

See also: – controlPointBounds

cachesBezierPath
– (BOOL)cachesBezierPath

Returns YES if this object maintains a cached image of its path, otherwise returns NO. The cached image
is stored in a display postscript user object.

See also: – setCachesBezierPath:

closePath
– (void)closePath

Closes the most recently added subpath by appending a straight line segment from the current point to the
subpath's starting point. A subpath is a sequence of connected segments; a path may be made up of one or
more disconnected subpaths. The current point is the ending point in the most recently added segment.

See also: – fill

controlPointBounds
– (NSRect)controlPointBounds

Returns the bounding box of the receiver’s path including any control points. If the path contains curve
segments, the bounding box encloses the control points of the curves as well as the curves themselves.

See also: – bounds

currentPoint
– (NSPoint)currentPoint

Returns the path’s current point (the trailing point or ending point in the most recently added segment).
Raises NSGenericException if the path is empty.

See also: – closePath, – curveToPoint:controlPoint1:controlPoint2:, – lineToPoint:, – moveToPoint:,
– reset

14

curveToPoint:controlPoint1:controlPoint2:
– (void)curveToPoint:(NSPoint)aPoint

controlPoint1:(NSPoint)controlPoint1
controlPoint2:(NSPoint)controlPoint2

Adds a Bezier cubic curve to the receiver’s path from the current point to aPoint, using controlPoint1 and
controlPoint2 as the Bezier cubic control points. The current point is the ending point in the most recently
added segment. To create a relative curve, use the relativeCurveToPoint:controlPoint1:controlPoint2:
method.

See also: – closePath, – lineToPoint:, – moveToPoint:, + setFlatness:, – relativeCurveToPoint:
controlPoint1:controlPoint2:

elementCount
– (int)elementCount

Returns the number of element types currently stored by the receiver’s path. Each element type corresponds
to one of the operations specified by the NSBezierPathElementType enumerated type.

See also: – elementTypeAtIndex:, – elementTypeAtIndex:associatedPoints:, – removeLastElement

elementTypeAtIndex:
– (NSBezierPathElementType)elementTypeAtIndex:(int)index

Returns the element type at index. Element types describe the operations that make up a path and include
such basic commands as moving to a specific point, creating a line segment, creating a curve, or closing the
path. The element types are stored in the order of execution and so the index parameter specifies the
operation at a given moment in the life of the path.

See also: – elementCount, – elementTypeAtIndex:associatedPoints:, – removeLastElement

elementTypeAtIndex:associatedPoints:
– (NSBezierPathElementType)elementTypeAtIndex:(int)index associatedPoints:(NSPoint *)points

Returns the element type at index and returns any points associated with that element type in the points
parameter. You must allocate an array of NSPoint objects large enough to hold the number of points for the
given element and pass it into the points parameter. Move and line segment operations return one point.
Curve operations return three points. Close path operations return zero points.

See also: – elementCount, – elementTypeAtIndex:, – removeLastElement

15

 Classes: NSBezierPath

fill
– (void)fill

Renders the receiver’s path by painting the region enclosed by the path. Uses the winding rule, specified by
inoking setWindingRule: and the current graphics context’s color to fill the path. Closes any open
subpaths. A subpath is a sequence of connected segments; a path may be made up of one or more
disconnected subpaths. A subpath is closed if the ending point is connected to the starting point (as in a
polygon).

See also: – set (NSColor), – setWindingRule:, – stroke, – windingRule

isHitByPath:
– (BOOL)isHitByPath: (NSBezierPath *)aBezierPath

Returns YES if any part of aBezierPath intersects the receiver’s path, otherwise returns NO.

See also: – isHitByPoint: , – isHitByRect:, – isStrokeHitByPath:, – bounds

isHitByPoint:
– (BOOL)isHitByPoint: (NSPoint)aPoint

Returns YES if aPoint lies within the filled area of the receiver’s path, otherwise returns NO.

See also: – isHitByPath: , – isHitByRect:, – isStrokeHitByPoint: , – bounds

isHitByRect:
– (BOOL)isHitByRect:(NSRect)aRect

Returns YES if aRect intersects the receiver’s path, otherwise returns NO.

See also: – isHitByPath: , – isHitByPoint: , – isStrokeHitByRect:, – bounds

isStrokeHitByPath:
– (BOOL)isStrokeHitByPath:(NSBezierpath *)aBezierPath

Returns YES if the path of aBezierPath intersects any point on the receiver’s path, otherwise returns NO.

See also: – isStrokeHitByPoint: , – isStrokeHitByRect:, – isHitByPath:

16

isStrokeHitByPoint:
– (BOOL)isStrokeHitByPoint: (NSPoint)aPoint

Returns YES if aPoint lies on the receiver’s path, otherwise returns NO.

See also: – isStrokeHitByPath:, – isStrokeHitByRect:, – isHitByPoint:

isStrokeHitByRect:
– (BOOL)isStrokeHitByRect:(NSRect)aRect

Returns YES if aRect intersects the receiver’s path, otherwise returns NO.

See also: – isStrokeHitByPath:, – isStrokeHitByPoint: , – isHitByRect:

lineToPoint:
– (void)lineToPoint:(NSPoint)aPoint

Appends a straight line to the receiver’s path from the current point to aPoint. The current point is the last
point in the receiver’s most recently added segment.

See also: – closePath, – curveToPoint:controlPoint1:controlPoint2:, – moveToPoint:

moveToPoint:
– (void)moveToPoint:(NSPoint)aPoint

Moves the receiver’s current point to aPoint, starting a new subpath, without adding any line segments. A
subpath is a sequence of connected segments; a path may be made up of one or more disconnected subpaths.
The current point is the ending point in the most recently added segment.

See also: – closePath, – curveToPoint:controlPoint1:controlPoint2:, – lineToPoint:

pathElementIndexForPointIndex:
– (int)pathElementIndexForPointIndex:(int)index

Given the index of a point in the path, this method returns the index of the element type that corresponds to
that point. The index parameter can specify either a point on the path or a control point used to define a
curve. The returned value can be passed to the elementTypeAtIndex: method to determine the element
type that operates on the point.

See also: – pointAtIndex: , – pointCount, – pointIndexForPathElementIndex:, – setPointAtIndex:
toPoint:, – elementTypeAtIndex:

17

 Classes: NSBezierPath

pointAtIndex:
– (NSPoint)pointAtIndex: (int)index

Returns the point at the specified index. The point may be either a point on the path or a control point used
to define a curve.

See also: – pathElementIndexForPointIndex:, – pointCount, – pointIndexForPathElementIndex:,
– setPointAtIndex:toPoint:

pointCount
– (int)pointCount

Returns the number of points used to define the receiver’s path. The number of points includes points on
the path and control points used to define curves.

See also: – pathElementIndexForPointIndex:, – pointAtIndex: , – pointIndexForPathElementIndex:,
– setPointAtIndex:toPoint:

pointIndexForPathElementIndex:
– (int)pointIndexForPathElementIndex:(int)index

Returns the array location of the first point associated with the element type at index. If the element type
uses more than one point, this method returns the index of only the first point.

See also: – pathElementIndexForPointIndex:, – pointAtIndex: , – pointCount, – setPointAtIndex:
toPoint:

relativeCurveToPoint:controlPoint1:controlPoint2:
– (void)relativeCurveToPoint:(NSPoint)aPoint

controlPoint1:(NSPoint)controlPoint1
controlPoint2:(NSPoint)controlPoint2

Adds a Bezier cubic curve to the receiver’s path from the current point to a new location, which is specified
as a relative distance from the current point. (The control points are similarly specified as relative distances
from the current point.) The aPoint parameter specifies the end point of the curve as a relative distance from
the current point. The controlPoint1 and controlPoint2 parameters specify the location of the two control
points as relative distances from the current point. Raises NSGenericException if the path is empty.

See also: – closePath, – curveToPoint:controlPoint1:controlPoint2: , – relativeLineToPoint: ,
– relativeMoveToPoint:

18

relativeLineToPoint:
– (void)relativeLineToPoint: (NSPoint)aPoint

Appends a straight line to the receiver’s path from the current point to aPoint, which is specified as a relative
distance from the current point. Raises NSGenericException if the path is empty.

See also: – closePath, – lineToPoint:, – relativeCurveToPoint:controlPoint1:controlPoint2: ,
– relativeMoveToPoint:

relativeMoveToPoint:
– (void)relativeMoveToPoint:(NSPoint)aPoint

Moves the receiver’s current point to a new point, which is specified by the parameter aPoint as a relative
distance from the current point. This method starts a new subpath without adding any line segments.

See also: – closePath, – moveToPoint:, – relativeCurveToPoint:controlPoint1:controlPoint2: ,
– relativeLineToPoint:

removeLastElement
– (void)removeLastElement

Undoes the most recent path operation. This method removes only one simple operation, such as moving
the current point, creating a line segment, or creating a curve. If you last created a new rectangle or oval,
this method removes only one line segment or curve from the added path.

See also: – elementCount, – elementTypeAtIndex:, – elementTypeAtIndex:associatedPoints:

reset
– (void)reset

Sets the receiver’s path to an empty path, a path containing no subpaths. After invoking this method the
current point is undefined.

setCachesBezierPath:
– (void)setCachesBezierPath:(BOOL)flag

Sets whether the receiver should cache its path information. Caching improves subsequent drawing times
but requires extra memory to store the cached path representation. If caching is being turned on (flag is

19

 Classes: NSBezierPath

YES), the receiver’s cache is marked as needing to be calculated. Otherwise, if caching is being turned off,
any existing cached data is deleted.

See also: – cachesBezierPath

setClip
– (void)setClip

Replace the current clipping path with the area inside this path as determined by the winding rule. This is
not a preferred method of adjusting the clipping path, as it may expand the clipping path beyond the bounds
set by the enclosing NSView. The graphics state should be saved and restored before and after invoking this
method.

See also: – addClip, + clipRect:, – saveGraphicsState (NSGraphicsContext)

setPointAtIndex:toPoint:
– (void)setPointAtIndex:(int)index toPoint:(NSPoint)aPoint

Changes the value of the point at index to the new point specified by aPoint. The index parameter is
zero-based and refers to the array of points used to specify the path. Invoking this method marks any cached
data as needing to be recalculated.

See also: – pathElementIndexForPointIndex:, – pointAtIndex: , – pointCount,
– pointIndexForPathElementIndex:

setWindingRule:
– (void)setWindingRule:(NSWindingRule)aWindingRule

Sets the winding rule used to fill the receiver’s path, that is, paint the region enclosed by the path. Possible
values for the aWindingRule parameter are NSWindingRuleNonZero or NSWindingRuleEvenOdd. See
“Winding Rules and Filling Paths” for more information on how winding rules affect the appearance of
filled paths.

See also: – fill , – windingRule

20

stroke
– (void)stroke

Draws a line along the receiver’s path using the current graphic context’s color and other drawing attributes
(for example, line cap style, line join style, and line width). The drawn line is centered on the path with sides
(specified by the setLineWidth: class method) parallel to the path segment.

See also: – fill, – set (NSColor), + setLineCapStyle:, + setLineJoinStyle:, + setLineWidth:

windingRule
– (NSWindingRule)windingRule

Returns the winding rule used to fill the receiver’s path, that is, paint the region enclosed by the path.
Possible return values are NSWindingRuleNonZero or NSWindingRuleEvenOdd. See “Winding Rules and
Filling Paths” for more information on how winding rules affect the appearance of filled paths.

See also: – fill , – setWindingRule:

1

 Classes: NSBitmapImageRep

NSBitmapImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding (from NSImageRep)
NSCopying (from NSImageRep)
NSObject (from NSObject)

Declared In: AppKit/NSImage.h

Class Description

An NSBitmapImageRep is an object that can render an image from bitmap data. The data can be in Tag
Image File Format (TIFF), Windows bitmap format (BMP), or it can be raw image data. If it’s raw data, the
object must be informed about the structure of the image—its size, the number of color components, the
number of bits per sample, and so on—when it’s first initialized. If it’s TIFF or BMP data, the object can
get this information from the various fields included with the data.

Although NSBitmapImageReps are often used indirectly, through instances of the NSImage class, they can
also be used directly—for example to manipulate the bits of an image as you might need to do in a paint
program.

Setting Up an NSBitmapImageRep

You pass bitmap data for an image to a new NSBitmapImageRep when you first initialize it. You can also
create an NSBitmapImageRep from bitmap data that’s read from a specified rectangle of a focused NSView.

Although the NSBitmapImageRep class inherits NSImageRep methods that set image attributes, these
methods shouldn’t be used. Instead, you should either allow the object to find out about the image from the
fields included with the bitmap data, or use methods defined in this class to supply this information when
the object is initialized.

TIFF Compression

TIFF data can be read and rendered after it has been compressed using any one of the four schemes briefly
described below:

LZW
Compresses and decompresses without information loss, achieving
compression ratios up to 5:1. It may be somewhat slower to compress and
decompress than the PackBits scheme.

2

An NSBitmapImageRep can also produce compressed TIFF data for its image using any of these schemes.

Method Types

Creating an NSBitmapImageRep
+ imageRepsWithData:
+ imageRepWithData:
– initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:

samplesPerPixel:hasAlpha:isPlanar:colorSpaceName:
bytesPerRow:bitsPerPixel:bytesPerRow:bitsPerPixel:

– initWithBitmapHandle:
– initWithData:
– initWithFocusedViewRect:
– initWithIconHandle:

Getting information about the image
– bitsPerPixel
– bytesPerPlane
– bytesPerRow
– isPlanar
– numberOfPlanes
– samplesPerPixel

Getting image data
– bitmapData
– getBitmapDataPlanes:

PackBits
Compresses and decompresses without information loss, but may not achieve
the same compression ratios as LZW.

JPEG

Compresses and decompresses with some information loss, but can achieve
compression ratios anywhere from 10:1 to 100:1. The ratio is determined by a
user-settable factor ranging from 1.0 to 255.0, with higher factors yielding
greater compression. More information is lost with greater compression, but 15:
1 compression is safe for publication quality. Some images can be compressed
even more. JPEG compression can be used only for images that specify at
least 4 bits per sample.

CCITTFAX
Compresses and decompresses 1 bit gray-scale images using international fax
compression standards CCITT3 and CCITT4.

3

 Classes: NSBitmapImageRep

Producing a TIFF representation of the image
+ TIFFRepresentationOfImageRepsInArray:
+ TIFFRepresentationOfImageRepsInArray:usingCompression:

factor:
– TIFFRepresentation
– TIFFRepresentationUsingCompression:factor:

Setting and checking compression types
+ getTIFFCompressionTypes:count:
+ localizedNameForTIFFCompressionType:
– canBeCompressedUsing:
– getCompression:factor:
– setCompression:factor:

Class Methods

getTIFFCompressionTypes:count:
+ (void)getTIFFCompressionTypes:(const NSTIFFCompression **)list

count:(int *)numTypes

Returns, by reference, an array of NSTIFFCompressions representing all available compression types that
can be used when writing a TIFF image. The number of elements in list is represented by numTypes. list
belongs to the NSBitmapImageRep class; it shouldn’t be freed or altered.

The following compression types are supported:

Constant Value Usage

NSTIFFCompressionNone 1

NSTIFFCompressionCCITTFAX3 3 1 bps images only

NSTIFFCompressionCCITTFAX4 4 1 bps images only

NSTIFFCompressionLZW 5

NSTIFFCompressionJPEG 6

NSTIFFCompressionNEXT 32766 Input only

NSTIFFCompressionPackBits 32773

NSTIFFCompressionOldJPEG 32865 Input only

4

Note that not all compression types can be used for all images: NSTIFFCompressionNEXT can be used
only to retrieve image data. Because future releases of OpenStep may include other compression types,
always use this method to get the available compression types—for example, when you implement a user
interface for selecting compression types.

See also: + localizedNameForTIFFCompressionType:, – canBeCompressedUsing:

imageRepsWithData:
+ (NSArray *)imageRepsWithData:(NSData *)bitmapData

Creates and returns an array of initialized NSBitmapImageRep objects corresponding to the images in
bitmapData. If NSBitmapImageRep is unable to interpret bitmapData, the returned array is empty.
bitmapData can contain data in any supported bitmap format.

imageRepWithData:
+ (id)imageRepWithData:(NSData *)bitmapData

Creates and returns an initialized NSBitmapImageRep corresponding to the first image in bitmapData, or
nil if NSBitmapImageRep is unable to interpret bitmapData. bitmapData can contain data in any supported
bitmap format.

localizedNameForTIFFCompressionType:
+ (NSString *)localizedNameForTIFFCompressionType:(NSTIFFCompression)compression

Returns an autoreleased string containing the localized name for the compression type represented by
compression, or nil if compression is unrecognized. Compression types are listed in the
getTIFFCompressionTypes:count: class method description. When implementing a user interface for
selecting TIFF compression types, use getTIFFCompressionTypes:count: to get the list of supported
compression types, then use this method to get the localized names for each compression type.

See also: + getTIFFCompressionTypes:count:

TIFFRepresentationOfImageRepsInArray:
+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array

Returns a TIFF representation of the images in array, using the compression that’s returned by
getCompression:factor: (if applicable).

5

 Classes: NSBitmapImageRep

If a problem is encountered during generation of the TIFF, TIFFRepresentationOfImageRepsInArray
raises an NSTIFFException or an NSBadBitmapParametersException.

See also: – TIFFRepresentation

TIFFRepresentationOfImageRepsInArray:usingCompression:factor:
+ (NSData *)TIFFRepresentationOfImageRepsInArray:(NSArray *)array

usingCompression:(NSTIFFCompression)compression
factor: (float)factor

Returns a TIFF representation of the images in array, which are compressed using the specified compression
type and factor. Legal values for compression can be found in NSBitmapImageRep.h, and are described
in “Tiff Compression” in NSBitmapImageRep’s class description. factor provides a hint for those
compression types that implement variable compression ratios; currently only JPEG compression uses a
compression factor. If your compression type doesn’t implement variable compression ratios, or if it does
and you don’t want the image to be compressed, specify a compression factor of 0.0.

If the specified compression isn’t applicable, no compression is used. If a problem is encountered during
generation of the TIFF, TIFFRepresentationOfImageRepsInArray:usingCompression:factor: raises
an NSTIFFException or an NSBadBitmapParametersException.

See also: – TIFFRepresentationUsingCompression:factor:

Instance Methods

bitmapData
– (unsigned char *)bitmapData

Returns a pointer to the bitmap data. If the data is planar, returns a pointer to the first plane.

See also: – getBitmapDataPlanes:

bitsPerPixel
– (int)bitsPerPixel

Returns the number of bits allocated for each pixel in each plane of data. This is normally equal to the
number of bits per sample or, if the data is in meshed configuration, the number of bits per sample times the
number of samples per pixel. It can be explicitly set to another value (in the initWithBitmapDataPlanes:
pixelsWide:pixelsHigh:... method) in case extra memory is allocated for each pixel. This may be the case,
for example, if pixel data is aligned on byte boundaries.

6

bytesPerPlane
– (int)bytesPerPlane

Returns the number of bytes in each plane or channel of data. This is calculated from the number of bytes
per row and the height of the image.

See also: – bytesPerRow

bytesPerRow
– (int)bytesPerRow

Returns the minimum number of bytes required to specify a scan line (a single row of pixels spanning the
width of the image) in each data plane. If not explicitly set to another value (in the
initWithBitmapDataPlanes:pixelsWide:pixelsHigh:... method), this will be figured from the width of the
image, the number of bits per sample, and, if the data is in a meshed configuration, the number of samples
per pixel. It can be set to another value to indicate that each row of data is aligned on word or other
boundaries.

See also: – bytesPerPlane

canBeCompressedUsing:
– (BOOL)canBeCompressedUsing:(NSTIFFCompression)compression

Tests whether the receiver can be compressed by compression type. Legal values for compression can be
found in NSBitmapImageRep.h, and are described in “Tiff Compression” in the class description. This
method returns YES if the receiver’s data matches compression; for example, if compression is
NSTIFFCompressionCCITTFAX3, then the data must be one bit-per-sample and one sample-per-pixel. It
returns NO if the data doesn’t match compression or if compression is unsupported.

See also: + getTIFFCompressionTypes:count:

getBitmapDataPlanes:
– (void)getBitmapDataPlanes:(unsigned char **)data

Provides access to bitmap data for the image separated into planes. data should be an array of five character
pointers. If the bitmap data is in planar configuration, each pointer will be initialized to point to one of the
data planes. If there are less than five planes, the remaining pointers will be set to NULL. If the bitmap data
is in meshed configuration, only the first pointer will be initialized; the others will be NULL.

7

 Classes: NSBitmapImageRep

Color components in planar configuration are arranged in the expected order—for example, red before
green before blue for RGB color. All color planes precede the coverage plane.

See also: – isPlanar

getCompression:factor:
– (void)getCompression:(NSTIFFCompression *)compression factor: (float *)factor

Returns by reference the receiver’s compression type and compression factor. Use this method to get
information on the compression type for the source image data. compression represents the compression
type used on the data, and corresponds to one of the values returned by the class method
getTIFFCompressionTypes:count:. factor is a value that is specific to the compression type; many types of
compression don’t support varying degrees of compression, and thus ignore factor. JPEG compression
allows a compression factor ranging from 0.0 to 255.0, with 0.0 representing minimal compression.

initWithBitmapDataPlanes:pixelsWide:pixelsHigh:bitsPerSample:samplesPerPixel:
hasAlpha:isPlanar:colorSpaceName:bytesPerRow:bitsPerPixel:

– (id)initWithBitmapDataPlanes: (unsigned char **)planes
pixelsWide:(int)width
pixelsHigh:(int)height
bitsPerSample:(int)bps
samplesPerPixel:(int)spp
hasAlpha:(BOOL)alpha
isPlanar:(BOOL)isPlanar
colorSpaceName:(NSString *)colorSpaceName
bytesPerRow:(int)rowBytes
bitsPerPixel:(int)pixelBits

Initializes the receiver, a newly allocated NSBitmapImageRep object, so that it can render the image
specified in planes and described by the other arguments. If the object can’t be initialized, this method frees
it and returns nil . Otherwise, it returns the object (self).

planes is an array of character pointers, each of which points to a buffer containing raw image data. If the
data is in planar configuration, each buffer holds one component—one plane—of the data. Color planes are
arranged in the standard order—for example, red before green before blue for RGB color. All color planes
precede the coverage plane.

If the data is in meshed configuration (isPlanar is NO), only the first buffer is read.

If planes is NULL or if it’s an array of NULL pointers, this method allocates enough memory to hold the
image described by the other arguments. You can then obtain pointers to this memory (with the
getBitmapDataPlanes: or bitmapData method) and fill in the image data. In this case, the allocated
memory will belong to the object and will be freed when it’s freed.

8

If planes is not NULL and the array contains at least one data pointer, the object will only reference the
image data; it won’t copy it. The buffers won’t be freed when the object is freed.

Each of the other arguments (besides planes) informs the NSBitmapImageRep object about the image.
They’re explained below:

• width and height specify the size of the image in pixels. The size in each direction must be greater than 0.

• bps (bits per sample) is the number of bits used to specify one pixel in a single component of the data.
All components are assumed to have the same bits per sample.

• spp (samples per pixel) is the number of data components. It includes both color components and the
coverage component (alpha), if present. Meaningful values range from 1 through 5. An image with cyan,
magenta, yellow, and black (CMYK) color components plus a coverage component would have an spp
of 5; a gray-scale image that lacks a coverage component would have an spp of 1.

• alpha should be YES if one of the components counted in the number of samples per pixel (spp) is a
coverage component, and NO if there is no coverage component.

• isPlanar should be YES if the data components are laid out in a series of separate “planes” or channels
(“planar configuration”), and NO if component values are interwoven in a single channel (“meshed
configuration”).

For example, in meshed configuration, the red, green, blue, and coverage values for the first pixel of an
image would precede the red, green, blue, and coverage values for the second pixel, and so on. In planar
configuration, red values for all the pixels in the image would precede all green values, which would
precede all blue values, which would precede all coverage values.

• colorSpaceName indicates how data values are to be interpreted. It should be one of the following
enumerated values:

NSCalibratedWhiteColorSpace

NSCalibratedBlackColorSpace

NSCalibratedRGBColorSpace

NSDeviceWhiteColorSpace

NSDeviceBlackColorSpace

NSDeviceRGBColorSpace

NSDeviceCMYKColorSpace

NSNamedColorSpace

NSCustomColorSpace

• rowBytes is the number of bytes that are allocated for each scan line in each plane of data. A scan line is
a single row of pixels spanning the width of the image.

9

 Classes: NSBitmapImageRep

Normally, rowBytes can be figured from the width of the image, the number of bits per pixel in each
sample (bps), and, if the data is in a meshed configuration, the number of samples per pixel (spp).
However, if the data for each row is aligned on word or other boundaries, it may have been necessary to
allocate more memory for each row than there is data to fill it. rowBytes lets the object know whether
that’s the case. If rowBytes is 0, the NSBitmapImageRep assumes that there’s no empty space at the end
of a row.

• pixelBits informs the NSBitmapImageRep how many bits are actually allocated per pixel in each plane
of data. If the data is in planar configuration, this normally equals bps (bits per sample). If the data is in
meshed configuration, it normally equals bps times spp (samples per pixel). However, it’s possible for a
pixel specification to be followed by some meaningless bits (empty space), as may happen, for example,
if pixel data is aligned on byte boundaries. NSBitmapImageRep supports only a limited number of
pixelBits values (other than the default): for RGB images with 12 bps, pixelBits may be 16; for RGB
images with 24 bps, pixelBits may be 32. The legal values for pixelBits are system dependent.

If pixelBits is 0, the object will interpret the number of bits per pixel to be the expected value, without
any meaningless bits.

initWithBitmapHandle:
– (id)initWithBitmapHandle: (void *)bitmap

On Microsoft Windows platforms, initWithBitmapHandle: initializes the receiver, a newly allocated
NSBitmapImageRep instance, with the contents of the Windows bitmap indicated by bitmap. If
initWithBitmapHandle: is able to create one or more image representations, it returns self. Otherwise, the
receiver is freed and nil is returned.

initWithData:
– (id)initWithData: (NSData *)bitmapData

Initializes a newly allocated NSBitmapImageRep from the data found in bitmapData. The contents of
bitmapData can be any supported bitmap format. For TIFF data, the NSBitmapImageRep is initialized from
the first header and image data found in bitmapData.

initWithData: returns an initialized NSBitmapImageRep if the initialization was successful, or nil if it was
unable to interpret the contents of bitmapData.

10

initWithFocusedViewRect:
– (id)initWithFocusedViewRect:(NSRect)rect

Initializes the receiver, a newly allocated NSBitmapImageRep object, with bitmap data read from a
rendered image. The image that’s read is located in the current window and is bounded by the rect rectangle
as specified in the current coordinate system.

This method uses PostScript imaging operators to read the image data into a buffer; the object is then
created from that data. The object is initialized with information about the image obtained from the Window
Server.

If for any reason the new object can’t be initialized, this method frees it and returns nil . Otherwise, it returns
the initialized object (self).

initWithIconHandle:
– (id)initWithIconHandle: (void *)icon

On Microsoft Windows platforms, initWithIconHandle: initializes the receiver, a newly allocated
NSBitmapImageRep instance, with the contents of the Windows icon indicated by icon. If
initWithIconHandle: is able to create one or more image representations, it returns self. Otherwise, the
receiver is freed and nil is returned.

isPlanar
– (BOOL)isPlanar

Returns YES if image data is segregated into a separate plane for each color and coverage component
(planar configuration), and NO if the data is integrated into a single plane (meshed configuration).

See also: – samplesPerPixel

numberOfPlanes
– (int)numberOfPlanes

Returns the number of separate planes that image data is organized into. This is the number of samples per
pixel if the data has a separate plane for each component (isPlanar returns YES) and 1 if the data is meshed
(isPlanar returns NO).

See also: – samplesPerPixel, – hasAlpha (NSImageRep), – bitsPerSample (NSImageRep)

11

 Classes: NSBitmapImageRep

samplesPerPixel
– (int)samplesPerPixel

Returns the number of components in the data. It includes both color components and the coverage
component, if present.

See also: – hasAlpha (NSImageRep), – bitsPerSample (NSImageRep)

setCompression:factor:
– (void)setCompression:(NSTIFFCompression)compression

factor: (float)factor

Sets the receiver’s compression type and compression factor. compression is one of the supported
compression types listed in the getTiffCompressionTypes:count: class method description. factor is a
value that is specific to the compression type; many types of compression don’t support varying degrees of
compression, and thus ignore factor. JPEG compression allows a compression factor ranging from 0.0 to
255.0, with 0.0 representing minimal compression.

When an NSBitmapImageRep is created, the instance stores the compression type and factor for the source
data. TIFFRepresentation and TIFFRepresentationOfImageRepsInArray: (class method) try to use the
stored compression type and factor. Use this method to change the compression type and factor.

See also: – canBeCompressedUsing:

TIFFRepresentation
– (NSData *)TIFFRepresentation

Returns a TIFF representation of the image, using the compression that’s returned by getCompression:
factor: (if applicable). This method invokes TIFFRepresentationUsingCompression:factor: using the
stored compression type and factor retrieved from the initial image data or changed using setCompression:
factor: . If the stored compression type isn’t supported for writing TIFF data (for example,
NSTIFFCompressionNEXT), the stored compression is changed to NSTIFFCompressionNone and the
compression factor to 0.0 before invoking TIFFRepresentationUsingCompression:factor:.

If a problem is encountered during generation of the TIFF, TIFFRepresentation raises an
NSTIFFException or an NSBadBitmapParametersException.

See also: + TIFFRepresentationOfImageRepsInArray:

12

TIFFRepresentationUsingCompression:factor:
– (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp

factor: (float)factor

Returns a TIFF representation of the image, using the specified compression and factor. If the stored
compression type isn’t supported for writing TIFF data (for example, NSTIFFCompressionNEXT), the
stored compression is changed to NSTIFFCompressionNone and the compression factor to 0.0 before the
TIFF representation is generated.

If a problem is encountered during generation of the TIFF, TIFFRepresentation raises an
NSTIFFException or an NSBadBitmapParametersException.

See also: – canBeCompressedUsing:, + TIFFRepresentationOfImageRepsInArray:

1

 Classes: NSBox

NSBox

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (from NSResponder)
NSObject (from NSObject)

Declared In: AppKit/NSBox.h

Class Description

An NSBox object is a simple NSView that can do two things: It can draw a border around itself and it can
title itself. You can use an NSBox to group, visually, some number of other NSViews. These other NSViews
are added to the NSBox through the typical subview-adding methods, such as addSubview: and
replaceSubview:with:.

An NSBox contains a content area, a rectangle set within the NSBox’s frame in which the NSBox’s
subviews are displayed. The size and location of the content area depends on the NSBox’s border type, title
location, the size of the font used to draw the title, and an additional measure that you can set through the
setContentViewMargins: method. When you create an NSBox, an instance of NSView is created and
added (as a subview of the NSBox object) to fill the NSBox’s content area. If you replace this content view
with an NSView of your own, your NSView will be resized to fit the content area. Similarly, as you resize
an NSBox its content view is automatically resized to fill the content area.

The NSViews that you add as subviews to an NSBox are actually added to the NSBox’s content view—
NSView’s subview-adding methods are redefined by NSBox to ensure that a subview is correctly placed in
the view hierarchy. However, you should note that the subviews method isn’t redefined: It returns an
NSArray containing a single object, the NSBox’s content view.

2

Method Types

Getting and modifying the border and title
– borderRect
– borderType
– setBorderType:
– setTitle:
– setTitleFont:
– setTitlePosition:
– setTitleWithMnemonic:
– title
– titleCell
– titleFont
– titlePosition
– titleRect

Setting and placing the content view
– contentView
– contentViewMargins
– setContentView:
– setContentViewMargins:

Resizing the box
– setFrameFromContentFrame:
– sizeToFit

Instance Methods

borderRect
– (NSRect)borderRect

Returns the rectangle in which the border is drawn.

borderType
– (NSBorderType)borderType

Returns the NSBox’s border type. Border types are defined in NSView.h; currently, the following border
types are defined:

NSNoBorder
NSLineBorder
NSBezelBorder
NSGrooveBorder

3

 Classes: NSBox

By default, an NSBox’s border type is NSGrooveBorder.

contentView
– (id)contentView

Returns the NSBox’s content view. The content view is created automatically when the box is created, and
resized as the box is resized (you should never send frame-altering messages directly to a box’s content
view). You can replace it with an NSView of your own through the setContentView: method.

contentViewMargins
– (NSSize)contentViewMargins

Returns the distances between the border and the content view. By default, on Mach systems both the width
(the horizontal distance between the innermost edge of the border and the content view) and the height (the
vertical distance between the innermost edge of the border and the content view) of the returned NSSize are
5.0 in the box’s coordinate system.

setBorderType:
– (void)setBorderType:(NSBorderType)aType

Sets the border type to aType, which must be a valid border type. Border types are defined in NSView.h;
currently, the following border types are defined:

NSNoBorder
NSLineBorder
NSBezelBorder
NSGrooveBorder

If the size of the new border is different from that of the old border, the content view is resized to absorb
the difference and the box is marked for redisplay.

See also: – setNeedsDisplay: (NSView)

setContentView:
– (void)setContentView:(NSView *)aView

Sets the NSBox’s content view to aView, resizing the NSView to fit within the box’s current content area.
The box is marked for redisplay.

See also: – setFrameFromContentFrame:, – sizeToFit, – setNeedsDisplay: (NSView)

4

setContentViewMargins:
– (void)setContentViewMargins:(NSSize)offsetSize

Sets the horizontal and vertical distance between the border of the NSBox and its content view. The
horizontal value is applied (reckoned in the box’s coordinate system) fully and equally to the left and right
sides of the box. The vertical value is similarly applied to the top and bottom.

Unlike changing a box’s other attributes, such as its title position or border type, changing the offsets
doesn’t automatically resize the content view. In general, you should send a sizeToFit message to the box
after changing the size of its offsets. This causes the content view to remain unchanged while the box is
sized to fit around it.

setFrameFromContentFrame:
– (void)setFrameFromContentFrame:(NSRect)contentFrame

Places the NSBox so its content view lies on contentFrame, reckoned in the coordinate system of the box’s
superview. The box is marked for redisplay.

See also: – setContentViewMargins:, – setFrame: (NSView), – setNeedsDisplay: (NSView)

setTitle:
– (void)setTitle:(NSString *)aString

Sets the title to aString, and marks the region of the receiver within the title rectangle as needing display.
By default, an NSBox’s title is “Title”. If the size of the new title is different from that of the old title, the
content view is resized to absorb the difference.

See also: – setNeedsDisplayInRect: (NSView), – titleRect

setTitleFont:
– (void)setTitleFont:(NSFont *)aFont

Sets aFont as the NSFont object used to draw the NSBox’s title, and marks the region of the receiver within
the title rectangle as needing display. On Mach systems the title is drawn using the 12.0 point system font
by default. If the size of the new font is different from that of the old font, the content view is resized to
absorb the difference.

See also: – setNeedsDisplayInRect: (NSView)

5

 Classes: NSBox

setTitlePosition:
– (void)setTitlePosition:(NSTitlePosition)aPosition

Sets the title position to aPosition, which can be one of the values listed in the following table. The default
position is NSAtTop.

If the new title position changes the size of the box’s border area, the content view is resized to absorb the
difference, and the box is marked as needing redisplay.

See also: – setNeedsDisplay: (NSView)

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)aString

Sets the title to aString, taking into account the fact that an embedded “&” character is not a literal but
instead marks the title’s “mnemonic.” The character immediately following the “&” character will be
underlined.

By default, an NSBox’s title is “Title”. The content view is not automatically resized, and the box is not
marked for redisplay.

See also: – setTitleWithMnemonic: (NSCell)

Value Meaning

NSNoTitle The box has no title

NSAboveTop
Title positioned above the box’s
top border

NSAtTop
Title positioned within the box’s
top border

NSBelowTop
Title positioned below the box’s
top border

NSAboveBottom
Title positioned above the box’s
bottom border

NSAtBottom
Title positioned within the box’s
bottom border

NSBelowBottom
Title positioned below the box’s
bottom border

6

sizeToFit
– (void)sizeToFit

Resizes and moves the NSBox’s content view so that it just encloses its subviews. The box itself is then
moved and resized to wrap around the content view. The box’s width is constrained so its title will be fully
displayed.

You should invoke this method after:

• Adding a subview (to the content view).
• Altering the size or location of such a subview.
• Setting the margins around the content view.

The mechanism by which the content view is moved and resized depends on whether the object responds
to its own sizeToFit message: If it does respond, then that message is sent and the content view is expected
to be so modified. If the content view doesn’t respond, the box moves and resizes the content view itself.

title
– (NSString *)title

Returns the NSBox’s title. By default, a box’s title is “Title”.

titleCell
– (id)titleCell

Returns the NSCell that’s used to display the NSBox’s title.

titleFont
– (NSFont *)titleFont

Returns the NSFont that’s used to draw the NSBox’s title. On Mach systems the title is drawn using the 12.0
point system font by default.

titlePosition
– (NSTitlePosition)titlePosition

Returns a constant representing the title position. See the description of setTitlePosition: for a list of the
title position constants.

7

 Classes: NSBox

titleRect
– (NSRect)titleRect

Returns the rectangle in which the NSBox’s title is drawn.

See also: – setTitlePosition:, – setTitle:, – setTitleFont:, – setFrameFromContentFrame:, – sizeToFit

1

 Classes: NSBrowser

NSBrowser

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSBrowser.h

Class Description

NSBrowser provides a user interface for displaying and selecting items from a list of data, or from
hierarchically organized lists of data such as directory paths. When working with a hierarchy of data, the
levels are displayed in columns, which are numbered from left to right, beginning with 0. Each column
consists of an NSScrollView containing an NSMatrix filled with NSBrowserCells. NSBrowser relies on a
delegate to provide the data in its NSBrowserCells. See the NSBrowserCell class description for more on
its implementation.

Browser Selection

An entry in an NSBrowser’s column can be either a branch node (such as a directory) or a leaf node (such
as a file). When the user selects a single branch node entry in a column, the NSBrowser sends itself the
addColumn message, which messages its delegate to load the next column. The user’s selection can be
represented as a character string; if the selection is hierarchical (for example, a filename within a directory),
each component of the path to the selected node is separated by “/”. To use some other character as the
delimiter, invoke setPathSeparator:.

An NSBrowser can be set to allow selection of multiple entries in a column, or to limit selection to a single
entry. When set for multiple selection, it can also be set to limit multiple selection to leaf nodes only, or to
allow selection of both types of nodes together.

As a subclass of NSControl, NSBrowser has a target object and action message. Each time the user selects
one or more entries in a column, the action message is sent to the target. NSBrowser also adds an action to
be sent when the user double-clicks on an entry, which allows the user to select items without any action
being taken, and then double-click to invoke some useful action such as opening a file.

User Interface Features

The user interface features of an NSBrowser can be changed in a number of ways. The NSBrowser may or
may not have a horizontal scroller. (The NSBrowser’s columns, by contrast, always have vertical
scrollers—although a scroller’s buttons and knob might be invisible if the column doesn’t contain many

2

entries.) You generally shouldn’t create an NSBrowser without a horizontal scroller; if you do, you must
make sure the bounds rectangle of the NSBrowser is wide enough that all the columns can be displayed. An
NSBrowser’s columns may be bordered and titled, bordered and untitled, or unbordered and untitled. A
column’s title may be taken from the selected entry in the column to its left, or may be provided explicitly
by the NSBrowser or its delegate.

NSBrowser’s Delegate

NSBrowser requires a delegate to provide it with data to display. The delegate is responsible for providing
the data and for setting each item as a branch or leaf node, enabled or disabled. It can also receive
notification of events like scrolling and requests for validation of columns that may have changed.

You can implement one of two delegate types: active or passive. An active delegate creates a column’s rows
(that is, the NSBrowserCells) itself, while a passive one leaves that job to the NSBrowser. Normally, passive
delegates are preferable, because they’re easier to implement. An active delegate must implement browser:
createRowsForColumn:inMatrix: to create the rows of the specified column. A passive delegate, on the
other hand, must implement browser:numberOfRowsInColumn: to let the NSBrowser know how many
rows to create. These two methods are mutually exclusive; you can implement one or the other, but not both.
(The NSBrowser ascertains what type of delegate it has by which method the delegate responds to.)

Both types of delegate implement browser:willDisplayCell:atRow:column: to set up state (such as the
cell’s string value and whether the cell is a leaf or a branch) before an individual cell is displayed. (This
delegate method doesn’t need to invoke NSBrowserCell’s setLoaded: method, because the NSBrowser can
determine that state by itself.) An active delegate can instead set all the cells’ state at the time the cells are
created, in which case it doesn’t need to implement browser:willDisplayCell:atRow:column: . However,
a passive delegate must always implement this method.

Method Types

Setting component classes
+ cellClass
– setCellClass:
– cellPrototype
– setCellPrototype:
– matrixClass
– setMatrixClass:

3

 Classes: NSBrowser

Getting matrices, cells, and rows
– selectedCell
– selectedCellInColumn:
– selectedCells
– selectAll:
– selectedRowInColumn:
– selectRow:inColumn:
– loadedCellAtRow:column:
– matrixInColumn:

Getting and setting paths
– path
– setPath:
– pathToColumn:
– pathSeparator
– setPathSeparator:

Manipulating columns
– addColumn
– displayAllColumns
– displayColumn:
– columnOfMatrix:
– selectedColumn
– lastColumn
– setLastColumn:
– firstVisibleColumn
– numberOfVisibleColumns
– lastVisibleColumn
– validateVisibleColumns

Loading columns
– isLoaded
– loadColumnZero
– reloadColumn:

Setting selection characteristics
– allowsBranchSelection
– setAllowsBranchSelection:
– allowsEmptySelection
– setAllowsEmptySelection:
– allowsMultipleSelection
– setAllowsMultipleSelection:

4

Setting column characteristics
– reusesColumns
– setReusesColumns:
– maxVisibleColumns
– setMaxVisibleColumns:
– minColumnWidth
– setMinColumnWidth:
– separatesColumns
– setSeparatesColumns:
– takesTitleFromPreviousColumn
– setTakesTitleFromPreviousColumn:

Manipulating column titles
– titleOfColumn:
– setTitle:ofColumn:
– isTitled
– setTitled:
– drawTitleOfColumn:inRect:
– titleHeight
– titleFrameOfColumn:

Scrolling an NSBrowser
– scrollColumnToVisible:
– scrollColumnsLeftBy:
– scrollColumnsRightBy:
– updateScroller
– scrollViaScroller:

Showing a horizontal scroller
– hasHorizontalScroller
– setHasHorizontalScroller:

Setting the behavior of arrow keys
– acceptsArrowKeys
– setAcceptsArrowKeys:
– sendsActionOnArrowKeys
– setSendsActionOnArrowKeys:

Getting column frames
– frameOfColumn:
– frameOfInsideOfColumn:

Arranging browser components
– tile

Setting the delegate
– delegate
– setDelegate:

5

 Classes: NSBrowser

Target and action
– doubleAction
– setDoubleAction:
– sendAction

Event handling
– doClick:
– doDoubleClick:

Class Methods

cellClass
+ (Class)cellClass

Returns the NSBrowserCell class (regardless of whether a setCellClass: message has been sent to a
particular instance)

See also: – cellPrototype,– setCellPrototype:

Instance Methods

acceptsArrowKeys
– (BOOL)acceptsArrowKeys

Returns YES if the arrow keys are enabled.

See also: – setAcceptsArrowKeys:

addColumn
– (void)addColumn

Adds a column to the right of the last column.

See also: – columnOfMatrix: , – displayColumn:, – selectedColumn

allowsBranchSelection
– (BOOL)allowsBranchSelection

Returns whether the user can select branch items when multiple selection is enabled.

See also: – setAllowsBranchSelection:

6

allowsEmptySelection
– (BOOL)allowsEmptySelection

Returns whether there can be nothing selected.

See also: – setAllowsEmptySelection:

allowsMultipleSelection
– (BOOL)allowsMultipleSelection

Returns whether the user can select multiple items.

See also: – setAllowsMultipleSelection:

cellPrototype
– (id)cellPrototype

Returns the NSBrowser’s prototype NSCell.

See also: – setCellPrototype:, – setCellClass:

columnOfMatrix:
– (int)columnOfMatrix: (NSMatrix *)matrix

Returns the column number in which matrix is located.

See also: – matrixInColumn:

delegate
– (id)delegate

Returns the NSBrowser’s delegate.

See also: – setDelegate:

7

 Classes: NSBrowser

displayAllColumns
– (void)displayAllColumns

Updates the NSBrowser to display all loaded columns.

See also: – addColumn, – validateVisibleColumns

displayColumn:
– (void)displayColumn:(int)column

Updates the NSBrowser to display the column with the given index.

See also: – addColumn, – validateVisibleColumns

doClick:
– (void)doClick: (id)sender

Responds to (single) mouse clicks in a column of the NSBrowser.

See also: – sendAction

doDoubleClick:
– (void)doDoubleClick:(id)sender

Responds to double-clicks in a column of the NSBrowser.

See also: – setDoubleAction:

doubleAction
– (SEL)doubleAction

Returns the NSBrowser’s double-click action method.

See also: – setDoubleAction:

8

drawTitleOfColumn:inRect:
– (void)drawTitleOfColumn: (int)column inRect:(NSRect)aRect

Draws the title for the column at index column within the rectangle defined by aRect.

See also: – setTitle:ofColumn:, – titleFrameOfColumn: , – titleHeight

firstVisibleColumn
– (int)firstVisibleColumn

Returns the index of the first visible column.

See also: – lastVisibleColumn, – numberOfVisibleColumns

frameOfColumn:
– (NSRect)frameOfColumn: (int)column

Returns the rectangle containing the column at index column.

frameOfInsideOfColumn:
– (NSRect)frameOfInsideOfColumn: (int)column

Returns the rectangle containing the column at index column, not including borders.

hasHorizontalScroller
– (BOOL)hasHorizontalScroller

Returns whether an NSScroller is used to scroll horizontally.

See also: – setHasHorizontalScroller:

isLoaded
– (BOOL)isLoaded

Returns whether column zero is loaded.

See also: – loadColumnZero, – reloadColumn:

9

 Classes: NSBrowser

isTitled
– (BOOL)isTitled

Returns whether columns display titles.

See also: – setTitled:

lastColumn
– (int)lastColumn

Returns the index of the last column loaded.

See also: – selectedColumn, – setLastColumn:

lastVisibleColumn
– (int)lastVisibleColumn

Returns the index of the last visible column.

See also: – firstVisibleColumn , – numberOfVisibleColumns

loadColumnZero
– (void)loadColumnZero

Loads column zero; unloads previously loaded columns.

See also: – isLoaded, – reloadColumn:

loadedCellAtRow:column:
– (id)loadedCellAtRow:(int)row column:(int)column

Loads if necessary and returns the NSCell at row in column.

See also: – selectedCellInColumn:

10

matrixClass
– (Class)matrixClass

Returns the class of NSMatrix used in the NSBrowser’s columns.

See also: – setMatrixClass:

matrixInColumn:
– (NSMatrix *)matrixInColumn: (int)column

Returns the matrix located in the column identified by index column.

maxVisibleColumns
– (int)maxVisibleColumns

Returns the maximum number of visible columns.

See also: – setMaxVisibleColumns:

minColumnWidth
– (float)minColumnWidth

Returns the minimum column width in pixels.

See also: – setMinColumnWidth:

numberOfVisibleColumns
– (int)numberOfVisibleColumns

Returns the number of columns visible.

See also: – validateVisibleColumns

path
– (NSString *)path

Returns the browser’s current path.

See also: – setPath:

11

 Classes: NSBrowser

pathSeparator
– (NSString *)pathSeparator

Returns the path separator. The default is “/”.

See also: – setPathSeparator:

pathToColumn:
– (NSString *)pathToColumn:(int)column

Returns a string representing the path from the first column up to, but not including, the column at index
column.

See also: – path, – setPath:

reloadColumn:
– (void)reloadColumn:(int)column

Reloads column if it is loaded; sets it as the last column.

See also: – isLoaded, – loadColumnZero

reusesColumns
– (BOOL)reusesColumns

Returns YES if NSMatrix objects aren’t freed when their columns are unloaded.

See also: – setReusesColumns:

scrollColumnToVisible:
– (void)scrollColumnToVisible:(int)column

Scrolls to make the column at index column visible.

See also: – scrollViaScroller: , – updateScroller

12

scrollColumnsLeftBy:
– (void)scrollColumnsLeftBy:(int)shiftAmount

Scrolls columns left by shiftAmount columns.

See also: – scrollViaScroller: , – updateScroller

scrollColumnsRightBy:
– (void)scrollColumnsRightBy:(int)shiftAmount

Scrolls columns right by shiftAmount columns.

See also: – scrollViaScroller: , – updateScroller

scrollViaScroller:
– (void)scrollViaScroller: (NSScroller *)sender

Scrolls columns left or right based on an NSScroller.

See also: – updateScroller

selectAll:
– (void)selectAll:(id)sender

Selects all NSCells in the last column of the NSBrowser.

See also: – selectedCell, – selectedCells, – selectedColumn

selectRow:inColumn:
– (void)selectRow:(int)row inColumn: (int)column

Selects the cell at index row in the column identified by index column.

See also: – loadedCellAtRow:column:, – selectedRowInColumn:

13

 Classes: NSBrowser

selectedCell
– (id)selectedCell

Returns the last (rightmost and lowest) selected NSCell.

See also: – loadedCellAtRow:column:, – selectedCells, – selectRow:inColumn:

selectedCellInColumn:
– (id)selectedCellInColumn:(int)column

Returns the last (lowest) NSCell that’s selected in column.

See also: – loadedCellAtRow:column:, – selectedCell, – selectedRowInColumn:

selectedCells
– (NSArray *)selectedCells

Returns all cells selected in the rightmost column.

See also: – selectAll:, – selectedCell

selectedColumn
– (int)selectedColumn

Returns the index of the last column with a selected item.

See also: – columnOfMatrix: , – selectAll:

selectedRowInColumn:
– (int)selectedRowInColumn:(int)column

Returns the row index of the selected cell in the column specified by index column.

See also: – loadedCellAtRow:column:, – selectedCell, – selectedCellInColumn:

sendAction
– (BOOL)sendAction

Sends the action message to the target. Returns YES upon success, NO if no target for the message could
be found.

14

sendsActionOnArrowKeys
– (BOOL)sendsActionOnArrowKeys

Returns NO if pressing an arrow key only scrolls the browser, YES if it also sends the action message
specified by setAction:.

See also: – acceptsArrowKeys, – setSendsActionOnArrowKeys:

separatesColumns
– (BOOL)separatesColumns

Returns whether columns are separated by bezeled borders.

See also: – setSeparatesColumns:

setAcceptsArrowKeys:
– (void)setAcceptsArrowKeys:(BOOL)flag

Enables or disables the arrow keys as used for navigating within and between browsers.

See also: – acceptsArrowKeys, – sendsActionOnArrowKeys

setAllowsBranchSelection:
– (void)setAllowsBranchSelection:(BOOL)flag

Sets whether the user can select branch items when multiple selection is enabled.

See also: – allowsBranchSelection

setAllowsEmptySelection:
– (void)setAllowsEmptySelection:(BOOL)flag

Sets whether there can be nothing selected.

See also: – allowsEmptySelection

15

 Classes: NSBrowser

setAllowsMultipleSelection:
– (void)setAllowsMultipleSelection:(BOOL)flag

Sets whether the user can select multiple items.

See also: – allowsMultipleSelection

setCellClass:
– (void)setCellClass:(Class)factoryId

Sets the class of NSCell used in the columns of the NSBrowser.

See also: + cellClass, – cellPrototype

setCellPrototype:
– (void)setCellPrototype:(NSCell *)aCell

Sets the NSCell instance copied to display items in the columns of NSBrowser.

See also: + cellClass, – cellPrototype

setDelegate:
– (void)setDelegate:(id)anObject

Sets the NSBrowser’s delegate to anObject. Raises NSBrowserIllegalDelegateException if the delegate
specified by anObject doesn’t respond to browser:willDisplayCell:atRow:column: and either of the
methods browser:numberOfRowsInColumn: or browser:createRowsForColumn:inMatrix: .

See also: – delegate

setDoubleAction:
– (void)setDoubleAction:(SEL)aSelector

Sets the NSBrowser’s double-click action to aSelector.

See also: – doubleAction, – sendAction

16

setHasHorizontalScroller:
– (void)setHasHorizontalScroller:(BOOL)flag

Sets whether an NSScroller is used to scroll horizontally.

See also: – hasHorizontalScroller

setLastColumn:
– (void)setLastColumn:(int)column

Sets the last column to column.

See also: – lastColumn, – lastVisibleColumn

setMatrixClass:
– (void)setMatrixClass:(Class)factoryId

Sets the matrix class (NSMatrix or an NSMatrix subclass) used in the NSBrowser’s columns.

See also: – matrixClass

setMaxVisibleColumns:
– (void)setMaxVisibleColumns:(int)columnCount

Sets the maximum number of columns displayed.

See also: – maxVisibleColumns

setMinColumnWidth:
– (void)setMinColumnWidth: (float)columnWidth

Sets the minimum column width in pixels.

See also: – minColumnWidth

17

 Classes: NSBrowser

setPath:
– (BOOL)setPath:(NSString *)path

Parses path and selects corresponding items in the NSBrowser columns.

See also: – path, – pathToColumn:

setPathSeparator:
– (void)setPathSeparator:(NSString *)newString

Sets the path separator to newString.

See also: – pathSeparator

setReusesColumns:
– (void)setReusesColumns:(BOOL)flag

If flag is YES, prevents NSMatrix objects from being freed when their columns are unloaded, so they can
be reused.

See also: – reusesColumns

setSendsActionOnArrowKeys:
– (void)setSendsActionOnArrowKeys:(BOOL)flag

Sets whether pressing an arrow key will cause the action message to be sent (in addition to causing
scrolling).

See also: – sendsActionOnArrowKeys

setSeparatesColumns:
– (void)setSeparatesColumns:(BOOL)flag

Sets whether to separate columns with bezeled borders.

See also: – separatesColumns

18

setTakesTitleFromPreviousColumn:
– (void)setTakesTitleFromPreviousColumn:(BOOL)flag

Sets whether the title of a column is set to the string value of the selected NSCell in the previous column.

See also: – takesTitleFromPreviousColumn

setTitle:ofColumn:
– (void)setTitle:(NSString *)aString ofColumn:(int)column

Sets the title of the column at index column to aString.

See also: – drawTitleOfColumn:inRect: , – titleOfColumn:

setTitled:
– (void)setTitled:(BOOL)flag

Sets whether columns display titles.

See also: – isTitled

takesTitleFromPreviousColumn
– (BOOL)takesTitleFromPreviousColumn

Returns YES if the title of a column is set to the string value of the selected NSCell in the previous column.

See also: – setTakesTitleFromPreviousColumn:

tile
– (void)tile

Adjusts the various subviews of NSBrowser—scrollers, columns, titles, and so on—without redrawing.
Your code shouldn’t send this message. It’s invoked any time the appearance of the NSBrowser changes.

titleFrameOfColumn:
– (NSRect)titleFrameOfColumn: (int)column

Returns the bounds of the title frame for the column at index column.

See also: – drawTitleOfColumn:inRect:

19

 Classes: NSBrowser

titleHeight
– (float)titleHeight

Returns the height of column titles.

See also: – drawTitleOfColumn:inRect:

titleOfColumn:
– (NSString *)titleOfColumn: (int)column

Returns the title displayed for the column at index column.

See also: – setTitle:ofColumn:

updateScroller
– (void)updateScroller

Updates the horizontal scroller to reflect column positions.

See also: – scrollViaScroller:

validateVisibleColumns
– (void)validateVisibleColumns

Invokes delegate method browser:isColumnValid: for visible columns.

See also: – numberOfVisibleColumns

Methods Implemented By the Delegate

browser:createRowsForColumn:inMatrix:
– (void)browser:(NSBrowser *)sender

createRowsForColumn:(int)column
inMatrix: (NSMatrix *)matrix

Creates a row in matrix for each row of data to be displayed in column of the browser. Either this method
or browser:numberOfRowsInColumn: must be implemented, but not both (or an
NSBrowserIllegalDelegateException will be raised).

See also: – browser:willDisplayCell:atRow:column:

20

browser:isColumnValid:
– (BOOL)browser:(NSBrowser *)sender isColumnValid: (int)column

Returns whether the contents of the specified column are valid. If NO is returned, sender reloads the
column. This method is invoked in response to validateVisibleColumns being sent to sender.

browser:numberOfRowsInColumn:
– (int)browser:(NSBrowser *)sender numberOfRowsInColumn:(int)column

Returns the number of rows of data in the column at index column. Either this method or browser:
createRowsForColumn:inMatrix: must be implemented, but not both.

See also: – browser:willDisplayCell:atRow:column:

browser:selectCellWithString:inColumn:
– (BOOL)browser:(NSBrowser *)sender

selectCellWithString:(NSString *)title
inColumn: (int)column

Asks the delegate to select the NSCell with title title in the column at index column. If the delegate returns
NO, the NSCell is not selected.

See also: – selectedCellInColumn:

browser:selectRow:inColumn:
– (BOOL)browser:(NSBrowser *)sender

selectRow:(int)row
inColumn: (int)column

Asks the delegate to select the NSCell at row row in the column at index column. If the delegate returns NO,
the NSCell is not selected.

See also: – selectedRowInColumn:, – selectRow:inColumn:

browser:titleOfColumn:
– (NSString *)browser:(NSBrowser *)sender titleOfColumn: (int)column

Asks the delegate for the title to display above the column at index column.

See also: – setTitle:ofColumn:, – titleOfColumn:

21

 Classes: NSBrowser

browser:willDisplayCell:atRow:column:
– (void)browser:(NSBrowser *)sender

willDisplayCell: (id)cell
atRow:(int)row
column:(int)column

Notifies the delegate before the NSBrowser displays the specified cell at row in column. The delegate should set any
state necessary for the correct display of the cell.

See also: – browser:createRowsForColumn:inMatrix:, – browser:numberOfRowsInColumn:

browserDidScroll:
– (void)browserDidScroll:(NSBrowser *)sender

Notifies the delegate when the NSBrowser has scrolled.

browserWillScroll:
– (void)browserWillScroll: (NSBrowser *)sender

Notifies the delegate when the NSBrowser will scroll.

1

 Classes: NSBrowserCell

NSBrowserCell

Inherits From: NSCell : NSObject

Conforms To: NSCoding, NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSBrowserCell.h

Class Description

NSBrowserCell is the subclass of NSCell used by default to display data in the columns of an NSBrowser.
(Each column contains an NSMatrix filled with NSBrowserCells.) An NSBrowserCell can be a leaf or
branch cell. A branch cell displays an image indicating that, when the cell is clicked, the NSBrowser will
display a new column of NSBrowserCells; branch cells are thus important to the display of hierarchical
information typical of NSBrowsers. An NSBrowserCell can also be loaded or unloaded; loaded
NSBrowserCells have their state set and are ready for display.

Many of NSBrowserCell’s methods are designed to interact with NSBrowser and NSBrowser’s delegate.
The delegate implements methods for loading the NSCells in NSBrowser by setting their values and status.
If your code needs access to a specific NSBrowserCell, you can use the NSBrowser method
loadedCellAtRow:column:.

Because NSBrowserCells do not inherit from NSActionCell, they don’t hold target and action values and
thus don’t participate in the target/action paradigm of the Application Kit. However, NSBrowser does allow
you to specify a target and an action, and you can obtain the last selected NSBrowserCell by sending
selectedCell to an NSBrowser.

You may find it useful to create a subclass of NSBrowserCell to alter its behavior and to enable it to work
with and display the type of data you wish to represent. Use NSBrowser’s setCellClass: or
setCellPrototype: methods to have it use your subclass.

See the NSBrowser class specification for more details. In particular, the class description and the “Methods
Implemented by the Delegate” section describe how the NSBrowser’s delegate interacts with both
NSBrowser and NSBrowserCells.

2

Method Types

Accessing graphic images
+ branchImage
+ highlightedBranchImage
– alternateImage
– setAlternateImage:

Setting state
– reset
– set

Determining cell attributes
– isLeaf
– setLeaf:
– isLoaded
– setLoaded:

Class Methods

branchImage
+ (NSImage *)branchImage

Returns the default image for branch NSBrowserCells (a right-pointing triangle). Override this method if
you want a different image. To have a branch NSBrowserCell with no image (and no space reserved for an
image), override this method to return nil .

See also: – alternateImage, + highlightedBranchImage, – setAlternateImage:

highlightedBranchImage
+ (NSImage *)highlightedBranchImage

Returns the default NSImage for branch NSBrowserCells that are highlighted (a lighter version of the image
returned by branchImage). Override this method if you want a different image.

See also: + branchImage, – alternateImage, – setAlternateImage:

3

 Classes: NSBrowserCell

Instance Methods

alternateImage
– (NSImage *)alternateImage

Returns this NSBrowserCell’s image for the highlighted state or nil if no image is set.

See also: – setAlternateImage:

isLeaf
– (BOOL)isLeaf

Returns whether the NSBrowserCell is a leaf or a branch cell. A branch NSBrowserCell has an image near
its right edge indicating that more, hierarchically related information is available; when the user selects the
cell, the NSBrowser displays a new column of NSBrowserCells. A leaf NSBrowserCell has no image,
indicating that the user has reached a terminal piece of information; it doesn’t point to additional
information.

See also: – setLeaf:

isLoaded
– (BOOL)isLoaded

Returns YES if all the NSBrowserCell’s state has been set and the cell is ready to display.

See also: – setLoaded:

reset
– (void)reset

Unhighlights the NSBrowserCell and sets its state to 0 (NO).

See also: – set

set
– (void)set

Highlights the NSBrowserCell and sets its state to 1 (YES).

See also: – reset

4

setAlternateImage:
– (void)setAlternateImage:(NSImage *)newAltImage

Sets this NSBrowserCell’s image for the highlighted state, retaining the image. If newAltImage is nil , it
removes the alternate image for the NSBrowserCell.

See also: – alternateImage

setLeaf:
– (void)setLeaf:(BOOL)flag

Sets whether the NSBrowserCell is a leaf or a branch cell. A branch NSBrowserCell has an image near its
right edge indicating that more, hierarchically related information is available; when the user selects the
cell, the NSBrowser displays a new column of NSBrowserCells. A leaf NSBrowserCell has no image,
indicating that the user has reached a terminal piece of information; it doesn’t point to additional
information.

See also: – isLeaf

setLoaded:
– (void)setLoaded:(BOOL)flag

Sets whether the NSBrowserCell’s state has been set to 1 (YES) and the cell is ready to display.

See also: – isLoaded

31

 Classes: NSBundle Additions

NSBundle Additions

Inherits From: NSObject

Declared In: AppKit/NSHelpManager.h
AppKit/NSImage.h
AppKit/NSNibLoading.h

Class Description

The Application Kit adds methods to the Foundation Framework’s NSBundle class for:

• Loading nib files
• Locating image resources
• Accessing context help from a Help.plist file

These methods become part of the NSBundle class only for those applications that use the Application Kit.

For information on bundles, see the NSBundle class specification in the Foundation Framework Reference.

Method Types

Loading nib files
+ loadNibFile:externalNameTable:withZone:
+ loadNibNamed:owner:
– loadNibFile:externalNameTable:withZone:

Locating NSImage resources
– pathForImageResource:

Accessing context help
– contextHelpForKey:

32

Class Methods

loadNibFile:externalNameTable:withZone:
+ (BOOL)loadNibFile:(NSString *)fileName

externalNameTable:(NSDictionary *)context
withZone:(NSZone *)zone

Unarchives the contents of the nib file whose absolute path is fileName. Objects from the nib file are
allocated in the memory zone specified by zone. The context argument is a name table—a dictionary whose
keys are names like “NSOwner” and whose values are existing objects that can be referenced by the newly
unarchived objects. Returns YES upon success, or NO if the specified nib file couldn’t be loaded.

This method is declared in NSNibLoading.h.

loadNibNamed:owner:
+ (BOOL)loadNibNamed:(NSString *)aNibName owner:(id)owner

Similar to loadNibFile:externalNameTable:withZone:, but the name table’s only element is the object
specified by owner (stored with the key “NSOwner”). Objects from the nib file are allocated in owner’s
zone. If there’s a bundle for owner’s class, this method looks in that bundle for the nib file named aNibName
(this argument need not include the “.nib” extension); otherwise, it looks in the main bundle.

This method is declared in NSNibLoading.h.

See also: + bundleForClass: (NSBundle)

Instance Methods

contextHelpForKey:
– (NSAttributedString *)contextHelpForKey:(NSString *)key

Returns the context-sensitive help from the help file named key; or nil if Help.plist isn’t present or if
Help.plist doesn’t contain an entry for key.

When you build your application, /usr/bin/compileHelp packages your help files into a property list named
Help.plist. contextHelpForKey: extracts context help from this file, but looks it up using the name of the
original help file. For example, if your application project contains a help file Copy.rtf , you can get its text
using contextHelpForKey: with the argument @“Copy.rtf”.

This method is declared in NSHelpManager.h.

See also: – contextHelpForObject: (NSHelpManager)

33

 Classes: NSBundle Additions

loadNibFile:externalNameTable:withZone:
– (BOOL)loadNibFile:(NSString *)fileName

externalNameTable:(NSDictionary *)context
withZone:(NSZone *)zone

Unarchives the contents of the nib file named fileName. The method first looks for the nib file in the
language-specific “.lproj” directory; if the nib file isn’t there, it looks for a non-localized resource in the
immediate bundle directory. Objects from the nib file are allocated in the memory zone specified by zone.
The context argument is a name table—a dictionary whose keys are names like “NSOwner” and whose
values are existing objects that can be referenced by the newly unarchived objects. Returns YES upon
success, or NO if the specified nib file couldn’t be loaded.

This method is declared in NSNibLoading.h.

pathForImageResource:
– (NSString *)pathForImageResource:(NSString *)name

Returns the absolute pathname of the file containing the specified image resource, or nil if the specified
resource can’t be located. Image resources are those files in the bundle which are recognized by NSImage
without filtering (essentially, a file whose type is one of those returned by the imageUnfilteredFileTypes
method). The resource name is simply the filename without the path of its bundle directory; the filename
extension is optional.

This method is declared in NSImage.h.

See also: – pathForResource:ofType: (NSBundle)

1

 Classes: NSButton

NSButton

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (from NSResponder)
NSObject (from NSObject)

Declared In: AppKit/NSButton.h

Class Description

NSButton is a subclass of NSControl that intercepts mouse-down events and sends an action message to a
target object when it’s clicked or pressed.

The NSButton can send its action continuously and display highlighting in several different ways. What’s
more, an NSButton can have a key equivalent that’s eligible for triggering whenever the NSButton’s
NSPanel or NSWindow is the key window.

NSButton and NSMatrix both provide a control view, which is needed to display an NSButtonCell object.
However, while NSMatrix requires you to access the NSButtonCells directly, most of NSButton’s methods
are “covers” for identically declared methods in NSButtonCell. (In other words, the implementation of the
NSButton method invokes the corresponding NSButtonCell method for you, allowing you to be
unconcerned with the NSButtonCell’s existence.) The only NSButtonCell methods that don’t have covers
relate to the font used to display the key equivalent, and to specific methods for highlighting or showing the
NSButton’s state (these last are usually set together with NSButton’s setButtonType: method).

Button States

By virtue of its NSButtonCell, NSButton is an NSControl and displays its state depending on the
configuration of the NSButtonCell. The NSButton can have two or three states. If it has two, they are on
and off. If it has three, they are on, off, and mixed. A mixed state is useful for a checkbox or radio button
that reflects the status of a feature. For example, suppose you have a checkbox that makes the selected text
bold. If all the selected text is bold, it’s on. If none of the selected text is bold, it’s off. If the text has a
combination of bold and plain text, it’s mixed. Now suppose you click the checkbox. If you turn it on, all
the text becomes bold. If you turn it off, all the text becomes plain. If you select the mixed state, the text
remains as it is.

By default, a button has two states. You can allow the third state with the method setAllowsMixedState:.
To set the button’s state directly, use setState:. To cycle through all available states, use setNextState. Note
that the state is used as the value, so NSControl methods like setIntValue: actually set the state.

2

Creating a Subclass of NSButton

Override the designated initializer (NSView’s initWithFrame: method) if you create a subclass of
NSButton that performs its own initialization. If you want to use a custom NSButtonCell subclass with your
subclass of NSButton, you have to override the setCellClass: method, as described in “Creating New
NSControls” in the NSControl class specification.

See the NSButtonCell class specification for more on NSButton’s behavior.

Method Types

Setting the button type
– setButtonType:

Setting the state
– allowsMixedState
– setAllowsMixedState:
– setNextState
– setState:
– state

Setting the repeat interval
– getPeriodicDelay:interval:
– setPeriodicDelay:interval:

Setting the titles
– alternateTitle
– attributedAlternateTitle
– attributedTitle
– setAlternateTitle:
– setAttributedAlternateTitle:
– setAttributedTitle:
– setTitle:
– setTitleWithMnemonic:
– title

Setting the images
– alternateImage
– image
– imagePosition
– setAlternateImage:
– setImage:
– setImagePosition:

3

 Classes: NSButton

Modifying graphic attributes
– bezelStyle
– isBordered
– isTransparent
– setBordered:
– setBezelStyle:
– setTransparent:

Displaying
– highlight:

Setting the key equivalent
– keyEquivalent
– keyEquivalentModifierMask
– setKeyEquivalent:
– setKeyEquivalentModifierMask:

Handling events and action messages
– performClick:
– performKeyEquivalent:

Instance Methods

allowsMixedState
– (BOOL)allowsMixedState

Returns YES if the button has three states: on, off, and mixed. Returns NO if the button has two states: on
and off.

See also: – setAllowsMixedState:, – setNextState

alternateImage
– (NSImage *)alternateImage

Returns the image that appears on the button when it’s in its alternate state, or nil if there is no alternate
image. Note that some button types don’t display an alternate image. Buttons don’t display images by
default.

See also: – image, – imagePosition, – keyEquivalent, – setButtonType:

4

alternateTitle
– (NSString *)alternateTitle

Returns the string that appears on the button when it’s in its alternate state, or the empty string if the button
doesn’t display an alternate title. Note that some button types don’t display an alternate title. By default, a
button’s alternate title is “Button”.

See also: – attributedAlternateTitle , – setButtonType:, – title

attributedAlternateTitle
– (NSAttributedString *)attributedAlternateTitle

Returns the string that appears on the button when it’s in its alternate state as an NSAttributedString, or an
empty attributed string if the button doesn’t display an alternate title. Note that some button types don’t
display an alternate title. By default, a button’s alternate title is “Button”.

See also: – setButtonType:, – attributedTitle

attributedTitle
– (NSAttributedString *)attributedTitle

Returns the string that appears on the button when it’s in its normal state as an NSAttributedString, or an
empty attributed string if the button doesn’t display a title. A button’s title is always displayed if the button
doesn’t use its alternate contents for highlighting or displaying the alternate state. By default, a button’s title
is “Button”.

See also: – attributedAlternateTitle , – setButtonType:

bezelStyle
– (NSBezelStyle)bezelStyle

Returns the appearance of the button’s border. See setBezelStyle: for the list of the possible values.

See also: – setBezelStyle:

getPeriodicDelay:interval:
– (void)getPeriodicDelay:(float *)delay interval: (float *)interval

Returns by reference the delay and interval periods for a continuous button. delay is the amount of time (in
seconds) that the button will pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages.

5

 Classes: NSButton

Default delay and interval values are taken from a user’s defaults (60 seconds maximum for each); if the
user hasn’t specified default values, delay defaults to 0.4 seconds and interval defaults to 0.075 seconds.

See also: – isContinuous (NSControl)

highlight:
– (void)highlight: (BOOL)flag

Highlights (or unhighlights) the button according to flag. Highlighting may involve the button appearing
“pushed in” to the screen, displaying its alternate title or image, or causing the button to appear to be “lit.”
If the current state of the button matches flag, no action is taken.

See also: – setButtonType:

image
– (NSImage *)image

Returns the image that appears on the button when it’s in its normal state, or nil if there is no such image.
This image is always displayed on a button that doesn’t change its contents when highlighting or showing
its alternate state. Buttons don’t display images by default.

See also: – alternateImage, – setButtonType:

imagePosition
– (NSCellImagePosition)imagePosition

Returns the position of the button’s image relative to its title. The return value is one of the following (these
are defined in NSCell.h):

Return Value Meaning

NSNoImage The button doesn’t display an image (this is the default)

NSImageOnly The button displays an image, but not a title

NSImageLeft The image is to the left of the title

NSImageRight The image is to the right of the title

NSImageBelow The image is below the title

NSImageAbove The image is above the title

6

If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

See also: – setButtonType:, – setImage:, – setTitle:

isBordered
– (BOOL)isBordered

Returns YES if the button has a border, NO otherwise. A button’s border isn’t the single line of most other
controls’ borders; instead, it’s a raised bezel. By default, buttons are bordered.

isTransparent
– (BOOL)isTransparent

Returns YES if the button is transparent, NO otherwise. A transparent button never draws itself, but it
receives mouse-down events and tracks the mouse properly.

keyEquivalent
– (NSString *)keyEquivalent

Returns the key-equivalent character of the button, or the empty string if one hasn’t been defined. Buttons
don’t have a default key equivalent.

See also: – keyEquivalentFont (NSButtonCell), – performKeyEquivalent:

keyEquivalentModifierMask
– (unsigned int)keyEquivalentModifierMask

Returns the mask indicating the modifier keys that are applied to the button’s key equivalent. Mask bits are
defined in NSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits
are relevant in button key-equivalent modifier masks.

See also: – keyEquivalent

NSImageOverlaps The image overlaps the title

Return Value Meaning

7

 Classes: NSButton

performClick:
– (void)performClick: (id)sender

Simulates the user’s clicking the button with the mouse. This method essentially highlights the button, sends
the button’s action message to the target object, and then unhighlights the button. If an exception is raised
while the target object is processing the action message, the button is unhighlighted before the exception is
propagated out of performClick: .

See also: – performKeyEquivalent:

performKeyEquivalent:
– (BOOL)performKeyEquivalent: (NSEvent *)anEvent

If the character in anEvent matches the button’s key equivalent, and the modifier flags in anEvent match the
key-equivalent modifier mask, performKeyEquivalent: simulates the user clicking the button by sending
performClick: to self, and returns YES. Otherwise, performKeyEquivalent: does nothing and returns
NO. performKeyEquivalent: also returns NO in the event that the button is blocked by a modal panel or
the button is disabled.

See also: – keyEquivalentModifierMask

setAllowsMixedState:
– (void)setAllowsMixedState:(BOOL)flag

If flag is YES, the button has three states: on, off, and mixed. If flag is NO, the button has two states: on and
off.

See also: – allowsMixedState, – setNextState

setAlternateImage:
– (void)setAlternateImage:(NSImage *)image

Sets the image that appears on the button when it’s in its alternate state to image and, if necessary, redraws
the contents of the button. Note that some button types don’t display an alternate image.

See also: – setImage:, – setButtonType:

8

setAlternateTitle:
– (void)setAlternateTitle:(NSString *)aString

Sets the string that appears on the button when it’s in its alternate state to aString. Note that some button
types don’t display an alternate title.

See also: – setTitle:, – setTitleWithMnemonic: , – setButtonType:, – setFont: (NSButtonCell)

setAttributedAlternateTitle:
– (void)setAttributedAlternateTitle: (NSAttributedString *)aString

Sets the string that appears on the button when it’s in its alternate state to the attributed string aString. Note
that some button types don’t display an alternate title.

See also: – setAttributedTitle: , – setButtonType:, – setFont: (NSButtonCell)

setAttributedTitle:
– (void)setAttributedTitle: (NSAttributedString *)aString

Sets the string that appears on the button when it’s in its normal state to the attributed string aString and
redraws the button. The title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: – setAttributedAlternateTitle: , – setButtonType:, – setFont: (NSButtonCell)

setBezelStyle:
– (void)setBezelStyle:(NSBezelStyle)bezelStyle

Sets the appearance of the border, if the button has one. bezelStyle must be one of the following:

Bezel Style Description

NSNeXTBezelStyle
A rectangular button with a 2 pixel border. It looks like OPENSTEP 4.2 button
and is available for backwards compatibility only.

NSPushButtonBezelStyle A rounded rectangle button, designed for text.

NSSmallIconButtonBezelStyle A rectangular button with a 2 pixel border, designed for icons.

NSMediumIconButtonBezelStyle A rectangular button with a 3 pixel border, designed for icons.

NSLargeIconButtonBezelStyle A rectangular button with a 4 pixel border, designed for icons.

9

 Classes: NSButton

The button uses shading to look like it’s sticking out or pushed in. You can set the shading with
setGradientType:.

If the button is not bordered, the bezel style is ignored.

See also: – bezelStyle

setBordered:
– (void)setBordered:(BOOL)flag

Sets whether the button has a bezeled border. If flag is YES, the button displays a border; if NO, the button
doesn’t display a border. A button’s border is not the single line or most other controls’ borders; instead, it’s
a raised bezel. This method redraws the button if setBordered: causes the bordered state to change.

setButtonType:
– (void)setButtonType:(NSButtonType)aType

Sets how the button highlights while pressed and how it shows its state. setButtonType: redisplays the
button before returning.

The types available are for the most common button types, which are also accessible in Interface Builder.
You can configure different behavior with NSButtonCell’s setHighlightsBy: and setShowsStateBy:
methods.

10

aType can be one of eight constants:

See also: – setAlternateImage:, – setButtonType: (NSButtonCell), – setImage:

Button Type Description

NSMomentaryLight

While the button is held down it’s shown as “lit.” This type of button is best for
simply triggering actions, as it doesn’t show its state; it always displays its
normal image or title. This option is called “Momentary Light” in Interface
Builder’s Button Inspector. This is the default button type.

NSMomentaryPushButton

While the button is held down it’s shown as “lit,” and also “pushed in” to the
screen if the button is bordered. This type of button is best for simply triggering
actions, as it doesn’t show its state; it always displays its normal image or title.
This option is called “Momentary Push” in Interface Builder’s Button Inspector.

NSMomentaryChangeButton

While the button is held down, the alternate image and alternate title are
displayed. The normal image or title are displayed when the button isn’t
pressed. This option is called “Momentary Change” in Interface Builder’s
Button Inspector.

NSPushOnPushOffButton
The first click both highlights and causes the button to be “pushed in” if the
button is bordered. A second click returns it to its normal state. This option is
called “Push On/Push Off” in Interface Builder’s Button Inspector.

NSOnOffButton
The first click highlights the button. A second click returns it to the normal
(unhighlighted) state. This option is called “On/Off” in Interface Builder’s Button
Inspector.

NSToggleButton

The first click highlights the button, while a second click returns it to its normal
state. Highlighting is performed by changing to the alternate title or image and
showing the button as “pushed in” if the button is bordered. This option is called
“Toggle” in Interface Builder’s Button Inspector.

NSSwitchButton

This is a variant of NSToggleButton that has no border, with the default image
set to “NSSwitch,” and the alternate image set to “NSHighlightedSwitch” (these
are system bitmaps). This type of button is available as a separate palette item
in Interface Builder.

NSRadioButton

Like NSSwitchButton, but the default image is set to “NSRadioButton” and the
alternate image is set to “NSHighlightedRadioButton” (these are system
bitmaps). This type of button is available as a separate palette item in Interface
Builder.

11

 Classes: NSButton

setImage:
– (void)setImage:(NSImage *)image

Sets the button’s image to anImage, and redraws the button. A button’s image is displayed when the button
is in its normal state, or all the time for a button that doesn’t change its contents when highlighting or
displaying its alternate state.

See also: – setImagePosition:, – setAlternateImage:, – setButtonType:

setImagePosition:
– (void)setImagePosition:(NSCellImagePosition)aPosition

Sets the position of the button’s image relative to its title. See the imagePosition method description for a
listing of possible values for aPosition.

setKeyEquivalent:
– (void)setKeyEquivalent:(NSString *)charCode

Sets the key equivalent character of the button, and redraws the button’s interior if it displays a key
equivalent instead of an image. The key equivalent isn’t displayed if the image position is set to
NSNoImage, NSImageOnly or NSImageOverlaps; that is, the button must display both its title and its
“image” (the key equivalent in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate image to nil , then set the key equivalent,
then set the image position.

See also: – performKeyEquivalent: , – setAlternateImage:, – setImage:, – setImagePosition:,
– setKeyEquivalentFont: (NSButtonCell)

setKeyEquivalentModifierMask:
– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the mask indicating the modifier keys to be applied to the button’s key equivalent. Mask bits are defined
in NSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits are
relevant in button key-equivalent modifier masks.

See also: – setKeyEquivalent:

12

setNextState
– (void)setNextState

Sets the button to its next state. If the button has three states, it cycles through them in this order: on, off,
mixed, on, and so forth. If the button has two states, it toggles between them.

See also: – allowsMixedState, – setAllowsMixedState:

setPeriodicDelay:interval:
– (void)setPeriodicDelay:(float)delay interval: (float)interval

Sets the message delay and interval for the button. These two values are used if the button is configured (by
a setContinuous: message) to continuously send the action message to the target object while tracking the
mouse. delay is the amount of time (in seconds) that a continuous button will pause before starting to
periodically send action messages to the target object. interval is the amount of time (also in seconds)
between those messages.

The maximum value allowed for both delay and interval is 60.0 seconds; if a larger value is supplied, it’s
ignored and 60.0 seconds is used.

See also: – setContinuous: (NSControl)

setState:
– (void)setState:(int)value

Sets the cell’s state to value, which can be NSOnState, NSOffState, or NSMixedState. If necessary, this
method also redraws the button.

The cell can have two or three states. If it has two, value can be NSOffState (the normal or unpressed state)
and NSOnState (the alternate or pressed state). If it has three, value can be NSOnState (the feature is in
effect everywhere), NSOffState (the feature is in effect nowhere), or NSMixedState (the feature is in effect
somewhere). Note that if the cell has only two states and value is NSMixedState, this method sets the cell’s
state to NSOnState.

Although using the enumerated constants is preferred, value can also be an integer. If the cell has two states,
zero is treated as NSOffState, and a non-zero value is treated as NSOnState. If the cell has three states, zero
is treated as NSOffState; a negative value, as NSMixedState; and a positive value, as NSOnState.

To check whether the button uses the mixed state, use the method allowsMixedState.

13

 Classes: NSButton

setTitle:
– (void)setTitle:(NSString *)aString

Sets the title displayed by the button when in its normal state to aString and, if necessary, redraws the
button’s contents. This title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: – setAlternateTitle:, – setButtonType:, – setTitleWithMnemonic: , – setFont: (NSButtonCell)

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)aString

Sets the title of a button with a character underlined to denote an access key (Windows only). Use an
ampersand character to mark the character (the one following the ampersand) to be underlined. For
example, the following message causes the "c" in "Receive" to be underlined:

[aButton setTitleWithMnemonic:NSLocalizedString(@"Re&ceive")];

See also: – setAlternateTitle:, – setButtonType:, – setTitle:, – setFont: (NSButtonCell)

setTransparent:
– (void)setTransparent:(BOOL)flag

Sets whether the button is transparent, and redraws the button if necessary. A transparent button tracks the
mouse and sends its action, but doesn’t draw. A transparent button is useful for sensitizing an area on the
screen so that an action gets sent to a target when the area receives a mouse click.

state
– (int)state

Returns the button’s state. The button can have two or three states. If it has two, it returns either NSOffState
(the normal or unpressed state) or NSOffState (the alternate or pressed state). If it has three, it returns
NSOnState (the feature is in effect everywhere), NSOffState (the feature is in effect nowhere), or
NSMixedState (the feature is in effect somewhere).

To check whether the button uses the mixed state, use the method allowsMixedState:.

14

title
– (NSString *)title

Returns the title displayed on the button when it’s in its normal state (this title is always displayed if the
button doesn’t use its alternate contents for highlighting or displaying the alternate state). Returns the empty
string if the button doesn’t display a title. By default, a button’s title is “Button”.

See also: – alternateTitle, – setButtonType:, – setTitle:, – setTitleWithMnemonic:

1

 Classes: NSButtonCell

NSButtonCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding (from NSCell)
NSCopying (from NSCell)
NSObject (from NSObject)

Declared In: AppKit/NSButtonCell.h

Class Description

NSButtonCell is a subclass of NSActionCell used to implement the user interfaces of push buttons,
switches, and radio buttons. It can also be used for any other region of a view that’s designed to send a
message to a target when clicked. The NSButton subclass of NSControl uses a single NSButtonCell. To
create groups of switches or radio buttons, use an NSMatrix holding a set of NSButtonCells.

An NSButtonCell is a two-state cell; it’s either “off” or “on,” and can be configured to display the two states
differently, with a separate title and/or image for either state. The two states are more often referred to as
“normal” and “alternate.” An NSButtonCell’s state is also used as its value, so NSCell methods that set the
value (setIntValue: and so on) actually set the NSButtonCell’s state to “on” if the value provided is
non-zero (or non-null for strings), and to “off” if the value is zero or null. Similarly, methods that retrieve
the value return 1 for the “on” or alternate state (stringValue returns an NSString containing a single
character “1”), or 0 for the “off” or normal state (stringValue returns an NSString containing a single
character “0”). You can also use NSCell’s setState: and state methods to set or retrieve the state directly.
After changing the state, send a display message to show the NSButtonCell’s new appearance. (NSButton
does this automatically.)

An NSButtonCell sends its action message to its target once if its view is clicked and it gets the mouse-down
event, but can also send the action message continuously as long as the mouse is held down with the cursor
inside the NSButtonCell. The NSButtonCell can show that it’s being pressed by highlighting in several
ways—for example, a bordered NSButtonCell can appear pushed into the screen, or the image or title can
change to an alternate form while the NSButtonCell is pressed.

An NSButtonCell can also have a key equivalent (like a menu item). If the NSButtonCell is displayed in
the key window, the NSButtonCell gets the first chance to receive events related to key equivalents. This
feature is used quite often in modal panels that have an “OK” button. An NSButtonCell can either display
a graphical image representing the key equivalent, or you can mark the keyboard “mnemonic” character in
the NSButtonCell’s title using setTitleWithMnemonic: , setAlternateTitleWithMnemonic: , or
setAlternateMnemonicLocation:.

For more information on NSButtonCell’s behavior, see the NSButton and NSMatrix class specifications.

2

Exceptions

In its implementation of the compare: method (declared in NSCell), NSButtonCell raises an
NSBadComparisonException if the otherCell argument is not of the NSButtonCell class.

Method Types

Setting the titles
– alternateMnemonic
– alternateMnemonicLocation
– alternateTitle
– attributedAlternateTitle
– attributedTitle
– setAlternateMnemonicLocation:
– setAlternateTitle:
– setAlternateTitleWithMnemonic:
– setAttributedAlternateTitle:
– setAttributedTitle:
– setFont:
– setTitle:
– setTitleWithMnemonic:
– title

Setting the images
– alternateImage
– imagePosition
– setAlternateImage:
– setImagePosition:

Setting the repeat interval
– getPeriodicDelay:interval:
– setPeriodicDelay:interval:

Setting the key equivalent
– keyEquivalent
– keyEquivalentFont
– keyEquivalentModifierMask
– setKeyEquivalent:
– setKeyEquivalentModifierMask:
– setKeyEquivalentFont:
– setKeyEquivalentFont:size:

3

 Classes: NSButtonCell

Modifying graphic attributes
– bezelStyle
– gradientType
– imageDimsWhenDisabled
– isOpaque
– isTransparent
– setBezelStyle:
– setGradientType:
– setImageDimsWhenDisabled:
– setTransparent:

Displaying
– highlightsBy
– setHighlightsBy:
– setShowsStateBy:
– setButtonType:
– showsStateBy

Simulating a click
– performClick:

Instance Methods

alternateImage
– (NSImage *)alternateImage

Returns the image that appears on the button when it’s in its alternate state, or nil if there is no alternate
image. Note that some button types don’t display an alternate image. Buttons don’t display images by
default.

See also: – image (NSCell), – imagePosition, – keyEquivalent, – setButtonType:

alternateMnemonic
– (NSString *)alternateMnemonic

Returns the character in the alternate title (the title displayed on the button cell when it’s in its alternate
state) that’s marked as the “keyboard mnemonic.” If the alternate title doesn’t have a keyboard mnemonic,
the empty string is returned.

See also: – alternateMnemonicLocation, – mnemonic (NSCell), – setAlternateTitleWithMnemonic:

4

alternateMnemonicLocation
– (unsigned)alternateMnemonicLocation

Returns an unsigned integer indicating the character in the alternate title (the title displayed on the button
cell when it’s in its alternate state) that’s marked as the “keyboard mnemonic.” If the alternate title doesn’t
have a keyboard mnemonic, NSNotFound is returned.

See also: – alternateMnemonic, – mnemonicLocation (NSCell), – setAlternateTitleWithMnemonic:

alternateTitle
– (NSString *)alternateTitle

Returns the string that appears on the button when it’s in its alternate state, or the empty string if the button
doesn’t display an alternate title. Note that some button types don’t display an alternate title. By default, a
button’s alternate title is “Button”.

See also: – alternateMnemonic, – attributedAlternateTitle , – setButtonType:, – title

attributedAlternateTitle
– (NSAttributedString *)attributedAlternateTitle

Returns the string that appears on the button when it’s in its alternate state as an NSAttributedString, or an
empty attributed string if the button doesn’t display an alternate title. Note that some button types don’t
display an alternate title. By default, a button’s alternate title is “Button”.

See also: – alternateMnemonic, – attributedTitle , – setButtonType:

attributedTitle
– (NSAttributedString *)attributedTitle

Returns the string that appears on the button when it’s in its normal state as an NSAttributedString, or an
empty attributed string if the button doesn’t display a title. A button’s title is always displayed if the button
doesn’t use its alternate contents for highlighting or displaying the alternate state. By default, a button’s title
is “Button”.

See also: – attributedAlternateTitle , – mnemonic (NSCell), – setButtonType:

5

 Classes: NSButtonCell

bezelStyle
– (NSBezelStyle)bezelStyle

Returns the appearance of the button’s border. See setBezelStyle: for the list of the possible values.

See also: – setBezelStyle:

getPeriodicDelay:interval:
– (void)getPeriodicDelay:(float *)delay interval: (float *)interval

Returns by reference the delay and interval periods for a continuous button. delay is the amount of time (in
seconds) that the button will pause before starting to periodically send action messages to the target object.
interval is the amount of time (also in seconds) between those messages.

Default delay and interval values are taken from a user’s defaults (60 seconds maximum for each); if the
user hasn’t specified default values, delay defaults to 0.4 seconds and interval defaults to 0.075 seconds.

See also: – isContinuous (NSCell)

gradientType
– (NSGradientType)gradientType

Returns gradient of the button’s border. See setGradientType: for the list of the possible values.

highlightsBy
– (int)highlightsBy

Returns the logical OR of flags that indicate the way the button cell highlights when it receives a
mouse-down event. See setHighlightsBy: for the list of flags.

See also: – showsStateBy

imageDimsWhenDisabled
– (BOOL)imageDimsWhenDisabled

Returns whether the button cell’s image and text appear “dim” when the button cell is disabled. By default,
all button types except NSSwitchButton and NSRadioButton do dim when disabled. When
NSSwitchButtons and NSRadioButtons are disabled, only the associated text dims.

See also: – setButtonType:

6

imagePosition
– (NSCellImagePosition)imagePosition

Returns the position of the button’s image relative to its title. The return value is one of the following (these
are defined in NSCell.h):

If the title is above, below, or overlapping the image, or if there is no image, the text is horizontally centered
within the button.

See also: – setButtonType:, – setImage: (NSCell), – setTitle:

isOpaque
– (BOOL)isOpaque

Returns YES if the button cell draws over every pixel in its frame, NO if not. The button cell is opaque only
if it isn’t transparent and if it has a border.

See also: – isTransparent

isTransparent
– (BOOL)isTransparent

Returns YES if the button is transparent, NO otherwise. A transparent button never draws itself, but it
receives mouse-down events and tracks the mouse properly.

See also: – isOpaque

Return Value Meaning

NSNoImage The button doesn’t display an image (this is the default)

NSImageOnly The button displays an image, but not a title

NSImageLeft The image is to the left of the title

NSImageRight The image is to the right of the title

NSImageBelow The image is below the title

NSImageAbove The image is above the title

NSImageOverlaps The image overlaps the title

7

 Classes: NSButtonCell

keyEquivalent
– (NSString *)keyEquivalent

Returns the key-equivalent character of the button, or the empty string if one hasn’t been defined. Buttons
don’t have a default key equivalent.

See also: – keyEquivalentFont

keyEquivalentFont
– (NSFont *)keyEquivalentFont

Returns the font used to draw the key equivalent, or nil if the button cell doesn’t have a key equivalent. The
default font is the same as that used to draw the title.

See also: – setFont:

keyEquivalentModifierMask
– (unsigned int)keyEquivalentModifierMask

Returns the mask indicating the modifier keys that are applied to the button’s key equivalent. Mask bits are
defined in NSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits
are relevant in button key-equivalent modifier masks.

See also: – keyEquivalent

performClick:
– (void)performClick: (id)sender

Simulates the user’s clicking the button with the mouse. This method essentially highlights the button, sends
the button’s action message to the target object, and then unhighlights the button. If an exception is raised
while the target object is processing the action message, the button is unhighlighted before the exception is
propagated out of performClick: .

setAlternateImage:
– (void)setAlternateImage:(NSImage *)image

Sets the image that appears on the button when it’s in its alternate state to image and, if necessary, redraws
the contents of the button. Note that some button types don’t display an alternate image.

See also: – setImage: (NSCell), – setButtonType:

8

setAlternateMnemonicLocation:
– (void)setAlternateMnemonicLocation:(unsigned)location

Sets the character in the alternate title (the title displayed on the button cell when it’s in its alternate state)
that’s to be marked as the “keyboard mnemonic.” The character specified by location will be underlined;
location can be any integer from 0 to 254. If you don’t want the alternate title to have a keyboard mnemonic,
specify a location of NSNotFound.

setAlternateMnemonicLocation: doesn’t cause the button cell to be redisplayed.

See also: – setAlternateTitleWithMnemonic:

setAlternateTitle:
– (void)setAlternateTitle:(NSString *)aString

Sets the title that’s displayed on the button when it’s in its alternate state to aString. Note that some button
types don’t display an alternate title.

See also: – setAlternateMnemonicLocation:, – setAlternateTitleWithMnemonic:, – setTitle:,
– setButtonType:, – setFont:

setAlternateTitleWithMnemonic:
– (void)setAlternateTitleWithMnemonic: (NSString *)aString

Sets the title that is displayed on the button cell when it’s in its alternate state to aString, taking into account
the fact that an embedded “&” character is not a literal but instead marks the alternate state’s “keyboard
mnemonic.” The character in the title that immediately follows the “&” character will be underlined.

If necessary, setAlternateTitleWithMnemonic: redraws the button cell. Note that some button types don’t
display an alternate title.

See also: – setAlternateMnemonicLocation:, – setTitleWithMnemonic:

setAttributedAlternateTitle:
– (void)setAttributedAlternateTitle: (NSAttributedString *)aString

Sets the string that appears on the button when it’s in its alternate state to the attributed string aString. Note
that some button types don’t display an alternate title.

See also: – setAlternateMnemonicLocation:, – setAlternateTitleWithMnemonic:,
– setAttributedTitle: , – setButtonType:, – setFont:

9

 Classes: NSButtonCell

setAttributedTitle:
– (void)setAttributedTitle: (NSAttributedString *)aString

Sets the string that appears on the button when it’s in its normal state to the attributed string aString and
redraws the button. The title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: – setAttributedAlternateTitle: , – setButtonType:, – setFont:, – setMnemonicLocation:
(NSCell)

setBezelStyle:
– (void)setBezelStyle:(NSBezelStyle)bezelStyle

Sets the appearance of the border, if the button has one. bezelStyle must be one of the following:

The button uses shading to look like it’s sticking out or pushed in. You can set the shading with
setGradientType:.

If the button is not bordered, the bezel style is ignored.

See also: – bezelStyle

setButtonType:
– (void)setButtonType:(NSButtonType)aType

Sets how the button highlights while pressed and how it shows its state. setButtonType: redisplays the
button before returning.

The types available are for the most common button types, which are also accessible in Interface Builder;
you can configure different behavior with the setHighlightsBy: and setShowsStateBy: methods.

Bezel Style Description

NSNeXTBezelStyle
A rectangular button with a 2 pixel border. It looks like OPENSTEP 4.2 button
and is available for backwards compatibility only.

NSPushButtonBezelStyle A rounded rectangle button, designed for text.

NSSmallIconButtonBezelStyle A rectangular button with a 2 pixel border, designed for icons.

NSMediumIconButtonBezelStyle A rectangular button with a 3 pixel border, designed for icons.

NSLargeIconButtonBezelStyle A rectangular button with a 4 pixel border, designed for icons.

10

aType can be one of eight constants:

See also: – setAlternateImage:, – setButtonType:, – setImage: (NSCell)

Button Type Description

NSMomentaryLight

While the button is held down it’s shown as “lit.” This type of button is best for
simply triggering actions, as it doesn’t show its state; it always displays its
normal image or title. This option is called “Momentary Light” in Interface
Builder’s Button Inspector. This is the default button type.

NSMomentaryPushButton

While the button is held down it’s shown as “lit,” and also “pushed in” to the
screen if the button is bordered. This type of button is best for simply triggering
actions, as it doesn’t show its state; it always displays its normal image or title.
This option is called “Momentary Push” in Interface Builder’s Button Inspector.

NSMomentaryChangeButton

While the button is held down, the alternate image and alternate title are
displayed. The normal image and title are displayed when the button isn’t
pressed. This option is called “Momentary Change” in Interface Builder’s
Button Inspector.

NSPushOnPushOffButton
The first click both highlights and causes the button to be “pushed in” if the
button is bordered. A second click returns it to its normal state. This option is
called “Push On/Push Off” in Interface Builder’s Button Inspector.

NSOnOffButton
The first click highlights the button. A second click returns it to the normal
(unhighlighted) state. This option is called “On/Off” in Interface Builder’s Button
Inspector.

NSToggleButton

The first click highlights the button, while a second click returns it to its normal
state. Highlighting is performed by changing to the alternate title or image and
showing the button as “pushed in” if the button is bordered. This option is called
“Toggle” in Interface Builder’s Button Inspector.

NSSwitchButton

This is a variant of NSToggleButton that has no border, with the default image
set to “NSSwitch,” and the alternate image set to “NSHighlightedSwitch” (these
are system bitmaps). This type of button is available as a separate palette item
in Interface Builder.

NSRadioButton

Like NSSwitchButton, but the default image is set to “NSRadioButton” and the
alternate image is set to “NSHighlightedRadioButton” (these are system
bitmaps). This type of button is available as a separate palette item in Interface
Builder.

11

 Classes: NSButtonCell

setFont:
– (void)setFont:(NSFont *)fontObj

Sets the font used to display the title and alternate title. Does nothing if the button cell has no title or
alternate title.

If the button cell has a key equivalent, its font is not changed, but the key equivalent’s font size is changed
to match the new title font.

See also: – font (NSCell), – setKeyEquivalentFont:, – setKeyEquivalentFont:size:

setGradientType:
– (void)setGradientType:(NSGradientType)gradientType

Sets the type of gradient to use for the button. If the button has no border, this method has no affect on its
appearance.

gradientType can be one of the following contants:

See also: – gradientType

Value Description

NSGradientNone There is no gradient, so the button looks flat.

NSGradientConcanveWeak
The top left corner is light gray and the bottom right corner is dark gray, so the
button appears to be pushed in.

NSGradientConcaveStrong
As with NSGradientConcanveWeak, the top left corner is light gray and the
bottom right corner is dark gray, but the difference between the grays is greater,
so the appearance of being pushed-in is stronger.

NSGradientConvexWeak
The top left corner is dark gray and the bottom right corner is light gray, so the
button appears to be sticking out.

NSGradientConcaveStrong
As with NSGradientConvexWeak, the top left corner is dark gray and the
bottom right corner is light gray, but the difference between the grays is greater,
so the appearance of sticking out is stronger.

12

setHighlightsBy:
– (void)setHighlightsBy:(int)aType

Sets the way the button cell highlights itself while pressed. aType can be the logical OR of one or more of
the following constants:

If both NSChangeGrayCellMask and NSChangeBackgroundCellMask are specified, both are recorded, but
which behavior is used depends on the button cell’s image. If the button has no image, or if the image has
no alpha (transparency) data, NSChangeGrayCellMask is used. If the image does have alpha data,
NSChangeBackgroundCellMask is used; this allows the color swap of the background to show through the
image’s transparent pixels.

See also: – setShowsStateBy:

setImageDimsWhenDisabled:
– (void)setImageDimsWhenDisabled:(BOOL)flag

Sets whether the button cell’s image and text appear “dim” when the button cell is disabled. By default, all
button types except NSSwitchButton and NSRadioButton do dim when disabled. When NSSwitchButtons
and NSRadioButtons are disabled, only the associated text associated dims. The default setting for this
condition is reasserted whenever you invoke setButtonType:, so be sure to specify the button cell’s type
before you invoke setImageDimsWhenDisabled:.

Value Description

NSNoCellMask
The button cell doesn’t change. This flag is ignored if any others are set in
aType.

NSPushInCellMask
The button cell “pushes in” when pressed if it has a border. This is the default
behavior.

NSContentsCellMask The button cell displays its alternate icon and/or title.

NSChangeGrayCellMask
The button cell swaps the “control color” (NSColor’s controlColor) and white
pixels on the its background and icon.

NSChangeBackgroundCellMask Same as NSChangeGrayCellMask, but only background pixels are changed.

13

 Classes: NSButtonCell

setImagePosition:
– (void)setImagePosition:(NSCellImagePosition)aPosition

Sets the position of the button’s image relative to its title. See the imagePosition method description for a
listing of possible values for aPosition.

setKeyEquivalent:
– (void)setKeyEquivalent:(NSString *)aKeyEquivalent

Sets the key equivalent character of the button, and redraws the button’s inside if it displays a key equivalent
instead of an image. The key equivalent isn’t displayed if the image position is set to NSNoImage,
NSImageOnly or NSImageOverlaps; that is, the button must display both its title and its “image” (the key
equivalent in this case), and they must not overlap.

To display a key equivalent on a button, set the image and alternate image to nil , then set the key equivalent,
then set the image position.

See also: – setAlternateImage:, – setImage: (NSCell), – setImagePosition:, – setKeyEquivalentFont:

setKeyEquivalentFont:
– (void)setKeyEquivalentFont:(NSFont *)fontObj

Sets the font used to draw the key equivalent, and redisplays the button cell if necessary. Does nothing if
the button cell doesn’t have a key equivalent associated with it. The default font is the same as that used to
draw the title.

See also: – setFont:

setKeyEquivalentFont:size:
– (void)setKeyEquivalentFont:(NSString *)fontName size:(float)fontSize

Sets by name and size the font used to draw the key equivalent, and redisplays the button cell if necessary.
Does nothing if the button cell doesn’t have a key equivalent associated with it. The default font is the same
as that used to draw the title.

See also: – setFont:

14

setKeyEquivalentModifierMask:
– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the mask indicating the modifier keys to be applied to the button’s key equivalent. Mask bits are defined
in NSEvent.h; only NSControlKeyMask, NSAlternateKeyMask, and NSCommandKeyMask bits are
relevant in button key-equivalent modifier masks.

See also: – setKeyEquivalent:

setPeriodicDelay:interval:
– (void)setPeriodicDelay:(float)delay interval: (float)interval

Sets the message delay and interval for the button. These two values are used if the button is configured (by
a setContinuous: message) to continuously send the action message to the target object while tracking the
mouse. delay is the amount of time (in seconds) that a continuous button will pause before starting to
periodically send action messages to the target object. interval is the amount of time (also in seconds)
between those messages.

The maximum value allowed for both delay and interval is 60.0 seconds; if a larger value is supplied, it’s
ignored and 60.0 seconds is used.

See also: – setContinuous: (NSCell)

setShowsStateBy:
– (void)setShowsStateBy:(int)aType

Sets the way the button cell indicates its alternate state. aType should be the logical OR of one or more of
the following constants:

Value Description

NSNoCellMask
The button cell doesn’t change. This mask is ignored if any others are set in
aType. This is the default.

NSContentsCellMask The button cell displays its alternate icon and/or title.

NSChangeGrayCellMask
The button cell swaps the “control color” (NSColor’s controlColor) and white
pixels on its background and icon.

NSChangeBackgroundCellMask
Same as NSChangeGrayCellMask, but only the background pixels are
changed.

15

 Classes: NSButtonCell

If both NSChangeGrayCellMask and NSChangeBackgroundCellMask are specified, both are recorded, but
the actual behavior depends on the button cell’s image. If the button has no image, or if the image has no
alpha (transparency) data, NSChangeGrayCellMask is used. If the image exists and has alpha data,
NSChangeBackgroundCellMask is used; this allows the color swap of the background to show through the
image’s transparent pixels.

See also: – setHighlightsBy:, – showsStateBy

setTitle:
– (void)setTitle:(NSString *)aString

Sets the title displayed by the button cell when in its normal state to aString and, if necessary, redraws the
button’s contents. This title is always shown on buttons that don’t use their alternate contents when
highlighting or displaying their alternate state.

See also: – setAlternateTitle:, – setButtonType:, – setFont:, – setTitleWithMnemonic:

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)aString

Sets the title displayed on the button cell when it’s in its normal state to aString, taking into account the fact
that an embedded “&” character is not a literal but instead marks the normal state’s “keyboard mnemonic.”
If necessary, setTitleWithMnemonic: redraws the button cell. This title is always shown on buttons that
don’t use their alternate contents when highlighting or displaying their alternate state.

See also: – setAlternateTitleWithMnemonic: , – setMnemonicLocation: (NSCell),
– setTitleWithMnemonic: (NSCell)

setTransparent:
– (void)setTransparent:(BOOL)flag

Sets whether the button is transparent, and redraws the button if necessary. A transparent button tracks the
mouse and sends its action, but doesn’t draw. A transparent button is useful for sensitizing an area on the
screen so that an action gets sent to a target when the area receives a mouse click.

16

showsStateBy
– (int)showsStateBy

Returns the logical OR of flags that indicate the way the button cell shows its alternate state. See
setShowsStateBy: for the list of flags.

See also: – highlightsBy, – setShowsStateBy:

title
– (NSString *)title

Returns the title displayed on the button when it’s in its normal state (this title is always displayed if the
button doesn’t use its alternate contents for highlighting or displaying the alternate state). Returns the empty
string if the button doesn’t display a title. By default, a button’s title is “Button”.

See also: – alternateTitle, – setButtonType:, – mnemonic (NSCell), – mnemonicLocation (NSCell)

1

 Classes: NSCachedImageRep

NSCachedImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding (from NSImageRep)
NSCopying (from NSImageRep)
NSObject (from NSObject)

Declared In: AppKit/NSImageRep.h

Class Description

NSCachedImageRep, a subclass of NSImageRep, defines an object that stores its source data as a rendered
image in a window, typically a window that stays off-screen. The only data that’s available for reproducing
the image is the image itself. Thus an NSCachedImageRep differs from the other kinds of NSImageReps
defined in the Application Kit, all of which can reproduce an image from the information originally used to
draw it. Instances of this class are generally used indirectly, through an NSImage object.

See “Caching Representations” in the NSImage class description for more information.

Method Types

Initializing an NSCachedImageRep
– initWithSize:depth:separate:alpha:
– initWithWindow:rect:

Getting the representation
– rect
– window

2

Instance Methods

initWithSize:depth:separate:alpha:
– (id)initWithSize: (NSSize)size

depth:(NSWindowDepth)depth
separate:(BOOL)flag
alpha:(BOOL)alpha

Initializes a new NSCachedImageRep for an image of the specified size and depth. flag indicates whether
the image will get its own unique cache, instead of possibly sharing one with other images. For best
performance (although it’s not essential), alpha should be set according to whether the image will have a
channel for transparency information.

See also: – setAlpha: (NSImageRep), – setBitsPerSample: (NSImageRep),
– setCacheDepthMatchesImageDepth: (NSImage), – setCachedSeparately: (NSImage)

initWithWindow:rect:
– (id)initWithWindow: (NSWindow *)aWindow rect:(NSRect)aRect

Initializes the receiver, a new NSCachedImageRep instance, for an image that will be rendered within the
aRect rectangle in the window aWindow, and returns the initialized object. The rectangle is specified in
aWindow’s base coordinate system. The size of the image is set from the size of the rectangle. The window
is retained.

You must draw the image in the rectangle yourself; there are no NSCachedImageRep methods for this
purpose.

See also: – size (NSImageRep)

rect
– (NSRect)rect

Returns the rectangle where the image is cached.

See also: – size (NSImageRep)

window
– (NSWindow *)window

Returns the window where the image is cached.

1

 Classes: NSCell

NSCell

Inherits From: NSObject

Conforms To: NSCoding (NSObject),
NSCopying (NSObject),
NSObject (NSObject)

Declared In: AppKit/NSCell.h

Class Description

The NSCell class provides a mechanism for displaying text or images in an NSView without the overhead
of a full NSView subclass. In particular, it provides much of the functionality of the NSText class by
providing access to a shared NSText object used by all instances of NSCell in an application. NSCells are
also extremely useful for placing text or images at various locations in a custom subclass of NSView.

NSCell is used heavily by most of the NSControl classes to implement their internal workings. For example,
NSSlider uses an NSSliderCell, NSTextField uses an NSTextFieldCell, and NSBrowser uses an
NSBrowserCell. Sending a message to the NSControl is often simpler than dealing directly with the
corresponding NSCell. For instance, NSControls typically invoke updateCell: (causing the cell to be
displayed) after changing a cell attribute; whereas if you directly call the corresponding method of the
NSCell, the NSCell might not automatically display itself again.

Some subclasses of NSControl (notably NSMatrix) group NSCells in an arrangement where they act
together in some cooperative manner. Thus, with an NSMatrix, you can implement a uniformly sized group
of radio buttons without needing an NSView for each button (and without needing an NSText object as the
field editor for the text on each button).

The NSCell class provides primitives for displaying text or an image, editing text, setting and getting object
values, maintaining state, highlighting, and tracking the mouse. NSCell’s method trackMouse:inRect:
ofView:untilMouseUp: implements the mechanism that sends action messages to target objects. However,
NSCell implements target/action features abstractly, deferring the details of implementation to
NSActionCell and its subclasses.

Object Values and Formatters

Every NSCell that displays text has a value associated with it. The NSCell stores that value as an object of
potentially any type, displays it as an NSString, and returns it as a primary value or string object, according
to what’s requested (intValue, floatValue, stringValue, and so on). Formatters are objects associated with
NSCells (through setFormatter:) that translate a cell’s object value to its it textual representation and that
convert what users type into the underlying object. NSCells have built-in formatters to handle common

2

string and numeric (int , float, double) translations. In addition, you can specify date and numeric types
more precisely with setEntryType: and specify floating-point format characteristics with
setFloatingPointFormat:left:right: . You can also implement your own formatters to provide specialized
object translation; see the NSFormatter specification for more information.

The text that an NSCell displays and stores can be an attributed string. Several methods help to set and get
attributed-string values, including setAttributedStringValue: and setImportsGraphics:.

Cell States

For some subclasses of NSCell, such as an NSButtonCell, the object’s value is its state. It can have either
two states—NSOnState and NSOffState—or three states—NSOnState, NSOffState, and NSMixedState. A
mixed state is useful for a checkbox or radio button that reflects the status of a feature. For example, suppose
you have a checkbox that makes the selected text bold. If all the selected text is bold, it’s on. If none of the
selected text is bold, it’s off. If the text has a combination of bold and plain text, it’s mixed. Now suppose
you click the checkbox. If you turn it on, all the text becomes bold. If you turn it off, all the text becomes
plain. If you select the mixed state, the text remains as it is.

By default, an NSCell has two states. You can allow the third state with the method setAllowsMixedState.
To set the button’s state directly, use setState:. To cycle through all available states, use setNextState.

Represented Objects

Represented objects are objects that an NSCell stands for. (They’re not to be confused with an NSCell’s
object value, which is the value of the cell.) By setting a represented object for an NSCell (using
setRepresentedObject:) you make an association between the NSCell and that object. For instance, you
could have a pop-up list, each cell of which lists a color as its title; when the user selects a cell, the
represented NSColor object is displayed in a color well. This feature is solely for the developer’s
convenience. The cell itself does not use the represented object, except to archive and restore it.

Subclassing NSCell

The initImageCell: method is the designated initializer for NSCells that display images. The initTextCell:
method is the designated initializer for NSCells that display text. Override one or both of these methods if
you implement a subclass of NSCell that performs its own initialization. If you need to use target and action
behavior, you may prefer to subclass NSActionCell or one of its subclasses, which provide the default
implementation of this behavior.

If you want to implement your own mouse-tracking or mouse-up behavior, consider overriding
startTrackingAt:inView: , continueTracking:at:inView: , and stopTracking:at:inView:mouseIsUp:. If
you want to implement your own drawing, override drawWithFrame:inView: or
drawInteriorWithFrame:inView: .

If the subclass contains instance variables that hold pointers to objects, consider overriding
copyWithZone: to duplicate the objects. The default version copies only pointers to the objects.

3

 Classes: NSCell

For more information on how NSCell is used, see the NSControl class specification.

Method Types

Initializing an NSCell
– initImageCell:
– initTextCell:

Setting and getting cell values
– setObjectValue:
– objectValue
– hasValidObjectValue
– setIntValue:
– intValue
– setStringValue:
– stringValue
– setDoubleValue:
– doubleValue
– setFloatValue:
– floatValue

Setting and getting cell attributes
– setCellAttribute:to:
– cellAttribute:
– setType:
– type
– setEnabled:
– isEnabled
– setBezeled:
– isBezeled
– setBordered:
– isBordered
– isOpaque

Setting the state
– allowsMixedState
– nextState
– setAllowsMixedState:
– setNextState
– setState:
– state

4

Modifying textual attributes of cells
– setEditable:
– isEditable
– setSelectable:
– isSelectable
– setScrollable:
– isScrollable
– setAlignment:
– alignment
– setFont:
– font
– setWraps:
– wraps
– setAttributedStringValue:
– attributedStringValue
– setAllowsEditingTextAttributes:
– allowsEditingTextAttributes
– setImportsGraphics:
– importsGraphics
– setUpFieldEditorAttributes:

Setting the target and action
– setAction:
– action
– setTarget:
– target
– setContinuous:
– isContinuous
– sendActionOn:

Setting and getting an image
– setImage:
– image

Assigning a tag
– setTag:
– tag

Formatting and validating data
– setFormatter:
– formatter
– setEntryType:
– entryType
– isEntryAcceptable:
– setFloatingPointFormat:left:right:

5

 Classes: NSCell

Managing menus for cells
+ defaultMenu
– setMenu:
– menu
– menuForEvent:inRect:ofView:

Comparing cells
– compare:

Making cells respond to keyboard events
– acceptsFirstResponder
– setShowsFirstResponder:
– showsFirstResponder
– setTitleWithMnemonic:
– mnemonic
– refusesFirstResponder
– setMnemonicLocation:
– setRefusesFirstResponder:
– mnemonicLocation
– performClick:

Deriving values from other cells
– takeObjectValueFrom:
– takeIntValueFrom:
– takeStringValueFrom:
– takeDoubleValueFrom:
– takeFloatValueFrom:

Representing an object with a cell
– setRepresentedObject:
– representedObject

Tracking the mouse
– trackMouse:inRect:ofView:untilMouseUp:
– startTrackingAt:inView:
– continueTracking:at:inView:
– stopTracking:at:inView:mouseIsUp:
– mouseDownFlags
+ prefersTrackingUntilMouseUp
– getPeriodicDelay:interval:

Managing the cursor
– resetCursorRect:inView:

Handling keyboard alternatives
– keyEquivalent

6

Determining cell sizes
– calcDrawInfo:
– cellSize
– cellSizeForBounds:
– drawingRectForBounds:
– imageRectForBounds:
– titleRectForBounds:

Drawing and highlighting cells
– drawWithFrame:inView:
– drawInteriorWithFrame:inView:
– controlView
– highlight:withFrame:inView:
– isHighlighted

Editing and selecting cell text
– editWithFrame:inView:editor:delegate:event:
– selectWithFrame:inView:editor:delegate:start:length:
– sendsActionOnEndEditing
– setSendsActionOnEndEditing:
– endEditing:

Class Methods

defaultMenu
+ (NSMenu *)defaultMenu

Returns the default menu for instances of the receiver. The default implementation returns nil .

See also: – menu, – setMenu:

prefersTrackingUntilMouseUp
+ (BOOL)prefersTrackingUntilMouseUp

The default implementation returns NO, so tracking stops when the mouse leaves the NSCell; subclasses
may override.

See also: – trackMouse:inRect:ofView:untilMouseUp:

7

 Classes: NSCell

Instance Methods

acceptsFirstResponder
– (BOOL)acceptsFirstResponder

The default implementation returns YES if the cell is enabled and refusesFirstResponder returns NO;
subclasses can override.

See also: – performClick: , – setShowsFirstResponder:, – setTitleWithMnemonic:

action
– (SEL)action

Implemented by NSActionCell and its subclasses to return the selector of the cell’s action method. The
default implementation returns a null selector.

See also: – setAction:, – setTarget:, – target

alignment
– (NSTextAlignment)alignment

Returns the alignment of text in the cell: NSLeftTextAlignment, NSRightTextAlignment,
NSCenterTextAlignment, NSJustifiedTextAlignment, or NSNaturalTextAlignment.

See also: – setAlignment:

allowsEditingTextAttributes
– (BOOL)allowsEditingTextAttributes

Returns whether the receiver allows the editing of textual attributes.

See also: – setAllowsEditingTextAttributes:

allowsMixedState
– (BOOL)allowsMixedState

Returns YES if the button has three states: on, off, and mixed. Returns NO if the button has two states: on
and off.

See also: – nextState, – setAllowsMixedState:, – setNextState

8

attributedStringValue
– (NSAttributedString *)attributedStringValue

Returns the value of the receiver as an attributed string, using the cell’s formatter object (if one exists) to
create the attributed string. The textual attributes are determined by the default paragraph style, the
receiver’s font and alignment, and whether the receiver is enabled and scrollable.

See also: – setAttributedStringValue:

calcDrawInfo:
– (void)calcDrawInfo: (NSRect)aRect

Implemented by subclasses to recalculate drawing sizes with reference to aRect. Objects (such as
NSConrols) that manage NSCells generally maintain a flag that informs them if any of their cells has been
modified in such a way that the location or size of the cell should be recomputed. If so, NSControl’s
calcSize method is automatically invoked prior to the display of the NSCell, and that method invokes the
NSCell’s calcDrawInfo: method. The default implementation does nothing.

See also: – cellSize, – drawingRectForBounds:

cellAttribute:
– (int)cellAttribute: (NSCellAttribute)aParameter

Depending on aParameter, returns a setting for a cell attribute, such as the receiver’s state, and whether it’s
disabled, editable, or highlighted.

See also: – setCellAttribute:to:

cellSize
– (NSSize)cellSize

Returns the minimum size needed to display the NSCell, taking account of the size of the image or text
within a certain offset determined by border type. If the receiving cell is neither of image or text type, an
extremely large size is returned; if the receiving cell is of image type, and no image has been set, an
extremely small size is returned.

See also: – drawingRectForBounds:

9

 Classes: NSCell

cellSizeForBounds:
– (NSSize)cellSizeForBounds:(NSRect)aRect

Returns the minimum size needed to display the NSCell, taking account of the size of the image or text
within an offset determined by border type. If the receiving cell is of text type, the text is resized to fit within
aRect (as much as aRect is within the bounds of the cell). If the receiving cell is neither of image or text
type, an extremely large size is returned; if the receiving cell is of image type, and no image has been set,
an extremely small size is returned.

See also: – drawingRectForBounds:

compare:
– (NSComparisonResult)compare:(id)otherCell

Compares the string values of this cell and otherCell (which must be a kind of NSCell), disregarding case.
Raises NSBadComparisonException if otherCell is not of the NSCell class or if one of the cells being
compared is not a text-type cell.

continueTracking:at:inView:
– (BOOL)continueTracking:(NSPoint)lastPoint

at:(NSPoint)currentPoint
inView: (NSView *)controlView

Returns whether mouse-tracking should continue in the receiving cell based on lastPoint and currentPoint
within controlView (currentPoint is the current location of the mouse while lastPoint is either the initial
location of the mouse or the previous currentPoint). This method is invoked in trackMouse:inRect:
ofView:untilMouseIsUp: . The default implementation returns YES if the cell is set to continuously send
action messages to its target when the mouse is down or is being dragged. Subclasses can override this
method to provide more sophisticated tracking behavior.

See also: – startTrackingAt:inView: , – stopTracking:at:inView:mouseIsUp:

controlView
– (NSView *)controlView

Implemented by subclasses to return the NSView last drawn in (normally an NSControl). The default
implementation returns nil .

See also: – drawWithFrame:inView:

10

doubleValue
– (double)doubleValue

Returns the NSCell’s value as a double. If the receiver is not a text-type cell or the cell value is not
scannable, the method returns zero.

drawInteriorWithFrame:inView:
– (void)drawInteriorWithFrame: (NSRect)cellFrame inView: (NSView *)controlView

Draws the "inside" of the receiving cell; this includes the image or text within the NSCell’s frame in
controlView (usually the cell’s NSControl) but excludes the border. cellFrame is the frame of the NSCell or
(in some cases) a portion of it. Text-type NSCells display their contents in a rectangle slightly inset from
cellFrame using a global NSText object; image-type NSCells display their contents centered within
cellFrame. If the proper attributes are set, it also displays the dotted-line rectangle to indicate first responder
and highlights the cell. This method is invoked from NSControl’s drawCellInside: to visually update the
what the NSCell displays when its contents change. This drawing is minimal, and becomes more complex
in objects such as NSButtonCell and NSSliderCell.

Subclasses often override this method to provide more sophisticated drawing of cell contents. Because
drawWithFrame:inView: invokes drawInteriorWithFrame:inView : after it draws the NSCell’s border,
don’t invoke drawWithFrame:inView: in your override implementation.

See also: – isHighlighted, – setShowsFirstResponder:

drawWithFrame:inView:
– (void)drawWithFrame: (NSRect)cellFrame inView: (NSView *)controlView

Draws the receiver’s regular or bezeled border (if those attributes are set) and then draws the interior of the
cell by invoking drawInteriorWithFrame:inView: .

drawingRectForBounds:
– (NSRect)drawingRectForBounds:(NSRect)theRect

Returns the rectangle within which the cell draws itself; this rectangle is slightly inset from aRect on all
sides to take the border into account.

See also: – calcSize (NSControl)

11

 Classes: NSCell

editWithFrame:inView:editor:delegate:event:
– (void)editWithFrame: (NSRect)aRect

inView: (NSView *)controlView
editor: (NSText *)textObj
delegate:(id)anObject
event:(NSEvent *)theEvent

Begins editing of the receiver’s text by using the field editor textObj; usually invoked in response to a
mouse-down event. aRect must be the rectangle used for displaying the NSCell. theEvent is the
NSMouseDown event. anObject is made the delegate of textObj, and so will receive various NSText
delegation and notification messages.

If the receiver isn’t a text-type NSCell, no editing is performed. Otherwise, textObj is sized to aRect and its
superview is set to aView, so that it exactly covers the NSCell. Then it’s activated and editing begins. It’s
the responsibility of the delegate to end the editing when responding to textShouldEndEditing:; in doing
this, it should remove any data from textObj.

See also: – endEditing:, – selectWithFrame:inView:editor:delegate:start:length:

endEditing:
– (void)endEditing:(NSText *)textObj

Ends any editing of text occurring in the receiver begun with editWithFrame:inView:editor:delegate:
event: and selectWithFrame:inView:editor:delegate:start:length:.

entryType
– (int)entryType

Returns the type of data the user can type into the receiver. If the receiver is not a text-type cell, or if no type
has been set, NSAnyType is returned. See setEntryType: for a list of type constants.

See also: – isEntryAcceptable:

floatValue
– (float)floatValue

Returns the NSCell’s value as a float. If the receiver is not a text-type cell or the cell value is not scannable,
the method returns zero.

12

font
– (NSFont *)font

Returns the font used to display text in the receiving cell or nil if the receiver is not a text-type cell.

See also: – setFont:

formatter
– (id)formatter

Returns the formatter object (a kind of NSFormatter) associated with the cell. This object handles
translation of the cell’s contents between it’s on-screen representation and its object value.

See also: – setFormatter:

getPeriodicDelay:interval:
– (void)getPeriodicDelay:(float *)delay interval: (float *)interval

Returns initial delay and repeat values for continuous sending of action messages to target objects.
Subclasses can override to supply their own delay and interval values.

See also: – isContinuous, – setContinuous:

hasValidObjectValue
– (BOOL)hasValidObjectValue

Returns whether the object associated with the receiver has a valid object value. A valid object value is one
that the receiver’s formatter can "understand." Objects that are "invalid" have been rejected by the formatter,
but accepted by the delegate of the receiver’s NSControl (in control:didFailToFormatString:
errorDescription:).

See also: – objectValue, – setObjectValue:

highlight:withFrame:inView:
– (void)highlight: (BOOL)flag

withFrame: (NSRect)cellFrame
inView: (NSView *)controlView

If the receiver’s highlight status is different from flag, sets that status to flag and, if flag is YES, highlights
the rectangle cellFrame in the NSControl (controlView).

13

 Classes: NSCell

Note that NSCell’s highlighting does not appear when highlighted cells are printed (although instances of
NSTextFieldCell, NSButtonCell, and others can print themselves highlighted). Generally, you cannot
depend on highlighting being printed because implementations of this method may choose (or not choose)
to use transparency.

See also: – drawWithFrame:inView: , – isHighlighted

image
– (NSImage *)image

Returns the image displayed by the receiver or nil if the receiver is not an image-type cell.

See also: – setImage:

imageRectForBounds:
– (NSRect)imageRectForBounds:(NSRect)theRect

Returns the rectangle that the cell’s image is drawn in, which is slightly offset from theRect.

See also: – cellSizeForBounds:, – drawingRectForBounds:

importsGraphics
– (BOOL)importsGraphics

Sets whether the text of the receiver (if a text-type cell) is of Rich Text Format (RTF) and thus can import
graphics.

See also: – setImportsGraphics:

initImageCell:
– (id)initImageCell: (NSImage *)anImage

Returns an NSCell object initialized with anImage and set to have the cell’s default menu. If anImage is nil ,
no image is set.

14

initTextCell:
– (id)initTextCell: (NSString *)aString

Returns an NSCell object initialized with aString and set to have the cell’s default menu. If no field editor
(a shared NSText object) has been created for all NSCells, one is created.

intValue
– (int)intValue

Returns the receiver’s value as an int . If the receiver is not a text-type cell or the cell value is not scannable,
the method returns zero.

isBezeled
– (BOOL)isBezeled

Returns whether the receiving cell has a bezeled border.

See also: – setBezeled:

isBordered
– (BOOL)isBordered

Returns whether the receiving cell has a plain border.

See also: – setBordered:

isContinuous
– (BOOL)isContinuous

Returns whether the receiving cell sends its action message continuously on mouse down.

See also: – setContinuous:

isEditable
– (BOOL)isEditable

Returns whether the receiving cell is editable.

See also: – setEditable:

15

 Classes: NSCell

isEnabled
– (BOOL)isEnabled

Returns whether the receiving cell responds to mouse events.

See also: – setEnabled:

isEntryAcceptable:
– (BOOL)isEntryAcceptable:(NSString *)aString

Note: This method is being deprecated in favor of a new class of formatter objects. For more information,
see NSFormatter. This documentation is provided only for developers who need to modify older
applications.

Returns whether a string representing a numeric or date value (aString) is formatted in a way suitable to
the entry type.

See also: – entryType, – setEntryType:

isHighlighted
– (BOOL)isHighlighted

Returns whether the receiving cell is highlighted.

isOpaque
– (BOOL)isOpaque

Returns whether the receiving cell is opaque (non-transparent).

isScrollable
– (BOOL)isScrollable

Returns whether the receiving cell scrolls typed text that exceeds the cell’s bounds.

See also: – setScrollable:

16

isSelectable
– (BOOL)isSelectable

Returns whether the text of the receiving cell can be selected.

See also: – setSelectable:

keyEquivalent
– (NSString *)keyEquivalent

Implemented by subclasses to return a key equivalent to clicking the cell. The default implementation
returns an empty string object.

menu
– (NSMenu *)menu

Returns the menu with commands contextually related to the cell or nil if no menu is associated.

See also: – setMenu:

menuForEvent:inRect:ofView:
– (NSMenu *)menuForEvent:(NSEvent *)anEvent

inRect:(NSRect)cellFrame
ofView:(NSView *)aView

Returns the NSMenu associated with the receiver through the setMenu: method and related to anEvent
when the mouse is detected within cellFrame. It is usually invoked by the NSControl (aView) managing the
receiver. The default implementation simply invokes NSCell’s menu method and will return nil if no menu
has been set. Subclasses can override to customize the returned menu according to the event received and
the area in which the mouse event occurs.

mnemonic
– (NSString *)mnemonic

Returns the character in the cell title that appears underlined for use as a mnemonic. If there is no mnemonic
character, returns an empty string.

See also: – setTitleWithMnemonic:

17

 Classes: NSCell

mnemonicLocation
– (unsigned int)mnemonicLocation

Returns the position of the underlined character in the cell title used as a mnemonic. If there is no mnemonic
character, returns NSNotFound.

See also: – setMnemonicLocation:

mouseDownFlags
– (int)mouseDownFlags

Returns the modifier flags for the last (left) mouse-down event or zero if tracking hasn’t occured yet for the
cell or if no modifier keys accompanied the mouse-down event.

See also: – modifierFlags (NSEvent)

nextState
– (int)nextState

Returns the button’s next state. If the button has three states, it cycles through them in this order: on, off,
mixed, on, and so forth. If the button has two states, it toggles between them.

See also: – allowsMixedState, – setAllowsMixedState:, – setNextState

objectValue
– (id)objectValue

Returns the NSCell’s value as an Objective-C object if a valid object has been associated with the receiver;
otherwise, returns nil . To be valid, the cell must have a formatter capable of converting the object to and
from its textual representation.

performClick:
– (void)performClick: (id)sender

Programmatically simulates a mouse click on the receiver, including the invocation of the action method in
the target object. Raises an exception if the action message cannot be successfully sent.

18

refusesFirstResponder
– (BOOL)refusesFirstResponder

Returns YES if the cell can ever become the first responder. To find out whether the cell can become first
responder at this time, use the method acceptsFirstResponder.

See also: – setRefusesFirstResponder:

representedObject
– (id)representedObject

Returns the object the receiving cell represents. For example, you could have a pop-up list of color names,
and the represented objects could be the appropriate NSColor objects.

See also: – setRepresentedObject:

resetCursorRect:inView:
– (void)resetCursorRect:(NSRect)cellFrame inView: (NSView *)controlView

Sets the receiver to show the I-beam cursor within cellFrame while it tracks the mouse . The receiver must
be an enabled and selectable (or editable) text-type cell. controlView is the NSControl that manages the cell.

selectWithFrame:inView:editor:delegate:start:length:
– (void)selectWithFrame:(NSRect)aRect

inView: (NSView *)controlView
editor: (NSText *)textObj
delegate:(id)anObject
start: (int)selStart
length:(int)selLength

Uses the field editor textObj to select text in a range marked by selStart and selLength, which will be
highlighted and selected as though the user had dragged the cursor over it. This method is similar to
editWithFrame:inView:editor:delegate:event:, except that it can be invoked in any situation, not only on
a mouse-down event. aRect is the rectangle in which the selection should occur, controlView is the
NSControl managing the receiver, and anObject is the delegate of the field editor. Returns without doing
anything if controlView, textObj, or the receiver are nil , or if the receiver as no font set for it.

19

 Classes: NSCell

sendActionOn:
– (int)sendActionOn:(int)mask

Sets the conditions on which the receiver sends action messages to its target and returns a bit mask with
which to detect the previous settings. mask is set with one or more of these bit masks:

You can send setContinuous: method to turn on the flag corresponding to NSPeriodicMask or
NSLeftMouseDraggedMask, whichever is appropriate to the given subclass of NSCell.

See also: – action

sendsActionOnEndEditing
– (BOOL)sendsActionOnEndEditing

Returns whether the cell sends its action mesage whenever the user finishes editing the cell’s text. If it
returns YES, the cell sends its action message when the user does one of the following:

• Presses the Return key
• Deactivates the window containing the cell
• Presses the Tab key to move out of the field
• Clicks on another text field

This behavior is familiar to Mac OS users.

If it returns NO, the cell sends its action message only when the user presses the Return key. This behavior
is familiar to OPENSTEP users.

Value Description

NSLeftMouseUpMask Don’t send action message on (left) mouse up.

NSLeftMouseDownMask Send action message on (left) mouse down.

NSLeftMouseDraggedMask Send action message when (left) mouse is dragged.

NSPeriodicMask Send action message continuously.

20

setAction:
– (void)setAction:(SEL)aSelector

In NSCell, raises NSInternalInconsistencyException. However, NSActionCell overrides this method to set
the action method as part of the implementation of the target/action mechanism.

See also: – action, – setTarget:, – target

setAlignment:
– (void)setAlignment:(NSTextAlignment)mode

Sets the alignment of text in the receiver. mode is one of five constants: NSLeftTextAlignment,
NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment, NSNaturalTextAlignment
(the default alignment for the text).

See also: – alignment, – setWraps:

setAllowsEditingTextAttributes:
– (void)setAllowsEditingTextAttributes: (BOOL)flag

Sets whether the textual attributes of the receiver can be modified. If flag is NO, the receiver cannot import
graphics (that is, it does not support RTFD text).

See also: – allowsEditingTextAttributes , – setImportsGraphics:

setAllowsMixedState:
– (void)setAllowsMixedState:(BOOL)flag

If flag is YES, the button has three states: on, off, and mixed. If flag is NO, the button has two states: on and
off.

See also: – allowsMixedState, – nextState, – setNextState

setAttributedStringValue:
– (void)setAttributedStringValue: (NSAttributedString *)attribStr

Sets the value of the receiver to the attributed string attribStr. If a formatter is set for the receiver, but the
formatter does not understand the attributed string, it marks attribStr as an invalid object. If the receiver is
not a text-type cell, it’s converted to one. The following example sets the text in a cell to 14 points, red, in
the system font.

21

 Classes: NSCell

NSColor *txtColor = [NSColor redColor];

NSFont *txtFont = [NSFont boldSystemFontOfSize:14];

NSDictionary *txtDict = [NSDictionary dictionaryWithObjectsAndKeys:txtFont,

NSFontAttributeName, txtColor, NSForegroundColorAttributeName, nil];

NSAttributedString *attrStr = [[[NSAttributedString alloc]

initWithString:@"Hello!" attributes:txtDict] autorelease];

[[attrStrTextField cell] setAttributedStringValue:attrStr];

[attrStrTextField updateCell:[attrStrTextField cell]];

See also: – attributedStringValue

setBezeled:
– (void)setBezeled:(BOOL)flag

Sets whether the receiver draws itself with a bezeled border. The setBezeled: and setBordered: methods
are mutually exclusive (that is, a border can be only plain or bezeled).

See also: – isBezeled

setBordered:
– (void)setBordered:(BOOL)flag

Sets whether the receiver draws itself outlined with a plain border. The setBezeled: and setBordered:
methods are mutually exclusive (that is, a border can be only plain or bezeled).

See also: – isBordered

setCellAttribute:to:
– (void)setCellAttribute: (NSCellAttribute)aParameter to:(int)value

Sets a cell attribute identified by aParameter—such as the receiver’s state, and whether it’s disabled,
editable, or highlighted—to value.

See also: – cellAttribute:

setContinuous:
– (void)setContinuous:(BOOL)flag

Sets whether the receiver continuously sends its action message to its target while it tracks the mouse. In
practice, the continuous setting has meaning only for instances of NSActionCell and its subclasses, which

22

implement the target/action mechanism. Some NSControl subclasses, notably NSMatrix, send a default
action to a default target when a cell doesn’t provide a target or action.

See also: – isContinuous,– sendActionOn:

setDoubleValue:
– (void)setDoubleValue:(double)aDouble

Sets the value of the receiving cell to an object representing a double. In its implementation, this method
invokes setObjectValue:. Does nothing if the receiver is not a text-type cell.

See also: – doubleValue

setEditable:
– (void)setEditable:(BOOL)flag

Sets whether the user can edit the receiver's text. If flag is YES, the text can also be selected. If flag is NO,
the selectable attribute is restored to what it was before the cell was last made editable.

See also: – isEditable, – setSelectable:

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiver is enabled or disabled. The text of disabled cells is changed to gray. If a cell is
disabled, it cannot be highlighted, does not support mouse tracking (and thus cannot participate in
target/action functionality), and cannot be edited. However, you can still alter many attributes of a disabled
cell programmatically (setState:, for instance, will still work).

See also: – isEnabled

setEntryType:
– (void)setEntryType:(int)aType

Note: This method is being deprecated in favor of a new class of formatter objects. For more information,
see NSFormatter. This documentation is provided only for developers who need to modify older
applications.

23

 Classes: NSCell

Sets how numeric data are formatted in the receiver and places restrictions on acceptable input. aType can
be one of the following constants:

If the receiver isn’t a text-type cell, this method converts it to one; in the process, it makes its title "Cell"
and sets its font to the user’s system font at 12 points.

You can check whether formatted strings conform to the entry types of cells with the isEntryAcceptable:
method. NSControl subclasses also use isEntryAcceptable: to validate what users have typed in editable
cells. You can control the format of values accepted and displayed in cells by creating a custom subclass of
NSFormatter and associating an instance of that class with cells (through setFormatter:). In custom
NSCell subclasses, you can also override isEntryAcceptable: to check for the validity of data entered into
cells.

See also: – entryType

setFloatingPointFormat:left:right:
– (void)setFloatingPointFormat:(BOOL)autoRange

left: (unsigned)leftDigits
right: (unsigned)rightDigits

Note: This method is being deprecated in favor of a new class of formatter objects. For more information,
see NSFormatter. This documentation is provided only for developers who need to modify older
applications.

Sets whether floating-point numbers are autoranged in the receiver, and sets the sizes of the fields to the left
and right of the decimal point. If autoRange is NO, leftDigits specifies the maximum number of digits to
the left of the decimal point, and rightDigits specifies the number of digits to the right (the fractional digit
places will be padded with zeros to fill this width). However, if a number is too large to fit its integer part

Constant Restrictions and Other Information

NSIntType Must be between INT_MIN and INT_MAX

NSPositiveIntType Must be between 1 and INT_MAX

NSFloatType Must be between -FLT_MAX and FLT_MAX

NSPositiveFloatType Must be between FLT_MIN and FLT_MAX

NSDoubleType Must be between -DBL_MAX and DBL_MAX

NSPositiveDoubleType Must be between DBL_MAX and DBL_MAX

NSAnyType Any value is allowed.

24

in leftDigits digits, as many places as are needed on the left are effectively removed from rightDigits when
the number is displayed.

If autoRange is YES, leftDigits and rightDigits are simply added to form a maximum total field width for
the receiver (plus 1 for the decimal point). The fractional part will be padded with zeros on the right to fill
this width, or truncated as much as possible (up to removing the decimal point and displaying the number
as an integer). The integer portion of a number is never truncated—that is, it is displayed in full no matter
what the field width limit is.

The following example sets a cell used to display dollar amounts up to 99,999.99:

[[currencyDollarsField cell] setEntryType:NSFloatType];

[[currencyDollarsField cell] setFloatingPointFormat:NO left:5 right:2];

See also: – setEntryType:

setFloatValue:
– (void)setFloatValue:(float)aFloat

Sets the value of the receiving cell to an object representing a float. In its implementation, this method
invokes setObjectValue:. Does nothing if the receiver is not a text-type cell.

See also: – floatValue

setFont:
– (void)setFont:(NSFont *)fontObj

Sets the font to be used when the receiver displays text. If the receiver is not a text-type cell, the method
converts it to that type. If fontObj is nil and the receiver is a text-type cell, the font currently held by the
receiver is autoreleased.

See also: – font

setFormatter:
– (void)setFormatter:(NSFormatter *)newFormatter

Sets the formatter object used to format the textual representation of the receiver’s object value and to
validate cell input and convert it to that object value. If the new formatter cannot interpret the receiver’s
current object value, that value is converted to a string object. This method retains new formatters and
releases replaced ones. If newFormatter is nil , the receiver is disassociated from the current formatter.

See also: – formatter

25

 Classes: NSCell

setImage:
– (void)setImage:(NSImage *)image

Sets the image to be displayed by the receiver. If the receiver is not an image-type cell, the method converts
it to that type. If image is nil and the receiver is an image-type cell, the image currently held by the receiver
is autoreleased.

See also: – image

setImportsGraphics:
– (void)setImportsGraphics:(BOOL)flag

Sets whether the receiver can import images into its text (that is, whether it supports RTFD text). If flag is
YES, the receiver is also set to allow editing of text attributes (setAllowsEditingTextAttributes:).

See also: – importsGraphics

setIntValue:
– (void)setIntValue:(int)anInt

Sets the value of the receiving cell to an object representing an int . In its implementation, this method
invokes setObjectValue:. Does nothing if the receiver is not a text-type cell.

See also: – intValue

setMenu:
– (void)setMenu:(NSMenu *)aMenu

Associates a menu with the cell that has commands contextually related to the cell (a pop-up menu on
Windows). The associated menu is retained. If aMenu is nil , any association with a previous menu is
removed.

See also: – menu

setMnemonicLocation:
– (void)setMnemonicLocation:(unsigned int)location

Sets the character of the cell title identified by location that is to be underlined. This character identifies the
access key on Windows by which users can access the cell. location must be between 0 and 254.

See also: – mnemonicLocation

26

setNextState
– (void)setNextState

Sets the button to its next state. If the button has three states, it cycles through them in this order: on, off,
mixed, on, and so forth. If the button has two states, it toggles between them.

See also: – allowsMixedState, – nextState, – setAllowsMixedState:

setObjectValue:
– (void)setObjectValue:(id)object

Sets the receiver’s object value to object.

See also: – objectValue, – setRepresentedObject:

setRefusesFirstResponder:
– (void)setRefusesFirstResponder:(BOOL)flag

Sets whether the cell can become the first responder. If flag is YES, the cell cannot become the first
responder.

If refusesFirstResponder returns NO and the cell is enabled, the method acceptsFirstResponder returns
YES, allowing the cell to become first responder

setRepresentedObject:
– (void)setRepresentedObject:(id)anObject

Sets the object represented by the receiver, for example, an NSColor object for a cell with a title of "Blue."

See also: – setObjectValue:, – representedObject

setScrollable:
– (void)setScrollable:(BOOL)flag

Sets whether excess text in the receiver is scrolled past the cell’s bounds. If flag is YES, wrapping is turned
off. When the scrollable attribute is turned on, the alignment of text in the cell is changed to left alignment.

See also: – isScrollable

27

 Classes: NSCell

setSelectable:
– (void)setSelectable:(BOOL)flag

Sets whether text in the receiver can be selected; always makes the receiver’s text uneditable.

See also: – isSelectable, – setEditable:

setSendsActionOnEndEditing:
– (void)setSendsActionOnEndEditing:(BOOL)flag;

Sets whether the cell sends its action mesage whenever the user finishes editing the cell’s text. If flag is YES,
the cell sends its action message when the user does one of the following:

• Presses the Return key
• Deactivates the window containing the cell
• Presses the Tab key to move out of the field
• Clicks on another text field.

This behavior is familiar to Mac OS users.

If flag is NO, the cell sends its action message only when the user presses the Return key. This behavior is
familiar to OPENSTEP users.

setShowsFirstResponder:
– (void)setShowsFirstResponder:(BOOL)flag

Sets whether the receiver displays a dotted-line outline when it assumes first responder status.

See also: – showsFirstResponder

setState:
– (void)setState:(int)value

Sets the cell’s state to value, which can be NSOnState, NSOffState, or NSMixedState.

The cell can have two or three states. If it has two, value can be NSOffState (the normal or unpressed state)
or NSOnState (the alternate or pressed state). If it has three, value can be NSOnState (the feature is in effect
everywhere), NSOffState (the feature is in effect nowhere), or NSMixedState (the feature is in effect
somewhere). Note that if the cell has only two states and value is NSMixedState, this method sets the cell’s
state to NSOnState.

28

Although using the enumerated constants is preferred, value can also be an integer. If the cell has two states,
zero is treated as NSOffState, and a non-zero value is treated as NSOnState. If the cell has three states, zero
is treated as NSOffState; a negative value, as NSMixedState; and a positive value, as NSOnState.

Note that the value that state returns may not be the same value you passed into setState:.

To check whether the button uses the mixed state, use the method allowsMixedState.

See also: – state

setStringValue:
– (void)setStringValue:(NSString *)aString

Sets the value of the receiving cell to an NSString object. In its implementation, this method invokes
setObjectValue:. If no formatter is assigned to the receiver or if the formatter cannot "translate" aString to
an underlying object, the receiver is flagged as having an invalid object. If the receiver is not a text-type cell,
this method converts it to one before setting the object value.

See also: – stringValue

setTag:
– (void)setTag:(int)anInt

Implemented by NSActionCell to set the receiver’s tag integer. NSCell’s implementation raises
NSInternalInconsistencyException.

See also: – tag

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)aString

Sets the title of a cell with a character underlined to denote an access key (Windows only). Use an
ampersand character to mark the character (the one following the ampersand) to be underlined. For
example, the following message causes the "c" in "Receive" to be underlined:

[aCell setTitleWithMnemonic:NSLocalizedString(@"Re&ceive")];

See also: – mnemonic, – setMnemonicLocation:

29

 Classes: NSCell

setTarget:
– (void)setTarget:(id)anObject

Implemented by NSActionCell to set the receiver’s target object receiving the action message. NSCell’s
implementation raises NSInternalInconsistencyException.

See also: – target

setType:
– (void)setType:(NSCellType)aType

If the type of the receiving cell is different from aType, sets it to aType, which must one of NSTextCellType,
NSImageTypeCell, or NSNullCellType. If aType is NSTextCellType, converts the receiver to a cell of that
type, giving it a default title and setting the font to the system font at the default size. If aType is
NSImageTypeCell, sets a nil image.

See also: – type

setUpFieldEditorAttributes:
– (NSText *)setUpFieldEditorAttributes: (NSText *)textObj

Sets textual and background attributes of the receiver, depending on certain attributes. If the receiver is
disabled, sets the text color to dark gray; otherwise sets it to the default color. If the receiver has a bezeled
border, sets the background to the default color for text backgrounds; otherwise, sets it to the color of the
receiver’s NSControl.

setWraps:
– (void)setWraps:(BOOL)flag

Sets whether text in the receiver wraps when its length exceeds the frame of the cell. If flag is YES, then it
also sets the receiver to be non-scrollable.

See also: – wraps

showsFirstResponder
– (BOOL)showsFirstResponder

Returns whether the receiver displays a dotted-line outline when it assumes first responder status.

See also: – setShowsFirstResponder:

30

startTrackingAt:inView:
– (BOOL)startTrackingAt: (NSPoint)startPoint inView: (NSView *)controlView

NSCell’s implementation of trackMouse:inRect:ofView:untilMouseIsUp: invokes this method when
tracking begins. startPoint is the point the mouse is currently at and controlView is the NSControl managing
the receiver. NSCell’s default implementation returns YES if the receiver is set to respond continuously or
when the mouse is dragged. Subclasses override this method to implement special mouse-tracking behavior
at the beginning of mouse tracking, for example, displaying a special cursor.

See also: – continueTracking:at:inView: , – stopTracking:at:inView:mouseIsUp:

state
– (int)state

Returns the button’s state. The cell can have two or three states. If it has two, it returns either NSOffState
(the normal or unpressed state) or NSOnState (the alternate or pressed state). If it has three, it returns
NSOnState (the feature is in effect everywhere), NSOffState (the feature is in effect nowhere), or
NSMixedState (the feature is in effect somewhere).

To check whether the button uses the mixed state, use the method allowsMixedState.

Note that the value that state returns may not be the same value you passed into setState:.

See also: – setState:

stopTracking:at:inView:mouseIsUp:
– (void)stopTracking:(NSPoint)lastPoint

at:(NSPoint)stopPoint
inView: (NSView *)controlView
mouseIsUp:(BOOL)flag

NSCell’s implementation of trackMouse:inRect:ofView:untilMouseIsUp: invokes this method when the
mouse has left the bounds of the receiver or the mouse goes up (in which case flag is YES). lastPoint is the
point the mouse was at and stopPoint is its current point. controlView is the NSControl managing the
receiver. NSCell’s default implementation does nothing. Subclasses often override this method to provide
customized tracking behavior. The following example increments the state of a tri-state cell when the mouse
is clicked.

31

 Classes: NSCell

- (void)stopTracking:(NSPoint)lastPoint at:(NSPoint)stopPoint

inView:(NSView *)controlView mouseIsUp:(BOOL)flag

{

if (flag == YES) {

[self setTriState:([self triState]+1)];

}

}

See also: – startTrackingAt:inView: , – stopTracking:at:inView:mouseIsUp:

stringValue
– (NSString *)stringValue

Returns the receiver’s value as an NSString as converted by the receiver’s formatter, if one exists. If no
formatter exists and the value is an NSString, returns the value as an plain, attributed or localized formatted
string. If the value is not an NSString or can’t be converted to one, returns an empty string.

See also: – setStringValue:

tag
– (int)tag

Implemented by NSActionCell to return the receiver’s tag integer. NSCell’s implementation returns -1.

See also: – setTag:

takeDoubleValueFrom:
– (void)takeDoubleValueFrom:(id)sender

Sets the receiver’s own value as a double using the double value of sender.

See also: – setDoubleValue:

takeFloatValueFrom:
– (void)takeFloatValueFrom:(id)sender

Sets the receiver’s own value as a float using the float value of sender.

See also: – setFloatValue:

32

takeIntValueFrom:
– (void)takeIntValueFrom: (id)sender

Sets the receiver’s own value as an int using the int value of sender. The following example shows this
method being used to write the value taken from a slider (sender) to a text field cell:

- (void)sliderMoved:(id)sender

{

[[valueField cell] takeIntValueFrom:[sender cell]];

[valueField display];

}

See also: – setIntValue:

takeObjectValueFrom:
– (void)takeObjectValueFrom:(id)sender

Sets the receiver’s own value as an object using the object value of sender.

See also: – setObjectValue:

takeStringValueFrom:
– (void)takeStringValueFrom:(id)sender

Sets the receiver’s own value as a string object using the NSString value of sender.

See also: – setStringValue:

target
– (id)target

Implemented by NSActionCell to return the target object to which the receiver’s action message is sent.
NSCell’s implementation returns nil .

See also: – setTarget:

33

 Classes: NSCell

titleRectForBounds:
– (NSRect)titleRectForBounds:(NSRect)theRect

If the receiver is a text-type cell, resizes the drawing rectangle for the title (theRect) inward by a small offset
to accommodate the cell border. If the receiver is not a text-type cell, the method does nothing.

See also: – imageRectForBounds:

trackMouse:inRect:ofView:untilMouseUp:
– (BOOL)trackMouse:(NSEvent *)theEvent

inRect:(NSRect)cellFrame
ofView:(NSView *)controlView
untilMouseUp:(BOOL)flag

Invoked by an NSControl to initiate the tracking behavior of one of its NSCells. It’s generally not overriden
since the default implementation invokes other NSCell methods that can be overriden to handle specific
events in a dragging session. This method’s return value depends on the untilMouseUp flag. If that flag is
set to YES, this method returns YES if the mouse goes up anywhere; NO, otherwise. If that flag is set to
NO, this method returns YES if the mouse goes up within cellFrame; NO, otherwise. The argument
theEvent is typically the mouse event received by the initiating NSControl, usually identified by
controlView. The flag argument indicates whether tracking should continue until the mouse button goes up;
if flag is NO, tracking ends when the mouse is dragged after the initial mouse down.

This method first invokes startTrackingAt:inView: . If that method returns YES, then as mouse-dragged
events are intercepted, continueTracking:at:inView: is invoked. Finally, stopTracking:at:inView:
mouseIsUp: is invoked. If untilMouseUp is YES, it’s invoked when the mouse goes up anywhere, If
untilMouseUp is NO, it’s invoked when the mouse goes up within cellFrame. (If cellFrame is NULL, then
the bounds are considered infinitely large.) You usually override one or more of these methods to respond
to specific mouse events.

type
– (NSCellType)type

Returns the type of the receiver, one of NSTextCellType, NSImageTypeCell, or NSNullCellType.

See also: – setType:

34

wraps
– (BOOL)wraps

Returns whether text of the receiver wraps when it exceeds the borders of the cell.

See also: – setWraps:

1

 Classes: NSClipView

NSClipView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSClipView.h

Class at a GlanceˇClass at a Glance

Purpose
An NSClipView contains and scrolls the document view displayed by an NSScrollView. You normally don’t need
to program with NSClipViews, as NSScrollView handles most of the details of their operation.

Principal Attributes
• Efficient scrolling by copying drawn portions of the document view
• Monitoring of document view for automatic update

Creation

Interface Builder

– initWithFrame: Initializes the NSClipView.

Commonly Used Methods

– setDocumentView: Sets the view scrolled within the NSClipView.

– setCopiesOnScroll:
Sets whether the NSClipView copies drawn portions of the document
view during scrolling.

2

Class Description

An NSClipView holds the document view of an NSScrollView, clipping the document view to its frame,
handling the details of scrolling in an efficient manner, and updating the NSScrollView when the document
view’s size or position changes. You don’t normally use the NSClipView class directly; it’s provided
primarily as the scrolling machinery for the NSScrollView class. However, you might use the NSClipView
class to implement a class similar to NSScrollView.

When an NSClipView is instructed to scroll its document view, it copies as much of the already-drawn
document view as possible. This allows for efficient scrolling by obviating the need to redraw large portions
of the document view. The NSClipView then sends its document view a setNeedsDisplayInRect: message
to mark as invalid the newly exposed region(s) of the document view. If copying drawn areas is
inappropriate for your needs, you can turn it off by sending the NSClipView a setCopiesOnScroll: message
with an argument of NO.

In addition to performing the details of scrolling, an NSClipView monitors its document view and sends its
superview (usually an NSScrollView) a reflectScrolledClipView: message whenever the relationship
between the NSClipView and the document view has changed. This allows the superview to update itself
to reflect the change—for example, an NSScrollView uses this method to change the position of its scrollers
when the user causes the document view to autoscroll or when the document view’s size changes.

Method Types

Setting the document view
– setDocumentView:
– documentView

Scrolling
– scrollToPoint:
– autoscroll:
– constrainScrollPoint:

Determining scrolling efficiency
– setCopiesOnScroll:
– copiesOnScroll

Getting the visible portion
– documentRect
– documentVisibleRect

Setting the document cursor
– setDocumentCursor:
– documentCursor

3

 Classes: NSClipView

Setting the background color
– setBackgroundColor:
– backgroundColor

Overridden NSView methods
– acceptsFirstResponder
– becomeFirstResponder
– isFlipped
– rotateByAngle:
– scaleUnitSquareToSize:
– setBoundsOrigin:
– setBoundsRotation:
– setBoundsSize:
– setFrameSize:
– setFrameOrigin:
– setFrameRotation:
– setNextKeyView:
– translateOriginToPoint:
– viewBoundsChanged:
– viewFrameChanged:

Instance Methods

acceptsFirstResponder
– (BOOL)acceptsFirstResponder

If the receiver has a document view, returns the document view’s acceptsFirstResponder. Otherwise
returns NO.

See also: – documentView, – acceptsFirstResponder (NSResponder)

autoscroll:
– (BOOL)autoscroll:(NSEvent *)theEvent

Scrolls the receiver proportionally to theEvent’s distance outside of it. theEvent’s location should be
expressed in the window’s base coordinate system (which it normally is), not the receiving NSClipView’s.
Returns YES if any scrolling is performed; otherwise returns NO.

Never invoke this method directly; instead, the NSClipView’s document view should repeatedly send itself
autoscroll: messages when the mouse is dragged outside the NSClipView’s frame during a modal event
loop initiated by a mouse-down event. The NSView class implements autoscroll: to forward the message
to the receiver’s superview; thus the message is ultimately forwarded to the NSClipView.

4

backgroundColor
– (NSColor *)backgroundColor

Returns the color of the receiver’s background.

See also: – setBackgroundColor:

becomeFirstResponder
– (BOOL)becomeFirstResponder

If the key view selection direction of the receiver’s NSWindow isn’t NSSelectingPrevious, attempts to make
the document view the first responder. If the direction is NSSelectingPrevious, attempts to make the
receiver’s previous key view (typically the containing NSScrollView) the first responder. Returns YES if
successful and NO otherwise

See also: – becomeFirstResponder (NSResponder), – makeFirstResponder: (NSWindow),
– keyViewSelectionDirection (NSWindow)

constrainScrollPoint:
– (NSPoint)constrainScrollPoint:(NSPoint)proposedNewOrigin

Returns a scroll point adjusted from proposedNewOrigin, if necessary, to guarantee that the receiver will
still lie within its document view. For example, if proposedNewOrigin’s y coordinate lies to the left of the
document view’s origin, then the y coordinate returned is set to that of the document view’s origin.

See also: – scrollToPoint:

copiesOnScroll
– (BOOL)copiesOnScroll

Returns YES if the receiver copies its existing rendered image while scrolling (only drawing exposed
portions of its document view), NO if it forces its contents to be redrawn each time.

See also: – setCopiesOnScroll:

documentCursor
– (NSCursor *)documentCursor

Returns the cursor object used when the mouse lies over the receiver.

See also: – setDocumentCursor:

5

 Classes: NSClipView

documentRect
– (NSRect)documentRect

Returns the rectangle defining the document view’s frame, adjusted to the size of the receiver if the
document view is smaller. In other words, this rectangle is always at least as large as the receiver itself.

The document rectangle is used in conjunction with an NSClipView’s bounds rectangle to determine values
for the indicators of relative position and size between the NSClipView and its document view. For
example, NSScrollView uses these rectangles to set the size and position of the knobs in its scrollers. When
the document view is much larger than the NSClipView, the knob is small; when the document view is near
the same size, the knob is large; and when the document view is the same size or smaller, there is no knob.

See also: – reflectScrolledClipView: (NSScrollView), – documentVisibleRect

documentView
– (id)documentView

Returns the receiver’s document view.

See also: – setDocumentView:

documentVisibleRect
– (NSRect)documentVisibleRect

Returns the exposed rectangle of the receiver’s document view, in the document view’s own coordinate
system. Note that this rectangle doesn’t reflect the effects of any clipping that may occur above the
NSClipView itself. To get the portion of the document view that’s guaranteed to be visible, send it a
visibleRect message.

See also: – documentRect

isFlipped
– (BOOL)isFlipped

Returns YES if the document view is flipped, NO if it isn’t.

See also: – isFlipped (NSView)

6

rotateByAngle:
– (void)rotateByAngle:(float)angle

Overrides NSView’s implementation to disable rotation.

scaleUnitSquareToSize:
– (void)scaleUnitSquareToSize:(NSSize)newUnitSize

Performs as NSView’s implementation and updates a containing NSScrollView based on the new bounds.

scrollToPoint:
– (void)scrollToPoint:(NSPoint)newOrigin

Changes the origin of the receiver’s bounds rectangle to newOrigin.

See also: – constrainScrollPoint:

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the receiver’s background color to aColor.

See also: – backgroundColor

setBoundsOrigin:
– (void)setBoundsOrigin:(NSPoint)aPoint

Performs as NSView’s implementation and updates a containing NSScrollView based on the new bounds.

setBoundsRotation:
– (void)setBoundsRotation:(float)angle

Overrides NSView’s implementation to disable rotation.

7

 Classes: NSClipView

setBoundsSize:
– (void)setBoundsSize:(NSSize)aSize

Performs as NSView’s implementation and updates a containing NSScrollView based on the new bounds.

setCopiesOnScroll:
– (void)setCopiesOnScroll:(BOOL)flag

Controls whether the receiver copies rendered images while scrolling. If flag is YES, the receiver copies the
existing rendered image to its new location while scrolling, and only draws exposed portions of its
document view. If flag is NO, the receiver always forces its document view to draw itself on scrolling.

See also: – copiesOnScroll

setDocumentCursor:
– (void)setDocumentCursor:(NSCursor *)aCursor

Sets the cursor object used over the receiver to aCursor.

See also: – documentCursor

setDocumentView:
– (void)setDocumentView:(NSView *)aView

Sets the receiver’s document view to aView, removing any previous document view, and sets the origin of
the receiver’s bounds rectangle to the origin of aView’s frame rectangle. If the receiver is contained in an
NSScrollView, you should send the NSScrollView a setDocumentView: message instead, so that it can
perform whatever updating it needs.

In the process of setting the document view, this method registers the receiver for the notifications
NSViewFrameDidChangeNotification and NSViewBoundsDidChangeNotification, adjusts the key view
loop to include the new document view, and updates a parent NSScrollView’s display if needed using
reflectScrolledClipView:.

See also: – documentView

setFrameOrigin:
– (void)setFrameOrigin:(NSPoint)aPoint

Performs as NSView’s implementation and updates a containing NSScrollView based on the new bounds.

8

setFrameRotation:
– (void)setFrameRotation:(float)angle

Overrides NSView’s implementation to disable rotation.

setFrameSize:
– (void)setFrameSize:(NSSize)aSize

Performs as NSView’s implementation and updates a containing NSScrollView based on the new bounds.

setNextKeyView:
– (void)setNextKeyView:(NSView *)aView

Performs as NSView’s implementation, except inserts the receiver’s document view between itself and
aView in the key view loop.

See also: – setNextKeyView: (NSView)

translateOriginToPoint:
– (void)translateOriginToPoint: (NSPoint)aPoint

Performs as NSView’s implementation and updates a containing NSScrollView based on the new bounds.

viewBoundsChanged:
– (void)viewBoundsChanged:(NSNotification *)aNotification

Handles an NSViewBoundsDidChangeNotification by updating a containing NSScrollView based on the
new bounds.

viewFrameChanged:
– (void)viewFrameChanged:(NSNotification *)aNotification

Handles an NSViewFrameDidChangeNotification by updating a containing NSScrollView based on the
new frame.

1

 Classes: NSCoderAdditions

NSCoderAdditions

Inherits From: NSObject

Declared In: AppKit/NSColor.h

Class Description

This category adds a single method to the Foundation framework’s NSCoder class. This method,
decodeNXColor, is used to convert archived NXColors into NSColors.

NXColor, a type that dates from pre-OpenStep versions of NEXTSTEP, was a struct. Its replacement,
NSColor, is a class. The difficulties of converting from a struct to a class require a special method like
decodeNXColor.

Note: decodeNXColor becomes part of the NSCoder class only for applications that use the Application
Kit.

For more information, see the NSCoder class specification in the Foundation Framework Reference.

Instance Methods

decodeNXColor
– (NSColor *)decodeNXColor

Decodes a color object from NEXTSTEP Release 3 or earlier and returns an autoreleased NSColor object.
This method does not have a matching method for encoding an NXColor object. Encode an NSColor object
instead.

1

 Classes: NSColor

NSColor

Inherits From: NSResponder : NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSColor.h

Class at a GlanceˇClass at a Glance

Purpose
An NSColor object represents a color, which is defined in a color space, each point of which has a set of
components (such as red, green, and blue) that uniquely define a color.

Principal Attributes
• Color space
• Color components

Creation
Various colorWith... and colorUsing... methods
Preset colors: blackColor, blueColor, etc.

Commonly Used Methods

colorUsingColorSpaceName: Creates an NSColor in the specified color space.

set Sets the drawing color.

2

Class Description

An NSColor object represents color and sometimes opacity (alpha). By sending a set message to an
NSColor instance, you set the color for the current PostScript drawing context. This causes subsequently
drawn graphics to have the color represented by the NSColor instance.

Color Spaces

A color is defined in some particular color space. A color space consists of a set of dimensions—such as
red, green, and blue in the case of RGB space. Each point in the space represents a unique color, and the
point’s location along each dimension is called a component. An individual color is usually specified by the
numeric values of its components, which range from 0.0 to 1.0. For instance, a pure red is specified in RGB
space by the component values 1.0, 0.0, and 0.0.

Some color spaces include an alpha component, which defines the color’s opacity. An alpha value of 1.0
means completely opaque, and 0.0 means completely transparent. The alpha component is ignored when
the color is used on a device that doesn’t support alpha, such as a printer.

There are three kinds of color spaces in the Application Kit:

• Device-dependent. This means that a given color might not look the same on different displays and
printers. The components of a device-dependent color correspond to the inks in a printer or the electron
guns in a monitor. Because printer inks and screen phosphors vary from device to device, you can’t expect
a consistent color from a device-dependent color space.

• Device-independent, also known as calibrated. With this sort of color space, a given color should look
the same on all devices.

• Named. The “named color space” has components that aren’t numeric values, but simply names in
various catalogs of colors. Named colors come with lookup tables that provide the ability to generate the
correct color on a given device.

NSColors provided by the Application Kit use eight different color spaces, referred to by these global
NSString variables:

Global Variable Color Space Description

NSDeviceCMYKColorSpace Cyan, magenta, yellow, black, and alpha components

NSDeviceWhiteColorSpace White and alpha components

NSDeviceBlackColorSpace Black and alpha components

NSDeviceRGBColorSpace
Red, green, blue, and alpha components
Hue, saturation, brightness, and alpha components

NSCalibratedWhiteColorSpace White and alpha components

3

 Classes: NSColor

Color spaces whose names start with “NSDevice” are device-dependent; those whose names start with
“NSCalibrated” are device-independent.

Color Components

There’s usually no need to retrieve the individual components of a color, but when needed, you can either
retrieve a set of components (using such methods as getRed:green:blue:alpha:) or an individual
component (using such methods as redComponent). However, it’s illegal to ask an NSColor for
components that aren’t defined for its color space. You can identify the color space by sending a
colorSpaceName message to the NSColor object. If you need to ask an NSColor for components that aren’t
in its color space (for instance, when you’ve gotten the color from the color panel), first convert the color
to the appropriate color space using the colorUsingColorSpaceName: method. If the color is already in
the specified color space, you get the same color back; otherwise you get a conversion that’s usually lossy
or that’s correct only for the current device. You get back nil if the specified conversion can’t be done.

Creating Subclasses

Subclasses of NSColor need to implement the colorSpaceName and set methods, as well as the methods
that return the components for that color space and the methods in the NSCoding protocol. Some other
methods—such as colorWithAlphaComponent: , isEqual:, and colorUsingColorSpaceName:device:—
may also be implemented if they make sense for the color space. Mutable subclasses (if any) should
additionally implement copyWithZone: to provide a true copy.

System Colors

NSColor has a number of methods which return “system” colors; colors that are controlled by user
preferences. These colors—including controlColor, textColor, and selectedTextColor—should be used
by developers who want to create custom controls or subclass existing controls which honor the user's color
preferences. System colors are implemented as named colors in a special color list named “System.” To
extract the components of a system color, you must use NSColor's colorUsingColorSpaceName: method
to convert the color to a color space known to respond to the component accessor methods you need.

NSCalibratedBlackColorSpace Black and alpha components

NSCalibratedRGBColorSpace
Red, green, blue, and alpha components
Hue, saturation, brightness, and alpha components

NSNamedColorSpace Catalog name and color name components

Global Variable Color Space Description

4

An NSSystemColorsDidChangeNotification is sent when the system colors have been changed (such as
through a system control panel interface). If you have any non-system colors that depend on the system
colors, you can change them when you receive this notification.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

Method Types

Creating an NSColor object from Component Values
+ colorWithCalibratedHue:saturation:brightness:alpha:
+ colorWithCalibratedRed:green:blue:alpha:
+ colorWithCalibratedWhite:alpha:
+ colorWithCatalogName:colorName:
+ colorWithDeviceCyan:magenta:yellow:black:alpha:
+ colorWithDeviceHue:saturation:brightness:alpha:
+ colorWithDeviceRed:green:blue:alpha:
+ colorWithDeviceWhite:alpha:

Creating an NSColor With Preset Components
+ blackColor
+ blueColor
+ brownColor
+ clearColor
+ cyanColor
+ darkGrayColor
+ grayColor
+ greenColor
+ lightGrayColor
+ magentaColor
+ orangeColor
+ purpleColor
+ redColor
+ whiteColor
+ yellowColor

5

 Classes: NSColor

Creating a system color—that is, an NSColor whose value is specified by user preferences
+ controlBackgroundColor
+ controlColor
+ controlHighlightColor
+ controlLightHighlightColor
+ controlShadowColor
+ controlDarkShadowColor
+ controlTextColor
+ disabledControlTextColor
+ gridColor
+ highlightColor
+ knobColor
+ scrollBarColor
+ selectedControlColor
+ selectedControlTextColor
+ selectedMenuItemColor
+ selectedMenuItemTextColor
+ selectedTextBackgroundColor
+ selectedTextColor
+ selectedKnobColor
+ shadowColor
+ textBackgroundColor
+ textColor
+ windowFrameColor
+ windowFrameTextColor

Ignoring Alpha Components
+ ignoresAlpha
+ setIgnoresAlpha:

Copying and Pasting
+ colorFromPasteboard:
– writeToPasteboard:

Retrieving a Set of Components
– getCyan:magenta:yellow:black:alpha:
– getHue:saturation:brightness:alpha:
– getRed:green:blue:alpha:
– getWhite:alpha:

6

Retrieving Individual Components
– alphaComponent
– blackComponent
– blueComponent
– brightnessComponent
– catalogNameComponent
– colorNameComponent
– cyanComponent
– greenComponent
– hueComponent
– localizedCatalogNameComponent
– localizedColorNameComponent
– magentaComponent
– redComponent
– saturationComponent
– whiteComponent
– yellowComponent

Converting to Another Color Space
– colorSpaceName
– colorUsingColorSpaceName:
– colorUsingColorSpaceName:device:

Changing the Color
– blendedColorWithFraction:ofColor:
– colorWithAlphaComponent:
– highlightWithLevel:
– shadowWithLevel:

Drawing
– drawSwatchInRect:
– set

Class Methods

blackColor
+ (NSColor *)blackColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale value is 0.0 and whose alpha value
is 1.0.

See also: – blackComponent

7

 Classes: NSColor

blueColor
+ (NSColor *)blueColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is 0.0, 0.0, 1.0 and whose alpha
value is 1.0.

See also: – blueComponent

brownColor
+ (NSColor *)brownColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is 0.6, 0.4, 0.2 and whose alpha
value is 1.0.

clearColor
+ (NSColor *)clearColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale and alpha values are both 0.0.

colorFromPasteboard:
+ (NSColor *)colorFromPasteboard:(NSPasteboard *)pasteBoard

Returns the NSColor currently on the pasteboard, or nil if the pasteboard doesn’t contain color data. The
returned color’s alpha component is set to 1.0 if ignoresAlpha returns YES.

See also: – writeToPasteboard:

colorWithCalibratedHue:saturation:brightness:alpha:
+ (NSColor *)colorWithCalibratedHue: (float)hue

saturation:(float)saturation
brightness:(float)brightness
alpha:(float)alpha

Creates and returns an NSColor whose color space is NSCalibratedRGBColorSpace, whose opacity value
is alpha, and whose components in HSB space would be hue, saturation, and brightness. (Values below 0.0
are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.)

See also: + colorWithCalibratedRed:green:blue:alpha:, + colorWithDeviceHue:saturation:
brightness:alpha:, – getHue:saturation:brightness:alpha:

8

colorWithCalibratedRed:green:blue:alpha:
+ (NSColor *)colorWithCalibratedRed: (float)red

green:(float)green
blue:(float)blue
alpha:(float)alpha

Creates and returns an NSColor whose color space is NSCalibratedRGBColorSpace, whose opacity value
is alpha, and whose RGB components are red, green, and blue. (Values below 0.0 are interpreted as 0.0,
and values above 1.0 are interpreted as 1.0.)

See also: + colorWithCalibratedHue:saturation:brightness:alpha: , + colorWithDeviceRed:green:
blue:alpha:, – getRed:green:blue:alpha:

colorWithCalibratedWhite:alpha:
+ (NSColor *)colorWithCalibratedWhite: (float)white

alpha:(float)alpha

Creates and returns an NSColor whose color space is NSCalibratedWhiteColorSpace, whose opacity value
is alpha, and whose grayscale value is white. (Values below 0.0 are interpreted as 0.0, and values above 1.0
are interpreted as 1.0.)

See also: + colorWithDeviceWhite:alpha:, – getWhite:alpha:

colorWithCatalogName:colorName:
+ (NSColor *)colorWithCatalogName:(NSString *)listName

 colorName:(NSString *)colorName

Creates and returns an NSColor whose color space is NSNamedColorSpace, by finding the color named
colorName in the catalog named listName, which may be a standard catalog.

See also: – catalogNameComponent, – colorNameComponent, – localizedCatalogNameComponent

colorWithDeviceCyan:magenta:yellow:black:alpha:
+ (NSColor *)colorWithDeviceCyan:(float)cyan

magenta:(float)magenta
yellow:(float)yellow
black:(float)black
alpha:(float)alpha

Creates and returns an NSColor whose color space is NSDeviceCMYKColorSpace, whose opacity value is
alpha, and whose CMYK components are cyan, magenta, yellow, and black. (Values below 0.0 are

9

 Classes: NSColor

interpreted as 0.0, and values above 1.0 are interpreted as 1.0.) In PostScript, this colorspace corresponds
directly to the device-dependent operator setcmykcolor.

See also: – getCyan:magenta:yellow:black:alpha:

colorWithDeviceHue:saturation:brightness:alpha:
+ (NSColor *)colorWithDeviceHue:(float)hue

saturation:(float)saturation
brightness:(float)brightness
alpha:(float)alpha

Creates and returns an NSColor whose color space is NSDeviceRGBColorSpace, whose opacity value is
alpha, and whose components in HSB space would be hue, saturation, and brightness. (Values below 0.0
are interpreted as 0.0, and values above 1.0 are interpreted as 1.0.) In PostScript, this colorspace
corresponds directly to the device-dependent operator setrgbcolor.

See also: + colorWithCalibratedHue:saturation:brightness:alpha: , + colorWithDeviceRed:green:
blue:alpha:, – getHue:saturation:brightness:alpha:

colorWithDeviceRed:green:blue:alpha:
+ (NSColor *)colorWithDeviceRed:(float)red

green:(float)green
blue:(float)blue
alpha:(float)alpha

Creates and returns an NSColor whose color space is NSDeviceRGBColorSpace, whose opacity value is
alpha, and whose RGB components are red, green, and blue. (Values below 0.0 are interpreted as 0.0, and
values above 1.0 are interpreted as 1.0.) In PostScript, this colorspace corresponds directly to the
device-dependent operator setrgbcolor.

See also: + colorWithCalibratedRed:green:blue:alpha:, + colorWithDeviceHue:saturation:
brightness:alpha:, – getRed:green:blue:alpha:

colorWithDeviceWhite:alpha:
+ (NSColor *)colorWithDeviceWhite:(float)white

alpha:(float)alpha

Creates and returns an NSColor whose color space is NSDeviceWhiteColorSpace, whose opacity value is
alpha, and whose grayscale value is white. (Values below 0.0 are interpreted as 0.0, and values above 1.0

10

are interpreted as 1.0.) In PostScript, this colorspace corresponds directly to the device-dependent operator
setgray.

See also: + colorWithCalibratedWhite:alpha: , – getWhite:alpha:

controlBackgroundColor
+ (NSColor *)controlBackgroundColor

Returns the system color used for the background of large controls such as browsers, table views and clip
views. By default, this color is light gray on the Macintosh, and COLOR_WINDOW on Windows. For
general information on system colors, see the “System Colors” section of the class description, above.

controlColor
+ (NSColor *)controlColor

Returns the system color used for the flat surfaces of a control. By default, the control color is light gray on
the Macintosh, and COLOR_3DFACE in Windows. A control’s beveled edges, which set it in relief, are
drawn in the colors returned by controlShadowColor, controlDarkShadowColor,
controlHighlightColor and controlLightHighlightColor . When a control is selected—that is, clicked or
dragged—it changes to the color returned by selectedControlColor.

The return value of controlColor is also the system color used for window backgrounds. For general
information about system colors, see the “System Colors” section of the class description, above.

controlDarkShadowColor
+ (NSColor *)controlDarkShadowColor

Returns the system color used for the dark edge of the shadow dropped from controls. Controls are
displayed as though they were lit from the upper left. Two dark borders, representing shadows, run along
the bottom and right. controlDarkShadowColor returns the color of the outer, darker border. By default,
this color is black on the Macintosh, and COLOR_3DDKSHADOW on Windows. For general information
about system colors, see the “System Colors” section of the class description, above.

See also: + controlShadowColor

controlHighlightColor
+ (NSColor *)controlHighlightColor

Returns the system color used for the highlighted bezels of controls. Controls are displayed as though they
were lit from the upper left. Two light borders, representing reflections from the light source, run along the

11

 Classes: NSColor

top and left. controlHighlightColor returns the color of the inner, duller border. By default, this color is
light gray on the Macintosh, and COLOR_3DLIGHT on Windows. For general information about system
colors, see the “System Colors” section of the class description, above.

See also: + controlLightHighlightColor

controlLightHighlightColor
+ (NSColor *)controlLightHighlightColor

Returns the system color used for light highlights in controls. Controls are displayed as though they were
lit from the upper left. Two light borders, representing reflections from the light source, run along the top
and left. controlLightHighlightColor returns the color of the outer, brighter border. By default, this color
is white on the Macintosh, and COLOR_3DHILIGHT on Windows. For general information about system
colors, see the “System Colors” section of the class description, above.

See also: + controlHighlightColor

controlShadowColor
+ (NSColor *)controlShadowColor

Returns the system color used for the shadows dropped from controls. Controls are displayed as though they
were lit from the upper left. Two dark borders, representing shadows, run along the bottom and right.
controlShadowColor returns the color of the inner, lighter border. By default, this color is dark gray on the
Macintosh, and COLOR_3DSHADOW on Windows. For general information about system colors, see the
“System Colors” section of the class description, above.

See also: + controlDarkShadowColor

controlTextColor
+ (NSColor *)controlTextColor

Returns the system color used for text on controls that aren’t disabled. By default, the text color is black on
the Macintosh, and COLOR_BTNTEXT on Windows. For general information about system colors, see the
“System Colors” section of the class description, above.

See also: + disabledControlTextColor

12

cyanColor
+ (NSColor *)cyanColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is 0.0, 1.0, 1.0 and whose alpha
value is 1.0.

See also: – cyanComponent

darkGrayColor
+ (NSColor *)darkGrayColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale value is 1/3 and whose alpha value
is 1.0.

See also: + lightGrayColor , + grayColor

disabledControlTextColor
+ (NSColor *)disabledControlTextColor

Returns the system color used for text on disabled controls. By default, the text color is dark gray on the
Macintosh, and COLOR_3DSHADOW on Windows. For general information about system colors, see the
“System Colors” section of the class description, above.

See also: + controlTextColor

grayColor
+ (NSColor *)grayColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale value is 0.5 and whose alpha value
is 1.0.

See also: + lightGrayColor , + darkGrayColor

greenColor
+ (NSColor *)greenColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is 0.0, 1.0, 0.0 and whose alpha
value is 1.0.

See also: – greenComponent

13

 Classes: NSColor

gridColor
+ (NSColor *)gridColor

Returns the system color used for the optional gridlines in, for example, a table view. By default, this color
is gray on the Macintosh, and COLOR_3DFACE on Windows. For general information about system
colors, see the “System Colors” section of the class description, above.

highlightColor
+ (NSColor *)highlightColor

Returns the system color that represents the virtual light source on the screen. By default, this color is white
on the Macintosh, and COLOR_3DHILIGHT on Windows. This method is invoked by the
highlightWithLevel: method. For general information about system colors, see the “System Colors”
section of the class description, above.

See also: – highlightWithLevel:

knobColor
+ (NSColor *)knobColor

Returns the system color used for the flat surface of a slider knob that hasn’t been selected. By default, this
color is light blue on the Macintosh, and COLOR_3DFACE on Windows. The knob’s beveled edges, which
set it in relief, are drawn in highlighted and shadowed versions of the face color. When a knob is selected,
its color changes to selectedKnobColor. For general information about system colors, see the “System
Colors” section of the class description, above.

ignoresAlpha
+ (BOOL)ignoresAlpha

Returns YES if the application doesn’t support alpha. This value returned is consulted when an application
imports alpha (through color dragging, for instance). The value determines whether the color panel has an
opacity slider. This value is YES by default, indicating that the opacity components of imported colors will
be set to 1.0. If an application wants alpha, it can invoke the setIgnoresAlpha: method with a parameter of
NO.

See also: + setIgnoresAlpha:, – alphaComponent

14

lightGrayColor
+ (NSColor *)lightGrayColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale value is 2/3 and whose alpha value
is 1.0.

See also: + grayColor, + darkGrayColor

magentaColor
+ (NSColor *)magentaColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is 1.0, 0.0, 1.0 and whose alpha
value is 1.0.

See also: – magentaComponent

orangeColor
+ (NSColor *)orangeColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is 1.0, 0.5, 0.0 and whose alpha
value is 1.0.

purpleColor
+ (NSColor *)purpleColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is 0.5, 0.0, 0.5 and whose alpha
value is 1.0.

redColor
+ (NSColor *)redColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is 1.0, 0.0, 0.0 and whose alpha
value is 1.0.

See also: – redComponent

15

 Classes: NSColor

scrollBarColor
+ (NSColor *)scrollBarColor

Returns the system color used for scroll “bars”—that is, for the groove in which a scroller’s knob moves.
By default, this color is gray on the Macintosh, and COLOR_SCROLLBAR on Windows. On Windows,
when a scroll bar is dragged, its color changes to the return value of selectedControlColor; on the
Macintosh, however, its color does not change. For general information about system colors, see the
“System Colors” section of the class description, above.

selectedControlColor
+ (NSColor *)selectedControlColor

Returns the system color used for the face of a selected control—that is a control being clicked or dragged.
By default, this color is white on the Macintosh, and COLOR_HIGHLIGHT on Windows. For general
information about system colors, see the “System Colors” section of the class description, above.

See also: + selectedControlTextColor

selectedControlTextColor
+ (NSColor *)selectedControlTextColor

Returns the system color used for text in a selected control—that is a control being clicked or dragged. By
default, this color is black on the Macintosh, and COLOR_HIGHLIGHTTEXT on Windows. For general
information about system colors, see the “System Colors” section of the class description, above.

See also: + selectedControlColor

selectedKnobColor
+ (NSColor *)selectedKnobColor

Returns the system color used for the slider knob when it is selected—that is, dragged. By default, this color
is light blue on the Macintosh, and COLOR_HIGHLIGHT on Windows. For general information about
system colors, see the “System Colors” section of the class description, above.

See also: + knobColor

16

selectedMenuItemColor
+ (NSColor *)selectedMenuItemColor

Returns the system color used for the face of selected menu items. By default, this color is white on the
Macintosh, and COLOR_HIGHLIGHT on Windows. For general information about system colors, see the
“System Colors” section of the class description, above.

See also: + selectedMenuItemTextColor

selectedMenuItemTextColor
+ (NSColor *)selectedMenuItemTextColor

Returns the system color used for the text in menu items. By default, this color is black on the Macintosh,
and COLOR_HIGHLIGHTTEXT on Windows. For general information about system colors, see the
“System Colors” section of the class description, above.

See also: + selectedMenuItemColor

selectedTextBackgroundColor
+ (NSColor *)selectedTextBackgroundColor

Returns the system color used for the background of selected text. By default, this color is light gray on the
Macintosh, and COLOR_HIGHLIGHT on Windows. For general information about system colors, see the
“System Colors” section of the class description, above.

See also: + selectedTextColor

selectedTextColor
+ (NSColor *)selectedTextColor

Returns the system color used for selected text. By default, this color is black on the Macintosh, and
COLOR_HIGHLIGHTTEXT on Windows. For general information about system colors, see the “System
Colors” section of the class description, above.

See also: + selectedTextBackgroundColor

setIgnoresAlpha:
+ (void)setIgnoresAlpha:(BOOL)flag

If flag is YES, The application won’t support alpha. In this case, no opacity slider is displayed in the color
panel, and colors dragged in or pasted have their alpha values set to 1.0. Applications which need to import

17

 Classes: NSColor

alpha can invoke this method with flag set to NO and explicitly make colors opaque in cases where it matters
to them.

See also: + ignoresAlpha, – alphaComponent

shadowColor
+ (NSColor *)shadowColor

Returns the system color that represents the virtual shadows cast by raised objects on the screen. This
method is invoked by shadowWithLevel:. By default, the color it returns is black on the Macintosh, and
COLOR_3DDKSHADOW on Windows. For general information about system colors, see the “System
Colors” section of the class description, above.

See also: – shadowWithLevel:

textBackgroundColor
+ (NSColor *)textBackgroundColor

Returns the system color used for the text background. By default, this color is white on the Macintosh, and
COLOR_WINDOW on Windows. When text is selected, its background color changes to the return value
of selectedTextBackgroundColor. For general information about system colors, see the “System Colors”
section of the class description, above.

See also: + textColor

textColor
+ (NSColor *)textColor

Returns the system color used for text. By default, this color is black on the Macintosh, and
COLOR_WINDOWTEXT on Windows. When text is selected, its background color changes to the return
value of selectedTextColor. For general information about system colors, see the “System Colors” section
of the class description, above.

See also: + textBackgroundColor

whiteColor
+ (NSColor *)whiteColor

Returns an NSColor in NSCalibratedWhiteColorSpace whose grayscale and alpha values are both 1.0.

See also: – whiteComponent

18

windowFrameColor
+ (NSColor *)windowFrameColor

Returns the system color used for window frames, except for their text. By default, this color is gray on the
Macintosh, and COLOR_ACTIVEBORDER on Windows. For general information about system colors,
see the “System Colors” section of the class description, above.

See also: + windowFrameTextColor

windowFrameTextColor
+ (NSColor *)windowFrameTextColor

Returns the system color used for the text in window frames. By default, this color is black on the
Macintosh, and COLOR_CAPTIONTEXT on Windows. For general information about system colors, see
the “System Colors” section of the class description, above.

See also: + windowFrameColor

yellowColor
+ (NSColor *)yellowColor

Returns an NSColor in NSCalibratedRGBColorSpace whose RGB value is 1.0, 1.0, 0.0 and whose alpha
value is 1.0.

See also: – yellowComponent

Instance Methods

alphaComponent
– (float)alphaComponent

Returns the receiver’s alpha (opacity) component. Returns 1.0 (opaque) if the receiver has no alpha
component.

See also: – getCyan:magenta:yellow:black:alpha:, – getHue:saturation:brightness:alpha:,
– getRed:green:blue:alpha:, – getWhite:alpha:

19

 Classes: NSColor

blackComponent
– (float)blackComponent

Returns the receiver’s black component. Raises an exception if the receiver isn’t a CMYK color.

See also: – getCyan:magenta:yellow:black:alpha:

blendedColorWithFraction:ofColor:
– (NSColor *)blendedColorWithFraction: (float)fraction

ofColor: (NSColor *)color

Creates and returns an NSColor in NSCalibratedRGBColorSpace whose component values are a weighted
sum of the receiver’s and color’s. The method converts color and a copy of the receiver to RGB, and then
sets each component of the returned color to fraction of color’s value plus 1 – fraction of the receiver’s.
Returns nil if the colors can’t be converted to NSCalibratedRGBColorSpace.

blueComponent
– (float)blueComponent

Returns the receiver’s blue component. Raises an exception if the receiver isn’t an RGB color.

See also: – getRed:green:blue:alpha:

brightnessComponent
– (float)brightnessComponent

Returns the brightness component of the HSB color equivalent to the receiver. Raises an exception if the
receiver isn’t an RGB color.

See also: – getHue:saturation:brightness:alpha:

catalogNameComponent
– (NSString *)catalogNameComponent

Returns the name of the catalog containing the receiver’s name, or raises an exception if the receiver’s color
space isn’t NSNamedColorSpace.

See also: + colorWithCatalogName:colorName:, – colorNameComponent,
– localizedCatalogNameComponent

20

colorNameComponent
– (NSString *)colorNameComponent

Returns the receiver’s name, or raises an exception if the receiver’s color space isn’t NSNamedColorSpace.

See also: + colorWithCatalogName:colorName:, – catalogNameComponent,
– localizedCatalogNameComponent

colorSpaceName
– (NSString *)colorSpaceName

Returns the name of the receiver’s color space. This method should be implemented in subclasses of
NSColor.

See also: – colorUsingColorSpaceName:, – colorUsingColorSpaceName:device:

colorUsingColorSpaceName:
– (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace

Creates and returns an NSColor whose color is the same as the receiver’s, except that the new NSColor is
in the color space named colorSpace. If colorSpace is nil , the most appropriate color space is used.

Returns nil if the specified conversion cannot be done.

See also: – colorSpaceName

colorUsingColorSpaceName:device:
– (NSColor *)colorUsingColorSpaceName:(NSString *)colorSpace

device:(NSDictionary *)deviceDescription

Creates and returns an NSColor whose color is the same as the receiver’s, except that the new NSColor is
in the color space named colorSpace and is specific to the device described by deviceDescription. Device
descriptions can be obtained from windows, screens, and printers with the deviceDescription method. If
colorSpace is nil , the most appropriate color space is used.

If deviceDescription is nil, the current device (as obtained from the currently lockFocus’ed view’s window
or, if printing, the current printer) is used.

Returns nil if the specified conversion cannot be done.

See also: – colorSpaceName, – colorUsingColorSpaceName:

21

 Classes: NSColor

colorWithAlphaComponent:
– (NSColor *)colorWithAlphaComponent: (float)alpha

Creates and returns an NSColor that has the same color space and component values as the receiver, except
that its alpha component is alpha. If the receiver’s color space doesn’t include an alpha component, the
receiver is returned. A subclass which has explicit opacity components should override this method to return
a color with the specified alpha.

See also: – alphaComponent, – blendedColorWithFraction:ofColor:

cyanComponent
– (float)cyanComponent

Returns the receiver’s cyan component. Raises an exception if the receiver isn’t a CMYK color.

See also: – getCyan:magenta:yellow:black:alpha:

drawSwatchInRect:
– (void)drawSwatchInRect:(NSRect)rect

Draws the current color in the rectangle rect. Subclasses adorn the rectangle in some manner to indicate the
type of color. This method is invoked by color wells, swatches, and other user-interface objects that need to
display colors.

getCyan:magenta:yellow:black:alpha:
– (void)getCyan:(float *)cyan

magenta:(float *)magenta
yellow:(float *)yellow
black:(float *)black
alpha:(float *)alpha

Returns the receiver’s CMYK and alpha values in the respective arguments. If NULL is passed in as an
argument, the method doesn’t set that value. Raises an exception if the receiver isn’t a CMYK color.

See also: – alphaComponent, – blackComponent, – cyanComponent, – magentaComponent,
– yellowComponent

22

getHue:saturation:brightness:alpha:
– (void)getHue:(float *)hue

saturation:(float *)saturation
brightness:(float *)brightness
alpha:(float *)alpha

Returns the receiver’s HSB and alpha values in the respective arguments. If NULL is passed in as an
argument, the method doesn’t set that value. Raises an exception if the receiver isn’t an RGB color.

See also: – alphaComponent, – brightnessComponent, – hueComponent, – saturationComponent

getRed:green:blue:alpha:
– (void)getRed:(float *)red

green:(float *)green
blue:(float *)blue
alpha:(float *)alpha

Returns the receiver’s RGB and alpha values in the respective arguments. If NULL is passed in as an
argument, the method doesn’t set that value. Raises an exception if the receiver isn’t an RGB color.

See also: – alphaComponent, – blueComponent, – greenComponent, – redComponent

getWhite:alpha:
– (void)getWhite:(float *)white

alpha:(float *)alpha

Returns the receiver’s grayscale and alpha values in the respective arguments. If NULL is passed in as an
argument, the method doesn’t set that value. Raises an exception if the receiver isn’t a grayscale color.

See also: – alphaComponent, – whiteComponent

greenComponent
– (float)greenComponent

Returns the receiver’s green component. Raises an exception if the receiver isn’t an RGB color.

See also: – getRed:green:blue:alpha:

23

 Classes: NSColor

highlightWithLevel:
– (NSColor *)highlightWithLevel: (float)highlightLevel

Returns an NSColor in NSCalibratedRGBColorSpace that represents a blend between the receiver and the
highlight color—that is, the NSColor returned by highlightColor . The highlight color’s contribution to the
blend depends on highlightLevel, which should be a number between 0.0 and 1.0. (A highlightLevel below
0.0 is interpreted as 0.0; a highlightLevel above 1.0 is interpreted as 1.0.)

Returns nil if the colors can’t be converted to NSCalibratedRGBColorSpace. Invoke this method when you
want to brighten the receiving NSColor for use in highlights.

See also: – shadowWithLevel:

hueComponent
– (float)hueComponent

Returns the hue component of the HSB color equivalent to the receiver. Raises an exception if the receiver
isn’t an RGB color.

See also: – getHue:saturation:brightness:alpha:

localizedCatalogNameComponent
– (NSString *)localizedCatalogNameComponent

Like catalogNameComponent, but returns a localized string. This string may be displayed in
user-interface items like color pickers.

See also: + colorWithCatalogName:colorName:, – colorNameComponent

localizedColorNameComponent
– (NSString *)localizedColorNameComponent

Like colorNameComponent, but returns a localized string. This string may be displayed in user-interface
items like color pickers.

See also: + colorWithCatalogName:colorName:, – catalogNameComponent,
– colorNameComponent, – localizedCatalogNameComponent

24

magentaComponent
– (float)magentaComponent

Returns the receiver’s magenta component. Raises an exception if the receiver isn’t a CMYK color.

See also: – getCyan:magenta:yellow:black:alpha:

redComponent
– (float)redComponent

Returns the receiver’s red component. Raises an exception if the receiver isn’t an RGB color.

See also: – getRed:green:blue:alpha:

saturationComponent
– (float)saturationComponent

Returns the saturation component of the HSB color equivalent to the receiver. Raises an exception if the
receiver isn’t an RGB color.

See also: – getHue:saturation:brightness:alpha:

set
– (void)set

Sets the color of subsequent PostScript drawing to the color that the receiver represents. If the application
is drawing to the screen rather than printing, this method also sets the current drawing context’s alpha value
to the value returned by alphaComponent; if the color doesn’t know about alpha, it’s set to 1.0. This
method should be implemented in subclasses.

shadowWithLevel:
– (NSColor *)shadowWithLevel:(float)shadowLevel

Returns an NSColor in NSCalibratedRGBColorSpace that represents a blend between the receiver and the
shadow color—that is, the NSColor returned by shadowColor. The shadow color’s contribution to the
blend depends on shadowLevel, which should be a number between 0.0 and 1.0. (A shadowLevel below 0.0
is interpreted as 0.0; a shadowLevel above 1.0 is interpreted as 1.0.)

25

 Classes: NSColor

Returns nil if the colors can’t be converted to NSCalibratedRGBColorSpace. Invoke this method when you
want to darken the receiving NSColor for use in shadows.

See also: – highlightWithLevel:

whiteComponent
– (float)whiteComponent

Returns the receiver’s white component. Raises an exception if the receiver isn’t a grayscale color.

See also: – getWhite:alpha:

writeToPasteboard:
– (void)writeToPasteboard:(NSPasteboard *)pasteBoard

Writes the receiver’s data to the pasteboard, unless the pasteboard doesn’t support color data (in which case
the method does nothing).

See also: + colorFromPasteboard:

yellowComponent
– (float)yellowComponent

Returns the receiver’s yellow component. Raises an exception if the receiver isn’t a CMYK color.

See also: – getCyan:magenta:yellow:black:alpha:

Notifications

NSSystemColorsDidChangeNotification

Sent when the system colors have been changed (such as through a system control panel interface).

This notification contains no notification object and no userInfo dictionary.

1

 Classes: NSColorList

NSColorList

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSColorList.h

Class Description

An NSColorList is an ordered list of NSColors, identified by keys. Instances of NSColorList, or more
simply, color lists, are used to manage named lists of NSColors. NSColorPanel’s list-mode color picker
uses instances of NSColorList to represent any lists of colors that come with the system, as well as any lists
created by the user. An application can use NSColorList to manage document-specific color lists, which
may be added to an application’s NSColorPanel using its attachColorList: method.

An NSColorList is similar to a dictionary object: An NSColor is added to, looked up in, and removed from
the list by specifying its key, which is an NSString. These keys are used to identify the colors in the list and
are used to display the color to the user in the color panel. In addition, colors can be inserted at specified
positions in the list.

The color list has a name, specified when you create the object using either the initWithName: or
initWithName:fromFile: method.

Instances of NSColorList are created for all user-created color lists (those in the color panel) and various
color catalogs available on the system.

An NSColorList saves and retrieves its colors from files with the extension “.clr” in directories defined by
a standard search path. To access all the color lists in the standard search path, use the availableColorLists
method; this returns an array of NSColorLists, from which you can retrieve the individual color lists by
name.

The standard search path for color lists is:

• /NextLibrary/Colors
• /LocalLibrary/Colors
• ~/Library/Colors

NSColorList reads color list files in several different formats; it saves color lists using the archiver API.

NSColorList posts an NSColorListChanged notification when a color list is changed.

2

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

Method Types

Initializing an NSColorList
– initWithName:
– initWithName:fromFile:

Getting All Color Lists
+ availableColorLists

Getting a Color List by Name
+ colorListNamed:
– name

Managing Colors by Key
– allKeys
– colorWithKey:
– insertColor:key:atIndex:
– removeColorWithKey:
– setColor:forKey:

Editing
– isEditable

Writing and Removing Files
– removeFile
– writeToFile:

Class Methods

availableColorLists
+ (NSArray *)availableColorLists

Returns an array of all NSColorLists found in the standard color list directories. Color lists created at run
time aren’t included in this list unless they’re saved into one of the standard color list directories.

See also: + colorListNamed:

3

 Classes: NSColorList

colorListNamed:
+ (NSColorList *)colorListNamed:(NSString *)name

Searches the array that’s returned by availableColorLists and returns the NSColorList named name, or nil
if no such color list exists. name must not include the “.clr” suffix.

See also: – name

Instance Methods

allKeys
– (NSArray *)allKeys

Returns an array of NSString objects that contains all the keys by which the NSColors are stored in the
NSColorList. The length of this array equals the number of colors, and its contents are arranged according
to the ordering specified when the colors were inserted.

colorWithKey:
– (NSColor *)colorWithKey: (NSString *)key

Returns the NSColor associated with key, or nil if there is none.

initWithName:
– (id)initWithName: (NSString *)name

Initializes and returns the receiver, registering it under the specified name if name isn’t in use already. This
method invokes initWithName:fromFile: with a fromFile: argument of nil , indicating that the color list
doesn’t need to be initialized from a file.

initWithName:fromFile:
– (id)initWithName: (NSString *)name

fromFile: (NSString *)path

Initializes and returns the receiver, registering it under the specified name if name isn’t in use already. path
should be the full path to the file for the color list; name should be the name of the file for the color list
(minus the “.clr” extension). A nil path indicates that the color list should be initialized with no colors.

4

insertColor:key:atIndex:
– (void)insertColor: (NSColor *)color

key:(NSString *)key
atIndex:(unsigned)location

Inserts color at the specified location in the color list (which is numbered starting with 0). If the list already
contains a color with the same key at a different location, it’s removed from the old location. This method
posts the NSColorListChangedNotification notification to the default notification center. It raises the
NSColorListNotEditableException exception if the color list isn’t editable.

See also: – colorWithKey :, – removeColorWithKey:, – setColor:forKey:

isEditable
– (BOOL)isEditable

Returns YES if the color list can be modified. This depends on the source of the list: If it came from a
write-protected file, this method returns NO.

name
– (NSString *)name

Returns the name of the NSColorList.

removeColorWithKey:
– (void)removeColorWithKey: (NSString *)key

Removes the color associated with key from the list. This method does nothing if the list doesn’t contain the
key. This method posts the NSColorListChangedNotification notification to the default notification center.
It raises the NSColorListNotEditableException exception if the color list is not editable.

See also: – insertColor:key:atIndex: , – setColor:forKey:

removeFile
– (void)removeFile

Removes the file from which the list was created, if the file is in a standard search path and is owned by the
user. The receiver is removed from the list of available color lists returned by availableColorLists, but isn’t
released.

5

 Classes: NSColorList

setColor:forKey:
– (void)setColor:(NSColor *)color

forKey: (NSString *)key

Associates the specified NSColor with key. If the list already contains key, this method sets the
corresponding color to color; otherwise, it inserts color at the end of the list by invoking insertColor:key:
atIndex:.

See also: – colorWithKey:, – insertColor:key:atIndex: , – removeColorWithKey:

writeToFile:
– (BOOL)writeToFile: (NSString *)path

If path is a directory, saves the NSColorList in a file named listname.clr in that directory (where listname
is the name with which the NSColorList was initialized). If path includes a file name, this method saves the
file under that name. If path is nil , this method saves the file as listname.clr in the standard location. Returns
YES upon success and NO if it fails to write the file.

See also: – removeFile

Notifications

NSColorListChangedNotification

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSColorList object that changed.

This notification is posted whenever a color list changes.

1

 Classes: NSColorPanel

NSColorPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSColorPanel.h

Class Description

NSColorPanel provides a standard user interface for selecting color in an application. It provides a number
of standard color selection modes, and, with the NSColorPickingDefault and NSColorPickingCustom
protocols, allows an application to add its own color selection modes. It allows the user to save swatches
containing frequently used colors. Once set, these swatches are displayed by NSColorPanel in any
application where it is used, giving the user color consistency between applications. NSColorPanel enables
users to capture a color anywhere on the screen for use in the active application, or to drag a color from the
color panel into an application view.

When you press the color panel’s “Set” button, NSColorPanel sends a changeColor: message to the first
responder. It also sends its action message (set by setAction:) to its target object (set by setTarget:),
provided that neither the action nor the target is nil . NSColorPanel also sends its action to its target
whenever you select a color in the color panel.

An application has only one instance of NSColorPanel, the shared instance. Invoking the
sharedColorPanel: method returns the shared instance of NSColorPanel, instantiating it if necessary.

You can put NSColorPanel in any application created with Interface Builder by adding the “Colors...” item
from the Menu palette to the application’s menu.

Color Mask and Color Modes

The color mask determines which of the color modes are enabled for NSColorPanel. This mask is set before
you initialize a new instance of NSColorPanel. NSColorPanelAllModesMask represents the logical OR of
the other color mask constants: It causes the NSColorPanel to display all standard color pickers. When
initializing a new instance of NSColorPanel, you can logically OR any combination of color mask constants
to restrict the available color modes.

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

2

The NSColorPanel’s color mode mask is set using the class method setPickerMask:. The mask must be set
before creating an application’s instance of NSColorPanel.

When an application’s instance of NSColorPanel is masked for more than one color mode, your program
can set its active mode by invoking the setMode: method with a color mode constant as its argument; the
user can set the mode by clicking buttons on the panel. Here are the standard color modes and mode
constants:

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpButtons for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

Red-Green-Blue NSColorPanelRGBModeMask

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

Custom palette NSColorPanelCustomPaletteModeMask

Custom color list NSColorPanelColorListModeMask

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

Mode Color Mask Constant

3

 Classes: NSColorPanel

If a color panel has been used, it uses whatever mode it was in last as the default mode when
NSColorPanelAllModesMask is used to initialize the NSColorPanel. Otherwise, it uses color wheel mode.

Associated Classes and Protocols

The NSColorList class provides an API for managing custom color lists. The NSColorPanel methods
attachColorList: and detachColorList: let your application add and remove custom lists from the
NSColorPanel’s user interface.

The protocols NSColorPickingDefault and NSColorPickingCustom provide an API for adding custom
color selection to the user interface. The NSColorPicker class implements the NSColorPickingDefault
protocol; you can subclass NSColorPicker and implement the NSColorPickingCustom protocol in your
subclass to create your own user interface for color selection. NSColorPanel dynamically loads
NSColorPickers from the following directories: ~/Library/ColorPickers/, /LocalLibrary/ColorPickers/, and
/NextLibrary/ColorPickers/.

Method Types

Creating the NSColorPanel
+ sharedColorPanel
+ sharedColorPanelExists

Setting color picker modes
+ setPickerMask:
+ setPickerMode:

Setting the NSColorPanel
– accessoryView
– isContinuous
– mode
– setAccessoryView:
– setAction:
– setContinuous:
– setMode:
– setShowsAlpha:
– setTarget:
– showsAlpha

Attaching a color list
– attachColorList:
– detachColorList:

Setting color
+ dragColor:withEvent:fromView:
– setColor:

4

Getting color information
– alpha
– color

Class Methods

dragColor:withEvent:fromView:
+ (BOOL)dragColor: (NSColor *)color

withEvent: (NSEvent *)anEvent
fromView: (NSView *)sourceView

Drags color into a destination view from sourceView. This method is usually invoked by the mouseDown:
method of sourceView. The dragging mechanism handles all subsequent events.

Because it is a class method, dragColor:withEvent:fromView: can be invoked whether or not the instance
of NSColorPanel exists. Returns YES.

setPickerMask:
+ (void)setPickerMask:(int)mask

Accepts as a parameter one or more logically ORed color mode masks (defined in the header file
AppKit/NSColorPanel.h):

• NSColorPanelGrayModeMask
• NSColorPanelRGBModeMask
• NSColorPanelCMYKModeMask
• NSColorPanelHSBModeMask
• NSColorPanelCustomPaletteModeMask
• NSColorPanelColorListModeMask
• NSColorPanelWheelModeMask
• NSColorPanelAllModesMask

This determines which color selection modes will be available in an application’s NSColorPanel. This
method only has an effect before NSColorPanel is instantiated.

If you create a class that implements the color picking protocols (NSColorPickingDefault and
NSColorPickingCustom), you may want to give it a unique mask—one different from those defined for the
standard color pickers. To display your color picker, your application will need to logically OR that unique
mask with the standard color mask constants when invoking this method.

See also: + setPickerMode:

5

 Classes: NSColorPanel

setPickerMode:
+ (void)setPickerMode:(int)mode

Sets the color panel’s initial picker to mode, which may be one of the symbolic constants described in the
class description (declared in the header file AppKit/NSColorPanel.h). The mode determines which picker
will initially be visible. This method may be called at any time, whether or not an application’s
NSColorPanel has been instantiated.

See also: + setPickerMask:, – setMode:

sharedColorPanel
+ (NSColorPanel *)sharedColorPanel

Creates if necessary and returns the shared NSColorPanel.

sharedColorPanelExists
+ (BOOL)sharedColorPanelExists

Returns YES if the NSColorPanel has been created already.

See also: + sharedColorPanel

Instance Methods

accessoryView
– (NSView *)accessoryView

Returns the accessory view, or nil if there is none.

See also: – setAccessoryView:

alpha
– (float)alpha

Returns the NSColorPanel’s current alpha value based on its opacity slider. Returns 1.0 (opaque) if the
panel has no opacity slider.

See also: – setShowsAlpha:, – showsAlpha

6

attachColorList:
– (void)attachColorList: (NSColorList *)colorList

Adds the specified list of NSColors to all the color pickers in the color panel that display color lists by
invoking attachColorList: on all color pickers in the application.

An application should use this method to add an NSColorList saved with a document in its file package or
in a directory other than NSColorList’s standard search directories.

See also: – detachColorList:

color
– (NSColor *)color

Returns the currently selected color in the NSColorPanel.

See also: – setColor:

detachColorList:
– (void)detachColorList:(NSColorList *)colorList

Removes the specified list of NSColors from all the color pickers in the color panel that display color lists
by invoking detachColorList: on all color pickers in the application.

Your application should use this method to remove an NSColorList saved with a document in its file
package or in a directory other than NSColorList’s standard search directories.

See also: – attachColorList:

isContinuous
– (BOOL)isContinuous

Returns whether or not the NSColorPanel continuously sends the action message to the target as the user
manipulates the color picker.

See also: – setContinuous:

7

 Classes: NSColorPanel

mode
– (int)mode

Returns the color picker mode of the NSColorPanel. The mode constants for the standard color pickers are
listed in the class description.

See also: + setPickerMode:, – setMode:

setAccessoryView:
– (void)setAccessoryView:(NSView *)aView

Sets the accessory view displayed in the NSColorPanel to aView. The accessory view can be any custom
view that you want to display with NSColorPanel, such as a view offering color blends in a drawing
program. The accessory view is displayed below the color picker and above the color swatches in the
NSColorPanel. The NSColorPanel automatically resizes to accommodate the accessory view. Returns the
previous accessory view, if there was one; otherwise, returns nil .

See also: – accessoryView

setAction:
– (void)setAction:(SEL)action

Sets the action message to action. When you select a color in the color panel, or press the “Set” button,
NSColorPanel sends its action to its target, provided that neither the action nor the target is nil . The action
is nil by default.

See also: – setTarget:

setColor:
– (void)setColor:(NSColor *)color

Sets the color of the NSColorPanel to color. This method posts the NSColorPanelChangedNotification
notification with the receiving object to the default notification center.

See also: – color

8

setContinuous:
– (void)setContinuous:(BOOL)flag

Sets the NSColorPanel to send the action message to its target continuously as the color of the
NSColorPanel is set by the user. Send this message with flag YES if, for example, you want to continuously
update the color of the target.

See also: – isContinuous

setMode:
– (void)setMode:(int)mode

Sets the mode of the NSColorPanel if mode is one of the modes allowed by the color mask. The color mask
is set when you first create the shared instance of NSColorPanel for an application. mode may be one of
these symbolic constants described in the class description (and declared in the header file
AppKit/NSColorPanel.h):

• NSGrayModeColorPanel
• NSRGBModeColorPanel
• NSCMYKModeColorPanel
• NSHSBModeColorPanel
• NSCustomPaletteModeColorPanel
• NSColorListModeColorPanel
• NSWheelModeColorPanel

See also: + setPickerMode:, – mode

setShowsAlpha:
– (void)setShowsAlpha:(BOOL)flag

Tells the NSColorPanel whether or not to show alpha values and an opacity slider.

See also: – alpha, – showsAlpha

setTarget:
– (void)setTarget:(id)target

Sets the target of the NSColorPanel to target. When you select a color in the color panel, or press the “Set”
button, NSColorPanel sends its action to its target, provided that neither the action nor the target is nil . The
target is nil by default.

See also: – setAction:, – setContinuous:

9

 Classes: NSColorPanel

showsAlpha
– (BOOL)showsAlpha

Returns whether or not the NSColorPanel shows alpha values and an opacity slider.

See also: – alpha, – setShowsAlpha:

Notifications

NSColorPanelColorChangedNotification

This notification contains a notification object but no userInfo dictionary. The notification object is the
notifying NSColorPanel. This notification is posted when the NSColorPanel’s color is set, as when
setColor: is invoked.

Methods Implemented by Responders

changeColor:
– (void)changeColor:(id)sender

When the user presses the “Set” button of an NSColorPanel, the NSColorPanel sends a changeColor:
action message to the first responder. You can override this method in any responder that needs to respond
to a color change. sender is the id of the color panel.

1

 Classes: NSColorPicker

NSColorPicker

Inherits From: NSObject

Conforms To: NSColorPickingDefault
NSObject (NSObject)

Declared In: AppKit/NSColorPicker.h

Class Description

NSColorPicker is an abstract superclass that implements the NSColorPickingDefault protocol. The
NSColorPickingDefault and NSColorPickingCustom protocols define a way to add color pickers (custom
user interfaces for color selection) to the NSColorPanel. The simplest way to implement a color picker is
to create a subclass of NSColorPicker, instead of implementing the NSColorPickingDefault protocol in
another kind of object. (To add functionality, implement the NSColorPickingCustom methods in your
subclass.)

The NSColorPickingDefault protocol specification describes the details of implementing a color picker and
adding it to your application’s NSColorPanel; you should look there first for an overview of how
NSColorPicker works. This specification is provided to document the specific behavior of NSColorPicker’s
methods.

Adopted Protocols

NSColorPickingDefault
– alphaControlAddedOrRemoved:
– attachColorList:
– detachColorList:
– initWithPickerMask:colorPanel:
– insertNewButtonImage:in:
– provideNewButtonImage
– setMode:
– viewSizeChanged:

Method Types

Initializing an NSColorPicker
– initWithPickerMask:colorPanel:

2

Getting the color panel
– colorPanel

Adding button images
– insertNewButtonImage:in:
– provideNewButtonImage

Setting the mode
– setMode:

Using color lists
– attachColorList:
– detachColorList:

Responding to a resized view
– viewSizeChanged:

Instance Methods

attachColorList:
– (void)attachColorList: (NSColorList *)colorList

Does nothing. Override to attach a color list to a color picker.

See also: – detachColorList:

colorPanel
– (NSColorPanel *)colorPanel

Returns the NSColorPanel that owns this NSColorPicker.

detachColorList:
– (void)detachColorList:(NSColorList *)colorList

Does nothing. Override to detach a color list from a color picker.

See also: – attachColorList:

3

 Classes: NSColorPicker

initWithPickerMask:colorPanel:
– (id)initWithPickerMask: (int)mask

colorPanel:(NSColorPanel *)owningColorPanel

Sets the color picker’s color panel to owningColorPanel, caching the owningColorPanel value so it can later
be returned by the colorPanel method. Returns self. Override this method to respond to the values in mask
or do other custom initialization. If you override this method in a subclass, you should forward the message
to super as part of the implementation.

See also: – colorPanel

insertNewButtonImage:in:
– (void)insertNewButtonImage:(NSImage *)newButtonImage

in: (NSButtonCell *)buttonCell

Sets newButtonImage as buttonCell’s image by invoking NSButtonCell’s setImage: method. Called by the
color panel to insert a new image into the specified cell. Override this method to customize newButtonImage
before insertion in buttonCell.

See also: – provideNewButtonImage

provideNewButtonImage
– (NSImage *)provideNewButtonImage

Returns the button image for the color picker. The color panel will place this image in the mode button that
the user uses to select this picker. (This is the same image that the color panel uses as an argument when
sending the insertNewButtonImage:in: message.) The default implementation looks in the color picker’s
bundle for a TIFF file named after the color picker’s class, with the extension “.tiff ”.

See also: – insertNewButtonImage:in:

setMode:
– (void)setMode:(int)mode

Does nothing. Override to set the color picker’s mode. Here are the standard color picking modes and mode
constants (defined in AppKit/NSColorPanel.h):

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

4

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

viewSizeChanged:
– (void)viewSizeChanged:(id)sender

Does nothing. Override to respond to a size change.

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

Mode Color Mode Constant

1

 Classes: NSColorWell

NSColorWell

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSColorWell.h

Class Description

NSColorWell is an NSControl for selecting and displaying a single color value. An example of an
NSColorWell object (or simply color well) is found in NSColorPanel, which uses a color well to display
the current color selection. A color well is available from the Palettes panel of Interface Builder.

An application can have one or more active color wells. You can activate multiple color wells by invoking
the activate: method with NO as its argument. When a mouse-down event occurs on a color well’s border,
it becomes the only active color well. When a color well becomes active, it brings up the color panel also.

The mouseDown: method enables a color well to send its color to another color well or any other subclass
of NSView that implements the NSDraggingDestination protocol.

Method Types

Drawing
– drawWellInside:

Activating
– activate:
– deactivate
– isActive

Managing Color
– color
– setColor:
– takeColorFrom:

Managing Borders
– isBordered
– setBordered:

2

Instance Methods

activate:
– (void)activate:(BOOL)exclusive

Activates the NSColorWell, displays the Color panel, and makes the NSColorPanel’s current color the same
as its own. If exclusive is YES, deactivates any other color wells; if NO, keeps them active. Redraws the
receiver. An active color well will have its color updated when the NSColorPanel's current color changes.
Any color well that shows its border highlights the border when it’s active.

See also: – deactivate, – isActive

color
– (NSColor *)color

Returns the color of the NSColorWell.

See also: – setColor:, – takeColorFrom:

deactivate
– (void)deactivate

Deactivates the NSColorWell and redraws it.

See also: – activate:, – isActive

drawWellInside:
– (void)drawWellInside: (NSRect)insideRect

Draws the colored area inside the NSColorWell at the location specified by insideRect without drawing
borders.

isActive
– (BOOL)isActive

Indicates whether the NSColorWell is active.

3

 Classes: NSColorWell

isBordered
– (BOOL)isBordered

Indicates whether the NSColorWell is bordered.

See also: – setBordered:

setBordered:
– (void)setBordered:(BOOL)bordered

Places or removes a border on the NSColorWell, depending on bordered, and redraws the receiver.

See also: – isBordered

setColor:
– (void)setColor:(NSColor *)color

Sets the color of the NSColorWell to color and redraws the receiver.

See also: – color, – takeColorFrom:

takeColorFrom:
– (void)takeColorFrom: (id)sender

Changes the color of the NSColorWell to that of sender.

See also: – color, – setColor:

1

 Classes: NSComboBox

NSComboBox

Inherits From: NSTextField : NSControl : NSView : NSResponder : NSObject

Conforms To: NSObject (NSObject)
NSCoding
NSCopying

Declared In: AppKit/NSComboBox.h

Class Description

An NSComboBox is a kind of NSControl that allows you to either enter text directly (as you would with an
NSTextField), or click the attached arrow at the right of the combo box and select from a displayed
(“pop-up”) list of items. Use this control whenever you want the user to enter information that can be
selected from a finite list of options. Note that while you can construct your NSComboBox so that users are
restricted to only selecting items from the combo box’s pop-up list, this isn’t the combo box’s normal
behavior: a user can either select an item from the list, or enter text that may or may not be contained in the
pop-up list.

While the pop-up list is visible, typing into the text field causes an incremental search to be performed on
the list. If there’s a match, the selection in the pop-up list changes to reflect the match.

The NSComboBox normally looks like this:

When you click the downward-pointing arrow at the right-hand side of the text field the pop-up list appears,
like this:

2

If there isn’t sufficient room for the pop-up list to be displayed below the text field, it’s instead displayed
above the text field. Selecting an item from the list, clicking anywhere outside the control, or activating
another window dismisses the pop-up list.

Providing Data for the Combo Box’s Pop-Up List

The NSComboBox control can be set up to populate the pop-up list either from an internal item list or from
an object that you provide, called its data source. If you use a data source, your data source object can store
items in any way, but it must be able to identify them by an integer index. See the NSComboBoxDataSource
informal protocol specification for more information on constructing an NSComboBox data source.

NSComboBox provides a complete set of methods that allow you to add, insert, and delete items in the
internal item list for combo boxes that don’t use a data source.

Use setUsesDataSource: to specify whether a given combo box uses a data source or maintains an internal
list of items. A combo box can only use one or the other; for instance, if you construct combo box that uses
a data source and then attempt to execute an item-oriented method—such as addItemWithObjectValue:
—a warning will be logged and the method will have no effect.

Interacting with the Text Field

Because NSComboBox is a type of NSControl, you typically use the methods provided by the NSControl
class—such as stringValue, floatValue, or intValue—when working with the contents of the combo box’s
text field; see the NSControl class specification for more information on these methods. NSControl’s
set...Value: methods are also useful, primarily when initializing a combo box. For instance, the following
excerpt shows how to “pre-select” the third item in the list of a combo box that maintains an internal item
list:

[myComboBox selectItemAtIndex:2];// List items start at index 0

[myComboBox setObjectValue:[myComboBox objectValueOfSelectedItem]];

To do the same thing for a combo box that relies upon a data source, use:

[myComboBox selectItemAtIndex:2];

[myComboBox setObjectValue:[myComboBoxDataSource comboBox:myComboBox

objectValueForItemAtIndex:[myComboBox indexOfSelectedItem]]];

Note that NSComboBox is a also a subclass of NSTextField, and thus inherits all of NSTextField’s methods.
NSComboBox relies heavily upon its cell class, NSComboBoxCell. NSComboBoxCell is a
NSTextFieldCell subclass, which combines a text field cell with a button cell.

3

 Classes: NSComboBox

Method Types

Setting display attributes
– hasVerticalScroller
– intercellSpacing
– itemHeight
– numberOfVisibleItems
– setHasVerticalScroller:
– setIntercellSpacing:
– setItemHeight:
– setNumberOfVisibleItems:

Setting a data source
– dataSource
– setDataSource:
– setUsesDataSource:
– usesDataSource

Working with an internal list
– addItemsWithObjectValues:
– addItemWithObjectValue:
– insertItemWithObjectValue:atIndex:
– objectValues
– removeAllItems
– removeItemAtIndex:
– removeItemWithObjectValue:
– numberOfItems

Manipulating the displayed list
– indexOfItemWithObjectValue:
– itemObjectValueAtIndex:
– noteNumberOfItemsChanged
– reloadData
– scrollItemAtIndexToTop:
– scrollItemAtIndexToVisible:

Manipulating the selection
– deselectItemAtIndex:
– indexOfSelectedItem
– objectValueOfSelectedItem
– selectItemAtIndex:
– selectItemWithObjectValue:

Encoding a ComboBox
– encodeWithCoder:
– initWithCoder:

4

Instance Methods

addItemsWithObjectValues:
– (void)addItemsWithObjectValues:(id)objects

Adds multiple objects to the end of the combo box’s internal item list. This method logs a warning if
usesDataSource returns YES.

addItemWithObjectValue:
– (void)addItemWithObjectValue: (id)anObject

Adds anObject to the end of the combo box’s internal item list. This method logs a warning if
usesDataSource returns YES.

dataSource
– (id)dataSource

Returns the object that provides the data displayed in the receiver’s pop-up list. This method logs a warning
if usesDataSource returns NO. See the class description and the NSComboBoxDataSource informal
protocol specification for more information on combo box data source objects.

deselectItemAtIndex:
– (void)deselectItemAtIndex:(int)index

Deselects the pop-up list item at index if it’s selected. If the selection does in fact change, this method posts
an NSComboBoxSelectionDidChangeNotification to the default notification center.

See also: – indexOfSelectedItem, – numberOfItems, – selectItemAtIndex:

encodeWithCoder:
– (void)encodeWithCoder:(NSCoder *)encoder

Encodes the receiver using encoder. If the receiver uses a data source, the data source is conditionally
encoded as well.

See also: – initWithCoder:

5

 Classes: NSComboBox

hasVerticalScroller
– (BOOL)hasVerticalScroller

Returns YES if the receiver will display a vertical scroller. Note that the scoller will be displayed even if the
pop-up list contains fewer items than will fit in the area specified for display. Returns NO if the receiver
won’t display a vertical scroller.

See also: – numberOfItems, – numberOfVisibleItems

indexOfItemWithObjectValue:
– (int)indexOfItemWithObjectValue: (id)anObject

Searches the receiver’s internal item list for anObject and returns the lowest index whose corresponding
value is equal to anObject. Objects are considered equal if they have the same id or if isEqual: returns YES.
If none of the objects in the receiver’s internal item list are equal to anObject, indexOfItemObjectValue:
returns NSNotFound. This method logs a warning if usesDataSource returns YES.

See also: – selectItemWithObjectValue:

indexOfSelectedItem
– (int)indexOfSelectedItem

Returns the index of the last item selected from the receiver’s pop-up list, or -1 if no item is selected. Note
that nothing is initially selected in a newly-initialized combo box.

See also: – objectValueOfSelectedItem

initWithCoder:
– (id)initWithCoder: (NSCoder *)decoder

Initializes a newly-allocated instance from data in decoder. If the decoded instance uses a data source,
initWithCoder: decodes the data source as well. Returns self.

See also: – encodeWithCoder:

6

insertItemWithObjectValue:atIndex:
– (void)insertItemWithObjectValue: (id)anObject atIndex:(int)index

Inserts anObject at index in the combo box’s internal item list, shifting the previous item at index—along
with all following items—down one slot to make room. This method logs a warning if usesDataSource
returns YES.

See also: – addItemWithObjectValue: , – numberOfItems

intercellSpacing
– (NSSize)intercellSpacing

Returns the horizontal and vertical spacing between cells in the receiver’s pop-up list. The default spacing
is (3.0, 2.0).

See also: – itemHeight, – numberOfVisibleItems

itemHeight
– (float)itemHeight

Returns the height of each item in the receiver’s pop-up list. The default item height is 16.0.

See also: – intercellSpacing, – numberOfVisibleItems

itemObjectValueAtIndex:
– (id)itemObjectValueAtIndex: (int)index

Returns the object located at index within the receiver’s internal item list. If index is beyond the end of the
list, an NSRangeException is raised. This method logs a warning if usesDataSource returns YES.

See also: – objectValueOfSelectedItem

noteNumberOfItemsChanged
– (void)noteNumberOfItemsChanged

Informs the receiver that the number of items in its data source has changed, allowing the receiver to update
the scrollers in its displayed pop-up list without actually reloading data into the receiver. This method is
particularly useful for a data source that continually receives data in the background over a period of time,
in which case the NSComboBox can remain responsive to the user while the data is received.

7

 Classes: NSComboBox

See the NSComboBoxDataSource informal protocol specification for information on the messages an
NSComboBox sends to its data source.

See also: -– reloadData

numberOfItems
– (int)numberOfItems

Returns the total number of items in the pop-up list.

See also: – numberOfItemsInComboBox: (NSComboBoxDataSource protocol),
– numberOfVisibleItems

numberOfVisibleItems
– (int)numberOfVisibleItems

Returns the maximum number of items visible at any one time in the pop-up list.

See also: – numberOfItems

objectValueOfSelectedItem
– (id)objectValueOfSelectedItem

Returns the object from the receiver’s internal item list corresponding to the last item selected from the
pop-up list, or nil if no item is selected. Note that nothing is initially selected in a newly-initialized combo
box. This method logs a warning if usesDataSource returns YES.

See also: – comboBox:objectValueForItemAtIndex: (NSComboBoxDataSource protocol),
– indexOfSelectedItem

objectValues
– (NSArray *)objectValues

Returns as an array the receiver’s internal item list. This method logs a warning if usesDataSource returns
YES.

8

reloadData
– (void)reloadData

Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and draw the
new values.

See also: – noteNumberOfItemsChanged

removeAllItems
– (void)removeAllItems

Removes all items from the receiver’s internal item list. This method logs a warning if usesDataSource
returns YES.

See also: – objectValues

removeItemAtIndex:
– (void)removeItemAtIndex:(int)index

Removes the object at index from the receiver’s internal item list and moves all items beyond index up one
slot to fill the gap. The removed object receives a release message. This method raises an
NSRangeException if index is beyond the end of the list, and logs a warning if usesDataSource returns
YES.

removeItemWithObjectValue:
– (void)removeItemWithObjectValue:(id)anObject

Removes all occurrences of anObject from the receiver’s internal item list. Objects are considered equal if
they have the same id or if isEqual: returns YES. This method logs a warning if usesDataSource returns
YES.

See also: – indexOfItemWithObjectValue:

scrollItemAtIndexToTop:
– (void)scrollItemAtIndexToTop: (int)index

Scrolls the receiver’s pop-up list vertically so that the item specified by index is as close to the top as
possible. The pop-up list need not be displayed at the time this method is invoked.

9

 Classes: NSComboBox

scrollItemAtIndexToVisible:
– (void)scrollItemAtIndexToVisible: (int)index

Scrolls the receiver’s pop-up list vertically so that the item specified by index is visible. The pop-up list need
not be displayed at the time this method is invoked.

selectItemAtIndex:
– (void)selectItemAtIndex:(int)index

Selects the pop-up list row at index. Posts NSComboBoxSelectionDidChangeNotification to the default
notification center if the selection does in fact change. Note that this method does not alter the contents of
the combo box’s text field—see “Interacting with the Text Field” in the class description for more
information.

See also: – setObjectValue: (NSControl)

selectItemWithObjectValue:
– (void)selectItemWithObjectValue:(id)anObject

Selects the first pop-up list item that corresponds to anObject. Objects are considered equal if they have the
same id or if isEqual: returns YES. Posts NSComboBoxSelectionDidChangeNotification to the default
notification center if the selection does in fact change. Note that this method doesn’t alter the contents of
the combo box’s text field—see “Interacting with the Text Field” in the class description for more
information.

See also: – setObjectValue: (NSControl)

setDataSource:
– (void)setDataSource:(id)aSource

Sets the receiver’s data source to aSource. aSource should implement the appropriate methods of the
NSComboBoxDataSource informal protocol. This method doesn’t automatically set usesDataSource to
NO, and in fact logs a warning if usesDataSource returns NO.

This method logs a warning if aSource doesn't respond to either numberOfRowsInComboBox: or
comboBox:objectValueForItemAtIndex:.

See also: – setUsesDataSource:

10

setHasVerticalScroller:
– (void)setHasVerticalScroller:(BOOL)flag

Determines according to flag whether the receiver displays a vertical scroller. By default, flag is YES. If flag
is NO and the combo box has more list items (either in its internal item list or from its data source) than are
allowed by numberOfVisibleItems, only a subset will be displayed. NSComboBox’s scroll... methods can
be used to position this subset within the pop-up list.

Note that if flag is YES, a scroller will be displayed even if the combo box has fewer list items than are
allowed by numberOfVisibleItems.

See also: – numberOfItems, – scrollItemAtIndexToTop:, – scrollItemAtIndexToVisible:

setIntercellSpacing:
– (void)setIntercellSpacing:(NSSize)aSize

Sets the width and height between pop-up list items to those in aSize. The default intercell spacing is (3.0,
2.0).

See also: – setItemHeight:, – setNumberOfVisibleItems:

setItemHeight:
– (void)setItemHeight:(float)itemHeight

Sets the height for items to itemHeight.

See also: – setIntercellSpacing:, – setNumberOfVisibleItems:

setNumberOfVisibleItems:
– (void)setNumberOfVisibleItems:(int)visibleItems

Sets the maximum number of items that will be visible at one time in the receiver’s pop-up list to
visibleItems.

See also: – numberOfItems, – setItemHeight:, – setIntercellSpacing:

setUsesDataSource:
– (void)setUsesDataSource:(BOOL)flag

Sets according to flag whether the receiver uses an external data source (specified by setDataSource:) to
populate the receiver’s pop-up list.

11

 Classes: NSComboBox

usesDataSource
– (BOOL)usesDataSource

Returns YES if the receiver uses an external data source to populate the receiver’s pop-up list, NO if it uses
an internal item list.

See also: – dataSource

Notifications

NSComboBoxSelectionDidChangeNotification

Posted after the NSComboBox’s pop-up list selection changes. The notification contains:

NSComboBoxCellSelectionIsChangingNotification

Posted whenever the NSComboBox’s pop-up list selection is changing. The notification contains:

NSComboBoxCellWillPopUpNotification

Posted whenever the NSComboBox’s pop-up list is going to be displayed. The notification contains:

Notification Object The NSComboBox whose selection changed.

Userinfo None

Notification Object The NSComboBox whose selection is changing.

Userinfo None

Notification Object The NSComboBox whose popup window will be displayed.

Userinfo None

12

NSComboBoxCellWillDismissNotification

Posted whenever the NSComboBox’s pop-up list is about to be dismissed. The notification contains:

Notification Object The NSComboBox whose pop-up list will be dismissed.

Userinfo None

1

 Classes: NSComboBoxCell

NSComboBoxCell

Inherits From: NSTextFieldCell : NSActionCell : NSCell : NSObject

Conforms To: NSObject (from NSObject)
NSCoding (from NSCell)
NSCopying (from NSCell)

Declared In: AppKit/NSComboBoxCell.h

Class Description

NSComboBoxCell is a subclass of NSTextFieldCell used to implement the user interface of “combo boxes”
(see the Class Description in the NSComboBox class specification for information on how combo boxes
look and work). The NSComboBox subclass of NSTextField uses a single NSComboBoxCell, and
essentially all of NSComboBox’s methods simply invoke the corresponding NSComboBoxCell method.

Method Types

Setting display attributes
– hasVerticalScroller
– intercellSpacing
– itemHeight
– numberOfVisibleItems
– setHasVerticalScroller:
– setIntercellSpacing:
– setItemHeight:
– setNumberOfVisibleItems:

Setting a data source
– dataSource
– setDataSource:
– setUsesDataSource:
– usesDataSource

2

Working with an internal list
– addItemsWithObjectValues:
– addItemWithObjectValue:
– insertItemWithObjectValue:atIndex:
– objectValues
– removeAllItems
– removeItemAtIndex:
– removeItemWithObjectValue:
– numberOfItems

Manipulating the displayed list
– indexOfItemWithObjectValue:
– itemObjectValueAtIndex:
– noteNumberOfItemsChanged
– reloadData
– scrollItemAtIndexToTop:
– scrollItemAtIndexToVisible:

Manipulating the selection
– deselectItemAtIndex:
– indexOfSelectedItem
– objectValueOfSelectedItem
– selectItemAtIndex:
– selectItemWithObjectValue:

Encoding a ComboBoxCell
– encodeWithCoder:
– initWithCoder:

Instance Methods

addItemsWithObjectValues:
– (void)addItemsWithObjectValues:(id)objects

Adds multiple objects to the end of the combo box cell’s internal item list. This method logs a warning if
usesDataSource returns YES.

addItemWithObjectValue:
– (void)addItemWithObjectValue: (id)anObject

Adds anObject to the end of the combo box cell’s internal item list. This method logs a warning if
usesDataSource returns YES.

3

 Classes: NSComboBoxCell

dataSource
– (id)dataSource

Returns the object that provides the data displayed in the receiver’s pop-up list. This method logs a warning
if usesDataSource returns NO. See the class description and the NSComboBoxCellDataSource informal
protocol specification for more information on combo box cell data source objects.

deselectItemAtIndex:
– (void)deselectItemAtIndex:(int)index

Deselects the pop-up list item at index if it’s selected. If the selection does in fact change, this method posts
an NSComboBoxSelectionDidChangeNotification to the default notification center.

See also: – indexOfSelectedItem, – numberOfItems, – selectItemAtIndex:

encodeWithCoder:
– (void)encodeWithCoder:(NSCoder *)encoder

Encodes the receiver using encoder. If the receiver uses a data source, the data source is conditionally
encoded as well.

See also: – initWithCoder:

hasVerticalScroller
– (BOOL)hasVerticalScroller

Returns YES if the receiver will display a vertical scroller. Note that the scoller will be displayed even if the
pop-up list contains fewer items than will fit in the area specified for display. Returns NO if the receiver
won’t display a vertical scroller.

See also: – numberOfItems, – numberOfVisibleItems

indexOfItemWithObjectValue:
– (int)indexOfItemWithObjectValue: (id)anObject

Searches the receiver’s internal item list for anObject and returns the lowest index whose corresponding
value is equal to anObject. Objects are considered equal if they have the same id or if isEqual: returns YES.

4

If none of the objects in the receiver’s internal item list are equal to anObject, indexOfItemObjectValue:
returns NSNotFound. This method logs a warning if usesDataSource returns YES.

See also: – selectItemWithObjectValue:

indexOfSelectedItem
– (int)indexOfSelectedItem

Returns the index of the last item selected from the receiver’s pop-up list, or -1 if no item is selected. Note
that nothing is initially selected in a newly-initialized combo box cell.

See also: – objectValueOfSelectedItem

initWithCoder:
– (id)initWithCoder: (NSCoder *)decoder

Initializes a newly-allocated instance from data in decoder. If the decoded instance uses a data source,
initWithCoder: decodes the data source as well. Returns self.

See also: – encodeWithCoder:

insertItemWithObjectValue:atIndex:
– (void)insertItemWithObjectValue: (id)anObject atIndex:(int)index

Inserts anObject at index in the combo box cell’s internal item list, shifting the previous item at index—
along with all following items—down one slot to make room. This method logs a warning if
usesDataSource returns YES.

See also: – addItemWithObjectValue: , – numberOfItems

intercellSpacing
– (NSSize)intercellSpacing

Returns the horizontal and vertical spacing between cells in the receiver’s pop-up list. The default spacing
is (3.0, 2.0).

See also: – itemHeight, – numberOfVisibleItems

5

 Classes: NSComboBoxCell

itemHeight
– (float)itemHeight

Returns the height of each item in the receiver’s pop-up list. The default item height is 16.0.

See also: – intercellSpacing, – numberOfVisibleItems

itemObjectValueAtIndex:
– (id)itemObjectValueAtIndex: (int)index

Returns the object located at index within the receiver’s internal item list. If index is beyond the end of the
list, an NSRangeException is raised. This method logs a warning if usesDataSource returns YES.

See also: – objectValueOfSelectedItem

noteNumberOfItemsChanged
– (void)noteNumberOfItemsChanged

Informs the receiver that the number of items in its data source has changed, allowing the receiver to update
the scrollers in its displayed pop-up list without actually reloading data into the receiver. This method is
particularly useful for a data source that continually receives data in the background over a period of time,
in which case the NSComboBoxCell can remain responsive to the user while the data is received.

See the NSComboBoxCellDataSource informal protocol specification for information on the messages an
NSComboBoxCell sends to its data source.

See also: – reloadData

numberOfItems
– (int)numberOfItems

Returns the total number of items in the pop-up list.

See also: – numberOfItemsInComboBoxCell: (NSComboBoxCellDataSource protocol),
– numberOfVisibleItems

6

numberOfVisibleItems
– (int)numberOfVisibleItems

Returns the maximum number of items visible at any one time in the pop-up list.

See also: – numberOfItems

objectValueOfSelectedItem
– (id)objectValueOfSelectedItem

Returns the object from the receiver’s internal item list corresponding to the last item selected from the
pop-up list, or nil if no item is selected. Note that nothing is initially selected in a newly-initialized combo
box cell. This method logs a warning if usesDataSource returns YES.

See also: – comboBoxCell:objectValueForItemAtIndex: (NSComboBoxCellDataSource protocol),
– indexOfSelectedItem

objectValues
– (NSArray *)objectValues

Returns as an array the receiver’s internal item list. This method logs a warning if usesDataSource returns
YES.

reloadData
– (void)reloadData

Marks the receiver as needing redisplay, so that it will reload the data for visible pop-up items and draw the
new values.

See also: – noteNumberOfItemsChanged

removeAllItems
– (void)removeAllItems

Removes all items from the receiver’s internal item list. This method logs a warning if usesDataSource
returns YES.

See also: – objectValues

7

 Classes: NSComboBoxCell

removeItemAtIndex:
– (void)removeItemAtIndex:(int)index

Removes the object at index from the receiver’s internal item list and moves all items beyond index up one
slot to fill the gap. The removed object receives a release message. This method raises an
NSRangeException if index is beyond the end of the list, and logs a warning if usesDataSource returns
YES.

removeItemWithObjectValue:
– (void)removeItemWithObjectValue:(id)anObject

Removes all occurrences of anObject from the receiver’s internal item list. Objects are considered equal if
they have the same id or if isEqual: returns YES. This method logs a warning if usesDataSource returns
YES.

See also: – indexOfItemWithObjectValue:

scrollItemAtIndexToTop:
– (void)scrollItemAtIndexToTop: (int)index

Scrolls the receiver’s pop-up list vertically so that the item specified by index is as close to the top as
possible. The pop-up list need not be displayed at the time this method is invoked.

scrollItemAtIndexToVisible:
– (void)scrollItemAtIndexToVisible: (int)index

Scrolls the receiver’s pop-up list vertically so that the item specified by index is visible. The pop-up list need
not be displayed at the time this method is invoked.

selectItemAtIndex:
– (void)selectItemAtIndex:(int)index

Selects the pop-up list row at index. Posts NSComboBoxSelectionDidChangeNotification to the default
notification center if the selection does in fact change. Note that this method does not alter the contents of
the combo box cell’s text field—see “Interacting with the Text Field” in the class description for more
information.

See also: – setObjectValue: (NSControl)

8

selectItemWithObjectValue:
– (void)selectItemWithObjectValue:(id)anObject

Selects the first pop-up list item that corresponds to anObject. Objects are considered equal if they have the
same id or if isEqual: returns YES. Posts NSComboBoxSelectionDidChangeNotification to the default
notification center if the selection does in fact change. Note that this method doesn’t alter the contents of
the combo box cell’s text field—see “Interacting with the Text Field” in the class description for more
information.

See also: – setObjectValue: (NSControl)

setDataSource:
– (void)setDataSource:(id)aSource

Sets the receiver’s data source to aSource. aSource should implement the appropriate methods of the
NSComboBoxCellDataSource informal protocol. This method doesn’t automatically set usesDataSource
to NO, and in fact logs a warning if usesDataSource returns NO.

This method logs a warning if aSource doesn't respond to either numberOfRowsInComboBoxCell: or
comboBoxCell:objectValueForItemAtIndex:.

See also: – setUsesDataSource:

setHasVerticalScroller:
– (void)setHasVerticalScroller:(BOOL)flag

Determines according to flag whether the receiver displays a vertical scroller. By default, flag is YES. If flag
is NO and the combo box cell has more list items (either in its internal item list or from its data source) than
are allowed by numberOfVisibleItems, only a subset will be displayed. NSComboBoxCell’s scroll...
methods can be used to position this subset within the pop-up list.

Note that if flag is YES, a scroller will be displayed even if the combo box cell has fewer list items than are
allowed by numberOfVisibleItems.

See also: – numberOfItems, – scrollItemAtIndexToTop:, – scrollItemAtIndexToVisible:

setIntercellSpacing:
– (void)setIntercellSpacing:(NSSize)aSize

Sets the width and height between pop-up list items to those in aSize. The default intercell spacing is (3.0,
2.0).

See also: – setItemHeight:, – setNumberOfVisibleItems:

9

 Classes: NSComboBoxCell

setItemHeight:
– (void)setItemHeight:(float)itemHeight

Sets the height for items to itemHeight.

See also: – setIntercellSpacing:, – setNumberOfVisibleItems:

setNumberOfVisibleItems:
– (void)setNumberOfVisibleItems:(int)visibleItems

Sets the maximum number of items that will be visible at one time in the receiver’s pop-up list to
visibleItems.

See also: – numberOfItems, – setItemHeight:, – setIntercellSpacing:

setUsesDataSource:
– (void)setUsesDataSource:(BOOL)flag

Sets according to flag whether the receiver uses an external data source (specified by setDataSource:) to
populate the receiver’s pop-up list.

usesDataSource
– (BOOL)usesDataSource

Returns YES if the receiver uses an external data source to populate the receiver’s pop-up list, NO if it uses
an internal item list.

See also: – dataSource

1

 Classes: NSControl

NSControl

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: <AppKit/NSControl.h>

Class Description

NSControl is an abstract superclass that provides three fundamental features for implementing
user-interface devices. First, as a subclass of NSView, NSControl draws, or coordinates the drawing of, the
on-screen representation of the device. Second, it receives and responds to user-generated events within its
bounds by overriding NSResponder’s mouseDown: method and providing a position in the responder
chain. Third, it implements the sendAction:to: method to send an action message to the NSControl’s target
object. Subclasses of NSControl defined in the Application Kit are NSBrowser, NSButton (and its subclass
NSPopUpButton), NSColorWell, NSImageView, NSMatrix (and its subclass NSForm), NSScroller,
NSSlider, NSTableView, and NSTextField. Instances of concrete NSControl subclasses are often referred
to as, simply, controls.

Controls and Cells

Controls are usually associated with one or more cells—instances of a subclass of the abstract class NSCell.
A control’s cell (or cells) usually fit just inside the bounds of the control. Cells are objects that can draw
themselves and respond to events, but they can do so only indirectly, upon instruction from their control,
which acts as a kind of coordinating backdrop.

Controls manage the behavior of their cells. By inheritance from NSView, controls derive the ability for
responding to user actions and rendering their on-screen representation. When users click on a control, it
responds in part by sending trackMouse:inRect:ofView:untilMouseUp: to the cell that was clicked; upon
receiving this message, the cell tracks the mouse and may have the control send the cell’s action message
to its target (either upon mouse-up or continuously, depending on the cell’s attributes). When controls
receive a display request, they, in turn, send their cell (or cells) a drawWithFrame:inView: message to
have the cells draw themselves.

This relationship of control and cell makes two things possible: A control can manage cells of different
types and with different targets and actions (see below); and a single control can manage muliple cells. Most
Application Kit controls, like NSButtons and NSTextFields, manage only a single cell. But some controls,
notably NSMatrix and NSForm, manage multiple cells (usually of the same size and attributes, and
arranged in a regular pattern). Because cells are lighter-weight than controls, in terms of inherited data and
behavior, it is more efficient to use a multi-cell control rather than multiple controls.

2

Many methods of NSControl—particularly methods that set or obtain values and attributes—have
corresponding methods in NSCell. Sending a message to the control causes it to be forwarded to the
control’s cell or (if a multi-cell control) its selected cell. However, many NSControl methods are effective
only in controls with single cells (these are noted in the method descriptions).

An NSControl subclass doesn’t have to use an NSCell subclass to implement itself; NSScroller and
NSColorWell are examples of NSControls that don’t. However, such subclasses have to take care of details
that NSCell would otherwise handle. Specifically, they have to override methods designed to work with a
cell. What’s more, the lack of a cell means you can’t make use of NSMatrix capability for managing
multi-cell arrays such as radio buttons.

Target and Action

Target objects and action methods (or messages) are part of the mechanism by which controls respond to
user actions and enable users to communicate their intentions to an application. A target is an object that a
control uses as the receiver of action messages. The target’s class defines an action method to enable its
instances to respond to these messages, which are sent as users click or otherwise manipulate the control.
NSControl’s sendAction:to: asks the NSApplication object, NSApp, to send an action message to the
control’s target object.

NSControl provides methods for setting and obtaining the target object and the action method. However,
these methods require that an NSControl’s cell (or cells) be cells that inherit from NSActionCell or custom
cells that hold action and target as instance variables and can respond to the NSControl methods.

See the NSActionCell class specification for more on the implementation of target and action behavior,
particularly how action messages with nil targets travel up the responder chain.

Field Validation and Entry Error-Handling

NSControl provides the delegation method control:isValidObject: for validating the contents of cells
embedded in controls (instances of NSTextField and NSMatrix in particular). In validating you check for
values that are permissible as objects, but that are undesirable in a given context, such as a date field in
which dates should never be in the future, or zip codes that are valid for a certain state.

The method control:isValidObject: is invoked when the insertion point leaves a cell (that is, the associated
control relinquishes first-responder status) but before the string value of the cell's object is displayed. Return
YES to allow display of the string and NO to reject display and return the cursor to the cell. The following
example evaluates an object (an NSDate) and rejects it if the date is in the future:

3

 Classes: NSControl

- (BOOL)control:(NSControl *)control isValidObject:(id)obj

{

if (control == contactsForm) {

if (![obj isKindOfClass:[NSDate class]]) return NO;

if ([[obj laterDate:[NSDate date]] isEqual:obj]) {

NSRunAlertPanel(@"Date not valid",

@"Reason: date in future", NULL, NULL, NULL);

return NO;

}

}

return YES;

}

NSControl provides several delegate methods for its subclasses that allow text editing, such as NSTextField
and NSMatrix. Some are invoked when formatters for a control’s cells cannot format a string (control:
didFailToFormatString:errorDescription:) or reject a partial string entry (control:
didFailToValidatePartialString:errorDescription:). NSControl also provides control:textView:
doCommandBySelector:, which allows delegates the opportunity to detect and respond to key bindings,
such as complete: (name completion). Note that although NSControl defines delegate methods, it does not
itself have a delegate. Any subclass that uses the delegate methods must contain a delegate and the methods
to get and set it.

Changing the NSCell Class

Since NSControl uses objects derived from the NSCell class to implement most of its actual functionality,
you can usually implement a unique user interface device by creating a subclass of NSCell rather than
NSControl. As an example, let’s say you want all your application’s NSSliders to have a type of cell other
than the generic NSSliderCell. First, you create a subclass of NSCell, NSActionCell, or NSSliderCell.
(Let’s call it MyCellSubclass.) Then, you can simply invoke NSSlider’s setCellClass: class method:

[NSSlider setCellClass:[MyCellSubclass class]];

All NSSliders created thereafter will use MyCellSubclass, until you call setCellClass: again.

If you want to create generic NSSliders (ones that use NSSliderCell) in the same application as the
customized NSSliders that use MyCellSubclass, there are two possible approaches. One is to invoke
setCellClass: as above whenever you’re about to create a custom NSSlider, resetting the cell class to
NSSliderCell afterwards. The other approach is to create a custom subclass of NSSlider that automatically
uses MyCellSubclass, as explained below.

Creating New NSControls

If you create a custom NSControl subclass that uses a custom subclass of NSCell, you should override
NSControl’s cellClass method:

4

+ (Class) cellClass

{

return [MyCellSubclass class];

}

NSControl’s initWithFrame: method will use the return value of cellClass to allocate and initialize an
NSCell of the correct type.

Override the designated initializer (initWithFrame:) if you create a subclass of NSControl that performs
its own initialization.

Method Types

Initializing an NSControl
– initWithFrame:

Setting the control’s cell
+ cellClass
+ setCellClass:
– cell
– setCell:

Enabling and disabling the control
– isEnabled
– setEnabled:

Identifying the selected cell
– selectedCell
– selectedTag

Setting the control’s value
– doubleValue
– setDoubleValue:
– floatValue
– setFloatValue:
– intValue
– setIntValue:
– objectValue
– setObjectValue:
– stringValue
– setStringValue:
– setNeedsDisplay

5

 Classes: NSControl

Interacting with other controls
– takeDoubleValueFrom:
– takeFloatValueFrom:
– takeIntValueFrom:
– takeObjectValueFrom:
– takeStringValueFrom:

Formating text
– alignment
– setAlignment:
– font
– setFont:
– setFloatingPointFormat:left:right:

Managing the field editor
– abortEditing
– currentEditor
– validateEditing

Resizing the control
– calcSize
– sizeToFit

Displaying a cell
– selectCell:
– drawCell:
– drawCellInside:
– updateCell:
– updateCellInside:

Implementing the target/action mechanism
– action
– setAction:
– target
– setTarget:
– isContinuous
– setContinuous:
– sendAction:to:
– sendActionOn:

Getting and setting attributed-string values
– attributedStringValue
– setAttributedStringValue:

Getting and setting tags
– tag
– setTag:

6

Activating from the keyboard
– performClick:
– refusesFirstResponder
– setRefusesFirstResponder:

Tracking the mouse
– mouseDown:
– ignoresMultiClick
– setIgnoresMultiClick:

Class Methods

cellClass
+ (Class)cellClass

Returns the class of cells used by the receiving class (which must be NSControl or one of its subclasses).
Returns nil if no cell class has been specified for the receiving class or any of its superclasses (up to
NSControl).

See also: – cell, – setCell:

setCellClass:
+ (void)setCellClass:(Class)class

Sets the class of cells used by instances of the receiver, which must be the NSControl class or one of its
subclasses.

See also: – cell, – setCell:

Instance Methods

abortEditing
– (BOOL)abortEditing

Terminates and discards any editing of text displayed by the receiving control and removes the field editor’s
delegate. Returns YES if there was a field editor associated with the control, NO otherwise.

See also: – currentEditor , – validateEditing

7

 Classes: NSControl

action
– (SEL)action

Returns the action-message selector of the receiver's cell (the default NSControl behavior), or the default
action-message selector for a control with multiple cells (such as an NSMatrix or an NSForm). For controls
with multiple cells, it's better to get the action-message selector for a particular cell, for instance:

someAction = [[theControl selectedCell] action];

See also: – setAction:, – setTarget:, – target

alignment
– (NSTextAlignment)alignment

Returns the alignment mode of the text in the receiver's cell. The return value can be one of these constants:
NSLeftTextAlignment, NSRightTextAlignment, NSCenterTextAlignment, NSJustifiedTextAlignment, or
NSNaturalTextAlignment (the default alignment).

See also: – setAlignment:

attributedStringValue
– (NSAttributedString *)attributedStringValue

Returns the object value of the receiver’s cell (or selected cell) as an attributed string after validating any
editing currently being done. If no cell is associated with the receiver, returns an empty attributed string.

See also: – setAttributedStringValue:

calcSize
– (void)calcSize

Recomputes any internal sizing information for the NSControl, if necessary, by invoking its NSCell’s
calcDrawInfo: method. Most NSControls maintain a flag that informs them if any of their cells have been
modified in such a way that the location or size of the cell should be recomputed. If this happens, calcSize
is automatically invoked whenever the NSControl is displayed; you never need to invoke it yourself.

See also: – sizeToFit

8

cell
– (id)cell

Returns the receiver’s cell. In NSControls with multiple cells (such as NSMatrix or NSForm), use
selectedCell or a similar method for finding a particular cell.

See also: + cellClass, – setCell:, + setCellClass:

currentEditor
– (NSText *)currentEditor

If the receiving NSControl is being edited—that is, it has an NSText object acting as its field editor, and is
the first responder of its NSWindow—this method returns the NSText editor; otherwise, it returns nil .

See also: – abortEditing , – validateEditing

doubleValue
– (double)doubleValue

Returns the value of the receiver's cell as a double-precision floating point number. If the NSControl
contains many cells (for example, NSMatrix), then the value of the currently selectedCell is returned. If
the NSControl is in the process of editing the affected Cell, then validateEditing is invoked before the value
is extracted and returned.

See also: – floatValue, – intValue, – objectValue, – setDoubleValue:, – stringValue

drawCell:
– (void)drawCell: (NSCell *)aCell

If aCell is the cell used to implement this NSControl, then the NSControl is displayed. This method is
provided primarily to support a consistent set of methods between NSControls with single and multiple
cells, since a NSControl with multiple cells needs to be able to draw a single cell at a time.

See also: – selectCell:, – updateCell:, – updateCellInside:

drawCellInside:
– (void)drawCellInside:(NSCell *)aCell

Draws the inside of the receiver’s cell (the area within a bezel or border). If the NSControl is transparent,
the method causes the superview to draw itself. This method invokes NSCell's drawInteriorWithFrame:

9

 Classes: NSControl

inView: method. This method has no effect on NSControls (such as NSMatrix and NSForm) that have
multiple cells.

See also: – selectCell:, – updateCell:, – updateCellInside:

floatValue
– (float)floatValue

Returns the value of the receiver's cell (or selected cell, if a multiple-cell NSControl) as a single-precision
floating point number. See doubleValue for more details.

See also: – doubleValue, – intValue, – objectValue, – setFloatValue:, – stringValue

font
– (NSFont *)font

Returns the NSFont used to draw text in the receiver’s cell.

See also: – setFont:

ignoresMultiClick
– (BOOL)ignoresMultiClick

Returns whether the receiving NSControl ignores multiple clicks made in rapid succession. See
setIgnoresMultiClick: for details.

initWithFrame:
– (id)initWithFrame: (NSRect)frameRect

Initializes and returns a new NSControl object in frameRect, and creates a cell for it if the cell’s class has
been specified for controls of this type with setCellClass:. Because NSControl is an abstract class,
invocations of this method should appear only in the designated initializers of sublcasses; that is, there
should always be a more specific designated initializer for the subclass, as this initWithFrame: is the
designated initializer for NSControl.

10

intValue
– (int)intValue

Returns the value of the receiver's cell (or selected cell, if a multiple-cell NSControl) as an integer. See
doubleValue for more details.

See also: – floatValue, – doubleValue, – objectValue, – setIntValue:, – stringValue

isContinuous
– (BOOL)isContinuous

Returns whether the control’s NSCell continuously sends its action message to its target during mouse
tracking.

See also: – setContinuous:

isEnabled
– (BOOL)isEnabled

Returns whether the receiver reacts to mouse events.

See also: – setEnabled:

mouseDown:
– (void)mouseDown:(NSEvent *)theEvent

Invoked when the mouse button is pressed while the cursor is within the bounds of the NSControl. This
method highlights the NSControl’s NSCell and sends it a trackMouse:inRect:ofView:untilMouseUp:
message. Whenever the NSCell finishes tracking the mouse (for example, because the cursor has left the
cell’s bounds), the cell is unhighlighted. If the mouse button is still down and the cursor reenters the bounds,
the cell is again highlighted and a new trackMouse:inRect:ofView:untilMouseUp: message is sent. This
behavior repeats until the mouse button goes up. If it goes up with the cursor in the control, the state of the
control is changed, and the action message is sent to the target. If the mouse button goes up when the cursor
is outside the control, no action message is sent.

See also: – ignoresMultiClick , – trackMouse:inRect:ofView:untilMouseUp:(NSCell)

11

 Classes: NSControl

objectValue
– (id)objectValue

Returns the value of the receiver's cell (or selected cell, if a multiple-cell NSControl) as an Objective-C
object. See doubleValue for more details.

See also: – floatValue, – doubleValue, – intValue, – setObjectValue:, – stringValue

performClick:
– (void)performClick: sender

Programmatically simulates a mouse click on the receiver’s cell, including the invocation of the action
method in the target object. Raises an exception if the action message cannot be successfully sent.

refusesFirstResponder
– (BOOL)refusesFirstResponder

Returns whether the receiver refuses first responder status.

See also: – setRefusesFirstResponder:

selectCell:
– (void)selectCell:(NSCell *)aCell

If aCell is a cell of the receiving NSControl and is unselected, this method selects aCell (by setting its state
to YES) and redraws the NSControl.

See also: – selectedCell

selectedCell
– (id)selectedCell

Returns the receiver’s selected cell. The default implementation for NSControl simply returns the
associated cell (or nil if no cell has been set). Subclasses of NSControl that manage multiple cells (such as
NSMatrix and NSForm) override this method to return the cell selected by users.

See also: – cell, – setCell:

12

selectedTag
– (int)selectedTag

Returns the tag integer of the receiver’s selected cell (see selectedCell) or -1 if there is no selected cell.
When you set the tag of an control with a single cell in Interface Builder, it sets the tags of both the control
and the cell with the same value as a convenience.

See also: – setTag:, – tag

sendAction:to:
– (BOOL)sendAction:(SEL)theAction to:(id)theTarget

Sends sendAction:to:from: to NXApp, which in turn sends a message to theTarget to perform theAction,
adding the receiver as the argument to the from: keyword. sendAction:to: is invoked primarily by NSCell's
trackMouse:inRect:ofView:untilMouseUp: .

If theAction is nil , no message is sent. If theTarget is nil , NXApp looks for an object that can respond to the
message by following the responder chain (see the class description for NSActionCell). This method returns
nil if no object that responds to theAction could be found.

See also: – action, – target

sendActionOn:
– (int)sendActionOn:(int)mask

Sets the conditions on which the receiver sends action messages to its target (continuously, mouse up, and
others) and returns a bit mask with which to detect the previous settings. NSControl’s default
implementation simply invokes the sendActionOn: method of its associated cell

See also: – sendAction:to:, – sendActionOn:(NSCell)

setAction:
– (void)setAction:(SEL)aSelector

Sets the NSControl’s action method to aSelector. If aSelector is nil , then no action messages will be sent
from the NSControl.

See also: – action, – setTarget:, – target

13

 Classes: NSControl

setAlignment:
– (void)setAlignment:(NSTextAlignment)mode

Sets the alignment of text in the receiver’s cell and, if the cell is being edited, aborts editing and updates the
cell. mode is one of five constants: NSLeftTextAlignment, NSRightTextAlignment,
NSCenterTextAlignment, NSJustifiedTextAlignment, NSNaturalTextAlignment (the default alignment for
the text).

See also: – alignment

setAttributedStringValue:
– (void)setAttributedStringValue: (NSAttributedString *)object

Sets the value of the receiver’s cell (or selected cell) as an attributed string. If the cell is being edited, it
aborts all editing before setting the value; if the cell doesn’t inherit from NSActionCell, it marks it for
automatic redisplay (NSActionCell performs its own updating of cells).

See also: – attributedStringValue

setCell:
– (void)setCell:(NSCell *)aCell

Sets the receiver’s cell to aCell. Use this method with great care as it can irrevocably damage the affected
control; specifically, you should only use this method in initializers for subclasses of NSControl.

See also: – cell, – selectedCell

setContinuous:
– (void)setContinuous:(BOOL)flag

Sets whether the receiver’s cell continuously sends its action message to its target as it tracks the mouse.

See also: – isContinuous

setDoubleValue:
– (void)setDoubleValue:(double)aDouble

Sets the value of the receiver’s cell (or selected cell) as aDouble (a double-precision floating point number).
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from

14

NSActionCell, it marks the cell’s interior for automatic redisplay (NSActionCell performs its own updating
of cells).

See also: – doubleValue,– setFloatValue:, – setIntValue:, – setObjectValue:, – setStringValue:

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiving NSControl’s cell—or if there is no associated cell, the NSControl itself—is
active (that is, whether it tracks the mouse and sends its action to its target). If flag is NO, any editing is
aborted. Redraws the entire Control if autodisplay is enabled. Subclasses may want to override this method
to redraw only a portion of the control when the enabled state changes, as do NSButton and NSSlider.

See also: – isEnabled

setFloatValue:
– (void)setFloatValue:(float)aFloat

Sets the value of the receiver’s cell (or selected cell) as aFloat (a single-precision floating point number).
If the cell is being edited, it aborts all editing before setting the value; if the cell doesn’t inherit from
NSActionCell, it marks the cell’s interior for automatic redisplay (NSActionCell performs its own updating
of cells).

See also: – floatValue, – setDoubleValue:, – setIntValue:, – setObjectValue:, – setStringValue:

setFloatingPointFormat:left:right:
– (void)setFloatingPointFormat:(BOOL)autoRange

left: (unsigned)leftDigits
right: (unsigned)rightDigits

Sets the autoranging and floating point number format of the receiver's cell, so that at most leftDigits are
displayed to the left of the decimal point, and rightDigits to the right. See the description of this method in
the NSCell class specification for details. If the cell is being edited, what’s typed is discarded and the cell’s
interior is redrawn.

See also: – setFloatingPointFormat:left:right: (NSCell)

15

 Classes: NSControl

setFont:
– (void)setFont:(NSFont *)fontObject

Sets the font used to draw text in the receiver’s cell to fontObject. If the cell is being edited, the text in the
cell is redrawn in the new font and the cell’s editor (the NSText object used globally for editing) is updated
with the new NSFont.

See also: – setFont:

setIgnoresMultiClick:
– (void)setIgnoresMultiClick: (BOOL)flag

Sets whether the receiving NSControl ignores multiple clicks made in rapid succession. By default, controls
treat double-clicks as two distinct clicks, triple-clicks as three distinct clicks, and so on. However, when an
NSControl returning YES to this method receives multiple clicks (within a predetermined interval), each
mouseDown event after the first is passed on to super.

See also: – ignoresMultiClick

setIntValue:
– (void)setIntValue:(int)anInt

Sets the value of the receiver’s cell (or selected cell) as an integer (anInt). If the cell is being edited, it aborts
all editing before setting the value; if the cell doesn’t inherit from NSActionCell, it marks the cell’s interior
for automatic redisplay (NSActionCell performs its own updating of cells).

See also: – intValue,– setDoubleValue:, – setFloatValue:, – setObjectValue:, – setStringValue:

setNeedsDisplay
– (void)setNeedsDisplay

Marks the receiving NSControl as needing redisplay (assuming automatic display is enabled) after
recalculation of its dimensions.

See also: – setNeedsDisplay: (NSView)

16

setObjectValue:
– (void)setObjectValue:(id)object

Sets the value of the receiver’s cell (or selected cell) as an Objective-C object. If the cell is being edited, it
aborts all editing before setting the value; if the cell doesn’t inherit from NSActionCell, it marks the cell’s
interior for automatic redisplay (NSActionCell performs its own updating of cells).

See also: – objectValue, – setDoubleValue:, – setFloatValue:, – setIntValue:, – setStringValue:

setRefusesFirstResponder:
– (void)setRefusesFirstResponder:(BOOL)flag

Sets whether the receiver refuses first responder status. By default, the user can advance the focus of
keyboard events between controls by pressing the Tab key; when this focus—or first responder status— is
indicated for a control (by the insertion point or, for non-text controls, a faint rectangle), the user can
activate the control by pressing the space bar.

See also: – refusesFirstResponder, – objectValue, – setDoubleValue:, – setFloatValue:

setStringValue:
– (void)setStringValue:(NSString *)aString

Sets the value of the receiver’s cell (or selected cell) as an NSString object (aString). If the cell is being
edited, it aborts all editing before setting the value; if the cell doesn’t inherit from NSActionCell, it marks
the cell’s interior for automatic redisplay (NSActionCell performs its own updating of cells).

See also: – setDoubleValue:, – setFloatValue:, – setIntValue:, – setObjectValue:, – stringValue

setTag:
– (void)setTag:(int)anInt

Sets the tag of the receiving NSControl to anInt. It doesn’t affect the tag of the receiver’s cell.

See also: – tag

setTarget:
– (void)setTarget:(id)anObject

Sets the target object for the action message of the receiver’s cell; NSCell’s setTarget: is used instead of
any subclass override of this method. If anObject is nil and the control sends an action message, the

17

 Classes: NSControl

application looks for an object that can respond to the message by following the responder chain (see
description of the NSActionCell class for details).

See also: – action, – setAction:, – target, – setTarget:(NSCell)

sizeToFit
– (void)sizeToFit

Changes the width and the height of the receiver's frame so that they are the minimum needed to contain its
cell. If you want a multiple-cell custom subclass of NSControl to size itself to fit its cells, you must override
this method.

See also: – calcSize

stringValue
– (NSString *)stringValue

Returns the value of the receiver's cell (or selected cell, if a multiple-cell NSControl) as an NSString object.
See doubleValue for details.

See also: – floatValue, – doubleValue, – intValue, – objectValue, – setStringValue:

tag
– (int)tag

Returns the tag identifying the receiving control (not the tag of the receiver’s cell).

See also: – setTag:

takeDoubleValueFrom:
– (void)takeDoubleValueFrom:(id)sender

Sets the double-precision floating-point value of the receiving control's cell (or selected cell) to the value
obtained by sending a doubleValue message to sender. You can use this method to link action messages
between controls. It permits one control or cell (sender) to affect the value of another control (the receiver)
by invoking this method in an action message to the receiver. For example, a text field can be made the
target of a slider. Whenever the slider is moved, it will send a takeDoubleValueFrom: message to the text
field. The text field will then get the slider's floating-point value, turn it into a text string, and display it,
thus tracking the value of the slider.

18

takeFloatValueFrom:
– (void)takeFloatValueFrom:(id)sender

Sets the receiving NSControl's selected cell to the value obtained by sending a floatValue message to
another control or cell (sender). See takeDoubleValueFrom: for more information.

takeIntValueFrom:
– (void)takeIntValueFrom: (id)sender

Sets the receiving NSControl's selected cell to the value obtained by sending a intValue message to another
control or cell (sender). See takeDoubleValueFrom: for more information.

takeObjectValueFrom:
– (void)takeObjectValueFrom:(id)sender

Sets the receiving NSControl's selected cell to the value obtained by sending a objectValue message to
another control or cell (sender). See takeDoubleValueFrom: for more information.

takeStringValueFrom:
– (void)takeStringValueFrom:(id)sender

Sets the receiving NSControl's selected cell to the value obtained by sending a stringValue message to
another control or cell (sender). See takeDoubleValueFrom: for more information.

target
– (id)target

Returns the target object of the receiver’s cell.

See also: – action, – setAction:, – setTarget:

updateCell:
– (void)updateCell:(NSCell *)aCell

Redisplays aCell or marks it for redisplay.

19

 Classes: NSControl

updateCellInside:
– (void)updateCellInside:(NSCell *)aCell

Redisplays the inside of aCell or marks it for redisplay.

validateEditing
– (void)validateEditing

Validates the user’s changes to text in a cell of the receiving control. Validation sets the object value of the
cell to the current contents of the cell’s editor (the NSText object used for editing), storing its a simple
NSString or an attributed string object based on the attributes of the editor.

See also: – abortEditing , – currentEditor

Methods Implemented By the Delegate

NSControl provides several delegate methods for its subclasses that allow text editing, such as NSTextField
and NSMatrix. Note that although NSControl defines delegate methods, it does not itself have a delegate.
Any subclass that uses these methods must have a delegate and the methods to get and set it.

control:didFailToFormatString:errorDescription:
– (BOOL)control: (NSControl *)control

didFailToFormatString: (NSString *)string
errorDescription: (NSString *)error

Invoked when the formatter for control’s cell (or selected cell) cannot convert an NSString (string) to an
underlying object. error is a localized user-presentable NSString that explains why the conversion failed.
Evaluate the error or query the user and return YES if string should be accepted as-is, or NO if string should
be rejected.

See also: – getObjectValue:forString:errorDescription: (NSFormatter)

control:didFailToValidatePartialString:errorDescription:
– (void)control: (NSControl *)control

didFailToValidatePartialString: (NSString *)string
errorDescription: (NSString *)error

Invoked when the formatter for control’s cell (or selected cell) rejects a partial string a user is typing into
the cell. This NSString (string) includes the character that caused the rejection. error is a localized
user-presentable NSString that explains why the validation failed. You can implement this method to

20

display a warning message or perform a similar action when the user enters enters improperly formatted
text.

See also: – isPartialStringValid:newEditingString:errorDescription: (NSFormatter)

control:isValidObject:
– (BOOL)control: (NSControl *)control isValidObject: (id)object

Invoked when the insertion point leaves a cell but before the string value of the cell's object is displayed.
Return YES to allow display of the string and NO to reject display and return the cursor to the cell. This
method gives the delegate the opportunity to validate the contents of control’s cell (or selected cell). In
validating, the delegate checks object to determine if it falls within a permissible range, has required
attributes, accords with a given context, and so on. An example of an object subject to such and evaluation
is an NSDate object which should not represent a future date, or a monetary amount (represented by an
NSNumber) that exceeds a predetermined limit.

control:textShouldBeginEditing:
– (BOOL)control: (NSControl *)control textShouldBeginEditing:(NSText *)fieldEditor

Sent directly by control to the delegate when the user tries to enter a character in a cell of a control that
allows editing of text (such as a text field or form field). Return YES if the NSControl’s fieldEditor should
be allowed to start editing the text, NO otherwise.

control:textShouldEndEditing:
– (BOOL)control: (NSControl *)control textShouldEndEditing:(NSText *)fieldEditor

Sent directly by control to the delegate when the insertion point tries to leave a cell of the control that has
been edited. It’s sent only by controls that allow editing of text (such as a text field or a form field). Return
YES if the control’s fieldEditor should be allowed to end its edit session, NO otherwise.

control:textView:doCommandBySelector:
– (BOOL)control: (NSControl *)control

textView:(NSTextView *)textView
doCommandBySelector:(SEL)command

Invoked when users press keys with predefined bindings in control’s cell or selected cell, as communicated
to the control by the cell’s field editor (textView). The delegate returns YES if it handles the key binding,
and NO otherwise. These bindings are usually implemented as methods (command) defined in
NSResponder; examples of such key bindings are arrow keys (for directional movement) and the Escape

21

 Classes: NSControl

key (for name completion). By implementing this method, the delegate can override the default
implementation of command and supply its own behavior.

For example, the default method for completing partially typed path names or symbols (usually when users
press the Escape key) is complete:. The default implementation of complete: (in NSResponder) does
nothing. The delegate could evaluate command and, if it’s complete:, get the current string from textView
and then expand it, or display a list of potential completions, or do whatever else is appropriate.

controlTextDidBeginEditing:
– (void)controlTextDidBeginEditing: (NSNotification *)aNotification

Sent by the default notification center to the delegate and all observers of the notification when a control
with editable cells (such as a text field, form field, or an NSMatrix) begins editing text. The name of the
notification (aNotification) is always NSControlTextDidBeginEditingNotification. Use the key
@"NSFieldEditor" to obtain the field editor from aNotification’s userInfo dictionary. If the delegate
implements this method, it’s automatically registered to receive this notification.

controlTextDidEndEditing:
– (void)controlTextDidEndEditing: (NSNotification *)aNotification

Sent by the default notification center to the delegate and all observers of the notification when a control
with editable cells (such as a text field, form field, or an NSMatrix) ends editing text. The name of the
notification (aNotification) is always NSControlTextDidEndEditingNotification. Use the key
@"NSFieldEditor" to obtain the field editor from aNotification’s userInfo dictionary. If the delegate
implements this method, it’s automatically registered to receive this notification.

controlTextDidChange:
– (void)controlTextDidChange:(NSNotification *)aNotification

Sent by the default notification center to the delegate when the text in the receiving control (usually a text
field, form, or NSMatrix with editable cells) changes. The name of the notification aNotification is always
NSControlTextDidChangeNotification. Use the key @"NSFieldEditor" to obtain the field editor from
aNotification’s userInfo dictionary. If the delegate implements this method, it’s automatically registered to
receive this notification.

Notifications

NSControl posts the following notifications to interested observers and its delegate.

22

Note that although NSControl defines delegate methods, it does not itself have a delegate. Any subclass that
uses these methods must have a delegate and the methods to get and set it.

NSControlTextDidBeginEditingNotification

This notification object contains a notification object and a userInfo dictionary. The notification object is
the NSControl posting the notification. (The field editor of the edited cell originally sends a
NSTextDidBeginEditingNotification to the control, which passes it on in this form to its delegate.) The
userInfo dictionary contains these keys and values:

See description of controlTextDidBeginEditing: , above, for details.

NSControlTextDidChangeNotification

This notification object contains a notification object and a userInfo dictionary. The notification object is
the NSControl posting the notification. (The field editor of the edited cell originally sends a
NSTextDidChangeNotification to the control, which passes it on in this form to its delegate.) The userInfo
dictionary contains these keys and values:

See description of controlTextDidChange:, above, for details.

NSControlTextDidEndEditingNotification

This notification object contains a notification object and a userInfo dictionary. The notification object is
the NSControl posting the notification. (The field editor of the edited cell originally sends a
NSTextDidEndEditingNotification to the control, which passes it on in this form to its delegate.) The
userInfo dictionary contains these keys and values:

Key Value

@"NSFieldEditor" The edited cell’s field editor

Key Value

@"NSFieldEditor" The edited cell’s field editor

Key Value

@"NSFieldEditor" The edited cell’s field editor

23

 Classes: NSControl

See description of controlTextDidEndEditing: , above.

1

 Classes: NSCursor

NSCursor

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSCursor.h

Class Description

Instances of the NSCursor class manage the appearance of the cursor. When you initialize a cursor—the
designated initializer is initWithImage:hotSpot: —you assign it a 16-by-16 pixel NSImage and a point to
be the hot spot. The image is usually a small, opaque icon—for example, a pair of cross-hairs—surrounded
by transparent pixels. The pixels in the cursor image are mapped on a flipped coordinate system: the upper
left pixel is (0,0); the lower right is (15,15).

To determine exactly when the mouse is inside a particular cursor rectangle, the Application Kit tracks a
single pixel in the cursor image. This pixel is known as the hot spot, and you can reference it using the
hotSpot method. By definition, the location of the current cursor’s hot spot is the location of the mouse;
when the hot spot is inside a cursor rectangle, so is the mouse. The hot spot is useful not only for
determining which cursor is current, but for determining where a mouse click should have its effect.

An NSCursor object is immutable: you cannot change its hot spot or image after it’s created. Instead, use
initWithImage:hotSpot: to create a new one with the new settings.

An application may use several cursor instances—for example, one that looks like an arrow and one that
looks like an I-beam. The instance that currently appears on the screen is called the “current cursor,” and is
referenced by the currentCursor class method. You can set the current cursor in several ways:

• You can send a set message to the cursor.

• You can manage cursors in a stack, using the push and pop methods of NSCursor. The stack’s top cursor
is the current cursor.

• You can tell a cursor to become current when the mouse enters a part of the screen known as the cursor
rectangle.

• You can tell a cursor to set itself when the mouse exits a view’s cursor rectangle,

The cursor rectangle is a region inside an NSView that triggers a change in the current cursor. To create a
cursor rectangle, use the addCursorRect:cursor: method of NSView to associate a region of the view with
the cursor, as shown in the following example:

[aView addCursorRect:aRect cursor:aCursor];

2

[aCursor setOnMouseEntered:YES];

This assignment means that when the mouse enters aRect, aCursor will receive a mouseEntered: event
message, which the cursor uses to make itself the current cursor. However, before the cursor can
acknowledge the mouseEntered: message, you must invoke the cursor’s setOnMouseEntered: method.
Alternatively, you can set the cursor when the mouse leaves the cursor rectangle by invoking the
setOnMouseExited: method instead of setOnMouseEntered:. A cursor that sets itself upon leaving the
cursor rectangle receives a mouseExited: event message to instigate the change.

The Application Kit provides two ready-made cursors for commonly used cursor images. You can retrieve
these cursors by using the arrowCursor and IBeamCursor class methods. There is no NSCursor instance
for the wait cursor, because the system automatically displays it at the appropriate times.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

Method Types

Initializing a new cursor
– initWithImage:hotSpot:
– initWithImage:foregroundColorHint:backgroundColorHint:

hotSpot:

Setting cursor attributes
– image
– hotSpot
+ hide
+ unhide
+ setHiddenUntilMouseMoves:

3

 Classes: NSCursor

Controlling which cursor is current
+ pop
– pop
– push
– set
– mouseEntered:
– setOnMouseEntered:
– isSetOnMouseEntered
– mouseExited:
– setOnMouseExited:
– isSetOnMouseExited

Retrieving cursor instances
+ arrowCursor
+ currentCursor
+ IBeamCursor

Class Methods

arrowCursor
+ (NSCursor *)arrowCursor

Returns the default cursor, a slanted arrow with its hot spot at the tip. The arrow cursor is the one you’re
used to seeing over buttons, scrollers and many other objects in the window system.

See also: + IBeamCursor, + currentCursor , – hotSpot

currentCursor
+ (NSCursor *)currentCursor

Returns the cursor that’s currently displayed on the screen.

See also: – set, – push, + pop, – mouseEntered:, – mouseExited:

hide
+ (void)hide

Makes the current cursor invisible. If another cursor becomes current, that cursor will be invisible, too. It
will remain invisible until you invoke the unhide method.

hide overrides setHiddenUntilMouseMoves:.

4

IBeamCursor
+ (NSCursor *)IBeamCursor

Returns a cursor that looks like a capital I with a tiny crossbeam at its middle. This is the cursor that you’re
used to seeing over editable or selectable text. The I-beam cursor’s default hot spot is where the crossbeam
intersects the I.

See also: + arrowCursor, + currentCursor

pop
+ (void)pop

Pops the current cursor off the top of the stack. The new object on the top of the stack becomes the current
cursor. If the current cursor is the only cursor on the stack, this method does nothing.

See also: – push

setHiddenUntilMouseMoves:
+ (void)setHiddenUntilMouseMoves:(BOOL)flag

If flag is YES, hides the cursor. The cursor remains invisible until either:

• the mouse moves, or
• you invoke the method again, with flag set to NO.

Do not try to counter this method by invoking unhide. The results are undefined.

See also: + hide

unhide
+ (void)unhide

Negates an earlier call to hide by showing the current cursor.

See also: + setHiddenUntilMouseMoves:, + hide

5

 Classes: NSCursor

Instance Methods

hotSpot
– (NSPoint)hotSpot

Returns the position of the hot spot, specified according to the cursor’s flipped 16-by-16 coordinate system.
For a more complete explanation, see the class description.

Note that an NSCursor object is immutable: you cannot change its hot spot after it’s created. Instead, use
initWithImage:hotSpot: to create a new one with the new settings.

See also: – initWithImage:hotSpot:

image
– (NSImage *)image

Returns the image for the receiving cursor, or nil if none exists.

Note that an NSCursor object is immutable: you cannot change its hot spot after it’s created. Instead, use
initWithImage:hotSpot: to create a new one with the new settings.

See also: – initWithImage:hotSpot:

initWithImage:foregroundColorHint:backgroundColorHint:hotSpot:
– (id)initWithImage: (NSImage *)newImage

foregroundColorHint: (NSColor *)fg
backgroundColorHint: (NSColor *)bg
hotSpot:(NSPoint)hotSpot

Initializes the receiver, assigns it anImage (which must be 16-by-16 pixels) and sets its hot spot to aPoint.
The foreground and background colors are currently ignored. Returns self.

See also: – initWithImage:hotSpot:

initWithImage:hotSpot:
– (id)initWithImage: (NSImage *)newImage hotSpot:(NSPoint)aPoint

This method is the designated initializer for the class. It initializes the receiver, assigns it anImage (which
must be 16-by-16 pixels) and sets its hot spot to aPoint. Returns self.

See also: – hotSpot, – image, – initWithImage:foregroundColorHint:backgroundColorHint:hotSpot:

6

isSetOnMouseEntered
– (BOOL)isSetOnMouseEntered

Returns YES if the receiving cursor will become current when it receives a mouseEntered: message;
otherwise, returns NO.

To receive such a message, the receiver must first be assigned a cursor rectangle. This assignment can be
made using NSView’s addCursorRect:cursor: method. For a more complete explanation, see the class
description.

See also: – setOnMouseEntered:, – isSetOnMouseExited

isSetOnMouseExited
– (BOOL)isSetOnMouseExited

Returns YES if the receiving cursor becomes current when it receives a mouseExited: message; otherwise,
returns NO.

To receive such a message, the receiver must first be assigned a cursor rectangle. This assignment can be
made using NSView’s addCursorRect:cursor: method. For a more complete explanation, see the class
description.

See also: – setOnMouseExited:

mouseEntered:
– (void)mouseEntered:(NSEvent *)anEvent

This message is automatically sent to the receiver when the mouse enters the receiver’s cursor rectangle. If
used after setOnMouseEntered:YES, mouseEntered: can make the receiver the current cursor.

In your programs, you won’t invoke mouseEntered: explicitly. It’s only included in the class interface so
you can override it.

For a more complete explanation, see the class description.

See also: – isSetOnMouseEntered, – mouseExited:

mouseExited:
– (void)mouseExited:(NSEvent *)theEvent

This message is automatically sent to the receiver when the mouse exits the receiver’s cursor rectangle. Like
mouseEntered:, it is part of the class interface only so you can override it.

See also: – setOnMouseExited:, – isSetOnMouseExited

7

 Classes: NSCursor

pop
– (void)pop

Sends a pop message to the instance’s class.

See also: – push, + pop

push
– (void)push

Puts the receiver on top of the cursor stack and makes it the current cursor.

See also: – pop, + pop

set
– (void)set

Makes the receiver the current cursor.

See also: + currentCursor

setOnMouseEntered:
– (void)setOnMouseEntered:(BOOL)flag

If flag is YES, the cursor accepts future mouseEntered: event messages, otherwise it ignores them.
Accepting mouseEntered: event messages allows the cursor to be made the current cursor when the mouse
enters a view’s cursor rectangle.

See also: – mouseEntered:

setOnMouseExited:
– (void)setOnMouseExited:(BOOL)flag

If flag is YES, the cursor accepts future mouseExited: event messages, otherwise it ignores them.
Accepting mouseExited: event messages allows the cursor to be made the current cursor when the mouse
exits a view’s cursor rectangle.

1

 Classes: NSCustomImageRep

NSCustomImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding (from NSImageRep)
NSCopying (from NSImageRep)
NSObject (from NSObject)

Declared In: AppKit/NSCustomImageRep.h

Class Description

An NSCustomImageRep is an object that uses a delegated method to render an image. When called upon
to produce the image, it sends a message to its delegate to have the method performed.

Like most other kinds of NSImageReps, an NSCustomImageRep is generally used indirectly, through an
NSImage object. An NSImage must be able to choose between various representations of a given image. It
also needs to provide an off-screen cache of the appropriate depth for any image it uses. It determines this
information by querying its NSImageReps.

Thus to work with an NSImage, an NSCustomImageRep must be able to provide some information about
its image. Use the following methods, inherited from the NSImageRep class, to set attributes of the
NSCustomImageRep:

setSize:

setColorSpaceName:

setAlpha:

setPixelsHigh:

setPixelsWide:

setBitsPerSample:

Note that if these attributes aren’t set, and an NSCustomImageRep is used in an NSImage with other
representations, NSImage won’t be able to select between them. In actual practice, this usually isn’t a
problem.

Method Types

Initializing a new NSCustomImageRep
– initWithDrawSelector:delegate:

2

Identifying the object
– delegate
– drawSelector

Instance Methods

delegate
– (id)delegate

Returns the delegate object that renders the image for the NSCustomImageRep.

drawSelector
– (SEL)drawSelector

Returns the associated draw method selector.

initWithDrawSelector:delegate:
– (id)initWithDrawSelector: (SEL)aMethod delegate:(id)anObject

Initializes the receiver, a newly allocated NSCustomImageRep instance, so that it delegates responsibility
for rendering the image to anObject. When the NSCustomImageRep receives a draw message, it will in
turn send a message to anObject to perform the aMethod method. The aMethod method should take only
one argument, the id of the NSCustomImageRep. It should draw the image at location (0.0, 0.0) in the
current coordinate system.

Returns self.

See also: – draw (NSImageRep)

1

 Classes: NSDocument

NSDocument

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSDocument.h

Class at a GlanceˇClass at a Glance

Purpose
NSDocument. is an abstract class that defines the interface for documents, objects that can internally represent
data displayed in windows and that can read data from and write data to files. Documents create and manage one

2

or more window controllers, and are in turn managed by a document controller. Documents respond to
first-responder action messages to save, revert, and print their data.

Principal Attributes
• window controllers
• filename
• document type
• print information

Creation
– init: Designated initializer for new documents
– initWithContentsOfFile:ofType: For existing documents

Related Classes
NSDocumentController
NSWindowController

Commonly Used Methods

Class Description

NSDocument is an abstract class that defines the interface for documents. In a functional sense, a document
is a repeatable container for a unique body of information identified by a name under which it is stored. In
the context of the Application Kit, a document is an instance of an NSDocument subclass that knows how
to represent internally, in one or more formats, the persistent data displayed in windows. A document can
read that data from files and write it to files. It is also the first-responder target for many menu commands
related to documents, such as Save Document, Revert Document, and Print Document. (When going up the

– dataRepresentationOfType: Returns the document’s data in a specified type.

– loadDataReprentation:ofType: Loads data of a certain type into the document.

– writeToFile:ofType: Writes the document’s data to a file.

– readFromFile:ofType: Reads the document’s data from a file.

– windowNibName
Returns the name of the document’s sole nib file (resulting in
the creation of a window controller for the window in that file).

- makeWindowControllers
Creates and returns the window controllers used to manage
document windows.

3

 Classes: NSDocument

responder chain, the Application Kit queries a window’s NSDocument, if it exists, just after it queries the
window delegate, if that is different from the NSDocument.) A document manages its window’s edited
status and is set up to perform undo and redo operations. When a window is closing, the document is asked
before the window delegate to approve the closing.

To create a useful NSDocument subclass you must override some primitive methods and might want to
override others. The NSDocument class itself knows how to handle document data as undifferentiated
"lumps"; although it understands that these lumps are typed, it knows nothing about particular types. In
their overrides of the data-based primitive methods, subclasses must add the knowledge of particular types
and how data of the document’s native type is structured internally and represented in document windows.
Subclasses are also responsible for the creation of the window controllers that manage document windows,
and for the implementation of undo and redo. NSDocument takes care of much of the rest, including
running Open and Save panels, and generally managing the state of the document. See "“Creating a
Subclass of NSDocument”" for more on creating subclasses of NSDocument, particularly the required and
optional overridden primitive methods.

NSDocument is one of the triad of Application Kit classes that establish an architectural basis for
document-based applications (the others being NSDocumentController and NSWindowController). Read
the following section, "“Document-Based Application Architecture”," for the concepts behind this
architecture. Following that, "“Implementing a Document-Based Application”" gives the procedure for
implementing it.

Document-Based Application Architecture

A document-based application is one of the more common types of applications developed today. They
provide a framework for generating identically contained but uniquely composed sets of data that can be
stored in files. Word processors and spreadsheet applications are two well-known examples of
document-based applications. Before investigating how document-based applications are structured, let’s
consider exactly what such an application does. It:

• Creates new documents
• Opens existing documents that are stored in files
• Saves documents under user-designated names and locations
• Reverts to saved documents
• Closes documents (usually after prompting the user to save edited documents)
• Prints documents and allows the page layout to be modified
• Represents data of different types internally
• Monitors and sets the document’s edited status and validates menu items
• Manages document windows, including setting the window titles
• Handles application and window delegation methods (such as when the application terminates)

Three Application Kit classes provide an architecture for document-based application that simplifies the
work developers have to do to implement the features listed above. These classes are
NSDocumentController, NSDocument, and NSWindowController.

4

Objects of these classes divide and orchestrate the work of creating, saving, opening, and managing the
documents of an application. They are in tiered one-to-many relationship, as depicted in Figure 1. An
application can have only one NSDocumentController, which creates and manages potentially many
NSDocument objects (one for each New or Open operation). In turn, an NSDocument object creates and
manages one or more NSWindowController objects, one for each of the windows displayed for a document.
In addition, some of these objects have responsibilities analogous to NSApplication and NSWindow
delegates.

Figure 1 Relationships between NSDocument, NSDocumentController, and NSWindowController

ClientSideComponents
DynamicElements, WOF

NSDocumentController

CustomInfo.plist

owns &
manages

NSDocument

NSWindowController

Window

5

 Classes: NSDocument

How do these objects divide the work among themselves? The place to start this discussion is not with any
of the classes, but with a property list that specifies important details about the application’s documents.

The Document Types Info Property List

Each document-based application must include an NSTypes property in its custom info property list
(CustomInfo.plist). This property specifies information about data types supported by its documents.
When the NSDocumentController object creates a new document or opens an existing document, it
searches this property list for such items as document class, file extension, whether the type is native or
external, and whether external types can be only read or written.

Note: Developers must hand-craft this property list for the current release. In future releases, Project
Builder will assist in the creation of this property list.

The following code shows a sample CustomInfo.plist; the part that is specific to documents is the NSType
property:

{

 NSInfoPlistVersion = "5.0";

 NSAppVersion = "1.0";

 NSHumanReadableShortName = "SimpleTextEdit";

 NSHumanReadableCompleteName = "Simple Text Edit Sample";

 NSHumanReadableCopyright = "Copyright (c) 1998, Apple Computer, Inc.";

 NSTypes = (

 {

NSName = "rtf";

NSHumanReadableName = "RTF Document";

NSUnixExtensions = ("rtf");

NSDOSExtensions = ("rtf");

NSRole = Editor;

NSDocumentClass = Document;

 }

);

}

This property list tells the NSDocumentController for the SimpleTextEdit application that the application
has one native type ("rtf"), meaning a type of document that, in its role as Editor, it can read and write. The
human-readable type name is shown in a pop-up list in the Save Panel’s accessory view (but only if there
are multiple types). The extensions are used to filter the files shown in Open and Save panels on various
platforms; the first extension in each list is automatically added to file names specified in the Save panel.
Most important is the document class; NSDocumentController uses this to create an instance of the
NSDocument subclass appropriate to a data type. You never have to allocate and initialize your
NSDocument explictly in your code; it is done for you.

NSType is a dictionary with key/value pairs defined as follows:

6

NSName
The abstract name of this data type. This name is used in pasteboard

operations. It must be present for the type to be valid, and it must be
unique.

NSHumanReadableName
The name of the document type as it appears in the human interface.

This name can be localized; the name that appears here is used as
the key to extract the localized name from the InfoPlist.strings file.

NSIcon
The name of the image file for the icon to represent this type in the

human interface. This image file is assumed to reside in the
application’s Resources directory. It cannot be localized.

NSUnixExtensions
An array of file suffixes used to encode this type on UNIX file

systems. The items in the array are interpreted in a case-insensitive
manner. The first extension is the one used for newly created files.

NSDOSExtensions
An array of file suffixes used to encode this type on DOS file systems.

The array items in the array are interpreted in a case-insensitive
manner. The first extension is the one used for newly created files.

NSMacOSTypes
An array of 4-byte MacOS codes used to encode this type. The first

extension is the one used for newly created files.

NSMIMETypes
An array of the MIME types used to encode this type.

NSRole
A string that indicates the role of the application for documents of this

type: "Editor" (reads, manipulates, displays, and writes), "Viewer"
(reads and displays), or "None" (cannot read or write, but is
declaring information about the type, such as an icon). If this key is
absent, "Editor" is assumed.

NSDocumentClass
The name of the NSDocument subclass used at runtime for loading

this document type.

The Role of NSDocumentController

The primary job of an application’s NSDocumentController object is to create and open documents, and to
track and manage these documents. When a user choses New from the File menu, an
NSDocumentController gets the appropriate NSDocument subclass from the NSTypes property, allocates

7

 Classes: NSDocument

an instance of this class, and initializes this instance by invoking NSDocument’s init method. When the user
chooses Open from the File menu, NSDocumentController displays the Open panel, gets the user’s
selection, finds the NSDocument subclass for the file (based on its extension), allocates an instance of this
class, and initializes the object and loads document data by invoking NSDocument’s
initWithContentsOfFile:ofType: . In both cases, the NSDocumentController adds a reference to the
document object to an internal list to facilitate the management of its documents. It has a notion of the
current document as the document whose window is currently key.

NSDocumentController is hard-wired to respond appropriately to certain application events, such as when
the application starts up, when it terminates, when the system powers off, and when documents are opened
or printed from the Workspace. If you wish, you can make a custom object the application delegate and
implement the delegate methods invoked as a result of the same events, and these methods will be invoked
instead. However, the default NSDocumentController object is an adequate application controller for most
situations, and you should not need to subclass it. If you require additional behavior, such as displaying
About panels and handling application preferences, it is recommended that a custom controller object
perform these duties rather than a subclass of NSDocumentController.

The Role of NSDocument

The primary job of an NSDocument object is to represent, manipulate, store, and load the persistent data
associated with a document. Based on the document types it claims to understand (as specified in the
NSTypes property of the info property list), a document must be prepared to:

• Provide the data displayed in windows (and represented internally) in a supported document type.
• Given data of a supported type, load it into internal data structures and display it in windows.
• Store document data in a file at a specified location in the file system.
• Read document data stored in a file.

With the assistance of its window controllers, an NSDocument manages the display and capture of the data
in its windows. By some special hard-wiring of the Application Kit, the NSDocument associated with the
key window is the recipient of first-responder action messages when users save, print, revert, and close
documents. In response to the appropriate action, it knows how to run and manage the Save panel and the
Page Layout panel.

A fully implemented NSDocument knows how to track its edited status, print document data, and perform
undo and redo operations. Although these behaviors aren’t completely provided by default, NSDocument
does assist the developer in implementing each. For edited-status tracking, NSDocument provides API for
updating a change counter. For undo/redo operations, NSDocument by default lazily creates an
NSUndoManager when one is requested, responds appropriately to Undo and Redo menu commands, and
updates the change counter when undo and redo operations are performed. For printing, NSDocument
facilitates the display of the Page Layout panel and the subsequent modification of the NSPrintInfo object
used in printing.

8

Creating a Subclass of NSDocument

Every application that takes advantage of the Application Kit’s architecture for document-based
applications must create at least one subclass of NSDocument. This architecture requires that you override
some NSDocument methods in an either/or scenario, and recommends overriding several others in certain
situations.

• Data-based primitives. The dataRepresentationOfType: method has to be implemented to create and
return document data (packaged as an NSData object) of a supported type, usually in preparation for
writing that data to a file. The loadDataRepresentation:ofType: method must be implemented to
convert an NSData object containing document data of a certain type into the document’s internal data
structures and display that data in a document window; the NSData object usually results from the
document reading a document file. Subclasses must override these methods.

• Location-based primitives. By default the writeToFile:ofType: method writes data to a file after
obtaining the data from the fileWrapperRepresentationOfType:, which gets it from the
dataRepresentationOfType: method. The readFromFile:ofType: method reads data from a file,
creates an NSFileWrapper object from it, and gives this object to loadFileWrapperRepresentation:
ofType:; if this object represents a simple file, it is passed to the loadDataRepresentation:ofType:
method for processing; otherwise (that is, the object represents a directory), the
loadFileWrapperRepresentation:ofType: method is overriden to handle the situation. Subclasses can
override any of these methods instead of the data-based primitives if the way NSDocument reads and
writes document data is not sufficient; their override implementations, however, must also assume the
loading duties of the data-based primitives.

• Window controller creation. NSDocument subclasses must also create their window controllers. They
can do this indirectly or directly. If a document has only one nib file (with one window in it), the subclass
can override windowNibName to return the name of the window nib file; as a consequence, a default
NSWindowController instance is created for the document, with the document as the nib file’s owner. If
a document has multiple windows, or if an instance of a custom NSWindowController subclass is to be
used, the NSDocument subclass must override makeWindowControllers to create these objects.

• Printing and page layout. Normally, a document-based application can change the information it uses
to define how document data is printed (an NSPrintInfo object). Subclasses can override
shouldChangePrintInfo: to disallow this change. If an application is to print document data, subclasses
of NSDocument must override printShowingPrintPanel: .

• Backup files. When it saves a document, NSDocument creates a backup of the old file before it writes
data to the new one (backup files have the same name as the new file, but with a tilde just before the
extension). Normally, if the write operation is successful, it deletes the backup file. Subclasses can
override keepBackupFile to return YES, and thus retain the most recent backup file.

• Save panel accessory view. By default, when NSDocument runs the Save panel, and the document has
multiple writable document types, it inserts an accessory view near the bottom of the panel. This view
contains a pop-up list of the writable types. If you don’t want this pop-up list, override
shouldRunSavePanelWithAccessoryView to return NO.

9

 Classes: NSDocument

• Menu items. NSDocument implements validateMenuItem: to manage the enabled state of the Revert
and Save As menu items. If you want to validate other menu items, you can override this method, but be
sure to invoke super’s implementation. For more information on menu item validation, see the
description of the NSMenuValidation informal protocol.

The initializers of NSDocument are another issue for subclassers. The init method is the primary initializer,
and it is invoked by the other initializer initWithContentsOfFile:ofType: . The init method is directly
invoked when a new document is created; the initWithContentsOfFile:ofType: method is directly invoked
when a document is opened. Therefore if you have any initializations that apply only to documents that are
opened, you should override initWithContentsOfFile:ofType: ; if you have general initializations, you
should, of course, override init . In both cases, be sure to invoke super’s implementation as the first thing.

The Role of NSWindowController

An NSWindowController manages one window associated with a document, which is usually stored in a
nib file. If a document had multiple windows, each window would have its own window controller. For
example, a document might have a main data-entry window and a window listing records for selection; each
window would have its own NSWindow Controller. When requested by its owning NSDocument, an
NSWindowController loads the nib file containing a window and displays it. It also assumes responsibility
for properly closing windows (after ensuring that they are saved).

The NSWindowController offers additional behavior to document-based applications. It can store the size
and location of windows in the user defaults database (this may not be desired behavior for most
document-based applications, because it could quickly overpopulate the defaults database with document
window-frame entries). It also cascades document windows in relation to each other, so they don’t
completely obstruct one another.

Subclasses of NSWindowController are optional. Applications can often use the default instance.
Subclasses can augment NSWindowControllers to perform different nib-loading and setup tasks or to
customize the titles of windows.

Implementing a Document-Based Application

It is possible to put together a document-based application without having to write much code. If your
requirements are minimal, the Application Kit provides you with a default NSWindowController instance
and a default NSDocumentController instance. You just have to create a document project, compose the
human interface, implement a subclass of NSDocument, and add any other custom classes or behavior
required by your application.

The following procedures step you through the tasks you must do, and might want to do, when
implementing a document-based application. Where something is described in detail elsewhere, such as
overridden methods in NSDocument subclasses, you are referred there.

10

As for the three classes behind document-based applications, two likely concerns are the number of
required objects and whether subclassing is necessary. The following table summarizes this information:

The Document-Based Application Package

The Yellow Box development environment provides a Document-Based Application project type to
expedite the development of these kinds of applications. This project type provides the following things:

• A nib file for the application’s document. A subclass of NSDocument named "Document" is made
File’s Owner of the nib file. It has an outlet to its window. The window is "blank" (that is, without object
on it).

• The application’s main nib file. This nib file contains an application menu with a File menu (with all of
its associated document commands) and Undo and Redo menu items in the Edit menu. These menu
items, as well as all of the menu items of the File menu, are connected to the appropriate first-responder
action methods. The About MyApp menu item of the Apple (or Info) menu is connected to the action
method for loading the nib file containing the About panel.

• A nib file for the About panel. This nib file contains a conventional About dialog with placeholder text
for application name, version string, and so on. The custom NSWindowController object (see below) is
File’s Owner of this nib file.

• A skeletal NSDocument subclass implementation. The project includes Document.h and
Document.m, which are derived from the definition of the NSDocument subclass in the document nib
file. The latter file includes empty but commented blocks for the dataRepresentationOfType:,
loadDataRepresentation:ofType:, and windowControllerDidLoadNib: methods. It also includes a
fully implemented windowNibName method.

• A custom NSWindowController subclass for the About panel.

• A custom info property list template. In the Other Resources category of the project is a
CustomInfo.plist file that contains placeholder values for global application keys as well as NSTypes
keys.

The following procedure describes what you must do to create a document-based application when you use
the project type developed for it. If this project type is absent on your system, you will have to complete the
tasks listed above yourself. For this eventuality, the following table lists the appropriate first-responder

Class How Many Objects? Subclass?

NSDocumentController 1 per application Optional (but unlikely)

NSDocument 1 per saved file Required

NSWindowController 1 per document nib file Optional (but likely)

11

 Classes: NSDocument

action connections to make (that is, in Interface Builder connect the menu command to the "1" icon in the
nib file window):

Also, if you have added Undo and Redo menu items in the Edit menu, connect them to the first-responder
undo: and redo: methods.

Create the Project and Compose the Interface

1. Launch Project Builder and choose New from the Project.

In the New Project panel, see if the pop-up menu of project types includes "Document Based
Application." If it doesn’t, you will have to load this project type, located in
/System/Developer/ProjectTypes (on Yellow Box for Windows platforms, prepend the value of
NEXT_ROOT to this path).

2. Create a project of type Document Based Application..

3. Double-click the Document.nib file in Project Builder’s Interfaces category to open this file in Interface
Builder.

If you want the nib file to be named something else, you can save it under another name in Interface
Builder and add it to the project. If you do this, you must also modify the string returned by the
windowNibName method in the NSDocument subclass implementation.

4. Create the human interface of the document window.

File Menu Command First-Responder Action

New newDocument:

Open openDocument:

Save saveDocument:

Save As saveAsDocument:

Save To saveToDocument:

Save All saveAllDocuments:

Close closeDocument:

Revert revertDocument:

Print printDocument:

Page Layout runPageLayout:

12

5. If the objects on the document window require further outlets or actions, add these to the Document subclass
of NSDocument. Connect these actions and outlets via the File’s Owner icon on the Instances display of the
nib file window.

Warning: Do not generate an instance of Document to make these connections.

If you want your NSDocument subclass named something other than "Document," change the name
in Interface Builder and wherever it occurs in the Document header and implementation (.m) files.

6. If your document objects interacts with other custom objects, such as model objects that perform specialized
computations, define those objects in Interface Builder and make any necessary connections to them.

Complete the Custom Info Property List

1. In Project Builder, select CustomInfo.plist in the Other Resources category.

2. Replace the placeholder or default values in the NSType property list with those specific to your document. If
your document has more than one document type, duplicate the given NSType property and fill it in with the
appropriate values.

See "“The Document Types Info Property List”" for information on the key/value pairs specific to
documents.

3. For the global application properties enter your application’s names, version, and copyright information.

Implement the NSDocument Subclass

The following procedure just gives general guidelines. For details see the complete NSDocument
specification and especially "“Creating a Subclass of NSDocument”." You might also want to read the class
specifications of NSUndoManager, NSPasteboard, and the print classes.

1. In Project Builder, open the header file of your NSDocument subclass located in the Headers category.

2. If you added outlets or actions to your NSDocument subclass in Inteface Builder, add them to the subclass’
header file. Also any other required instance variables and include the declarations of new methods that you
wish to be public, such as accessor methods.

Of course, you can specify additional outlets in actions in the existing header file and then import
them into the nib file by using Interface Builder’s Classes>Read File command.

3. Open the subclass implementation file (.m) in Project Builder’s Classes category.

4. Although it’s not usually necessary, you can override the primary initializer (init) and perhaps the
document-opening initializer initWithContentsOfFile:ofType: to perform initializations specific to you
subclass; be sure to invoke super’s implementations. You can also implement awakeFromNib to initialize
objects unarchived from the document’s window nib files.

5. Override the data-based primitives (null implementations of these methods provided by the project type).

13

 Classes: NSDocument

In almost all cases, you should implement dataRepresentationOfType: (to provide document data
of a certain type) and loadDataRepresentation:ofType: (to load document data of a certain type).

Example:

// ---

- (NSData *)dataRepresentationOfType:(NSString *)aType {

 NSAssert([aType isEqualToString:@"rtf"], @"Unknown type");

 return [textView RTFFromRange:NSMakeRange(0, [[textView textStorage] length])];

}

// ---

- (BOOL)loadDataRepresentation:(NSData *)data ofType:(NSString *)aType {

 NSAssert([aType isEqualToString:@"rtf"], @"Unknown type");

 fileContents = [data copyWithZone:[self zone]];

 return YES;

}

6. If you need to read or write document data in a special way (because, for example, document data is stored in
a file package), you can override readFromFile:ofType: and writeToFile:ofType: to not only read and write
data, but load and provide data in a given type.

Example:

// ---

- (BOOL)writeToFile:(NSString *)fileName ofType:(NSString *)type {

 return [[textView string] writeToFile:fileName atomically:YES];

}

// ---

- (BOOL)readFromFile:(NSString *)fileName ofType:(NSString *)type {

 fileContents = [[NSString alloc] initWithContentsOfFile:fileName];

 return fileContents != nil;

}

7. Create the window controllers for the NSDocument object.

If your document has only window, the project types provides a default implementation :

- (NSString *)windowNibName {

 return @"Document";

}

If your document has more than one window, or if you have a custom subclass of
NSWindowController, override makeWindowControllers. Make sure you add each created
window controller to the list of such objects managed by the document (addWindowController:).

14

8. You can implement windowControllerWillLoadNib: and windowControllerDidLoadNib: to perform any
necessary tasks related to the window before and after it is loaded from the nib file.

Example:

- (void)windowControllerDidLoadWindowNib:(NSWindowController *)windowController {

 [super windowControllerDidLoadWindowNib:windowController];

 [textView setAllowsUndo:YES];

 if (fileContents != nil) {

 [textView setString:fileContents];

 [fileContents release];// Don't need it anymore

 fileContents = nil;

 }

}

9. Mark the document’s "dirty" flag when it is edited.

The flag returned by isDocumentEdited indicates whether the document has unsaved changes.
Although NSDocument clears this flag when it saves or reverts a document, you must set this flag in
your code, unless you are using NSDocument’s default undo/redo mechanism. Normally, you
respond to the appropriate delegation or notification messages sent when users edit a document, then
invoke updateChangeCount: with an argument of NSChangeDone to set the "dirty" flag.

10.Write the code that prints the document’s data.

If you want users to be able to print a document, you must override printShowingPrintPanel: ,
possibly providing a modified NSPrintInfo object.

11.Register undo and redo groups in your code. See the class description of NSUndoManager for details.

And of course, you implement any methods that are special to your NSDocument subclass.

Implement Additional Controller Classes

If the default NSWindowController instance provided by the application kit does not meet the needs of your
document-based application, you can create a custom subclass of it. If you do so, you must override
NSDocument’s makeWindowControllers to instantiate this custom class and add the created object to the
document’s list of window controllers.

If the default NSDocumentController object somehow does not meet all of your requirements for an
application controller, such as handling user preferences or responding to uncommon application delegate
messages, you should create a separate controller object (instead of subclassing NSDocumentController).
For information on implementing NSDocumentController and NSWindowController subclasses, refer to
the appropriate class specifications.

15

 Classes: NSDocument

Method Types

Initializing an NSDocument
– init
– initWithContentsOfFile:ofType:

Loading and representing document data
– dataRepresentationOfType:
– loadDataRepresentation:ofType:
– fileWrapperRepresentationOfType:
– loadFileWrapperRepresentation:ofType:

Creating and managing window controllers
– makeWindowControllers
– windowNibName
– windowControllerDidLoadNib:
– windowControllerWillLoadNib:
– windowControllers
– addWindowController:
– shouldCloseWindowController:

Showing document windows
– showWindows
– displayName

Reading from and writing to files
– readFromFile:ofType:
– writeToFile:ofType:
– fileNameFromRunningSavePanelForSaveOperation:
– fileName
– setFileName:
– runModalSavePanel:withAccessoryView:
– shouldRunSavePanelWithAccessoryView
– keepBackupFile

Managing document edited status
– isDocumentEdited
– updateChangeCount:

Responding to user actions
– closeDocument:
– printDocument:
– runPageLayout:
– revertDocumentToSaved:
– saveDocument:
– saveDocumentAs:
– saveDocumentTo:

16

Closing documents
– canCloseDocument
– close

Reverting documents
– revertToSavedFromFile:ofType:

Printing documents
– printShowingPrintPanel:
– printInfo
– setPrintInfo:
– runModalPageLayoutWithPrintInfo:
– shouldChangePrintInfo:

Managing file types
– setFileType:
– fileType
+ isNativeType:
+ readableTypes
+ writableTypes

Managing menu commands
– validateMenuItem:

Class Methods

isNativeType:
+ (BOOL)isNativeType:(NSString *)aType

Returns whether document data of type aType is a native type, that is, one that a document can both read
and write.

See also: + readableTypes , + writableTypes

readableTypes
+ (NSArray *)readableTypes

Returns the types of data that a document can read natively and any types filterable to that native type.

See also: + isNativeType:, + writableTypes

17

 Classes: NSDocument

writableTypes
+ (NSArray *)writableTypes

Returns the types of data that a document can write natively and any types filterable to that native type.

See also: + isNativeType:, + readableTypes

Instance Methods

addWindowController:
– (void)addWindowController: (NSWindowController *)aController

Adds the window controller aController to the list of window controllers associated with the receiver. An
NSDocument uses this list when it displays all document windows, sets window edited status upon a undo
or redo operation, and modifies window titles. The method also sets the document outlet of the window
controller to self if it is not already set. If you create window controllers by overriding windowNibName,
this method is invoked automatically. If you create window controllers in makeWindowControllers or in
any other context, such as in response to a user event, you should invoke this method for each created
window controller. To remove a window controller from the list of active controllers, send it an
(NSWindowController) close message.

See also: – setDocument: (NSWindowController)

canCloseDocument
– (BOOL)canCloseDocument

Returns whether the receiver can be closed. If the document has unsaved changes, the method displays an
attention panel asking users if they want to save the document. It returns NO only if the user clicks the
Cancel button or if the document attempts to save itself but was somehow unsuccessful. Otherwise—if the
document has no unsaved changes, if the document was successfully saved, or if the user clicks Don’t
Save—it returns YES. In most situations, you should receive YES from this method before closing the
document.

See also: – close, – saveDocument:, – shouldCloseWindowController:

18

close
– (void)close

Closes all windows owned by the document and removes the receiver from the list of documents maintained
by the document controller, which consequently releases it. This method closes the document immediately,
without asking users if they want to save the document.

See also: – canCloseDocument, – closeDocument:, – shouldCloseWindowController:

closeDocument:
– (IBAction)closeDocument:(id)sender

The action invoked in the receiver when the user choses the Close Document menu command. The target
of the action message must be set to nil so that the receiver can respond to it as first responder. The default
implementation of this method closes the document only if canCloseDocument returns YES.

See also: – close

dataRepresentationOfType:
– (NSData *)dataRepresentationOfType:(NSString *)aType

A primitive method overriden by sublcasses to return a data object that represents the data of the receiver
in a given type (aType). The default implementation raises an NSInternalInconsistencyException. This
method is invoked by the default implementation of fileWrapperRepresentationOfType:.

Here is a typical implementation:

- (NSData *)dataRepresentationOfType:(NSString *)aType {

 NSAssert([aType isEqualToString:@"rtf"], @"Unknown type");

 return [textView RTFFromRange:NSMakeRange(0, [[textView textStorage] length])];

}

See also: – loadDataRepresentation:ofType:

displayName
– (NSString *)displayName

Returns the name of the document as displayed in the title bars of the document’s windows and in attention
panels related to the document. Returns an empty string if the document is new and hasn’t been saved. If
the document has been saved, the display name is the last component of the directory location of the saved
file (for example, "MyDocument" if the path is "/tmp/MyDocument.rtf"). If the document is new,
NSDocument makes the display name "Untitled-n" where n is a number in a sequence of new and unsaved

19

 Classes: NSDocument

documents. Subclasses of NSWindowController can override windowTitleForDisplayName: to modify
the display name as it appears in window titles.

fileName
– (NSString *)fileName

Returns the filename (as a fully qualified path) under which the document has been saved.

See also: – fileNameFromRunningSavePanelForSaveOperation:, – setFileName:

fileNameFromRunningSavePanelForSaveOperation:
– (NSString *)fileNameFromRunningSavePanelForSaveOperation:

(NSSaveOperationType)saveOperation

Runs the modal Save panel and returns the filename (as a fully qualified path) selected for the document.
The saveOperation constant determines the title of the Save panel (Save, Save As, Save To). It also affects
whether the Save Panel includes an accessory view with a pop-up list containing the document’s native or
writable types. If saveOperation is NSSaveOperation or NSSaveAsOperation, the accessory pop-up list
contains only those document types the application can read and write. If saveOperation is
NSSaveToOperation, the pop-up lists additionally includes the document types that the application can
write (but can’t read). If there is only one type the document can be written to, or if
shouldRunSavePanelWithAccessoryView returns NO, the accessory view isn’t shown. The default
extension for saved documents is the first extension assigned for the document’s native type or, if there is
no native type, the extension for the first writable type specified in the NSTypes property. File packages are
treated as files.

See also: – fileName, – runModalSavePanel:withAccessoryView:

fileType
– (NSString *)fileType

Returns the document type under which the document is saved. When a document is saved, the type is
determined by the file extension, as defined in the custom info dictionary (specified in CustomInfo.plist).

See also: – setFileType:

20

fileWrapperRepresentationOfType:
– (NSFileWrapper *)fileWrapperRepresentationOfType:(NSString *)aType

Returns an NSFileWrapper object that represents the data of the receiver in a given type (aType). This
method invokes dataRepresentationOfType: to get the data object from which to create a plain-file file
wrapper. Subclasses can override this method if dataRepresentationOfType: is not adequate for their
needs. This method is invoked by the default implementation of writeToFile:ofType: .

See also: – loadFileWrapperRepresentation:ofType:

hasUndoManager
– (BOOL)hasUndoManager

Returns whether the receiver owns or should own an NSUndoManager.

See also: – setHasUndoManager:

init
– (id)init

Initializes and returns an NSDocument object. This initializer (the designated initializer) is typically
invoked by NSDocumentController’s makeUntitledDocumentOfType:.

initWithContentsOfFile:ofType:
– (id)initWithContentsOfFile: (NSString *)fileName ofType:(NSString *)docType

Initializes and returns an NSDocument object of document type docType and containing data stored in the
file at the path location fileName. If the file cannot be opened, displays an attention panel informing the user,
and then returns nil . In opening the file, invokes the readFromFile:ofType: method. If it successfully
opens the file, it "remembers" fileName and docType (through setFileName: and setFileType:). This
initializer is typically invoked by NSDocumentController’s makeDocumentWithContentsOfFile:
ofType:.

isDocumentEdited
– (BOOL)isDocumentEdited

Returns YES if the document has been edited since it was last saved or if the document is new; otherwise,
returns NO. The edited status of each document window reflects the document’s edited status.

See also: – updateChangeCount:, setDocumentEdited: (NSWindow)

21

 Classes: NSDocument

keepBackupFile
– (BOOL)keepBackupFile

Returns whether the receiver should keep the backup files created before document data is written to a file
(NO by default). Override this method if you want different behavior.

See also: – writeToFile:ofType:

loadDataRepresentation:ofType:
– (BOOL)loadDataRepresentation:(NSData *)docData ofType:(NSString *)docType

Overridden by subclasses to load document data (docData) of type docType into the document, display it
in windows, and return whether the operation was successful. This method is typically invoked by
loadFileWrapperRepresentation:ofType: after an NSData object is created from the contents of the file
wrapper (which can include directories). The default implementation raises an
NSInternalInconsistencyException and returns NO. Subclasses must override this method unless they
override readFromFile:ofType: or loadFileWrapperRepresentation:ofType: to do specialized reading
and loading of document data.

Here is an example implementation:

- (BOOL)loadDataRepresentation:(NSData *)data ofType:(NSString *)aType {

 NSAssert([aType isEqualToString:@"rtf"], @"Unknown type");

 fileContents = [data copyWithZone:[self zone]];

 return YES;

}

See also: – dataRepresentationOfType:

loadFileWrapperRepresentation:ofType:
– (BOOL)loadFileWrapperRepresentation:(NSFileWrapper *)wrapper

ofType:(NSString *)docType

Load document data in file wrapper wrapper of type docType into the document, displays it in windows,
and returns whether the operation was successful. If wrapper is a simple file, it invokes
loadDataRepresentation:ofType: load the data. If wrapper is a directory, it returns NO by default;
subclasses can override to handle file wrappers containing directories. This method is typically invoked by
readFromFile:ofType: after it creates an NSData object from the contents of the file.

See also: – fileWrapperRepresentationOfType:

22

makeWindowControllers
– (NSArray *)makeWindowControllers

Overridden by subclasses to create and return multiple window controllers (NSWindowController objects)
or a single window controller derived from a custom subclass of NSWindowController. A document-based
application must have one window controller per document nib file (each of which must contain a primary
window controlled by the window controller). You usually should add each created window controller to
the document’s list of such objects by invoking addWindowController: .

If subclasses do not override this method, they must override windowNibName, but they should do so only
if the following two conditions apply:

• The document has a single nib file (with its one window).
• The default NSWindowController instance is sufficient to manage this window.

If you override this method, windowControllerDidLoadNib: and windowControllerWillLoadNib: are
invoked, as they are when windowNibName is implemented.

The default implementation raises NSInternalInconsistencyException and returns nil .

See also: – windowControllers

printDocument:
– (void)printDocument: (id)sender

Prints the document in response to the user choosing the Print menu command. An NSDocument receives
this action message as it travels up the responder chain. The default implementation invokes
printShowingPrintPanel: with an argument of YES.

See also: – printInfo , – runPageLayout:, – setPrintInfo: , – shouldChangePrintInfo:

printInfo
– (NSPrintInfo *)printInfo

Returns the document’s customized NSPrintInfo object or the default NSPrintInfo instance. The
document’s copy of the NSPrintInfo object can either be directly set, or set as a result of running the Page
Layout panel. A subclass can override this method to always return the shared NSPrintInfo instance if it
does not want its own copy.

See also: – runPageLayout:, – setPrintInfo: , – shouldChangePrintInfo:,

23

 Classes: NSDocument

printShowingPrintPanel:
– (void)printShowingPrintPanel: (BOOL)flag

Overridden by subclasses to print the current document’s (the receiver’s) data; if flag is YES, the
implementation should first display the Print panel. This method is typically invoked by printDocument:
with an argument of YES. The default implementation does nothing. If there is any printing information
other than that encoded in the receiver’s NSPrintInfo object, sublcasses should get it here.

See also: – printInfo

readFromFile:ofType:
– (BOOL)readFromFile:(NSString *)fileName ofType:(NSString *)docType

Reads and loads document data of type docType from the file at path fileName, returning whether the
operation was successful. This method invokes loadDataRepresentation:ofType: and is invoked when the
receiver is first created and initialized by initWithContentsOfFile:ofType: . It uses NSData’s
initWithContentsOfFile: to get the document data.

This method is one of the location-based primitives. Subclasses can override this method instead of
overriding loadDataRepresentation:ofType: to read and load document data. Subclasses that handle file
packages such as RTFD or that treat locations of files as anything other than paths should override this
method. Override implementations of this method can filter the document data using NSPasteboard’s or
other filtering services.

See also: – dataRepresentationOfType:, – writeToFile:ofType:

revertDocumentToSaved:
– (void)revertDocumentToSaved:(id)sender

The action method invoked in the receiver as first responder when the user chooses the Revert menu
command. The default implementation displays an attention panel to confirm the user’s intentions. If the
user confirms the command, the method reverts the document to the data saved in the file system by
invoking revertDocumentToSaved:. If the operation is successful, it clears the update count..

See also: – updateChangeCount:

24

revertToSavedFromFile:ofType:
– (BOOL)revertToSavedFromFile:(NSString *)fileName ofType:(NSString *)type

Reverts the receiver to the data stored in the file system. Invokes readFromFile:ofType: and returns
whether that method successfully read the file and processed the document data.

See also: – revertDocumentToSaved:

runModalPageLayoutWithPrintInfo:
– (int)runModalPageLayoutWithPrintInfo: (NSPrintInfo *)printInfo

Runs the Page Layout modal panel with the document’s printing information object (printInfo) as argument
and returns the result constant (indicating the key pressed by the user). Invoked by runPageLayout:.

See also: – shouldChangePrintInfo:, – runModalWithPrintInfo: (NSPageLayout)

runModalSavePanel:withAccessoryView:
– (int)runModalSavePanel:(NSSavePanel *)savePanel

withAccessoryView:(NSView *)accessoryView

Runs the modal Save panel savePanel with accessory view accessoryView and returns the result constant
(indicating the button clicked by the user). The accessory view is usually a pop-list containing the
document’s native types and its supported writable types. Invoked by
fileNameFromRunningSavePanelForSaveOperation:.

See also: – shouldRunSavePanelWithAccessoryView

runPageLayout:
– (void)runPageLayout:(id)sender

The action method invoked in the receiver as first responder when the user chooses the Page Layout menu
command. The default implementation invokes runModalPageLayoutWithPrintInfo: with the
document’s current NSPrintInfo object as argument; if the user presses the OK button, and the document
authorizes changes to its printing information (shouldChangePrintInfo:), the method sets the document’s
new NSPrintInfo object and increments the document’s change count.

See also: – setPrintInfo: , – updateChangeCount:

25

 Classes: NSDocument

saveDocument:
– (void)saveDocument:(id)sender

The action method invoked in the receiver as first responder when the user chooses the Save menu
command. The default implement saves the document in two different ways, depending on whether the
document has a file path and a document type assigned. If path and type are assigned, it simply writes the
document under it’s current file path and type after making a backup copy of the previous file. If the
document is new (no file path and type), it runs the modal Save panel to get the file location under which to
save the document. It writes the document to this file, sets the document’s file location and document type
(if a native type), and clears the document’s edited status.

See also: – fileNameFromRunningSavePanelForSaveOperation:, – setFileName:, – setFileType:,
– updateChangeCount:,

saveDocumentAs:
– (void)saveDocumentAs:(id)sender

The action method invoked in the receiver as first responder when the user chooses the Save As menu
command. The default implementation runs the modal Save panel to get the file location under which to
save the document. It writes the document to this file, sets the document’s file location and document type
(if a native type), and clears the document’s edited status.

See also: – fileNameFromRunningSavePanelForSaveOperation:, – setFileName:, – setFileType:,
– updateChangeCount:

saveDocumentTo:
– (void)saveDocumentTo:(id)sender

The action method invoked in the receiver as first responder when the user chooses the Save To menu
command. The default implementation is identical to saveDocumentAs:, except that this method doesn’t
clear the document’s edited status and doesn’t reset file location and document type if the document is a
native type.

See also: – fileNameFromRunningSavePanelForSaveOperation:

setFileName:
– (void)setFileName:(NSString *)fileName

Sets the file (filename and directory path) under which document data is saved to fileName. As a side effect,
synchronizes the titles of the document’s windows with the new name or location. Under normal

26

circumstances, the receiver’s filename is set when it saved as a new document (Save) or when an existing
document is saved under a different filename or path (Save As).

See also: – fileName

setFileType:
– (void)setFileType:(NSString *)docType

Sets the document type under which the file is saved to docType. The document type affects how the data
is filtered when it is written to or read from a file.

See also: – fileType

setHasUndoManager:
– (void)setHasUndoManager:(BOOL)flag

Sets whether the receiver has its own NSUndoManager. If flag is NO and the receiver currently owns an
NSUndoManager, the NSUndoManager is released after being removed as observer of undo-related
notifications.

See also: – hasUndoManager

setPrintInfo:
– (void)setPrintInfo: (NSPrintInfo *)printInfo

Sets the document’s NSPrintInfo object to printInfo; this object is used in laying out the document for
printing.

See also: – printInfo

setUndoManager:
– (void)setUndoManager:(NSUndoManager *)undoManager

Sets the undo manager owned by the receiver to undoManager and releases any undo manager currently
owned by the receiver. If undoManager is nil , it turns off the hasUndoManager flag. If undoManager is
non-nil , it adds the receiver as an observer of NSUndoManagerDidUndoChangeNotification,
NSUndoManagerDidRedoChangeNotification, and NSUndoManagerWillCloseUndoGroupNotification.

See also: – undoManager, NSUndoManager (class)

27

 Classes: NSDocument

shouldChangePrintInfo:
– (BOOL)shouldChangePrintInfo:(NSPrintInfo *)newPrintInfo

Returns whether the receiver should allow changes to the default NSPrintInfo object used in printing the
document. The default implementation returns YES. Subclasses can override this method to return NO. This
method is invoked by the runPageLayout: method, which sets a new NSPrintInfo for the document only
if this method returns YES.

shouldCloseWindowController:
– (BOOL)shouldCloseWindowController:(NSWindowController *)windowController

If closing the windowController would cause the receiver to be closed, invokes canCloseDocument to
display a Save panel and give the user an opportunity to save the document. Returns NO if that is what
canCloseDocument returns (that is, if the save operation was unsuccessful or the user clicked Cancel in
the Save dialog); otherwise returns YES. Note that the receiver doesn’t close until its window controller
closes.

See also: – close, – shouldCloseDocument (NSWindowController)

shouldRunSavePanelWithAccessoryView
– (BOOL)shouldRunSavePanelWithAccessoryView

Returns YES by default; as a result, when NSDocument displays the Save panel, it includes an accessory
view containing a pop-up list of supported writable document types. Subclasses can override to return NO,
thus excluding the accessory view from the Save panel.

Here is an example implementation:

- (BOOL)shouldRunSavePanelWithAccessoryView {

 return [self fileName] == nil;

}

See also: – runModalSavePanel:withAccessoryView:

showWindows
– (void)showWindows

Displays all windows of the document, bringing them to the front and making them main or key, as
necessary.

28

undoManager
– (NSUndoManager *)undoManager

Returns the NSUndoManager used by the document or nil if the receiver should not own one. If the undo
manager doesn’t exist and hasUndoManager returns YES, it creates one and invokes setUndoManager:
with the NSUndoManager as argument.

updateChangeCount:
– (void)updateChangeCount:(NSDocumentChangeType)changeType

Updates the document’s change count according to changeType. The change count indicates the document’s
edited status; if the change count is zero, the document has no changes to save, and if the change count is
greater than zero, the document has been edited and is unsaved. The changeType constant can increment
(NSChangeDone), decrement (NSChangeUndone) , or set to zero (NSChangeClear) the change count. If
you are implementing undo and redo in an application, you should increment the change count every time
you create an undo group, and decrement the change count when an undo or redo operation is performed.

Note that if you are using NSDocument’s default undo/redo features, setting the document’s edited status
by updating the change count happens automatically. You only need to invoke this method when you are
not using these features.

See also: NSUndoManager

validateMenuItem:
– (BOOL)validateMenuItem:(NSMenuItem *)anItem

Validates the Revert menu item and items selected from the Save panel’s pop-up list of writable document
types items. Returns YES if anItem should be enabled, NO otherwise. Returns YES for Revert if the
document has been edited and a file exists for the document. Returns YES for an item representing a
writable type if, during a Save or Save As operation, it is a native type for the document. Subclasses can
override this method to perform additional validations.

windowControllerDidLoadNib:
– (void)windowControllerDidLoadNib: (NSWindowController *)windowController

Overridden by subclass to perform any tasks after the document’s window controller (windowController)
loads the nib file containing the document window. The default implementation does nothing.

See also: – windowControllerWillLoadNib: , – windowControllers

29

 Classes: NSDocument

windowControllerWillLoadNib:
– (void)windowControllerWillLoadNib: (NSWindowController *)windowController

Overridden by subclass to perform any tasks before the document’s window controller (windowController)
loads the nib file containing the document window. The default implementation does nothing.

See also: – windowControllerDidLoadNib: , – windowControllers

windowControllers
– (NSArray *)windowControllers

Returns the document’s current window controllers (NSWindowController objects). If there are no window
controllers, returns an empty NSArray.

See also: – makeWindowControllers, – windowControllerDidLoadNib: ,
– windowControllerWillLoadNib: , – windowNibName

windowNibName
– (NSString *)windowNibName

Overridden by subclasses to return the name of the document’s sole nib file. Using this name, NSDocument
creates and instantiates a default instance of NSWindowController to manage the window. If your document
has multiple nib files, each with its own single window, or if the default NSWindowController instance is
not adequate for your purposes, you should override makeWindowControllers.

The default implementation returns nil .

See also: – windowControllers

writeToFile:ofType:
– (BOOL)writeToFile: (NSString *)fileName ofType:(NSString *)type

Writes document data of type docType to the file at path fileName, returning whether the operation was
successful. This method invokes dataRepresentationOfType: and is indirectly invoked whenever the
document file is saved. It uses NSData’s writeToFile:atomically: method to write to the file.

This method is one of the location-based primitives. Subclasses can override this method instead of
overriding dataRepresentationOfType: to write document data to the file system as an NSData object
after creating that object from internal data structures. Subclasses that handle file packages such as RTFD
or that treat locations of files as anything other than paths should override this method. Override

30

implementations of this method should ensure that they filter document data appropriately using
NSPasteboard’s filtering services.

See also: – loadDataRepresentation:ofType:, – readFromFile:ofType:

1

 Classes: NSDocumentController

NSDocumentController

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSDocumentController.h

Class Description

An NSDocumentController object manages an application’s documents. As the first-responder target of
New and Open menu commands, it creates and opens documents and tracks them throughout a session of
the application.When opening documents, an NSDocumentController runs and manages the modal Open
panel. It saves and closes documents when applications are terminated and it responds to NSWorkspace
methods when documents are opened or printed from the workspace. NSDocumentControllers also
maintain and manage the mappings of document types, extensions, and NSDocument subclasses as
specified in the NSTypes property loaded from the custom info property list (CustomInfo.plist). One
instance of NSDocumentController is shared among all objects of an application.

You can use various NSDocumentController methods to get a list of the current documents, get the current
document (which is the document whose window is currently key), get documents based on a given file
name or window, and to find out about a document’s extension, type, display name, and document class.

A document-based application can use the default NSDocumentController instance provided by the
Application Kit. This instance not only creates and manages documents, reacts appropriately to Workspace
and application events, much as a typical application delegate would. If you require additional behavior
that’s unrelated to documents, such as loading About panels and managing user preferences, you should
have a simple custom controller object handle these chores rather than a subclass of
NSDocumentController.

When an application is quitting, the NSDocumentController is asked before the application delegate (if one
exists) to approve the closing.

For more on the architecture of document-based applications, and the procedure for implementing, see the
concepts "“Document-Based Application Architecture”" and "“Implementing a Document-Based
Application”", currently in the NSDocument class description.

Method Types

Obtaining the shared instance
+ sharedDocumentController

2

Creating and opening documents
– makeDocumentWithContentsOfFile:ofType:
– makeUntitledDocumentOfType:
– openDocumentWithContentsOfFile:display:
– openUntitledDocumentOfType:display:
– setShouldCreateUI:
– shouldCreateUI

Managing the Open panel
– runModalOpenPanel:forTypes:
– fileNamesFromRunningOpenPanel
– currentDirectory

Closing documents
– closeAllDocuments
– reviewUnsavedDocumentsWithAlertTitle:cancellable:

Responding to action messages
– newDocument:
– openDocument:
– saveAllDocuments:

Managing documents
– documents
– currentDocument
– documentClassForType:
– documentForFileName:
– documentForWindow:
– hasEditedDocuments

Managing document types
– displayNameForType:
– fileExtensionsFromType:
– typeFromFileExtension:

Validating menu items
– validateMenuItem:

Class Methods

sharedDocumentController
+ (id)sharedDocumentController

Returns the shared NSDocumentController instance. If one doesn’t exist yet, it is created. Initialization
reads in the document types from the NSTypes property list (in CustomInfo.plist), registers the instance

3

 Classes: NSDocumentController

for NSWorkspaceWillPowerOffNotifications, and turns on the flag indicating that document user interfaces
should be visible. You should always obtain your application’s NSDocumentController using this method.

See also: – setShouldCreateUI:

Instance Methods

closeAllDocuments
– (BOOL)closeAllDocuments

Attempts to close all documents owned by the receiver after asking users if they want to save edited
documents. Returns whether all documents were closed. This method is invoked in
reviewUnsavedDocumentsWithAlertTitle:cancellable: when users choose the Review Unsaved option.

See also: – canCloseDocument (NSDocument)

currentDirectory
– (NSString *)currentDirectory

Returns the directory path to be used as the starting point in the Open panel, whenever one of the following
is a valid directory (in this order):

• The directory location where the current document was last saved
• The last directory visited in the Open panel
• The user’s home directory

See also: – documentForFileName:

currentDocument
– (id)currentDocument

Returns the NSDocument object associated with the main window.

See also: – documentForFileName:, – documentForWindow:, – documents

4

displayNameForType:
– (NSString *)displayNameForType:(NSString *)docType

Returns the descriptive name for the document type (docType), which is often part of the document’s
window title. This returned value is associated with the NSTypeName key in the NSType property list.If
there is no such value, docType is returned.

See also: – fileExtensionsFromType:, – typeFromFileExtension:

documentClassForType:
– (Class)documentClassForType:(NSString *)docType

Returns the NSDocument subclass associated with document type docType, as defined in the NSType
property of the custom info property list. The document type must be one the document can read. If the class
cannot be found, returns nil .

See also: – displayNameForType:, – fileExtensionsFromType:, – typeFromFileExtension:

documentForFileName:
– (id)documentForFileName:(NSString *)fileName

Returns the NSDocument object for the file in which the document data is stored. The fileName argument
is a fully qualified path in the file system. Returns nil if no document can be found.

See also: – documentForWindow:, – documents

documentForWindow:
– (id)documentForWindow:(NSWindow *)window

Returns the NSDocument object whose window controller (NSWindowController) owns the window object
window; returns nil if window is itself nil , if window has no window controller, or if the window controller
does not have an association with an NSDocument.

See also: – currentDocument, – documentForFileName:, – documents

5

 Classes: NSDocumentController

documents
– (NSArray *)documents

Returns the NSDocument objects managed by the receiver. If there are currently no documents, it returns
an empty NSArray.

See also: – currentDocument, – documentForFileName:, – documentForWindow:

fileExtensionsFromType:
– (NSArray *)fileExtensionsFromType:(NSString *)docType

Returns the allowable file extensions (as NSString objects) for document type docType. The first string in
the returned NSArray is typically the most common extension.

See also: – displayNameForType:, – typeFromFileExtension:

fileNamesFromRunningOpenPanel
– (NSArray *)fileNamesFromRunningOpenPanel

Returns a selection of files chosen by the user in the Open panel. Each file in the returned NSArray is a fully
qualified path to the file’s location in the file system. This method is invoked by openDocument: and it
invokes runModalOpenPanel:forTypes: after initializaing the Open panel (which includes getting the
starting directory with currentDirectory). Returns nil if the user cancels the Open panel or makes no
selection.

hasEditedDocuments
– (BOOL)hasEditedDocuments

Returns whether the receiver has any documents with unsaved changes.

See also: – documents

makeDocumentWithContentsOfFile:ofType:
– (id)makeDocumentWithContentsOfFile:(NSString *)fileName ofType:(NSString *)docType

Creates and returns an NSDocument object for document type docType from the contents of the file at
fileName, which must be a fully qualified path. The returned object is not retained. Returns nil if the
NSDocument subclass for docType couldn’t be determined or if the object couldn’t be created. This method

6

invokes NSDocument’s initWithContentsOfFile:ofType: and is invoked by
openDocumentWithContentsOfFile:display:.

See also: – makeUntitledDocumentOfType:, – openDocument:

makeUntitledDocumentOfType:
– (id)makeUntitledDocumentOfType:(NSString *)type

Creates and returns an NSDocument object for document type docType. The returned object is not retained.
Returns nil if the NSDocument subclass for docType couldn’t be determined or if the object couldn’t be
created. This method invokes NSDocument’s init and is invoked by openUntitledDocumentOfType:
display:.

See also: – makeDocumentWithContentsOfFile:ofType:, – newDocument:

newDocument:
– (void)newDocument:(id)sender

An action method invoked the New menu command, it creates a new NSDocument object and adds it to the
list of such objects managed by the receiver. It invokes openUntitledDocumentOfType:display: with the
document type (first argument) being the first one specified in the NSType property (defined in
CustomInfo.plist); the document type determines the NSDocument sublcass used to instantiate the
document object.

See also: – openDocument:

openDocument:
– (void)openDocument:(id)sender

An action method invoked the Open menu command, it runs the modal Open panel and, based on the
selected filenames, creates one or more NSDocument object from the contents of the files; it adds these
objects to the list of NSDocument objects managed by the receiver. This method invokes
openDocumentWithContentsOfFile:display:, which actually creates the NSDocument objects.

See also: – fileNamesFromRunningOpenPanel, – newDocument:

7

 Classes: NSDocumentController

openDocumentWithContentsOfFile:display:
– (id)openDocumentWithContentsOfFile:(NSString *)fileName display:(BOOL)flag

Returns an NSDocument object created from the contents of the file at fileName (an absolute path) and
displays it if flag is YES. The returned object is not retained, but is added to the receiver’s list of managed
documents. Returns nil if the object could not be created, typically because fileName does not point to a
valid file or because there is no NSDocument sublcass for the document type (as indicated by the file
extension). Even if flag is YES, the document is not displayed if shouldCreateUI returns NO. This method
invokes makeDocumentWithContentsOfFile:ofType: to obtain the created NSDocument object.

See also: – openDocument:, – openUntitledDocumentOfType:display:, – setShouldCreateUI:

openUntitledDocumentOfType:display:
– (id)openUntitledDocumentOfType:(NSString *)docType display:(BOOL)display

Returns an NSDocument object instantiated from the NSDocument subclass required by document type
docType and displays it if flag is YES. The returned object is not retained, but is added to the receiver’s list
of managed documents. Returns nil if the object could not be created, typically because no NSDocument
sublcass could be found for docType. Even if flag is YES, the document is not displayed if shouldCreateUI
returns NO. This method invokes makeUntitledDocumentOfType: to obtain the created NSDocument
object.

See also: – newDocument:, – openDocumentWithContentsOfFile:display:, – setShouldCreateUI:

reviewUnsavedDocumentsWithAlertTitle:cancellable:
– (BOOL)reviewUnsavedDocumentsWithAlertTitle:(NSString *)title cancellable:(BOOL)flag

Displays an attention panel (a dialog) asking users if they want to review unsaved documents, quit
regardless of unsaved documents, or (if flag is YES) if they want to cancel the impending
save-and-terminate operation. Returns YES if the application is to quit and NO if otherwise (used only when
the application is terminating). If the user selects the Review Unsaved option, closeAllDocuments is
invoked. This method is invoked when users choose the Quit menu command and when the computer power
is being turned off (in which case, flag is NO).

runModalOpenPanel:forTypes:
– (int)runModalOpenPanel:(NSOpenPanel *)openPanel

 forTypes:(NSArray *)extensions

Invokes NSOpenPanel’s runModalForTypes: passing the file extensions associated with a document type.
This method is invoked by the fileNamesFromRunningOpenPanel method. Subclasses can override this
method if they want specialized Open panel behavior.

8

saveAllDocuments:
– (void)saveAllDocuments:(id)sender

As the action method invoked by the Save All command, saves all open documents of the application that
need to be saved.

See also: – saveDocument: (NSDocument)

setShouldCreateUI:
– (void)setShouldCreateUI:(BOOL)flag

Sets whether the window controllers (NSWindowControllers) of a document should be created when the
document is created. When a window controller is created, it loads the nib file containing the window it
manages. Often flag is set to NO for scripting or searching operations involving the document’s data.

See also: – shouldCreateUI

shouldCreateUI
– (BOOL)shouldCreateUI

Returns whether the window controllers (NSWindowControllers) of a document should be created when
the document is created.

See also: – setShouldCreateUI:

typeFromFileExtension:
– (NSString *)typeFromFileExtension:(NSString *)fileExtension

Returns the document type associated with files having extension fileExtension.

See also: – displayNameForType:, – fileExtensionsFromType:

validateMenuItem:
– (BOOL)validateMenuItem:(NSMenuItem *)anItem

Validates menu item anItem, returning YES if it should be enabled, NO otherwise. As implemented, if
anItem is the Save All menu item, returns YES if there are any edited documents. Subclasses can override
this method to perform additional validations.

1

 Classes: NSDPSContext

NSDPSContext

Inherits From: NSGraphicsContext : NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSDPSContext.h

Class Description

The NSDPSContext class is the programmatic interface to objects that represent Display PostScript System
contexts. A context can be thought of as a destination to which PostScript code is sent for execution. Each
Display PostScript context contains its own complete PostScript environment including its own local VM
(PostScript Virtual Memory). Every context has its own set of stacks, including an operand stack, graphics
state stack, dictionary stack, and execution stack. Every context also contains a FontDirectory which is
local to that context, plus a SharedFontDirectory that is shared across all contexts. There are three built-in
dictionaries in the dictionary stack. From top to bottom, they are userdict, globaldict, and systemdict.
userdict is private to the context, while globaldict and systemdict are shared by all contexts. globaldict is
a modifiable dictionary containing information common to all contexts. systemdict is a read-only
dictionary containing all the PostScript operators.

At any time there is the notion of the current context. The current context for the current thread may be set
using setCurrentContext:.

NSDPSContext objects by default write their output to a specified data destination. This is used for printing,
faxing, and for generation of saved EPS (Encapsulated PostScript) code. The means to create contexts that
interact with displays are platform-specific.

The NSApplication object creates an NSDPSContext by default.

NSDPSContext Objects and Display PostScript System Context Records

When an NSDPSContext object is created, it creates and manages a DPSContext record. Programmers
familiar with the client side C function interface to the Display PostScript System can access the
DPSContext record by sending a context message to an NSDPSContext object. You can then operate on
this context record using any of the functions or single operator functions defined in the Display PostScript
System client library. Conversely, you can create an NSDPSContext object from a DPSContext record with
the DPSContextObject function, as defined in “Client Library Functions”. You can then work with the
created NSDPSContext object using any of the methods described here.

2

General Exception Conditions

A variety of exceptions can be raised from NSDPSContext. In most cases, exceptions are raised because of
errors returned from the Display PostScript Server. Exceptions are listed under “Types and Constants.” Also
see the Display PostScript System, Client Library Reference Manual, by Adobe Systems Incorporated, for
more details on Display PostScript System error names and their possible causes.

Method Types

Initializing a context
– initWithMutableData:forDebugging:languageEncoding:

nameEncoding:textProc:errorProc:

Testing the drawing destination
– isDrawingToScreen

Accessing context data
– mutableData

Setting and identifying the current context
+ currentContext
+ setCurrentContext:
– DPSContext

Controlling the context
– flush
– interruptExecution
– notifyObjectWhenFinishedExecuting:
– resetCommunication
– wait

Managing returned text and errors
+ stringForDPSError:
– errorProc
– setErrorProc:
– setTextProc:
– textProc

Sending raw data
– printFormat:
– printFormat:arguments:
– writeData:
– writePostScriptWithLanguageEncodingConversion:

3

 Classes: NSDPSContext

Managing binary object sequences
– awaitReturnValues
– writeBOSArray:count:ofType:
– writeBOSNumString:length:ofType:scale:
– writeBOSString:length:
– writeBinaryObjectSequence:length:
– updateNameMap

Managing chained contexts
– chainChildContext:
– childContext
– parentContext
– unchainContext

Controlling the wait cursor
– startWaitCursorTimer
– setWaitCursorEnabled:
– isWaitCursorEnabled

Debugging aids
+ areAllContextsOutputTraced
+ areAllContextsSynchronized
+ setAllContextsOutputTraced:
+ setAllContextsSynchronized:
– isOutputTraced
– isSynchronized
– setOutputTraced:
– setSynchronized:

Class Methods

areAllContextsOutputTraced
+ (BOOL)areAllContextsOutputTraced

Returns YES if the data flowing between the application’s contexts and their destinations is copied to
diagnostic output.

areAllContextsSynchronized
+ (BOOL)areAllContextsSynchronized

Returns YES if all NSPDSContext objects invoke the wait method after sending each batch of output.

4

currentContext
+ (id)currentContext

Returns the id for the current context of the current thread.

setAllContextsOutputTraced:
+ (void)setAllContextsOutputTraced:(BOOL)flag

Causes the data (PostScript code, return values, and so forth) flowing between the all the application’s
contexts and their destinations to be copied to diagnostic output.

setAllContextsSynchronized:
+ (void)setAllContextsSynchronized:(BOOL)flag

Causes the wait method to be invoked each time an NSDPSContext object sends a batch of output to its
destination.

setCurrentContext:
+ (void)setCurrentContext:(NSGraphicsContext *)context

Installs context as the current context of the current thread.

stringForDPSError:
+ (NSString *)stringForDPSError: (const DPSBinObjSeqRec *)error

Returns a string representation of error.

Instance Methods

DPSContext
– (DPSContext)DPSContext

Returns the corresponding DPScontext.

5

 Classes: NSDPSContext

awaitReturnValues
– (void)awaitReturnValues

Waits for all return values from the result table.

chainChildContext:
– (void)chainChildContext:(NSDPSContext *)child

Links child (and all of it’s children) to the receiver as its chained context, a context that receives a copy of
all PostScript code sent to the receiver.

childContext
– (NSDPSContext *)childContext

Returns the receiver’s child context, or nil if none exists.

errorProc
– (DPSErrorProc)errorProc

Returns the context’s error callback function.

flush
– (void)flush

Forces any buffered data to be sent to its destination.

initWithMutableData:forDebugging:languageEncoding:nameEncoding:textProc:
errorProc:

– initWithMutableData: (NSMutableData *)data
forDebugging:(BOOL)debug
languageEncoding(DPSProgramEncoding)langEnc
nameEncoding(DPSNameEncoding)nameEnc
textProc:(DPSTextProc)tProc
errorProc: (DPSErrorProc)errorProc

Initializes a newly allocated NSDPSContext that writes its output to data using the language and name
encodings specified by langEnc and nameEnc. The callback functions tProc and errorProc handle text and

6

errors generated by the context. If debug is YES, the output is given in human-readable form in which large
structures (such as images) may be represented by comments.

interruptExecution
– (void)interruptExecution

Interrupts execution in the receiver’s context.

isDrawingToScreen
– (BOOL)isDrawingToScreen

Returns YES if the drawing destination is the screen.

isOutputTraced
– (BOOL)isOutputTraced

Returns YES if the data flowing between the application’s single context and its destination is copied to
diagnostic output.

isSynchronized
– (BOOL)isSynchronized

Returns whether the wait method is invoked each time the receiver sends a batch of output to the server.

isWaitCursorEnabled
– (BOOL)isWaitCursorEnabled

Returns whether the wait cursor is enabled.

See also: PScurrentwaitcursorenabled (function)

mutableData
– (NSMutableData *)mutableData

Returns the receiver’s data object.

7

 Classes: NSDPSContext

notifyObjectWhenFinishedExecuting:
– (void)notifyObjectWhenFinishedExecuting:(id <NSDPSContextNotification>)object

Registers object to receive a contextFinishedExecuting: message when the NSDPSContext’s destination
is ready to receive more input. The registered object supports the NSDPSContextNotification protocol.

parentContext
– (NSDPSContext *)parentContext

Returns the receiver’s parent context, or nil if none exists.

printFormat:
– (void)printFormat: (NSString *)format,...

Constructs a string from format and following string objects (in the manner of printf) and sends it to the
context’s destination.

printFormat:arguments:
– (void)printFormat: (NSString *)format

arguments:(va_list)argList

Constructs a string from format and argList (in the manner of vprintf) and sends it to the context’s
destination.

resetCommunication
– (void)resetCommunication

Discards any data that hasn’t already been sent to its destination.

setErrorProc:
– (void)setErrorProc: (DPSErrorProc)proc

Sets the context’s error callback function to proc.

8

setOutputTraced:
– (void)setOutputTraced:(BOOL)flag

Causes the data (PostScript code, return values, and so on) flowing between the application’s single context
and the Display PostScript server to be copied to diagnostic output.

setSynchronized:
– (void)setSynchronized:(BOOL)flag

Sets whether the wait method is invoked each time the receiver sends a batch of output to its destination.

setTextProc:
– (void)setTextProc:(DPSTextProc)proc

Sets the context’s text callback function to proc.

setWaitCursorEnabled:
– (void)setWaitCursorEnabled:(BOOL)flag

Sets whether the wait cursor is enabled or disabled according to flag.

See also: PSsetwaitcursorenabled (function)

startWaitCursorTimer
– (void)startWaitCursorTimer

Generates a pseudo-event to start wait cursor timer.

See also: – setWaitCursorEnabled:

textProc
– (DPSTextProc)textProc

Returns the context’s text callback function.

9

 Classes: NSDPSContext

unchainContext
– (void)unchainContext

Unlinks the child context (and all of it’s children) from the receiver’s list of chained contexts.

updateNameMap
– (void)updateNameMap

Updates the context’s name map from the client library’s name map.

wait
– (void)wait

Waits until the NSDPSContext’s destination is ready to receive more input.

writeBOSArray:count:ofType:
– (void)writeBOSArray: (const void *)data

count:(unsigned int)items
ofType:(DPSDefinedType)type

Write an array to the context’s destination as part of a binary object sequence. The array is taken from data
and consists of items items of type type.

writeBOSNumString:length:ofType:scale:
– (void)writeBOSNumString: (const void *)data

length:(unsigned int)count
ofType(DPSDefinedType)type
scale:(int)scale

Write a number string to the context’s destination as part of a binary object sequence. The string is taken
from data as described by count, type, and scale.

writeBOSString:length:
– (void)writeBOSString: (const void *)data length:(unsigned int)bytes

Write a string to the context’s destination as part of a binary object sequence. The string is taken from bytes
(a count) of data.

10

writeBinaryObjectSequence:length:
– (void)writeBinaryObjectSequence:(const void *)data

length:(unsigned int)bytes

Write a binary object sequence to the context’s destination. The sequence consists of bytes (a count) of data.

writeData:
– (void)writeData: (NSData *)buf

Sends the PostScript data in buf to the context’s destination.

writePostScriptWithLanguageEncodingConversion:
– (void)writePostScriptWithLanguageEncodingConversion:(NSData *)buf

Writes the PostScript data in buf to the context’s destination. The data, formatted as plain text, encoded
tokens, or a binary object sequence, is converted as necessary depending on the language encoding of the
receiving context.

1

 Classes: NSEPSImageRep

NSEPSImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding (from NSImageRep)
NSCopying (from NSImageRep)
NSObject (from NSObject)

Declared In: AppKit/NSEPSImageRep.h

Class Description

An NSEPSImageRep is an object that can render an image from encapsulated PostScript code (EPS).

Like most other kinds of NSImageReps, an NSEPSImageRep is generally used indirectly, through an
NSImage object. An NSImage must be able to choose between various representations of a given image. It
also needs to provide an off-screen cache of the appropriate depth for any image it uses. It determines this
information by querying its NSImageReps.

Thus to work with an NSImage, an NSEPSImageRep must be able to provide some information about its
image. The size of the object is set from the bounding box specified in the EPS header comments. Use these
methods, inherited from the NSImageRep class, to set the other attributes of the NSEPSImageRep:

setColorSpaceName:
setAlpha:
setPixelsHigh:
setPixelsWide:
setBitsPerSample:

Note that if these attributes aren’t set, and an NSEPSImageRep is used in an NSImage with other
representations, NSImage won’t be able to select between them. In actual practice, this usually isn’t a
problem.

Method Types

Creating an NSEPSImageRep
+ imageRepWithData:
– initWithData:

Getting image data
– boundingBox
– EPSRepresentation

2

Drawing the image
– prepareGState

Class Methods

imageRepWithData:
+ (id)imageRepWithData:(NSData *)epsData

Creates a new NSEPSImageRep instance and then invokes initWithData: to initialize it with the contents
of epsData. If the new object can’t be initialized for any reason (for example, epsData doesn’t contain EPS
code), this method frees the receiver and returns nil . Otherwise, it returns a new instance of
NSEPSImageRep.

The size of the object is set from the bounding box specified in the EPS header comments.

Instance Methods

EPSRepresentation
– (NSData *)EPSRepresentation

Returns the EPS representation of the image.

boundingBox
– (NSRect)boundingBox

Returns the rectangle that bounds the image. The rectangle is obtained from the “%%BoundingBox:”
comment in the EPS header when the NSEPSImageRep is initialized.

See also: + imageRepWithData:, – initWithData:

initWithData:
– (id)initWithData: (NSData *)epsData

Initializes the receiver, a newly allocated NSEPSImageRep object, with the contents of epsData. If the new
object can’t be initialized for any reason (for example, epsData doesn’t contain EPS code), this method
frees the receiver and returns nil . Otherwise, it returns self.

The size of the object is set from the bounding box specified in the EPS header comments.

3

 Classes: NSEPSImageRep

prepareGState
– (void)prepareGState

Implemented by subclasses to initialize the graphics state before the image is drawn. NSEPSImageRep’s
draw method sends a prepareGState message just before rendering the EPS code. The default
implementation of prepareGState does nothing.

1

 Classes: NSEvent

NSEvent

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSEvent.h

Class Description

An NSEvent object, or simply an event, contains information about an input action such as a mouse click
or a key down. The Application Kit associates each such user action with a window, reporting the event to
the application that created the window. The NSEvent object contains pertinent information about each
event, such as where the mouse was located or which character was typed. As the application receives
events, it temporarily places them in a buffer called the event queue. When the application is ready to
process an event, it takes one from the queue.

NSEvents are typically passed up the application’s responder chain, a series of objects that stand in line for
event messages and untargeted action messages, as described in the NSResponder class specification. When
the NSApplication object retrieves an event from the event queue, it dispatches the event to the appropriate
NSWindow by invoking sendEvent:. The NSWindow then passes the event to its first responder in an event
message such as mouseDown: or keyDown:, and the event gets passed on up the responder chain until
some object handles it. In the case of a mouse-down event, a mouseDown: message is sent to the NSView
where the user clicked the mouse; if it doesn’t handle the event itself, the NSView relays the message to its
next responder.

Most events follow this same path: from the windowing system to the application’s event queue, and from
there to the appropriate objects in the application. Though it rarely need do so, an application can also create
an event from scratch and insert it into the event queue for distribution, or send it directly to its destination
in an event message. The newly created events can be added to the event queue by invoking NSWindow’s
(or NSApplication’s) postEvent:atStart: method.

While most events are distributed automatically through the responder chain, sometimes an object needs to
retrieve events explicitly—for example, while handling mouse-dragged events. NSWindow and
NSApplication define the method nextEventMatchingMask:untilDate:inMode:dequeue:, which allows
an object to retrieve events of specific types. The nature of the retrieved event can then be ascertained by
invoking NSEvent instance methods—type, window, and so on. All types of events are associated with an
NSWindow; the window method returns this object. The location of a mouse event within the window’s
coordinate system is given by locationInWindow, and the time of the event by timestamp. The

2

modifierFlags method returns an indication of which modifier keys (Command, Control, Shift, and so on)
the user held down while the event occurred.

The type method returns an NSEventType value that identifies the sort of event. The different types of
events fall into five groups:

• Keyboard events
• Mouse events
• Tracking-rectangle and cursor-update events
• Periodic events
• Other events

Some of these groups comprise several NSEventType constants, others only one. The following sections
discuss the groups, along with the corresponding NSEventType constants.

Keyboard Events

Among the most common events sent to an application are direct reports of the user’s keyboard actions,
identified by these NSEventType constants:

• NSKeyDown. The user generated a character or characters by pressing a key.

• NSKeyUp. The key was released.

• NSFlagsChanged. The user pressed or released a modifier key, or turned Alpha Lock on or off.

Of these, key-down events are the most useful to an application. When a type message returns
NSKeyDown, the next step is typically to get the characters generated by the key-down using the
characters method.

Key-up events are used less frequently since they follow almost automatically when there’s been a
key-down event. And because NSEvent’s modifierFlags method returns the state of the modifier keys
regardless of the type of event, applications normally don’t need to receive flags-changed events; they’re
useful only for applications that have to keep track of the state of these keys at all times.

For more information on keyboard events, see “Key Events” under the Class Description in the
NSResponder class specification and “Input Management” in the NSTextView class specification.

Mouse Events

Mouse events are generated by changes in the state of the mouse buttons and by changes in the position of
the mouse cursor on the screen. This category consists of:

• NSLeftMouseDown, NSLeftMouseUp, NSRightMouseDown, NSRightMouseUp. “Mouse-down”
means the user pressed the button; “mouse-up” means the user released it. If the mouse has just one
button, only left mouse events are generated. By sending a clickCount message to the event, you can
determine whether the mouse event was a single click, double click, and so on.

3

 Classes: NSEvent

• NSLeftMouseDragged, NSRightMouseDragged. The user moved the mouse with one or more buttons
down. NSLeftMouseDragged events are generated when the mouse is moved with its left mouse button
down or with both buttons down, and NSRightMouseDragged when it's moved with just the right button
down. A mouse with a single button generates only left mouse-dragged events. A series of
mouse-dragged events is always preceded by a mouse-down event and followed by a mouse-up event.

• NSMouseMoved. The user moved the mouse without holding down either mouse button. Mouse-moved
events are normally not tracked, as they quickly flood the event queue; use NSWindow’s
setAcceptsMouseMovedEvents: to turn on tracking of mouse movements.

Mouse-dragged and mouse-moved events are generated repeatedly as long as the user keeps moving the
mouse. If the mouse is stationary, neither type of event is generated until the mouse moves again.

Note: Neither the OpenStep specification nor the Rhapsody implementation specifies facilities for the third
button of a three-button mouse.

See “Mouse Events” under “Event Handling” in the NSView class specification for more information on
mouse events.

Tracking-Rectangle and Cursor-Update Events

Because following the mouse’s movements precisely is an expensive operation, the Application Kit
provides a less intensive mechanism for tracking the location of the mouse. It does this by allowing the
application to define regions of the screen, called tracking rectangles, that generate events when the cursor
enters or leaves them. The event types are NSMouseEntered and NSMouseExited, and they’re generated
when the application has asked the Window Server to set a tracking rectangle in a window, typically by
using NSView’s addTrackingRect:owner:userData:assumeInside: method. A window can have any
number of tracking rectangles; NSEvent’s trackingNumber method identifies the rectangle that triggered
the event.

A special kind of tracking event is the NSCursorUpdate event. This type is used to implement NSView’s
cursor-rectangle mechanism. An NSCursorUpdate event is generated when the cursor has crossed the
boundary of a predefined rectangular area. Applications rarely use NSCursorUpdate events directly, instead
using NSView’s far more convenient methods.

See “Tracking Rectangles and Cursor Rectangles” under “Event Handling” in the NSView class
specification for more information.

Periodic Events

An event of type NSPeriodic simply notifies an application that a certain time interval has elapsed. By using
the NSEvent class method startPeriodicEventsAfterDelay:withPeriod:, an application can register to
receive periodic events and have them placed in its event queue at a certain frequency. When the application
no longer needs them, the flow of periodic events can be turned off by invoking stopPeriodicEvents. An
application can have only one stream of periodic events active for each thread. Unlike keyboard and mouse

4

events, periodic events aren’t dispatched to an NSWindow. The application must retrieve them explicitly
using nextEventMatchingMask:untilDate:inMode:dequeue:, typically in a modal loop.

Periodic events are particularly useful in situations where input events aren’t generated. For example, when
the user holds the mouse down over a scroll button but doesn’t move it, no events are generated after the
mouse-down event. The scrolling mechanism then has to start and use a stream of periodic events to keep
the document scrolling at a reasonable pace until the user releases the mouse. When a mouse-up event
occurs, the scrolling mechanism terminates the periodic event stream.

Other Events

The remaining event types—NSAppKitDefined, NSSystemDefined, and NSApplicationDefined—are less
structured, containing only generic subtype and data fields. These three types are extensions to the
OpenStep specification, so you shouldn’t use them in portable code (periodic events are also implemented
in this manner, but are in the specification). Of the three miscellaneous event types, only
NSApplicationDefined is of real use to application programs. It allows the application to generate totally
custom events and insert them into the event queue. Each such event can have a subtype and two additional
codes to differentiate it from others. otherEventWithType:... creates one of these events, and the subtype,
data1, and data2 methods return the information specific to these events.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:
– copy

5

 Classes: NSEvent

Method Types

Creating events
+ keyEventWithType:location:modifierFlags:timestamp:

windowNumber:context:characters:charactersIgnoringModifier:
isARepeat:keyCode:

+ mouseEventWithType:location:modifierFlags:timestamp:
windowNumber:context:eventNumber:clickCount:pressure:

+ enterExitEventWithType:location:modifierFlags:timestamp:
windowNumber:context:eventNumber:trackingNumber:userData:

+ otherEventWithType:location:modifierFlags:timestamp:
windowNumber:context:subtype:data1:data2:

Requesting and stopping periodic events
+ startPeriodicEventsAfterDelay:withPeriod:
+ stopPeriodicEvents

Getting general event information
– context
– locationInWindow
– modifierFlags
– timestamp
– type
– window
– windowNumber

Getting key event information
– characters
– charactersIgnoringModifiers
– isARepeat
– keyCode

Getting mouse event information
– clickCount
– eventNumber
– pressure

Getting tracking-rectangle event information
– eventNumber
– trackingNumber
– userData

Getting custom event information
– data1
– data2
– subtype

6

Class Methods

enterExitEventWithType:location:modifierFlags:timestamp:
windowNumber:context:eventNumber:trackingNumber:userData:

+ (NSEvent *)enterExitEventWithType: (NSEventType)type
location:(NSPoint)location
modifierFlags:(unsigned int)flags
timestamp:(NSTimeInterval)time
windowNumber:(int)windowNumber
context:(NSDPSContext *)context
eventNumber:(int)eventNumber
trackingNumber: (int)trackingNumber
userData:(void *)userData

Returns a new NSEvent object describing a tracking-rectangle or cursor-update event. type must be one of
the following, else an NSInvalidArgumentException is raised:

NSMouseEntered
NSMouseExited
NSCursorUpdate

location, flags, time, windowNumber, and context are as described under keyEventWithType:....
Arguments specific to mouse tracking events are:

eventNumber is an identifier for the new event. It’s normally taken from a counter for mouse events, which
continually increases as the application runs.

trackingNumber is the number that identifies the tracking rectangle. This identifier is the same returned by
NSView’s addTrackingRect:owner:userData:assumeInside:.

userData is data arbitrarily associated with the tracking rectangle when it was set up using NSView’s
addTrackingRect:owner:userData:assumeInside:.

See also: – eventNumber, – trackingNumber, – userData

7

 Classes: NSEvent

keyEventWithType:location:modifierFlags:timestamp:windowNumber:
context:characters:charactersIgnoringModifier:isARepeat:keyCode:

+ (NSEvent *)keyEventWithType:(NSEventType)type
location:(NSPoint)location
modifierFlags:(unsigned int)flags
timestamp:(NSTimeInterval)time
windowNumber:(int)windowNum
context:(NSDPSContext *)context
characters:(NSString *)characters
charactersIgnoringModifiers:(NSString *)unmodCharacters
isARepeat:(BOOL)repeatKey
keyCode:(unsigned short int)code

Returns a new NSEvent object describing a key event. type must be one of the following, else an
NSInvalidArgumentException is raised:

NSKeyDown
NSKeyUp
NSFlagsChanged

location is the mouse location in the base coordinate system of the window specified by windowNumber.

flags is an integer bit field containing any of these modifier key masks, combined using the C bitwise OR
operator:

NSAlphaShiftKeyMask
NSShiftKeyMask
NSControlKeyMask
NSAlternateKeyMask
NSCommandKeyMask
NSNumericPadKeyMask
NSHelpKeyMask
NSFunctionKeyMask

time is the time the event occurred in seconds since system startup. How to get this value varies with the
platform.

windowNumber identifies the PostScript window device associated with the event, which is associated with
the NSWindow that will receive the event.

context is the Display PostScript context of the event.

characters is a string of characters associated with the key event. Though most key events contain only one
character, it is possible for a single keypress to generate a series of characters.

8

unmodCharacters is the string of characters generated by the key event as if no modifier key had been
pressed (except for Shift). This is useful for getting the “basic” key value in a hardware-independent
manner.

repeatKey is YES if the key event is a repeat caused by the user holding the key down, NO if the key event
is new.

code identifies the keyboard key associated with the key event. Its value is hardware-dependent.

See also: – characters, – charactersIgnoringModifiers, – isARepeat, – keyCode

mouseEventWithType:location:modifierFlags:timestamp:
windowNumber:context:eventNumber:clickCount:pressure:

+ (NSEvent *)mouseEventWithType:(NSEventType)type
location:(NSPoint)location
modifierFlags:(unsigned int)flags
timestamp:(NSTimeInterval)time
windowNumber:(int)windowNum
context:(NSDPSContext *)context
eventNumber:(int)eventNumber
clickCount: (int)clickNumber
pressure:(float)pressure

Returns a new NSEvent object describing a mouse-down, -up, -moved, or -dragged event. type must be one
of the following, else an NSInvalidArgumentException is raised:

NSLeftMouseDown
NSLeftMouseUp
NSRightMouseDown
NSRightMouseUp
NSMouseMoved
NSLeftMouseDragged
NSRightMouseDragged

location, flags, time, windowNumber, and context are as described under keyEventWithType:....

eventNumber is an identifier for the new event. It’s normally taken from a counter for mouse events, which
continually increases as the application runs.

clickNumber is the number of mouse clicks associated with the mouse event.

pressure is a value from 0.0 to 1.0 indicating the pressure applied to the input device on a mouse event, used
for an appropriate device such as a graphics tablet. For devices that aren’t pressure-sensitive, the value

9

 Classes: NSEvent

should be either 0.0 or 1.0. How to determine whether the input device is pressure-sensitive depends on the
platform.

See also: – clickCount, – eventNumber, – pressure

otherEventWithType:location:modifierFlags:timestamp:
windowNumber:context:subtype:data1:data2:

+ (NSEvent *)otherEventWithType: (NSEventType)type
location:(NSPoint)location
modifierFlags:(unsigned int)flags
timestamp:(NSTimeInterval)time
windowNumber:(int)windowNum
context:(NSDPSContext *)context
subtype:(short int)subtype
data1:(int)data1
data2:(int)data2

Returns a new NSEvent object describing a custom event. type must be one of the values below, else an
NSInvalidArgumentException is raised. Your code should only create events of type
NSApplicationDefined.

NSAppKitDefined (Apple extension to the OpenStep specification)
NSSystemDefined (Apple extension to the OpenStep specification)
NSApplicationDefined (Apple extension to the OpenStep specification)
NSPeriodic

location, flags, time, windowNumber, and context are as described under keyEventWithType:....
Arguments specific to mouse tracking events are:

subtype further differentiates custom events of type NSAppKitDefined, NSSystemDefined, and
NSApplicationDefined. NSPeriodic events don’t use this attribute.

data1 and data2 contain additional data associated with the event. NSPeriodic events don’t use these
attributes.

See also: – subtype, – data1, – data2

10

startPeriodicEventsAfterDelay:withPeriod:
+ (void)startPeriodicEventsAfterDelay:(NSTimeInterval)delaySeconds

withPeriod: (NSTimeInterval)periodSeconds

Begins generating periodic events for the current thread every periodSeconds, after a delay of
delaySeconds. Raises an NSInternalInconsistencyException if periodic events are already being generated
for the current thread. This method is typically used in a modal loop while tracking mouse-dragged events.

See also: + stopPeriodicEvents

stopPeriodicEvents
+ (void)stopPeriodicEvents

Stops generating periodic events for the current thread and discards any periodic events remaining in the
queue. This message is ignored if periodic events aren’t currently being generated.

See also: + startPeriodicEventsAfterDelay:withPeriod:

Instance Methods

characters
– (NSString *)characters

Returns the characters associated with the receiving key-up or key-down event. These characters are derived
from a keyboard mapping that associates various key combinations with Unicode characters. Raises an
NSInternalInconsistencyException if sent to any other kind of event.

See also: – charactersIgnoringModifiers, + keyEventWithType:location:modifierFlags:timestamp:
windowNumber:context:characters:charactersIgnoringModifier:isARepeat:keyCode:

charactersIgnoringModifiers
– (NSString *)charactersIgnoringModifiers

Returns the characters generated by the receiving key event as if no modifier key (except for Shift) applies.
Raises an NSInternalInconsistencyException if sent to a non-key event. The return value of this method is
meaningless for an NSFlagsChanged event.

This method is useful for determining “basic” key values in a hardware-independent manner, enabling such
features as keyboard equivalents and mnemonics defined in terms of modifier keys plus character keys. For
example, to determine if the user typed Alt-s, you don’t have to know whether Alt-s generates a German

11

 Classes: NSEvent

double ess, an integral sign, or a section symbol. You simply examine the string returned by this method
along with the event’s modifier flags, checking for “s” and NSAlternateKeyMask.

See also: – characters, – modifierFlags, + keyEventWithType:location:modifierFlags:timestamp:
windowNumber:context:characters:charactersIgnoringModifier:isARepeat:keyCode:

clickCount
– (int)clickCount

Returns the number of mouse clicks associated with the receiver, a mouse-down or -up event. Raises an
NSInternalInconsistencyException if sent to a non-mouse event.

The return value of this method is meaningless for events other than mouse-down or -up events.

See also: + mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:clickCount:pressure:

context
– (NSDPSContext *)context

Returns the Display PostScript context of the receiving event.

data1
– (int)data1

Returns additional data associated with the receiving event. Raises an NSInternalInconsistencyException if
sent to an event not of type NSAppKitDefined, NSSystemDefined, NSApplicationDefined, or NSPeriodic.

NSPeriodic events don’t use this attribute.

See also: – data2, – subtype, + otherEventWithType:location:modifierFlags:timestamp:
windowNumber:context:subtype:data1:data2:

data2
– (int)data2

Returns additional data associated with the receiving event. Raises an NSInternalInconsistencyException if
sent to an event not of type NSAppKitDefined, NSSystemDefined, NSApplicationDefined, or NSPeriodic.

12

NSPeriodic events don’t use this attribute.

See also: – data1, – subtype, + otherEventWithType:location:modifierFlags:timestamp:
windowNumber:context:subtype:data1:data2:

eventNumber
– (int)eventNumber

Returns the counter value of the latest mouse or tracking-rectangle event; every system-generated mouse
and tracking-rectangle event increments this counter. Raises an NSInternalInconsistencyException if sent
to any other type of event.

See also: + enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:trackingNumber:userData:,
+ mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:clickCount:pressure:

isARepeat
– (BOOL)isARepeat

Returns YES if the receiving key event is a repeat caused by the user holding the key down, NO if the key
event is new. Raises an NSInternalInconsistencyException if sent to a non-key event.

The return value of this method is meaningless for NSFlagsChanged events.

See also: + keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:
characters:charactersIgnoringModifier:isARepeat:keyCode:

keyCode
– (unsigned short int)keyCode

Returns the code for the keyboard key associated with the receiving key event. Its value is
hardware-dependent. Raises an NSInternalInconsistencyException if sent to a non-key event.

See also: + keyEventWithType:location:modifierFlags:timestamp:windowNumber:context:
characters:charactersIgnoringModifier:isARepeat:keyCode:

13

 Classes: NSEvent

locationInWindow
– (NSPoint)locationInWindow

Returns the receiving event’s location in the base coordinate system of the associated window.

See also: – window

modifierFlags
– (unsigned int)modifierFlags

Returns an integer bit field indicating the modifier keys in effect for the receiving event. You can examine
individual flag settings using the C bitwise AND operator with these predefined masks:

NSAlphaShiftKeyMask
NSShiftKeyMask
NSControlKeyMask
NSAlternateKeyMask
NSCommandKeyMask
NSNumericPadKeyMask
NSHelpKeyMask
NSFunctionKeyMask

pressure
– (float)pressure

Returns a value between 0.0 and 1.0 indicating the pressure applied to the input device (used for appropriate
devices). For devices that aren’t pressure-sensitive, the value is either 0.0 or 1.0. How to determine whether
the input device is pressure-sensitive depends on the platform. Raises an
NSInternalInconsistencyException if sent to a non-mouse event.

See also: + mouseEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:clickCount:pressure:

subtype
– (short int)subtype

Returns the subtype of the receiving custom event. Raises an NSInternalInconsistencyException if sent to
an event not of type NSAppKitDefined, NSSystemDefined, NSApplicationDefined, or NSPeriodic.

14

NSPeriodic events don’t use this attribute.

See also: – data1, – data2, + otherEventWithType:location:modifierFlags:timestamp:
windowNumber:context:subtype:data1:data2:

timestamp
– (NSTimeInterval)timestamp

Returns the time the event occurred in seconds since system startup.

trackingNumber
– (int)trackingNumber

Returns the identifier of the tracking rectangle for a tracking-rectangle event. Raises an
NSInternalInconsistencyException if sent to any other type of event.

See also: + enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:trackingNumber:userData:

type
– (NSEventType)type

Returns the type of the receiving event, one of:

NSLeftMouseDown NSKeyDown

NSLeftMouseUp NSKeyUp

NSRightMouseDown NSFlagsChanged

NSRightMouseUp
NSAppKitDefined (Apple
extension to the OpenStep
specification)

NSMouseMoved
NSSystemDefined (Apple
extension to the OpenStep
specification)

NSLeftMouseDragged
NSApplicationDefined (Apple
extension to the OpenStep
specification)

15

 Classes: NSEvent

userData
– (void *)userData

Returns data associated with a tracking-rectangle event, assigned to the tracking rectangle when it was set
up using NSView’s addTrackingRect:owner:userData:assumeInside:. Raises an
NSInternalInconsistencyException if sent to any other type of event.

See also: + enterExitEventWithType:location:modifierFlags:timestamp:windowNumber:context:
eventNumber:trackingNumber:userData:

window
– (NSWindow *)window

Returns the window object associated with the event. A periodic event, however, has no window; in this case
the return value is undefined.

See also: – windowNumber

windowNumber
– (int)windowNumber

Returns the identifier for the PostScript window device associated with the event. A periodic event,
however, has no window; in this case the return value is undefined.

See also: – window

NSRightMouseDragged NSPeriodic

NSMouseEntered NSCursorUpdate

NSMouseExited

1

 Classes: NSFileWrapper

NSFileWrapper

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSFileWrapper.h

Class Description

An NSFileWrapper holds a file’s contents in dynamic memory. In this role it enables a document object to
embed a file, treating it as a unit of data that can be displayed as an image (and possibly edited in place),
saved to disk, or transmitted to another application. It can also store an icon for representing the file in a
document or in a dragging operation.

Instances of this class are referred to as file wrapper objects, and when no confusion will result, merely as
file wrappers. A file wrapper can be one of three specific types: a regular file wrapper, which holds the
contents of a single actual file; a directory wrapper, which holds a directory and all of the files or directories
within it; or a link wrapper, which simply represents a symbolic link in the file system (sometimes called a
shortcut or alias). Some NSFileWrapper methods apply only to a specific type, and raise an exception if
sent to a file wrapper of the wrong type. To determine the type of a file wrapper, use the isRegularFile,
isDirectory, and isSymbolicLink methods.

You can create a file wrapper from data in memory using initWithSerializedRepresentation: or from data
on disk using initWithPath: . Both create the appropriate type of file wrapper based on the nature of the
serialized representation or of the file on disk. Three convenience methods each create a file wrapper of a
specific type: initRegularFileWithContents: , initDirectoryWithFileWrappers: , and
initSymbolicLinkWithDestination: . Because each initialization method creates file wrappers of different
types or states, they’re all designated initializers for this class—subclasses must meaningfully override
them all as necessary.

Memory and Disk Representations

Because the purpose of a file wrapper is to represent files in memory, it’s very loosely coupled to any disk
representation. A file wrapper doesn’t record the path to the disk representation of its contents. This allows
you to save the same file wrapper with different paths, but it also requires you to record those paths if you
want to update the file wrapper from disk later. NSFileWrapper allows you to set a preferred filename for
save operations and records the last filename it was actually saved to; the preferredFilename and filename
methods return these names. This feature is more important for directory wrappers, though, and so is
discussed under “Working with Directory Wrappers” below.

2

A file wrapper stores file system information (such as modification time and access permissions), which it
updates when reading from disk and uses when writing files to disk. The fileAttributes method returns this
information in the format described in the NSFileManager class specification. You can also set the file
attributes using the setFileAttributes: method.

When saving a file wrapper to disk, you typically determine the directory you want to save it in, then append
the preferred filename to that directory path and use writeToFile:atomically:updateFilenames:, which
saves the file wrapper’s contents and updates the file attributes. You can save a file wrapper under a different
name if you wish, but this may result in the recorded filename differing from the preferred filename,
depending on how you invoke the writeToFile:... method.

Besides saving its contents to disk, a file wrapper can re-read them from disk when necessary. The
needsToBeUpdatedFromPath: method determines whether a disk representation may have changed,
based on the file attributes stored the last time the file was read or written. If the file wrapper’s modification
time or access permissions are different from those of the file on disk, this method returns YES. You can
then use updateFromPath: to re-read the file from disk.

Finally, to transmit a file wrapper to another process or system (for example, over a distributed objects
connection or through the pasteboard), you use the serializedRepresentation method to get an NSData
object containing the file wrapper’s contents in the NSFileContentsPboardType format. You can safely
transmit this representation over whatever channel you desire. The recipient of the representation can then
reconstitute the file wrapper using the initWithSerializedRepresentation: method.

Working with Directory Wrappers

A directory wrapper contains other file wrappers (of any type), and allows you to access them by keys
derived from their preferred filenames. You can add any type of file wrapper to a directory wrapper with
addFileWrapper: or addFileWithPath: , and remove it with removeFileWrapper:. The convenience
methods addRegularFileWithContents:preferredFilename: and addSymbolicLinkWithDestination:
preferredFilename: allow you to add regular file and link wrappers while also setting their preferred
names.

A directory wrapper stores its contents in an NSDictionary, which you can retrieve using the fileWrappers
method. The keys of this dictionary are based on the preferred filenames of each file wrapper contained in
the directory wrapper. There exist, then, three identifiers for a file wrapper within a directory wrapper:

• Preferred filename. This doesn’t uniquely identify the file wrapper, but the following identifiers are
always based on it.

• Dictionary key. This is always equal to the preferred name when there are no other file wrappers of the
same preferred name in the same directory wrapper. Otherwise, it’s a string made by adding a unique
prefix to the preferred filename (note that the same file wrapper can have a different dictionary key for
each directory wrapper that contains it). You use the dictionary key to retrieve the file wrapper object in
memory, in order to get its contents or its filename (to update it from disk). You can get a file wrapper’s
dictionary key by sending a keyForFileWrapper: message to the directory wrapper that contains it.

3

 Classes: NSFileWrapper

• Filename. This is usually based on the preferred filename, but isn’t necessarily the same as it or the
dictionary key. You use the filename to update a single file wrapper relative to the path of the directory
wrapper that contains it. Note that the filename may change whenever you save a directory wrapper
containing the file wrapper (particularly if the file wrapper has been added to several different directory
wrappers); thus, you should always retrieve the filename from the file wrapper itself each time you need
it rather than caching it.

When working with the contents of a directory wrapper, you can use a dictionary enumerator to retrieve
each file wrapper and perform whatever operation you need. Note that with the exceptions of saving and
updating, a directory file wrapper defines no recursive operations for its contents. To set the file attributes
for all contained file wrappers, or to perform any other such operation, you must define a recursive method
that examines the type of each file wrapper and invokes itself anew for any directory wrapper it encounters.

Method Types

Initializing a file wrapper
– initWithPath:
– initDirectoryWithFileWrappers:
– initRegularFileWithContents:
– initSymbolicLinkWithDestination:
– initWithSerializedRepresentation:

Writing to a file or serializing
– writeToFile:atomically:updateFilenames:
– serializedRepresentation

Checking a file wrapper’s type
– isRegularFile
– isDirectory
– isSymbolicLink

Setting attributes
– setFilename:
– filename
– setPreferredFilename:
– preferredFilename
– setIcon:
– icon
– setFileAttributes:
– fileAttributes

Updating
– needsToBeUpdatedFromPath:
– updateFromPath:

4

Modifying a directory wrapper
– addFileWrapper:
– removeFileWrapper:
– addFileWithPath:
– addRegularFileWithContents:preferredFilename:
– addSymbolicLinkWithDestination:preferredFilename:
– fileWrappers
– keyForFileWrapper:

Inspecting a regular file wrapper
– regularFileContents

Inspecting a link wrapper
– symbolicLinkDestination

Instance Methods

addFileWithPath:
– (NSString *)addFileWithPath: (NSString *)path

Adds a new file wrapper to the receiving directory wrapper. Initializes the new file wrapper with
initWithPath: using path as the argument, then adds the new file wrapper by invoking addFileWrapper:
. Returns the dictionary key used for the newly added file wrapper within the directory wrapper. Raises an
NSInternalInconsistencyException if sent to a regular file or link wrapper.

See also: – addRegularFileWithContents:preferredFilename:, – addSymbolicLinkWithDestination:
preferredFilename:, – removeFileWrapper:, – fileWrappers

addFileWrapper:
– (NSString *)addFileWrapper: (NSFileWrapper *)wrapper

Adds wrapper to the receiving directory wrapper. Returns the dictionary key used for wrapper within the
directory wrapper. Raises an NSInternalInconsistencyException if sent to a regular file or link wrapper, or
an NSInvalidArgumentException if wrapper doesn’t have a preferred name (set using setPreferredName:
).

See also: – addFileWithPath: , – addRegularFileWithContents:preferredFilename:,
– addSymbolicLinkWithDestination:preferredFilename: , – removeFileWrapper:,
– fileWrappers

5

 Classes: NSFileWrapper

addRegularFileWithContents:preferredFilename:
– (NSString *)addRegularFileWithContents:(NSData *)contents preferredFilename:

(NSString *)filename

Adds a new regular file wrapper to the receiving directory wrapper. Initializes the new file wrapper with
initRegularFileWithContents: using contents as the argument, sets its preferred name with
setPreferredName: using filename as the argument, then adds the new file wrapper by invoking
addFileWrapper: . Returns the dictionary key used for the newly added file wrapper within the directory
wrapper. Raises an NSInternalInconsistencyException if sent to a regular file or link wrapper, or an
NSInvalidArgumentException if filename is nil or empty.

See also: – addFileWithPath: , – addSymbolicLinkWithDestination:preferredFilename: ,
– removeFileWrapper:, – fileWrappers

addSymbolicLinkWithDestination:preferredFilename:
– (NSString *)addSymbolicLinkWithDestination: (NSString *)path preferredFilename:

(NSString *)filename

Adds a new link wrapper to the receiving directory wrapper. Initializes the new link wrapper with
initSymbolicLinkWithDestination: using path as the argument, sets its preferred name with
setPreferredName: using filename as the argument, then adds the new link wrapper by invoking
addFileWrapper: . Returns the dictionary key used for the newly added link wrapper within the directory
wrapper. Raises an NSInternalInconsistencyException if sent to a regular file or link wrapper, or an
NSInvalidArgumentException if filename is nil or empty.

See also: – addFileWithPath: , – addFileWrapper: , – addRegularFileWithContents:
preferredFilename:, – removeFileWrapper:, – fileWrappers

fileAttributes
– (NSDictionary *)fileAttributes

Returns the file attributes last read from disk or set using setFileAttributes:. These attributes are used
whenever the file wrapper is saved using writeToFile:atomically:updateFilenames:. See the
NSFileManager class specification for information on the contents of the attributes dictionary.

filename
– (NSString *)filename

Returns the filename for the last known disk representation of the receiver, or nil if the receiver has no
filename. The filename is used for record-keeping purposes only, and is set automatically when the file
wrapper is created from disk using initWithPath: and when it’s saved to a disk using writeToFile:

6

atomically:updateFilenames: (although this method allows you to request that the filename not be
updated).

See also: – preferredFilename, – setFilename:

fileWrappers
– (NSDictionary *)fileWrappers

Returns the file wrappers contained in a directory wrapper. Raises an NSInternalInconsistencyException if
sent to a regular file or link wrapper. See “Working with Directory Wrappers” in the class description for
information on the dictionary.

See also: – filename, – addFileWrapper:

icon
– (NSImage *)icon

Returns an image that can be used to represent the file wrapper to the user, or nil if the file wrapper has
none. You don’t have to use this image; for example, a file viewer typically looks up icons automatically
based on file extensions, and so wouldn’t need this image. Similarly, if a file wrapper represents an image
file, you can display the image directly rather than a file icon.

See also: – setIcon:

initDirectoryWithFileWrappers:
– (id)initDirectoryWithFileWrappers: (NSDictionary *)wrappers

Initializes a newly allocated NSFileWrapper as a directory wrapper containing wrappers. The new directory
wrapper has no filename or associated disk representation until you save it using writeToFile:atomically:
updateFilenames:. It’s also initialized with open permissions; anyone can read, write, or change directory
to the disk representations that it saves.

If any file wrapper in wrappers doesn’t have a preferred name, its preferred name is automatically set to its
corresponding dictionary key in wrappers.

This method is a designated initializer for the NSFileWrapper class. Returns self.

See also: – setPreferredFilename:, – filename, – setFileAttributes:

7

 Classes: NSFileWrapper

initRegularFileWithContents:
– (id)initRegularFileWithContents: (NSData *)contents

Initializes a newly allocated NSFileWrapper as a regular file wrapper with contents. The new file wrapper
has no filename or associated disk representation until you save it using writeToFile:atomically:
updateFilenames:. It’s also initialized with open permissions; anyone can read or write the disk
representations that it saves.

This method is a designated initializer for the NSFileWrapper class. Returns self.

See also: – setPreferredFilename:, – filename, – fileAttributes

initSymbolicLinkWithDestination:
– (id)initSymbolicLinkWithDestination: (NSString *)path

Initializes a newly allocated NSFileWrapper as a link wrapper pointing to path. The new file wrapper has
no filename or associated disk representation until you save it using writeToFile:atomically:
updateFilenames:. It’s also initialized with open permissions; anyone can read or write the disk
representations that it saves.

This method is a designated initializer for the NSFileWrapper class. Returns self.

See also: – setPreferredFilename:, – filename, – fileAttributes

initWithPath:
– (id)initWithPath: (NSString *)path

Initializes a newly allocated NSFileWrapper with the file or directory at path, setting its type to regular file,
directory, or link wrapper based on the type of that file and caching the file’s attributes. Also sets the
receiver’s preferred filename and recorded filename to the last component of path. If path identifies a
directory, this method recursively creates file wrappers for each file or directory within that directory.

This method is a designated initializer for the NSFileWrapper class. Returns self.

See also: – setPreferredFilename:, – filename, – fileAttributes

initWithSerializedRepresentation:
– (id)initWithSerializedRepresentation:(NSData *)data

Initializes a newly allocated NSFileWrapper with data, setting its type to regular file, directory, or link
wrapper based on the nature of that data and reading the file attributes from the data as well. data is a
serialized representation of a file’s or directory’s contents in the format used for the pasteboard type

8

NSFileContentsPboardType. Data of this format is returned by such methods as serializedRepresentation
or NSAttributedString’s RTFDFromRange:.

The new file wrapper has no filename or associated disk representation until you save it using writeToFile:
atomically:updateFilenames:. This method is a designated initializer for the NSFileWrapper class.
Returns self.

See also: – setPreferredFilename:, – filename, – fileAttributes

isDirectory
– (BOOL)isDirectory

Returns YES if the receiver is a directory wrapper, NO otherwise.

See also: – isRegularFile, – isSymbolicLink

isRegularFile
– (BOOL)isRegularFile

Returns YES if the receiver is a regular file wrapper, NO otherwise.

See also: – isDirectory, – isSymbolicLink

isSymbolicLink
– (BOOL)isSymbolicLink

Returns YES if the receiver is a link wrapper, NO otherwise.

See also: – isDirectory, – isRegularFile

keyForFileWrapper:
– (NSString *)keyForFileWrapper: (NSFileWrapper *)wrapper

Returns the key by which the receiving directory wrapper stores wrapper in its dictionary (as returned by
the fileWrappers method). This is not necessarily the filename for wrapper. Raises an
NSInternalInconsistencyException if sent to a regular file or link wrapper.

See also: – filename

9

 Classes: NSFileWrapper

needsToBeUpdatedFromPath:
– (BOOL)needsToBeUpdatedFromPath:(NSString *)path

Returns YES if the receiver’s contents on disk may have changed, NO otherwise. For a regular file wrapper,
this is determined by comparing the modification time and access permissions of the file or directory at path
against those of the receiver. For a link wrapper, this is determined by checking whether the destination path
has changed (not by checking the modification time or access attributes of the destination). For a directory,
this is determined as needed recursively for each file wrapper contained in the directory; added or removed
files also count as changes.

See also: – updateFromPath:, – fileAttributes

preferredFilename
– (NSString *)preferredFilename

Returns the file wrapper’s preferred filename. This name is used as the default dictionary key and filename
when a file wrapper is added to a directory wrapper. However, if another file wrapper with the same
preferred name already exists in the directory wrapper when the receiver is added, the dictionary key and
filename assigned may differ from the preferred filename.

See also: – setPreferredFilename:, – filename

regularFileContents
– (NSData *)regularFileContents

Returns the contents of the receiving regular file wrapper. Raises an NSInternalInconsistencyException if
sent to a directory or link wrapper.

removeFileWrapper:
– (void)removeFileWrapper:(NSFileWrapper *)wrapper

Removes wrapper from the receiving directory wrapper and releases it. Raises an
NSInternalInconsistencyException if sent to a regular file or link wrapper.

See also: – addFileWithPath: , – addFileWrapper: , – addRegularFileWithContents:
preferredFilename:, – addSymbolicLinkWithDestination:preferredFilename: ,
– fileWrappers

10

serializedRepresentation
– (NSData *)serializedRepresentation

Returns the receiver’s contents as an opaque collection of data, in the format used for the pasteboard type
NSFileContentsPboardType.

See also: – initWithSerializedRepresentation:

setFileAttributes:
– (void)setFileAttributes:(NSDictionary *)attributes

Sets the file attributes that are applied whenever the file wrapper is saved using writeToFile:atomically:
updateFilenames: to attributes. See the NSFileManager class specification for information on the contents
of the attributes dictionary.

See also: – fileAttributes

setFilename:
– (void)setFilename:(NSString *)filename

Sets the filename for the disk representation of the receiver to filename. The filename is used for
record-keeping purposes only, and is set automatically when the file wrapper is saved to a disk using
writeToFile:atomically:updateFilenames: (although this method allows you to request that the filename
not be updated). You should rarely need to invoke this method.

Raises an NSInvalidArgumentException if filename is nil or empty.

See also: – setPreferredFilename:, – filename

setIcon:
– (void)setIcon:(NSImage *)anImage

Sets the image that can be used to represent the file wrapper to the user to anImage. You don’t have to use
this image; for example, a file viewer typically looks up icons automatically based on file extensions, and
so wouldn’t need this image. Similarly, if a file wrapper represents an image file, you can display the image
directly rather than a file icon.

See also: – icon

11

 Classes: NSFileWrapper

setPreferredFilename:
– (void)setPreferredFilename:(NSString *)filename

Sets the receiver’s preferred filename to filename. This name is used as the default dictionary key and
filename when a file wrapper is added to a directory wrapper. However, if another file wrapper with the same
preferred name already exists in the directory wrapper when the receiver is added, the dictionary key and
filename assigned may differ from the preferred filename. Raises an NSInvalidArgumentException if
filename is nil or empty.

See also: – preferredFilename, – addFileWrapper: , – setFilename:

symbolicLinkDestination
– (NSString *)symbolicLinkDestination

Returns the actual path represented by the receiving link wrapper. Raises
NSInternalInconsistencyException if sent to a regular file or directory wrapper.

updateFromPath:
– (BOOL)updateFromPath:(NSString *)path

Re-reads the file wrapper’s information from the file or directory at path, including contents or link
destination, icon, file attributes. For a directory wrapper, the contained file wrappers are also sent
updateFromPath: messages. If files in the directory on disk have been added or removed, corresponding
file wrappers are released or created as needed. Returns YES if updating actually occurred, NO if it wasn’t
necessary.

See also: – needsToBeUpdatedFromPath:, – updateAttachmentsFromPath: (NSAttributedString)

writeToFile:atomically:updateFilenames:
– (BOOL)writeToFile: (NSString *)path

atomically:(BOOL)atomicFlag
updateFilenames:(BOOL)updateNamesFlag

Writes the receiver’s contents to a file or directory at path. Returns YES on success and NO on failure. If
atomicFlag is YES, attempts to write the file safely so that an existing file at path is not overwritten, nor
does a new file at path actually get created, unless the write is successful. If updateNamesFlag is YES and
the contents are successfully written, changes the receiver’s filename to the last component of path, and the
filenames of any children of a directory wrapper to the filenames under which they’re written to disk.

12

If you’re executing a “save” or “save as” style operation, pass YES for updateNamesFlag; if you’re
executing a “save to” style operation, pass NO for updateNamesFlag.

See also: – filename

1

 Classes: NSFont

NSFont

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSFont.h

Class Description

NSFont objects represent PostScript fonts to an application, providing access to characteristics of the font
and assistance in laying out glyphs relative to one another. Font objects are also used to establish the current
font when drawing in an NSView, using the set method.

You don’t create Font objects using the alloc and init methods. Instead, you use one of the fontWithName:
methods to look up an available font and alter its size or matrix to your needs. These methods check for an
existing font object with the specified characteristics, returning it if there is one. Otherwise, they look up
the font data requested and create the appropriate object. NSFont also defines a number of methods for
getting standard system fonts, such as systemFontOfSize:, userFontOfSize:, and messageFontOfSize:.

Drawing Text with NSFonts

In most cases you draw text using an NSTextView object. You can also draw an NSString directly in an
NSView using the methods drawAtPoint:withAttributes: and drawInRect:withAttributes: , which the
Application Kit adds to NSString. These methods take an NSDictionary of attributes, as used by the
NSAttributedString class, and apply them when drawing the string.

If you need to draw text using PostScript operators such as show, it’s recommended that you set the current
font using NSFont’s set method, rather than the PostScript operators setfont or selectfont. This allows the
Application Kit printing mechanism to record the fonts used in the PostScript output. If you absolutely must
set the font using a PostScript operator, you can record the font with the Application Kit using the class
method useFont:. See the description of that method for more information.

Getting Font Metrics

NSFont defines a number of methods for accessing a font’s metrics information, when that information is
available. Methods such as boundingRectForGlyph:, boundingRectForFont, xHeight, and so on, all
correspond to standard font metrics information. See the various method descriptions for specific

2

information. You can also get a complete dictionary of font metrics using the afmDictionary method, or
retrieve the original contents of the metrics file using afmFileContents.

Calculating Glyph Layout

The OPENSTEP extended text system handles many complex aspects of laying glyphs out. If you need to
calculate layout for your own purposes, you can use several methods defined by NSFont. There are three
basic kinds of glyph layout:

• Sequential, for running text
• Overstruck, for diacritics and other non-spacing marks
• Stacked, for certain non-Western scripts.

Sequential glyph layout

Sequential glyph layout is supported by the method positionOfGlyph:precededByGlyph:isNominal:.
This method calculates the position of a glyph relative to glyph preceding it, using the glyph’s width and
kerning information if they’re available. This is the most straightforward kind of glyph layout.

Overstruck glyph layout

Overstruck glyph layout is the most complex, as it requires detailed information about placement of many
kinds of modifying marks. Generally, you have two characters:

• A base glyph which may be a character such as a
• A non-spacing mark which may be a diacritical mark such as an acute accent (‘) or a cedilla (¸).

OPENSTEP gives you a few methods for combining the two characters together, depending on whether the
combination is a common one that the font has metrics for or whether the combination is an unusual one
that you need to create on the fly. Try these methods in the following order, to get the best result:

• To see if the font has metrics placing the non-spacing mark directly over the base glyph, use the method
positionOfGlyph:struckOverGlyph:metricsExist: and check the value returned in the metricsExist
argument.

• To see if the font has metrics for placing the non-spacing mark over the base glyph’s bounding rectangle,
use the method positionOfGlyph:struckOverRect:metricsExist: and check the value returned in the
metricsExist argument. (Use the method boundingRectForGlyph: to get the bounding rect for the base
glyph.) Note that NSFont always sets metricsExist to NO and that this method is useful only if you’re
using a subclass of NSFont that overrides this method.

• To place the non-spacing mark over the base glyph in a legible but not necessarily pleasing manner, use
the method positionOfGlyph:forCharacter:struckOverRect: . (Use the method
boundingRectForGlyph: to get the bounding rect for the base glyph.) This method handles all the
common non-spacing marks, such as an acute accent, tilde, or cedilla, for Latin script.

3

 Classes: NSFont

• To place a non-spacing mark over a base glyph of another font, also use the method positionOfGlyph:
forCharacter:struckOverRect: . (Use the method boundingRectForGlyph: to get the bounding rect
for the base glyph.)

If you need to place several non-spacing marks with respect to a base glyph, use the method
positionsForCompositeSequence:numberOfGlyphs:pointArray:. This method accepts a C array
containing the base glyph followed by all of its non-spacing marks, and calculates the positions for as many
as of the marks as it can. To place the marks that this method can’t handle, use the methods described above.

Stacked glyph layout

Stacked glyph layout is supported by the method positionOfGlyph:withRelation:toBaseGlyph:
totalAdvancement:metricsExist:. Stacked glyphs often have special compressed forms, which standard
font metrics don’t account for. NSFont’s implementation of this method simply abuts the bounding boxes
of the two glyphs for approximate layout of the individual glyphs. Subclasses of NSFont can override this
method to access any extra metrics information for more sophisticated layout of stacked glyphs.

Special Glyphs

NSFont defines two special glyphs. NSNullGlyph indicates no glyph at all, and is useful in some layout
methods for calculating information that isn’t relative to another glyph. For example, with
positionOfGlyph:precededByGlyph:isNominal:, you can specify NSNullGlyph as the first glyph to get
the nominal advancement of the preceding glyph.

The other special glyph is NSControlGlyph, which the text system maps onto control functions such as
linefeed and tab. This glyph has no graphic representation and has no inherent advancement of its own.
Instead, the text system examines the control character underlying the glyph to determine what kind of
special layout it needs to perform.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

4

Method Types

Creating arbitrary fonts
+ fontWithName:size:
+ fontWithName:matrix:

Creating user fonts
+ userFontOfSize:
+ userFixedPitchFontOfSize:

Creating system fonts
+ boldSystemFontOfSize:
+ controlContentFontOfSize:
+ menuFontOfSize:
+ messageFontOfSize:
+ paletteFontOfSize:
+ systemFontOfSize:
+ titleBarFontOfSize:
+ toolTipsFontOfSize:

Getting preferred fonts
+ setPreferredFontNames:
+ preferredFontNames

Using a font to draw
– set

Adding fonts to print operations
+ useFont:

Getting general font information
– encodingScheme
– isBaseFont
– isFixedPitch
– mostCompatibleStringEncoding

Getting information about glyphs
– glyphIsEncoded:
– glyphPacking
– glyphWithName:

5

 Classes: NSFont

Getting metrics information
– advancementForGlyph:
– afmDictionary
– afmFileContents
– ascender
– boundingRectForFont
– boundingRectForGlyph:
– capHeight
– descender
– italicAngle
– matrix
– maximumAdvancement
– pointSize
– underlinePosition
– underlineThickness
– widthOfString:
– widths
– xHeight

Getting font names
– displayName
– familyName
– fontName

Laying out sequential glyphs
– positionOfGlyph:precededByGlyph:isNominal:
– positionsForCompositeSequence:numberOfGlyphs:pointArray:

Laying out overstruck glyphs
– positionOfGlyph:forCharacter:struckOverRect:
– positionOfGlyph:struckOverGlyph:metricsExist:
– positionOfGlyph:struckOverRect:metricsExist:

Laying out stacked glyphs
– positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:

metricsExist:

Setting user fonts
+ setUserFont:
+ setUserFixedPitchFont:

Getting corresponding device fonts
– printerFont
– screenFont

6

Class Methods

boldSystemFontOfSize:
+ (NSFont *)boldSystemFontOfSize:(float)fontSize

Returns the font used for standard interface items that are rendered in boldface type, in fontSize. This is
available for backwards compatibility only and calls titleBarFontOfSize:. Use one of the specialized
methods instead, such as userFontOfSize:, userFixedPitchFontOfSize:, titleBarFontOfSize:,
menuFontOfSize:, messageFontOfSize:, paletteFontOfSize:, or toolTipsFontOfSize:.

See also: + fontWithName:size:

controlContentFontOfSize:
+ (NSFont *)controlContentFontOfSize:(float)fontSize

Returns the font used for the content of controls, in fontSize. For example, in a table, the user’s input uses
the control content font and the table’s header uses another font.

See also: + fontWithName:size:

fontWithName:matrix:
+ (NSFont *)fontWithName: (NSString *)typeface matrix: (const float *)fontMatrix

Returns a font object for typeface and fontMatrix. A typeface is a fully specified family-face name, such as
Helvetica-BoldOblique or Times-Roman (not a name as shown in the Font Panel). fontMatrix is a standard
6-element transformation matrix as used in the PostScript language, specifically with the makefont
operator. In most cases, you can simply use fontWithName:size: to create standard scaled fonts.

You can use the defined value NSFontIdentityMatrix for [1 0 0 1 0 0]. Fonts created with a matrix other than
NSFontIdentityMatrix don’t automatically flip themselves in flipped views.

See also: – isFlipped (NSView)

fontWithName:size:
+ (NSFont *)fontWithName: (NSString *)fontName size:(float)fontSize

Returns a font object for fontName and fontSize. A typeface is a fully specified family-face name, such as
Helvetica-BoldOblique or Times-Roman. fontSize is used to scale the font, and is equivalent to using a font
matrix of [fontSize 0 0 fontSize 0 0] with fontWithName:matrix: . If you use a fontSize of 0.0, this method
uses the default User Font size.

7

 Classes: NSFont

Fonts created with this method automatically flip themselves in flipped views. This method is the preferred
means for creating fonts.

menuFontOfSize:
+ (NSFont *)menuFontOfSize:(float)fontSize

Returns the font used for menu items in fontSize.

See also: + fontWithName:size:

messageFontOfSize:
+ (NSFont *)messageFontOfSize:(float)fontSize

Returns the font used for standard interface items, such as button labels, menu items, and so on, in fontSize.
This is equivalent to systemFontOfSize:.

See also: + fontWithName:size:

paletteFontOfSize:
+ (NSFont *)paletteFontOfSize:(float)fontSize

Returns the font used for palette window title bars.

See also: + fontWithName:size:, + titleBarFontOfSize:

preferredFontNames
+ (NSArray *)preferredFontNames

Returns the names of fonts that the Application Kit tries first when a character has no font specified, or when
the font specified doesn’t have a glyph for that character. If none of these fonts provides a glyph, the
remaining fonts on the system are searched for a glyph.

See also: + setPreferredFontNames:

setPreferredFontNames:
+ (void)setPreferredFontNames:(NSArray *)fontNames

Sets the list of preferred font names to fontNames, and records them in the user defaults database for all
applications. The Application Kit tries these fonts first when a character has no font specified, or when the

8

font specified doesn’t have a glyph for that character. If none of these fonts provides a glyph, the remaining
fonts on the system are searched for a glyph.

This method is useful for optimizing glyph rendering for uncommon scripts, by guaranteeing that
appropriate fonts are searched first. For example, suppose you have three hundred Latin alphabet fonts and
one Cyrillic alphabet font. When you read a document in Russian, you want it to find the Cyrillic font
quickly. Ordinarily, the Application Kit will search for the Cyrillic font among all three hundred and one
fonts. But if it is in the list of preferred fonts, the Cyrillic font will be one of the first searched.

See also: + preferredFontNames

setUserFixedPitchFont:
+ (void)setUserFixedPitchFont:(NSFont *)aFont

Sets the font used by default for documents and other text under the user’s control, when that font should
be fixed-pitch, to aFont, and records the font in the user defaults database for all applications.

See also: + setUserFont:, + userFixedPitchFontOfSize:

setUserFont:
+ (void)setUserFont:(NSFont *)aFont

Sets the font used by default for documents and other text under the user’s control to aFont, and records the
font in the user defaults database for all applications.

See also: + setUserFixedPitchFont:, + userFontOfSize:

systemFontOfSize:
+ (NSFont *)systemFontOfSize:(float)fontSize

Returns the font used for standard interface items, such as button labels, menu items, and so on, in fontSize.
This is available for backwards compatibility only and calls messageFontOfSize:. Use one of the
specialized methods instead, such as userFontOfSize:, userFixedPitchFontOfSize:, titleBarFontOfSize:
, menuFontOfSize:, messageFontOfSize:, paletteFontOfSize:, or toolTipsFontOfSize:.

See also: + boldSystemFontOfSize:, + userFontOfSize:, + userFixedPitchFontOfSize:,
+ fontWithName:size:

9

 Classes: NSFont

titleBarFontOfSize:
+ (NSFont *)titleBarFontOfSize:(float)fontSize

Returns the font used for window title bars, in fontSize. This is equivalent to boldSystemFontOfSize:.

See also: + paletteFontOfSize:

toolTipsFontOfSize:
+ (NSFont *)toolTipsFontOfSize:(float)fontSize

Returns the font used for tool-tips labels, in fontSize.

See also: + fontWithName:size:

useFont:
+ (void)useFont:(NSString *)fontName

Records fontName as one used in the current print operation.

The NSFont class object keeps track of the fonts used in an NSView by recording each one that receives a
set message. When the view is called upon to generate conforming PostScript language output (such as
during printing), the NSFont class provides the list of fonts required for the %%DocumentFonts
comment, as required by Adobe’s Document Structuring Conventions.

useFont: augments this system by providing a way to register fonts that are included in the document but
not set using NSFont’s set method. For example, you might set a font by executing the setfont operator
within a function created by the pswrap utility. In such a case, be sure to pair the use of the font with a
useFont: message to register the font for listing in the document comments.

userFixedPitchFontOfSize:
+ (NSFont *)userFixedPitchFontOfSize:(float)fontSize

Returns the font used by default for documents and other text under the user’s control (that is, text whose
font the user can normally change), when that font should be fixed-pitch.

Note: The system does not guarantee that all the glyphs in a fixed-pitch font are the same width. For
example certain Japanese fonts are dual-pitch, and other fonts may have non-spacing marks which
can affect the display of other glyphs.

See also: + userFontOfSize:, + fontWithName:size:, + setUserFixedPitchFont:

10

userFontOfSize:
+ (NSFont *)userFontOfSize:(float)fontSize

Returns the font used by default for documents and other text under the user’s control (that is, text whose
font the user can normally change).

See also: + userFixedPitchFontOfSize:, + fontWithName:size:, + setUserFont:

Instance Methods

advancementForGlyph:
– (NSSize)advancementForGlyph:(NSGlyph)aGlyph

Returns the nominal spacing for aGlyph—the distance that the current point moves after showing the
glyph—accounting for the receiving font’s size. This spacing is given according to the glyph’s movement
direction, which is either strictly horizontal or strictly vertical.

See also: – boundingRectForGlyph:, – maximumAdvancement

afmDictionary
– (NSDictionary *)afmDictionary

Returns the receiving font’s AFM information in dictionary form. It contains the following information
under these keys, with all values as strings:

• NSAFMFamilyName
• NSAFMCapHeight
• NSAFMFontName
• NSAFMXHeight
• NSAFMFormatVersion
• NSAFMAscender
• NSAFMFullName
• NSAFMDescender
• NSAFMNotice
• NSAFMUnderlinePosition
• NSAFMVersion
• NSAFMUnderlineThickness
• NSAFMWeight
• NSAFMItalicAngle
• NSAFMEncodingScheme
• NSAFMMappingScheme
• NSAFMCharacterSet

11

 Classes: NSFont

For any other items, use the AFM file contents, as returned by afmFileContents.

afmFileContents
– (NSString *)afmFileContents

Returns the receiving font’s AFM file as a string object.

ascender
– (float)ascender

Returns the top y coordinate of the receiving font’s longest ascender.

See also: – descender, – capHeight, – xHeight

boundingRectForFont
– (NSRect)boundingRectForFont

Returns the receiving font’s bounding rectangle, scaled to the font’s size. The bounding rectangle is the
union of the bounding rectangles of every glyph in the font.

See also: – boundingRectForGlyph:

boundingRectForGlyph:
– (NSRect)boundingRectForGlyph:(NSGlyph)aGlyph

Returns the bounding rectangle for aGlyph, scaled to the receiving font’s size.

Note: Japanese fonts encoded with the scheme “EUC12-NJE-CFEncoding” do not have individual metrics
or bounding boxes available for the glyphs above 127. For those glyphs, this method returns the
bounding rectangle for the font, instead.

See also: – boundingRectForFont

capHeight
– (float)capHeight

Returns the receiving font’s cap height.

See also: – ascender, – descender, – xHeight

12

descender
– (float)descender

Returns the bottom y coordinate of the receiving font’s longest descender.

displayName
– (NSString *)displayName

Returns the name used to represent the receiving font in the user interface, typically localized for the user’s
language.

encodingScheme
– (NSString *)encodingScheme

Returns the name of the receiving font’s encoding scheme, such as “AdobeStandardEncoding”,
“ISOLatin1Encoding”, “FontSpecific”, and so on.

familyName
– (NSString *)familyName

Returns the receiving font’s family name; for example, “Times” or “Helvetica”. This is the name that
NSFontManager uses and may differ slightly from the AFM name.

See also: – fontName

fontName
– (NSString *)fontName

Returns the receiver’s full font name, as used in PostScript language code; for example, “Times-Roman” or
“Helvetica-Oblique”.

See also: – familyName

glyphIsEncoded:
– (BOOL)glyphIsEncoded:(NSGlyph)aGlyph

Returns YES if the receiving font encodes aGlyph, NO if it doesn’t contain it.

13

 Classes: NSFont

glyphPacking
– (NSMultibyteGlyphPacking) glyphPacking

Returns the best way to encode the font’s glyphs into an array of bytes. The return value is one of the
following:

• NSOneByteGlyphPacking
• NSJapaneseEUCGlyphPacking
• NSAsciiWithDoubleByteEUCGlyphPacking
• NSTwoByteGlyphPacking
• NSFourByteGlyphPacking

glyphWithName:
– (NSGlyph)glyphWithName:(NSString *)glyphName

Returns the encoded glyph named glyphName, or –1 if the receiving font contains no such glyph. Also
returns –1 if the glyph named glyphName isn’t encoded.

Note: Glyph names in fonts do not always accurately identify the glyph. If possible, look up the appropriate
glyph on your own.

isBaseFont
– (BOOL)isBaseFont

Returns YES if the receiver is a PostScript base font, NO if it’s a PostScript composite font composed of
other base fonts.

isFixedPitch
– (BOOL)isFixedPitch

Returns YES if all glyphs in the receiving font have the same advancement, NO if any advancements differ.

Note: On the Mach platform, some Japanese fonts encoded with the scheme “EUC12-NJE-CFEncoding”
return that they have the same advancement, but actually encode glyphs with one of two
advancements. This is for historical compatibility. You may need to handle such fonts specially for
some applications.

See also: – advancementForGlyph:

14

italicAngle
– (float)italicAngle

Returns the receiving font’s italic angle, the amount that the font is slanted in degrees counterclockwise
from the vertical, as read from its AFM file.

matrix
– (const float *)matrix

Returns the receiver’s font matrix, a standard 6-element transformation matrix as used in the PostScript
language, specifically with the makefont operator. In most cases, with a font of fontSize, this matrix is
[fontSize 0 0 fontSize 0 0].

See also: + fontWithName:matrix:

maximumAdvancement
– (NSSize)maximumAdvancement

Returns the greatest advancement of any of the receiving font’s glyphs. This is always either strictly
horizontal or strictly vertical.

See also: – advancementForGlyph:

mostCompatibleStringEncoding
– (NSStringEncoding)mostCompatibleStringEncoding

Returns the string encoding that works best with the receiving font, where there are the fewest possible
unmatched characters in the string encoding and glyphs in the font. You can use NSString’s
dataUsingEncoding: or dataUsingEncoding:allowLossyConversion: method to convert the string to this
encoding.

If this method returns NSASCIIStringEncoding, it could not determine the correct encoding and assumed
that the font can render only ASCII characters.

Note: This method works heuristically using well-known font encodings, so for nonstandard encodings it
may not in fact return the optimal string encoding.

See also: – widthOfString:

15

 Classes: NSFont

pointSize
– (float)pointSize

Returns the receiving font’s point size, or the effective vertical point size for a font with a nonstandard
matrix.

positionOfGlyph:forCharacter:struckOverRect:
– (NSPoint)positionOfGlyph: (NSGlyph)aGlyph

forCharacter: (unichar)aChar
struckOverRect:(NSRect)aRect

Calculates and returns a suitable location for aGlyph to be drawn as a diacritic or non-spacing mark relative
to aRect, assuming that aGlyph represents aChar. Returns NSZeroPoint if the location can’t be calculated.
The nature of aChar as one appearing above or below its base character determines the location returned.
For example, in the first figure below, the gray tilde and box represent aGlyph and aRect, and the black dot
is the point returned (defined relative to the origin of the aRect).

To place multiple glyphs with respect to a rectangle, work from the innermost glyphs to the outermost. As
you calculate the position of each glyph, enlarge the rectangle to include the bounding rectangle of the
glyph in preparation for the next glyph. The second figure shows a tilde, acute accent, and cedilla all placed
in their appropriate positions with respect to a rectangle, with the acute accent placed relative to the
expanded bounding box of the base rectangle and the tilde.

This method is the last fallback mechanism for performing minimally legible typography when metrics
aren’t available. Use it when positionOfGlyph:struckOverGlyph:metricsExist: indicates that metrics
don’t exist for the base glyph specified, or when you are combining glyphs from different fonts (for
example, the base glyph is in a different font than the accent). It can account for the layout and placement
of most Latin, Greek, and Cyrillic non-spacing marks. You should draw the glyph at the returned location,
even if it’s NSZeroRect.

˜ ´̃
¸

16

positionOfGlyph:precededByGlyph:isNominal:
– (NSPoint)positionOfGlyph: (NSGlyph)aGlyph

precededByGlyph:(NSGlyph)prevGlyph
isNominal:(BOOL *)flag

Calculates and returns the location of aGlyph relative to prevGlyph, assuming that prevGlyph precedes it in
the layout (not necessarily in the character stream). The point returned should be used relative to whatever
location is used for prevGlyph. If flag is non-NULL, it’s filled with NO if kerning tables are available and
were used in the calculation; it is filled with YES if the default spacing is used.

Returns NSZeroPoint if either aGlyph or prevGlyph is NSControlGlyph or is invalid. Returns the nominal
advancement of prevGlyph if aGlyph is NSNullGlyph.

This method is useful for sequential glyph placement when glyphs aren’t drawn with a single PostScript
operation.

positionOfGlyph:struckOverGlyph:metricsExist:
– (NSPoint)positionOfGlyph: (NSGlyph)aGlyph

struckOverGlyph: (NSGlyph)baseGlyph
metricsExist:(BOOL *)flag

Calculates and returns a suitable location for aGlyph to be drawn as a diacritic or non-spacing mark relative
to baseGlyph. The point returned should be used relative to whatever location is used for baseGlyph. If flag
is non-NULL it’s filled with YES if font metrics are available, NO if they’re not. If flag is returned as NO,
the result isn’t valid and shouldn’t be used. In that case, use positionOfGlyph:struckOverRect:
metricsExist: or positionOfGlyph:forCharacter:struckOverRect: to calculate a reasonable offset.

See also: – positionsForCompositeSequence:numberOfGlyphs:pointArray:, – positionOfGlyph:
struckOverRect:metricsExist:

positionOfGlyph:struckOverRect:metricsExist:
– (NSPoint)positionOfGlyph: (NSGlyph)aGlyph

struckOverRect:(NSRect)aRect
metricsExist:(BOOL *)flag

Overridden by subclasses to calculate and return a suitable location for aGlyph to be drawn as a diacritic or
non-spacing mark relative to aRect, provided metrics exist. Returns NSZeroRect if the location can’t be
determined. If flag is non-NULL it’s filled with YES if font metrics are available, NO if they’re not. If flag
is returned as NO, the result isn’t valid and shouldn’t be used. In that case, use positionOfGlyph:
forCharacter:struckOverRect: to calculate a reasonable offset.

Because current Postscript font metrics don’t include support for generic placement relative to rectangles,
NSFont’s implementation of this method always returns NSZeroPoint and returns flag as NO.

17

 Classes: NSFont

positionOfGlyph:withRelation:toBaseGlyph:totalAdvancement:metricsExist:
– (NSPoint)positionOfGlyph: (NSGlyph)aGlyph

withRelation: (NSGlyphRelation)relation
toBaseGlyph:(NSGlyph)baseGlyph
totalAdvancement:(NSSizePointer)offset
metricsExist:(BOOL *)flag

Calculates and returns a suitable location for aGlyph to be drawn relative to baseGlyph, where relation is
NSGlyphBelow or NSGlyphAbove. The point returned should be used relative to whatever location is used
for baseGlyph. This method is useful for calculating the layout of stacked glyphs, found in some
non-Western scripts.

If offset is non-NULL, this method sets it to the larger of the two glyphs’ advancements, allowing for
reasonable layout of following glyphs.

If flag is non-NULL, this method sets it to whether font metrics are available: YES if they are, NO if they’re
not. If metrics aren’t available, the location is calculated as a simple stacking with no gap between
baseGlyph and aGlyph. Current Postscript fonts do not contain appropriate font metrics, so this method
always sets flag to NO. If you subclass NSFont to handle fonts that do contain metrics, override this method.

Note: This method supports only horizontally laid-out base glyphs.

positionsForCompositeSequence:numberOfGlyphs:pointArray:
– (int)positionsForCompositeSequence:(NSGlyph *)glyphs

numberOfGlyphs:(int)numGlyphs
pointArray: (NSPointArray)points

Calculates and fills points with the locations for glyphs, assuming that the first glyph is a base character and
those following are non-spacing marks. These points should all be interpreted as relative to the location of
the first glyph in glyphs. The storage block that points points to should be large enough for at least
numGlyphs points. Returns the number of points that could be calculated.

If the number of points calculated is less than numGlyphs, the number of glyphs provided, you can use
positionOfGlyph:structOverRect:metricsExist: to determine the positions for the remaining glyphs.
When using that method, calculate the base rectangle for each glyph from the bounding rectangles and
positions of all preceding glyphs.

18

printerFont
– (NSFont *)printerFont

When sent to a font object representing a scalable PostScript font, returns self. When sent to a font object
representing a bitmapped screen font, returns its corresponding scalable PostScript font.

See also: – screenFont

screenFont
– (NSFont *)screenFont

When sent to a font object representing a scalable PostScript font, returns a bitmapped screen font matching
the receiver in typeface and matrix (or size), or nil if such a font can’t be found. When sent to a font object
representing a bitmapped screen font, returns nil .

Note: Screen fonts are for direct use with the Window Server only. Never use them with Application Kit
objects, such as in setFont: methods. Internally, the Application Kit automatically uses the
corresponding screen font for a font object as long as the view is not rotated or scaled.

See also: – printerFont

set
– (void)set

Establishes the receiving font as the current font for PostScript show and other text-drawing operators.
During a print operation, also records the font as used in the PostScript code emitted.

See also: + useFont:

underlinePosition
– (float)underlinePosition

Returns the baseline offset that should be used when drawing underlines with the receiving font, as
determined by the font’s AFM file. This value is usually negative, which must be considered when drawing
in a flipped coordinate system.

See also: – underlineThickness

19

 Classes: NSFont

underlineThickness
– (float)underlineThickness

Returns the thickness that should be used when drawing underlines with the receiving font, as determined
by the font’s AFM file.

See also: – underlinePosition

widthOfString:
– (float)widthOfString: (NSString *)aString

Returns the x axis offset of the current point when aString is drawn with a PostScript show operator in the
receiving font. This method performs lossy conversion of aString to the most compatible encoding for the
receiving font.

Use this method only when you’re sure all of aString can be rendered with the receiving font.

This method is for backwards compatibility only. In new code, use the Application Kit’s string-drawing
methods, as described under NSString Additions.

See also: – mostCompatibleStringEncoding

widths
– (float *)widths

Returns a C array of 256 floats, giving the unscaled width of each glyph in the font. This data is useful only
for simple fonts without non-spacing marks, and doesn’t account for Unicode-related issues at all.

This method is for backwards compatibility only. In new code, use advancementForGlyph: instead.

xHeight
– (float)xHeight

Returns the x-height of the receiving font.

See also: – ascender, – descender

1

 Classes: NSFontManager

NSFontManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSFontManager.h

Class Description

NSFontManager is the center of activity for the font conversion system. It records the currently selected
font, updates the Font Panel and Font menu to reflect the selected font, initiates font changes, and converts
fonts in response to requests from text-bearing objects. In a more prosaic role, NSFontManager can be
queried for the fonts available to the application, and for the particular attributes of a font, such as whether
it’s condensed or extended.

You normally set up a font manager and the Font Menu using Interface Builder. However, you can also do
so programmatically by getting the shared font manager instance and having it create the standard Font
menu at run time:

NSFontManager *fontManager = [NSFontManager sharedFontManager];

NSMenu *fontMenu = [fontManager fontMenu:YES];

You can then add the Font menu to your application’s main menu. Once the Font menu is installed, your
application automatically gains the functionality of both the Font menu and the Font Panel.

Recording the Selected Font

Any object that records fonts that the user can change should tell the font manager what the font of its
selection is whenever it becomes the first responder and whenever its selection changes while it’s the first
responder. The object does so by sending the shared font manager a setSelectedFont:isMultiple: message.
It should pass in the first font of the selection, along with a flag indicating whether there’s more than one
font.

The font manager uses this information to update the Font Panel and Font menu to reflect the selected font.
For example, suppose the selected font is set as Helvetica Oblique 12.0 point. In this case the Font Panel
selects that font and displays its name; the Font menu changes its Italic command to Unitalic; if there’s no
Bold variant of Helvetica available, the Bold menu item is disabled; and so on.

2

Initiating Font Changes

The user normally changes the font of the selection by manipulating the Font Panel and Font menu. These
objects initiate the intended change by sending an action message to the font manager. There are four
font-changing action methods:

– addFontTrait:
– removeFontTrait:
– modifyFont:
– modifyFontViaPanel:

The first three cause the font manager to query the sender of the message in order to determine which trait
to add or remove, or how to modify the font. The last causes the font manager to use the settings in the Font
Panel to modify the font. The font manager records this information and uses it in later requests to convert
fonts, as described under “Responding to Font Changes”.

When the font manager receives an addFontTrait: or removeFontTrait: message, it queries the sender
with a tag message, interpreting the return value as a trait mask for use with convertFont:toHaveTrait: or
convertFont:toNotHaveTrait: , as described below under “Converting Fonts Manually”. The Italic and
Bold Font menu commands, for example, have tags of NSItalicFontMask and NSBoldFontMask,
respectively. See convertFont:toHaveTrait: for a list of trait mask values.

When the font manager receives a modifyFont: message, it queries the sender with a tag message and
interprets the return value as a particular kind of conversion to perform, via the various conversion methods
described under “Converting Fonts Manually”. For example, a button whose tag value is
NSSizeUpFontAction causes the font manager’s convertFont: method to increase the size of the NSFont
passed as the argument. See modifyFont: for a list of conversion tag values.

For modifyFontViaPanel:, the font manager sends the application’s Font Panel a panelConvertFont:
message. The Font Panel in turn uses the font manager to convert the font provided according to the user’s
choices. For example, if the user selects only the font family in the Font Panel (perhaps to Helvetica), then
whatever fonts are provided to panelConvertFont:, only the family is changed: Courier Medium 10.0 point
becomes Helvetica Medium 10.0 point, while Times Italic 12.0 point becomes Helvetica Oblique 12.0
point.

Responding to Font Changes

The font manager responds to a font-changing action method by sending a changeFont: action message up
the responder chain. A text-bearing object that receives this message should have the font manager convert
the fonts in its selection by invoking convertFont: for each font and using the NSFont object returned.
convertFont: uses the information recorded by the font-changing action method, such as addFontTrait: ,
modifying the font provided appropriately. (There’s no way to explicitly set the font-changing action or
trait; instead, you use the methods described under “Converting Fonts Manually”.)

This simple example assumes there’s only one font in the selection:

3

 Classes: NSFontManager

– (void)changeFont:(id)sender

{

NSFont *oldFont = [self selectionFont];

NSFont *newFont = [sender convertFont:oldFont];

[self setSelectionFont:newFont];

return;

}

Most text-bearing objects will have to scan the selection for ranges with different fonts, and invoke
convertFont: for each one.

Font Trait Masks

NSFontManager categorizes fonts according to a small set of traits. You can convert fonts by adding and
removing individual traits, and you can get a font with a specific combination of traits. The traits defined
and available for your use are:

• NSBoldFontMask
• NSCompressedFontMask
• NSCondensedFontMask
• NSExpandedFontMask
• NSFixedPitchFontMask
• NSItalicFontMask
• NSNarrowFontMask
• NSNonStandardCharacterSetFontMask
• NSPosterFontMask
• NSSmallCapsFontMask
• NSUnboldFontMask
• NSUnitalicFontMask

These pairs of traits are mutually exclusive:

• NSCondensedFontMask and NSExpandedFontMask
• NSBoldFontMask and NSUnboldFontMask
• NSItalicFontMask and NSUnitalicFontMask

Converting Fonts Manually

NSFontManager defines a number of methods for explicitly converting particular traits and characteristics
of a font. These methods are:

– convertFont:toFace:
– convertFont:toFamily:
– convertFont:toHaveTrait:
– convertFont:toNotHaveTrait:

4

– convertFont:toSize:
– convertWeight:ofFont:

Each returns a transformed version of the font provided, or the original font if it can’t be converted.
convertFont:toFace: and convertFont:toFamily: both alter the basic design of the font provided. The first
method requires a fully-specified typeface name, such as “Times-Roman” or “Helvetica-BoldOblique”,
while the second expects only a family name, such as “Times” or “Helvetica”.

convertFont:toHaveTrait: and convertFont:toNotHaveTrait: use trait masks to add or remove a single
trait such as Italic, Bold, Condensed, or Extended.

convertFont:toSize: returns a font of the requested size, with all other characteristics the same as those of
the original font.

convertWeight:ofFont: either increases or decreases the weight of the font provided, according to a
boolean flag. Font weights are typically indicated by a series of names, which can vary from font to font.
Some go from Light to Medium to Bold, while others have Book, SemiBold, Bold, and Black. This method
offers a uniform way of incrementing and decrementing any font’s weight.

The default implementation of font conversion is very conservative, making a change only if no other trait
or aspect is affected. For example, if you try to convert Helvetica Oblique 12.0 point by adding the Bold
trait, and only Helvetica Bold is available, the font isn’t converted. You can create a subclass of
NSFontManager and override the conversion methods to perform less conservative conversion, perhaps
using Helvetica Bold in this case and losing the Oblique trait.

In addition to the font-conversion methods, NSFontManager defines fontWithFamily:traits:weight:size:
to construct a font with a given set of characteristics. If you don’t care to make a subclass of
NSFontManager, you can use this method to perform approximate font conversions yourself.

Examining Fonts

In addition to converting fonts, NSFontManager provides information on which fonts are available to the
application, and on the characteristics of any given font. availableFonts returns an array of the names of
all fonts available. availableFontNamesWithTraits: filters the available fonts based on a font trait mask.

There are three methods for examining individual fonts. fontNamed:hasTraits: returns YES if the font
matches the trait mask provided. traitsOfFont: returns a trait mask for a given font. weightOfFont: returns
an approximate ranking of a font’s weight on a scale of 0–15, where 0 is the lightest possible weight, 5 is
Normal or Book weight, 9 is the equivalent of Bold, and 15 is the heaviest possible (often called Black or
Ultra Black).

Customizing the Font Conversion System

If you need to customize the font conversion system by creating subclasses of NSFontManager or
NSFontPanel, you must inform the NSFontManager class of this change with a setFontManagerFactory:
or setFontPanelFactory: message, before either the shared font manager or shared font panel is created.

5

 Classes: NSFontManager

These methods record your class as the one to instantiate the first time the font manager or Font Panel is
requested.

You may be able to avoid using subclasses if all you need is to add some custom controls to the Font Panel.
In this case, you can invoke NSFontPanel’s setAccessoryView: method to add an NSView below its font
browser.

If you provide your own Font menu, you should register it with the font manager using the setFontMenu:
method. The font manager is responsible for validating Font menu items and changing their titles and tags
according to the selected font. For example, when the selected font is Italic the font manager changes the
Italic Font menu item to Unitalic, and changes its tag to NSUnitalicFontMask. Your Font menu’s items
should use the appropriate action methods and tags. Here are some examples:

Method Types

Getting the shared font manager
+ sharedFontManager

Changing the default font conversion classes
+ setFontManagerFactory:
+ setFontPanelFactory:

Getting available fonts
– availableFonts
– availableFontFamilies
– availableFontNamesWithTraits:

Setting and examining the selected font
– setSelectedFont:isMultiple:
– selectedFont
– isMultiple
– sendAction

Font Menu Item Action Tag

Italic addFontTrait: NSItalicFontMask

Bold addFontTrait: NSBoldFontMask

Heavier modifyFont: NSHeavierFontAction

Larger modifyFont: NSSizeUpFontAction

6

Action methods
– addFontTrait:
– removeFontTrait:
– modifyFont:
– modifyFontViaPanel:

Converting fonts automatically
– convertFont:

Converting fonts manually
– convertFont:toFace:
– convertFont:toFamily:
– convertFont:toHaveTrait:
– convertFont:toNotHaveTrait:
– convertFont:toSize:
– convertWeight:ofFont:

Getting a particular font
– fontWithFamily:traits:weight:size:

Examining fonts
– traitsOfFont:
– fontNamed:hasTraits:
– weightOfFont:

Enabling the Font Panel and Font menu
– setEnabled:
– isEnabled

Setting the Font menu
– setFontMenu:
– fontMenu:

Getting the Font Panel
– fontPanel:
– orderFrontFontPanel:

Setting the delegate
– setDelegate:
– delegate

Setting the action method
– setAction:
– action

7

 Classes: NSFontManager

Class Methods

setFontManagerFactory:
+ (void)setFontManagerFactory:(Class)aClass

Sets the class object used to create the font manager to aClass, which should be a subclass of
NSFontManager. When the NSFontManager class object receives a sharedFontManager message, it
creates an instance of aClass, if no instance already exists. Your font manager class should implement init
as its designated initializer. The default font manager factory is NSFontManager.

This method must be invoked before your application’s main nib file is loaded, such as in the application
delegate’s applicationWillFinishLaunching: method.

See also: + setFontPanelFactory:

setFontPanelFactory:
+ (void)setFontPanelFactory:(Class)factoryId

Sets the class used to create the Font Panel to aClass, which should be a subclass of NSFontPanel. Invoke
this method before accessing the Font Panel in any way, such as in the application delegate’s
applicationWillFinishLaunching: method.

See also: + setFontManagerFactory:

sharedFontManager
+ (NSFontManager *)sharedFontManager

Returns the singleton instance of the font manager factory for the application, creating it if necessary.

See also: + setFontManagerFactory:

Instance Methods

action
– (SEL)action

Returns the action that’s sent to the first responder when the user selects a new font from the Font panel or
chooses a command from the Font menu. The default action is changeFont:.

See also: – setAction:

8

addFontTrait:
– (void)addFontTrait: (id)sender

This action method causes the receiver to send its action message (changeFont: by default) up the
responder chain. When a responder replies by providing a font to convert in a convertFont: message, the
receiver converts the font by adding the trait specified by sender. This trait is determined by sending a tag
message to sender and interpreting it as a font trait mask for a convertFont:toHaveTrait: message.

See also: – removeFontTrait: , – modifyFont: , – modifyFontViaPanel:

availableFontFamilies
– (NSArray *)availableFontFamilies

Returns the names of the font families available in the system. These fonts are in various system font
directories.

See also: – availableFontNamesWithTraits:, – availableFonts

availableFontNamesWithTraits:
– (NSArray *)availableFontNamesWithTraits:(NSFontTraitMask)fontTraitMask

Returns the names of the fonts available in the system whose traits are described exactly by fontTraitMask
(not the NSFont objects themselves). These fonts are in various system font directories. You specify the
desired traits by combining these font trait mask values using the C bitwise OR operator:

• NSBoldFontMask
• NSCompressedFontMask
• NSCondensedFontMask
• NSExpandedFontMask
• NSFixedPitchFontMask
• NSItalicFontMask
• NSNarrowFontMask
• NSNonStandardCharacterSetFontMask
• NSPosterFontMask
• NSSmallCapsFontMask
• NSUnboldFontMask
• NSUnitalicFontMask

These pairs of traits are mutually exclusive:

• NSCondensedFontMask and NSExpandedFontMask
• NSBoldFontMask and NSUnboldFontMask
• NSItalicFontMask and NSUnitalicFontMask

9

 Classes: NSFontManager

If fontTraitMask is zero, this method returns all fonts that are neither italic nor bold. This is the same result
you’d get if fontTraitMask were NSUnitalicFontMask | NSUnboldFontMask.

See also: – availableFontFamilies, – availableFonts

availableFonts
– (NSArray *)availableFonts

Returns the names of the fonts available in the system (not the NSFont objects themselves). These fonts are
in various system font directories.

See also: – availableFontFamilies, – availableFontNamesWithTraits:

availableMembersOfFontFamily:
– (NSArray *)availableMembersOfFontFamily:(NSString *)family;

Returns an NSArray with one entry for each available membor of a font family. family is the name of a font
family, like one that availableFontFamilies returns.

Each entry of the returned NSArray is another NSArray with 4 members, as follows:

• 0. The PostScript font name, as a NSString
• 1. The part of the font name used in the font panel that’s not the font name, as a NSString. This is not

localized. For example "Roman" , "Italic" , or "Bold" .
• 2. The font's weight, as a NSNumber
• 3. The font's traits, as a NSNumber

The members of the family are arranged in the font-panel order (narrowest to widest, lightest to boldest,
plain to italic).

For example, if you call availableMembersOfFontFamily:@"Times" , it might return an array like this:

(("Times-Roman", "Roman", 5, 4),

 ("Times-Italic", "Italic", 6, 5),

 ("Times-Bold", "Bold", 9, 2),

 ("Times-BoldItalic", "Bold Italic", 9, 3)

)

10

convertFont:
– (NSFont *)convertFont:(NSFont *)aFont

Converts aFont according to the object that initiated a font change, typically the Font Panel or Font menu.
Returns the converted font, or aFont itself if the conversion isn’t possible.

This method is invoked in response to a changeFont: message, which is itself initiated by an action
message such as addFontTrait: or modifyFontViaPanel:. These initiating methods cause the font
manager to query the sender for the action to take and the traits to change. See the class description for more
information.

See also: – convertFont:toFace:, – convertFont:toFamily: , – convertFont:toHaveTrait: , – convertFont:
toNotHaveTrait: , – convertFont:toSize:, – convertWeight:ofFont:

convertFont:toFace:
– (NSFont *)convertFont:(NSFont *)aFont toFace:(NSString *)typeface

Returns an NSFont whose traits are as similar as possible to those of aFont except for the typeface, which
is changed to typeface. Returns aFont if it can’t be converted. A typeface is a fully specified family-face
name, such as Helvetica-BoldOblique or Times-Roman.

This method attempts to match the weight and posture of aFont as closely as possible. Italic is mapped to
Oblique, for example. Weights are mapped based on an approximate numeric scale of 0–15.

See also: – convertFont:toFamily: , – convertFont:toHaveTrait: , – convertFont:toNotHaveTrait: ,
– convertFont:toSize:, – convertWeight:ofFont:, – convertFont:

convertFont:toFamily:
– (NSFont *)convertFont:(NSFont *)aFont toFamily: (NSString *)family

Returns an NSFont whose traits are as similar as possible to those of aFont except for the font family, which
is changed to family. Returns aFont if it can’t be converted. A family is a generic font name, such as
Helvetica or Times.

This method attempts to match the weight and posture of aFont as closely as possible. Italic is mapped to
Oblique, for example. Weights are mapped based on an approximate numeric scale of 0–15.

See also: – convertFont:toFace:, – convertFont:toHaveTrait: , – convertFont:toNotHaveTrait: ,
– convertFont:toSize:, – convertWeight:ofFont:, – convertFont:

11

 Classes: NSFontManager

convertFont:toHaveTrait:
– (NSFont *)convertFont:(NSFont *)aFont toHaveTrait: (NSFontTraitMask)fontTrait

Returns an NSFont whose traits are the same as those of aFont except for the traits, which are changed to
include the single trait fontTrait, which may be any one of:

• NSBoldFontMask
• NSCompressedFontMask
• NSCondensedFontMask
• NSExpandedFontMask
• NSFixedPitchFontMask
• NSItalicFontMask
• NSNarrowFontMask
• NSNonStandardCharacterSetFontMask
• NSPosterFontMask
• NSSmallCapsFontMask
• NSUnboldFontMask
• NSUnitalicFontMask

These pairs of traits are mutually exclusive:

• NSCondensedFontMask and NSExpandedFontMask
• NSBoldFontMask and NSUnboldFontMask
• NSItalicFontMask and NSUnitalicFontMask

Using NSUnboldFontMask or NSUnitalicFontMask removes the bold or italic trait, respectively.

Returns aFont if it can’t be converted.

See also: – convertFont:toNotHaveTrait: , – convertFont:toFace:, – convertFont:toFamily: ,
– convertFont:toSize:, – convertWeight:ofFont:, – convertFont:

convertFont:toNotHaveTrait:
– (NSFont *)convertFont:(NSFont *)aFont toNotHaveTrait: (NSFontTraitMask)fontTraitMask

Returns an NSFont whose traits are the same as those of aFont except for the traits, which are changed so
as not to include the single trait fontTrait, which may be any one of:

• NSBoldFontMask
• NSCompressedFontMask
• NSCondensedFontMask
• NSExpandedFontMask
• NSFixedPitchFontMask
• NSItalicFontMask
• NSNarrowFontMask

12

• NSNonStandardCharacterSetFontMask
• NSPosterFontMask
• NSSmallCapsFontMask
• NSUnboldFontMask
• NSUnitalicFontMask

These pairs of traits are mutually exclusive:

• NSCondensedFontMask and NSExpandedFontMask
• NSBoldFontMask and NSUnboldFontMask
• NSItalicFontMask and NSUnitalicFontMask

Using NSUnboldFontMask or NSUnitalicFontMask includes the bold or italic trait, respectively.

Returns aFont if it can’t be converted.

See also: – convertFont:toHaveTrait: , – convertFont:toFace:, – convertFont:toFamily: , – convertFont:
toSize:, – convertWeight:ofFont:, – convertFont:

convertFont:toSize:
– (NSFont *)convertFont:(NSFont *)aFont toSize:(float)size

Returns an NSFont whose traits are the same as those of aFont except for the size, which is changed to size.
Returns aFont if it can’t be converted.

See also: – convertFont:toFace:, – convertFont:toFamily: , – convertFont:toHaveTrait: , – convertFont:
toNotHaveTrait: , – convertWeight:ofFont:, – convertFont:

convertWeight:ofFont:
– (NSFont *)convertWeight:(BOOL)increaseFlag ofFont:(NSFont *)aFont

Returns an NSFont whose weight is greater or lesser than that of aFont, if possible. If increaseFlag is YES,
a heavier font is returned; if it’s NO, a lighter font is returned. Returns aFont unchanged if it can’t be
converted.

Weights are graded along the following scale. The list on the right gives OpenStep’s terminology and the
list on the right gives the ISO equivalents. Names in the same line are treated as identical:

1) ultralight

2) thin W1) ultralight

3) light, extralight W2) extralight

13

 Classes: NSFontManager

NSFontManager’s implementation of this method refuses to convert a font’s weight if it can’t maintain all
other traits, such as Italic and Condensed. You might wish to override this method to allow a looser
interpretation of weight conversion.

See also: – convertFont:toFace:, – convertFont:toFamily: , – convertFont:toHaveTrait: , – convertFont:
toNotHaveTrait: , – convertFont:toSize:, – convertFont:

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

fontMenu:
– (NSMenu *)fontMenu: (BOOL)createFlag

Returns the menu that’s hooked up to the font conversion system, creating it if necessary and if createFlag
is YES.

See also: – setFontMenu:

4) book W3) light

5) regular,plain,display,roman W4) semilight

6) medium W5) medium

7) demi, demibold

8) semi, semibold W6) semibold

9) bold W7) bold

10) extra, extrabold W8) extrabold

11) heavy, heavyface

12) black, super W9) ultrabold

13) ultra, ultrablack, fat

14) extrablack, obese, nord

14

fontNamed:hasTraits:
– (BOOL)fontNamed:(NSString *)typeface hasTraits:(NSFontTraitMask)fontTraitMask

Returns YES if the font named typeface has all the traits specified in fontTraitMask, NO if it doesn’t. You
specify the desired traits by combining these font trait mask values using the C bitwise OR operator:

• NSBoldFontMask
• NSCompressedFontMask
• NSCondensedFontMask
• NSExpandedFontMask
• NSFixedPitchFontMask
• NSItalicFontMask
• NSNarrowFontMask
• NSNonStandardCharacterSetFontMask
• NSPosterFontMask
• NSSmallCapsFontMask
• NSUnboldFontMask
• NSUnitalicFontMask

These pairs of traits are mutually exclusive:

• NSCondensedFontMask and NSExpandedFontMask
• NSBoldFontMask and NSUnboldFontMask
• NSItalicFontMask and NSUnitalicFontMask

Using NSUnboldFontMask returns YES if the font is not bold; NO, otherwise. Using NSUnitalicFontMask
returns YES if the font is not italic; NO, otherwise.

fontPanel:
– (NSFontPanel *)fontPanel:(BOOL)createFlag

Returns the application’s shared Font Panel object, creating if necessary and if createFlag is YES.

See also: + sharedFontPanel (NSFontPanel), + sharedFontPanelExists (NSFontPanel),
+ setFontPanelFactory:

15

 Classes: NSFontManager

fontWithFamily:traits:weight:size:
– (NSFont *)fontWithFamily: (NSString *)family

traits: (NSFontTraitMask)fontTraitMask
weight:(int)weight
size:(float)size

Attempts to load a font with the specified characteristics, returning the font if successful and nil if not.
family is the generic name of the font desired, such as Times or Helvetica. weight is a hint for the weight
desired, on a scale of 0–15: a value of 5 indicates a normal or book weight and 9 or more a bold or heavier
weight. The weight is ignored if fontTraitMask includes NSBoldFontMask.

You specify fontTraitMask by combining these font trait mask values using the C bitwise OR operator:

• NSBoldFontMask
• NSCompressedFontMask
• NSCondensedFontMask
• NSExpandedFontMask
• NSFixedPitchFontMask
• NSItalicFontMask
• NSNarrowFontMask
• NSNonStandardCharacterSetFontMask
• NSPosterFontMask
• NSSmallCapsFontMask
• NSUnboldFontMask
• NSUnitalicFontMask

These pairs of traits are mutually exclusive:

• NSCondensedFontMask and NSExpandedFontMask
• NSBoldFontMask and NSUnboldFontMask
• NSItalicFontMask and NSUnitalicFontMask

Using NSUnboldFontMask or NSUnitalicFontMask loads a font that doesn’t have either the bold or italic
trait, respectively.

isEnabled
– (BOOL)isEnabled

Returns YES if the font-conversion system’s user interface items (the Font Panel and Font menu items) are
enabled, NO if they’re not.

See also: – isEnabled (NSFontPanel), – isEnabled (NSMenuItem), – setEnabled:

16

isMultiple
– (BOOL)isMultiple

Returns YES if the last font selection recorded has multiple fonts, NO if it’s a single font.

See also: – setSelectedFont:isMultiple:, – selectedFont

localizedNameForFamily:face:
– (NSString *) localizedNameForFamily:(NSString *)family face:(NSString *)face;

Returns a localized string with the name of the specified font family and face (for example, @"Times" and
@"Roman"), if one exists. The user’s location is determined from the user’s NSLanguages default setting.
The method also loads the localized strings for the font, if they aren’t already loaded.

If face is nil , this method returns the font family only.

modifyFont:
– (void)modifyFont: (id)sender

This action method causes the receiver to send its action message (changeFont: by default) up the
responder chain. When a responder replies by providing a font to convert in a convertFont: message, the
receiver converts the font in the manner specified by sender. The conversion is determined by sending a tag
message to sender and invoking a corresponding method:

See also: – addFontTrait: , – removeFontTrait: , – modifyFontViaPanel:

Sender’s Tag Method Used

NSNoFontChangeAction None, the font is returned unchanged

NSViaPanelFontAction The Font Panel’s panelConvertFont:

NSAddTraitFontAction convertFont:toHaveTrait:

NSRemoveTraitFontAction convertFont:toNotHaveTrait:

NSSizeUpFontAction convertFont:toSize:

NSSizeDownFontAction convertFont:toSize:

NSHeavierFontAction convertWeight:ofFont:

NSLighterFontAction convertWeight:ofFont:

17

 Classes: NSFontManager

modifyFontViaPanel:
– (void)modifyFontViaPanel:(id)sender

This action method causes the receiver to send its action message (changeFont: by default) up the
responder chain. When a responder replies by providing a font to convert in a convertFont: message, the
receiver converts the font by sending a panelConvertFont: message to the Font Panel. The panel in turn
may send convertFont:toFamily: , convertFont:toHaveTrait: , and other specific conversion methods to
make its change.

See also: – addFontTrait: , – removeFontTrait: , – modifyFont:

orderFrontFontPanel:
– (void)orderFrontFontPanel:(id)sender

This action method opens the Font Panel by sending it an orderFront: message, creating the Font Panel if
necessary.

See also: – fontPanel:, + setFontPanelFactory:

removeFontTrait:
– (void)removeFontTrait: (id)sender

This action method causes the receiver to send its action message (changeFont: by default) up the
responder chain. When a responder replies by providing a font to convert in a convertFont: message, the
receiver converts the font by removing the trait specified by sender. This trait is determined by sending a
tag message to sender and interpreting it as a font trait mask for a convertFont:toNotHaveTrait: message.

See also: – addFontTrait: , – modifyFont: , – modifyFontViaPanel:

selectedFont
– (NSFont *)selectedFont

Returns the last font recorded with a setSelectedFont:isMultiple: message. While fonts are being
converted in response to a changeFont: message, you can determine the font selected in the Font Panel like
this:

NSFontManager *fontManager = [NSFontManager sharedFontManager];

panelFont = [fontManager convertFont:[fontManager selectedFont]];

See also: – isMultiple

18

sendAction
– (BOOL)sendAction

Sends the receiver’s action message, changeFont: by default, up the responder chain, initiating a font
change for whatever conversion and trait to change were last requested. Returns YES if some object handled
the changeFont: message, NO if the message went unheard.

This method is used internally by the font conversion system. You should never need to invoke it directly.
Instead, use the action methods such as addFontTrait: or modifyFontViaPanel:.

See also: – setAction:

setAction:
– (void)setAction:(SEL)aSelector

Sets the action that’s sent to the first responder when the user selects a new font from the Font panel or
chooses a command from the Font menu to aSelector. The default action is changeFont:. You should rarely
need to change this.

See also: – action

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject.

See also: – delegate

setEnabled:
– (void)setEnabled:(BOOL)flag

Controls whether the font-conversion system’s user interface items (the Font Panel and Font menu items)
are enabled. If flag is YES they’re enabled; if flag is NO they’re disabled.

See also: – setEnabled: (NSFontPanel), – isEnabled

19

 Classes: NSFontManager

setFontMenu:
– (void)setFontMenu:(NSMenu *)aMenu

Records aMenu as the application’s Font menu.

See also: – fontMenu:

setSelectedFont:isMultiple:
– (void)setSelectedFont:(NSFont *)aFont isMultiple: (BOOL)flag

Records aFont as the currently selected font, and updates the Font Panel to reflect this. If flag is YES, the
Font Panel indicates that more than one font is contained in the selection.

An object that manipulates fonts should invoke this method whenever it becomes first responder and
whenever its selection changes. It shouldn’t invoke this method in the process of handling a changeFont:
message, as this causes the font manager to lose the information necessary to effect the change. After all
fonts have been converted, the font manager itself records the new selected font.

See also: – selectedFont, – isMultiple

traitsOfFont:
– (NSFontTraitMask)traitsOfFont: (NSFont *)aFont

Returns the traits of aFont, a mask created by combining these options with the C bitwise OR operator:

• NSBoldFontMask
• NSCompressedFontMask
• NSCondensedFontMask
• NSExpandedFontMask
• NSFixedPitchFontMask
• NSItalicFontMask
• NSNarrowFontMask
• NSNonStandardCharacterSetFontMask
• NSPosterFontMask
• NSSmallCapsFontMask

NSCondensedFontMask and NSExpandedFontMask are mutually exclusive.

20

weightOfFont:
– (int)weightOfFont:(NSFont *)aFont

Returns a rough numeric measure of aFont’s weight, where 0 indicates the lightest possible weight, 5
indicates a normal or book weight, and 9 or more indicates a bold or heavier weight.

Methods Implemented by Responders
– (void)changeFont:(id)sender

Informs responders of a font change: The user changed the font either in the selection of a rich text field or
in a whole plain text field. Any object that contains a font which the user can change must respond to the
changeFont: message by sending a convertFont: message back to sender (an NSFontManager object) for
each font in the selection. For more information, see “Responding to Font Changes”.

See also: – addFontTrait: , – convertFont:toHaveTrait: , – convertFont:toFace:, – convertFont:
toFamily: , – convertFont:toNotHaveTrait: , – convertFont:toSize:, – convertWeight:ofFont:,
– convertFont:, – removeFontTrait: , – modifyFontViaPanel:, – modifyFont:

Methods Implemented By the Delegate

fontManager:willIncludeFont:
– (BOOL)fontManager:(id)theFontManager willIncludeFont: (NSString *)fontName

Requests permission from the delegate to display fontName in the Font Panel. fontName is the full
PostScript name of the font, such as “Helvetica-BoldOblique” or “Helvetica-Narrow-Bold”. If the delegate
returns YES, fontName is listed; if the delegate returns NO, it isn’t.

This method is invoked repeatedly as necessary whenever the Font Panel needs updating, such as when the
Font Panel is first loaded, and when the user selects a family name to see which typefaces in that family are
available. Your implementation should execute fairly quickly to guarantee the responsiveness of the Font
Panel.

1

 Classes: NSFontPanel

NSFontPanel

Inherits From: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSFontPanel.h

Class Description

The NSFontPanel class implements the Font Panel—a user-interface object that displays a list of available
fonts, letting the user preview them and change the font used to display text. The actual changes are made
through conversion messages sent to the shared NSFontManager instance. There’s only one Font Panel for
each application.

In general, you add the facilities of the Font Panel to your application, along with the NSFontManager and
the Font menu, through Interface Builder. You do this by dragging a Font menu into one of your
application’s menus. At run time, when the user chooses the Font Panel command for the first time, the Font
Panel object is created and hooked into the font conversion system. You can also create (or access) the Font
Panel using the sharedFontPanel class method.

You can add a custom view object to an NSFontPanel using setAccessoryView:, or limit the fonts display
by assigning a delegate to the application’s font manager object. If you want the NSFontManager to
instantiate the Font Panel from some class other than NSFontPanel, use NSFontManager’s
setFontPanelFactory: class method. See the NSFontManager class specification for more information on
using the font conversion system.

Normally, the application’s Font Panel displays all the standard fonts available on the system. If this isn’t
appropriate for your application—for example, if only fixed-pitch fonts should be used—you can assign a
delegate to the NSFontPanel object to filter the available fonts. Before the NSFontPanel adds a particular
font family or face to its list, it asks its delegate to confirm the addition by sending the delegate a
fontManager:willIncludeFont: message. If the delegate returns YES (or doesn’t implement this method),
the font is added. If the delegate returns NO, the font isn’t added.

Method Types

Getting the Font Panel
+ sharedFontPanel
+ sharedFontPanelExists

2

Enabling font changes
– setEnabled:
– isEnabled

Updating the Font Panel
– setPanelFont:isMultiple:

Converting fonts
– panelConvertFont:

Working in modal loops
– worksWhenModal

Setting an accessory view
– setAccessoryView:
– accessoryView

Class Methods

sharedFontPanel
+ (NSFontPanel *)sharedFontPanel

Returns the single NSFontPanel instance for the application, creating it if necessary.

See also: + sharedFontPanelExists, + setFontPanelFactory: (NSFontManager)

sharedFontPanelExists
+ (BOOL)sharedFontPanelExists

Returns YES if the shared Font Panel has been created, NO if it hasn’t.

See also: + sharedFontPanel

Instance Methods

accessoryView
– (NSView *)accessoryView

Returns the receiver’s accessory view.

See also: – setAccessoryView:

3

 Classes: NSFontPanel

isEnabled
– (BOOL)isEnabled

Returns YES if the receiver’s Set button is enabled, NO if it isn’t. The receiver continues to reflect the font
of the selection for cooperating text objects regardless of this setting.

See also: – setEnabled:

panelConvertFont:
– (NSFont *)panelConvertFont:(NSFont *)aFont

Converts aFont using the settings in the receiver, with the aid of the shared NSFontManager if necessary,
and returns the converted font. If aFont can’t be converted it’s returned unchanged.

For example, if aFont is Helvetica Oblique 12.0 point and the user has selected the Times font family (and
nothing else) in the Font Panel, the font returned is Times Italic 12.0 point.

See also: – convertFont: (NSFontManager)

setAccessoryView:
– (void)setAccessoryView:(NSView *)aView

Establishes aView as the receiver’s accessory view, allowing you to add custom controls to your
application’s Font Panel without having to create a subclass.

See also: – accessoryView

setEnabled:
– (void)setEnabled:(BOOL)flag

Controls whether the receiver’s Set button is enabled. If flag is YES the Set button is enabled; if flag is NO
it’s disabled. The receiver continues to reflect the font of the selection for cooperating text objects regardless
of this setting.

See also: – isEnabled

setPanelFont:isMultiple:
– (void)setPanelFont:(NSFont *)aFont isMultiple: (BOOL)flag

Sets the selected font in the receiver to aFont if flag is NO, otherwise selects no font and displays a message
in the preview area indicating that multiple fonts are selected. You normally don’t use this method directly;

4

instead, you send setSelectedFont:isMultiple: to the shared NSFontManager, which in turn invokes this
method.

worksWhenModal
– (BOOL)worksWhenModal

Returns YES, regardless of the setting established using the NSPanel method setWorksWhenModal:. This
allows fonts to be changed in modal windows and panels.

See also: – worksWhenModal (NSWindow), – worksWhenModal (NSPanel)

1

 Classes: NSForm

NSForm

Inherits From: NSMatrix : NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSForm.h

Class Description

An NSForm is a vertical NSMatrix of NSFormCells. Here’s an example:

In NSForm’s methods, each NSFormCell is called an “entry” (or, sometimes, a “cell” or “item”). The left
part of each entry is called the “title,” and the right part is called the “text.” Methods that refer to individual
entries use an one-dimensional “index”; the indexing system starts at the top of the top of form, with zero.

Any entry in the form can be “selected.” When an entry is selected, its text area responds to the user’s
keystrokes. You can select an entry using the selectTextAtIndex: method, or you can let the user select an
entry by clicking it with the mouse. Once an entry is selected, the user can select the next entry by pressing
Tab, or select the previous entry by pressing Shift-Tab.

To initiate the action of a selected entry, the user presses Return or Enter. In response, the entry sends an
action message to its target. If the entry has no target, the NSForm sends an action message to its target.

NSForm includes a methods to change the appearance of entries (the set... methods). These methods affect
every entry in the form. To change the appearance of an individual entry, you need to single it out, using
cellAtIndex: , and then send it messages appropriate to an NSFormCell.

For more information, see the class specifications for NSFormCell and NSMatrix.

2

Method Types

Adding and removing entries
– addEntry:
– insertEntry:atIndex:
– removeEntryAtIndex:

Changing the appearance of all the entries
– setBezeled:
– setBordered:
– setEntryWidth:
– setInterlineSpacing:
– setTitleAlignment:
– setTextAlignment:
– setTitleFont:
– setTextFont:

Getting cells and indices
– indexOfCellWithTag:
– indexOfSelectedItem
– cellAtIndex:

Displaying a cell
– drawCellAtIndex:

Editing text
– selectTextAtIndex:

Instance Methods

addEntry:
– (NSFormCell *)addEntry: (NSString *)title

Adds a new entry to the end of the form, and gives it the title title. The new entry has no tag, target, or action,
but is enabled and editable.

See also: – insertEntry:atIndex: , – setTag: (NSActionCell), – setTarget: (NSActionCell), – setAction:
(NSActionCell), – setEnabled: (NSActionCell), – setEditable: (NSCell)

cellAtIndex:
– (id)cellAtIndex: (int)entryIndex

Returns the entry specified by entryIndex.

See also: – indexOfCellWithTag: , – indexOfSelectedItem

3

 Classes: NSForm

drawCellAtIndex:
– (void)drawCellAtIndex: (int)entryIndex

Displays the entry specified by entryIndex. Since this method is called automatically whenever a cell needs
drawing, you will never need to invoke it explicitly. It is only included in the API so that you can override
it if you subclass NSFormCell.

See also: – indexOfCellWithTag: , – indexOfSelectedItem

indexOfCellWithTag:
– (int)indexOfCellWithTag: (int)tag

Returns the index of the entry whose tag is tag.

See also: – tag (NSCell)

indexOfSelectedItem
– (int)indexOfSelectedItem

Returns the index of the selected entry. If no entry is selected, indexOfSelectedItem returns -1.

insertEntry:atIndex:
– (NSFormCell *)insertEntry: (NSString *)title atIndex:(int)entryIndex

Inserts an entry with the title title at the position in the form specified by entryIndex. The new entry has no
tag, target, or action, and, as explained in the class description, it won’t appear on the screen automatically.

Returns the newly inserted NSFormCell.

See also: – addEntry: , – removeEntryAtIndex:

removeEntryAtIndex:
– (void)removeEntryAtIndex: (int)entryIndex

If entryIndex is a valid position in the form, removes the entry there and frees it.

4

selectTextAtIndex:
– (void)selectTextAtIndex:(int)entryIndex

If entryIndex is a valid position in the Form, selects the entry at that position.

setBezeled:
– (void)setBezeled:(BOOL)flag

If flag is YES, sets all the entries in the form to show a bezel around their editable text; if flag is NO, sets
all the entries to show no bezel.

See also: – isBezeled (Cell), – setBordered:

setBordered:
– (void)setBordered:(BOOL)flag

flag determines whether the entries in the form are set to display a border—that is, a thin line—around their
editable text fields. An entry can have a border or a bezel, but not both.

See also: – isBordered (Cell), – setBezeled:

setEntryWidth:
– (void)setEntryWidth: (float)width

Sets the width (in pixels) of all the entries in the form. This width includes both the title and the text field.

setInterlineSpacing:
– (void)setInterlineSpacing:(float)spacing

Sets the number of pixels between entries in the form to spacing.

setTextAlignment:
– (void)setTextAlignment:(int)alignment

Sets the alignment for all of the form’s editable text. alignment can be one of three constants:
NSRightTextAlignment, NSCenterTextAlignment, or NSLeftTextAlignment (the default).

See also: – setTitleAlignment:

5

 Classes: NSForm

setTextFont:
– (void)setTextFont:(NSFont *)font

Sets the font for all of the form’s editable text fields.

See also: – setTitleFont:

setTitleAlignment:
– (void)setTitleAlignment:(NSTextAlignment)alignment

Sets the alignment for all of the entry titles. alignment can be one of three constants:
NSRightTextAlignment, NSCenterTextAlignment, or the default, NSLeftTextAlignment.

See also: – setTextAlignment:

setTitleFont:
– (void)setTitleFont:(NSFont *)font

Sets the font for all of the entry titles.

See also: – setTextFont:

1

 Classes: NSFormCell

NSFormCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding (from NSCell)
NSCopying (from NSCell)
NSObject (from NSObject)

Declared In: AppKit/NSFormCell.h

Class Description

This class is used to implement text entry fields in an NSForm. The left part of an NSFormCell is a title.
The right part is an editable text entry field.

For more on the use of NSFormCell, see the class specification for NSForm.

Method Types

Initializing an NSFormCell
– initTextCell:

Asking about a cell’s appearance
– isOpaque

Asking about a cell’s title
– attributedTitle
– title
– titleAlignment
– titleFont
– titleWidth

Changing the cell’s title
– setAttributedTitle:
– setTitle:
– setTitleAlignment:
– setTitleFont:
– setTitleWidth:

Setting a keyboard equivalent
– setTitleWithMnemonic:

2

Instance Methods

attributedTitle
– (NSAttributedString *)attributedTitle

Returns the title as an attributed string.

initTextCell:
– (id)initTextCell: (NSString *)aString

Initializes a newly allocated NSFormCell. Its title is set to aString; the contents of its text entry field are set
to the empty string (“”). The font for both title and text is the user’s chosen system font in 12.0 point, and
the text area is drawn with a bezel. This method is the designated initializer for NSFormCell.

Returns self.

See also: – setTitle:

isOpaque
– (BOOL)isOpaque

Returns YES if both the title and the entry field are opaque, NO if one or both of them are transparent. Since
titles are transparent by default, this method usually returns NO.

setAttributedTitle:
– (void)setAttributedTitle: (NSAttributedString *)anAttributedString

Sets the cell’s title and title attributes according to anAttributedString.

setTitle:
– (void)setTitle:(NSString *)aString

Sets the cell’s title to aString.

setTitleAlignment:
– (void)setTitleAlignment:(NSTextAlignment)alignment

Sets the alignment of the title. alignment can be one of three constants: NSLeftTextAlignment,
NSRightTextAlignment, or NSCenterTextAlignment.

3

 Classes: NSFormCell

setTitleFont:
– (void)setTitleFont:(NSFont *)font

Sets the title’s font.

setTitleWidth:
– (void)setTitleWidth: (float)width

You usually won’t need to to invoke this method, since the Application Kit automatically sets the title width
whenever the title changes. If, however, the automatic width doesn’t suit your needs, you can use
setTitleWidth: to set the width in pixels.

Once you have set the width explicity this way, the Application Kit stops setting the width automatically;
you will need to invoke setTitleWidth: every time the title changes. If you want the Application Kit to
resume automatic width assignments, invoke setTitleWidth: with a negative width value.

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)titleWithAmpersand

Sets the cell title and a single mnemonic character. The mnemonic character, which follows the ampersand
in titleWithAmpersand, serves as an Alt-key equivalent to clicking in the text entry field.

For example, if titleWithAmpersand is “T&itle,” the cell’s title will be displayed as “Title” (the mnemonic
character, i, is underlined). If a user types Alt-i, it will have the same effect as clicking in the text entry field.

See also: – setTitle:

title
– (NSString *)title

Returns the cell’s title. The default title is “Field:”.

titleAlignment
– (NSTextAlignment)titleAlignment

Returns the alignment of the title, which will be one of the following: NSLeftTextAlignment,
NSCenterTextAlignment, or NSRightTextAlignment (the default).

4

titleFont
– (NSFont *)titleFont

Returns the font used to draw the cell’s title.

titleWidth
– (float)titleWidth

Returns the width (in pixels) of the title field. If you specified the width using setTitleWidth: , this methdo
returns the value you chose. Otherwise, it returns the width calculated automatically by the Application Kit.

See also: – titleWidth:

titleWidth:
– (float)titleWidth: (NSSize)aSize

Returns the width (in pixels) of the title field. If you specified the width using setTitleWidth: , this method
returns the value you chose Otherwise, it calculates the width, constrained to aSize.

See also: – titleWidth

1

 Classes: NSHelpManager

NSHelpManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSHelpManager.h

Class Description
Note: The Rhapsody Help system is currently under development, so the API of NSHelpManager may

change significantly in future releases.

NSHelpManager provides a platform-independent approach to displaying on-line help. An application
contains one instance of NSHelpManager. Your application’s code rarely needs to access NSHelpManager
directly. Instead, you use Interface Builder and Project Builder to set up on-line help for your application.

OpenStep applications can run on multiple platforms, and each platform provides its own support for
on-line help. It’s important to users that applications use the native on-line help system (on Microsoft
Windows, for instance, users want the Microsoft Windows help system and don’t want to have to learn how
to use a different help system), so NSHelpManager does not provide a comprehensive solution for
presenting help. Instead, it provides cross-platform support for context-sensitive help and allows you to
present more comprehensive help (conceptual and task-based help) in any way you choose.

Context Help

Context-sensitive help (also referred to as context help) gives the user a small amount of information when
they help-click an interface item. For example, if the user help-clicks a menu item called “Copy,” they
should get context help that says something like “Copies the currently selected text to the pasteboard.” This
text appears in a small window near where the user help-clicked, and the window disappears when the user
clicks anywhere else in the application.

Help-clicking is performed in any one of several ways, depending on the platform and the hardware used.
On Mach platforms, help-clicking is performed when the user holds down the Help key, the F1 key, or the
Alternate and Control keys while pressing the mouse button. On Microsoft Windows platforms, users press
Shift-F1 and then press the mouse button to display context-sensitive help. Some Microsoft Windows
applications also have a What’s This menu item on the Help menu. When the user selects this item, the next
mouse click displays context-sensitive help.

To provide context-sensitive help for your application, follow these steps:

1. For each interface item that needs context help, create an RTF or RTFD file containing the text and any images
you want to appear when the user help-clicks that interface item. Try to keep the text as brief as possible and
the images as small as possible.

2

The text that you write will appear in a small window just under the cursor when the user help-clicks
an interface item. If the user help-clicks near the edge of the screen, text may appear off-screen. (This
is especially prevalent when the user help-clicks a menu item on the Mach platform.) Use hard
returns in your text so that the window will be as narrow as possible.

2. If you don’t need to localize your context help files, in Project Builder simply add these files to your project
under Context Help.

If you do need to localize your context help files, first copy the files into the appropriate .lproj
directory of your project, then add them to the project.

In Interface Builder, connect each interface item to its context help file by doing the following:

1. Bring up the Interface Builder inspector and choose the Help display. The Help display lists all the context help
files associated with your application. (You may have to quit and restart Interface Builder to get this to occur.)

2. Select an interface item.

3. In the Inspector, choose the appropriate help file.

When you build your application, /usr/bin/compileHelp packages your help files into a property list named
Help.plist. NSHelpManager knows how to extract context help from a Help.plist file.

Comprehensive Help

Most applications provide some form of on-line help that is more comprehensive and detailed than
context-sensitive help, such as conceptual or task help. NSHelpManager allows you to provide this sort of
comprehensive help in any way you choose. Some help authors prefer to provide comprehensive help in
HTML using a World-Wide Web browser; others use tools such as Digital Librarian or Concurrence; on
Microsoft Windows a full-featured native help system is available.

When the user chooses the Help menu item, the NSApplication method showHelp: is invoked. This method
simply asks NSWorkspace to open the help file you have specified for your application. That file should be
the starting point of your help, and should allow users to access whatever information they might need.

To specify a help file for your application, do one of the following:

• In Project Builder, specify the name of the help file in the Project Attributes inspector. (If you are creating
an application that will run on both the Mach and Windows platforms, you need to enter this file twice—
once for Mach and once for Windows). The specified value can be a full or relative path, and if it is
relative, it is assumed to be a resource in the application wrapper.

• As an alternative, you can place the help file in your application wrapper and name it after your
application. If you haven’t specified a help file, NSHelpManager looks in the application wrapper for an
appropriately named file.

On Mach, it must be an RTF file called appName.rtf (where appName is the name of the
application).

3

 Classes: NSHelpManager

On Microsoft Windows, it must be a Windows help file called appName.hlp.

Note: It’s common for Windows applications to have more than one command under the Help menu and to
have each command open a different help file. To implement this, connect each of the Help menu
commands to a different action method. The action methods should send openFile: to the shared
NSWorkspace object to open the appropriate help file. For example:

[[NSWorkspace sharedWorkspace] openFile:@"AppKit.hlp"];

Method Types

Creating an NSHelpManager instance
+ sharedHelpManager

Getting and setting context help mode
+ setContextHelpModeActive:
+ isContextHelpModeActive

Returning context-sensitive help
– contextHelpForObject:
– showContextHelpForObject:locationHint:

Setting up context-sensitive help
– setContextHelp:forObject:
– removeContextHelpForObject:

Class Methods

isContextHelpModeActive
+ (BOOL)isContextHelpModeActive

Returns YES if the application is currently in context-sensitive help mode, NO otherwise. In
context-sensitive help mode, when a user clicks a user interface item, help for that item is displayed in a
small window just below the cursor.

See also: + setContextHelpModeActive:

setContextHelpModeActive:
+ (void)setContextHelpModeActive:(BOOL)flag

Controls context-sensitive help mode. If flag is YES, the application enters context-sensitive help mode. If
flag is NO, the application returns to normal operation.

4

You never send this message directly; instead, the NSApplication method activateContextHelpMode:
activates context-sensitive help mode, and the first mouse click after displaying the context-sensitive help
window deactivates it.

When the application enters context-sensitive help mode, NSHelpManager posts
NSContextHelpModeDidActivateNotification to the default notification center. When the application
returns to normal operation, NSHelpManager posts NSContextHelpModeDidDeactivateNotification.

See also: + isContextHelpModeActive

sharedHelpManager
+ (NSHelpManager *)sharedHelpManager

Returns the shared NSHelpManager instance, creating it if it does not already exist.

Instance Methods

contextHelpForObject:
– (NSAttributedString *)contextHelpForObject:(id)object

Returns context-sensitive help for object.

See also: – setContextHelp:forObject:, – showContextHelpForObject:locationHint:

removeContextHelpForObject:
– (void)removeContextHelpForObject:(id)object

Removes the association between object and its context-sensitive help. If object does not have
context-sensitive help associated with it, this method does nothing. Typically, you use Interface Builder to
remove context-sensitive help from an item.

See also: – setContextHelp:forObject:

setContextHelp:forObject:
– (void)setContextHelp:(NSAttributedString *)help forObject: (id)object

Associates help with object. When the application enters context-sensitive help mode, if object is clicked,
help will appear in the context-sensitive help window. Typically, you use Interface Builder to associate
context-sensitive help with an object.

See also: – removeContextHelpForObject:

5

 Classes: NSHelpManager

showContextHelpForObject:locationHint:
– (BOOL)showContextHelpForObject:(id)object locationHint: (NSPoint)point

Displays the context-sensitive help for object at or near the point on the screen specified by point. This point
is usually just under the cursor. Returns YES if it successfully displays context-sensitive help for the object,
NO if it cannot (for example, if there is no context-sensitive help associated with this object).

See also: – contextHelpForObject:

Notifications

NSContextHelpModeDidActivateNotification

Posted when the application enters context-sensitive help mode. This typically happens when the user holds
down the Help key. It can also occur on Microsoft Windows platforms if the user chooses the What’s This
command from the Help menu.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSHelpManager object.

NSContextHelpModeDidDeactivateNotification

Posted when the application exits context-sensitive help mode. This happens when the user clicks the mouse
anywhere on the screen after displaying a context-sensitive help topic.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSHelpManager object.

1

 Classes: NSImage

NSImage

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (from NSObject)

Declared In: AppKit/NSImage.h

Class Description

An NSImage object contains an image that can be composited anywhere without first being drawn in any
particular view. It manages the image by:

• Reading image data from the application bundle, from an NSPasteboard, or from an NSData object.

• Keeping multiple representations of the same image.

• Choosing the representation that’s appropriate for a particular data type.

• Choosing the representation that’s appropriate for any given display device.

• Caching the representations it uses by rendering them in off-screen windows.

• Optionally retaining the data used to draw the representations, so that they can be reproduced when
needed.

• Compositing the image from the off-screen cache to where it’s needed on-screen.

• Reproducing the image for the printer so that it matches what’s displayed on-screen, yet is the best
representation possible for the printed page.

• Automatically using any filtering services installed by the user to convert image data from unsupported
formats to supported formats.

Defining an Image

An image can be created from various types of data:

• Encapsulated PostScript code (EPS)

• Bitmap data in Tag Image File Format (TIFF)

• Bitmap data in Windows Bitmap format (BMP)

• Untagged (raw) bitmap data

2

• Other image data supported by an NSImageRep subclass registered with the NSImage class

• Data that can be filtered to a supported type by a user-installed filter service

If data is placed in a file (for example, in an application bundle), the NSImage object can access the data
whenever it’s needed to create the image. If data is read from an NSData object, the NSImage object may
need to store the data itself.

Images can also be defined by the program, in two ways:

• By drawing the image in an off-screen window maintained by the NSImage object. In this case, the
NSImage maintains only the cached image.

• By defining a method that can be used to draw the image when needed. This allows the NSImage to
delegate responsibility for producing the image to some other object.

Image Representations

An NSImage object can keep more than one representation of an image. Multiple representations permit
the image to be customized for the display device. For example, different hand-tuned TIFF images can be
provided for monochrome and color screens, and an EPS representation or a custom method might be used
for printing. All representations are versions of the same image.

An NSImage returns an NSArray of its representations in response to a representations message. Each
representation is a kind of NSImageRep object:

You can define other NSImageRep subclasses for objects that render images from other types of source
data. To make these new subclasses available to an NSImage object, they need to be added to the
NSImageRep class registry by invoking the registerImageRepClass: class method. NSImage determines
the data types that each subclass can support by invoking its imageUnfilteredFileTypes and
imageUnfilteredPasteboardTypes methods.

NSEPSImageRep
An image that can be recreated from EPS data that’s either stored by
the object or at a known location in the file system.

NSBitmapImageRep An image that can be recreated from bitmap or TIFF data.

NSCustomImageRep An image that can be redrawn by a method defined in the application.

NSCachedImageRep
An image that has been rendered in an off-screen cache from data or
instructions that are no longer available. The image in the cache
provides the only data from which the image can be reproduced.

3

 Classes: NSImage

Choosing Representations

The NSImage object will choose the representation that best matches the rendering device. By default, the
choice is made according to the following set of ordered rules. Each rule is applied in turn until the choice
of representation is narrowed to one.

1. Choose a color representation for a color device, and a gray-scale representation for a monochrome device.

2. Choose a representation with a resolution that matches the resolution of the device, or if no representation
matches, choose the one with the highest resolution.

By default, any image representation with a resolution that’s an integer multiple of the device
resolution is considered to match. If more than one representation matches, the NSImage will choose
the one that’s closest to the device resolution. However, you can force resolution matches to be exact
by passing NO to the setMatchesOnMultipleResolution: method.

Rule 2 prefers TIFF and bitmap representations, which have a defined resolution, over EPS
representations, which don’t. However, you can use the setUsesEPSOnResolutionMismatch:
method to have the NSImage choose an EPS representation in case a resolution match isn’t possible.

3. If all else fails, choose the representation with a specified bits per sample that matches the depth of the device.
If no representation matches, choose the one with the highest bits per sample.

By passing NO to the setPrefersColorMatch: method, you can have the NSImage try for a resolution
match before a color match. This essentially inverts the first and second rules above.

If these rules fail to narrow the choice to a single representation—for example, if the NSImage has two color
TIFF representations with the same resolution and depth—the one that will be chosen is system dependent.

Caching Representations

When first asked to composite the image, the NSImage object chooses the representation that’s best for the
destination display device, as outlined above. It renders the representation in an off-screen window on the
same device, then composites it from this cache to the desired location. Subsequent requests to composite
the image use the same cache. Representations aren’t cached until they’re needed for compositing.

When printing, the NSImage tries not to use the cached image. Instead, it attempts to render on the printer—
using the appropriate image data, or a delegated method—the best version of the image that it can. Only as
a last resort will it image the cached bitmap.

Image Size

Before an NSImage can be used, the size of the image must be set, in units of the base coordinate system.
If a representation is smaller or larger than the specified size, it can be scaled to fit.

If the size of the image hasn’t already been set when the NSImage is provided with a representation, the
size will be set from the data. The bounding box is used to determine the size of an NSEPSImageRep. The
TIFF fields “ImageLength” and “ImageWidth” are used to determine the size of an NSBitmapImageRep.

4

Coordinate Systems

Images have the horizontal orientation of the base coordinate system; they can’t be rotated or horizontally
flipped. When composited, an image maintains this orientation, no matter what coordinate system it’s
composited to. (The destination coordinate system is used only to determine the location of a composited
image, not its size or orientation.) Images can be flipped in the vertical direction by using setFlipped:.

It’s possible to refer to portions of an image when compositing by specifying a rectangle in the image’s
coordinate system, which is identical to the base coordinate system, except that the origin is at the lower
left corner of the image.

Named Images

An NSImage object can be identified either by its id or by a name. Assigning an NSImage a name adds it
to a table kept by the class object; each name in the database identifies one and only one instance of the
class. When you ask for an NSImage object by name (with the imageNamed: method), the class object
returns the one from its database, which also includes all the system bitmaps provided by the Application
Kit. If there’s no object in the database for the specified name, the class object tries to create one by
checking for a system bitmap of the same name, checking the name of the application’s own image, and
then checking for the image in the application’s main bundle.

If a file matches the name, an NSImage is created from the data stored there. You can therefore create
NSImage objects simply by including EPS, BMP, or TIFF data for them within the executable file, or in
files inside the application’s file package.

Image Filtering Services

NSImage is designed to automatically take advantage of user-installed filter services for converting
unsupported image file types to supported image file types. The class method imageFileTypes returns an
array of all file types from which NSImage can create an instance of itself. This list includes all file types
supported by registered subclasses of NSImageRep, and those types that can be converted to supported file
types through a user-installed filter service.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

5

 Classes: NSImage

Method Types

 Initializing a new NSImage instance
– initByReferencingFile:
– initWithBitmapHandle:
– initWithContentsOfFile:
– initWithData:
– initWithIconHandle:
– initWithPasteboard:
– initWithSize:

Setting the size of the image
– setSize:
– size

Referring to images by name
+ imageNamed:
– setName:
– name

Specifying the image
– addRepresentation:
– addRepresentations:
– lockFocus
– lockFocusOnRepresentation:
– unlockFocus

Using the image
– compositeToPoint:operation:
– compositeToPoint:fromRect:operation:
– dissolveToPoint:fraction:
– dissolveToPoint:fromRect:fraction:

Choosing which image representation to use
– setPrefersColorMatch:
– prefersColorMatch
– setUsesEPSOnResolutionMismatch:
– usesEPSOnResolutionMismatch
– setMatchesOnMultipleResolution:
– matchesOnMultipleResolution

Getting the representations
– bestRepresentationForDevice:
– representations
– removeRepresentation:

6

Determining how the image is stored
– setCachedSeparately:
– isCachedSeparately
– setDataRetained:
– isDataRetained
– setCacheDepthMatchesImageDepth:
– cacheDepthMatchesImageDepth

Determining how the image is drawn
– isValid
– setScalesWhenResized:
– scalesWhenResized
– setBackgroundColor:
– backgroundColor
– setFlipped:
– isFlipped
– drawRepresentation:inRect:
– recache

Assigning a delegate
– setDelegate:
– delegate

Producing TIFF data for the image
– TIFFRepresentation
– TIFFRepresentationUsingCompression:factor:

Managing NSImageRep subclasses
+ imageUnfilteredFileTypes
+ imageUnfilteredPasteboardTypes

Testing image data sources
+ canInitWithPasteboard:
+ imageFileTypes
+ imagePasteboardTypes

Class Methods

canInitWithPasteboard:
+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard

Tests whether the receiver can create an instance of itself from the data represented by pasteboard. Returns
YES if the receiver’s list of registered NSImageReps includes a class that can handle the data represented
by pasteboard.

7

 Classes: NSImage

NSImage uses the NSImageRep class method imageUnfilteredPasteboardTypes to find a class that can
handle the data in pasteboard. When creating a subclass of NSImageRep that accepts image data from a
non-default pasteboard type, override the imageUnfilteredPasteboardTypes method to notify NSImage of
the pasteboard types your class supports.

See also: + imagePasteboardTypes

imageFileTypes
+ (NSArray *)imageFileTypes

Returns an array of strings representing those file types for which a registered NSImageRep exists. This list
includes all file types supported by registered subclasses of NSImageRep, plus those types that can be
converted to supported file types through a user-installed filter service. The array returned by this method
may be passed directly to the NSOpenPanel’s runModalForTypes: method.

File types are identified by extension. By default, the list returned by this method contains “tiff”, “tif”,
“bmp”, and “eps”.

When creating a subclass of NSImageRep that accepts image data from non-default file types, override
NSImageRep’s imageUnfilteredFileTypes method to notify NSImage of the file types your class supports.

See also: + imageUnfilteredFileTypes

imageNamed:
+ (id)imageNamed:(NSString *)name

Returns the NSImage instance associated with name. The returned object can be:

• One that’s been assigned a name with the setName: method
• One of the named system bitmaps provided by the Application Kit

If there’s no known NSImage with name, this method tries to create one by searching for image data in the
application’s executable file and in the main bundle (see NSBundle’s class description for a description of
how the bundle’s contents are searched). If a file contains data for more than one image, a separate
representation is created for each. If an image representation can’t be found for name, no object is created
and nil is returned.

The preferred way to name an image is to ask for a name without the extension, but to include the extension
for a file name.

One particularly useful image is referenced by the string “NSApplicationIcon”. If you supply this string to
imageNamed:, the returned image will be the application’s own icon. Icons for other applications can be
obtained through the use of methods declared in the NSWorkspace class.

8

The image returned by this method should not be freed, unless it’s certain that no other objects reference it.

See also: − setName:, − name, – iconForFile: (NSWorkspace), + imageFileTypes

imagePasteboardTypes
+ (NSArray *)imagePasteboardTypes

Returns a null-terminated list of pasteboard types for which a registered NSImageRep exists. This list
includes all pasteboard types supported by registered subclasses of NSImageRep, and those that can be
converted to supported pasteboard types through a user-installed filter service.

By default, the list returned by this method contains “NSPostScriptPboardType” and
“NSTIFFPboardType”.

When creating a subclass of NSImageRep that accepts image data from non-default pasteboard types,
override NSImageRep’s imageUnfilteredPasteboardTypes method to notify NSImage of the pasteboard
types your class supports.

See also: + imageUnfilteredPasteboardTypes

imageUnfilteredFileTypes
+ (NSArray *)imageUnfilteredFileTypes

Returns a null-terminated array of strings representing those file types for which a registered NSImageRep
exists. This list consists of all file types supported by registered subclasses of NSImageRep, and doesn’t
include those types that can be converted to supported file types through a user-installed filter service. The
array returned by this method may be passed directly to the NSOpenPanel’s runModalForTypes: method.

See also: + imageFileTypes

imageUnfilteredPasteboardTypes
+ (NSArray *)imageUnfilteredPasteboardTypes

Returns a null-terminated list of pasteboard types for which a registered NSImageRep exists. This list
consists of all pasteboard types supported by registered subclasses of NSImageRep, and doesn’t include
those that can be converted to supported pasteboard types through a user-installed filter service.

See also: + imagePasteboardTypes

9

 Classes: NSImage

Instance Methods

addRepresentation:
– (void)addRepresentation:(NSImageRep *)imageRep

Adds imageRep to the receiver’s list of representations. After invoking this method, you may need to
explicitly set features of the new representation, such as size, number of colors, and so on. This is true in
particular if the NSImage has multiple image representations to choose from. See NSImageRep and its
subclasses for the methods you use to complete initialization.

Any representation that’s added by this method is retained by the NSImage. Note that representations can’t
be shared among NSImages.

See also: – representations, – removeRepresentation:

addRepresentations:
– (void)addRepresentations:(NSArray *)imageReps

Adds each of the representations in imageReps to the receiver’s list of representations. After invoking this
method, you may need to explicitly set features of the new representations, such as size, number of colors,
and so on. This is true in particular if the NSImage has multiple image representations to choose from. See
NSImageRep and its subclasses for the methods you use to complete initialization.

Representations added by this method are retained by the NSImage. Note that representations can’t be
shared among NSImages.

See also: – representations, – removeRepresentation:

backgroundColor
– (NSColor *)backgroundColor

Returns the background color of the rectangle where the image is cached. If no background color has been
specified, NSColor’s clearColor is returned, indicating a transparent background.

The background color will be visible when the image is composited only if the image doesn’t completely
cover all the pixels within the area specified for its size.

bestRepresentationForDevice:
– (NSImageRep *)bestRepresentationForDevice:(NSDictionary *)deviceDescription

Returns the best representation for the device described by deviceDescription. If deviceDescription is nil ,
the current device is assumed. “Choosing Representations” in the class introduction outlines the process

10

NSImage goes through in order to determine the “best” representation for a given device. For a list of
dictionary keys and values appropriate to display and print devices, see NSGraphics.h.

See also: – representations, – prefersColorMatch

cacheDepthMatchesImageDepth
– (BOOL)cacheDepthMatchesImageDepth

Returns NO if the application’s default depth limit applies to the off-screen windows where the NSImage’s
representations are cached. If window depths are instead determined by the specifications of the
representations, cacheDepthMatchesImageDepth returns YES.

compositeToPoint:fromRect:operation:
– (void)compositeToPoint:(NSPoint)aPoint

fromRect:(NSRect)aRect
operation:(NSCompositingOperation)op

Composites the portion of the image enclosed by the aRect rectangle to the location specified by aPoint in
the current coordinate system. aRect must be a valid (non-null) rectangle. The aPoint argument is the same
as for compositeToPoint:operation:. op should be one of the compositing operations as defined in
dpsOpenStep.h.

The source rectangle is specified relative to a coordinate system that has its origin at the lower left corner
of the image, but is otherwise the same as the base coordinate system.

This method doesn’t check to be sure that the rectangle encloses only portions of the image. Therefore, it
can conceivably composite areas that don’t properly belong to the image, if the aRect rectangle happens to
include them. If this turns out to be a problem, you can prevent it from happening by having the NSImage
cache its representations in their own individual windows (with the setCachedSeparately: method). In this
case, the window’s clipping path will prevent anything but the image from being composited.

Compositing part of an image is as efficient as compositing the whole image, but printing just part of an
image is not. When printing, it’s necessary to draw the whole image and rely on a clipping path to be sure
that only the desired portion appears.

See also: – dissolveToPoint:fromRect:fraction:

compositeToPoint:operation:
– (void)compositeToPoint:(NSPoint)aPoint

operation:(NSCompositingOperation)op

Composites the image to the location specified by aPoint using the specified compositing operation, op.

11

 Classes: NSImage

aPoint is specified in the current coordinate system—the coordinate system of the currently focused
NSView—and designates where the lower left corner of the image will appear. The image will have the
orientation of the base coordinate system, regardless of the destination coordinates. op should be one of the
compositing operations as defined in dpsOpenStep.h.

The image is composited from its off-screen window cache. Since the cache isn’t created until the image
representation is first used, this method may need to render the image before compositing.

When printing, the compositing methods do not composite, but attempt to render the same image on the
page that compositing would render on the screen, choosing the best available representation for the printer.
The op argument is ignored.

See also: – dissolveToPoint:fraction:

delegate
– (id)delegate

Returns the delegate of the NSImage object, or nil if no delegate has been set.

dissolveToPoint:fraction:
– (void)dissolveToPoint:(NSPoint)aPoint

fraction: (float)aFloat

Composites the image to the location specified by aPoint, just as compositeToPoint:operation: does, but
uses the dissolve operator rather than composite. aFloat is a fraction between 0.0 and 1.0 that specifies how
much of the resulting composite will come from the NSImage. If the source image contains alpha, this
operation may promote the destination NSWindow to contain alpha.

To slowly dissolve one image into another, this method (or dissolveToPoint:fromRect:fraction:) needs to
be invoked repeatedly with an ever-increasing aFloat. Since aFloat refers to the fraction of the source
image that’s combined with the original destination (not the destination image after some of the source has
been dissolved into it), the destination image should be replaced with the original destination before each
invocation. This is best done in a buffered window before the results of the composite are flushed to the
screen.

When printing, this method is identical to compositeToPoint:operation:. The delta argument is ignored.

12

dissolveToPoint:fromRect:fraction:
– (void)dissolveToPoint:(NSPoint)aPoint

fromRect:(NSRect)aRect
fraction: (float)aFloat

Composites the aRect portion of the image to the location specified by aPoint, just as compositeToPoint:
fromRect:operation: does, but uses the dissolve operator rather than composite. aFloat is a fraction
between 0.0 and 1.0 that specifies how much of the resulting composite will come from the NSImage. If the
source image contains alpha, this operation may promote the destination NSWindow.

When printing, this method is identical to compositeToPoint:fromRect:operation:. The aFloat argument
is ignored.

drawRepresentation:inRect:
– (BOOL)drawRepresentation:(NSImageRep *)imageRep

inRect:(NSRect)rect

Fills the specified rectangle with the background color, then sends the imageRep a drawInRect: message
to draw itself inside the rectangle (if the NSImage is scalable), or a drawAtPoint: message to draw itself
at the location of the rectangle (if the NSImage is not scalable). The rectangle is located in the current
window and is specified in the current coordinate system. This method returns the value returned by the
drawInRect: or drawAtPoint: method, which indicates whether or not the representation was successfully
drawn.

This method shouldn’t be called directly; the NSImage uses it to cache and print its representations. By
overriding it in a subclass, you can change how representations appear in the cache, and thus how they’ll
appear when composited. For example, your version of the method could scale or rotate the coordinate
system, then send a message to super to perform this version.

If the background color is fully transparent and the image isn’t being cached by the NSImage, the rectangle
won’t be filled before the representation draws.

initByReferencingFile:
– (id)initByReferencingFile:(NSString *)filename

Initializes the receiver, a newly allocated NSImage instance, for the file filename. This method initializes
lazily: the NSImage doesn’t actually open filename or create image representations from its data until an
application attempts to composite or requests information about the NSImage.

filename may be a full or relative pathname, and should include an extension that identifies the data type in
the file. The mechanism that actually creates the image representation for filename will look for an
NSImageRep subclass that handles that data type from among those registered with NSImage. By default,
the files handled are those with the extensions “tiff”, “tif”, “bmp”, and “eps”.

13

 Classes: NSImage

After finishing the initialization, this method returns self. However, if the new instance can’t be initialized,
it’s freed and nil is returned. Since this method doesn’t actually create image representations for the data,
your application should do error checking before attempting to use the image; one way to do so is by
invoking the isValid method to check whether the image can be drawn.

This method invokes setDataRetained:YES, thus enabling it to hold onto its file name. Note that if an
image created with this method is archived, only the file name will be saved.

initWithBitmapHandle:
– (id)initWithBitmapHandle: (void *)bitmap

On Microsoft Windows platforms, initWithBitmapHandle: initializes the receiver, a newly allocated
NSImage instance, with the contents of the Windows bitmap indicated by bitmap. If
initWithBitmapHandle: is able to create one or more image representations, it returns self. Otherwise, the
receiver is freed and nil is returned.

initWithContentsOfFile:
– (id)initWithContentsOfFile: (NSString *)filename

Initializes the receiver, a newly allocated NSImage instance, with the contents of the file filename. Unlike
initByReferencingFile:, this method opens filename and creates one or more image representations from
its data.

filename may be a full or relative pathname, and should include an extension that identifies the data type in
the file. initWithContentsOfFile: will look for an NSImageRep subclass that handles that data type from
among those registered with NSImage. By default, the files handled are those with the extensions “tiff”,
“tif”, “bmp”, and “eps”.

After finishing the initialization, this method returns self. However, if at least one image representation can’t
be created from the contents of the specified file, the receiver is freed and nil is returned.

initWithData:
– (id)initWithData: (NSData *)data

Initializes the receiver, a newly allocated NSImage instance, with the contents of the data object data. If
initWithData: is able to create one or more image representations, it returns self. Otherwise, the receiver
is freed and nil is returned.

14

initWithIconHandle:
– (id)initWithIconHandle: (void *)icon

On Microsoft Windows platforms, initWithIconHandle: initializes the receiver, a newly allocated
NSImage instance, with the contents of the Windows icon indicated by icon. If initWithIconHandle: is
able to create one or more image representations, it returns self. Otherwise, the receiver is freed and nil is
returned.

initWithPasteboard:
– (id)initWithPasteboard: (NSPasteboard *)pasteboard

Initializes and returns the receiver, a newly allocated NSImage instance, from pasteboard. pasteboard
should contain a type returned by one of the registered NSImageRep’s imageUnfilteredPasteboardTypes
methods; the default types supported are NSPostscriptPboardType (NSEPSImageRep) and
NSTIFFPboardType (NSBitmapImageRep). If pasteboard contains an NSFilenamesPboardType, the file
name should have an extension returned by one of the registered NSImageRep’s
imageUnfilteredFileTypes methods; the default types supported are “tiff”, “tif”, “bmp”, (all in
NSBitmapImageRep) and “eps” (NSEPSImageRep).

If initWithPasteboard: is able to create one or more image representations, it returns self. Otherwise, the
receiver is freed and nil is returned.

initWithSize:
– (id)initWithSize: (NSSize)aSize

Initializes the receiver, a newly allocated NSImage instance, to aSize and returns self. The size should be
specified in units of the base coordinate system. Although you can initialize the receiver without specifying
a size by passing a size of (0.0, 0.0) to initWithSize: , the receiver’s size must be set before the NSImage
can be used.

See also: – setSize:

isCachedSeparately
– (BOOL)isCachedSeparately

Returns YES if each representation of the image is cached separately in an off-screen window of its own,
and NO if they can be cached in off-screen windows together with other images. A return of NO doesn’t
mean that the windows are, in fact, shared, just that they can be. The default is NO.

15

 Classes: NSImage

isDataRetained
– (BOOL)isDataRetained

Returns YES if the NSImage retains the data needed to render the image, and NO if it doesn’t. The default
is NO, except for images created with initByReferencingFile:, which should hold onto their file names. If
the data is available in a file that won’t be moved or deleted, or if responsibility for drawing the image is
delegated to another object with a custom method, there’s no reason for the NSImage to retain the data.
However, if the NSImage reads image data from a file created with initWithContentsOfFile: , you may
want to have it keep the data itself; for example, to render the same image on another device at a different
resolution.

isFlipped
– (BOOL)isFlipped

Returns YES if a vertically flipped coordinate system is used when locating the image, and NO if it isn’t.
The default is NO.

isValid
– (BOOL)isValid

Returns YES if a representation for the receiver can drawn in the cache, and NO if it can’t; for example,
because the file from which it was initialized is non-existent, or the data in that file is invalid.

If no representations exist for the receiver, isValid first creates a cache with the default depth.

See also: – initByReferencingFile:

lockFocus
– (void)lockFocus

Prepares for drawing of the best representation of the NSImage for the current device by making the
off-screen window where the representation will be cached the current window and a coordinate system
specific to the area where the image will be drawn the current coordinate system. If the receiver has no
representations, lockFocus first creates one with the default depth. See “Choosing Representations” in the
class description for information on how the “best” representation is chosen.

A successful lockFocus message must be balanced by a subsequent unlockFocus message to the same
NSImage. These messages bracket the code that draws the image.

If lockFocus is unable to focus on the representation, it raises an NSImageCacheException.

See also: – bestRepresentationForDevice:, – isValid, – prefersColorMatch, – representations

16

lockFocusOnRepresentation:
– (void)lockFocusOnRepresentation:(NSImageRep *)imageRepresentation

Prepares for drawing of the imageRepresentation representation by making the off-screen window where it
will be cached the current window and a coordinate system specific to the area where the image will be
drawn the current coordinate system. If imageRepresentation is nil , lockFocusOnRepresentation: acts
like lockFocus, setting focus to the best representation for the NSImage. Otherwise, imageRepresentation
must be one of the representations in the NSImage.

A successful lockFocusOnRepresentation: message must be balanced by a subsequent unlockFocus
message to the same NSImage. These messages bracket the code that draws the image.

If lockFocusOnRepresentation: is unable to focus on the representation, it raises an
NSImageCacheException.

See also: – isValid

matchesOnMultipleResolution
– (BOOL)matchesOnMultipleResolution

Returns YES if the resolution of the device and the resolution specified for the image are considered to
match if one is an integer multiple of the other, and NO if device and image resolutions are considered to
match only if they are exactly the same. The default is YES.

name
– (NSString *)name

Returns the name assigned to the receiver, or nil if no name has been assigned.

prefersColorMatch
– (BOOL)prefersColorMatch

Returns YES if, when selecting the representation it will use, the NSImage first looks for one that matches
the color capability of the rendering device (choosing a gray-scale representation for a monochrome device
and a color representation for a color device), then if necessary narrows the selection by looking for one
that matches the resolution of the device. If the return is NO, the NSImage first looks for a representation
that matches the resolution of the device, then tries to match the representation to the color capability of the
device. The default is YES.

17

 Classes: NSImage

recache
– (void)recache

Invalidates the off-screen caches of all representations and frees them. The next time any representation is
composited, it will first be asked to redraw itself in the cache. NSCachedImageReps aren’t destroyed by this
method.

If an image is likely not to be used again, it’s a good idea to free its caches, since that will reduce that
amount of memory consumed by your program and therefore improve performance.

removeRepresentation:
– (void)removeRepresentation:(NSImageRep *)imageRep

Removes and releases the imageRep representation from the NSImage’s list of representations.

See also: – representations

representations
– (NSArray *)representations

Returns an array containing all of the representations of the receiver.

scalesWhenResized
– (BOOL)scalesWhenResized

Returns YES if image representations are scaled to fit the size specified for the NSImage. If representations
are not scalable, this method returns NO. The default is NO.

Representations created from data that specifies a size (for example, the “ImageLength” and “ImageWidth”
fields of a TIFF representation or the bounding box of an EPS representation) will have the size the data
specifies, which may differ from the size of the NSImage.

See also: – setSize:

18

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the background color of the image. The default is NSColor’s clearColor, indicating a transparent
background. The background color will be visible only for representations that don’t completely cover all
the pixels within the image when drawing. This method doesn’t cause the receiver to recache itself.

See also: – recache

setCacheDepthMatchesImageDepth:
– (void)setCacheDepthMatchesImageDepth:(BOOL)flag

Sets whether the application’s default depth limit applies to the off-screen windows where the NSImage’s
representations are cached. If flag is NO (the default), window depths are instead determined by the
specifications of the representations. This method doesn’t cause the receiver to recache itself.

See also: – lockFocus, – recache

setCachedSeparately:
– (void)setCachedSeparately:(BOOL)flag

Sets whether each image representation will be cached in its own off-screen window or in a window shared
with other images. If flag is YES, each representation is guaranteed to be in a separate window. If flag is NO
(the default), a representation can be cached together with other images, though in practice it might not be.

If an NSImage is to be resized frequently, it’s more efficient to cache its representations separately.

This method doesn’t invalidate any existing caches.

See also: – recache

setDataRetained:
– (void)setDataRetained:(BOOL)flag

Sets whether the NSImage retains the data needed to render the image. The default is NO. If the data is
available in a file that won’t be moved or deleted, or if responsibility for drawing the image is delegated to
another object with a custom method, there’s no reason for the NSImage to retain the data. However, if the
NSImage reads image data from a file that could change, you may want to have it keep the data itself.
Generally, this is useful to redraw the image to a device of different resolution.

If an image representation is created using initByReferencingFile:, the only data retained is the name of
the source file.

19

 Classes: NSImage

setDelegate:
– (void)setDelegate:(id)anObject

Makes anObject the delegate of the receiver.

setFlipped:
– (void)setFlipped:(BOOL)flag

Determines whether the polarity of the y-axis is inverted when drawing an image. If flag is YES, the image
will have its coordinate origin in the upper left corner and the positive y-axis will extend downward. This
method affects only the coordinate system used to draw the image; it doesn’t affect the coordinate system
for specifying portions of the image for methods like compositeToPoint:fromRect:operation: or
dissolveToPoint:fromRect:fraction:.This method doesn’t cause the receiver to recache itself.

See also: – recache

setMatchesOnMultipleResolution:
– (void)setMatchesOnMultipleResolution:(BOOL)flag

Sets whether image representations with resolutions that are integral multiples of the resolution of the
device are considered to match the device. The default is YES.

setName:
– (BOOL)setName:(NSString *)aString

Registers the receiver under the name specified by aString, provided that no other NSImage is registered
using that name. If the receiver is already registered under another name, setName: first unregisters the
prior name. setName: returns YES unless another NSImage is registered using the name specified by
aString, in which case setName: simply returns NO.

See also: + imageNamed:

setPrefersColorMatch:
– (void)setPrefersColorMatch:(BOOL)flag

Sets whether color matches are preferred over resolution matches when determining which representation to use. If
flag is YES, the NSImage first tries to match the representation to the color capability of the rendering
device (choosing a color representation for a color device and a gray-scale representation for a monochrome
device), and then if necessary narrows the selection by trying to match the resolution of the representation

20

to the resolution of the device. If flag is NO, the NsImage first tries to match the representation to the
resolution of the device, and then tries to match it to the color capability of the device. The default is YES.

setScalesWhenResized:
– (void)setScalesWhenResized:(BOOL)flag

Sets whether representations with sizes that differ from the size of the NSImage will be scaled to fit. If flag
is YES, representations are scaled to fit. The default is NO.

Generally, representations that are created through NSImage methods (such as initByReferencingFile:)
have the same size as the NSImage. However, a representation that’s added with either addRepresentation:
or addRepresentations: may have a different size, and representations created from data that specifies a
size (for example, the “ImageLength” and “ImageWidth” fields of a TIFF representation or the bounding
box of an EPS representation) will have the size specified.

This method doesn’t cause the receiving NSImage to recache itself when it is next composited.

See also: – setSize:

setSize:
– (void)setSize:(NSSize)aSize

Sets the width and height of the image. The size referred to by aSize should be in units of the base coordinate
system.

The size of an NSImage must be set before it can be used. You can change the size of an NSImage after it
has been used, but changing it invalidates all its caches and frees them. When the image is next composited,
the selected representation will draw itself in an off-screen window to recreate the cache.

If the size of the image hasn’t already been set when the NSImage is provided with a representation, the
size will be set from the data. The bounding box is used to determine the size of an NSEPSImageRep. The
TIFF fields “ImageLength” and “ImageWidth” are used to determine the size of an NSBitmapImageRep.

See also: – initWithSize:, – setScalesWhenResized:

setUsesEPSOnResolutionMismatch:
– (void)setUsesEPSOnResolutionMismatch:(BOOL)flag

Sets whether EPS representations are preferred when there are no representations that match the resolution
of the device. The default is NO.

See also: – setMatchesOnMultipleResolution:

21

 Classes: NSImage

size
– (NSSize)size

Returns the size of the image. If no size has been set, and no size can be determined from any of the
NSImage’s representations, the returned NSSize will have a width and height of 0.0.

TIFFRepresentation
– (NSData *)TIFFRepresentation

Returns a data object containing TIFF for all representations, using their default compressions.

TIFFRepresentationUsingCompression:factor:
– (NSData *)TIFFRepresentationUsingCompression:(NSTIFFCompression)comp

factor: (float)aFloat

Returns a data object containing TIFF for all representations, using the specified compression type and
compression factor. Legal values for comp can be found in NSBitmapImageRep.h, and are described in
“Tiff Compression” in NSBitmapImageRep’s class description. aFloat provides a hint for those
compression types that implement variable compression ratios; currently only JPEG compression uses a
compression factor.

If the specified compression isn’t applicable, no compression is used. If a problem is encountered during
generation of the TIFF, TIFFRepresentationUsingCompression:factor: raises an exception.

See also: – TIFFRepresentationUsingCompression:factor: (NSBitmapImageRep)

unlockFocus
– (void)unlockFocus

Balances a previous lockFocus or lockFocusOnRepresentation: message. All successful lockFocus and
lockFocusOnRepresentation: messages (those that don’t raise an NSImageCacheException) must be
followed by a subsequent unlockFocus message. Those that raise should never be followed by
unlockFocus.

22

usesEPSOnResolutionMismatch
– (BOOL)usesEPSOnResolutionMismatch

Returns whether EPS representations are preferred when there are no representations that match the
resolution of the device. The default is NO.

See also: – matchesOnMultipleResolution

Methods Implemented By the Delegate

imageDidNotDraw:inRect:
– (NSImage *)imageDidNotDraw:(id)sender

inRect:(NSRect)aRect

Implemented by the delegate to respond to a message sent by the sender (an NSImage) when the sender
was unable, for whatever reason, to composite or lock focus on its image. The delegate can:

• return another NSImage to draw in the sender’s place,

• draw the image itself and return nil , or

• simply return nil to indicate that sender should give up the attempt at drawing the image.

1

 Classes: NSImageCell

NSImageCell

Inherits From: NSCell : NSObject

Conforms To: NSCopying, NSCoding (from NSCell)
NSObject (from NSObject)

Declared In: AppKit/NSImageCell.h

Class Description

An NSImageCell displays a single NSImage in a frame. This class provides methods for choosing the
frame, and for aligning and scaling the image to fit the frame.

The object value of an NSImageCell must be an NSImage, so if you use NSCell’s setObjectValue: method,
be sure to supply an NSImage as an argument. Since an NSImage doesn’t need to be converted for display,
you won’t use the NSCell methods relating to formatters.

An NSImageCell is usually associated with some kind of NSControl—an NSImageView, an NSMatrix, or
an NSTableView. For more information, see the specifications for those classes.

Method Types

Aligning and scaling the image
– imageAlignment
– setImageAlignment:
– imageScaling
– setImageScaling:

Choosing the frame
– imageFrameStyle
– setImageFrameStyle:

Instance Methods

imageAlignment
– (NSImageAlignment)imageAlignment

Returns the position of the cell’s image in the frame. For a list of possible alignments, see
setImageAlignment:.

2

imageFrameStyle
– (NSImageFrameStyle)imageFrameStyle

Returns the style of frame that appears around the image. For a list of frame styles, see
setImageFrameStyle:.

imageScaling
– (NSImageScaling)imageScaling

Returns the way that the cell’s image alters to fit the frame. For a list of possible values, see
setImageScaling:.

setImageAlignment:
– (void)setImageAlignment:(NSImageAlignment)alignment

Lets you specify the position of the image in the frame. The possible alignments are:

• NSImageAlignLeft
• NSImageAlignRight
• NSImageAlignCenter
• NSImageAlignTop
• NSImageAlignBottom
• NSImageAlignTopLeft
• NSImageAlignTopRight
• NSImageAlignBottomLeft
• NSImageAlignBottomRight

The default alignment is NSImageAlignCenter.

See also: – imageAlignment

setImageFrameStyle:
– (void)setImageFrameStyle:(NSImageFrameStyle)frameStyle

Lets you specify the kind of frame that borders the image. The possible styles are:

• NSImageFrameNone—an invisible frame
• NSImageFramePhoto—a thin black outline and a dropped shadow
• NSImageFrameGrayBezel—a gray, concave bezel that makes the image look sunken
• NSImageGroove—a thin groove that looks etched around the image
• NSImageFrameButton—a convex bezel that makes the image stand out in relief, like a button

3

 Classes: NSImageCell

The default frameStyle is NSImageFrameNone.

See also: – imageFrameStyle

setImageScaling:
– (void)setImageScaling:(NSImageScaling)scaling

Lets you specify the way that the image alters to fit the frame. The possible values are:

• NSScaleProportionally. If the image is too large, it shrinks to fit inside the frame. If the image is too
small, it expands. The proportions of the image are preserved.

• NSScaleToFit. The image shrinks or expands, and its proportions distort, until it exactly fits the frame.

• NSScaleNone. The size and proportions of the image don’t change. If the frame is too small to display
the whole image, the edges of the image are trimmed off.

The default scaling is NSScaleProportionally.

The default scaling is NSScaleProportionally.

See also: – imageScaling

1

 Classes: NSImageRep

NSImageRep

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSImageRep.h

Class Description

NSImageRep is a semi-abstract superclass (“semi,” because it has some instance variables and
implementation of its own); each of its subclasses knows how to draw an image from a particular kind of
source data. While an NSImageRep subclass can be used directly, it’s typically used through an NSImage
object. An NSImage manages a group of representations, choosing the best one for the current output
device.

There are four subclasses defined in the Application Kit:

You can define other NSImageRep subclasses for objects that render images from other types of source
information. New subclasses must be added to the NSImageRep class registry by invoking the
registerImageRepClass: class method. The NSImageRep subclass informs the registry of the data types it
can support through its imageUnfilteredFileTypes, imageUnfilteredPasteboardTypes, and
canInitWithData: class methods. Once an NSImageRep subclass is registered, an instance of that subclass
is created any time NSImage encounters the type of data handled by that subclass.

Subclasses which deal with file and pasteboard types should implement imageUnfilteredFileTypes,
imageUnfilteredPasteboardTypes, initWithData: , canInitWithData: , and, if they have the ability to

Subclass Source Data

NSBitmapImageRep
Tag Image File Format (TIFF), Windows bitmap (BMP) and other bitmap
data

NSCachedImageRep A rendered image, usually in an off-screen window

NSCustomImageRep A delegated method that can draw the image

NSEPSImageRep Encapsulated PostScript code (EPS)

2

read multiple images from a file, imageRepsWithData:. These last three should not do any filtering; all
filtering is automatic.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

Method Types

Creating an NSImageRep
+ imageRepsWithContentsOfFile:
+ imageRepsWithPasteboard:
+ imageRepWithContentsOfFile:
+ imageRepWithPasteboard:

Checking data types
+ canInitWithData:
+ canInitWithPasteboard:
+ imageFileTypes
+ imagePasteboardTypes
+ imageUnfilteredFileTypes
+ imageUnfilteredPasteboardTypes

Setting the size of the image
– setSize:
– size

3

 Classes: NSImageRep

Specifying information about the representation
– bitsPerSample
– colorSpaceName
– hasAlpha
– isOpaque
– pixelsHigh
– pixelsWide
– setAlpha:
– setBitsPerSample:
– setColorSpaceName:
– setOpaque:
– setPixelsHigh:
– setPixelsWide:

Drawing the image
– draw
– drawAtPoint:
– drawInRect:

Managing NSImageRep subclasses
+ imageRepClassForData:
+ imageRepClassForFileType:
+ imageRepClassForPasteboardType:
+ registeredImageRepClasses
+ registerImageRepClass:
+ unregisterImageRepClass:

Class Methods

canInitWithData:
+ (BOOL)canInitWithData: (NSData *)data

Overridden in subclasses to return YES if the receiver can initialize itself from data, and NO if it cannot.
Note that this method doesn’t need to do a comprehensive check; it should return NO only if it knows that
the receiver can’t initialize itself from data.

canInitWithPasteboard:
+ (BOOL)canInitWithPasteboard:(NSPasteboard *)pasteboard

Returns YES if the NSImageRep can handle the data represented by pasteboard, otherwise returns NO.

4

This method invokes the imageUnfilteredPasteboardTypes class method and checks the list of types
returned by that method against the data types in pasteboard. If it finds a match, it returns YES. When
creating a subclass of NSImageRep that accepts image data from a non-default pasteboard type, override
the imageUnfilteredPasteboardTypes method to assure that this method returns the correct response.

imageFileTypes
+ (NSArray *)imageFileTypes

Returns an array of NSStrings representing all file types supported by NSImageRep or one of its subclasses.
The list includes both those types returned by the imageUnfilteredFileTypes class method and those that
can be converted to a supported type by a user-installed filter service. Don’t override this method when
subclassing NSImageRep—it always returns a valid list for any subclass of NSImageRep that correctly
overrides the imageUnfilteredFileTypes method.

imagePasteboardTypes
+ (NSArray *)imagePasteboardTypes

Returns an array of NSStrings representing all pasteboard types supported by NSImageRep or one of its
subclasses. The list includes both those types returned by the imageUnfilteredPasteboardTypes class
method and those that can be converted by a user-installed filter service to a supported type. Don’t override
this method when subclassing NSImageRep—it always returns a valid list for any subclass of NSImageRep
that correctly overrides the imageUnfilteredPasteboardTypes method.

imageRepClassForData:
+ (Class)imageRepClassForData:(NSData *)data

Returns the NSImageRep subclass that handles data of type data, or Nil if the NSImage class registry
contains no subclasses that handle data of the specified type.

imageRepClassForFileType:
+ (Class)imageRepClassForFileType:(NSString *)type

Returns the NSImageRep subclass that handles files of type type, or Nil if the NSImage class registry
contains no subclasses that handle files of the specified type.

5

 Classes: NSImageRep

imageRepClassForPasteboardType:
+ (Class)imageRepClassForPasteboardType:(NSString *)type

Returns the NSImageRep subclass that handles pasteboard data of type type, or Nil if the NSImage class
registry contains no subclasses that handle pasteboard data of the specified type.

imageRepWithContentsOfFile:
+ (id)imageRepWithContentsOfFile:(NSString *)filename

If sent to the NSImageRep class object, this method returns a newly-allocated instance of a subclass of
NSImageRep (chosen through the use of imageRepClassForFileType:) that’s initialized with the contents
of the file filename. If sent to a subclass of NSImageRep that recognizes the type of file specified by
filename, it returns an instance of that subclass initialized with the contents of the file filename

imageRepWithContentsOfFile: returns nil in any of the following cases:

• The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type indicated by filename.

• The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
indicated by filename.

• The NSImageRep subclass is unable to initialize itself with the contents of filename.

filename may be a full or relative pathname, and should include an extension that identifies the data type in
the file. By default, the files handled are those with the extensions “tiff”, “tif”, “bmp”, and “eps”.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of the file, then
passing it to imageRepWithData:.

See also: + imageFileTypes

imageRepWithPasteboard:
+ (id)imageRepWithPasteboard:(NSPasteboard *)pasteboard

If sent to the NSImageRep class object, this method returns a newly-allocated instance of a subclass of
NSImageRep that’s initialized with the data in pasteboard. If sent to a subclass of NSImageRep that
recognizes the type of data contained in pasteboard, it returns an instance of that subclass initialized with
the data in pasteboard

imageRepWithPasteboard: returns nil in any of the following cases:

• The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type contained in pasteboard.

6

• The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
contained in pasteboard.

• The NSImageRep subclass is unable to initialize itself with the contents of pasteboard.

The NSImageRep subclass is initialized by creating an NSData object based on the data in pasteboard, then
passing it to imageRepWithData:.

See also: + imagePasteboardTypes

imageRepsWithContentsOfFile:
+ (NSArray *)imageRepsWithContentsOfFile:(NSString *)filename

If sent to the NSImageRep class object, this method returns an array of objects (all newly-allocated
instances of a subclass of NSImageRep, chosen through the use of imageRepClassForFileType:) that have
been initialized with the contents of the file filename. If sent to a subclass of NSImageRep that recognizes
the type of file specified by filename, it returns an array of objects (all instances of that subclass) that have
been initialized with the contents of the file filename

imageRepsWithContentsOfFile: returns nil in any of the following cases:

• The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type indicated by filename.

• The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
indicated by filename.

• The NSImageRep subclass is unable to initialize itself with the contents of filename.

filename may be a full or relative pathname, and should include an extension that identifies the data type in
the file. By default, the files handled are those with the extensions “tiff”, “tif”, “bmp”, and “eps”.

The NSImageRep subclass is initialized by creating an NSData object based on the contents of the file, then
passing it to imageRepsWithData:.

See also: + imageFileTypes

imageRepsWithPasteboard:
+ (NSArray *)imageRepsWithPasteboard:(NSPasteboard *)pasteboard

If sent to the NSImageRep class object, this method returns an array of objects (all newly-allocated
instances of a subclass of NSImageRep) that have been initialized with the data in pasteboard. If sent to a
subclass of NSImageRep that recognizes the type of data contained in pasteboard, it returns an array of
objects (all instances of that subclass) initialized with the data in pasteboard

imageRepsWithPasteboard: returns nil in any of the following cases:

7

 Classes: NSImageRep

• The message is sent to the NSImageRep class object, and there are no subclasses in the NSImageRep
class registry that handle data of the type contained in pasteboard.

• The message is sent to a subclass of NSImageRep, and that subclass doesn’t handle data of the type
contained in pasteboard.

• The NSImageRep subclass is unable to initialize itself with the contents of pasteboard.

The NSImageRep subclass is initialized by creating an NSData object based on the data in pasteboard, then
passing it to imageRepsWithData:.

See also: + imagePasteboardTypes

imageUnfilteredFileTypes
+ (NSArray *)imageUnfilteredFileTypes

Returns an array of NSStrings representing all file types (extensions) supported by the NSImageRep. By
default, the returned array is empty.

When creating a subclass of NSImageRep, override this method to return a list of strings representing the
supported file types. For example, NSBitmapImageRep implements the following code for this method:

+ (NSArray *)imageUnfilteredFileTypes {

static NSArray *types = nil;

if (!types) types = [[NSArray alloc]

initWithObjects:@"tiff", @"tif", @"bmp", nil];

return types;

}

If your subclass supports the types supported by its superclass, you must explicitly get the array of types
from the superclass and put them in the array returned by this method.

See also: + imageFileTypes, + imageUnfilteredFileTypes (NSImage)

imageUnfilteredPasteboardTypes
+ (NSArray *)imageUnfilteredPasteboardTypes

Returns an array representing all pasteboard types supported by the NSImageRep. By default, the returned
array is empty.

When creating a subclass of NSImageRep, override this method to return a list representing the supported
pasteboard types. For example, NSBitmapImageRep implements the following code for this method:

+ (NSArray *)imageUnfilteredPasteboardTypes {

static NSArray *types = nil;

8

if (!types) types = [[NSArray alloc] initWithObjects:NSTIFFPboardType, nil];

return types;

}

If your subclass supports the types supported by its superclass, you must explicitly get the list of types from
the superclass and add them to the array returned by this method.

See also: + imagePasteboardTypes, + imageUnfilteredPasteboardTypes (NSImage)

registerImageRepClass:
+ (void)registerImageRepClass:(Class)imageRepClass

Adds imageRepClass to the registry of available NSImageRep classes. This method posts the
NSImageRepRegistryChangedNotification notification, along with the receiving object, to the default
notification center.

A good place to add image representation classes to the registry is in the load class method.

See also: + load (NSObject)

registeredImageRepClasses
+ (NSArray *)registeredImageRepClasses

Returns an array containing the registered NSImageRep classes.

unregisterImageRepClass:
+ (void)unregisterImageRepClass:(Class)imageRepClass

Removes imageRepClass from the registry of available NSImageRep classes. This method posts the
NSImageRepRegistryChangedNotification notification, along with the receiving object, to the default
notification center.

Instance Methods

bitsPerSample
– (int)bitsPerSample

Returns the number of bits used to specify a single pixel in each component of the data.

9

 Classes: NSImageRep

colorSpaceName
– (NSString *)colorSpaceName

Returns the name if the image’s color space, or NSCalibratedRGBColorSpace if no name has been
assigned.

draw
– (BOOL)draw

Implemented by subclasses to draw the image at location (0.0, 0.0) in the current coordinate system.
Subclass methods return YES if the image is successfully drawn, and NO if it isn’t. This version of the
method simply returns YES.

drawAtPoint:
– (BOOL)drawAtPoint: (NSPoint)aPoint

Sets the current coordinates to those indicated by aPoint, invokes the receiver’s draw method draw the
image at that point, then restores the current coordinates to their original setting. If aPoint is (0.0, 0.0),
drawAtPoint: simply invokes draw.

This method returns NO without translating, scaling, or drawing if the size of the image has not been set.
Otherwise it returns the value returned by the draw method, which indicates whether the image is
successfully drawn.

See also: – setSize:

drawInRect:
– (BOOL)drawInRect: (NSRect)rect

Draws the image so that it fits inside the rectangle referred to by rect. The current coordinates are set to the
point specified in the rectangle and are scaled so the image will fit within the rectangle. The receiver’s draw
method is then invoked to draw the image. After draw has been invoked, the current coordinates and scale
factors are restored to their original settings.

This method returns NO without translating, scaling, or drawing if the size of the image has not been set.
Otherwise it returns the value returned by the draw method, which indicates whether the image is
successfully drawn.

See also: – setSize:

10

hasAlpha
– (BOOL)hasAlpha

Returns YES if the receiver has been informed that the image has a coverage component (alpha), and NO
if not.

isOpaque
– (BOOL)isOpaque

Returns YES if the receiver is opaque; NO otherwise. Use this method to test whether an NSImageRep
completely covers the area within the rectangle returned by size:. Use the method setOpaque: to set the
value returned by this method.

pixelsHigh
– (int)pixelsHigh

Returns the height of the image in pixels, as specified in the image data.

See also: – size

pixelsWide
– (int)pixelsWide

Returns the width of the image in pixels, as specified in the image data.

See also: – size

setAlpha:
– (void)setAlpha:(BOOL)flag

Informs the NSImageRep whether the image has an alpha component. flag should be YES if it does, and
NO if it doesn’t.

setBitsPerSample:
– (void)setBitsPerSample:(int)anInt

Informs the NSImageRep that the image has anInt bits of data for each pixel in each component.

11

 Classes: NSImageRep

setColorSpaceName:
– (void)setColorSpaceName:(NSString *)string

Informs the receiver of the image’s color space. By default, an NSImageRep’s color space name is
NSCalibratedRGBColorSpace. Color space names are defined as part of the NSColor class, in
NSGraphics.h. The following are valid color space names:

NSCalibratedWhiteColorSpace
NSCalibratedBlackColorSpace
NSCalibratedRGBColorSpace
NSDeviceWhiteColorSpace
NSDeviceBlackColorSpace
NSDeviceRGBColorSpace
NSDeviceCMYKColorSpace
NSNamedColorSpace
NSCustomColorSpace

setOpaque:
– (void)setOpaque:(BOOL)flag

Sets opacity of the NSImageRep’s image. If flag is YES, the image is opaque.

setPixelsHigh:
– (void)setPixelsHigh:(int)anInt

Informs the NSImageRep that the data specifies an image anInt pixels high.

See also: – setSize:

setPixelsWide:
– (void)setPixelsWide:(int)anInt

Informs the NSImageRep that the data specifies an image anInt pixels wide.

See also: – setSize:

12

setSize:
– (void)setSize:(NSSize)aSize

Sets the size of the image in units of the base coordinate system. This determines the size of the image when
it’s rendered; it’s not necessarily the same as the width and height of the image in pixels as specified in the
image data. You must set the image size before you can render it.

See also: – draw, – setPixelsHigh:, – setPixelsWide:

size
– (NSSize)size

Returns the size of the image in units of the base coordinate system. This is the size of the image when it’s
rendered; it’s not necessarily the same as the width and height of the image in pixels as specified in the
image data.

See also: – pixelsHigh, – pixelsWide

Notifications

NSImageRepRegistryDidChangeNotification

Posted whenever the NSImageRep class registry changes.

This notification contains a notification object but no userInfo dictionary. The notification object is the
image class that is registered or unregistered.

1

 Classes: NSImageView

NSImageView

Inherits From: NSControl: NSView: NSResponder: NSObject

Conforms To: NSCoding (from NSResponder)
NSObject (from NSObject)

Declared In: AppKit/NSImageView.h

Class Description

An NSImageView displays a single NSImage in a frame. The NSImageView class provides methods for
choosing the image, choosing the frame, and for aligning and scaling the image to fit the frame.

For an NSControl, NSImageView is quite limited in its ability to respond to user events: the only thing a
user can do is drag in a new image. When it receives the new image, the NSImageView replaces its old
image and sends its action message to its target. Even this low level of interactivity can be disabled: you can
send the NSImageView the message setEditable:NO.

For more information, see the class specification for NSImageCell.

Method Types

Choosing the image
– image
– setImage:

Choosing the frame
– imageFrameStyle
– setImageFrameStyle:

Aligning and scaling the image
– imageAlignment
– setImageAlignment:
– imageScaling
– setImageScaling:

Responding to user events
– isEditable
– setEditable:

2

Instance Methods

image
– (NSImage *)image

Returns the NSImage displayed by the NSImageView.

See also: – setImage:

imageAlignment
– (NSImageAlignment)imageAlignment

Returns the position of the cell’s image in the frame. For a list of possible alignments, see
setImageAlignment:.

imageFrameStyle
– (NSImageFrameStyle)imageFrameStyle

Returns the style of frame that appears around the image. For a list of frame styles, see
setImageFrameStyle:.

imageScaling
– (NSImageScaling)imageScaling

Returns the way that the cell’s image alters to fit the frame. For a list of possible values, see
setImageScaling:.

isEditable
– (BOOL)isEditable

Returns whether the user can drag a new image into the frame. The default is YES.

See also: – setEditable:

3

 Classes: NSImageView

setEditable:
– (void)setEditable:(BOOL)flag

Specifies whether the user can drag a new image into the frame.

See also: – isEditable

setImage:
– (void)setImage:(NSImage *)image

Lets you specify the image that the NSImageView displays.

See also: – image

setImageAlignment:
– (void)setImageAlignment:(NSImageAlignment)alignment

Lets you specify the position of the image in the frame. The possible alignments are:

• NSImageAlignLeft
• NSImageAlignRight
• NSImageAlignCenter
• NSImageAlignTop
• NSImageAlignBottom
• NSImageAlignTopLeft
• NSImageAlignTopRight
• NSImageAlignBottomLeft
• NSImageAlignBottomRight

The default alignment is NSImageAlignCenter.

See also: – imageAlignment

setImageFrameStyle:
– (void)setImageFrameStyle:(NSImageFrameStyle)frameStyle

Lets you specify the kind of frame that borders the image . The possible styles are:

• NSImageFrameNone—an invisible frame
• NSImageFramePhoto—a thin black outline and a dropped shadow
• NSImageFrameGrayBezel—a gray, concave bezel that makes the image look sunken
• NSImageGroove—a thin groove that looks etched around the image
• NSImageFrameButton—a convex bezel that makes the image stand out in relief, like a button

4

The default frameStyle is NSImageFrameNone.

See also: – imageFrameStyle

setImageScaling:
– (void)setImageScaling:(NSImageScaling)scaling

Lets you specify the way that the image alters to fit the frame. The possible values are:

• NSScaleProportionally. If the image is too large, it shrinks to fit inside the frame. If the image is too
small, it expands. The proportions of the image are preserved.

• NSScaleToFit. The image shrinks or expands, and its proportions distort, until it exactly fits the frame.

• NSScaleNone. The size and proportions of the image don’t change. If the frame is too small to display
the whole image, the edges of the image are trimmed off.

The default scaling is NSScaleProportionally.

See also: – imageScaling

1

 Classes: NSInputManager

NSInputManager

Inherits From: NSObject

Conforms To: NSTextInput
NSObject (NSObject)

Declared In: AppKit/NSInputManager.h

Class Description

Most programs never need to interact with an input manager. The system text object, and all UI objects that
accept textual input, already deal with this typically through NSResponder.

Adopted Protocols

 <<Forthcoming>>

Method Types

 <<Forthcoming>>

Class Methods

currentInputManager
+ (NSInputManager *)currentInputManager

<<forthcoming>>

2

Instance Methods

initWithName:host:
– (NSInputManager *)initWithName: (NSString *)inputServerName

host:(NSString *)hostName

<<forthcoming>>

localizedInputManagerName
– (NSString *)localizedInputManagerName

<<forthcoming>>

markedTextSelectionChanged:sender:
– (void)markedTextSelectionChanged:(NSRange)aRange

sender:(id)sender

<<forthcoming>>

markedTextWillBeAbandoned:
– (void)markedTextWillBeAbandoned:(id)sender

<<forthcoming>>

wantsToInterpretAllKeystrokes
– (BOOL)wantsToInterpretAllKeystrokes

<<forthcoming>>

1

 Classes: NSInputServer

NSInputServer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSInputServer.h

Class Description

<<forthcoming>>

Adopted Protocols

 <<Forthcoming>>

Method Types

 <<Forthcoming>>

Instance Methods

activeConversationWillChange:oldConversation:newConversation:
– (void)activeConversationWillChange:(id)sender

oldConversation:(long)conv
newConversation:(long)new

<<forthcoming>>

canBeDisabled
– (BOOL)canBeDisabled

<<forthcoming>>

2

cancelInput:conversation:
– (void)cancelInput:(id)sender conversation:(long)conv

<<forthcoming>>

doCommandBySelector:sender:conversation:
– (void)doCommandBySelector:(SEL)aSelector

sender:(id)sender
conversation:(long)conv

<<forthcoming>>

initWithDelegate:name:
– initWithDelegate:(id)aDelegate name:(NSString *)name

 <<forthcoming>>

insertText:sender:conversation:
– (void)insertText:(NSString *)aString

sender:(id)sender
conversation:(long)conv

<<forthcoming>>

markedTextSelectionChanged:sender:conversation:
– (void)markedTextSelectionChanged:(NSRange)aRange

sender:(id)sender
conversation:(long)conv

<<forthcoming>>

markedTextWillBeAbandoned:conversation:
– (void)markedTextWillBeAbandoned:(id)sender conversation:(long)conv

<<forthcoming>>

3

 Classes: NSInputServer

senderDidBecomeActive:
– (void)senderDidBecomeActive:(id)sender

<<forthcoming>>

senderDidResignActive:
– (void)senderDidResignActive:(id)sender

<<forthcoming>>

setActivated:sender:
– (void)setActivated:(BOOL)flag sender:(id)sender

<<forthcoming>>

terminate:
– (void)terminate:(id)sender

<<forthcoming>>

wantsToInterpretAllKeystrokes
– (BOOL)wantsToInterpretAllKeystrokes

<<forthcoming>>

1

 Classes: NSLayoutManager

NSLayoutManager

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSLayoutManager.h

Class Description

An NSLayoutManager coordinates the layout and display of characters held in an NSTextStorage object. It
maps Unicode character codes to glyphs, sets the glyphs in a series of NSTextContainers, and displays them
in a series of NSTextViews. In addition to its core function of laying out text, an NSLayoutManager
coordinates its NSTextViews, provides services to those NSTextViews to support NSRulerViews for editing
paragraph styles, and handles the layout and display of text attributes not inherent in glyphs (such as
underline or strikethrough). You can create a subclass of NSLayoutManager to handle additional text
attributes, whether inherent or not.

Method Types

Creating an instance
– init

Setting the text storage
– setTextStorage:
– textStorage
– replaceTextStorage:

Setting text containers
– textContainers
– addTextContainer:
– insertTextContainer:atIndex:
– removeTextContainerAtIndex:

2

Invalidating glyphs and layout
– invalidateGlyphsForCharacterRange:changeInLength:

actualCharacterRange:
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:
– invalidateDisplayForCharacterRange:
– invalidateDisplayForGlyphRange:
– textContainerChangedGeometry:
– textStorage:edited:range:changeInLength:invalidatedRange:

Turning background layout on/off
– setBackgroundLayoutEnabled:
– backgroundLayoutEnabled

Accessing glyphs
– insertGlyph:atGlyphIndex:characterIndex:
– glyphAtIndex:
– glyphAtIndex:isValidIndex:
– replaceGlyphAtIndex:withGlyph:
– getGlyphs:range:
– deleteGlyphsInRange:
– numberOfGlyphs

Mapping characters to glyphs
– setCharacterIndex:forGlyphAtIndex:
– characterIndexForGlyphAtIndex:
– characterRangeForGlyphRange:actualGlyphRange:
– glyphRangeForCharacterRange:actualCharacterRange:

Setting glyph attributes
– setIntAttribute:value:forGlyphAtIndex:
– intAttribute:forGlyphAtIndex:

Handling layout for text containers
– setTextContainer:forGlyphRange:
– glyphRangeForTextContainer:
– textContainerForGlyphAtIndex:effectiveRange:
– usedRectForTextContainer:

3

 Classes: NSLayoutManager

Handling line fragment rectangles
– setLineFragmentRect:forGlyphRange:usedRect:
– lineFragmentRectForGlyphAtIndex:effectiveRange:
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:
– setExtraLineFragmentRect:usedRect:textContainer:
– extraLineFragmentRect
– extraLineFragmentUsedRect
– extraLineFragmentTextContainer
– setDrawsOutsideLineFragment:forGlyphAtIndex:
– drawsOutsideLineFragmentForGlyphAtIndex:

Layout of glyphs
– setLocation:forStartOfGlyphRange:
– locationForGlyphAtIndex:
– rangeOfNominallySpacedGlyphsContainingIndex:
– rectArrayForCharacterRange:withinSelectedCharacterRange:

inTextContainer:rectCount:
– rectArrayForGlyphRange:withinSelectedGlyphRange:

inTextContainer:rectCount:
– boundingRectForGlyphRange:inTextContainer:
– glyphRangeForBoundingRect:inTextContainer:
– glyphRangeForBoundingRectWithoutAdditionalLayout:

inTextContainer:
– glyphIndexForPoint:inTextContainer:

fractionOfDistanceThroughGlyph:

Display of special glyphs
– setNotShownAttribute:forGlyphAtIndex:
– notShownAttributeForGlyphAtIndex:
– setShowsInvisibleCharacters:
– showsInvisibleCharacters
– setShowsControlCharacters:
– showsControlCharacters

Controlling hyphenation
– setHyphenationFactor:
– hyphenationFactor

Finding unlaid characters/glyphs
– getFirstUnlaidCharacterIndex:glyphIndex:

Using screen fonts
– setUsesScreenFonts:
– usesScreenFonts
– substituteFontForFont:

4

Handling rulers
– rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:
– rulerMarkersForTextView:paragraphStyle:ruler:

Managing the responder chain
– layoutManagerOwnsFirstResponderInWindow:
– firstTextView
– textViewForBeginningOfSelection

Drawing
– drawBackgroundForGlyphRange:atPoint:
– drawGlyphsForGlyphRange:atPoint:
– drawUnderlineForGlyphRange:underlineType:baselineOffset:

lineFragmentRect:lineFragmentGlyphRange:containerOrigin:
– underlineGlyphRange:underlineType:lineFragmentRect:

lineFragmentGlyphRange:containerOrigin:

Setting the delegate
– setDelegate:
– delegate

Instance Methods

addTextContainer:
– (void)addTextContainer:(NSTextContainer *)aTextContainer

Appends aTextContainer to the series of NSTextContainers where the receiver arranges text. Invalidates
glyphs and layout as needed, but doesn’t perform glyph generation or layout.

See also: – insertTextContainer:atIndex: , – removeTextContainerAtIndex:, – textContainers,
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:,
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:

backgroundLayoutEnabled
– (BOOL)backgroundLayoutEnabled

Returns YES if the receiver generates glyphs and lays out text when the application’s run loop is idle, NO
if it only performs glyph generation and layout when necessary.

See also: – setBackgroundLayoutEnabled:

5

 Classes: NSLayoutManager

boundingRectForGlyphRange:inTextContainer:
– (NSRect)boundingRectForGlyphRange:(NSRange)glyphRange inTextContainer:

(NSTextContainer *)aTextContainer

Returns a single bounding rectangle enclosing all glyphs and other marks drawn in aTextContainer for
glyphRange, including glyphs that draw outside their line fragment rectangles and text attributes such as
underlining. This method is useful for determining the area that needs to be redrawn when a range of glyphs
changes.

Performs glyph generation and layout if needed.

See also: – glyphRangeForTextContainer:, – drawsOutsideLineFragmentForGlyphAtIndex:

characterIndexForGlyphAtIndex:
– (unsigned int)characterIndexForGlyphAtIndex: (unsigned int)glyphIndex

Returns the index in the NSTextStorage for the first character mapped to the glyph at glyphIndex within the
receiver. In many cases it’s better to use the range-mapping methods, characterRangeForGlyphRange:
actualGlyphRange: and glyphRangeForCharacterRange:actualCharacterRange:, which provide
more comprehensive information.

Performs glyph generation if needed.

characterRangeForGlyphRange:actualGlyphRange:
– (NSRange)characterRangeForGlyphRange:(NSRange)glyphRange actualGlyphRange:

(NSRange *)actualGlyphRange

Returns the range for the characters in the receiver’s text store that are mapped to the glyphs in glyphRange.
If actualGlyphRange is non-NULL, expands the requested range as needed so that it identifies all glyphs
mapped to those characters and returns the new range by reference in actualGlyphRange.

Suppose the text store begins with the character “Ö” and the glyph cache contains “O” and “¨”. If you get
the character range for the glyph range {0, 1} or {1, 1}, actualGlyphRange is returned as {0, 2}, indicating
that both of the glyphs are mapped to the character “Ö”.

Performs glyph generation if needed.

See also: – characterIndexForGlyphAtIndex: , – glyphRangeForCharacterRange:
actualCharacterRange:

6

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

deleteGlyphsInRange:
– (void)deleteGlyphsInRange:(NSRange)glyphRange

Deletes the glyphs in glyphRange.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or
generation of the glyphs or layout. You should never directly invoke this method.

See also: – insertGlyph:atGlyphIndex:characterIndex:

drawBackgroundForGlyphRange:atPoint:
– (void)drawBackgroundForGlyphRange:(NSRange)glyphRange atPoint:

(NSPoint)containerOrigin

Draws background marks for glyphRange, which must lie completely within a single NSTextContainer.
containerOrigin indicates the position of the NSTextContainer in the coordinate system of the NSView
being drawn. This method must be invoked with the graphics focus locked on that NSView.

Background marks are such things as selection highlighting, text background color, and any background for
marked text.

Performs glyph generation and layout if needed.

See also: – drawGlyphsForGlyphRange:atPoint:, – glyphRangeForTextContainer:,
– textContainerOrigin (NSTextView)

drawGlyphsForGlyphRange:atPoint:
– (void)drawGlyphsForGlyphRange:(NSRange)glyphRange atPoint:(NSPoint)containerOrigin

Draws the glyphs in glyphRange, which must lie completely within a single NSTextContainer.
containerOrigin indicates the position of the NSTextContainer in the coordinate system of the NSView
being drawn. This method must be invoked with the graphics focus locked on that NSView.

Performs glyph generation and layout if needed.

See also: – drawBackgroundForGlyphRange:atPoint:, – glyphRangeForTextContainer:,
– textContainerOrigin (NSTextView)

7

 Classes: NSLayoutManager

drawsOutsideLineFragmentForGlyphAtIndex:
– (BOOL)drawsOutsideLineFragmentForGlyphAtIndex: (unsigned int)glyphIndex

Returns YES if the glyph at glyphIndex exceeds the bounds of the line fragment where it’s laid out, NO
otherwise. This can happen when text is set at a fixed line height. For example, if the user specifies a fixed
line height of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

Glyphs that draw outside their line fragment rectangles aren’t considered when calculating enclosing
rectangles with the rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount: and rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount:
methods. They are, however, considered by boundingRectForGlyphRange:inTextContainer:

Performs glyph generation and layout if needed.

drawUnderlineForGlyphRange:underlineType:baselineOffset:lineFragmentRect:
lineFragmentGlyphRange:containerOrigin:

– (void)drawUnderlineForGlyphRange:(NSRange)glyphRange
underlineType:(int)underlineType
baselineOffset:(float)baselineOffset
lineFragmentRect:(NSRect)lineRect
lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin: (NSPoint)containerOrigin

Draws underlining for the glyphs in glyphRange, which must belong to a single line fragment rectangle (as
returned by lineFragmentRectForGlyphAtIndex:effectiveRange:). underlineType indicates the style of
underlining to draw; NSLayoutManager accepts only NSSingleUnderlineStyle, but subclasses can define
their own underline styles. baselineOffset indicates how far below the text baseline the underline should be
drawn; it’s usually a positive value. lineRect is the line fragment rectangle containing the glyphs to draw
underlining for, and lineGlyphRange is the range of all glyphs within that line fragment rectangle.
containerOrigin is the origin of the line fragment rectangle’s NSTextContainer in its NSTextView.

This method is invoked automatically by underlineGlyphRange:...; you should rarely need to invoke it
directly.

See also: – textContainerForGlyphAtIndex:effectiveRange:, – textContainerOrigin (NSTextView)

8

extraLineFragmentRect
– (NSRect)extraLineFragmentRect

Returns the rectangle defining the extra line fragment for the insertion point at the end of a text (either in
an empty text or after a final paragraph separator). The rectangle is defined in the coordinate system of its
NSTextContainer. Returns NSZeroRect if there is no such rectangle.

See also: – extraLineFragmentUsedRect, – extraLineFragmentTextContainer,
– setExtraLineFragmentRect:usedRect:textContainer:

extraLineFragmentTextContainer
– (NSTextContainer *)extraLineFragmentTextContainer

Returns the NSTextContainer that contains the extra line fragment rectangle, or nil if there is no extra line
fragment rectangle. This rectangle is used to display the insertion point for the insertion point at the end of
a text (either in an empty text or after a final paragraph separator).

See also: – extraLineFragmentRect, – extraLineFragmentUsedRect, – setExtraLineFragmentRect:
usedRect:textContainer:

extraLineFragmentUsedRect
– (NSRect)extraLineFragmentUsedRect

Returns the rectangle enclosing the insertion point drawn in the extra line fragment rectangle. The rectangle
is defined in the coordinate system of its NSTextContainer. Returns NSZeroRect if there is no extra line
fragment rectangle.

The extra line fragment used rectangle is twice as wide (or tall) as the NSTextContainer’s line fragment
padding, with the insertion point itself in the middle.

See also: – extraLineFragmentRect, – extraLineFragmentTextContainer,
– setExtraLineFragmentRect:usedRect:textContainer:

firstTextView
– (NSTextView *)firstTextView

Returns the first NSTextView in the receiver’s series of text views. This is the object of various NSText and
NSTextView notifications posted.

9

 Classes: NSLayoutManager

getFirstUnlaidCharacterIndex:glyphIndex:
– (void)getFirstUnlaidCharacterIndex: (unsigned int *)charIndex glyphIndex:

(unsigned int *)glyphIndex

Returns by reference in charIndex and glyphIndex the indexes for the first character and glyph that have
invalid layout information. Either parameter may be NULL, in which case the receiver simply ignores it.

getGlyphs:range:
– (unsigned int)getGlyphs:(NSGlyph *)glyphArray range:(NSRange)glyphRange

Fills glyphArray with displayable glyphs from glyphRange and returns the actual number of glyphs filled
(which may be smaller than glyphRange’s length if some glyphs aren’t drawn—for example, tab and
newline characters). Raises an NSRangeException if the range specified exceeds the bounds of the actual
glyph range for the receiver.

Performs glyph generation if needed.

See also: – glyphAtIndex: , – glyphAtIndex:isValidIndex: , – notShownAttributeForGlyphAtIndex:

glyphAtIndex:
– (NSGlyph)glyphAtIndex: (unsigned int)glyphIndex

Returns the glyph at glyphIndex. Raises an NSRangeException if glyphIndex is out of bounds.

Performs glyph generation if needed. To avoid an exception with glyphAtIndex: you must first check the
glyph index against the number of glyphs, which requires generating all glyphs. Another method,
glyphAtIndex:isValidIndex: , generates glyphs only up to the one requested, so using it can be more
efficient.

See also: – getGlyphs:range:

glyphAtIndex:isValidIndex:
– (NSGlyph)glyphAtIndex: (unsigned int)glyphIndex isValidIndex: (BOOL *)flag

If glyphIndex is valid, returns the glyph at glyphIndex and sets flag to YES. Otherwise sets flag to NO (in
which case the return value is meaningless).

Performs glyph generation if needed.

See also: – getGlyphs:range:, – glyphAtIndex:

10

glyphIndexForPoint:inTextContainer:fractionOfDistanceThroughGlyph:
– (unsigned int)glyphIndexForPoint: (NSPoint)aPoint

inTextContainer: (NSTextContainer *)aTextContainer
fractionOfDistanceThroughGlyph: (float *)partialFraction

Returns the index for the glyph nearest aPoint within aTextContainer. aPoint is expressed in
aTextContainer’s coordinate system. If partialFraction is non-NULL the ratio of the distance into the glyph
relative to the next glyph (in the appropriate sweep direction) is returned by reference in partialFraction.

Note: NSLayoutManager currently supports only left-to-right sweep.

For purposes such as dragging out a selection or placing the insertion point, a partial percentage less than
or equal to 0.5 indicates that aPoint should be considered as falling before the glyph index returned; a partial
percentage greater than 0.5 indicates that it should be considered as falling after the glyph index returned.
If the nearest glyph doesn’t lie under aPoint at all (for example, if aPoint is beyond the beginning or end of
a line) this ratio will be 0 or 1.

Suppose the glyph stream contains the glyphs “A” and “b”, with the width of “A” being 13 points. If the
user clicks at a location 8 points into “A”, partialFraction is 8 ÷ 13, or 0.615. In this case, the point given
should be considered as falling between “A” and “b” for purposes such as dragging out a selection or
placing the insertion point.

Performs glyph generation and layout if needed.

glyphRangeForBoundingRect:inTextContainer:
– (NSRange)glyphRangeForBoundingRect:(NSRect)aRect inTextContainer:

(NSTextContainer *)aTextContainer

Returns the smallest contiguous range for glyphs that are laid out wholly or partially within aRect in
aTextContainer. The range returned can include glyphs that don’t fall inside or intersect aRect, though the
first and last glyphs in the range always do. This method is used to determine which glyphs need to be
displayed within a given rectangle.

Performs glyph generation and layout if needed.

See also: – glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:

glyphRangeForBoundingRectWithoutAdditionalLayout:inTextContainer:
– (NSRange)glyphRangeForBoundingRectWithoutAdditionalLayout: (NSRect)bounds

inTextContainer: (NSTextContainer *)container

Returns the smallest contiguous range for glyphs that are laid out wholly or partially within aRect in
aTextContainer. The range returned can include glyphs which don’t fall inside or intersect aRect, though
the first and last glyphs in the range always do.

11

 Classes: NSLayoutManager

Unlike glyphRangeForBoundingRect:inTextContainer:, this method doesn’t perform glyph generation
or layout. Its results, though faster, can be incorrect. This method is primarily for use by NSTextView; you
should rarely need to use it yourself.

See also: – glyphRangeForBoundingRect:inTextContainer:

glyphRangeForCharacterRange:actualCharacterRange:
– (NSRange)glyphRangeForCharacterRange:(NSRange)charRange actualCharacterRange:

(NSRange *)actualCharRange

Returns the range for the glyphs mapped to the characters of the text store in charRange. If
actualCharRange is non-NULL, expands the requested range as needed so that it identifies all characters
mapped to those glyphs and returns the new range by reference in actualCharRange.

Suppose the text store contains the characters “n˜” and the glyph cache contains “ñ”. If you get the glyph
range for the character range {0, 1} or {1, 1}, actualCharRange is returned as {0, 2}, indicating both of the
characters mapped to the glyph “ñ”.

Performs glyph generation if needed.

See also: – characterIndexForGlyphAtIndex:

glyphRangeForTextContainer:
– (NSRange)glyphRangeForTextContainer:(NSTextContainer *)aTextContainer

Returns the range for glyphs laid out within aTextContainer.

Performs glyph generation and layout if needed.

hyphenationFactor
– (float)hyphenationFactor

<forthcoming>

See also: – setHyphenationFactor:

12

init
– (id)init

Initializes the receiver, a newly created NSLayoutManager object. This is the designated initializer for the
NSLayoutManager class. Returns self.

See also: – addLayoutManager: (NSTextStorage), – addTextContainer:

insertGlyph:atGlyphIndex:characterIndex:
– (void)insertGlyph: (NSGlyph)aGlyph

atGlyphIndex: (unsigned int)glyphIndex
characterIndex:(unsigned int)charIndex

Inserts aGlyph into the glyph cache at glyphIndex and maps it to the character at charIndex. If the glyph is
mapped to several characters, charIndex should indicate the first character that it’s mapped to.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or
generation of the glyphs or layout. You should never directly invoke this method.

See also: – deleteGlyphsInRange:, – replaceGlyphAtIndex:withGlyph:

insertTextContainer:atIndex:
– (void)insertTextContainer:(NSTextContainer *)aTextContainer atIndex:(unsigned int)index

Inserts aTextContainer into the series of text containers at index, and invalidates layout for all subsequent
NSTextContainer’s. Also invalidates glyph information as needed.

See also: – addTextContainer:, – removeTextContainerAtIndex:, – textContainers

intAttribute:forGlyphAtIndex:
– (int)intAttribute: (int)attributeTag forGlyphAtIndex: (unsigned int)glyphIndex

Returns the value of the attribute identified by attributeTag for the glyph at glyphIndex.

Subclasses that define their own custom attributes must override this method to access their own storage for
the attribute values. Non-negative tags are reserved by Apple; you can define your own attributes with
negative tags and set values using setIntAttribute:value:forGlyphAtIndex: .

13

 Classes: NSLayoutManager

invalidateDisplayForCharacterRange:
– (void)invalidateDisplayForCharacterRange:(NSRange)charRange

<forthcoming>

invalidateDisplayForGlyphRange:
– (void)invalidateDisplayForGlyphRange:(NSRange)glyphRange

Marks the glyphs in glyphRange as needing display, as well as the appropriate regions of the NSTextViews
that display those glyphs (using NSView’s setNeedsDisplayInRect:). You should rarely need to invoke this
method.

invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:
– (void)invalidateGlyphsForCharacterRange:(NSRange)charRange

changeInLength:(int)lengthChange
actualCharacterRange:(NSRange *)actualCharRange

Invalidates the cached glyphs for the characters in charRange and adjusts the remaining glyph-to-character
mapping according to lengthChange, which indicates the number of characters added to or removed from
the text store. If non-NULL, actualCharRange is set to the range of characters mapped to the glyphs just
invalidated. This can be larger than the range of characters given due to the effect of context on glyphs and
layout.

You should rarely need to invoke this method. It only invalidates glyph information, and performs no glyph
generation or layout. Because invalidating glyphs also invalidates layout, after invoking this method you
should also invoke invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:, passing
charRange as the first argument and NO as the flag to the isSoft: keyword.

invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:
– (void)invalidateLayoutForCharacterRange:(NSRange)charRange

isSoft:(BOOL)flag
actualCharacterRange:(NSRange *)actualCharRange

Invalidates the layout information for the glyphs mapped to the characters in charRange. If flag is YES,
attempts to save some layout information to avoid recalculation; if flag is NO, saves no layout information.
You should typically pass NO for flag. If non-NULL, actualCharRange is set to the range of characters
mapped to the glyphs whose layout information has been invalidated. This can be larger than the range of
characters given due to the effect of context on glyphs and layout.

14

This method only invalidates information; it performs no glyph generation or layout. You should rarely need
to invoke this method.

See also: – invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:

layoutManagerOwnsFirstResponderInWindow:
– (BOOL)layoutManagerOwnsFirstResponderInWindow:(NSWindow *)aWindow

Returns YES if the first responder in aWindow is an NSTextView associated with the receiver, NO
otherwise.

lineFragmentRectForGlyphAtIndex:effectiveRange:
– (NSRect)lineFragmentRectForGlyphAtIndex: (unsigned int)glyphIndex effectiveRange:

(NSRange *)lineFragmentRange

Returns the line fragment rectangle containing the glyph at glyphIndex. The rectangle is defined in the
coordinate system of its NSTextContainer. If non-NULL, lineFragmentRange is set to contain the range for
all glyphs in that line fragment.

Performs glyph generation and layout if needed.

See also: – lineFragmentUsedRectForGlyphAtIndex:effectiveRange:, – setLineFragmentRect:
forGlyphRange:usedRect:

lineFragmentUsedRectForGlyphAtIndex:effectiveRange:
– (NSRect)lineFragmentUsedRectForGlyphAtIndex:(unsigned int)glyphIndex effectiveRange:

(NSRange *)lineFragmentRange

Returns the portion of the line fragment rectangle containing glyphAtIndex that actually contains glyphs
(such as for a partial or wrapped line), plus the line fragment padding defined by the NSTextContainer
where the glyphs reside. This rectangle is defined in the coordinate system of its NSTextContainer, and is
based on line calculation only—that is, it isn’t a bounding box for the glyphs in the line fragment.

If non-NULL, lineFragmentRange is set to contain the range for all glyphs in the line fragment.

Performs glyph generation and layout if needed.

See also: – lineFragmentRectForGlyphAtIndex:effectiveRange:, – setLineFragmentRect:
forGlyphRange:usedRect:

15

 Classes: NSLayoutManager

locationForGlyphAtIndex:
– (NSPoint)locationForGlyphAtIndex: (unsigned int)glyphIndex

Returns the location, in terms of its line fragment rectangle, for the glyph at glyphIndex. The line fragment
rectangle in turn is defined in the coordinate system of the text container where it resides.

Performs glyph generation and layout if needed.

See also: – lineFragmentRectForGlyphAtIndex:effectiveRange:,
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:

notShownAttributeForGlyphAtIndex:
– (BOOL)notShownAttributeForGlyphAtIndex: (unsigned int)glyphIndex

Returns YES if the glyph at glyphIndex isn’t shown (in the sense of the PostScript show operator), NO if it
is. For example, a tab, newline, or attachment glyph doesn’t get shown; it just affects the layout of following
glyphs or locates the attachment graphic. Space characters, however, typically are shown as glyphs with a
displacement, though they leave no visible marks. Raises an NSRangeException if glyphIndex is out of
bounds.

Performs glyph generation and layout if needed.

See also: – setNotShownAttribute:forGlyphAtIndex:

numberOfGlyphs
– (unsigned int)numberOfGlyphs

Returns the number of glyphs in the receiver, performing glyph generation if needed to determine this
number.

rangeOfNominallySpacedGlyphsContainingIndex:
– (NSRange)rangeOfNominallySpacedGlyphsContainingIndex:(unsigned int)glyphIndex

Returns the range for the glyphs around glyphIndex that can be displayed with a single PostScript show
operation; in other words, glyphs with no pairwise kerning or other adjustments to spacing.

Performs glyph generation and layout if needed.

16

rectArrayForCharacterRange:withinSelectedCharacterRange:inTextContainer:
rectCount:

– (NSRect *)rectArrayForCharacterRange: (NSRange)charRange
withinSelectedCharacterRange:(NSRange)selCharRange
inTextContainer: (NSTextContainer *)aTextContainer
rectCount:(unsigned int *)rectCount

Returns a C array of rectangles for the glyphs in aTextContainer that correspond to charRange, and by
reference in rectCount the number of such rectangles. These rectangles can be used to draw the background
or highlight for the given range of characters. selCharRange indicates selected characters, which can affect
the size of the rectangles; it must be equal to or contain charRange. To calculate the rectangles for drawing
the background, use a selected character range whose location is NSNotFound. To calculate the rectangles
for drawing highlighting for charRange, use a selected character range that contains charRange.

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

The array of rectangles returned is owned by the receiver, and is overwritten by various NSLayoutManager
methods. You should never free it, and should copy it if you need to keep the values or use them after
sending other messages to the layout manager.

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting.
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectForGlyphRange:inTextContainer: to determine the area that contains all drawing
performed for a range of glyphs.

Performs glyph generation and layout if needed.

See also: – glyphRangeForTextContainer:, – characterRangeForGlyphRange:actualGlyphRange:,
– drawsOutsideLineFragmentForGlyphAtIndex:

rectArrayForGlyphRange:withinSelectedGlyphRange:inTextContainer:rectCount:
– (NSRect *)rectArrayForGlyphRange: (NSRange)glyphRange

withinSelectedGlyphRange:(NSRange)selGlyphRange
inTextContainer: (NSTextContainer *)aTextContainer
rectCount:(unsigned *)rectCount

Returns a C array of rectangles for the glyphs in aTextContainer in glyphRange, and by reference in
rectCount the number of such rectangles. These rectangles can be used to draw the background or highlight
for the given range of glyphs. selGlyphRange indicates selected glyphs. To calculate the rectangles for
drawing the background, use a selected glyph range whose location is NSNotFound. To calculate the
rectangles for highlighting, use a selected glyph range that contains glyphRange.

17

 Classes: NSLayoutManager

The number of rectangles returned isn’t necessarily the number of lines enclosing the specified range.
Contiguous lines can share an enclosing rectangle, and lines broken into several fragments have a separate
enclosing rectangle for each fragment.

The array of rectangles returned is owned by the receiver, and is overwritten by various NSLayoutManager
methods. You should never free it, and should copy it if you need to keep the values or use them after
sending other messages to the layout manager.

The purpose of this method is to calculate line rectangles for drawing the text background and highlighting.
These rectangles don’t necessarily enclose glyphs that draw outside their line fragment rectangles; use
boundingRectForGlyphRange:inTextContainer: to determine the area that contains all drawing
performed for a range of glyphs.

Performs glyph generation and layout if needed.

See also: – glyphRangeForTextContainer:, – drawsOutsideLineFragmentForGlyphAtIndex:

removeTextContainerAtIndex:
– (void)removeTextContainerAtIndex:(unsigned int)index

Removes the NSTextContainer at index and invalidates the layout as needed.Also invalidates glyph
information as needed.

See also: – addTextContainer:, – insertTextContainer:atIndex: , – textContainers,
– invalidateGlyphsForCharacterRange:changeInLength:actualCharacterRange:,
– invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:

replaceGlyphAtIndex:withGlyph:
– (void)replaceGlyphAtIndex:(unsigned int)glyphIndex withGlyph: (NSGlyph)newGlyph

Replaces the glyph at glyphIndex with newGlyph. Doesn’t alter the glyph-to-character mapping or
invalidate layout information.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or
generation of the glyphs or layout. You should never directly invoke this method.

See also: – setCharacterIndex:forGlyphAtIndex: , – invalidateGlyphsForCharacterRange:
changeInLength:actualCharacterRange:, – invalidateLayoutForCharacterRange:isSoft:
actualCharacterRange:

18

replaceTextStorage:
– (void)replaceTextStorage:(NSTextStorage *)newTextStorage

Replaces the NSTextStorage for the group of text-system objects containing the receiver with
newTextStorage. All NSLayoutManagers sharing the original NSTextStorage then share the new one. This
method makes all the adjustments necessary to keep these relationships intact, unlike setTextStorage:.

rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:
– (NSView *)rulerAccessoryViewForTextView:(NSTextView *)aTextView

paragraphStyle:(NSParagraphStyle *)paraStyle
ruler: (NSRulerView *)aRulerView
enabled:(BOOL)flag

Returns the accessory NSView for aRulerView. This accessory contains tab wells, text alignment buttons,
and so on. paraStyle is used to set the state of the controls in the accessory NSView; it must not be nil . If
flag is YES the accessory view is enabled and accepts mouse and keyboard events; if NO it’s disabled.

This method is invoked automatically by the NSTextView object using the layout manager. You should
rarely need to invoke it, but you can override it to customize ruler support. If you do this method directly,
not that it neither installs the ruler accessory view nor sets the markers for the NSRulerView. You must
install the accessory view into the ruler using NSRulerView’s setAccessoryView: method. To set the
markers, use rulerMarkersForTextView:paragraphSyle:ruler: to get the markers needed and then send
setMarkers: to the ruler.

See also: – horizontalRulerView (NSScrollView)

rulerMarkersForTextView:paragraphStyle:ruler:
– (NSArray *)rulerMarkersForTextView: (NSTextView *)aTextView

paragraphStyle:(NSParagraphStyle *)paraStyle
ruler: (NSRulerView *)aRulerView

Returns the NSRulerMarkers for aRulerView in aTextView, based on paraStyle. These markers represent
such things as left and right margins, first-line indent, and tab stops. You can set these markers immediately
with NSRulerView’s setMarkers: method.

This method is invoked automatically by the NSTextView object using the layout manager. You should
rarely need to invoke it; but you can override it to add new kinds of markers or otherwise customize ruler
support.

See also: – rulerAccessoryViewForTextView:paragraphStyle:ruler:enabled:

19

 Classes: NSLayoutManager

setBackgroundLayoutEnabled:
– (void)setBackgroundLayoutEnabled:(BOOL)flag

Sets according to flag whether the receiver generates glyphs and lays them out when the application’s run
loop is idle.

See also: – backgroundLayoutEnabled

setCharacterIndex:forGlyphAtIndex:
– (void)setCharacterIndex:(unsigned int)charIndex forGlyphAtIndex: (unsigned int)glyphIndex

Maps the character at charIndex to the glyph at glyphIndex.

This method is for use by the glyph generation mechanism, and doesn’t perform any invalidation or
generation of the glyphs or layout. You should never directly invoke this method.

See also: – characterIndexForGlyphAtIndex: , – characterRangeForGlyphRange:actualGlyphRange:
, – glyphRangeForCharacterRange:actualCharacterRange:

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject, without retaining it.

See also: – delegate

setDrawsOutsideLineFragment:forGlyphAtIndex:
– (void)setDrawsOutsideLineFragment:(BOOL)flag forGlyphAtIndex: (unsigned int)glyphIndex

Sets according to flag whether the glyph at glyphIndex exceeds the bounds of the line fragment where it’s
laid out. This can happen when text is set at a fixed line height. For example, if the user specifies a fixed
line height of 12 points and sets the font size to 24 points, the glyphs will exceed their layout rectangles.

This method is used by the layout mechanism; you should never invoke it directly.

See also: – drawsOutsideLineFragmentForGlyphAtIndex:

20

setExtraLineFragmentRect:usedRect:textContainer:
– (void)setExtraLineFragmentRect:(NSRect)aRect

usedRect:(NSRect)usedRect
textContainer:(NSTextContainer *)aTextContainer

Sets a line fragment rectangle for displaying an empty last line in a body of text. aRect is the rectangle to
set, and aTextContainer is the NSTextContainer where the rectangle should be laid out. usedRect indicates
where the insertion point is drawn.

This method is used by the layout mechanism; you should never invoke it directly.

See also: – extraLineFragmentRect, – extraLineFragmentUsedRect, – textContainers

setHyphenationFactor:
– (void)setHyphenationFactor:(float)factor

<forthcoming>

See also: – hyphenationFactor

setIntAttribute:value:forGlyphAtIndex:
– (void)setIntAttribute: (int)attributeTag

value:(int)anInt
forGlyphAtIndex: (unsigned int)glyphIndex

Sets a custom attribute value for the glyph at glyphIndex. attributeTag identifies the custom attribute, and
anInt is its new value.

Subclasses that define their own custom attributes must override this method and provide their own storage
for the attribute values. Non-negative tags are reserved by Apple; you can define your own attributes with
negative tags and set values using this method.

This method doesn’t perform glyph generation or layout. The glyph at glyphIndex must already have been
generated.

See also: – intAttribute:forGlyphAtIndex:

21

 Classes: NSLayoutManager

setLineFragmentRect:forGlyphRange:usedRect:
– (void)setLineFragmentRect:(NSRect)fragmentRect

forGlyphRange:(NSRange)glyphRange
usedRect:(NSRect)usedRect

Sets to fragmentRect the line fragment rectangle where the glyphs in glyphRange are laid out. The text
container must be specified first with setTextContainer:forGlyphRange:, and the exact positions of the
glyphs must be set after the line fragment rectangle with setLocation:forStartOfGlyphRange:. usedRect
indicates the portion of fragmentRect, in the NSTextContainer’s coordinate system, that actually contains
glyphs or other marks that are drawn (including the text container’s line fragment padding). usedRect must
be equal to or contained within fragmentRect.

This method is used by the layout mechanism; you should never invoke it directly.

See also: – lineFragmentRectForGlyphAtIndex:effectiveRange:,
– lineFragmentUsedRectForGlyphAtIndex:effectiveRange:

setLocation:forStartOfGlyphRange:
– (void)setLocation:(NSPoint)aPoint forStartOfGlyphRange: (NSRange)glyphRange

Sets the location where the glyphs in glyphRange are laid out to aPoint, which is expressed relative to the
origin of the line fragment rectangle for glyphRange. glyphRange defines a series of glyphs that can be
displayed with a single PostScript show operation (a nominal range). Setting the location for a series of
glyphs implies that the glyphs preceding it can’t be included in a single show operation.

Before setting the location for a glyph range, you must specify the text container with setTextContainer:
forGlyphRange: and the line fragment rectangle with setLineFragmentRect:forGlyphRange:usedRect:
.

This method is used by the layout mechanism; you should never invoke it directly.

See also: – rangeOfNominallySpacedGlyphsContainingIndex:

setNotShownAttribute:forGlyphAtIndex:
– (void)setNotShownAttribute:(BOOL)flag forGlyphAtIndex: (unsigned int)glyphIndex

Sets according to flag whether the glyph at glyphIndex is one that isn’t shown. For example, a tab or newline
character doesn’t leave any marks; it just indicates where following glyphs are laid out. Raises an
NSRangeException if glyphIndex is out of bounds.

This method is used by the layout mechanism; you should never invoke it directly.

See also: – notShownAttributeForGlyphAtIndex:

22

setShowsControlCharacters:
– (void)setShowsControlCharacters:(BOOL)flag

Controls whether the receiver makes control characters visible in layout where possible. If flag is YES, it
substitutes visible glyphs for control characters if the font and script support it; if flag is NO it doesn’t.

See also: – setShowsInvisibleCharacters:, – showsControlCharacters

setShowsInvisibleCharacters:
– (void)setShowsInvisibleCharacters:(BOOL)flag

Controls whether the receiver makes whitespace and other typically nonvisible characters visible in layout
where possible. If flag is YES, it substitutes visible glyphs for invisible characters if the font and script
support it; if flag is NO it doesn’t.

See also: – setShowsControlCharacters:, – showsInvisibleCharacters

setTextContainer:forGlyphRange:
– (void)setTextContainer:(NSTextContainer *)aTextContainer forGlyphRange:

(NSRange)glyphRange

Sets to aTextContainer the NSTextContainer where the glyphs in glyphRange are laid out. You specify the
layout within the container with the setLineFragmentRect:forGlyphRange:usedRect: and setLocation:
forStartOfGlyphRange: methods.

This method is used by the layout mechanism; you should never invoke it directly.

See also: – textContainerForGlyphAtIndex:effectiveRange:

setTextStorage:
– (void)setTextStorage:(NSTextStorage *)textStorage

Sets the receiver’s NSTextStorage to textStorage. This method is invoked automatically when you add an
NSLayoutManager to an NSTextStorage object; you should never need to invoke it directly, but might want
to override it. If you want to replace the NSTextStorage for an established group of text-system objects
containing the receiver, use replaceTextStorage:.

See also: – addLayoutManager: (NSTextStorage)

23

 Classes: NSLayoutManager

setUsesScreenFonts:
– (void)setUsesScreenFonts:(BOOL)flag

Sets according to flag whether the receiver calculates layout and displays text using screen fonts when
possible.

See also: – usesScreenFonts, – substituteFontForFont:

showsControlCharacters
– (BOOL)showsControlCharacters

Returns YES if the receiver substitutes visible glyphs for control characters if the font and script support it,
NO if it doesn’t.

See also: – showsInvisibleCharacters, – setShowsControlCharacters:

showsInvisibleCharacters
– (BOOL)showsInvisibleCharacters

Returns YES if the receiver substitutes visible glyphs for invisible characters if the font and script support
it, NO if it doesn’t.

See also: – showsControlCharacters, – setShowsInvisibleCharacters:

substituteFontForFont:
– (NSFont *)substituteFontForFont:(NSFont *)originalFont

Returns a screen font suitable for use in place of originalFont, or simply returns originalFont if a screen
font can’t be used or isn’t available. A screen font can be substituted if the receiver is set to use screen fonts
and if no NSTextView associated with the receiver are scaled or rotated.

See also: – usesScreenFonts

textContainerChangedGeometry:
– (void)textContainerChangedGeometry:(NSTextContainer *)aTextContainer

Invalidates the layout information, and possibly glyphs, for aTextContainer and all subsequent
NSTextContainers. This method is invoked automatically by other components of the text system; you
should rarely need to invoke it directly. Subclasses of NSTextContainer, however, must invoke this method
any time their size of shape changes (a text container that dynamically adjusts its shape to wrap text around
placed graphics, for example, must do so when a graphic is added, moved, or removed).

24

textContainerChangedTextView:
– (void)textContainerChangedTextView:(NSTextContainer *)aTextContainer

Updates information needed to manage NSTextView objects. This method is invoked automatically by
other components of the text system; you should rarely need to invoke it directly.

textContainerForGlyphAtIndex:effectiveRange:
– (NSTextContainer *)textContainerForGlyphAtIndex: (unsigned int)glyphIndex effectiveRange:

(NSRange *)effectiveGlyphRange

Returns the NSTextContainer where the glyph at glyphIndex is laid out. If non-NULL, effectiveGlyphRange
is set to the range for all glyphs laid out in that text container.

Performs glyph generation and layout if needed.

See also: – setTextContainer:forGlyphRange:

textContainers
– (NSArray *)textContainers

Returns the receiver’s NSTextContainers.

See also: – addTextContainer:, – insertTextContainer:atIndex: , – removeTextContainerAtIndex:

textStorage
– (NSTextStorage *)textStorage

Returns the receiver’s NSTextStorage.

See also: – setTextStorage:, – replaceTextStorage:

textStorage:edited:range:changeInLength:invalidatedRange:
– (void)textStorage:(NSTextStorage *)aTextStorage

edited:(unsigned int)mask
range:(NSRange)range
changeInLength:(int)lengthChange
invalidatedRange:(NSRange)invalidatedCharRange

Invalidates glyph and layout information for a portion of text in aTextStorage. This message is sent from
NSTextStorage’s processEditing method to indicate that its characters or attributes have been changed.

25

 Classes: NSLayoutManager

This method invalidates glyphs and layout for the affected characters, and performs a soft invalidation of
the layout information for all subsequent characters. mask specifies the nature of the changes. Its value is
made by combining these options with the C bitwise OR operator:

range indicates the extent of characters resulting from the edits. If the NSTextStorageEditedCharacters bit
of mask is set, lengthChange gives the number of characters added to or removed from the original range
(otherwise its value is irrelevant). For example, after replacing “The” with “Several” to produce the string
“Several files couldn’t be saved”, range is {0, 7} and lengthChange is 4. The receiver uses this information
to update its character-to-glyph mapping and to update the selection range based on the change.

invalidatedRange represents the range of characters affected after attributes have been fixed. For example,
deleting a paragraph separator character invalidates the layout information for all characters in the
paragraphs that precede and follow the separator.

textStorage:edited:range:changeInLength:invalidatedRange: messages are sent in a series to each
NSLayoutManager associated with the text storage object, so the NSLayoutManagers receiving them
shouldn’t edit aTextStorage. If one of them does, the range, lengthChange, and invalidatedRange
arguments will be incorrect for all following NSLayoutManagers that receive the message.

See also: – invalidateLayoutForCharacterRange:isSoft:actualCharacterRange:

textViewForBeginningOfSelection
– (NSTextView *)textViewForBeginningOfSelection

Returns the NSTextView containing the first glyph in the selection, or nil if there’s no selection or if there
isn’t enough layout information to determine the text view.

Option Meaning

NSTextStorageEditedAttributes Attributes were added, removed, or changed.

NSTextStorageEditedCharacters Characters were added, removed, or replaced.

26

underlineGlyphRange:underlineType:lineFragmentRect:lineFragmentGlyphRange:
containerOrigin:

– (void)underlineGlyphRange:(NSRange)glyphRange
underlineType:(int)underlineType
lineFragmentRect:(NSRect)lineRect
lineFragmentGlyphRange:(NSRange)lineGlyphRange
containerOrigin: (NSPoint)containerOrigin

Calculates and draws underlining for the glyphs in glyphRange, which must belong to a single line fragment
rectangle (as returned by lineFragmentRectForGlyphAtIndex:effectiveRange:). underlineType
indicates the style of underlining to draw; NSLayoutManager accepts only NSSingleUnderlineStyle, but
subclasses can define their own underline styles. lineRect is the line fragment rectangle containing the
glyphs to draw underlining for, and lineGlyphRange is the range of all glyphs within that line fragment
rectangle. containerOrigin is the origin of the line fragment rectangle’s NSTextContainer in its
NSTextView.

This method determines which glyphs actually need to be underlined based on underlineType. With
NSSingleUnderlineStyle, for example, leading and trailing whitespace isn’t underlined, but whitespace
between visible glyphs is. A potential word-underline style would omit underlining on any whitespace.
After determining which glyphs to draw underlining on, this method invokes
drawUnderlineForGlyphRange:... for each contiguous range of glyphs that requires it.

See also: – textContainerForGlyphAtIndex:effectiveRange:, – textContainerOrigin (NSTextView)

usedRectForTextContainer:
– (NSRect)usedRectForTextContainer:(NSTextContainer *)aTextContainer

Returns the bounding rectangle for the glyphs laid out in aTextContainer, which tells “how full” it is. This
rectangle is given in the aTextContainer’s coordinate system.

See also: – containerSize (NSTextContainer)

usesScreenFonts
– (BOOL)usesScreenFonts

Returns YES if the receiver calculates layout and displays text using screen fonts when possible, NO
otherwise.

See also: – setUsesScreenFonts:, – substituteFontForFont:

27

 Classes: NSLayoutManager

Methods Implemented By the Delegate

layoutManager:didCompleteLayoutForTextContainer:atEnd:
– (void)layoutManager:(NSLayoutManager *)aLayoutManager

didCompleteLayoutForTextContainer:(NSTextContainer *)aTextContainer
atEnd:(BOOL)flag

Informs the delegate that aLayoutManager has finished laying out text in aTextContainer. aTextContainer
is nil if there aren’t enough containers to hold all the text; the delegate can use this information as a cue to
add another container. If flag is YES, aLayoutManager is finished laying out its text—this also means that
aTextContainer is the final text container used by the layout manager. Delegates can use this information to
show an indicator or background or to enable or disable a button that forces immediate layout of text.

layoutManagerDidInvalidateLayout:
– (void)layoutManagerDidInvalidateLayout: (NSLayoutManager *)aLayoutManager

Informs the delegate that aLayoutManager has invalidated layout information (not glyph information). This
method is invoked only when layout was complete and then became invalidated for some reason. Delegates
can use this information to show an indicator or background layout or to enable a button that forces
immediate layout of text.

1

 Classes: NSMatrix

NSMatrix

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (from NSResponder)
NSObject (from NSObject)

Declared In: AppKit/NSMatrix.h

Class Description

NSMatrix is a class used for creating groups of NSCells that work together in various ways. It includes
methods for arranging NSCells in rows and columns, either with or without space between them. NSCells
in an NSMatrix are numbered by row and column, each starting with 0; for example, the top left NSCell
would be at (0, 0), and the NSCell that’s second down and third across would be at (1, 2).

The cell objects that an NSMatrix contains are usually of a single subclass of NSCell, but they can be of
multiple subclasses of NSCell. The only restriction is that all cell objects must be the same size. An
NSMatrix can be set up to create new NSCells by copying a prototype object, or by allocating and
initializing instances of a specific NSCell class. Cells created by or added to an NSMatrix are retained by
the matrix.

An NSMatrix adds to NSControl’s target/action paradigm by allowing a separate target and action for each
of its NSCells in addition to its own target and action. It also allows for an action message that’s sent when
the user double-clicks an NSCell, which is sent in addition to the single-click action message. If an NSCell
doesn’t have an action, the NSMatrix sends its own action to its own target. If an NSCell doesn’t have a
target, the NSMatrix sends the NSCell’s action to its own target. The double-click action of an NSMatrix is
always sent to the target of the NSMatrix.

Since the user might press the mouse button while the cursor is within the NSMatrix and then drag the
mouse around, NSMatrix offers four “selection modes” that determine how NSCells behave when the
NSMatrix is tracking the mouse:

• NSTrackModeMatrix is the most basic mode of operation. In this mode the NSCells are asked to track
the mouse with trackMouse:inRect:ofView:untilMouseUp: whenever the mouse is inside their
bounds. No highlighting is performed. An example of this mode might be a “graphic equalizer”
NSMatrix of sliders, where moving the mouse around causes the sliders to move under the mouse.

• NSHighlightModeMatrix is a modification of NSTrackModeMatrix. In this mode, an NSCell is
highlighted before it’s asked to track the mouse, then unhighlighted when it’s done tracking. This is
useful for multiple unconnected NSCells that use highlighting to inform the user that they are being
tracked (like push-buttons and switches).

2

• NSRadioModeMatrix is used when you want no more than one NSCell to be selected at a time. It can be
used to create a set of buttons of which one and only one is selected (there’s the option of allowing no
button to be selected). Any time an NSCell is selected, the previously selected NSCell is unselected. The
canonical example of this mode is a set of radio buttons.

• NSListModeMatrix is the opposite of NSTrackModeMatrix. NSCells are highlighted, but don’t track the
mouse. This mode can be used to select a range of text values, for example. NSMatrix supports the
standard multiple-selection paradigms of dragging to select, using the shift key to make discontinuous
selections, and using the alternate key to extend selections. Browsers (as used, for instance, in NeXT’s
File Viewer) use this mode.

Method Types

Initializing an NSMatrix object
– initWithFrame:
– initWithFrame:mode:cellClass:numberOfRows:

numberOfColumns:
– initWithFrame:mode:prototype:numberOfRows:

numberOfColumns:

Setting the selection mode
– mode
– setMode:

Configuring the NSMatrix
– allowsEmptySelection
– isSelectionByRect
– setAllowsEmptySelection:
– setSelectionByRect:

Setting the cell class
– cellClass
– prototype
– setCellClass:
– setPrototype:

3

 Classes: NSMatrix

Laying out the NSMatrix
– addColumn
– addColumnWithCells:
– addRow
– addRowWithCells:
– cellFrameAtRow:column:
– cellSize
– getNumberOfRows:columns:
– insertColumn:
– insertColumn:withCells:
– insertRow:
– insertRow:withCells:
– intercellSpacing
– makeCellAtRow:column:
– numberOfColumns
– numberOfRows
– putCell:atRow:column:
– removeColumn:
– removeRow:
– renewRows:columns:
– setCellSize:
– setIntercellSpacing:
– sortUsingFunction:context:
– sortUsingSelector:

Finding matrix coordinates
– getRow:column:forPoint:
– getRow:column:ofCell:

Modifying individual cells
– setState:atRow:column:

Selecting cells
– deselectAllCells
– deselectSelectedCell
– keyCell
– selectAll:
– selectCellAtRow:column:
– selectCellWithTag:
– selectedCell
– selectedCells
– selectedColumn
– selectedRow
– setKeyCell:
– setSelectionFrom:to:anchor:highlight:

4

Finding cells
– cellAtRow:column:
– cellWithTag:
– cells

Modifying graphic attributes
– backgroundColor
– cellBackgroundColor
– drawsBackground
– drawsCellBackground
– setBackgroundColor:
– setCellBackgroundColor:
– setDrawsBackground:
– setDrawsCellBackground:

Editing text in cells
– selectText:
– selectTextAtRow:column:
– textDidBeginEditing:
– textDidChange:
– textDidEndEditing:
– textShouldBeginEditing:
– textShouldEndEditing:

Setting tab key behavior
– nextText
– previousText
– setNextText:
– setPreviousText:
– setTabKeyTraversesCells:
– tabKeyTraversesCells

Assigning a delegate
– delegate
– setDelegate:

Resizing the matrix and its cells
– autosizesCells
– setAutosizesCells:
– setValidateSize:
– sizeToCells

Scrolling
– isAutoscroll
– scrollCellToVisibleAtRow:column:
– setAutoscroll:
– setScrollable:

5

 Classes: NSMatrix

Displaying
– drawCellAtRow:column:
– highlightCell:atRow:column:

Target and action
– doubleAction
– errorAction
– sendAction
– sendAction:to:forAllCells:
– sendDoubleAction
– setDoubleAction:
– setErrorAction:

Handling event and action messages
– acceptsFirstMouse:
– mouseDown:
– mouseDownFlags
– performKeyEquivalent:

Managing the cursor
– resetCursorRects

Instance Methods

acceptsFirstMouse:
– (BOOL)acceptsFirstMouse:(NSEvent *)theEvent

Returns NO if the selection mode of the NSMatrix is NSListModeMatrix, YES if the NSMatrix is in any
other selection mode. The NSMatrix does not accept first mouse in NSListModeMatrix to prevent the loss
of multiple selections. The NSEvent parameter, theEvent, is ignored.

See also: – mode

addColumn
– (void)addColumn

Adds a new column of cells to the right of the last column, creating new cells as needed with
makeCellAtRow:column:.

If the number of rows or columns in the NSMatrix has been changed with renewRows:columns:, new cells
are created only if they are needed. This allows you to grow and shrink an NSMatrix without repeatedly
creating and freeing the cells.

6

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this
method to resize the NSMatrix to fit the newly added cells.

See also: – cellClass, – insertColumn:, – prototype

addColumnWithCells:
– (void)addColumnWithCells:(NSArray *)newCells

Adds a new column of cells to the right of the last column. The new column is filled with objects from
newCells, starting with the object at index 0. Each object in newCells should be a an NSCell or one of its
subclasses (usually NSActionCell). newCells should have a sufficient number of cells to fill the entire
column. Extra cells are ignored, unless the matrix is empty. In that case, a matrix is created with one column
and enough rows for all the elements of newCells.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this
method to resize the NSMatrix to fit the newly added cells.

See also: – insertColumn:withCells:

addRow
– (void)addRow

Adds a new row of cells below the last row, creating new cells as needed with makeCellAtRow:column:.

If the number of rows or columns in the NSMatrix has been changed with renewRows:columns:, then new
cells are created only if they are needed. This allows you to grow and shrink an NSMatrix without
repeatedly creating and freeing the cells.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this
method to resize the NSMatrix to fit the newly added cells.

See also: – cellClass, – insertRow:, – prototype

addRowWithCells:
– (void)addRowWithCells:(NSArray *)newCells

Adds a new row of cells below the last row. The new row is filled with objects from newCells, starting with
the object at index 0. Each object in newCells should be a an NSCell or one of its subclasses (usually
NSActionCell). newCells should have a sufficient number of cells to fill the entire row. Extra cells are

7

 Classes: NSMatrix

ignored, unless the matrix is empty. In that case, a matrix is created with one row and enough columns for
all the elements of newCells.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this
method to resize the NSMatrix to fit the newly added cells.

See also: – insertRow:withCells:

allowsEmptySelection
– (BOOL)allowsEmptySelection

Returns whether its possible to have no cells selected in a radio-mode matrix.

See also: – mode

autosizesCells
– (BOOL)autosizesCells

Returns YES if cells are resized proportionally to the NSMatrix when its size changes (and inter-cell
spacing is kept constant). Returns NO if the cell size remains constant (and inter-cell spacing changes).

backgroundColor
– (NSColor *)backgroundColor

Returns the color used to draw the background of the NSMatrix (the space between the cells).

See also: – cellBackgroundColor, – drawsBackground

cellAtRow:column:
– (id)cellAtRow:(int)row column:(int)column

Returns the NSCell object at row and column, or nil if either row or column are outside the bounds of the
NSMatrix.

See also: – getRow:column:ofCell:

8

cellBackgroundColor
– (NSColor *)cellBackgroundColor

Returns the color used to fill the background of the NSMatrix’s cells.

See also: – backgroundColor, – drawsCellBackground

cellClass
– (Class)cellClass

Returns the subclass of NSCell that the NSMatrix uses when creating new (empty) cells.

See also: – prototype, – makeCellAtRow:column:

cellFrameAtRow:column:
– (NSRect)cellFrameAtRow:(int)row column:(int)column

Returns the frame rectangle of the cell that would be drawn at the specified row and column (whether or not
the specified cell actually exists).

See also: – cellSize

cellSize
– (NSSize)cellSize

Returns the width and the height of each cell in the NSMatrix (all cells in an NSMatrix are the same size).

See also: – cellFrameAtRow:column:, – intercellSpacing

cellWithTag:
– (id)cellWithTag: (int)anInt

Searches the NSMatrix and returns the last (when viewing the matrix as a row-ordered array) NSCell object
which has a tag matching anInt, or nil if no such cell exists.

See also: – selectCellWithTag:, – setTag: (NSActionCell)

9

 Classes: NSMatrix

cells
– (NSArray *)cells

Returns an NSArray that contains the NSMatrix’s cells. The cells in the array are row-ordered; that is, the
first row of cells appear first in the array, followed by the second row, and so forth.

See also: – cellAtRow:column:

delegate
– (id)delegate

Returns the delegate for messages from the field editor.

See also: – textShouldBeginEditing:, – textShouldEndEditing:

deselectAllCells
– (void)deselectAllCells

Deselects all cells in the NSMatrix and, if necessary, redisplays the NSMatrix. If the selection mode is
NSRadioModeMatrix and empty selection is not allowed, this method does nothing.

See also: – allowsEmptySelection, – mode, – selectAll:

deselectSelectedCell
– (void)deselectSelectedCell

Deselects the selected cell or cells. If the selection mode is NSRadioModeMatrix and empty selection is not
allowed, or if nothing is currently selected, this method does nothing. This method doesn’t redisplay the
NSMatrix.

See also: – allowsEmptySelection, – mode, – selectCellAtRow:column:

doubleAction
– (SEL)doubleAction

Returns the action method sent by the NSMatrix to its target when the user double-clicks an entry, or NULL
if there’s no double-click action. The double-click action of an NSMatrix is sent after the appropriate
single-click action (for the NSCell clicked or for the NSMatrix if the NSCell doesn’t have its own action).

10

If there is no double-click action and the NSMatrix doesn’t ignore multiple clicks, the single-click action is
sent twice.

See also: – action (NSControl), – target (NSControl), – sendDoubleAction,
– ignoresMultiClick (NSControl)

drawCellAtRow:column:
– (void)drawCellAtRow: (int)row column:(int)column

Displays the cell at the specified row and column, providing that row and column reference a cell that’s
within the NSMatrix.

See also: – drawCell: (NSControl), – drawCellInside: (NSControl)

drawsBackground
– (BOOL)drawsBackground

Returns whether the receiver draws its background (the space between the cells).

See also: – backgroundColor, – drawsCellBackground

drawsCellBackground
– (BOOL)drawsCellBackground

Returns whether the receiver draws the background within each of its cells.

See also: – cellBackgroundColor, – drawsBackground

errorAction
– (SEL)errorAction

Returns the action that’s sent to the target of the NSMatrix when the user enters an illegal value for the
selected cell.

See also: – action (NSControl), – target (NSControl), – textShouldEndEditing:

11

 Classes: NSMatrix

getNumberOfRows:columns:
– (void)getNumberOfRows:(int *)rowCount columns:(int *)columnCount

Returns by reference the number of rows and columns in the NSMatrix.

See also: – numberOfColumns, – numberOfRows

getRow:column:forPoint:
– (BOOL)getRow:(int *)row column:(int *)column forPoint: (NSPoint)aPoint

Returns YES if aPoint lies within one of the cells in the NSMatrix, and returns by reference the row and
column for the cell within which the specified point lies. If aPoint falls outside the bounds of the Matrix or
lies within an intercell spacing, getRow:column:forPoint: returns NO.

Make sure that aPoint is in the coordinate system of the NSMatrix.

See also: – getRow:column:ofCell:

getRow:column:ofCell:
– (BOOL)getRow:(int *)row column:(int *)column ofCell:(NSCell *)aCell

Searches the NSMatrix and returns YES if aCell is one of the cells in the NSMatrix, and returns by reference
the row and column of the cell. If aCell is not found within the Matrix, getRow:column:ofCell: returns
NO.

See also: – getRow:column:forPoint:

highlightCell:atRow:column:
– (void)highlightCell: (BOOL)flag atRow:(int)row column:(int)column

Assuming that row and column indicate a valid cell within the NSMatrix, highlightCell:atRow:column:
highlights (if flag is YES) or unhighlights (if flag is NO) the specified cell.

initWithFrame:
– (id)initWithFrame: (NSRect)frameRect

Initializes and returns the receiver, a newly-allocated instance of NSMatrix, with default parameters in the
frame specified by frameRect. The new NSMatrix contains no rows or columns. The default mode is
NSRadioModeMatrix. The default cell class is NSActionCell.

12

initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:
– (id)initWithFrame: (NSRect)frameRect

mode:(int)aMode
cellClass:(Class)factoryId
numberOfRows:(int)numRows
numberOfColumns:(int)numColumns

Initializes and returns the receiver, a newly-allocated instance of NSMatrix, in the frame specified by
frameRect. The new NSMatrix contains numRows rows and numColumns columns. aMode is set as the
tracking mode for the NSMatrix, and can be one of the following four constants, all of which are described
in the class description:

The new NSMatrix creates and uses cells of class classId, which can be obtained by sending a class message
to the desired subclass of NSCell.

This method is the designated initializer for matrices that add cells by creating instances of an NSCell
subclass.

initWithFrame:mode:prototype:numberOfRows:numberOfColumns:
– (id)initWithFrame: (NSRect)frameRect mode:(int)aMode prototype:(NSCell *)aCell

numberOfRows:(int)numRows numberOfColumns:(int)numColumns

Initializes and returns the receiver, a newly-allocated instance of NSMatrix, in the frame specified by
frameRect. The new NSMatrix contains numRows rows and numColumns columns. aMode is set as the
tracking mode for the NSMatrix, and can be one of the following four constants, all of which are described
in the class description:

Tracking mode Description

NSTrackModeMatrix Cells track the mouse, but do not highlight

NSHighlightModeMatrix Cells highlight as they track the mouse

NSRadioModeMatrix Allows no more than one selected cell

NSListModeMatrix Cells are highlighted, but don’t track the mouse

Tracking mode Description

NSTrackModeMatrix Cells track the mouse, but do not highlight

NSHighlightModeMatrix Cells highlight as they track the mouse

13

 Classes: NSMatrix

The new Matrix creates cells by copying aCell, which should be an instance of a subclass of NSCell.

This method is the designated initializer for matrices that add cells by copying an instance of an NSCell
subclass.

insertColumn:
– (void)insertColumn:(int)column

Inserts a new column of cells before column, creating new cells if needed with makeCellAtRow:column:
. If column is greater than the number of columns in the NSMatrix, enough columns are created to expand
the NSMatrix to be column columns wide. This method doesn’t redraw the NSMatrix. Accordingly, after
calling this method you should send setNeedsDisplay:YES to the NSMatrix. Your code may also need to
use sizeToCells after sending this method to resize the NSMatrix to fit the newly added cells.

If the number of rows or columns in the NSMatrix has been changed with renewRows:columns:, then new
cells are created only if they’re needed. This allows you to grow and shrink an NSMatrix without repeatedly
creating and freeing the cells.

See also: – addColumn, – insertRow:

insertColumn:withCells:
– (void)insertColumn:(int)column withCells:(NSArray *)newCells

Inserts a new column of cells before column. The new column is filled with objects from newCells, starting
with the object at index 0. Each object in newCells should be a an NSCell or one of its subclasses (usually
NSActionCell). If column is greater than the number of columns in the NSMatrix, enough columns are
created to expand the NSMatrix to be column columns wide. newCells should either be empty or contain a
sufficient number of cells to fill each new column. If newCells is nil or an array with no elements, the call
is equivalent to calling insertColumn:. Extra cells are ignored, unless the matrix is empty. In that case, a
matrix is created with one column and enough rows for all the elements of newCells.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this
method to resize the NSMatrix to fit the newly added cells.

See also: – addColumnWithCells:, – insertRow:withCells:

NSRadioModeMatrix Allows no more than one selected cell

NSListModeMatrix Cells are highlighted, but don’t track the mouse

Tracking mode Description

14

insertRow:
– (void)insertRow:(int)row

Inserts a new row of cells before row, creating new cells if needed with makeCellAtRow:column:. If row
is greater than the number of rows in the NSMatrix, enough rows are created to expand the NSMatrix to be
row rows high. This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you
should send setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after
sending this method to resize the NSMatrix to fit the newly added cells.

If the number of rows or columns in the NSMatrix has been changed with renewRows:columns:, then new
cells are created only if they’re needed. This allows you to grow and shrink an NSMatrix without repeatedly
creating and freeing the cells.

See also: – addRow, – insertColumn:

insertRow:withCells:
– (void)insertRow:(int)row withCells:(NSArray *)newCells

Inserts a new row of cells before row. The new row is filled with objects from newCells, starting with the
object at index 0. Each object in newCells should be an NSCell or one of its subclasses (usually
NSActionCell). If row is greater than the number of rows in the NSMatrix, enough rows are created to
expand the NSMatrix to be row rows high. newCells should either be empty or contain a sufficient number
of cells to fill each new row ([newCells count] must be zero or at least [self numberOfColumns]). If
newCells is nil or an array with no elements, the call is equivalent to calling insertRow:. Extra cells are
ignored, unless the matrix is empty. In that case, a matrix is created with one row and enough columns for
all the elements of newCells.

This method doesn’t redraw the NSMatrix. Accordingly, after calling this method you should send
setNeedsDisplay:YES to the NSMatrix. Your code may also need to use sizeToCells after sending this
method to resize the NSMatrix to fit the newly added cells.

See also: – addRowWithCells:, – insertColumn:withCells:

intercellSpacing
– (NSSize)intercellSpacing

Returns the vertical and horizontal spacing between cells in the NSMatrix.

See also: – cellSize

15

 Classes: NSMatrix

isAutoscroll
– (BOOL)isAutoscroll

Returns whether the NSMatrix will be automatically scrolled whenever the mouse is dragged outside the
NSMatrix after a mouse-down event within its bounds.

See also: – scrollCellToVisibleAtRow:column: , – setScrollable:

isSelectionByRect
– (BOOL)isSelectionByRect

Returns YES if a the user can select a rectangle of cells in the NSMatrix by dragging the cursor, NO
otherwise.

See also: – setSelectionFrom:to:anchor:highlight:

keyCell
– (id)keyCell

Returns the cell that will be clicked when the user presses the Return key.

See also: – nextText, – tabKeyTraversesCells

makeCellAtRow:column:
– (NSCell *)makeCellAtRow:(int)row column:(int)column

Creates a new cell at the specified location in the NSMatrix. If the NSMatrix has a prototype cell, it’s copied
to create the new cell. If not, and if the NSMatrix has a cell class set, it allocates and initializes (with init)
an instance of that class. If the NSMatrix hasn’t had either a prototype cell or a cell class set,
makeCellAtRow:column: creates an NSActionCell. Returns the newly created cell.

Your code should never invoke this method directly; it’s used by addRow and other methods when a cell
must be created. It may be overridden to provide more specific initialization of cells.

See also: – addColumn, – addRow, – insertColumn:, – insertRow:, – setCellClass:, – setPrototype:

16

mode
– (NSMatrixMode)mode

Returns the selection mode of the NSMatrix. Possible return values are defined in NSMatrix.h, and are also
listed here:

These modes are explained in detail in the class description.

See also: – initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:, – initWithFrame:
mode:prototype:numberOfRows:numberOfColumns:

mouseDown:
– (void)mouseDown:(NSEvent *)theEvent

Responds to a mouse-down event. A mouse-down event in a text cell initiates editing mode. A double-click
in any cell type except a text cell sends the double-click action of the NSMatrix (if there is one) in addition
to the single-click action.

Your code should never invoke this method, but you may override it to implement different mouse tracking
than NSMatrix does. The response of the NSMatrix depends on its selection mode, as explained in the class
description.

See also: – sendAction, – sendDoubleAction

mouseDownFlags
– (int)mouseDownFlags

Returns the flags that were in effect at the mouse-down event that started the current tracking session
(NSMatrix’s mouseDown: method obtains these flags by sending a modifierFlags message to the event
passed into mouseDown:). Use this method if you want to access these flags. This method is valid only

Tracking mode Description

NSTrackModeMatrix Cells track the mouse, but do not highlight

NSHighlightModeMatrix Cells highlight as they track the mouse

NSRadioModeMatrix Allows no more than one selected cell

NSListModeMatrix Cells are highlighted, but don’t track the mouse

17

 Classes: NSMatrix

during tracking; it isn’t useful if the target of the NSMatrix initiates another tracking loop as part of its
action method (as a cell that pops up a PopUpList does, for example).

See also: – sendActionOn: (NSCell)

nextText
– (id)nextText

Returns the object that would be selected if the user presses Tab while editing the last text cell in the
NSMatrix.

See also: – nextKeyView (NSView), – previousText, – setNextText:

numberOfColumns
– (int)numberOfColumns

Returns the number of columns in the NSMatrix.

See also: – getNumberOfRows:columns:

numberOfRows
– (int)numberOfRows

Returns the number of rows in the NSMatrix.

See also: – getNumberOfRows:columns:

performKeyEquivalent:
– (BOOL)performKeyEquivalent: (NSEvent *)theEvent

If there’s a cell in the NSMatrix that has a key equivalent equal to the character in
[theEvent charactersIgnoringModifiers] (taking into account any key modifier flags) and that cell is
enabled, that cell is made to react as if the user had clicked it: by highlighting, changing its state as
appropriate, sending its action if it has one, and then unhighlighting. Returns YES if a cell in the NSMatrix
responds to the key equivalent in theEvent, NO if no cell responds.

Your code should never send this message; it is sent when the NSMatrix or one of its superviews is the first
responder and the user presses a key. You may want to override this method to change the way key
equivalents are performed or displayed, or to disable them in your subclass.

18

previousText
– (id)previousText

Returns the object that would be selected if the user presses Shift-Tab while editing the first text cell in the
NSMatrix.

See also: – nextKeyView (NSView), – nextText, – setPreviousText:

prototype
– (id)prototype

Returns the prototype cell that’s copied whenever a new cell needs to be created, or nil if there is none.

See also: – initWithFrame:mode:prototype:numberOfRows:numberOfColumns: ,
– makeCellAtRow:column:

putCell:atRow:column:
– (void)putCell: (NSCell *)newCell atRow:(int)row column:(int)column

Replaces the cell at the specified row and column with newCell, and redraws the cell.

removeColumn:
– (void)removeColumn:(int)column

Removes the column at position column from the NSMatrix and autoreleases the column’s cells. Doesn’t
redraw the NSMatrix. Your code should normally send sizeToCells after invoking this method to resize the
NSMatrix so that it fits the reduced cell count.

See also: – removeRow:, – addColumn, – insertColumn:

removeRow:
– (void)removeRow:(int)row

Removes the row at position row from the NSMatrix and autoreleases the row’s cells. Doesn’t redraw the
NSMatrix. Your code should normally send sizeToCells after invoking this method to resize the NSMatrix
so that it fits the reduced cell count.

See also: – removeColumn:, – addRow, – insertRow:

19

 Classes: NSMatrix

renewRows:columns:
– (void)renewRows:(int)newRows columns:(int)newCols

Changes the number of rows and columns in the NSMatrix. This method uses the same cells as before,
creating new cells only if the new size is larger; it never frees cells. Doesn’t redisplay the NSMatrix. Your
code should normally send sizeToCells after invoking this method to resize the NSMatrix so that it fits the
changed cell arrangement. This method deselects all cells in the NSMatrix.

See also: – addColumn, – addRow, – removeColumn:, – removeRow:

resetCursorRects
– (void)resetCursorRects

Resets cursor rectangles so that the cursor becomes an I-beam over text cells. It does this by sending
resetCursorRect:inView: to each cell in the NSMatrix. Any cell that has a cursor rectangle to set up should
then send addCursorRect:cursor: back to the NSMatrix.

See also: – resetCursorRect:inView: (NSCell), – addCursorRect:cursor: (NSView)

scrollCellToVisibleAtRow:column:
– (void)scrollCellToVisibleAtRow: (int)row column:(int)column

If the NSMatrix is in a scrolling view, and row and column represent a valid cell within the NSMatrix, this
method scrolls the NSMatrix so that the specified cell is visible.

See also: – scrollRectToVisible: (NSView)

selectAll:
– (void)selectAll:(id)sender

Selects and highlights all of the cells in the NSMatrix, except for editable text cells and disabled cells.
Redisplays the NSMatrix. sender is ignored.

See also: – selectCell: (NSControl)

20

selectCellAtRow:column:
– (void)selectCellAtRow:(int)row column:(int)column

Selects the cell at the specified row and column within the NSMatrix. If the specified cell is an editable text
cell, its text is selected. If either row or column is –1, then the current selection is cleared (unless the
NSMatrix is in NSRadioModeMatrix and doesn’t allow empty selection). Redraws the affected cells.

See also: – allowsEmptySelection, – mode, – selectCell: (NSControl)

selectCellWithTag:
– (BOOL)selectCellWithTag:(int)anInt

If the NSMatrix has at least one cell whose tag is equal to anInt, the last cell (when viewing the matrix as
a row-ordered array) is selected. If the specified cell is an editable text Cell, its text is selected. Returns YES
if the NSMatrix contains a cell whose tag matches anInt, or NO if no such cell exists.

See also: – cellWithTag: , – selectCell: (NSControl)

selectText:
– (void)selectText:(id)sender

If the currently selected cell is editable and enabled, its text is selected. Otherwise, the key cell is selected.

See also: – keyCell, – selectText: (NSTextField)

selectTextAtRow:column:
– (id)selectTextAtRow:(int)row column:(int)column

If row and column indicate a valid cell within the NSMatrix, and that cell is both editable and selectable,
selectTextAtRow:column: selects and then returns the specified cell. If the cell specified by row and
column is either not editable or not selectable, selectTextAtRow:column: does nothing, and returns nil .
Finally, if row and column indicate a cell that is outside the NSMatrix, selectTextAtRow:column: does
nothing and returns the receiver.

See also: – selectText:

selectedCell
– (id)selectedCell

Returns the most recently selected cell, or nil if no cell is selected. If more than one cell is selected,
selectedCell returns the cell that is lowest and furthest to the right in the NSMatrix.

21

 Classes: NSMatrix

selectedCells
– (NSArray *)selectedCells

Returns an array containing each of the cells in the receiver that is currently highlighted.

See also: – selectedCell

selectedColumn
– (int)selectedColumn

Returns the column number of the selected cell, or –1 if no cells are selected. If cells in multiple columns
are selected, this method returns the number of the last (right-most) column containing a selected cell.

selectedRow
– (int)selectedRow

Returns the row number of the selected cell, or –1 if no cells are selected. If cells in multiple rows are
selected, this method returns the number of the last row containing a selected cell.

sendAction
– (BOOL)sendAction

If the selected cell has both an action and a target, its action is sent to its target. If the cell has an action but
no target, its action is sent to the target of the NSMatrix. If the cell doesn’t have an action, or if there is no
selected cell, the NSMatrix sends its own action to its target. Returns YES if an action was successfully sent
to a target.

If the selected cell is disabled, this method does nothing and returns NO.

See also: – sendDoubleAction, – action (NSCell), – target (NSCell)

sendAction:to:forAllCells:
– (void)sendAction:(SEL)aSelector to:(id)anObject forAllCells: (BOOL)flag

Iterates through all of the cells in the NSMatrix (if flag is YES), or just the selected cells in the NSMatrix
(if flag is NO), sending aSelector to anObject for each. Iteration begins with the cell in the upper-left corner
of the NSMatrix, proceeding through the appropriate entries in the first row, then on to the next.

aSelector must represent a method that takes a single argument: the id of the current cell in the iteration.
aSelector’s return value must be a BOOL. If aSelector returns NO for any cell, sendAction:to:forAllCells:

22

terminates immediately, without sending the message to the remaining cells. If it returns YES, endAction:
to:forAllCells: proceeds on to the next cell.

This method is not invoked to send action messages to target objects in response to mouse-down events in
the NSMatrix. Instead, you can invoke it if you want to have multiple cells in an NSMatrix interact with an
object. For example you could use it to verify the titles in a list of items, or to enable a series of radio buttons
based on their purpose in relation to anObject.

sendDoubleAction
– (void)sendDoubleAction

If the NSMatrix has a double-click action, sendDoubleAction sends that message to the target of the
NSMatrix. If not, then if the selected cell (as returned by selectedCell) has an action, that message is sent
to the selected cell’s target. Finally, if the selected cell also has no action, then the single-click action of the
NSMatrix is sent to the target of the NSMatrix.

If the selected cell is disabled, this method does nothing.

Your code shouldn’t invoke this method; it’s sent in response to a double-click event in the NSMatrix.
Override it if you need to change the search order for an action to send.

See also: – sendAction, – ignoresMultiClick (NSControl)

setAllowsEmptySelection:
– (void)setAllowsEmptySelection:(BOOL)flag

If flag is YES, then the NSMatrix will allow one or zero cells to be selected. If flag is NO, then the NSMatrix
will allow one and only one cell (not zero cells) to be selected. This setting has effect only in the
NSRadioModeMatrix selection mode.

setAutoscroll:
– (void)setAutoscroll:(BOOL)flag

If flag is YES and the NSMatrix is in a scrolling view, it will be automatically scrolled whenever a the mouse
is dragged outside the NSMatrix after a mouse-down event within the bounds of the NSMatrix.

23

 Classes: NSMatrix

setAutosizesCells:
– (void)setAutosizesCells:(BOOL)flag

If flag is YES, then whenever the NSMatrix is resized, the sizes of the cells change in proportion, keeping
the inter-cell space constant; further, this method verifies that the cell sizes and inter-cell spacing add up to
the exact size of the NSMatrix, adjusting the size of the cells and updating the NSMatrix if they don’t. If
flag is NO, then the inter-cell space changes when the NSMatrix is resized, with the cell size remaining
constant.

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the background color for the NSMatrix to aColor, and redraws the NSMatrix. This color is used to fill
the space between cells or the space behind any non-opaque cells. The default background color is
NSColor’s controlColor.

See also: – drawsBackground, – setCellBackgroundColor:

setCellBackgroundColor:
– (void)setCellBackgroundColor:(NSColor *)aColor

Sets the background color for the cells in the NSMatrix to aColor. This color is used to fill the space behind
non-opaque cells. The default cell background color is NSColor’s controlColor.

See also: – drawsCellBackground, – setBackgroundColor:

setCellClass:
– (void)setCellClass:(Class)factoryId

Configures the receiver to use instances of factoryId when creating new cells. factoryId should be the id of
a subclass of NSCell, which can be obtained by sending the class message to either the NSCell subclass
object or to an instance of that subclass. The default cell class is that set with the class method setCellClass:
, or NSActionCell if no other default cell class has been specified.

You only need to use this method with matrices initialized with initWithFrame: , since the other initializers
allow you to specify an instance-specific cell class or cell prototype.

See also: – addColumn, – addRow, – insertColumn:, – insertRow:, – makeCellAtRow:column:,
– setPrototype:

24

setCellSize:
– (void)setCellSize:(NSSize)aSize

Sets the width and the height of each of the cells in the NSMatrix to those in aSize. This may change the
size of the NSMatrix. Does not redraw the NSMatrix.

See also: – calcSize (NSControl)

setDelegate:
– (void)setDelegate:(id)anObject

Sets the delegate for messages from the field editor.

See also: – textShouldBeginEditing:, – textShouldEndEditing:

setDoubleAction:
– (void)setDoubleAction:(SEL)aSelector

Makes aSelector the action sent to the target of the NSMatrix when the user double-clicks a cell. A
double-click action is always sent after the appropriate single-click action, which is the cell’s single-click
action, if it has one, or the NSMatrix’s single-click action., otherwise. If aSelector is a valid selector, this
method also sets the ignoresMultiClick flag to NO; otherwise, it leaves the flag unchanged.

If an NSMatrix has no double-click action set, then by default a double-click is treated as a single-click.

See also: – sendDoubleAction, – setAction: (NSControl), – setTarget: (NSControl)

setDrawsBackground:
– (void)setDrawsBackground:(BOOL)flag

Sets whether the receiver draws its background (the space between the cells).

See also: – backgroundColor, – setDrawsCellBackground:

setDrawsCellBackground:
– (void)setDrawsCellBackground:(BOOL)flag

Sets whether the receiver draws the background within each of its cells.

See also: – cellBackgroundColor, – setDrawsBackground:

25

 Classes: NSMatrix

setErrorAction:
– (void)setErrorAction: (SEL)aSelector

Sets the action that’s sent to the target of the NSMatrix when the user enters an illegal value for the selected
cell.

See also: – action (NSControl), – target (NSControl)

setIntercellSpacing:
– (void)setIntercellSpacing:(NSSize)aSize

Sets the vertical and horizontal spacing between cells in the NSMatrix. By default, both values are 1.0 in
the NSMatrix’s coordinate system.

See also: – cellSize

setKeyCell:
– (void)setKeyCell:(NSCell *)aCell

Sets to aCell the cell that will be clicked when the user presses the Return key.

See also: – setNextText:, – setTabKeyTraversesCells:

setMode:
– (void)setMode:(NSMatrixMode)aMode

Sets the selection mode of the NSMatrix. Possible values for aMode are defined in NSMatrix.h, and
include:

Tracking mode Description

NSTrackModeMatrix Cells track the mouse, but do not highlight

NSHighlightModeMatrix Cells highlight as they track the mouse

NSRadioModeMatrix Allows no more than one selected cell

NSListModeMatrix Cells are highlighted, but don’t track the mouse

26

These modes are explained in detail in the class description.

See also: – initWithFrame:mode:cellClass:numberOfRows:numberOfColumns:, – initWithFrame:
mode:prototype:numberOfRows:numberOfColumns:

setNextText:
– (void)setNextText:(id)anObject

If the NSMatrix doesn’t already have a next key view, inserts anObject after the receiver in the key view
loop of the receiver’s NSWindow. anObject thus becomes the object that would be selected if the user
presses Tab while editing the last text cell in the NSMatrix. If the NSMatrix already has a next key view,
this method does nothing.

See also: – setNextKeyView: (NSView), – setTabKeyTraversesCells:

setPreviousText:
– (void)setPreviousText:(id)anObject

If anObject doesn’t already have a next key view, inserts the receiver after anObject in the key view loop
of anObject’s NSWindow. If anObject already has a next key view, this method does nothing.

See also: – setNextKeyView: (NSView)

setPrototype:
– (void)setPrototype:(NSCell *)aCell

Sets the prototype cell that’s copied whenever a new cell needs to be created.

See also: – initWithFrame:mode:prototype:numberOfRows:numberOfColumns: ,
– makeCellAtRow:column:

setScrollable:
– (void)setScrollable:(BOOL)flag

If flag is YES, sets all the cells to be scrollable, so that the text they contain scrolls to remain in view if the
user types past the edge of the cell. If flag is NO, all cells are made to be non-scrolling. The prototype cell,
if there is one, is also set accordingly.

See also: – prototype, – setScrollable: (NSCell)

27

 Classes: NSMatrix

setSelectionByRect:
– (void)setSelectionByRect:(BOOL)flag

Sets whether the user can select a rectangle of cells in the NSMatrix by dragging the cursor. If flag is NO,
selection is on a row-by-row basis. The default is YES.

See also: – setSelectionFrom:to:anchor:highlight:

setSelectionFrom:to:anchor:highlight:
– (void)setSelectionFrom:(int)startPos to:(int)endPos anchor:(int)anchorPos highlight: (BOOL)lit

Programmatically selects a range of cells. startPos, endPos, and anchorPos are cell positions, counting from
0 at the upper left cell of the NSMatrix, in row order. For example, the third cell in the top row would be
number 2.

startPos and endPos are used to mark where the user would have pressed the mouse button and released it,
respectively. anchorPos locates the “last selected cell” with regard to extending the selection by Shift- or
Alternate-clicking. Finally, lit determines whether cells selected by this method should be highlighted.

See also: – isSelectionByRect, – selectedCells

setState:atRow:column:
– (void)setState:(int)value atRow:(int)row column:(int)column

Sets the state of the cell at row and column to value. For radio-mode matrices, if value is non-zero the
specified cell is selected before its state is set to value. If value is zero and the receiver is a radio-mode
matrix, then the currently-selected cell is deselected (providing that empty selection is allowed).

This method redraws the affected cell.

See also: – allowsEmptySelection, – setState: (NSCell), – selectCellAtRow:column:

setTabKeyTraversesCells:
– (void)setTabKeyTraversesCells:(BOOL)flag

Sets whether pressing the Tab key advances the key cell to the next selectable cell in the NSMatrix. If flag
is NO, or if there aren’t any selectable cells after the current one, when the user presses the Tab key the next
view in the window becomes key. Pressing Shift-Tab causes the key cell to advance in the opposite direction
(if flag is NO, or if there aren’t any selectable cells before the current one, the previous view in the window
becomes key).

See also: – selectKeyViewFollowingView: (NSWindow), – selectNextKeyView: (NSWindow),
– setKeyCell:, – setNextText:

28

setValidateSize:
– (void)setValidateSize:(BOOL)flag

If flag is YES, then the size information in the NSMatrix is assumed to be correct. If flag is NO, then
calcSize will be invoked before any further drawing is done.

See also: – calcSize (NSControl)

sizeToCells
– (void)sizeToCells

Changes the width and the height of the NSMatrix frame so that it exactly contains the cells. Does not
redraw the NSMatrix.

See also: – setFrameSize: (NSView), – sizeToFit (NSControl)

sortUsingFunction:context:
– (void)sortUsingFunction:(int (*)(id, id ,void *))comparator context:(void *)context

Sorts the receiver’s cells in ascending order as defined by the comparison function comparator. The
comparison function is used to compare two elements at a time and should return NSOrderedAscending if
the first element is smaller than the second, NSOrderedDescending if the first element is larger than the
second, and NSOrderedSame if the elements are equal. Each time the comparison function is called, it’s
passed context as its third argument. This allows the comparison to be based on some outside parameter,
such as whether character sorting is case-sensitive or case-insensitive.

See also: – sortUsingFunction:context: (NSMutableArray)

sortUsingSelector:
– (void)sortUsingSelector:(SEL)comparator

Sorts the receiver’s cells in ascending order as defined by the comparison method comparator. The
comparator message is sent to each object in the matrix, and has as its single argument another object in
the array. The comparison method is used to compare two elements at a time and should return
NSOrderedAscending if the receiver is smaller than the argument, NSOrderedDescending if the receiver is
larger than the argument, and NSOrderedSame if they are equal.

See also: – sortUsingSelector: (NSMutableArray)

29

 Classes: NSMatrix

tabKeyTraversesCells
– (BOOL)tabKeyTraversesCells

Returns whether pressing the Tab key advances the key cell to the next selectable cell in the NSMatrix.

See also: – keyCell, – setTabKeyTraversesCells:

textDidBeginEditing:
– (void)textDidBeginEditing: (NSNotification *)notification

Invoked when there’s a change in the text after the receiver gains first responder status. This method’s
default behavior is to post an NSControlTextDidBeginEditingNotification along with the receiving object
to the default notification center. The posted notification’s user info contains the contents of notification’s
user info dictionary, plus an additional key/value pair. The additional key is “NSFieldEditor”; the value for
this key is the text object that began editing.

See also: – textDidChange:, – textDidEndEditing: , – textShouldBeginEditing:

textDidChange:
– (void)textDidChange:(NSNotification *)notification

Invoked upon a key-down event or paste operation that changes the receiver’s contents. This method’s
default behavior is to pass this message on to the selected cell (if the selected cell responds to
textDidChange:), and then to post an NSControlTextDidChangeNotification along with the receiving
object to the default notification center. The posted notification’s user info contains the contents of
notification’s user info dictionary, plus an additional key/value pair. The additional key is “NSFieldEditor”;
the value for this key is the text object that changed.

See also: – textDidBeginEditing: , – textDidEndEditing:

textDidEndEditing:
– (void)textDidEndEditing: (NSNotification *)notification

Invoked when text editing ends. This method’s default behavior is to post an
NSControlTextDidEndEditingNotification along with the receiving object to the default notification center.
The posted notification’s user info contains the contents of notification’s user info dictionary, plus an
additional key/value pair. The additional key is “NSFieldEditor”; the value for this key is the text object that
began editing. After posting the notification, textDidEndEditing: sends an endEditing: message to the
selected cell, draws and makes the selected cell key, and then takes the appropriate action based on which
key was used to end editing (Return, Tab, or Back-Tab).

See also: – textDidBeginEditing: , – textDidChange:, – textShouldEndEditing:

30

textShouldBeginEditing:
– (BOOL)textShouldBeginEditing:(NSText *)textObject

Invoked to let the NSTextField respond to impending changes to its text. This method’s default behavior is
to send control:textShouldBeginEditing: to the receiver’s delegate (passing the receiver and textObject as
parameters). textShouldBeginEditing: returns the value obtained from control:textShouldBeginEditing:
, unless the delegate doesn’t respond to that method, in which case it returns YES, thereby allowing text
editing to proceed.

See also: – delegate

textShouldEndEditing:
– (BOOL)textShouldEndEditing:(NSText *)textObject

Invoked to let the NSTextField respond to impending loss of first-responder status. This method’s default
behavior checks the text field for validity; providing that the field contents are deemed valid, and providing
that the delegate responds, control:textShouldEndEditing: is sent to the receiver’s delegate (passing the
receiver and textObject as parameters). If the contents of the text field aren’t valid, textShouldEndEditing:
sends the error action to the selected cell’s target.

textShouldEndEditing: returns NO if the text field contains invalid contents, otherwise it returns the value
passed back from control:textShouldEndEditing: .

See also: – delegate, – errorAction

1

 Classes: NSMenu

NSMenu

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSMenu.h

Class Description

This class defines an object that manages an application’s menus. An NSMenu object displays a list of items
that a user can choose from. When an item is clicked, the NSMenu object may either issue a command
directly (by sending an action message to a target object) or bring up another menu (a submenu) that offers
further choices. An NSMenu object’s choices are implemented with NSMenuItem objects. Each menu item
can be configured either to send its action message to a target or to open a submenu.

It’s typically more convenient to use Interface Builder to construct your application’s menus—see Interface
Builder’s Help for more information about using this application. NSMenu and NSMenuItem provide you
with additional flexibility to contruct or modify your application’s menus dynamically at run time.

Exactly one NSMenu created by the application is designated as the main menu for the application (with
NSApplication’s setMainMenu: method). Depending on the user interface of the host system, the main
menu displays itself as a free-standing window with a title bar and a list of menu items, as a menu bar with
no title, or in some other form. The form a menu takes in the user interface may limit which methods in the
class’s interface actually have an effect; for example, on Microsoft Windows submenus can’t be detached.
In all cases, however, methods return values that reflect the NSMenu object’s actual state or ability
(isTornOff always returns NO on Microsoft Windows, for example).

On Mach, a free-standing main menu is displayed on top of all other windows whenever the application is
active; the user can move it by dragging its title bar. When a submenu is opened, it appears attached to the
right of its supermenu with a title bar, allowing the user to drag it away from its supermenu so that it remains
on the screen. A detached submenu displays a close button to allow the user to dismiss it (the main menu,
of course, never displays a close button). If the user moves a menu window while a submenu is attached,
the submenu follows its supermenu. If a menu window lies partly off-screen, when the user tracks the mouse
pointer to the edge of the screen, by holding down the mouse button and dragging the mouse pointer, the
menu temporarily shifts onto the screen (along with any attached super- or submenus), allowing the user to
access all of its items.

Where the main menu appears as a menu bar (Windows, for example), the menu doesn’t display a title, nor
do its submenus. The submenus of a menu bar are typical drop-down menus, and submenus of these appear
to the right or left, depending on the available screen space.

2

NSMenu supports the assignment of keyboard equivalents (command-key accelerators) to its menu items.
On Microsoft Windows, the class also supports the assignment of mnemonics to menu items. Any menu
item, except those that open submenus, can have a key equivalent, but whether they should have one
depends on the user interface guidelines of the host system’s. Unlike keyboard equivalents, mnemonics only
function when their menu is active, and they can be assigned to menu items which open submenus.

The items that appear on menus belong to the NSMenuItem class, which simply adopts the NSMenuItem
protocol and adds little other behavior. See the specifications of the NSMenuItem and NSMenuValidation
protocols for more information.

Menu Autoenabling

By default, menus are autoenabled. “Autoenabling” refers to the ability of a menu to enable or disable its
items after a user event by querying other objects in an application for the appropriate state. (A disabled
menu item has a gray title and does not respond to mouse clicks or key equivalents.) For instance, if the user
selects some text in a scroll view, the object responsible for managing that text could receive—as the target
of menu items such as Cut, Copy, and Paste—the message validateMenuItem: for each of those items (see
informal protocol NSMenuValidation). It would implement this message to evaluate the current context and
return whether the menu item should be enabled.

An NSMenu object locates the “validator” object for a menu item by testing for the existence of the
following objects, in the given order:

• The target of the menu item

• Any other object implementing the method corresponding to the menu item’s action (that is, the search
for an implementor proceeds up the responder chain; see the NSResponder specification for details)

By following these steps, the NSMenu ensures that the object receiving the action message is asked to
validate the menu state.

If the NSMenu object cannot locate a “validator,” it disables the menu item. If the validator responds to
validateMenuItem:, NSMenu asks it for the enabled state. If the validator does not respond to the message,
NSMenu enables the menu item.

You can turn off autoenabling by sending setAutoenablesItems: to the NSMenu object with an argument
of NO. You should do this if your application explicitly controls the state of each of its menu items (see the
NSMenuItem protocol method setEnabled:). Although autoenabling occurs automatically upon each user
event, you can request it for other purposes with the update method.

Method Types

Controlling allocation zones + menuZone
+ setMenuZone:

3

 Classes: NSMenu

Creating an NSMenu
– initWithTitle:

Setting up menu commands
– insertItem:atIndex:
– insertItemWithTitle:action:keyEquivalent:atIndex:
– addItem:
– addItemWithTitle:action:keyEquivalent:
– removeItem:
– removeItemAtIndex:
– itemChanged:

Finding menu items
– itemWithTag:
– itemWithTitle:
– itemAtIndex:
– numberOfItems
– itemArray

Finding indices of menu items
– indexOfItem:
– indexOfItemWithTitle:
– indexOfItemWithTag:
– indexOfItemWithTarget:andAction:
– indexOfItemWithRepresentedObject:
– indexOfItemWithSubmenu:

Managing submenus
– setSubmenu:forItem:
– submenuAction:
– attachedMenu
– isAttached
– isTornOff
– locationForSubmenu:
– supermenu
– setSupermenu:

Enabling and disabling menu items
– autoenablesItems
– setAutoenablesItems:
– update

Handling keyboard equivalents
– performKeyEquivalent:

Simulating mouse clicks
– performActionForItemAtIndex:

4

Setting the title
– setTitle:
– title

Setting the representing object
– setMenuRepresentation:
– menuRepresentation

Updating menu layout
– menuChangedMessagesEnabled
– setMenuChangedMessagesEnabled:
– sizeToFit

Displaying context-sensitive help
– helpRequested:

Class Methods

menuZone
+ (NSZone *)menuZone

Returns the zone from which NSMenus should be allocated, creating it if necessary.

setMenuZone:
+ (void)setMenuZone:(NSZone *)zone

Sets the zone from which NSMenus should be allocated to zone.

Instance Methods

addItem:
– (void)addItem:(id <NSMenuItem>)newItem

Adds the menu item newItem to the end of the receiving NSMenu. In its implementation this method
invokes insertItem:atIndex: . Thus, the menu does not accept the menu item if it already belongs to another
menu. After adding the menu item, the menu updates itself.

5

 Classes: NSMenu

addItemWithTitle:action:keyEquivalent:
– (id <NSMenuItem>)addItemWithTitle: (NSString *)aString

action:(SEL)aSelector
keyEquivalent:(NSString *)keyEquiv

Adds a new item with title aString, action aSelector, and key equivalent keyEquiv to the end of the menu.
Returns the new menu item. If you do not want the menu item to have a key equivalent, keyEquiv should be
an empty string (@””) and not nil .

attachedMenu
– (NSMenu *)attachedMenu

Returns the menu currently attached to the receiver or nil if there’s no such object.

autoenablesItems
– (BOOL)autoenablesItems

Returns whether the receiver automatically enables and disables its menu items based on the
NSMenuValidation informal protocol. By default NSMenus do autoenable their menu items. See that
protocol specification for more information.

See also: – setAutoenablesItems:

helpRequested:
– (void)helpRequested:(NSEvent *)event

Overridden by subclasses to implement specialized context-sensitive help behavior by causing the Help
manager to display the help associated with the receiver. Never invoke this method directly.

See also: – showContextHelpForObject:locationHint: (NSHelpManager)

indexOfItem:
– (int)indexOfItem: (id <NSMenuItem>)anObject

Returns the index identifying the location of menu item anObject in the receiver. If no such menu item is
in the menu, the method returns -1.

See also: – insertItem:atIndex: , – itemAtIndex:

6

indexOfItemWithRepresentedObject:
– (int)indexOfItemWithRepresentedObject:(id)anObject

Returns the index of the first menu item in the receiver that has anObject as its represented object. If no such
menu item is in the menu, the method returns -1.

See also: – insertItem:atIndex: , – itemAtIndex:

indexOfItemWithSubmenu:
– (int)indexOfItemWithSubmenu:(NSMenu *)anObject

Returns the index of the menu item in the receiver that has submenu anObject. If no such menu item is in
the menu, the method returns -1.

See also: – insertItem:atIndex: , – itemAtIndex:

indexOfItemWithTag:
– (int)indexOfItemWithTag: (int)aTag

Returns the index of the first menu item in the receiver identified by tag aTag. If no such menu item is in
the menu, the method returns -1.

See also: – insertItem:atIndex: , – itemAtIndex:

indexOfItemWithTarget:andAction:
– (int)indexOfItemWithTarget: (id)anObject andAction:(SEL)actionSelector

Returns the index of the first menu item in the receiver that has a target of anObject and an action of
actionSelector. If actionSelector is NULL, the first menu item in the receiver that has a target of anObject
is returned. If no menu item matching these criteria is in the menu, the method returns -1.

See also: – insertItem:atIndex: , – itemAtIndex:

indexOfItemWithTitle:
– (int)indexOfItemWithTitle: (NSString *)aTitle

Returns the index of the first menu item in the receiver that has the title aTitle. If no such menu item is in
the menu, the method returns -1.

See also: – insertItem:atIndex: , – itemAtIndex:

7

 Classes: NSMenu

initWithTitle:
– (id)initWithTitle: (NSString *)aTitle

Initializes and returns a new menu using aTitle for its title and with autoenabling of menu items turned on.
This method is the designated initializer for the class. Returns self.

See also: – setAutoenablesItems:

insertItem:atIndex:
– (void)insertItem: (id <NSMenuItem>)newItem atIndex:(int)index

Inserts the menu item newItem in the receiving NSMenu at location index. If the menu item already exists
in another menu, it is not inserted. The method informs the object implementing the platform-specific look
and behavior of the menu (the “menu representation”) that the item has been inserted. It also causes the
menu to update itself. This is a primitive method; if you create a subclass of NSMenu, this method must be
overriden.

See also: – addItem:, – itemAtIndex: , – removeItem:

insertItemWithTitle:action:keyEquivalent:atIndex:
– (id <NSMenuItem>)insertItemWithTitle: (NSString *)aString

action:(SEL)aSelector
keyEquivalent:(NSString *)keyEquiv
atIndex:(unsigned int)index

Adds a new item at the location index in the menu that has the title aString, action aSelector, and key
equivalent keyEquiv. Returns the new menu item. If you do not want the menu item to have a key equivalent,
keyEquiv should be an empty string (@””) and not nil .

isAttached
– (BOOL)isAttached

Returns YES if the receiver is currently attached to another menu, NO otherwise. This method always
returns NO on Microsoft Windows.

isTornOff
– (BOOL)isTornOff

Returns NO if the receiver is off-screen or attached to another menu (or if it’s the main menu), YES
otherwise. This method always returns NO on Microsoft Windows.

8

itemArray
– (NSArray *)itemArray

Returns the receiver’s menu items.

See also: – numberOfItems

itemAtIndex:
– (id <NSMenuItem>)itemAtIndex: (int)index

Returns the menu item at location index of the receiver. It raises an exception if index is out of bounds.

itemChanged:
– (void)itemChanged:(id <NSMenuItem>)anObject

Invoked when menu item anObject is modified (for example, its title changes). The default implementation
informs the “menu representation” object and causes the menu to update itself.

itemWithTag:
– (id <NSMenuItem>)itemWithTag: (int)aTag

Returns the first menu item in the receiver that has aTag as its tag.

itemWithTitle:
– (id <NSMenuItem>)itemWithTitle: (NSString *)aString

Returns the first menu item in the receiver that has aString as its title.

locationForSubmenu:
– (NSPoint)locationForSubmenu:(NSMenu *)aSubmenu

On Mach, returns the screen coordinates where aSubmenu will be displayed when it’s opened as a submenu
of the receiver (regardless of its current location). On Microsoft Windows, the coordinates that are reutrned
are not meaningful.

9

 Classes: NSMenu

menuChangedMessagesEnabled
– (BOOL)menuChangedMessagesEnabled

Returns YES if messages are being sent to the application’s windows upon each change to the menu, NO
otherwise.

See also: – setMenuChangedMessagesEnabled:

menuRepresentation
– (id)menuRepresentation

Returns the object that implements the “look and feel” of the menu for a particular platform. For Macintosh
and Mach platforms, this object is NSMenuView.

See also: – setMenuRepresentation:

numberOfItems
– (int)numberOfItems

Returns the number of menu items in the receiver, including separator items.

See also: – itemArray

performActionForItemAtIndex:
– (void)performActionForItemAtIndex: (int)index

Causes the application to send the action message of the menu item at index to it’s target. If a target is not
specified, the message is sent to the first responder. As a side effect, this method posts
NSMenuWillSendActionNotification and NSMenuDidSendActionNotification.

performKeyEquivalent:
– (BOOL)performKeyEquivalent: (NSEvent *)theEvent

Searches for a menu item in the receiver, or on Microsoft Windows in any of its submenus as well, whose
key equivalent exactly matches the character, or character sequence, of the keyboard event theEvent and
whose modifier flags match the key-equivalent modifier mask in theEvent, and causes that item to send its
action message.

10

removeItem:
– (void)removeItem:(id <NSMenuItem>)anItem

Removes anItem from the receiver.

removeItemAtIndex:
– (void)removeItemAtIndex:(int)index

Removes the menu item at location index.

setAutoenablesItems:
– (void)setAutoenablesItems:(BOOL)flag

Controls whether the receiver automatically enables and disables its menu items based on delegates
implementing the NSMenuValidation informal protocol. If flag is YES, menu items are automatically
enabled and disabled. If flag is NO, menu items are not automatically enabled or disabled. See the
NSMenuValidation protocol specification for more information.

See also: – autoenablesItems

setMenuChangedMessagesEnabled:
– (void)setMenuChangedMessagesEnabled:(BOOL)flag

Controls whether the receiver sends messages to the application’s windows upon each menu change. To
avoid the “flickering” effect of many successive menu changes, invoke this method with NO as flag, make
changes to the menu, and invoke the method again with YES as flag. This has the effect of batching changes
and having them applied all at once.

See also: – menuChangedMessagesEnabled

setMenuRepresentation:
– (void)setMenuRepresentation:(id)menuRep

Sets the object that implements the “look and feel” of the menu for a particular platform. For Macintosh
and Mach platforms, this object is NSMenuView. On any supported platform except Windows, you can set
your own NSMenuView subclass as the menu representation.

See also: – menuRepresentation

11

 Classes: NSMenu

setSubmenu:forItem:
– (void)setSubmenu:(NSMenu *)aMenu forItem: (id <NSMenuItem>)anItem

Makes aMenu a submenu controlled by anItem, automatically setting anItem’s action to submenuAction:.

setSupermenu:
– (void)setSupermenu:(NSMenu *)supermenu

Sets the receiver’s supermenu (which obviously must be a submenu) to supermenu. You should never invoke
this method directly, although you may override it.

See also: – supermenu

setTitle:
– (void)setTitle:(NSString *)aString

Sets the receiver’s title to aString.

See also: – title

sizeToFit
– (void)sizeToFit

Resizes the receiver to exactly fit its items. On Microsoft Windows, this method has no effect.

submenuAction:
– (void)submenuAction:(id)sender

This is the action method assigned to menu items that open submenus. Never invoke this method directly.

supermenu
– (NSMenu *)supermenu

Returns the receiver’s supermenu or nil if it has none.

12

title
– (NSString *)title

Returns the receiver’s title.

See also: – setTitle:

update
– (void)update

Enables or disables the receiver’s menu items based on the NSMenuValidation informal protocol and sizes
the menu to fit its current menu items if necessary. See the NSMenuValidation protocol specification for
more information.

Notifications

NSMenuDidSendActionNotification

This notification contains a notification object and a userInfo dictionary. The notification object is the
NSMenu containing the chosen menu item. The userInfo dictionary contains these keys and values:

This notification is posted just after the application invokes the action method (carried as instance data by
the menu item) in the menu item’s target object or, if no target is specified, in the first object in the responder
chain that implements the action method.

NSMenuWillSendActionNotification

This notification contains a notification object and a userInfo dictionary. The notification object is the
NSMenu containing the chosen menu item. The userInfo dictionary contains these keys and values:

Key Value

@"MenuItem" The menu item that was chosen.

Key Value

@"MenuItem" The menu item that was chosen.

13

 Classes: NSMenu

This notification is posted just after the application invokes the action method (carried as instance data by
the menu item) in the menu item’s target object or, if no target is specified, in the first object in the responder
chain that implements the action method.

1

 Classes: NSMenuItem

NSMenuItem

Inherits From: NSObject

Conforms To: NSMenuItem
NSObject (NSObject)

Declared In: AppKit/NSMenuItem.h

Class Description

NSMenuItem is the class that OPENSTEP uses to implement the functionality of the NSMenuItem
protocol. The NSMenuItem class defines objects that are used as command items in menus. In addition to
implementing all of the methods in the NSMenuItem protocol, the NSMenuItem class also includes some
private functionality that is needed to maintain binary compatibility with other components of OPENSTEP.
Because of this, you cannot replace the NSMenuItem class with a different class which conforms to the
NSMenuItem protocol. You may, however, subclass the NSMenuItem class if necessary.

The appearance of NSMenuItem objects is tailored to match the user interface of the host system, presently
Macintosh, Mach, or Microsoft Windows.

See the NSMenu class specification and the NSMenuItem protocol specification for more information on
menus.

2

Adopted Protocols

NSMenuItem
+ setUsesUserKeyEquivalents:
+ usesUserKeyEquivalents
- action
- hasSubmenu
- isEnabled
- keyEquivalent
- keyEquivalentModifierMask
- mnemonic
- mnemonicLocation
- representedObject
- setAction:
- setEnabled:
- setKeyEquivalent:
- setKeyEquivalentModifierMask:
- setMnemonicLocation:
- setRepresentedObject:
- setTag:
- setTarget:
- setTitle:
- setTitleWithMnemonic:
- tag
- target
- title
- userKeyEquivalent

1

 Classes: NSMutableParagraphStyle

NSMutableParagraphStyle

Inherits From: NSParagraphStyle : NSObject

Conforms To: NSCoding (NSParagraphStyle)
NSCopying (NSParagraphStyle)
NSMutableCopying (NSParagraphStyle)
NSObject (NSObject)

Declared In: AppKit/NSParagraphStyle.h

Class Description

NSMutableParagraphStyle adds methods to its superclass, NSParagraphStyle, for changing the values of
the sub-attributes in a paragraph style attribute. See the NSParagraphStyle and NSAttributedString
specifications for more information.

Method Types

Setting tab stops
– setTabStops:
– addTabStop:
– removeTabStop:

Setting other style information
– setParagraphStyle:
– setAlignment:
– setFirstLineHeadIndent:
– setHeadIndent:
– setTailIndent:
– setLineBreakMode:
– setMaximumLineHeight:
– setMinimumLineHeight:
– setLineSpacing:
– setParagraphSpacing:

2

Instance Methods

addTabStop:
– (void)addTabStop:(NSTextTab *)tabStop

Adds tabStop to the receiver.

See also: – removeTabStop:, – setTabStops:, – tabStops (NSParagraphStyle)

removeTabStop:
– (void)removeTabStop:(NSTextTab *)tabStop

Removes the first text tab whose location and type are equal to those of tabStop.

See also: – addTabStop:, – setTabStops:, – tabStops (NSParagraphStyle)

setAlignment:
– (void)setAlignment:(NSTextAlignment)alignment

Sets the alignment of the receiver to alignment, which may be one of:

 NSLeftTextAlignment
 NSRightTextAlignment
 NSCenterTextAlignment
 NSJustifiedTextAlignment
 NSNaturalTextAlignment

See also: – alignment (NSParagraphStyle)

setFirstLineHeadIndent:
– (void)setFirstLineHeadIndent:(float)aFloat

Sets the distance in points from the leading margin of a text container to the beginning of the paragraph’s
first line to aFloat. This value must be nonnegative.

See also: – setHeadIndent:, – setTailIndent:, – firstLineHeadIndent (NSParagraphStyle)

3

 Classes: NSMutableParagraphStyle

setHeadIndent:
– (void)setHeadIndent:(float)aFloat

Sets the distance in points from the leading margin of a text container to the beginning of lines other than
the first to aFloat. This value must be nonnegative.

See also: – setFirstLineHeadIndent:, – setTailIndent:, – headIndent (NSParagraphStyle)

setLineBreakMode:
– (void)setLineBreakMode:(NSLineBreakMode)mode

Sets the mode used to break lines in a layout container to mode, which may be one of:

NSLineBreakByWordWrapping
NSLineBreakByCharWrapping
NSLineBreakByClipping
NSLineBreakByTruncatingHead
NSLineBreakByTruncatingTail
NSLineBreakByTruncatingMiddle

See the description of lineBreakMode in the NSParagraphStyle class specification for descriptions of these
values.

setLineSpacing:
– (void)setLineSpacing:(float)aFloat

Sets the space in points added between lines within the paragraph to aFloat. This value must be
nonnegative.

See also: – setMaximumLineHeight:, – setMinimumLineHeight: , – setParagraphSpacing:,
– lineSpacing (NSParagraphStyle)

setMaximumLineHeight:
– (void)setMaximumLineHeight:(float)aFloat

Sets the maximum height that any line in the paragraph style will occupy, regardless of the font size or size
of any attached graphic, to aFloat. Glyphs and graphics exceeding this height will overlap neighboring
lines; however, a maximum height of zero implies no line height limit. This value must be nonnegative.

Note: Although this limit applies to the line itself, line spacing adds extra space between adjacent lines.

See also: – setMinimumLineHeight: , – setLineSpacing:, – maximumLineHeight (NSParagraphStyle)

4

setMinimumLineHeight:
– (void)setMinimumLineHeight: (float)aFloat

Sets the minimum height that any line in the paragraph style will occupy, regardless of the font size or size
of any attached graphic, to aFloat. This value must be nonnegative.

See also: – setMaximumLineHeight:, – setLineSpacing:, – minimumLineHeight (NSParagraphStyle)

setParagraphSpacing:
– (void)setParagraphSpacing:(float)aFloat

Sets the space added at the end of the paragraph to separate it from the following paragraph to aFloat. This
value must be nonnegative.

See also: – setLineSpacing:, – paragraphSpacing (NSParagraphStyle)

setParagraphStyle:
– (void)setParagraphStyle:(NSParagraphStyle *)aStyle

Replaces the sub-attributes of the receiver with those in aStyle.

setTabStops:
– (void)setTabStops:(NSArray *)tabStops

Replaces the tab stops in the receiver with tabStops.

See also: – addTabStop:, – removeTabStop:, – tabStops (NSParagraphStyle)

setTailIndent:
– (void)setTailIndent:(float)aFloat

Sets the distance in points from the margin of a text container to the end of lines to aFloat. If positive, this
is the distance from the leading margin (for example, the left margin in left-to-right text). If zero or negative,
it’s the distance from the trailing margin.

For example, to create a paragraph style that fits exactly in a 2-inch wide container, set its head indent to
0.0 and its tail indent to 0.0. To create a paragraph style with quarter-inch margins, set its head indent to
0.25 and its tail indent to –0.25.

See also: – setHeadIndent:, – setFirstLineHeadIndent:, – tailIndent (NSParagraphStyle)

1

 Classes: NSOpenPanel

NSOpenPanel

Inherits From:

NSSavePanel : NSObject

Conforms To:

NSObject (NSObject)

Declared In:

AppKit/NSOpenPanel.h

Note:

The inheritance and conformance information shown above applies only to NSOpenPanel on
OpenStep for Windows. On Mach, NSOpenPanel inherits from (in this order) NSSavePanel,
NSPanel, NSWindow, NSResponder, and NSObject.

Class Description

NSOpenPanel provides the Open dialog on OpenStep for Windows or the Open panel on the OpenStep for
Mach user interface. Applications use the Open panel (or dialog) as a convenient way to query the user for
the name of a file to open. The Open panel can only be run modally.

Most of this class’s behavior is defined by its superclass, NSSavePanel. NSOpenPanel adds to this behavior
by:

• Letting you specify the types (by file-name extension) of the items that will appear in the panel
• Letting the user select files, directories, or both
• Letting the user select multiple items at a time

Typically, you access an NSOpenPanel by invoking the

openPanel

 method. When the class receives an

openPanel

 message, it tries to reuse an existing panel rather than create a new one. If a panel is reused, its
attributes are reset to the default values so that the effect is the same as receiving a new panel. Because Open
dialogs and panels may be reused, you shouldn’t modify the instance returned by

openPanel

 except through
the methods listed below (and through those inherited from NSSavePanel). For example, you can set the
panel’s title and whether it allows multiple selection, but not the arrangement of the buttons within the
panel. If you must modify the Open panel substantially, create and manage your own instance using the

alloc...

 and

 init...

 methods rather than the

openPanel

 method.

The following code example shows the NSOpenPanel displaying only files with extensions of ".td" and
allowing multiple selection. If the user makes a selection and clicks the OK button (that is,

runModalForDirectory:file:types:

 returns NSOKButton), this method opens each selected file:

2

- (void)openDoc:(id)sender

{

int result;

NSArray *fileTypes = [NSArray arrayWithObject:@"td"];

NSOpenPanel *oPanel = [NSOpenPanel openPanel];

[oPanel setAllowsMultipleSelection:YES];

result = [oPanel runModalForDirectory:NSHomeDirectory() file:nil

 types:fileTypes];

if (result == NSOKButton) {

NSArray *filesToOpen = [oPanel filenames];

int i, count = [filesToOpen count];

for (i=0; i<count; i++) {

NSString *aFile = [filesToOpen objectAtIndex:i];

id currentDoc = [[ToDoDoc alloc] initWithFile:aFile];

}

}

}

Method Types

Obtaining the shared instance
+ openPanel

Running the panel modally
– runModalForDirectory:file:types:
– runModalForTypes:

Getting the user selection
– filenames

Allowing browser selections
– setCanChooseFiles:
– canChooseFiles
– setCanChooseDirectories:
– canChooseDirectories

Allowing multiple selections
– setAllowsMultipleSelection:
– allowsMultipleSelection

3

 Classes: NSOpenPanel

Class Methods

openPanel

+ (NSOpenPanel *)

openPanel

Returns a "recycled" NSOpenPanel or, if one doesn’t yet exist, creates it before returning it. New and
recycled NSOpenPanels are reset to default values, which include selection of single files only.

Instance Methods

allowsMultipleSelection

– (BOOL)

allowsMultipleSelection

Returns whether the NSOpenPanel’s browser allows the user to open multiple files (and directories) at a
time. If multiple files or directories are allowed, then the

filename

 method—inherited from NSSavePanel—
returns a non-

nil

 value only if one and only one file is selected. By contrast, NSOpenPanel’s

filenames

method always returns the selected files, even if only one file is selected.

See also:

–

filename

(NSSavePanel), –

filenames

, –

setAllowsMultipleSelection:

canChooseDirectories

– (BOOL)

canChooseDirectories

Returns whether the Open dialog or panel allows the user to choose directories to open.

See also:

–

setCanChooseDirectories:

canChooseFiles

– (BOOL)

canChooseFiles

Returns whether the Open dialog or panel allows the user to choose files to open.

See also:

–

setCanChooseFiles:

filenames

– (NSArray *)

filenames

Returns an array containing the absolute paths (as NSString objects) of the selected files and directories. If
multiple selections aren’t allowed, the array contains a single name. The

filenames

 method is preferable
over NSSavePanel’s

filename

 to get the name or names of files and directories that the user has selected.

4

runModalForDirectory:file:types:

– (int)

runModalForDirectory:

(NSString *)

directory

file:

(NSString *)

filename

types:

(NSArray *)

fileTypes

Displays the NSOpenPanel and begins a modal event loop that is terminated when the user clicks either OK
or Cancel, resulting in the return of NSOKButton or NSCancelButton, respectively. The NSOpenPanel
displays the files in

directory

 (an absolute directory path) that match the types in

fileTypes

 (an NSArray of
file extensions). If

directory

 is

nil

 the default directory on Mach is the application directory; on Windows
the default directory is the root directory of the drive on which the application resides. If all files in a
directory should appear in the browser,

fileTypes

 should be

nil

. You can control whether directories and files
appear in the browser with the

setCanChooseDirectories:

 and

setCanChooseFiles:

 methods. The

filename

 argument specifies a particular file in

startDir

 that is selected when the Open dialog or panel is
presented to the user; otherwise,

filename

 should be

nil

.

See also:

–

runModalForTypes:

runModalForTypes:

– (int)

runModalForTypes:

(NSArray *)

fileTypes

Invokes the

runModalForDirectory:file:types:

 method, using

nil

 for both file and directory (see
description of

runModalForDirectory:file:types:

). The

fileTypes

 argument is an NSArray containing the
extensions of files to be shown in the browser. Returns NSOKButton (if the user clicks the OK button) or
NSCancelButton (if the user clicks the Cancel button).

setAllowsMultipleSelection:

– (void)

setAllowsMultipleSelection:

(BOOL)

flag

Sets whether the user can select multiple files (and directories) at one time for opening.

See also:

–

allowsMultipleSelection

setCanChooseDirectories:

– (void)

setCanChooseDirectories:

(BOOL)

flag

Sets whether the user can select directories in the NSOpenPanel’s browser. When a directory is selected,
the OK button is enabled only if

flag

 is YES.

See also:

–

canChooseDirectories

5

 Classes: NSOpenPanel

setCanChooseFiles:

– (void)

setCanChooseFiles:

(BOOL)

flag

Sets whether the user can select files in the NSOpenPanel’s browser or type the files to be accepted.

See also:

–

canChooseFiles

1

 Classes: NSOutlineView

NSOutlineView

Inherits From:

NSTableView : NSView : NSResponder : NSObject

Conforms To:

NSCoding (NSResponder)
NSObject (NSObject)

Declared In:

AppKit/NSOutlineView.h

2

Class at a GlanceˇClass at a Glance

Purpose

An NSOutlineView object uses a row-and-column format to display hierarchical data that can be expanded and
collapsed, such as directories and files in a file system. A user can expand and collapse rows, edit values, and
resize and rearrange columns.

Principal Attributes

• Expands and collapses rows
• Works with NSTableView
• Gets data from object you provide
• Retrieves only data that needs to be displayed
• Uses a delegate

Creation

Interface Builder
– initWithFrame: Designated initializer.

Commonly Used Methods

Class Description

Note: The NSOutlineView class and its supporting informal protocol NSOutlineDataSource are under
development and Interface Builder does not yet include support for working with it. If you want to use an
NSOutlineView, you can instantiate it programmatically, or, in Interface Builder, you can drag a table view
onto your interface and change its class name to NSOutlineView..

– dataSource:
Returns the object that provides the data to be displayed (method
of NSTableView).

– numberOfRows:
Returns the number of rows in the NSOutlineView (method of
NSTableView).

– collapseItem: Causes an item to be collapsed.

– expandItem: Causes an item to be expanded.

– reloadItem:reloadChildren:
Informs the NSOutlineView that data for an item has changed and
needs to be retrieved and redisplayed.

3

 Classes: NSOutlineView

Before reading about NSOutlineView, you should read the documentation for its parent class,
NSTableView. An NSOutlineView displays data for a set of related items, with rows representing individual
items and columns representing the attributes of those items. As with an NSTableView, each item in an
outline view represents a set of values for a particular real-world entity, such as an employee or a bank
account. In addition, NSOutlineView provides the ability to expand or collapse rows containing hierarchical
data.

An item in an NSOutlineView is

expandable

 if it can contain other items. An expandable item is
distinguished visually by an

expansion symbol

 that varies according to the operating system. On the
Macintosh, for example, an expandable item contains an

outline triangle

, which points to the right when
the item is collapsed and points down when the item is expanded. Clicking on the outline triangle causes it
to change position. It also causes the item to be expanded or collapsed, depending on the new state of the
outline triangle. An item can be expanded even if it contains no items.

Items inside an expanded item are indented. By default, as a user expands or collapses nested items, the
width of the column is resized so that it is just wide enough to display the widest item, based on the width
of the items and their indentation in the hierarchy. Justification follows the current system justification. To
turn off automatic resizing, use

setAutoResizesOutlineColumn:

. Note that an item may consist of text, an
image, or anything else that can be drawn by a subclass of NSCell.

An NSOutlineView is typically displayed in an NSScrollView, as shown below.

In this illustration, the NSOutlineView consists of just the rows and columns that display values. The header
is drawn by two auxiliary views: a header view that draws the column headers and a corner view that draws
the blank square above the vertical scroller. These auxiliary views are described in the documentation for
NSTableView.

4

Behavior Inherited from NSTableView

An outline view inherits much of its behavior from its parent class, NSTableView. As a result, many
operations supported by a table view, such as selecting rows or columns, repositioning columns by dragging
column headers, and so on, are also supported by an outline view. Your application has control of these
features, and can configure the view’s parameters to allow or disallow certain operations. For example, you
might choose not to allow editing or rearranging for specific columns.

The NSTableView class also provides methods for working with data, responding to mouse clicks, setting
grid attributes, editing cells, and performing other operations. For full information on these methods, see
the documentation for NSTableView.

Data Source Messages

For more information on NSOutlineView’s data source methods, see “Methods Implemented By the Data
Source”.

Delegate Messages

NSOutlineView adds several delegate messages to those defined by its superclass, NSTableView. In
addition, it redefines certain NSTableView delegate methods to be item-based instead of row-based.
Together, these methods give the delegate control over the appearance of individual cells in the table, over
changes in selection, and over editing of cells.

Delegate methods that request permission to alert the selection or edit a value are invoked during user
actions that affect the NSOutlineView, but are not invoked by programmatic changes to the view. When
making changes programmatically, you decide whether you want the delegate to intervene and, if so, you
send the appropriate message (checking first that the delegate responds to that message). Because the
delegate methods involve the actual data displayed by the NSOutlineView, the delegate is typically the same
object as the data source, though this is not a requirement.

NSOutlineView redefines these delegate messages based on similar messages in NSTableView:

outlineView:willDisplayCell:forTableColumn:item:

 informs the delegate that the
NSOutlineView is about to draw the cell specified by the passed column and item. The delegate can
modify the NSCell provided to alter the display attributes for that cell; for example, making
uneditable values display in italic or gray text.

outlineView:shouldSelectItem:

 and

outlineView:
shouldSelectTableColumn:

 give the delegate control over whether the user can select a specified
row or column (though the user can still reorder columns). This is useful for disabling a specified
row or column. For example, in a database client application, when a user is editing a record you
might want to not allow other users to select the same row.

selectionShouldChangeInOutlineView:

 allows the delegate to deny a change in selection. For
example, if the user is editing a cell and enters an improper value, the delegate can prevent the user
from selecting or editing any other cells until a proper value has been entered into the original

5

 Classes: NSOutlineView

cell.

outlineView:shouldEditTableColumn:item:

 asks the delegate whether it’s okay to edit the cell
specified by the passed column and item. The delegate can approve or deny the request.

NSOutlineView defines these additional delegate messages:

outlineView:shouldExpandItem:

 asks the delegate whether it’s okay to expand the specified item.

outlineView:willExpandItem: informs the delegate that the NSOutlineView is about to expand the
specified item.

outlineView:shouldCollapseItem: asks the delegate whether it’s okay to collapse the specified
item.

outlineView:willCollapseItem: informs the delegate that the NSOutlineView is about to expand the
specified item.

outlineView:willDisplayOutlineCell:forTableColumn:item: informs the delegate that the outline
view is about to display the cell that includes the expansion symbol.

In addition to these methods, the delegate is automatically registered to receive messages corresponding to
NSOutlineView notifications. These inform the delegate when the selection changes or is about to change,
when a column is moved or resized, and when an item is expanded or collapsed:

Method Types

Creating an instance
– initWithFrame:

Delegate Message Notification

outlineViewColumnDidMove: NSOutlineViewColumnDidMoveNotification

outlineViewColumnDidResize: NSOutlineViewColumnDidResizeNotification

outlineViewSelectionDidChange: NSOutlineViewSelectionDidChangeNotification

outlineViewSelectionIsChanging: NSOutlineViewSelectionIsChangingNotification

outlineViewItemDidExpand: NSOutlineViewItemDidExpandNotification

outlineViewItemDidCollapse: NSOutlineViewItemDidCollapseNotification

6

Expanding and collapsing the outline
– isExpandable:
– expandItem:
– expandItem:expandChildren:
– collapseItem:
– collapseItem:collapseChildren:
– isItemExpanded:

Redisplaying information
– reloadItem:
– reloadItem:reloadChildren:

Converting between items and rows
– itemAtRow:
– rowForItem:

Setting the outline column
– setOutlineTableColumn:
– outlineTableColumn

Setting the indentation
– levelForItem:
– levelForRow:
– setIndentationPerLevel:
– indentationPerLevel
– setIndentationMarkerFollowsCell:
– indentationMarkerFollowsCell

Persistence
autosaveExpandedItems
setAutosaveName:
setAutosaveExpandedItems:

Instance Methods

autoResizesOutlineColumn
– (BOOL) autoResizesOutlineColumn

Returns whether the outline view automatically resizes its outline column when the user exands or collapses
items. The outline column contains the cells with the expansion symbols and is generally the first column.
The default is YES (the outline column is automatically resized).

7

 Classes: NSOutlineView

autosaveExpandedItems
– (BOOL) autosaveExpandedItems

Returns whether the expanded items in this outline view are automatically saved.

The outline view information is saved separately for each user and for each application that user uses. Note
that if autosaveName returns nil , this setting is ignored and outline information isn’t saved.

See also: – autosaveName (NSTableView), – autosaveTableColumns (NSTableView),
 setAutosaveExpandedItems:

collapseItem:
– (void)collapseItem:(id)item

Collapses item if item is expanded and expandable, otherwise does nothing. If collapsing takes place, posts
item collapse notification.

See also: – expandItem:

collapseItem:collapseChildren:
– (void)collapseItem:(id)item

collapseChildren:(BOOL)collapseChildren

If collapseChildren is set to NO, collapses item only (identical to collapseItem:). If collapseChildren is set
to YES, recursively collapses item and its children. For each item that is collapsed, posts item collapsed
notification.

See also: – collapseItem:

expandItem:
– (void)expandItem:(id)item

Expands item if item is expandable and is not already expanded; otherwise, does nothing. If expanding takes
place, posts item expanded notification.

See also: – collapseItem:

8

expandItem:expandChildren:
– (void)expandItem:(id)item

expandChildren:(BOOL)expandChildren

If expandChildren is set to NO, expands item only (identical to expandItem:). If expandChildren is set to
YES, recursively expands item and its children. For each item that is expanded, posts item expanded
notification.

See also: – collapseItem:collapseChildren:

indentationMarkerFollowsCell
– (BOOL)indentationMarkerFollowsCell

Returns YES if the expansion symbol in an expanded item is displayed in the cell with the item and NO if
the symbol is displayed system-justified in the column. The default is YES.

See also: – setIndentationMarkerFollowsCell:

indentationPerLevel
– (float)indentationPerLevel

Returns current indentation per level, in points.

See also: – setIndentationPerLevel:

initWithFrame:
– (id)initWithFrame: (NSRect)frameRect

Initializes a newly allocated NSOutlineView with frameRect as its frame rectangle. This method is the
designated initializer for the NSOutlineView class. It calls the initWithFrame: method of its superclass,
NSTableView, then performs initialization specific to the outline view. It returns self.

The new NSOutlineView has a header view but has no columns; you can create NSTableColumn objects,
set their titles and attributes, and add them to the new view with addTableColumn:. You must also set the
NSOutlineView up in an NSScrollView with NSScrollView’s setDocView: method. For more information,
see the documentation for the NSTableView class.

It’s usually more convenient to create an NSOutlineView using Interface Builder, which allows you to
create an NSOutlineView already embedded in an NSScrollView, add and name the columns, and set up a
data source.

9

 Classes: NSOutlineView

isExpandable:
– (BOOL)isExpandable:(id)item

Returns YES if item is expandable—that is, item can contain other items.

See also: – expandItem:, – isItemExpanded:

isItemExpanded:
– (BOOL)isItemExpanded:(id)item

Returns YES if item is expanded.

See also: – expandItem:, – isExpandable:

itemAtRow:
– (id)itemAtRow: (int)row

Returns the item associated with row.

See also: – rowForItem:

levelForItem:
– (int)levelForItem:(id)item

Returns the indentation level for item.

See also: – indentationPerLevel, – levelForRow:

levelForRow:
– (int)levelForRow:(int)row

Returns the indentation level for row.

See also: – indentationPerLevel, – levelForItem:

10

outlineTableColumn
– (NSTableColumn *)outlineTableColumn

Returns the table column in which hierarchical data is displayed.

See also: – setOutlineTableColumn:

reloadItem:
– (void)reloadItem:(id)item

Reloads and redisplays the data for item.

See also: – reloadItem:reloadChildren:

reloadItem:reloadChildren:
– (void)reloadItem:(id)item

reloadChildren: (BOOL)reloadChildren

If reloadChildren is set to NO, reloads and redisplays the data for item only (identical to reloadItem:). If
reloadChildren is set to YES, recursively reloads and redisplays the data for item and its children. It is not
necessary, or efficient, to reload children if the item is not expanded.

See also: – reloadItem:

rowForItem:
– (int)rowForItem: (id)item

Returns the row associated with item.

See also: – itemAtRow:

setAutosaveName:
– (void)setAutosaveName:(NSString *)name

Sets the name under which outline view information is automatically saved to name. If name is different
from the current name, this method also reads in the saved information and sets the outline view’s options
to match. As part of its implementation, this method calls NSTableView’s setAutosaveName:.

The outline information is saved separately for each user and for each application that user uses.

11

 Classes: NSOutlineView

Note that even when a outline view has an autosave name, it may not be saving outline information
automatically. To set whether table information is being saved automatically, use
setAutosaveExpandedItems: and setAutosaveTableColumns: (NSTableView).

See also: autosaveName (NSTableView), setAutosaveTableColumns: (NSTableView),
setAutosaveExpandedItems:

setAutosaveExpandedItems:
– (void)setAutosaveExpandedItems:(BOOL)flag

Sets whether the expanded items in this outline view are automatically saved. If flag is different from the
current value, this method also reads in the saved information and sets the outline view’s options to match.

The outline information is saved separately for each user and for each application that user uses.

If autosaveName returns nil or if you haven’t implemented the data source methods outlineView:
itemForPersistentObject: and outlineView:persistentObjectForItem:, this setting is ignored and
expanded item information isn’t saved.

Note that you can have separate settings for autosaveExpandedItems and autosaveTableColumns, so you
could, for example, save expanded item information, but not table column positions.

See also: autosaveExpandedItems, setAutosaveName:, setAutosaveTableColumns: (NSTableView)

- (void)setAutoResizesOutlineColumn: (BOOL)resize
– (void)setAutoResizesOutlineColumn:(BOOL)resize

Sets whether the outline view automatically resizes its outline column when the user exands or collapses an
item. The outline column contains the cells with the expansion symbols and is generally the first column.
The default is YES (the outline column is automatically resized).

setIndentationMarkerFollowsCell:
– (void)setIndentationMarkerFollowsCell:(BOOL)drawInCell

Sets whether the expansion symbol in an item should be displayed in the cell with the item or left-justified
in the column. The default is YES (the symbol is displayed in the cell).

See also: – indentationMarkerFollowsCell

12

setIndentationPerLevel:
– (void)setIndentationPerLevel:(float)newIndentLevel

Sets indentation per level, in points, to newIndentLevel.

See also: – indentationPerLevel

setOutlineTableColumn:
– (void)setOutlineTableColumn: (NSTableColumn *)outlineTableColumn

Sets the table column in which hierarchical data is displayed to outlineTableColumn.

See also: – outlineTableColumn

Methods Implemented By the Data Source

outlineView:child:ofItem:
– (id)outlineView:(NSOutlineView *)outlineView

child: (int)index
ofItem: (id)item

Implemented by the data-source delegate. Children of a given parent item are accessed sequentially. This
method should return the child item at the specified index. If item is nil , this method should return the
appropriate child item of the root object.

See also: – outlineView:numberOfChildrenOfItem:

outlineView:isItemExpandable:
– (BOOL)outlineView:(NSOutlineView *)outlineView isItemExpandable:(id)item

Implemented by the data-source delegate. This method should return true if item can be expanded to display
its children.

outlineView:itemForPersistentObject:
– (id)outlineView:(NSOutlineView *)outlineView itemForPersistentObject:(id)object;

Implemented by the data-source delegate. Returns the item for the archived object. If the item is an archived
object, this may return the object. You must implement this method if you are automatically saving
expanded items (that is, autoSaveExpandedItems returns YES). When the outline view is restoring the

13

 Classes: NSOutlineView

saved expanded items, this method is called for each expanded item, to translate the archived object to an
outline view item.

See also:

outlineView:numberOfChildrenOfItem:
– (int)outlineView:(NSOutlineView *)outlineView numberOfChildrenOfItem: (id)item

Implemented by the data-source delegate. This method returns the number of child items encompassed by
item. If item is nil , this method should return the number of children for the top-level item.

outlineView:objectValueForTableColumn:byItem:
– (id)outlineView:(NSOutlineView *)outlineView

objectValueForTableColumn:(NSTableColumn *)tableColumn
byItem: (id)item

Implemented by the data-source delegate. Returns the data object associated with the specified item. The
item is located in the specified tableColumn of the view.

outlineView:persistentObjectForItem:
– (id)outlineView:(NSOutlineView *)outlineView persistentObjectForItem:(id)item;

Implemented by the data-source delegate. Returns an archived object for item. If the item is an archived
object, this may return the item. You must implement this method if you are automatically saving expanded
items (that is, autoSaveExpandedItems returns YES). When the outline view is saving the expanded items,
this method is called for each expanded item, to translate the outline view item to an archived object.

outlineView:setObjectValue:forTableColumn:byItem:
– (void)outlineView:(NSOutlineView *)outlineView

setObjectValue:(id)object
forTableColumn: (NSTableColumn *)tableColumn
byItem: (id)item

Implemented by the data-source delegate. Sets the data object for the specified item. The object parameter
contains the data to be set. The item is located in the specified tableColumn of the view.

14

Methods Implemented By the Delegate

Outline views support a data-source delegate in addition to the regular delegate object. The data-source
delegate provides data and information about that data to the outline view. The regular delegate object
handles all other delegate responsibilities for the outline view.

outlineViewColumnDidMove:
– (void)outlineViewColumnDidMove:(NSNotification *)notification

Invoked whenever the user moves a column in the outline view. This method is invoked as a result of posting
an NSOutlineViewColumnDidMoveNotification.

See also: NSOutlineViewColumnDidMoveNotification (notification)

outlineViewColumnDidResize:
– (void)outlineViewColumnDidResize:(NSNotification *)notification

Invoked whenever the user resizes a column in the outline view. This method is invoked as a result of
posting an NSOutlineViewColumnDidResizeNotification.

See also: NSOutlineViewColumnDidResizeNotification (notification)

outlineViewItemDidCollapse:
– (void)outlineViewItemDidCollapse:(NSNotification *)notification

Invoked whenever the user collapses an item in the outline view. This method is invoked as a result of
posting an NSOutlineViewItemDidCollapseNotification.

See also: NSOutlineViewItemDidCollapseNotification (notification)

outlineViewItemDidExpand:
– (void)outlineViewItemDidExpand: (NSNotification *)notification

Invoked whenever the user expands an item in the outline view. This method is invoked as a result of posting
an NSOutlineViewItemDidExpandNotification.

See also: NSOutlineViewItemDidExpandNotification (notification)

15

 Classes: NSOutlineView

outlineViewItemWillCollapse:
– (void)outlineViewItemWillCollapse: (NSNotification *)notification

Invoked whenever the user is about to collapse an item in the outline view. This method is invoked as a result
of posting an NSOutlineViewItemWillCollapseNotification

outlineViewItemWillExpand:
– (void)outlineViewItemWillExpand: (NSNotification *)notification

Invoked whenever the user is about to expand an item in the outline view. This method is invoked as a result
of posting an NSOutlineViewItemWillExpandNotification

outlineViewSelectionDidChange:
– (void)outlineViewSelectionDidChange:(NSNotification *)notification

Invoked immediately after the outline view’s selection has changed. This method is invoked as a result of
posting an NSOutlineViewSelectionDidChangeNotification.

See also: NSOutlineViewSelectionDidChangeNotification (notification)

outlineViewSelectionIsChanging:
– (void)outlineViewSelectionIsChanging:(NSNotification *)notification

Invoked whenever the outline view’s selection changes. This method is invoked as a result of posting an
NSOutlineViewSelectionIsChangingNotification.

See also: NSOutlineViewSelectionIsChangingNotification (notification)

outlineView:shouldCollapseItem:
– (BOOL)outlineView:(NSOutlineView *)outlineView

shouldCollapseItem:(id)item

Returns YES to permit outlineView to collapse item, NO to deny permission. The delegate can implement
this method to disallow collapsing of specific items.

16

outlineView:shouldEditTableColumn:item:
– (BOOL)outlineView:(NSOutlineView *)outlineView

shouldEditTableColumn:(NSTableColumn *)tableColumn
item:(id)item

Returns YES to permit outlineView to edit the cell specified by tableColumn and item, NO to deny
permission. The delegate can implement this method to disallow editing of specific cells.

outlineView:shouldExpandItem:
– (BOOL)outlineView:(NSOutlineView *)outlineView

shouldExpandItem:(id)item

Returns YES to permit outlineView to expand item, NO to deny permission. The delegate can implement
this method to disallow expanding of specific items.

outlineView:shouldSelectItem:
– (BOOL)outlineView:(NSOutlineView *)outlineView

shouldSelectItem:(id)item

Returns YES to permit outlineView to select item, NO to deny permission. The delegate can implement this
method to disallow selection of particular items.

outlineView:shouldSelectTableColumn:
– (BOOL)outlineView:(NSOutlineView *)outlineView

shouldSelectTableColumn:(NSTableColumn *)tableColumn

Returns YES to permit outlineView to select tableColumn, NO to deny permission. The delegate can
implement this method to disallow selection of specific columns.

17

 Classes: NSOutlineView

outlineView:willDisplayCell:forTableColumn:item:
– (void)outlineView:(NSOutlineView *)outlineView

willDisplayCell: (id)cell
forTableColumn: (NSTableColumn *)tableColumn
item:(id)item

Informs the delegate that outlineView is about to display the cell specified by tableColumn and item. The
delegate can modify cell to alter its display attributes; for example, making uneditable values display in
italic or gray text. outlineView:willDisplayOutlineCell:forTableColumn:item:

– (BOOL)outlineView:(NSOutlineView *)outlineView
willDisplayOutlineCell: (id)cell
forTableColumn: (NSTableColumn *)tableColumn
item:(id)item

Informs the delegate that outlineView is about to display cell (the cell used to draw the expansion symbol)
for the column and item specified by tableColumn and item. The delegate can modify cell to alter its display
attributes.

selectionShouldChangeInOutlineView:
– (BOOL)selectionShouldChangeInOutlineView:(NSOutlineView *)outlineView

Returns YES to permit outlineView to change its selection (typically a row being edited), NO to deny
permission. For example, if the user is editing a cell and enters an improper value, the delegate can prevent
the user from selecting or editing any other cells until a proper value has been entered into the original cell.
The delegate can implement this method for complex validation of edited rows based on the values of any
of their cells.

Notifications

NSOutlineViewColumnDidMoveNotification

Posted whenever a column is moved by user action in the NSOutlineView.

18

This notification contains a notification object and a userInfo dictionary. The notification object is the
NSOutlineView in which a column moved. The userInfo dictionary contains these keys and values:

See also: – moveColumn:toColumn: (NSTableView)

NSOutlineViewColumnDidResizeNotification

Posted whenever a column is resized in the NSOutlineView.

This notification contains a notification object and a userInfo dictionary. The notification object is the
NSOutlineView in which a column was resized. The userInfo dictionary contains these keys and values:

NSOutlineViewItemDidCollapseNotification

Posted whenever an item is collapsed.

This notification contains a notification object and a userInfo dictionary. The notification object is the
NSOutlineView in which an item was collapsed. The userInfo dictionary contains these keys and values:

NSOutlineViewItemDidExpandNotification

Posted whenever an item is expanded.

Key Value

NSOldColumn The column's original index (an NSNumber)

NSNewColumn The column's present index (an NSNumber)

Key Value

NSOldWidth The column's original width (an NSNumber)

Key Value

NSObject The item that was collapsed (an id)

19

 Classes: NSOutlineView

This notification contains a notification object and a userInfo dictionary. The notification object is the
NSOutlineView in which an item was expanded. The userInfo dictionary contains these keys and values:

NSOutlineViewSelectionDidChangeNotification

Posted after the NSOutlineView's selection changes.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSOutlineView whose selection changed.

NSOutlineViewSelectionIsChangingNotification

Posted as the NSOutlineView's selection changes (while the mouse is still down).

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSOutlineView whose selection is changing.

Key Value

NSObject The item that was expanded (an id)

1

 Classes: NSPageLayout

NSPageLayout

Inherits From: NSObject

Note: On Mach platforms, NSPageLayout inherits from NSPanel.

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSPageLayout.h

Class Description

NSPageLayout is a panel that queries the user for information such as paper type and orientation. This
information is stored in an NSPrintInfo object, and is later used when printing. The NSPageLayout panel
is created, displayed, and run (in a modal loop) when a runPageLayout: message is sent to the
NSApplication object. By default, this message is sent up the responder chain when the user chooses the
Page Setup menu item (on Mach platforms the menu item is called Page Layout).

Typically, you access an NSPageLayout panel by invoking the pageLayout method. When the class
receives a pageLayout message, it returns an existing panel rather than create a new one. If a panel is
reused, its attributes are reset to the default values so that the effect is the same as receiving a new panel.
Because the NSPageLayout object returned by pageLayout may be reused, you should only modify it using
methods explicitly declared by NSPageLayout. If you must modify an NSPageLayout object in other ways,
don’t modify the object returned by pageLayout; instead, create and manage your own instance using the
alloc... and init... methods.

In most cases it is unnecessary to subclass NSPageLayout—you can customize an NSPageLayout by
specifying your own accessory view. You can add your own controls to an NSPageLayout through the
setAccessoryView: method. The panel is automatically resized to accommodate the NSView that you’ve
added. Note that NSPageLayout does not have accessor methods to obtain the state of its controls. If
controls you add through an accessory view need to know the values of existing controls (or vice versa) use
the viewWithTag: method. You obtain a specific control object by sending viewWithTag: to the
NSPageLayout object passing one of the following tags (enumerated in AppKit/NSPageLayout.h):

NSPLImageButton
NSPLTitleField
NSPLPaperNameButton
NSPLUnitsButton
NSPLWidthForm
NSPLHeightForm
NSPLOrientationMatrix

2

NSPLCancelButton
NSPLOKButton

The value can then be obtained by sending an appropriate accessor message to the returned control object.

Method Types

Creating an NSPageLayout
+ pageLayout

Running an NSPageLayout
– runModal
– runModalWithPrintInfo:

Customizing an NSPageLayout
– accessoryView
– setAccessoryView:

Accessing the NSPrintInfo
– printInfo
– readPrintInfo
– writePrintInfo

Updating the display
– convertOldFactor:newFactor:
– pickedButton:
– pickedOrientation:
– pickedPaperSize:
– pickedUnits:

Class Methods

pageLayout
+ (NSPageLayout *)pageLayout

Returns a shared NSPageLayout object or a newly created one if it doesn’t already exist.

3

 Classes: NSPageLayout

Instance Methods

accessoryView
– (NSView *)accessoryView

Returns the receiver’s accessory view (used to customize the receiver).

See also: – setAccessoryView:

convertOldFactor:newFactor:
– (void)convertOldFactor:(float *)old

newFactor:(float *)new

This method is for Mach platforms only—it is not defined for other platforms. The standard unit used to
measure a paper’s dimensions is a point (for example, NSPrintInfo defines a paper’s size in points).
However, the user can select a different unit of measurement from the NSPageLayout panel. Use this
method to get the ratio between a point and the currently selected unit of measurement. Unless this method
is invoked by pickedUnits: both old and new will be set to the same ratio value.

The pickedUnits: method is invoked when the user selects a new unit of measurement from the
NSPageLayout panel. Subclasses should override the pickedUnits: method to update any controls, located
on the accessory view, that display dimensional values. Use this method to get the old and new ratios. See
pickedUnits: for details.

pickedButton:
– (void)pickedButton:(id)sender

This method is for Mach platforms only—it is not defined for other platforms. Invoked when either the OK
or Cancel buttons are clicked, and stops the receiver’s modal loop. If the OK button was clicked, this method
verifies that the height, width and scale entries are acceptable (they must hold positive numbers). If not, the
unacceptable entry is selected and the panel isn’t stopped. Subclasses should override this method to verify
that the controls on the accessory view contain acceptable values.

See also: – pickedOrientation: , – pickedPaperSize:, – pickedUnits:

4

pickedOrientation:
– (void)pickedOrientation: (id)sender

This method is for Mach platforms only—it is not defined for other platforms. Invoked when the user selects
a page orientation (i.e., portrait or landscape). This method updates the height and width fields, and redraws
the paper view.

See also: – pickedButton:, – pickedPaperSize:, – pickedUnits:

pickedPaperSize:
– (void)pickedPaperSize:(id)sender

This method is for Mach platforms only—it is not defined for other platforms. Invoked when the user selects
a paper size from the paper size list. Updates the height and width fields, redraws the paper view, and may
switch the portrait/landscape orientation.

See also: – pickedButton:, – pickedOrientation: , – pickedUnits:

pickedUnits:
– (void)pickedUnits:(id)sender

This method is for Mach platforms only—it is not defined for other platforms. Invoked when the user selects
a new unit of measurement from the Units list. The height and width fields are updated.

Subclasses should override this method to update controls in the accessory view that contain unit values.
The ratios returned by the convertOldFactor:newFactor: method should be used to calculate the new
values as shown below, where myField is an NSTextField located on the accessory view that needs to be
updated:

- pickedUnitsLsender

{

float old, new;

/* At this point the units have been selected but not set. */

[self convertOldFactor:&old newFactor:&new];

/* Update myField based on the conversion factors. */

[myField setFloatValue:([myField floatValue]*new/old)];

/* Set the selected units. */

return [super pickedUnits:sender];

}

See also: – pickedButton:, – pickedOrientation: , – pickedPaperSize:

5

 Classes: NSPageLayout

printInfo
– (NSPrintInfo *)printInfo

Returns the NSPrintInfo object that is used when the receiver is run (set using the runModal or
runModalWithPrintInfo: methods).

See also: – readPrintInfo , – writePrintInfo

readPrintInfo
– (void)readPrintInfo

Sets the receiver’s values to those stored in the NSPrintInfo object used when the receiver is run.

See also: – printInfo , – writePrintInfo , – runModal , – runModalWithPrintInfo:

runModal
– (int)runModal

Displays the receiver and begins the modal loop. The receiver’s values are recorded in the shared
NSPrintInfo object. Returns NSCancelButton if the user clicks the Cancel button, otherwise returns
NSOKButton.

See also: – pickedButton:, – runModalWithPrintInfo:

runModalWithPrintInfo:
– (int)runModalWithPrintInfo: (NSPrintInfo *)printInfo

Displays the receiver and begins the modal loop. The receiver’s values are recorded in printInfo. Returns
NSCancelButton if the user clicks the Cancel button, otherwise returns NSOKButton.

See also: – pickedButton:, – runModal

setAccessoryView:
– (void)setAccessoryView:(NSView *)aView

Adds an NSView to the receiver. Invoke this method to add a custom view containing your controls. The
receiver is automatically resized to accommodate aView. This method can be invoked repeatedly to change
the accessory view depending on the situation. If aView is nil , then the receiver’s current accessory view, if
any, is removed.

See also: – accessoryView

6

writePrintInfo
– (void)writePrintInfo

Writes the receiver’s values to the NSPrintInfo object used when the receiver is run.

See also: – printInfo , – readPrintInfo , – runModal , – runModalWithPrintInfo:

1

 Classes: NSPanel

NSPanel

Inherits From: NSWindow : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPanel.h

Class Description

A panel is a special kind of window, typically serving an auxiliary function in an application. NSPanel adds
a few special behaviors to NSWindow in support of the role panels play:

• Panels are by default not released when they’re closed, since they’re usually lightweight and often reused.

• On-screen panels, except for attention panels, are removed from the screen when the application isn’t
active, and are restored when the application again becomes active. This reduces screen clutter.

• Panels can become the key window, but not the main window.

• If a panel is the key window and has a close button, it closes itself when the user presses the Escape key.

In addition to these automatic behaviors, NSPanel allows you to configure certain other behaviors common
to some kinds of panels:

• A panel can be precluded from becoming the key window unless the user clicks in a view that responds
to typing. This prevents key window from shifting to the panel unnecessarily. The
setBecomesKeyOnlyIfNeeded: method controls this behavior.

• Palettes and similar panels can be made to float above standard windows and other panels. This prevents
them from being covered and keeps them readily available to the user. The setFloatingPanel: method
controls this behavior.

• A panel can be made to receive mouse and keyboard events even when another window or panel is being
run modally or run in a modal session. This permits actions in the panel to affect the modal window or
panel. The setWorksWhenModal: method controls this behavior. See “Modal Windows” in the
NSWindow class specification for more information on modal windows and panels.

2

Method Types

Configuring panel behavior
– setFloatingPanel:
– isFloatingPanel
– setBecomesKeyOnlyIfNeeded:
– becomesKeyOnlyIfNeeded
– setWorksWhenModal:
– worksWhenModal

Instance Methods

becomesKeyOnlyIfNeeded
– (BOOL)becomesKeyOnlyIfNeeded

Returns YES if the receiver becomes the key window only when the user clicks a view object that needs to
be first responder to receive event and action messages; for example if it edits text or otherwise accepts
keyboard input. Returns NO if it becomes the key window whenever clicked. NSPanel by default returns
NO, indicating that panels become key as other windows do.

See also: – setBecomesKeyOnlyIfNeeded:, – needsPanelToBecomeKey (NSView)

isFloatingPanel
– (BOOL)isFloatingPanel

Returns YES if the receiver is set to float above normal windows, NO otherwise. A floating panel’s window
level is NSFloatingWindowLevel. NSPanels by default returns NO, indicating that they inhabit the normal
window level.

See also: – setFloatingPanel:, – level (NSWindow)

setBecomesKeyOnlyIfNeeded:
– (void)setBecomesKeyOnlyIfNeeded:(BOOL)flag

Controls whether the receiver only becomes the key window when the user clicks a view object that edits
text or otherwise accepts keyboard input. If flag is YES, the receiver only becomes the key window when
keyboard input is needed; if flag is NO, it becomes the key window whenever clicked. This behavior is by
default not set. You should consider setting it only if most controls in the NSPanel aren’t text fields, and if

3

 Classes: NSPanel

the choices that can be made by entering text can also be made in another way (such as by clicking an item
in a pick list).

See also: – becomesKeyOnlyIfNeeded, – needsPanelToBecomeKey (NSView)

setFloatingPanel:
– (void)setFloatingPanel:(BOOL)flag

Controls whether the receiver floats above normal windows. If flag is YES, sets the receiver’s window level
to NSFloatingWindowLevel; if flag is NO, sets the receiver’s window level to NSNormalWindowLevel. The
default is NO. It’s appropriate for an NSPanel to float above other windows only if all of the following
conditions are true:

• It’s small enough not to obscure whatever’s behind it.

• It’s oriented more to the mouse than to the keyboard—that is, if it doesn’t become the key window or
becomes so only when needed.

• It needs to remain visible while the user works in the application’s normal windows; for example, if the
user must frequently move the cursor back and forth between a normal window and the panel (such as a
tool palette), or if the panel gives information relevant to the user’s actions in a normal window.

• It hides when the application is deactivated (the default behavior for panels).

See also: – isFloatingPanel, – setLevel: (NSWindow)

setWorksWhenModal:
– (void)setWorksWhenModal:(BOOL)flag

Controls whether the receiver receives keyboard and mouse events even when some other window is being
run modally. If flag is YES, the application object sends events to the receiver even during a modal loop or
session; if flag is NO, the receiver gets no events while a modal loop or session is running. See “Modal
Windows” in the NSWindow class specification for more information on modal windows and panels.

See also: – worksWhenModal, – runModalForWindow: (NSApplication), – runModalSession:
 (NSApplication)

worksWhenModal
– (BOOL)worksWhenModal

Returns YES if the receiver is able to receive keyboard and mouse events even when some other window is
being run modally, NO otherwise. NSPanels by default returns NO, indicating their ineligibility for events

4

during a modal loop or session. See “Modal Windows” in the NSWindow class specification for more
information on modal windows and panels.

See also: – setWorksWhenModal:, – runModalForWindow: (NSApplication), – runModalSession:
 (NSApplication)

1

 Classes: NSParagraphStyle

NSParagraphStyle

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: AppKit/NSParagraphStyle.h

Class Description

NSParagraphStyle and its subclass NSMutableParagraphStyle encapsulate the paragraph or ruler attributes
used by the NSAttributedString classes. Instances of these classes are often referred to as paragraph style
objects, or when no confusion will result, as paragraph styles.

A paragraph style object represents a complex attribute value in an attributed string, storing a number of
sub-attributes that affect paragraph layout for the characters of the string. Among these sub-attributes are
alignment, tab stops, and indents. See the method descriptions for more information on each sub-attribute.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

NSMutableCopying
– mutableCopyWithZone:

Method Types

Creating an NSParagraphStyle
+ defaultParagraphStyle

2

Accessing style information
– alignment
– firstLineHeadIndent
– headIndent
– tailIndent
– tabStops
– lineBreakMode
– maximumLineHeight
– minimumLineHeight
– lineSpacing
– paragraphSpacing

Class Methods

defaultParagraphStyle
+ (NSParagraphStyle *)defaultParagraphStyle

Returns the default paragraph style, which contains these values:

See individual method descriptions for explanations of each sub-attribute.

Instance Methods

alignment
– (NSTextAlignment)alignment

Returns the text alignment of the paragraph style, one of:

 NSLeftTextAlignment
 NSRightTextAlignment
 NSCenterTextAlignment

Sub-Attribute Default Value

Alignment NSNaturalTextAlignment

Tab stops 12 left-aligned tabs, spaced by 28.0 points

Line break mode NSLineBreakByWordWrapping

All others 0.0

3

 Classes: NSParagraphStyle

 NSJustifiedTextAlignment
 NSNaturalTextAlignment

Natural text alignment is realized as left or right alignment depending on the line sweep direction of the first
script contained in the paragraph.

See also: – setAlignment: (NSMutableParagraphStyle)

firstLineHeadIndent
– (float)firstLineHeadIndent

Returns the distance in points from the leading margin of a text container to the beginning of the paragraph’s
first line. This value is always nonnegative.

See also: – headIndent, – tailIndent , – setFirstLineHeadIndent: (NSMutableParagraphStyle)

headIndent
– (float)headIndent

Returns the distance in points from the leading margin of a text container to the beginning of lines other
than the first. This value is always nonnegative.

See also: – firstLineHeadIndent , – tailIndent , – setHeadIndent: (NSMutableParagraphStyle)

4

lineBreakMode
– (NSLineBreakMode)lineBreakMode

Returns the mode that should be used to break lines when laying out the paragraph’s text. This is one of:

See also: – setLineBreakMode: (NSMutableParagraphStyle)

lineSpacing
– (float)lineSpacing

Returns the space in points added between lines within the paragraph (commonly known as leading). This
value is always nonnegative.

See also: – maximumLineHeight, – minimumLineHeight , – paragraphSpacing, – setLineSpacing:
 (NSMutableParagraphStyle)

maximumLineHeight
– (float)maximumLineHeight

Returns the maximum height that any line in the paragraph style will occupy, regardless of the font size or
size of any attached graphic. Glyphs and graphics exceeding this height will overlap neighboring lines;
however, a maximum height of zero implies no line height limit. This value is always nonnegative. The
default value is zero.

Value Meaning

NSLineBreakByWordWrapping
Wrapping occurs at word boundaries, unless the word itself doesn’t fit
on a single line.

NSLineBreakByCharWrapping Wrapping occurs before the first character that doesn’t fit.

NSLineBreakByClipping Lines are simply not drawn past the edge of the text container.

NSLineBreakByTruncatingHead
Each line is displayed so that the end fits in the container and the
missing text is indicated by some kind of ellipsis glyph.

NSLineBreakByTruncatingTail
Each line is displayed so that the beginning fits in the container and
the missing text is indicated by some kind of ellipsis glyph.

NSLineBreakByTruncatingMiddle
Each line is displayed so that the beginning and end fit in the container
and the missing text is indicated by some kind of ellipsis glyph in the
middle.

5

 Classes: NSParagraphStyle

Note: Although this limit applies to the line itself, line spacing adds extra space between adjacent lines.

See also: – minimumLineHeight , – lineSpacing, – setMaximumLineHeight:
 (NSMutableParagraphStyle)

minimumLineHeight
– (float)minimumLineHeight

Returns the minimum height that any line in the paragraph style will occupy, regardless of the font size or
size of any attached graphic. This value is always nonnegative.

See also: – maximumLineHeight, – lineSpacing, – setMinimumLineHeight:
 (NSMutableParagraphStyle)

paragraphSpacing
– (float)paragraphSpacing

Returns the space added at the end of the paragraph to separate it from the following paragraph. This value
is always nonnegative.

See also: – lineSpacing, – setParagraphSpacing: (NSMutableParagraphStyle)

tabStops
– (NSArray *)tabStops

Returns the NSTextTab objects, sorted by location, that define the tab stops for the paragraph style.

See also: – location (NSTextTab), – setTabStops: (NSMutableParagraphStyle), – addTabStop:
 (NSMutableParagraphStyle), – removeTabStop: (NSMutableParagraphStyle)

tailIndent
– (float)tailIndent

Returns the distance in points from the margin of a text container to the end of lines. If positive, this is the
distance from the leading margin (for example, the left margin in left-to-right text). If zero or negative, it’s
the distance from the trailing margin.

6

For example, a paragraph style designed to fit exactly in a 2-inch wide container has a head indent of 0.0
and a tail indent of 0.0. One designed to fit with a quarter-inch margin has a head indent of 0.25 and a tail
indent of –0.25.

See also: – headIndent, – firstLineHeadIndent , – setTailIndent: (NSMutableParagraphStyle)

1

 Classes: NSPasteboard

NSPasteboard

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSPasteboard.h

Class at a GlanceˇClass at a Glance

Purpose
An NSPasteboard object is an interface to a pasteboard server that allows you to transfer data between
applications, as in copy, cut, and paste operations. The data can be placed in the pasteboard server in a variety of
representations.

Principal Attributes
• Owners • Change count
• Data types • Name

Creation
+ generalPasteboard
+ pasteboardWithName:

Commonly Used Methods

– types Returns an NSArray of pasteboard data types.

– declareTypes:owner: Prepares NSPasteboard to receive new data.

– dataForType: Reads data from a pasteboard.

– setData:forType: Writes data to a pasteboard.

– stringForType: Reads an NSString from a pasteboard.

– setStringForType: Writes an NSString to a pasteboard.

2

Class Description

NSPasteboard objects transfer data to and from the pasteboard server. The server is shared by all running
applications. It contains data that the user has cut or copied, as well as other data that one application wants
to transfer to another. NSPasteboard objects are an application’s sole interface to the server and to all
pasteboard operations.

Named Pasteboards

Data in the pasteboard server is associated with a name that indicates how it’s to be used. Each set of data
and its associated name is, in effect, a separate pasteboard, distinct from the others. An application keeps a
separate NSPasteboard object for each named pasteboard that it uses. There are five standard pasteboards
in common use:

Each standard pasteboard is identified by a unique name (stored in global string objects):

• NSGeneralPboard
• NSFontPboard
• NSRulerPboard
• NSFindPboard
• NSDragPboard

You can create private pasteboards by asking for an NSPasteboard object with any name other than those
listed above. Data in a private pasteboard may then be shared by passing its name between applications.

Pasteboard Description

General pasteboard
The pasteboard that’s used for ordinary cut, copy, and paste operations. It
holds the contents of the last selection that’s been cut or copied.

Font pasteboard
The pasteboard that holds font and character information and supports Copy
Font and Paste Font commands that my be implemented in a text editor.

Ruler pasteboard
The pasteboard that holds information about paragraph formats in support of
the Copy Ruler and Paste Ruler commands that may be implemented in a text
editor.

Find pasteboard

The pasteboard that holds information about the current state of the active
application’s Find panel. This information permits users to enter a search string
into the Find panel, then switch to another application to conduct another
search.

Drag pasteboard The pasteboard that stores data to be moved as the result of a drag operation.

3

 Classes: NSPasteboard

The NSPasteboard class makes sure there’s never more than one object for each named pasteboard on the
computer. If you ask for a new object when one has already been created for the pasteboard with that name,
the existing object will be returned.

Data Types

Data can be placed in the pasteboard server in more than one representation. For example, an image might
be provided both in Tag Image File Format (TIFF) and as encapsulated PostScript code (EPS). Multiple
representations give pasting applications the option of choosing which data type to use. In general, an
application taking data from the pasteboard should choose the richest representation it can handle—rich text
over plain ASCII, for example. An application putting data in the pasteboard should promise to supply it in
as many data types as possible, so that as many different applications as possible can use it.

Filtering services transform the data from one representation to another. Typically, these services aren’t
invoked until data is read from a pasteboard.

Data types are identified by NSString objects containing the full type name. These global variables identify
the string objects for the standard pasteboard types:

Type Description

NSColorPboardType NSColor data

NSFileContentsPboardType A representation of a file’s contents

NSFilenamesPboardType NSString designating one or more file names

NSFontPboardType Font and character information

NSPostScriptPboardType Encapsulated PostScript code (EPS)

NSRulerPboardType Paragraph formatting information

NSRTFPboardType Rich Text Format (RTF)

NSRTFDPboardType RTFD formatted file contents

NSSelectionPboardType Describes a selection for use with data linking

NSStringPboardType NSString data

NSTabularTextPboardType NSString containing tab-separated fields of text

NSTIFFPboardType Tag Image File Format (TIFF)

4

Typically, data is written to the pasteboard using setData:forType: and read using dataForType:. Some of
these types can only be written with certain methods. For instance, NSFilenamesPboardType’s form is an
array of NSStrings and requires special handling. Use these methods to write these types:

You don’t have to write the data (using setData:forType:) in all types that you’ve declared for the
pasteboard: This avoids unneeded conversions. If data is requested from a pasteboard in a format that’s not
present, the owner of the pasteboard receives a pasteboard:provideDataForType: message notifying it
that it needs to supply the data in that format. It then supplies data in the requested type by invoking one of
the setData:forType:, setString:forType:, or setPropertyList:forType: methods on the pasteboard.

The class methods pasteboardByFilteringData:ofType:, pasteboardByFilteringFile:, and
pasteboardByFilteringTypesInPasteboard: return a pasteboard with data that is filtered into all types
derivable from the current types using available filter services. (For more information on filter services see
/NextLibrary/Documentation/NextDev/TasksAndConcepts/ProgrammingTopics/Services.rtf.) The
pasteboards returned by these methods are autoreleased instances of NSPasteboard.

Types other than those listed above can also be used. For example, your application may keep data in a
private format that’s richer than any of the existing types. That format can also be used as a pasteboard type.

Reading and Writing RTFD Data

The NSRTFDPboardType is used for the contents of an RTFD file package (a directory containing an RTF
text file and one or many EPS and TIFF image files). There are several ways to work with RTFD data. If
you have an NSFileWrapper object that represents an RTFD file wrapper, you can send it the
serializedRepresentation method to return the RTFD data and write that to the pasteboard as follows:

NSFileWrapper *tempRTFDData = [[[NSFileWrapper alloc]

initWithPath:@"/tmp/foo.rtfd"] autorelease];

[pboard setData:[tempRTFDData serializedRepresentation]

forType:NSRTFDPboardType];

In addition to NSFileWrapper, classes such as NSAttributedString and NSText can return RTFD data. If
you’re using one of these classes, you would do the following to write RTFD data to the pasteboard:

Type Writing Method Reading Method

NSColorPboardType NSColor class methods NSColor class methods

NSFileContentsPboardType writeFileContents: readFileContentsType:toFile:

NSFilenamesPboardType setPropertyList:forType: propertyListForType:

NSStringPboardType setString:forType: stringForType:

5

 Classes: NSPasteboard

NSAttributedString *attrString;

...

[pboard setData:[attrString RTFDFromRange:NSMakeRange(0, [attrString length])]

forType:NSRTFDPboardType];

Change Count

The change count is a computer-wide variable that increments every time the contents of the pasteboard
changes (a new owner is declared). An independent change count is maintained for each named pasteboard.
By examining the change count, an application can determine whether the current data in the pasteboard is
the same as the data it last received.

The changeCount, addTypes:owner:, and declareTypes:owner: methods return the change count. A
types or availableTypeFromArray: message should be sent by the pasteboard before reading data so that
the change count is valid.

Errors

Except where errors are specifically mentioned in the method descriptions, any communications error with
the pasteboard server raises an NSPasteboardCommunicationException.

Method Types

Creating and releasing an NSPasteboard object
+ generalPasteboard
+ pasteboardByFilteringData:ofType:
+ pasteboardByFilteringFile:
+ pasteboardByFilteringTypesInPasteboard:
+ pasteboardWithName:
+ pasteboardWithUniqueName
+ typesFilterableTo:
– releaseGlobally

Referring to a pasteboard by name
– name

Writing data
– addTypes:owner:
– declareTypes:owner:
– setData:forType:
– setPropertyList:forType:
– setString:forType:
– writeFileContents:
– writeFileWrapper:

6

Determining Types
– availableTypeFromArray:
– types

Reading Data
– changeCount
– dataForType:
– propertyListForType:
– readFileContentsType:toFile:
– readFileWrapper
– stringForType:

Methods Implemented by the Owner
– pasteboardChangedOwner:
– pasteboard:provideDataForType:

Class Methods

generalPasteboard
+ (NSPasteboard *)generalPasteboard

Returns the general NSPasteboard. This invokes pasteboardWithName: to obtain the pasteboard.

pasteboardByFilteringData:ofType:
+ (NSPasteboard *)pasteboardByFilteringData:(NSData *)data ofType:(NSString *)type

Creates and returns a new pasteboard with a unique name that supplies data in as many types as possible
given the available filter services. The returned pasteboard also declares data of the supplied type type.

No filter service is invoked until the data is actually requested, so invoking this method is reasonably
inexpensive.

pasteboardByFilteringFile:
+ (NSPasteboard *)pasteboardByFilteringFile:(NSString *)filename

Creates and returns a new pasteboard with a unique name that supplies the data in filename in as many types
as possible given the available filter services. No filter service is invoked until the data is actually requested,
so invoking this method is reasonably inexpensive.

7

 Classes: NSPasteboard

pasteboardByFilteringTypesInPasteboard:
+ (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:(NSPasteboard *)pasteboard

Creates and returns a new pasteboard with a unique name that supplies the data on pasteboard in as many
types as possible given the available filter services. This process can be thought of as expanding the
pasteboard, since the new pasteboard generally will contain more representations of the data than
pasteboard.

This method returns pasteboard if pasteboard was returned by one of the pasteboardByFiltering...
methods, so a pasteboard can’t be expanded multiple times. This method only returns the original types and
the types that can be created as a result of a single filter; the pasteboard will not have defined types that are
the result of translation by multiple filters.

No filter service is invoked until the data is actually requested, so invoking this method is reasonably
inexpensive.

pasteboardWithName:
+ (NSPasteboard *)pasteboardWithName:(NSString *)name

Returns the pasteboard for the name pasteboard. A new object is created only if the application doesn’t yet
have a NSPasteboard object for the specified name; otherwise, the existing one is returned. To get a standard
pasteboard, name should be one of the following variables:

NSGeneralPboard
NSFontPboard
NSRulerPboard
NSFindPboard
NSDragPboard

Other names can be assigned to create private pasteboards for other purposes.

pasteboardWithUniqueName
+ (NSPasteboard *)pasteboardWithUniqueName

Creates and returns a new pasteboard with a name that is guaranteed to be unique with respect to other
pasteboards on the computer. This method is useful for applications that implement their own interprocess
communication using pasteboards.

8

typesFilterableTo:
+ (NSArray *)typesFilterableTo:(NSString *)type

Returns an autoreleased array listing the types of data that type can be converted to by available filter
services. The array contains the original type.

Instance Methods

addTypes:owner:
– (int)addTypes:(NSArray *)newTypes owner:(id)newOwner

Adds the data types in newTypes to the NSPasteboard and declares a new owner newOwner. This method
can be useful when multiple entities (such as a combination of application and library methods) contribute
data for a single copy command. It should only be invoked after a declareTypes:owner: message has been
sent for the same types. The owner for the new types may be different from the owner(s) of the previously
declared types.

Returns the new change count, or 0 in case of an error.

See also: – changeCount

availableTypeFromArray:
– (NSString *)availableTypeFromArray: (NSArray *)types

Scans the types defined by types and returns the first type that matches a type declared on the receiving
NSPasteboard.

A types or availableTypeFromArray: message should be sent before reading any data from the
NSPasteboard.

changeCount
– (int)changeCount

Returns the NSPasteboard’s change count.

See also: – declareTypes:owner:

9

 Classes: NSPasteboard

dataForType:
– (NSData *)dataForType:(NSString *)dataType

Reads the dataType representation of the current contents of the NSPasteboard. dataType should be one of
the types returned by the types method. A types or availableTypeFromArray: message should be sent
before invoking dataForType:.

If the data is successfully read, this method returns the data. It returns nil if the contents of the pasteboard
have changed (if the change count has been incremented by a declareTypes:owner: message) since they
were last checked with the types method. It also returns nil if the pasteboard server can’t supply the data in
time—for example, if the NSPasteboard’s owner is slow in responding to a pasteboard:
provideDataForType: message and the interprocess communication times out. All other errors raise an
NSPasteboardCommunicationException exception.

If nil is returned, the application should put up a panel informing the user that it was unable to carry out the
paste operation.

The NSData object that this method returns is autoreleased.

declareTypes:owner:
– (int)declareTypes:(NSArray *)newTypes owner:(id)newOwner

Prepares the NSPasteboard for a change in its contents by declaring the new types of data it will contain
and a new owner. This is the first step in responding to a user’s copy or cut command and must precede the
messages that actually write the data. A declareTypes:owner: message essentially changes the contents of
the pasteboard: It invalidates the current contents of the pasteboard and increments its change count.

newTypes is an array of NSStrings that name types the new contents of the pasteboard may assume. The
types should be ordered according to the preference of the source application, with the most preferred type
coming first (typically, the richest representation).

The newOwner is the object responsible for writing data to the pasteboard in all the types listed in newTypes.
You can write the data immediately after declaring the types, or wait until it’s required for a paste operation.
If you wait, the owner will receive a pasteboard:provideDataForType: message requesting the data in a
particular type when it’s needed. You might choose to write data immediately for the most preferred type,
but wait for the others to see whether they’ll be requested.

The newOwner can be NULL if data is provided for all types immediately. Otherwise, the owner should be
an object that won’t be released. It should not, for example, be the NSView that displays the data if that
NSView is in a window that might be closed.

Returns the pasteboard’s new change count.

See also: – setString:forType:, – addTypes:owner:, – changeCount

10

name
– (NSString *)name

Returns the NSPasteboard’s name.

See also: + pasteboardWithName:

propertyListForType:
– (id)propertyListForType: (NSString *)dataType

Returns a property list object using the type specified by dataType.

 A property list is an object of the NSArray, NSData, NSDictionary, or NSString classes—or any
combination thereof.

A types or availableTypeFromArray: message should be sent before invoking propertyListForType: .

This method invokes dataForType:.

See also: – setPropertyList:forType:

readFileContentsType:toFile:
– (NSString *)readFileContentsType:(NSString *)type toFile:(NSString *)filename

Reads data representing a file’s contents from the NSPasteboard, and writes it to the file filename. An
availableTypeFromArray: or types message should be sent before invoking readFileContentsType:
toFile:.

Data of any file contents type should only be read using this method. type should generally be specified; if type
is NULL, a type based on filename’s extension (as returned by the NSCreateFileContentsPboardType
function) is substituted. If data matching type isn’t found on the NSPasteboard, data of type
NSFileContentsPboardType is requested. Returns the name of the file that the data was actually written to.

See also: – writeFileContents:

readFileWrapper
– (NSFileWrapper *)readFileWrapper;

Reads data representing a file’s contents from the NSPasteboard and returns it as a file wrapper. If there is
no data of type NSFileContentsPboardType on the pasteboard, this method returns NULL.

11

 Classes: NSPasteboard

releaseGlobally
– (void)releaseGlobally

Releases the NSPasteboard’s resources in the pasteboard server. Since an NSPasteboard object is an
autoreleased instance of NSPasteboard, it isn’t released by this method, and its retain count isn’t changed.

After this method is invoked, no other application will be able to use the named NSPasteboard. A temporary,
privately named pasteboard can be released this way when it’s no longer needed, but a standard
NSPasteboard should never be released globally.

setData:forType:
– (BOOL)setData:(NSData *)data forType:(NSString *)dataType

Writes data to the pasteboard server. dataType gives the type of data being written; it must be a type that
was declared in the previous declareTypes:owner: message. data points to the data to be sent to the
pasteboard server.

Returns YES if the data is successfully written or returns NO if ownership of the pasteboard has changed.
Any other error raises an NSPasteboardCommunicationException.

See also: – setPropertyList:forType: , – setString:forType:

setPropertyList:forType:
– (BOOL)setPropertyList:(id)propertyList forType:(NSString *)dataType

Writes data to the pasteboard server. dataType gives the type of data being written; it must be a type that
was declared in the previous declareTypes:owner: message. propertyList points to the data to be sent to
the pasteboard server.

This method invokes setData:forType: with a serialized property list parameter.

Returns YES if the data is successfully written or returns NO if ownership of the pasteboard has changed.
Any other error raises an NSPasteboardCommunicationException.

See also: – setString:forType:

setString:forType:
– (BOOL)setString:(NSString *)string forType:(NSString *)dataType

Writes data to the pasteboard server. dataType gives the type of data being written; it must be a type that
was declared in the previous declareTypes:owner: message. string points to the data to be sent to the
pasteboard server.

12

This method invokes setPropertyList:forType: to perform the write.

Returns YES if the data is successfully written or returns NO if ownership of the pasteboard has changed.
Any other error raises an NSPasteboardCommunicationException.

See also: – setData:forType:, – setString:forType:

stringForType:
– (NSString *)stringForType: (NSString *)dataType

Returns an NSString using the type specified by dataType. A types or availableTypeFromArray: message
should be sent before invoking stringForType: .

This method invokes propertyListForType: to obtain the string.

types
– (NSArray *)types

Returns an array of the NSPasteboard’s data types.

Returns an array of the types that were declared for the current contents of the NSPasteboard. The array is
an array of NSStrings holding the type names. Types are listed in the same order that they were declared.

A types or availableTypeFromArray: message should be sent before reading any data from the
NSPasteboard.

See also: – declareTypes:owner:, – dataForType:

writeFileContents:
– (BOOL)writeFileContents:(NSString *)filename

Writes the contents of the file filename to the NSPasteboard object and declares the data to be of type
NSFileContentsPboardType and also of a type appropriate for the file’s extension (as returned by the
NSCreateFileContentsPboardType function when passed the files extension), if it has one. Returns YES
if the data from filename was successfully written to the NSPasteboard and NO otherwise.

See also: – readFileContentsType:toFile:

13

 Classes: NSPasteboard

writeFileWrapper:
– (BOOL)writeFileWrapper: (NSFileWrapper *)wrapper;

Writes the serialized contents of the filewrapper wrapper to the NSPasteboard object, and declares the data
to be of type NSFileContentsPboardType and also of a type appropriate for the file’s extension (as returned
by the NSCreateFileContentsPboardType function when passed the file’s extension), if it has one. If
wrapper does not have a preferred filename, this method raises an exception. Returns YES if it could
successfully write the data from wrapper to the NSPasteboard; and returns NO, otherwise.

Methods Implemented by the Owner

pasteboardChangedOwner:
– (void)pasteboardChangedOwner:(NSPasteboard *)sender

Notifies a prior owner of the sender pasteboard (and owners of representations on the pasteboard) that the
pasteboard has changed owners. This method is optional and need only be implemented by pasteboard
owners that need to know when they have lost ownership. The owner is not able to read the contents of the
pasteboard when responding to this method. The owner should be prepared to receive this method at any
time, even from within the declareTypes:owner: used to declare ownership.

See also: – changeCount

pasteboard:provideDataForType:
– (void)pasteboard:(NSPasteboard *)sender

provideDataForType:(NSString *)type

Implemented by the owner (previously declared in a declareTypes:owner: message) to provide promised
data. The owner receives a pasteboard:provideDataForType: message from the sender pasteboard when
the data is required for a paste operation; type gives the type of data being requested. The requested data
should be written to sender using the setData:forType:, setPropertyList:forType: , or setString:forType:
methods.

pasteboard:provideDataForType: messages may also be sent to the owner when the application is shut
down through Application's terminate: method. This is the method that’s invoked in response to a Quit
command. Thus the user can copy something to the pasteboard, quit the application, and still paste the data
that was copied.

A pasteboard:provideDataForType: message is sent only if type data hasn’t already been supplied.
Instead of writing all data types when the cut or copy operation is done, an application can choose to
implement this method to provide the data for certain types only when they’re requested.

14

If an application writes data to the NSPasteboard in the richest, and therefore most preferred, type at the
time of a cut or copy operation, its pasteboard:provideDataForType: method can simply read that data
from the pasteboard, convert it to the requested type, and write it back to the pasteboard as the new type.

1

 Classes: NSPICTImageRep

NSPICTImageRep

Inherits From: NSImageRep : NSObject

Conforms To: NSCoding (from NSImageRep)
NSCopying (from NSImageRep)
NSObject (from NSObject)

Declared In: AppKit/NSPICTImageRep.h

Class Description

An NSPICTImageRep is an object that can render an image from a PICT format data stream as described
in Inside Macintosh: Imaging With QuickDraw. This includes PICT format version 1, version 2, and
extended version 2 pictures.

Warning: There is no guarantee that the image will render exactly the same as it would under QuickDraw
because of the differences between Display PostScript and QuickDraw. In particular, some
transfer modes and region operations may not be supported.

Like most other kinds of NSImageReps, an NSPICTImageRep is generally used indirectly, through an
NSImage object. An NSImage must be able to choose from among various representations of a given image.
It also needs to provide an off-screen cache of the appropriate depth for any image it uses. It determines this
information by querying its NSImageReps.

Thus to work with an NSImage, an NSPICTImageRep must be able to provide some information about its
image. The bounding box is obtained from the PICT format data. Use these methods, inherited from the
NSImageRep class, to set the other attributes of an NSPICTImageRep object:

setColorSpaceName:
setAlpha:
setPixelsHigh:
setPixelsWide:
setBitsPerSample:

Note that if these attributes aren’t set, and an NSPICTImageRep is used in an NSImage with other
representations, NSImage won’t be able to select from among the representations. In actual practice, this
usually isn’t a problem.

2

Method Types

Creating an NSPICTImageRep
+ imageRepWithData:
– initWithData:

Getting image data
– boundingBox
– PICTRepresentation

Class Methods

imageRepWithData:
+ (id)imageRepWithData:(NSData *)pictData

Creates a new NSPICTImageRep instance and then invokes initWithData: to initialize it with the contents
of pictData, a PICT format data stream. If the new object can’t be initialized for any reason (for example,
pictData doesn’t conform to the PICT file format), this method frees the receiver and returns nil . Otherwise,
it returns a new instance of NSPICTImageRep.

See also: – PICTRepresentation

Instance Methods

boundingBox
– (NSRect)boundingBox

Returns the rectangle that bounds the image. The rectangle is obtained from the PICT format data,
specifically the picFrame field in the picture header. See Inside Macintosh: Imaging With QuickDraw for
information on the picture header.

initWithData:
– (id)initWithData: (NSData *)pictData

Initializes the receiver, a newly allocated NSPICTImageRep object, with the contents of pictData, a PICT
format data stream. If pictData is obtained directly from a PICT file or document, it contains a 512-byte
header before the actual picture data starts. This method simply ignores that header. If the new object can’t
be initialized for any reason (for example, pictData doesn’t conform to the PICT file format), this method
frees the receiver and returns nil . Otherwise, it returns self.

See also: + imageRepWithData:, – PICTRepresentation

3

 Classes: NSPICTImageRep

PICTRepresentation
– (NSData *)PICTRepresentation

Returns the PICT representation of the receiver. The returned PICT data is a copy of the data supplied to
initWithData: minus the 512 byte header if it is present. Note, PICT files or documents contain a 512-byte
header, so if you wish to save the returned data to a file you need to precede the data with 512 bytes (all
zero) to conform to the PICT document format.

1

 Classes: NSPopUpButton

NSPopUpButton

Inherits From: NSButton : NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSPopUpButton.h

Class at a GlanceˇClass at a Glance

Purpose
An NSPopUpButton object controls a pop-up list or a pull-down list, from which a user can select an item.

Principal Attribute
A list of objects that conform to the NSMenuItem protocol.

Creation
Interface Builder

Commonly Used Methods

Class Description

The NSPopUpButton class defines objects that implement the pop-up and pull-down lists of the OpenStep
graphical user interface. You normally create an NSPopUpButton using Interface Builder.

When configured to display a pop-up list, an NSPopUpButton contains a number of options and usually
displays the option that was last selected. A pop-up list is often used for selecting items from a small- to

– selectedItem Returns the currently selected item.

– indexOfSelectedItem Returns an integer identifying the currently selected item.

– titleOfSelectedItem Returns a string identifying the currently selected item.

2

medium-sized set of options (like the zoom factor for a document window). It’s a useful alternative to a
matrix of radio buttons or an NSBrowser or NSTableView when screen space is at a premium; a zoom factor
pop-up can easily fit next to a scroll bar at the bottom of a window, for example.

When configured to display a pull-down list, an NSPopUpButton is generally used for selecting commands
in a very specific context. You can think of a pull-down list as a compact form of menu. A pull-down list’s
display isn’t affected by the user’s actions, and a pull-down list usually displays the first item in the list.
When the commands only make sense in the context of a particular display, a pull-down list can be used in
that display to keep the related actions nearby and to keep them out of the way when that display isn’t
visible.

The items in the pop-up list or pull-down list (referred to simply as a list in this class description) are objects
that conform to the NSMenuItem protocol. Thus, you can send any message defined in that protocol to any
item in the list.

Using an NSPopUpButton

Although the NSPopUpButton class defines an initialization method and methods that set up the list created
by this class, you usually don’t invoke these methods in your program. The typical way to create an
NSPopUpButton is to use Interface Builder. You can define the NSPopUpButton’s target and action, as well
as the targets and actions of each item in the NSPopUpButton’s list, programmatically or through Interface
Builder. The NSPopUpButton methods you use most often are the methods that tell you which item is
selected.

For example, suppose you want to create a pop-up list from which your user may select a language. You
want your controller object to set an instance variable named language to an enum constant that
corresponds to the value that the user has chosen. You use Interface Builder to create the NSPopUpButton
object, name it (languagePopUp in this example) add items to it, and configure it as a pop-up list. The
actual code you write might look like this:

typedef enum _languageValue {

English,

French,

German

} languageValue;

- (void)setLanguage:(id)sender{

NSString *title = [languagePopUp titleOfSelectedItem];

if ([title isEqualToString:@"English"])

language = English;

else if ([title isEqualToString:@"French"])

language = French;

else if ([title isEqualToString:@"German"])

language = German;

}

3

 Classes: NSPopUpButton

Method Types

Initializing an NSPopUpButton
– initWithFrame:pullsDown:

Setting the type of list
– setPullsDown:
– pullsDown
– setAutoenablesItems:
– autoenablesItems

Inserting and deleting Items
– addItemWithTitle:
– addItemsWithTitles:
– insertItemWithTitle:atIndex:
– removeAllItems
– removeItemWithTitle:
– removeItemAtIndex:

Getting the user’s selection
– selectedItem
– titleOfSelectedItem
– indexOfSelectedItem

Setting the current selection
– selectItem:
– selectItemAtIndex:
– selectItemWithTitle:

Getting menu items
– numberOfItems
– itemArray
– itemAtIndex:
– itemTitleAtIndex:
– itemTitles
– itemWithTitle:
– lastItem

Getting the indices of menu items
– indexOfItem:
– indexOfItemWithTag:
– indexOfItemWithTitle:
– indexOfItemWithRepresentedObject:
– indexOfItemWithTarget:andAction:

Setting the cell edge to pop out from in restricted situations
– preferredEdge
– setPreferredEdge:

4

Setting the font
– setFont:

Setting the title
– setTitle:

Setting the state
– synchronizeTitleAndSelectedItem

Instance Methods

addItemWithTitle:
– (void)addItemWithTitle: (NSString *)title

Adds an item named title to the end of the list. This method then calls synchronizeTitleAndSelectedItem
to make sure that the item displayed matches the currently selected item.

See also: – insertItemWithTitle:atIndex: , – removeItemWithTitle: , – setTitle:

addItemsWithTitles:
– (void)addItemsWithTitles: (NSArray *)itemTitles

Adds multiple items to the end of the list. The titles for the new items are taken from the itemTitles array.
Once the items are added, this method uses synchronizeTitleAndSelectedItem to make sure that the item
displayed matches the currently selected item.

See also: – insertItemWithTitle:atIndex: , – removeAllItems, – removeItemWithTitle:

autoenablesItems
– (BOOL)autoenablesItems

Returns whether the NSPopUpButton automatically enables and disables its items every time a user event
occurs. Autoenabling is turned on unless you send the message setAutoenablesItems:NO to the
NSPopUpButton. See the NSMenuActionResponder informal protocol for more information on
autoenabling menu items.

See also: – setAutoenablesItems:

5

 Classes: NSPopUpButton

indexOfItem:
– (int)indexOfItem: (id <NSMenuItem>)anObject

Returns the index of menu item anObject in the pop-up list or -1 if the menu item is not found. This method
invokes the method of the same name of its NSPopUpButtonCell.

indexOfItemWithRepresentedObject:
– (int)indexOfItemWithRepresentedObject:(id)anObject

Returns the index of the first menu item in the pop-up list that holds the represented object anObject, or -1
if no menu item with this object is found. Represented objects bear some direct relation to the title or image
of a menu item; for example, an item entitled “100” might have an NSNumber encapsulating that value as
its represented object. This method invokes the method of its NSPopUpButtonCell that has the same name.

indexOfItemWithTag:
– (int)indexOfItemWithTag: (int)tag

Returns the index of the first menu item in the pop-up list that has the tag value tag or -1 if the item is not
found. This method invokes the method of the same name of its NSPopUpButtonCell.

indexOfItemWithTarget:andAction:
– (int)indexOfItemWithTarget: (id)target andAction:(SEL)actionSelector

Returns the index of the first menu item in the pop-up list that has the target of target and the action
actionSelector. If actionSelector is NULL, the index of the first menu item in the pop-up list that has a target
of target is returned. If no menu item matching the above criteria is found, -1 is returned. This method
invokes the method of the same name of its NSPopUpButtonCell.

indexOfItemWithTitle:
– (int)indexOfItemWithTitle: (NSString *)title

Returns the index of the first item whose title matches title or –1 if no match is found.

6

indexOfSelectedItem
– (int)indexOfSelectedItem

Returns the index of the item last selected by the user or –1 if there’s no selected item.

See also: – selectedItem, – titleOfSelectedItem

initWithFrame:pullsDown:
– (id)initWithFrame: (NSRect)frameRect pullsDown:(BOOL)flag

Initializes a newly allocated NSPopUpButton, giving it the dimensions specified by frameRect. If flag is
YES, the receiver is initialized to operate as a pull-down list; otherwise, it operates as a pop-up list. I

See also: – pullsDown, – setPullsDown:

insertItemWithTitle:atIndex:
– (void)insertItemWithTitle: (NSString *)title atIndex:(int)index

Inserts an item with the name title at position index in the list. Index 0 indicates the top item. Once the item
is inserted, this method uses synchronizeTitleAndSelectedItem to make sure that the item displayed
matches the currently selected item.

If an item with the name title already exists in the list, it’s removed and the new one is added. This
essentially moves title to a new position. If you want to move an item, it’s better to invoke
removeItemWithTitle: explicitly and then send this method.

See also: – addItemWithTitle: , – addItemsWithTitles:, – indexOfItemWithTitle: ,
– removeItemWithTitle:

itemArray
– (NSArray *)itemArray

Returns the NSArray that holds the list’s items. The NSPopUpButton’s list is actually an NSArray of
objects conforming to the NSMenuItem protocol. Usually you access the list’s items and modify the list by
sending messages directly to the NSPopUpButton rather than accessing the NSArray.

See also: – itemAtIndex: , – insertItemWithTitle:atIndex: , – removeItemAtIndex:

7

 Classes: NSPopUpButton

itemAtIndex:
– (id <NSMenuItem>)itemAtIndex: (int)index

Returns the list item at index. If there is no item at index, this method returns nil .

See also: – itemWithTitle: , – lastItem

itemTitleAtIndex:
– (NSString *)itemTitleAtIndex: (int)index

Returns the title of the item at index. If there is no item at index, this method returns the empty string.

See also: – itemTitles

itemTitles
– (NSArray *)itemTitles

Returns an NSArray object that holds the titles of all of the items in the list. The titles appear in the order
in which the items appear in the list.

See also: – itemTitleAtIndex: , – itemWithTitle: , – numberOfItems

itemWithTitle:
– (id <NSMenuItem>)itemWithTitle: (NSString *)title

Returns the first item whose title is title. If there is no item with this title, this method returns nil .

See also: – addItemWithTitle: , – selectItemWithTitle: , – itemAtIndex: , – indexOfItemWithTitle:

lastItem
– (id <NSMenuItem>)lastItem

Returns the last item in the list.

See also: – itemAtIndex:

8

numberOfItems
– (int)numberOfItems

Returns the number of items in the list.

See also: – lastItem

preferredEdge
– (NSRectEdge)preferredEdge

Returns the edge of the receiver next to which the pop-up list is displayed under restrictive screen
conditions. For pull-down lists, the default behavior is to display the list under the receiver. For most pop-up
lists, NSPopUpButton attempts to show the selected item directly over the button.

See also: – setPreferredEdge:

pullsDown
– (BOOL)pullsDown

Returns YES if the receiver is configured as a pull-down list or NO if it’s configured as a pop-up list.

See also: – setPullsDown:

removeAllItems
– (void)removeAllItems

Removes all items in the receiver’s item list. This method then uses synchronizeTitleAndSelectedItem to
refresh the list.

See also: – numberOfItems, – removeItemAtIndex:, – removeItemWithTitle:

removeItemAtIndex:
– (void)removeItemAtIndex:(int)index

Removes the item at index. This method then uses synchronizeTitlesAndSelectedItem to make sure the
title displayed matches the currently selected item.

See also: – insertItemWithTitle:atIndex: , – removeAllItems, – removeItemWithTitle:

9

 Classes: NSPopUpButton

removeItemWithTitle:
– (void)removeItemWithTitle: (NSString *)title

Removes the first item named title. This method then uses synchronizeTitleAndSelectedItem to refresh
the list.

See also: – addItemWithTitle: , – removeAllItems, – removeItemAtIndex:

selectedItem
– (id <NSMenuItem>)selectedItem

Returns the item last selected by the user (the item that was highlighted when the user released the mouse
button). If there is no selected item, this method returns nil . It is possible for a pull-down list’s selected item
to be its first item.

selectItem:
– (void)selectItem(id <NSMenuItem>)anObject

Selects the menu item anObject in the pop-up list. If anObject is nil , all items in the list are deselected (this
is a technique for obtaining a pop-up list with no items selected).

selectItemAtIndex:
– (void)selectItemAtIndex:(int)index

Selects the item in the list at index and invokes synchronizeTitleAndSelectedItem to make sure the title
displayed matches the currently selected item. If index is -1 all items in the list are deselected.

See also: – indexOfSelectedItem

selectItemWithTitle:
– (void)selectItemWithTitle: (NSString *)title

Selects the first item with the given title and invokes synchronizeTitleAndSelectedItem to make sure the
title displayed matches the currently selected item.

See also: – indexOfItemWithTitle: , – addItemWithTitle: , – setTitle:

10

setAutoenablesItems:
– (void)setAutoenablesItems:(BOOL)flag

Sets whether the NSPopUpButton automatically enables and disables its items every time a user event
occurs. Autoenabling is turned on unless you specify NO as the value for flag. See the
NSMenuActionResponder informal protocol for more information on autoenabling menu items.

See also: – autoenablesItems

setFont:
– (void)setFont:(NSFont *)fontObject

Sets the font used for the items’ titles to fontObject. The NSPopUpButton invalidates its display at this
point, but since it normally won’t be on the screen when it receives this message, this shouldn’t cause any
undesirable side-effects.

setPreferredEdge:
– (void)setPreferredEdge:(NSRectEdge)edge

Sets the edge of the receiver next to which the pop-up list should appear under restrictive screen conditions.
For pull-down lists, the default behavior is to display the list under the receiver. For most pop-up lists,
NSPopUpButton attempts to show the selected item directly over the button.

See also: – preferredEdge

setPullsDown:
– (void)setPullsDown:(BOOL)flag

If flag is YES, the receiver is configured as a pull-down list. If flag is NO, the receiver is configured as a
pop-up list.

See also: – initWithFrame:pullsDown: , – pullsDown

setTitle:
– (int)setTitle:(NSString *)aString

<<forthcoming>>

11

 Classes: NSPopUpButton

synchronizeTitleAndSelectedItem
– (void)synchronizeTitleAndSelectedItem

Ensures that the item being displayed by the receiver agrees with the selected item (see
indexOfSelectedItem). If there’s no selected item, this method selects the first item in the item list and sets
the receiver’s item to match. For pull-down lists, this method makes sure that the first item is being
displayed (the NSPopUpButtonCell must be set to use the selected menu item, which happens by default).

See also: – itemArray

titleOfSelectedItem
– (NSString *)titleOfSelectedItem

Returns the title of the item last selected by the user or the empty string if there’s no such item.

See also: – indexOfSelectedItem

Notifications

NSPopUpButtonWillPopUpNotification

Posted when the NSPopUpButton receives a mouse-down event; that is, when the user is about to select an
item from the list. This notification contains a notification object but no userInfo dictionary. The notification
object is the selected NSPopUpButton.

1

 Classes: NSPrinter

NSPrinter

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrinter.h

Class Description

An NSPrinter object describes a printer's capabilities, such as whether the printer can print in color and
whether it provides a particular font. An NSPrinter object represents either a particular make or type of
printer, or an actual printer available to the computer. You use NSPrinter to get information about printers,
not modify printer attributes or control a printing job.

There are two ways to create an NSPrinter:

• To create an abstract object that provides information about a type of printer rather than an object that
represents an actual printer device, use the printerWithType: class method, passing a printer type (an
NSString) as the argument. The printerTypes class method provides a list of printer types, model names
recognized by the computer. Printer types are described in files written in PostScript Printer Description
(PPD) format. The location of these files is platform dependent.

• Use the printerWithName: class method to create or find an NSPrinter that corresponds to an actual
printer device. Use the printerNames class method to get a list of recognized printer names.

Once you have an NSPrinter, there's only one thing you can do with it: retrieve information regarding the
type of printer or regarding the actual printer the object represents.

When you create an NSPrinter object, the object reads the file that corresponds to the type of printer, a
model name, you specified and stores the data it finds there in named tables. Printer types are described in
files written in the PostScript Printer Description (PPD) format. Any piece of information in the PPD tables
can be retrieved through the methods stringForKey:inTable: and stringListForKey:inTable: , as explained
later. Commonly needed items, such as whether a printer supports color or the size of the page on which it
prints, are available through more direct methods (methods such as isColor and pageSizeForPaper:).

Note: To understand what the NSPrinter tables contain, you need to be acquainted with the PPD file format.
This is described in PostScript Printer Description File Format Specification, version 4.0, available
from Adobe Systems Incorporated. The rest of this class description assumes a familiarity with the
concepts and terminology presented in the Adobe manual. A brief summary of the PPD format is
given below; PPD terms defined in the Adobe manual are shown in italic.

2

PPD Format

A PPD file statement, or entry, associates a value with a main keyword:

*mainKeyword: value

The asterisk is literal; it indicates the beginning of a new entry.

For example:

*ModelName: "MMimeo Machine"

*3dDevice: False

A main keyword can be qualified by an option keyword:

*mainKeyword optionKeyword: value

For example:

*PaperDensity Letter: "0.1"

*PaperDensity Legal: "0.2"

*PaperDensity A4: "0.3"

*PaperDensity B5: "0.4"

In addition, any number of entries may have the same main keyword with no option keyword yet give
different values:

*InkName: ProcessBlack/Process Black

*InkName: CustomColor/Custom Color

*InkName: ProcessCyan/Process Cyan

*InkName: ProcessMagenta/Process Magenta

*InkName: ProcessYellow/Process Yellow

Option keywords and values can sport translation strings. A translation string is a textual description,
appropriate for display in a user interface, of the option or value. An option or value is separated from its
translation string by a slash:

*Resolution 300dpi/300 dpi: " ... "

*InkName: ProcessBlack/Process Black

In the first example, the 300dpi option would be presented in a user interface as “300 dpi.” In the second
example, the translation string for the ProcessBlack value is set to “Process Black”.

NSPrinter treats entries that have an *OrderDependency or *UIConstraint main keyword specially. Such
entries take the following forms (the bracketed elements are optional):

*OrderDependency: real section mainKeyword [optionKeyword]

*UIConstraint: mainKeyword1 [optionKeyword1] mainKeyword2 [optionKeyword2]

There may be more than one UIConstraint entry with the same mainKeyword1 or
mainKeyword1/optionKeyword1 value. Below are some examples of *OrderDependency and
*UIConstraint entries:

3

 Classes: NSPrinter

*OrderDependency: 10 AnySetup *Resolution

*UIConstraint: *Option3 None *PageSize Legal

*UIConstraint: *Option3 None *PageRegion Legal

Explaining these entries is beyond the scope of this documentation; however, it's important to note their
forms in order to understand how they're represented in the NSPrinter tables.

NSPrinter Tables

NSPrinter defines five key-value tables to store PPD information. The tables are identified by the names
given below:

There are two principle methods for retrieving data from the NSPrinter tables:

• stringForKey:inTable: returns the value for the first occurrence of a given key in the given table.
• stringListForKey:inTable: returns an array of values, one for each occurrence of the key.

For both methods, the first argument is an NSString that names a key—which part of a PPD file entry the
key corresponds to depends on the table (as explained in the following sections). The second argument
names the table that you want to search. The values that are returned by these methods, whether singular or
in an array, are always NSStrings, even if the value wasn't a quoted string in the PPD file.

The NSPrinter tables store data as ASCII text, thus the two methods described above are sufficient for
retrieving any value from any table. NSPrinter provides a number of other methods, such as
booleanForKey:inTable: and intForKey:inTable: , that retrieve single values and coerce them, if possible,
into particular data types. The coercion doesn't affect the data that's stored in the table (it remains in ASCII
format).

To check the integrity of a table, use the isKey:forTable: and statusForTable: methods. The former returns
a boolean that indicates whether the given key is valid for the given table; the latter returns an error code
that describes the general state of a table (in particular, whether it actually exists).

Name Contents

PPD

General information about a printer type. This table contains the values for all
entries in a PPD file except those with the *OrderDependency and
*UIConstraint main keywords. The values in this table don't include the
translation strings.

PPDOptionTranslation Option keyword translation strings.

PPDArgumentTranslation Value translation strings.

PPDOrderDependency *OrderDependency values.

PPDUIConstraints *UIConstraint values.

4

Retrieving Values from the PPD Table

Keys for the PPD table are strings that name a main keyword or main keyword/option keyword pairing
(formatted as “mainKeyword/optionKeyword”). In both cases, you exclude the main keyword asterisk. The
following example creates an NSPrinter and invokes stringForKey:inTable: to retrieve the value for an
un-optioned main keyword:

/* Create an NSPrinter object for a printer type. */

NSPrinter *prType = [NSPrinter printerWithType:@"My_Mimeo_Machine"]

/* Sets sValue to FALSE. */

NSString *sValue = [prType stringForKey:@"3dDevice" inTable:@"PPD"];

To retrieve the value for a main keyword/option keyword pair, pass the keywords formatted as
“mainKeyword/optionKeyword”:

/* Sets sValue to "0.3". */

NSString *sValue = [prType stringForKey:@"PaperDensity/A4" inTable:@"PPD"];

stringForKey:inTable: can determine if a main keyword has options. If you pass a main keyword (only) as
the first argument to the method, and if that keyword has options in the PPD file, the method returns an
empty string. If it doesn't have options, it returns the value of the first occurrence of the main keyword:

/* Sets sValue to an empty string. */

NSString *sValue = [prType stringForKey:@"PaperDensity" inTable:@"PPD"];

/* Sets sValue to "ProcessBlack". */

NSString *sValue = [prType stringForKey:@"InkName" inTable:@"PPD"];

To retrieve the values for all occurrences of a main keyword, use the stringListForKey:inTable: method
giving the main keyword only:

/* Sets sList to an array containing "ProcessBlack","CustomColor", etc. */

NSArray *sList = [prType stringListForKey:@"InkName" inTable:@"PPD"];

In addition, stringListForKey:inTable: can be used to retrieve all the options for a main keyword (given
that the main keyword has options):

/* Sets sList to an array containing "Letter", "Legal","A4", etc. */

NSArray *sList = [prType stringListForKey:@"PaperDensity" inTable:@"PPD"];

Retrieving Values from the Option and Argument Translation Tables

A key to a translation table is similiar to a key to the PPD table: It's a main keyword or main/option keyword
pair (again excluding the asterisk). However, the values that are returned from the translation tables are the
translation strings for the option or argument (value) portions of the PPD file entry. For example:

/* Sets sValue to "300 dpi". */

NSString *sValue = [prType stringForKey:@"Resolution/300dpi"

inTable:@"PPDOptionTranslation"];

5

 Classes: NSPrinter

/* Sets sList to an array containing "Process Black", "Custom Color", etc. */

NSArray *sList = [prType stringListForKey:@"InkName"

inTable:@"PPDArgumentTranslation"];

As with the PPD table, use stringListForKey:inTable: to request an array of all occurances of a main
keyword.

Retrieving Values from the Order Dependency Table

As mentioned earlier, an order dependency entry takes this form:

*OrderDependency: real section mainKeyword [optionKeyword]

These entries are stored in the PPDOrderDependency table. To retrieve a value from this table, always use
stringListForKey:inTable: . The value passed as the key is, again, a main keyword or main keyword/option
keyword pair; however, these values correspond to the mainKeyword and optionKeyword parts of an order
dependency entry's value. As with the other tables, the main keyword's asterisk is excluded. The method
returns an NSArray of two NSStrings that correspond to the real and section values for the entry. For
example:

/* Sets sList to an array containing "10" and "AnySetup". */

NSArray *sList = [prType stringListForKey:@"Resolution"

inTable:@"PPDOrderDependency"]

Retrieving Values from the UIConstraints Table

Retrieving a value from the PPDUIConstraints table is similar to retrieving a value from the
PPDOrderDependency table: always use stringListForKey:inTable: and the key corresponds to elements
in the entry's value. Given the following form (as described earlier), the key corresponds to
mainKeyword1/optionKeyword1:

*UIConstraint: mainKeyword1 [optionKeyword1] mainKeyword2 [optionKeyword2]

The NSArray that's returned by stringListForKey:inTable: contains the mainKeyword2 and
optionKeyword2 values (with the keywords stored as separate elements in the NSArray) for every
*UIConstraints entry that has the given mainKeyword1/optionKeyword1 value. For example:

/* Sets sList to an array containing:

"PageSize", "Legal", "PageRegion", and "Legal" */

NSArray *sList = [prType stringListForKey:@"Option3/None"

inTable:@"PPDUIConstraints"]

Note that the main keywords that are returned in the NSArray don't have asterisks. Also, the NSArray that's
returned always alternates main and option keywords. If a particular main keyword doesn't have an option
associated with it, the string for the option will be empty (but the entry in the NSArray for the option will
exist).

6

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

Method Types

 Creating an NSPrinter
+ printerWithName:
+ printerWithName:domain:includeUnavailable:
+ printerWithType:

Getting general printer information
+ printerNames
+ printerTypes

Getting attributes
– domain
– host
– name
– note
– type

Getting specific information
– acceptsBinary
– imageRectForPaper:
– pageSizeForPaper:
– isColor
– isFontAvailable:
– isOutputStackInReverseOrder
– languageLevel

7

 Classes: NSPrinter

Querying the tables
– isKey:inTable:
– stringForKey:inTable:
– stringListForKey:inTable:
– booleanForKey:inTable:
– floatForKey:inTable:
– intForKey:inTable:
– rectForKey:inTable:
– sizeForKey:inTable:
– statusForTable:
– deviceDescription

Class Methods

printerNames
+ (NSArray *)printerNames

Returns an array of recognized printer names.

See also: +printerTypes, – name

printerTypes
+ (NSArray *)printerTypes

Returns an array of recognized model names.

See also: +printerNames, – type

printerWithName:
+ (NSPrinter *)printerWithName: (NSString *)name

Returns an NSPrinter that represents an actual printer with the given name. Returns nil if the specified
printer is not available.

See also: + printerWithType: , + printerNames, – name

8

printerWithName:domain:includeUnavailable:
+ (NSPrinter *)printerWithName: (NSString *)name

domain:(NSString *)domain
includeUnavailable:(BOOL)flag

This method is for Mach platforms only—it is not defined for other platforms. Returns an NSPrinter that
represents an actual printer with the given name and domain. If domain is nil , the first printer (matching
name) found on any host or domain is used. Returns nil if the specified printer is not available and flag is
NO. If flag is YES, the availability of the printer is ignored.

See also: + printerWithName:, + printerWithType: , + printerNames, – domain, – name

printerWithType:
+ (NSPrinter *)printerWithType: (NSString *)type

Returns an NSPrinter with the given printer type.

See also: + printerWithName:, + printerTypes, – type

Instance Methods

acceptsBinary
– (BOOL)acceptsBinary

Returns YES if the receiver accepts binary PostScript, otherwise NO.

booleanForKey:inTable:
– (BOOL)booleanForKey:(NSString *)key inTable:(NSString *)table

Returns a boolean value associated with key in table. Will also return NO if key is not in table.

See also: – isKey:inTable:, – stringForKey:inTable:

copyWithZone:
@protocol NSCopying
– (id)copyWithZone:(NSZone *)zone

Doesn’t return a copy of the receiver. Returns the receiver with its reference count incremented (sends
retain to the receiver).

9

 Classes: NSPrinter

deviceDescription
– (NSDictionary *)deviceDescription

Returns a dictionary of keys and values describing the device. See NSGraphics.h for possible keys.

domain
– (NSString *)domain

This method is for Mach platforms only—it is not defined for other platforms. Returns the name of the
domain in which the receiver's printer resides. Returns nil if the receiver doesn't represent an actual printer.

See also: + printerWithName:domain:includeUnavailable:

floatForKey:inTable:
– (float)floatForKey: (NSString *)key inTable:(NSString *)table

Returns a floating-point value associated with key in table. Returns 0.0 if key is not in table.

See also: – isKey:inTable:, – stringForKey:inTable:

host
– (NSString *)host

Returns the name of the receiver's host computer.

imageRectForPaper:
– (NSRect)imageRectForPaper:(NSString *)paperName

Returns the printing rectangle for the paper paperName. Possible values for paperName are contained in the
printer's PPD file. Typical values are Letter and Legal.

See also: – pageSizeForPaper:

intForKey:inTable:
– (int)intForKey: (NSString *)key inTable:(NSString *)table

Returns an integer value associated with key in table. Returns 0 if key is not in table.

See also: – isKey:inTable:, – stringForKey:inTable:

10

isColor
– (BOOL)isColor

Returns YES if the receiver can print color, otherwise NO.

isFontAvailable:
– (BOOL)isFontAvailable:(NSString *)faceName

Returns YES if font faceName is available to the receiver, otherwise NO.

isKey:inTable:
– (BOOL)isKey:(NSString *)key inTable:(NSString *)table

Returns YES if key is in table, otherwise NO.

isOutputStackInReverseOrder
– (BOOL)isOutputStackInReverseOrder

Returns YES if the receiver outputs pages in reverse page order, otherwise NO.

languageLevel
– (int)languageLevel

Returns the PostScript Language Level recognized by the receiver.

name
– (NSString *)name

Returns the receiver's name.

See also: + printerNames, + printerWithName:

note
– (NSString *)note

Returns the note associated with the receiver.

11

 Classes: NSPrinter

pageSizeForPaper:
– (NSSize)pageSizeForPaper:(NSString *)paperName

Returns the size of the page for the paper type paperName. Possible values for paperName are contained
in the printer's PPD file. Typical values are Letter and Legal.

See also: – imageRectForPaper:

rectForKey:inTable:
– (NSRect)rectForKey: (NSString *)key inTable:(NSString *)table

Returns the rectangle associated with key in table. Returns NSZeroRect if key is not in table.

See also: – isKey:inTable:, – stringForKey:inTable:

sizeForKey:inTable:
– (NSSize)sizeForKey:(NSString *)key inTable:(NSString *)table

Returns the size associated with key in table. The returned width and height is 0.0 if key is not in table.

See also: – isKey:inTable:, – stringForKey:inTable:

statusForTable:
– (NSPrinterTableStatus)statusForTable:(NSString *)table

Returns the status of table:

NSPrinterTableOK

NSPrinterTableNotFound

NSPrinterTableError

stringForKey:inTable:
– (NSString *)stringForKey: (NSString *)key inTable:(NSString *)table

Returns the first occurence of a value associated with key in table. If key is a main keyword only, and if that
keyword has options in the PPD file, this method returns an empty string. Use stringListForKey:inTable:
to retrieve the values for all occurrences of a main keyword. Returns nil if key is not in table.

See also: – isKey:inTable:, – booleanForKey:inTable:, – floatForKey:inTable: , – intForKey:inTable: ,
– rectForKey:inTable: , – sizeForKey:inTable:

12

stringListForKey:inTable:
– (NSArray *)stringListForKey: (NSString *)key inTable:(NSString *)table

Returns an array of strings, one for each occurrence, associated with key in table. Returns nil if key is not
in table.

See also: – isKey:inTable:, – stringForKey:inTable:

type
– (NSString *)type

Returns the name of the receiver's type.

See also: + printerTypes

1

 Classes: NSPrintInfo

NSPrintInfo

Inherits From: NSObject

Conforms To: NSCoding
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSPrintInfo.h

Class Description

An NSPrintInfo object stores information that’s used to generate PostScript output. A shared NSPrintInfo
object is automatically created for an application and is used by default for all printing jobs for that
application. You can create any number of additional NSPrintInfo objects; however, only one can be
“active” at a time, set using the setSharedPrintInfo: class method. You get the shared NSPrintInfo object
using the sharedPrintInfo class method.

An NSPrintInfo object is used by NSPrintOperation objects to control printing (it is passed to a
NSPrintOperation object which makes a copy of it to use during an operation). If you create special
instances of NSPrintInfo objects for a specific printing task, you must ensure that your NSPrintInfo object
is the shared one, or instantiate an NSPrintOperation object specifying your NSPrintInfo object.

Normally you don’t set NSPrintInfo attributes directly—this is done by instances of NSPageLayout and
NSPrintPanel. The NSView that’s being printed may also supercede some NSPrintInfo settings. In
particular, an NSView can supply the range of pages in the document and can provide its own pagination
mechanism through the knowsPagesFirst:last: and rect:forPage: methods (see the documentation of
these methods in the NSView class for details).

If the NSView doesn’t supply pagination information, the NSPrintInfo’s vertical and horizontal pagination
constants are used to trigger these built-in pagination mechanisms:

Pagination Constant Meaning

NSAutoPagination
The image is diced into equal-sized rectangles and placed in one column of
pages.

NSFitPagination The image is scaled to produce one column or one row of pages.

NSClipPagination The image is clipped to produce one column or row of pages.

2

Vertical and horizontal pagination needn’t be the same. However, if either dimension is scaled
(NSFitPagination), the other dimension is scaled by the same amount to avoid stretching the image. If both
dimensions are scaled, the scaling factor that produces the smallest image is used. Note that NSPrintInfo’s
scaling factor is independent of the scaling that’s imposed by pagination and is applied after the document
has been paginated.

NSPrintInfo uses points as the unit of measurement for paper size and margin width in the methods
described below. See the NSFont specification for a discussion of points.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

NSCopying
– copyWithZone:

Method Types

Initializing an NSPrintInfo
– initWithDictionary:

Managing the shared NSPrintInfo
+ setSharedPrintInfo:
+ sharedPrintInfo

Managing the printing rectangle
+ sizeForPaperName:
– bottomMargin
– leftMargin
– orientation
– paperName
– paperSize
– rightMargin
– setBottomMargin:
– setLeftMargin:
– setOrientation:
– setPaperName:
– setPaperSize:
– setRightMargin:
– setTopMargin:
– topMargin

3

 Classes: NSPrintInfo

Pagination
– horizontalPagination
– setHorizontalPagination:
– setVerticalPagination:
– verticalPagination

Positioning the image on the page
– isHorizontallyCentered
– isVerticallyCentered
– setHorizontallyCentered:
– setVerticallyCentered:

Specifying the printer
+ defaultPrinter
+ setDefaultPrinter:
– printer
– setPrinter:

Controlling printing
– jobDisposition
– setJobDisposition:
– setUpPrintOperationDefaultValues

Accessing the dictionary
– dictionary

Class Methods

defaultPrinter
+ (NSPrinter *)defaultPrinter

Returns the user’s default printer. Returns nil if the printer can not be found.

See also: + setDefaultPrinter:

setDefaultPrinter:
+ (void)setDefaultPrinter:(NSPrinter *)aPrinter

Sets the user’s default printer to aPrinter. Unless the receiver’s printer was specified using setPrinter:, this
default printer is used.

See also: + defaultPrinter , – printer

4

setSharedPrintInfo:
+ (void)setSharedPrintInfo:(NSPrintInfo *)printInfo

Sets the shared NSPrintInfo object to printInfo. The shared NSPrintInfo object defines the settings for the
NSPageLayout panel and print operations that will be used if no NSPrintInfo object is specified for those
operataions. printInfo should never be nil .

See also: + sharedPrintInfo

sharedPrintInfo
+ (NSPrintInfo *)sharedPrintInfo

Returns the shared NSPrintInfo object.

See also: + setSharedPrintInfo:

sizeForPaperName:
+ (NSSize)sizeForPaperName:(NSString *)name

Returns the size for the specified type of paper in points. name identifies the type of paper, such as Letter
or Legal. Paper names are implementation specific.

Instance Methods

bottomMargin
– (float)bottomMargin

Returns the height of the bottom margin in points.

See also: – setBottomMargin:

dictionary
– (NSMutableDictionary *)dictionary

Returns the receiver’s dictionary that stores its attribute settings. The key/value pairs contained in the
dictionary are described in initWithDictionary: . Note, modifying the returned dictionary will change the
receiver’s attributes.

5

 Classes: NSPrintInfo

horizontalPagination
– (NSPrintingPaginationMode)horizontalPagination

Returns the horizontal pagination mode, see setHorizontalPagination: for description of return values.

See also: – setVerticalPagination:, – verticalPagination

6

initWithDictionary:
– (id)initWithDictionary: (NSDictionary *)aDictionary

Initializes a newly allocated NSPrintInfo object by assigning it the parameters specified in aDictionary.
This is the designated initializer for this class. The possible key/value pairs contained in aDictionary are
listed below. Non-object values should be stored as NSValues in the dictionary.

Key Type Description

NSPrintPaperName NSString The paper name.

NSPrintPaperSize NSSize Height and width of paper in points.

NSPrintMustCollate BOOL If YES, collates output.

NSPrintFormName NSString
Form name such as "Letter" or "Letter
Small".

NSPrintOrientation NSPrintingOrientation
NSPortraitOrientation or
NSLandscapeOrientation

NSPrintLeftMargin float The left margin in points.

NSPrintRightmargin float The right margin in points.

NSPrintTopMargin float The top margin in points.

NSPrintBottomMargin float The bottom margin in points.

NSPrintHorizontallyCentered BOOL If YES, pages are centered horizontally.

NSPrintVerticallyCentered BOOL If YES, pages are centered vertically.

NSPrintHorizontalPagination NSPrintingPaginationMode
NSAutoPagination, NSFitPagination, or
NSClipPagination. See
setHorizontalPagination: for details.

NSPrintVerticalPagination NSPrintingPaginationMode
NSAutoPagination, NSFitPagination, or
NSClipPagination. See
setVerticalPagination: for details.

NSPrintScalingFactor float Scale factor before pagination.

NSPrintAllPages BOOL If YES, includes all pages in output.

NSPrintReversePageOrder BOOL If YES, prints last page first.

NSPrintFirstPage int The first page in the print job.

7

 Classes: NSPrintInfo

NSPrintLastPage int The last page in the print job.

NSPrintCopies int Number of copies to spool.

NSPrintPagesPerSheet int

The number of pages of the document that
are printed on a single sheet of paper. This
number is rounded up to the power of two
when used by the system.

NSPrintJobFeatures NSMutableDictionary

Features from the NSPrinter object where
keys are the feature name and values are
the settings. For example, the key
NSPrintPaperFeed might have the value
*InputSlot/Upper. See the NSPrinter class
description.

NSPrintPaperFeed NSString
The printer slot. For example,
InputSlot/Upper or NSPrintManualFeed.

NSPrintPrinter NSPrinter The printer to use.

NSPrintJobDisposition NSString

NSPrintSpoolJob, NSPrintFaxJob,
NSPrintPreviewJob, NSPrintSaveJob, or
NSPrintCancelJob. See
setJobDisposition: for details.

NSPrintSavePath NSString
Pathname to save as a file if job disposition
is NSPrintSaveJob.

NSPrintFaxReceiverNames NSArray
Array of NSStrings containing receiver
names for a fax job.

NSPrintFaxReceiverNumbers NSArray
Array of NSStrings containing the receiver
phone numbers for a fax job.

NSPrintFaxSendTime NSDate When to send the fax.

NSPrintFaxUseCoverSheet BOOL If YES, send cover sheet.

NSPrintFaxCoverSheetName NSString The filename containing the cover sheet.

NSPrintFaxReturnReceipt BOOL
If YES, sends confirmation email when fax
is sent.

NSPrintFaxHighResolution BOOL If YES, sends fax at high resolution.

Key Type Description

8

See also: – dictionary

isHorizontallyCentered
– (BOOL)isHorizontallyCentered

Returns YES if the image is centered horizontally, otherwise returns NO.

See also: – isVerticallyCentered, – setHorizontallyCentered:

isVerticallyCentered
– (BOOL)isVerticallyCentered

Returns YES if the image is centered vertically, otherwise returns NO.

See also: – isHorizontallyCentered, – setVerticallyCentered:

jobDisposition
– (NSString *)jobDisposition

Returns the action specified for the job. See setJobDisposition: for description of return values.

leftMargin
– (float)leftMargin

Returns the width of the left margin in points.

See also: – setLeftMargin:

NSPrintFaxTrimPageEnds BOOL
If YES, trims page ends, otherwise sends
complete pages.

NSPrintFaxModem NSPrinter The fax modem to use.

Key Type Description

9

 Classes: NSPrintInfo

orientation
– (NSPrintingOrientation)orientation

Returns the orientation attribute. See setOrientation: for description of return values.

paperName
– (NSString *)paperName

Returns the paper name such as "Letter" or "Legal". Paper names are implementation specific.

See also: – setPaperName:

paperSize
– (NSSize)paperSize

Returns the size of the paper in points.

See also: – setPaperSize:

printer
– (NSPrinter *)printer

Returns the NSPrinter to be used for printing.

See also: – setPrinter:

rightMargin
– (float)rightMargin

Returns the width of the right margin in points.

See also: – setRightMargin:

setBottomMargin:
– (void)setBottomMargin:(float)margin

Sets the bottom margin to margin specified in points.

See also: – bottomMargin

10

setHorizontalPagination:
– (void)setHorizontalPagination:(NSPrintingPaginationMode)mode

Sets the horizontal pagination to mode where mode is one of:

See also: – horizontalPagination, – setVerticalPagination:, – verticalPagination

setHorizontallyCentered:
– (void)setHorizontallyCentered:(BOOL)flag

If flag is YES the image will be centered horizontally.

See also: – isHorizontallyCentered, – isVerticallyCentered, – setVerticallyCentered:

setJobDisposition:
– (void)setJobDisposition:(NSString *)disposition

Sets the action specified for the job to disposition, where disposition is one of:

See also: – jobDisposition

Mode Meaning

NSAutoPagination
The image is diced into equal-sized rectangles and placed in one column of
pages.

NSFitPagination The image is scaled to produce one column or one row of pages.

NSClipPagination The image is clipped to produce one column or row of pages.

Disposition Meaning

NSPrintSpoolJob Normal print job.

NSPrintFaxJob Fax job.

NSPrintPreviewJob Send to Preview application.

NSPrintSaveJob Save to a file.

NSPrintCancelJob Cancel print job.

11

 Classes: NSPrintInfo

setLeftMargin:
– (void)setLeftMargin: (float)margin

Sets the left margin to margin specified in points.

See also: – leftMargin

setOrientation:
– (void)setOrientation:(NSPrintingOrientation)orientation

Sets the page orientation to orientation where orientation is either NSPortraitOrientation or
NSLandscapeOrientation. This method may change either the paper name or size for consistency. To avoid
this side effect set the values in the dictionary directly.

See also: – dictionary, – initWithDictionary: , – orientation

setPaperName:
– (void)setPaperName:(NSString *)name

Sets the paper name to name (i.e., Letter or Legal). Paper names are implementation specific.This method
may change either the size or orientation for consistency. To avoid this side effect set the values in the
dictionary directly.

See also: – dictionary, – initWithDictionary: , – paperName

setPaperSize:
– (void)setPaperSize:(NSSize)aSize

Sets the width and height of the paper to aSize specified in points. This method may change either the paper
name or orientation for consistency. To avoid this side effect set the values in the dictionary directly.

See also: – dictionary, – initWithDictionary: , – paperSize

setPrinter:
– (void)setPrinter:(NSPrinter *)aPrinter

Sets the printer used in subsequent printing jobs to aPrinter. This method iterates through the dictionary. If
a feature in the dictionary is not supported by this new printer (this is determined by a query to the PPD
file), then that feature is removed from the dictionary

See also: – printer

12

setRightMargin:
– (void)setRightMargin: (float)margin

Sets the right margin to margin specified in points.

See also: – rightMargin

setTopMargin:
– (void)setTopMargin:(float)margin

Sets the top margin to margin specified in points.

See also: – topMargin

setUpPrintOperationDefaultValues
– (void)setUpPrintOperationDefaultValues

Invoked when the print operation is about to start. Subclasses may override this method to set default values
for any attributes that are not set.

setVerticalPagination:
– (void)setVerticalPagination:(NSPrintingPaginationMode)mode

Sets the vertical pagination to mode where mode is one of:

See also: – horizontalPagination, – setHorizontalPagination:, – verticalPagination

Mode Meaning

NSAutoPagination
The image is diced into equal-sized rectangles and placed in one column of
pages.

NSFitPagination The image is scaled to produce one column or one row of pages.

NSClipPagination The image is clipped to produce one column or row of pages.

13

 Classes: NSPrintInfo

setVerticallyCentered:
– (void)setVerticallyCentered:(BOOL)flag

If flag is YES, the image will be vertically centered.

See also: – isHorizontallyCentered, – isVerticallyCentered, – setHorizontallyCentered:

topMargin
– (float)topMargin

Returns the top margin in points.

See also: – setTopMargin:

verticalPagination
– (NSPrintingPaginationMode)verticalPagination

Returns the vertical pagination mode, see setVerticalPagination: for description of return values.

See also: – horizontalPagination, – setHorizontalPagination:

1

 Classes: NSPrintOperation

NSPrintOperation

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSPrintOperation.h

Class Description

An NSPrintOperation object controls operations that generate Encapsulated PostScript (EPS) code or
PostScript print jobs. Generally, EPS code is used to transfer images between applications, which happens
when the user copies and pastes graphics, uses a Service, or uses ObjectLinks. PostScript is generated when
the user prints and faxes documents. An NSPrintOperation object does not generate PostScript code itself;
it just controls the overall process, relying on an NSView object to generate the actual code.

NSPrintOperation works in conjunction with two other objects: an NSPrintInfo object, which specifies how
the code should be generated, and an NSView object, which performs the actual code generation. You
specify these two objects in the method you use to create an NSPrintOperation object. If no NSPrintInfo is
specified, NSPrintOperation uses the shared NSPrintInfo, which contains default values. (A shared
NSPrintInfo object is automatically created for an application.) The shared NSPrintInfo works well for
applications that are not document-based. However, document-based applications should create an
NSPrintInfo for each document that might be printed or copied and use that object instead. This will allow
users to set printing attributes on a per-document basis.

You create NSPrintOperation objects in any method that is invoked when a user chooses a Print or Copy
command. That method must also send runOperation to the NSPrintOperation object to start the actual
operation. For example, applications that are not document-based have a simple print: method as in:

- (void)print:sender {

[[NSPrintOperation printOperatationWithView:self] runOperation];

}

However, document-based applications should use their own instances of NSPrintInfo as in:

- (void)print:sender {

[[NSPrintOperation printOperationWithView:[self myView] printInfo:[document

docPrintInfo]] runOperation];

}

This method creates an NSPrintOperation for a print job that uses the document’s NSPrintInfo object—not
the shared NSPrintInfo object.

In both examples, because this is a print job, the NSPrintOperation object will display an NSPrintPanel
object allowing the user to select printing options (i.e., number of pages to print and range of pages to print).

2

The NSPrintOperation object copies the NSPrintInfo object, updates this copy with information from the
NSPrintPanel object, and uses the specified NSView to perform the operation. Some of the information
stored in an NSPrintInfo object is constant for a particular document, such as its page size. Other
information that is likely to change between print operations is set to default values before the operation
begins. In this way, even though NSPrintOperation updates the NSPrintInfo with information from the
NSPrintPanel for a specific print job, that information is reset back to the default values for each print job.
Because NSPrintOperation keeps a copy of the NSPrintInfo it uses, you could duplicate a specific print job
by storing and reusing that copy.

When repeating a print job, you can suppress the display of the NSPrintPanel object by sending
setShowPanels:, passing NO as the argument, to the NSPrintOperation object before sending it
runOperation . However, make sure that any non-default settings in the NSPrintInfo object that would
normally be selected from a NSPrintPanel object are set to reasonable values—a copy of an NSPrintInfo
object used in a previous print job will have the correct values.

You can also customize the NSPrintPanel object using the setAccessoryView: method or specify your own
NSPrintPanel object using setPrintPanel: (an OpenStep addition).

If you want the PostScript code generated for EPS and printing to be the same but different from the code
generated for the screen, you can test for this case by sending isDrawingToScreen to the current
NSDPSContext as in:

if (![[NSDPSContext currentContext] isDrawingToScreen]){

/* Insert EPS and printing code here */

}

If you want to generate different PostScript code when printing vs. creating EPS, you can test for this case
by sending isEPSOperation to the current operation as follows:

if ((![[NSDPSContext currentContext] isDrawingToScreen] &&

![[NSPrintOperation currentOperation] isEPSOperation])){

/* Insert printing code here */

}

Method Types

Creating an NSPrintOperation
+ EPSOperationWithView:insideRect:toData:
+ EPSOperationWithView:insideRect:toData:printInfo:
+ EPSOperationWithView:insideRect:toPath:printInfo:
+ printOperationWithView:
+ printOperationWithView:printInfo:
– initEPSOperationWithView:insideRect:toData:printInfo:
– initWithView:printInfo:

3

 Classes: NSPrintOperation

Setting the current NSPrintOperation for this thread
+ currentOperation
+ setCurrentOperation:

Determining the type of operation
– isEPSOperation

Modifying the NSPrintInfo object
– printInfo
– setPrintInfo:

Getting the NSView object
– view

Running a print operation
– runOperation
– cleanUpOperation
– deliverResult

Modifying the user interface
– showPanels
– setShowPanels:
– accessoryView
– setAccessoryView:
– printPanel
– setPrintPanel:

Managing the DPS context
– context
– createContext
– destroyContext

Modifying page information
– currentPage
– pageOrder
– setPageOrder:

Class Methods

EPSOperationWithView:insideRect:toData:
+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView

insideRect:(NSRect)rect
toData:(NSMutableData *)data

Returns a new NSPrintOperation object that controls the copying of EPS graphics from the area specified
by rect in aView. The new NSPrintOperation object will use the default NSPrintInfo object. The EPS code

4

is written to data. Raises an NSPrintOperationExistsException if there is already a print operation in
progress, otherwise the returned object is made the current print operation for this thread.

See also: + EPSOperationWithView:insideRect:toData:printInfo:, + EPSOperationWithView:
insideRect:toPath:printInfo:

EPSOperationWithView:insideRect:toData:printInfo:
+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView

insideRect:(NSRect)rect
toData:(NSMutableData *)data
printInfo: (NSPrintInfo *)aPrintInfo

Returns a new NSPrintOperation object that controls the copying of EPS graphics from the area specified
by rect in aView. The new NSPrintOperation object will use the settings stored in aPrintInfo. The code is
written to data. Raises an NSPrintOperationExistsException if there is already a print operation in progress,
otherwise the returned object is made the current print operation for this thread.

See also: + EPSOperationWithView:insideRect:toData:, + EPSOperationWithView:insideRect:
toPath:printInfo:

EPSOperationWithView:insideRect:toPath:printInfo:
+ (NSPrintOperation *)EPSOperationWithView:(NSView *)aView

insideRect:(NSRect)rect
toPath:(NSString *)path
printInfo: (NSPrintInfo *)aPrintInfo

Creates and returns a new NSPrintOperation object that controls the copying of EPS graphics from the area
specified by rect in aView. The new NSPrintOperation object will use the settings stored in aPrintInfo. The
code is written to path. Raises an NSPrintOperationExistsException if there is already a print operation in
progress, otherwise the returned object is made the current print operation for this thread.

See also: + EPSOperationWithView:insideRect:toData:, + EPSOperationWithView:insideRect:
toData:printInfo:

currentOperation
+ (NSPrintOperation *)currentOperation

Returns the current print operation for this thread. Returns nil if there isn’t a current operation.

See also: + setCurrentOperation:

5

 Classes: NSPrintOperation

printOperationWithView:
+ (NSPrintOperation *)printOperationWithView: (NSView *)aView

Returns a new NSPrintOperation that controls the printing of aView. The new NSPrintOperation object will
use the settings stored in the shared NSPrintInfo object. Raises an NSPrintOperationExistsException if
there is already a print operation in progress, otherwise the returned object is made the current print
operation for this thread.

See also: + printOperationWithView:printInfo:

printOperationWithView:printInfo:
+ (NSPrintOperation *)printOperationWithView: (NSView *)aView

printInfo: (NSPrintInfo *)aPrintInfo

Returns a new NSPrintOperation that controls the printing of aView. The new NSPrintOperation object will
use the settings stored in aPrintInfo. Raises an NSPrintOperationExistsException if there is already a print
operation in progress, otherwise the returned object is made the current print operation for this thread.

See also: + printOperationWithView:

setCurrentOperation:
+ (void)setCurrentOperation:(NSPrintOperation *)operation

Sets the current print operation for this thread to operation. If operation is nil , then there is no current print
operation.

See also: + currentOperation

Instance Methods

accessoryView
– (NSView *)accessoryView

Returns the accessory view used by the NSPrintPanel object. You use setAccessoryView: to customize the
default NSPrintPanel object without having to subclass NSPrintPanel or specify your own NSPrintPanel
object.

See also: – printPanel, – setPrintPanel:, – setShowPanels:, – showPanels

6

cleanUpOperation
– (void)cleanUpOperation

Invoked by runOperation at the end of an operation to remove the receiver as the current operation. You
typically do not invoke this method directly.

context
– (NSDPSContext *)context

Returns the receiver’s DPS context used for generating output.

See also: – createContext, – destroyContext

createContext
– (NSDPSContext *)createContext

Creates the DPS context for output generation, using the receiver’s NSPrintInfo settings. Do not invoke this
method directly—it’s invoked before any output is generated.

See also: – context, – destroyContext

currentPage
– (int)currentPage

Returns the page number of the page that is currently being printed.

See also: – pageOrder, – setPageOrder:

deliverResult
– (BOOL)deliverResult

Delivers the results generated by runOperation to the intended destination (i.e., the printer spool, or
preview application). Returns YES if the operation was successful, otherwise NO. Do not invoke this
method directly—it’s invoked automatically when the operation is done generating the output.

7

 Classes: NSPrintOperation

destroyContext
– (void)destroyContext

Destroys the receiver’s DPS context. Do not invoke this method directly—it’s invoked at the end of a print
operation.

See also: – context, – createContext

initEPSOperationWithView:insideRect:toData:printInfo:
– (id)initEPSOperationWithView: (NSView *)aView

insideRect:(NSRect)rect
toData:(NSMutableData *)data
printInfo: (NSPrintInfo *)aPrintInfo

Initializes and returns a newly allocated NSPrintOperation object to control the copying of EPS graphics
from the area specified by rect in aView, using the settings stored in aPrintInfo. This method makes a copy
of aPrintInfo —aPrintInfo is not used in the actual operation. The EPS code is written to data.

See also: – initWithView:printInfo:

initWithView:printInfo:
– (id)initWithView: (NSView *)aView printInfo: (NSPrintInfo *)aPrintInfo

Initializes and returns a newly allocated NSPrintOperation object to control the printing of aView, using the
settings stored in aPrintInfo. This method makes a copy of aPrintInfo —aPrintInfo is not used in the actual
operation. This method is the designated initializer for this class.

See also: – initEPSOperationWithView:insideRect:toData:printInfo:

isEPSOperation
– (BOOL)isEPSOperation

Returns YES if the receiver controls an EPS operation (initiated by a copy command), and NO if the receiver
controls a printing operation (initiated by a print command).

8

pageOrder
– (NSPrintingPageOrder)pageOrder

Returns the order in which pages will be printed. See setPageOrder: for possible return values.

See also: – currentPage

printInfo
– (NSPrintInfo *)printInfo

Returns the receiver’s NSPrintInfo object.

See also: – setPrintInfo:

printPanel
– (NSPrintPanel *)printPanel

Returns the NSPrintPanel object used when running the operation.

See also: – accessoryView, – setAccessoryView:, – setPrintPanel:, – setShowPanels:, – showPanels

runOperation
– (BOOL)runOperation

Runs the operation (i.e., copys an EPS graphic or prints a job). Returns YES if successful, otherwise NO.

See also: – cleanUpOperation, – deliverResult

setAccessoryView:
– (void)setAccessoryView:(NSView *)aView

Allows you to augment the NSPrintPanel object by adding a custom NSView (by using this method you do
not need to subclass NSPrintPanel or specify your own NSPrintPanel object). The NSPrintPanel is
automatically resized to accommodate the new accessory view aView.

See also: – accessoryView, – printPanel, – setPrintPanel:, – setShowPanels:, – showPanels

9

 Classes: NSPrintOperation

setPageOrder:
– (void)setPageOrder:(NSPrintingPageOrder)order

Sets the order in which pages will be printed to order where order is one of:

See also: – currentPage, – pageOrder

setPrintInfo:
– (void)setPrintInfo: (NSPrintInfo *)aPrintInfo

Sets the receiver’s NSPrintInfo object to aPrintInfo.

See also: – printInfo

setPrintPanel:
– (void)setPrintPanel:(NSPrintPanel *)panel

Sets the receiver’s NSPrintPanel used in the operation to panel.

See also: – accessoryView, – printPanel, – setAccessoryView:, – setShowPanels:, – showPanels

setShowPanels:
– (void)setShowPanels:(BOOL)flag

If flag is YES then the NSPrintPanel will be used in the operation, otherwise it will not.

See also: – accessoryView, – printPanel, – setAccessoryView:, – setPrintPanel:, – showPanels

Order Meaning

NSAscendingPageOrder Ascending (back to front) page order.

NSDescendingPageOrder Descending (front to back) page order.

NSSpecialPageOrder
The spooler will not rearrange pages—they are print in the order received by
the spooler.

NSUnknownPageOrder No page order specified.

10

showPanels
– (BOOL)showPanels

Returns YES if the NSPrintPanel will be used in the operation, otherwise NO.

See also: – accessoryView, – printPanel, – setAccessoryView:, – setPrintPanel:, – setShowPanels:

view
– (NSView *)view

Returns the NSView object that generates the actual EPS or PostScript code controlled by the receiver.

1

 Classes: NSPrintPanel

NSPrintPanel

Inherits From: NSPanel : NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSPrintPanel.h

Note: On Mach platforms, NSPrintPanel inherits from NSPanel and conforms to NSCoding.

Class Description

NSPrintPanel creates a Print panel used to query the user for information about a print job, such as which
pages to print and how many copies, and execute the Print command.

When a print: message is sent to an NSView or NSWindow, an NSPrintOperation object is created to
control the print operation (see the NSPrintOperation class description for details). By default an
NSPrintOperation object uses an NSPrintPanel unless it is sent the setShowPanels: message passing NO
as the argument. Also, if you subclass NSPrintPanel, send the setPrintPanel: message to the
NSPrintOperation object passing an instance of your subclass to ensure that it is used as the Print panel for
that operation.

However, you rarely need to subclass NSPrintPanel since you can augment its display by adding a custom
NSView using the setAccessoryView: method. The accessory view is displayed when the user clicks the
Options button. (On Mach platforms, the panel is resized to accommodate the NSView that you add.) Note,
however, that you don’t have to create controls for special printer features. If a printer includes features in
the “OpenUI” field of its PostScript Printer Description (PPD) table, these features will appear in the panel.
For more information on a printer’s PPD table, see the NSPrinter class description.

Typically, you get an NSPrintPanel by invoking the printPanel class method. When the class receives a
printPanel message, it tries to reuse an existing panel rather than create a new one. When a panel is reused,
its attributes are reset to the default values so that the effect is the same as returning a new panel. Because
a Print panel may be reused, you shouldn’t modify the instance returned by printPanel, except through the
methods listed below. For example, you can set the accessory view, but not the arrangement of the buttons
within the panel. If you must modify the Print panel substantially, create and manage your own instance
using the alloc... and init... methods rather than the printPanel method.

An application stores printing information in an NSPrintInfo object. When an NSPrintOperation object is
created it is given a specific NSPrintInfo object from the application or assigned a default. You can get the
current operation by sending the currentOperation class method to NSPrintOperation.

Use the updateFromPrintInfo method to read the NSPrintInfo object’s information into the Print panel.
Conversely, the finalWritePrintInfo method updates the NSPrintInfo object if the user changes the

2

information on the Print panel. The NSPrintOperation object creates a copy of the NSPrintInfo object, so
that finalWritePrintInfo actually writes to that copy, not the original.

Method Types

Creating an NSPrintPanel
+ printPanel

Customizing the panel
– accessoryView
– setAccessoryView:

Running the panel
– runModal

Communicating with the NSPrintInfo object
– updateFromPrintInfo
– finalWritePrintInfo

Updating the panel’s display
– pickedButton:
– pickedAllPages:
– pickedLayoutList:

Class Methods

printPanel
+ (NSPrintPanel *)printPanel

Returns a shared NSPrintPanel object or a newly created one if it doesn’t already exist.

Instance Methods

accessoryView
– (NSView *)accessoryView

Returns the receiver’s accessory view (used to customize the receiver).

See also: – setAccessoryView:

3

 Classes: NSPrintPanel

finalWritePrintInfo
– (void)finalWritePrintInfo

Writes the values of the receiver’s printing attributes to the NSPrintInfo object belonging to the current
NSPrintOperation.

See also: – updateFromPrintInfo , + currentOperation (NSPrintOperation)

pickedAllPages:
– (void)pickedAllPages:(id)sender

This method is for Mach platforms only—it is not defined for other platforms. Invoked when the user
chooses the All (Pages) radio button. If the All button is clicked the From and To (Pages) fields are empty,
otherwise their default values are set to "first" and "last". Override this method to change these defaults.

See also: – pickedButton:, – pickedLayoutList:

pickedButton:
– (void)pickedButton:(id)sender

This method is for Mach platforms only—it is not defined for other platforms. Invoked when the user clicks
either the Cancel, Fax, Preview, Print or Save buttons. If a button other than the Cancel button is clicked,
then the receiver’s Copies, From (Pages) and To (Pages) fields must contain acceptable values (positive
numbers), otherwise the unacceptable entry is selected. If the fields are acceptable the modal loop is
stopped. If the Cancel button is selected the modal loop is stopped regardless of the field values.

See also: – pickedAllPages:, – pickedLayoutList: , – runModal

pickedLayoutList:
– (void)pickedLayoutList: (id)sender

This method is for Mach platforms only—it is not defined for other platforms. Invoked when the user
chooses a new layout to update the receiver.

See also: – pickedAllPages:, – pickedButton:

4

runModal
– (int)runModal

Displays the receiver and begins the modal loop. Returns NSCancelButton if the user clicks the Cancel
button, otherwise returns NSOkButton.

See also: – pickedButton:

setAccessoryView:
– (void)setAccessoryView:(NSView *)aView

Adds an NSView to the receiver. Invoke this method to add a custom view containing your controls. The
accessory view is displayed when the user clicks the Options button. (On Mach platforms, the receiver is
automatically resized to accommodate aView.) This method can be invoked repeatedly to change the
accessory view depending on the situation. If aView is nil , then the receiver’s current accessory view, if any,
is removed.

See also: – accessoryView

updateFromPrintInfo
– (void)updateFromPrintInfo

Reads the receiver’s values from the NSPrintInfo object belonging to the current NSPrintOperation, and
updates the receiver accordingly.

See also: – finalWritePrintInfo , + currentOperation (NSPrintOperation)

1

 Classes: NSProgressIndicator

NSProgressIndicator

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSProgressIndicator.h

Class Description

An application displays a progress indicator to show that a lengthy task is under way. Some progress
indicators do nothing more than spin to show that the application is busy, while others show the percentage
of the task that has been completed. NSProgressIndicator provides both types of display:

• an indeterminate progress indicator (the “barber pole”) that spins until the task is complete (see
illustration below)

• a determinate progress indicator that draws a three-dimensional progress bar from left to right in the view
as the task progresses

NSProgressIndicator is a subclass of NSView. To display a progress indicator, your application creates a
window and adds the progress indicator as a subview of the window’s content view or any subview. You can
create a progress indicator programmatically and initialize it with the initWithFrame: method. However,
you normally use Interface Builder to create and initialize a progress indicator and to install it in an
application view.

For an indeterminate progress indicator, you invoke startAnimation: to start the animation (the spinning
of the barber pole) and stopAnimation: when the task is complete. By default, the delay between animation

2

steps is one twelfth of a second (5.0/60.0). You can change the animation delay by invoking
setAnimationDelay:. Setting the delay to a double value larger than the default value will slow the
animation, while setting the delay to a smaller value will speed it up.

Instead of invoking startAnimation: and stopAnimation:, you can control an indeterminate progress
indicator directly by sending the animate: message. Each time you invoke animate:, the animation
advances by one step. You can speed up or slow down the animation by varying how often you invoke
animate:. Like other views, a progress indicator redisplays itself on each pass through the event loop, if
needed. To ensure immediate redrawing, however, you can invoke the displayIfNeeded method (inherited
from NSView) each time you invoke animate:.

By default, a progress indicator is indeterminate. Your can specify a determinate progress indicator when
you set up the view with Interface Builder, or you can use code like the following to change the default value
programmatically:

[myProgressIndicatorView setIndeterminate:FALSE];

For a determinate progress indicator, you invoke the incrementBy: method to advance the progress bar. By
default, a determinate progress indicator goes from 0.0 to 100.0. You can increment by any amount, but if
you vary the increment too widely, progress may appear uneven or jerky. You typically choose an increment
value that evenly divides 100.0. For example, you might invoke incrementBy: 50 times, incrementing by
2.0 each time, to draw the complete progress bar. To modify the default range of 0.0 to 100.0, you can invoke
setMinValue: to modify the minimum value and setMaxValue: to modify the maximum value.

After each invocation of incrementBy:, you can invoke the displayIfNeeded method to ensure immediate
redrawing.

You can display progress indicators of different sizes by varying the frame size. However, the default size
is designed to provide the best results. By default, a progress indicator is drawn with a bezeled frame, but
you can use the setBezeled: method to modify the bezeled-frame setting.

A progress indicator is drawn with colors based on the user’s current color scheme. When the user changes
the color scheme, the color of the progress indicator changes automatically to match the new scheme.

Method Types

Creating an instance
– initWithFrame:

3

 Classes: NSProgressIndicator

Animating the progress indicator
– animate:
– animationDelay
– setAnimationDelay:
– setUsesThreadedAnimation:
– startAnimation:
– stopAnimation:
– usesThreadedAnimation

Advancing the progress bar
– incrementBy:
– setDoubleValue:
– doubleValue
– setMinValue:
– minValue
– setMaxValue:
– maxValue

Setting the appearance
– setBezeled:
– isBezeled
– setIndeterminate:
– isIndeterminate

Instance Methods

animate:
– (void)animate:(id)sender

For an indeterminate progress indicator, advances the progress animation by one step. For a determinate
progress indicator, does nothing. Your application uses this method to control animation directly (as
opposed to invoking startAnimation: and stopAnimation: for automatic animation). The more often you
invoke animate:, the faster the animation progresses.

The xx method only invalidates the progress indicator so it will be redrawn the next time through the event
loop. To ensure immediate redrawing, invoke the displayIfNeeded method.

See also: – animationDelay, – setAnimationDelay:

4

animationDelay
– (NSTimeInterval)animationDelay

For an indeterminate progress indicator, returns the delay, in seconds, between animation steps. By default,
the animation delay is set to one twelfth of a second (5.0/60.0). A determinate progress indicator does not
use the animation delay value.

See also: – animate:

doubleValue
– (double)doubleValue

For a determinate progress indicator, returns a value that indicates the current extent of the progress bar. For
example, a determinate progress indicator goes from 0.0 to 100.0 by default. If the progress bar has
advanced half way across the view, the value returned by doubleValue would be 50.0. An indeterminate
progress indicator does not use this value.

See also: – incrementBy:, – setDoubleValue:

incrementBy:
– (void)incrementBy:(double)delta

For a determinate progress indicator, you invoke incrementBy: to advance the progress bar by delta. For
example, if you want to advance a progress bar from 0.0 to 100.0 in twenty steps, you would invoke
incrementBy: twenty times with a delta value of 5.0.

See also: – doubleValue

initWithFrame:
– (id)initWithFrame: (NSRect)frameRect

Initializes a newly allocated NSProgressIndicator with frameRect as its frame rectangle. This method is the
designated initializer for the NSProgressIndicator class. It calls the initWithFrame: method of its
superclass, NSView, then performs initialization specific to the outline view. It returns self.

It’s usually more convenient to use Interface Builder, which allows you to create an NSProgressIndicator
and embed it in the superview of your choice.

5

 Classes: NSProgressIndicator

isBezeled
– (BOOL)isBezeled

Returns YES if the NSProgressIndicator’s frame has a three-dimensional bezel.

See also: – setBezeled:

isIndeterminate
– (BOOL)isIndeterminate

Returns YES if the NSProgressIndicator is indeterminate. An indeterminate progress indicator displays a
“barber pole” that spins until the task is complete. A determinate progress indicator draws a
three-dimensional bar from left to right as the task progresses.

See also: – setIndeterminate:

maxValue
– (double)maxValue

For a determinate progress indicator, returns the maximum value for the progress bar. By default, a
determinate progress indicator goes from 0.0 to 100.0, so the value returned would be 100.0. An
indeterminate progress indicator does not use this value.

See also: – minValue, – setMaxValue:

minValue
– (double)minValue

For a determinate progress indicator, returns the minimum value for the progress bar. By default, a
determinate progress indicator goes from 0.0 to 100.0, so the value returned would be 0.0. An indeterminate
progress indicator does not use this value.

See also: – maxValue, – setMinValue:

setAnimationDelay:
– (void)setAnimationDelay:(NSTimeInterval)delay

Sets the delay, in seconds, between animation steps for an indeterminate progress indicator. By default, the
animation delay is set to one twelfth of a second (5.0/60.0). Setting the delay to a double value larger than
5.0/60.0 will slow the animation, while setting the delay to a smaller value will speed it up. A determinate
progress indicator does not use the animation delay value.

6

setBezeled:
– (void)setBezeled:(BOOL)flag

Sets whether the NSProgressIndicator’s frame has a three-dimensional bezel.

See also: – isBezeled

setDoubleValue:
– (void)setDoubleValue:(double)doubleValue

Sets the value that indicates the current extent of the progress bar. An indeterminate progress indicator does
not use this value.

See also: – doubleValue, – incrementBy:, – setMaxValue:, – setMinValue:

setIndeterminate:
– (void)setIndeterminate:(BOOL)flag

Sets whether the NSProgressIndicator is indeterminate.

See also: – isIndeterminate

setMaxValue:
– (void)setMaxValue:(double)newMaximum

Specifies the maximum value for the progress bar. An indeterminate progress indicator does not use this
value.

See also: – maxValue

setMinValue:
– (void)setMinValue:(double)newMinimum

Specifies the minimum value for the progress bar. An indeterminate progress indicator does not use this
value.

See also: – minValue

7

 Classes: NSProgressIndicator

setUsesThreadedAnimation:
– (void)setUsesThreadedAnimation:(BOOL)flag

Sets whether the receiver implements animation of the progress indicator in a separate thread. If the
application becomes multithreaded as a result of an invocation of this method, the application’s
performance could become noticeably slower.

See also: – usesThreadedAnimation

startAnimation:
– (void)startAnimation: (id)sender

For an indeterminate progress indicator, starts the animation, which causes the barber pole to start spinning.
For a determinate progress indicator, does nothing.

See also: – animationDelay, – stopAnimation:

stopAnimation:
– (void)stopAnimation:(id)sender

For an indeterminate progress indicator, stops the animation, which causes the barber pole to stop spinning.
For a determinate progress indicator, does nothing.

See also: – animationDelay, – startAnimation:

usesThreadedAnimation
– (BOOL)usesThreadedAnimation

Returns whether the receiver implements the animation of the progress indicator in a separate thread.

See also: – setUsesThreadedAnimation:

1

 Classes: NSResponder

NSResponder

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSResponder.h

Class Description

NSResponder is an abstract class that forms the basis of event and command processing in the Application
Kit. The core classes—NSApplication, NSWindow, and NSView—inherit from NSResponder, as must any
class that handles events. The responder model is built around three components: event messages, action
messages, and the responder chain. An event message is a message corresponding directly to an input event,
and includes as its sole argument an NSEvent object describing the event; a mouse down or keypress, for
example. An action message is a higher-level message indicating a command to be performed, which
includes as an argument the object requesting the action. Some examples of action messages are the
standard cut:, copy:, and paste:.

The responder chain is a series of responder objects to which an event or action message is applied. When
a given responder object doesn’t handle a particular message, the message is passed to its successor in the
chain. This allows responder objects to delegate responsibility to other, typically higher-level objects. The
responder chain is constructed automatically as described below, but you can insert custom objects into it
using the setNextResponder: method and examine it with nextResponder.

An application can contain any number of responder chains, but only one is active at any given time. It
begins with the first responder in some NSWindow and proceeds to the NSWindow itself. The first
responder is typically the “selected” NSView within the NSWindow, and its next responder is its containing
NSView (also called its superview), and so on up to the NSWindow itself. You can safely inject other
responders between NSViews, but you can’t add responders past the NSWindow. Nearly all event messages
apply to a single window’s responder chain.

For action messages, a more elaborate responder chain is used, constructed from the individual responder
chains of two NSWindows and the application object itself. The NSWindows are the key window, whose
responder chain gets first crack at action messages, and the main window, which follows. The main window
is sometimes identical to the key window; the two are typically distinguished when an auxiliary window or
panel related to a primary window—such as a Find Panel—is opened. In this case the primary window,
which was the key window, becomes the main window, and the Find Panel becomes key. The two windows
and the NSApplication object also give their delegates a chance to handle action messages as though they
were responders, even though a delegate isn’t formally in the responder chain (a nextResponder message

2

to a window or application object doesn’t return the delegate). Given all these components, then, the full
responder chain comprises these objects:

• The key window’s first responder and successors, including objects added with setNextResponder:
• The key window itself
• The key window’s delegate (which need not inherit from NSResponder)
• The main window’s first responder and successors, including objects added with setNextResponder:
• The main window itself
• The main window’s delegate (which need not inherit from NSResponder)
• The application object, NSApp
• The application object’s delegate (which need not inherit from NSResponder)

Selecting the First Responder

The first responder is typically chosen by the user, with the mouse or keyboard. The mechanism by which
one object loses its first responder status and another gains it is public though, and you can
programmatically change the first responder if necessary. The method that changes the first responder is
NSWindow’s makeFirstResponder:. An NSWindow’s first responder is initially itself, though you can set
which object will be first responder when the NSWindow is first placed on-screen using the
setInitialFirstResponder: method.

makeFirstResponder: always asks the current first responder if its ready to resign its status, using
resignFirstResponder. If the current first responder returns NO when sent this message,
makeFirstResponder: fails and likewise returns NO. If the current first responder returns YES then the
new one is sent a becomeFirstResponder message to inform it that it can be the first responder. This object
can return NO to reject the assignment, in which case the NSWindow itself becomes the first responder.

When an NSWindow that’s the key window receives a mouse-down event, it automatically tries to make
first responder the NSView under the event. It does so by asking the NSView whether it wants to become
first responder, using the acceptsFirstResponder method defined by this class, with the mouse-down event
as the argument. This method normally returns NO; responder subclasses that need to be first responder
must override it to return YES. This method is also used when the user changes the first responder using the
keyboard.

Normally a mouse-down event in a non-key window simply brings the window forward and makes it key,
and isn’t sent to the NSView over which it occurs. The NSView can claim an initial mouse-down, however,
by implementing acceptsFirstMouse: to return YES. The argument is the mouse-down event, which the
NSView can examine to determine whether it wants to receive the mouse event and potentially become first
responder.

An additional consideration for responders that manage selections is of course to set the selection. An
NSView that handles mouse events should set this itself. However, objects can also define methods for
setting their selection that automatically make the receiver first responder as well. NSTextField’s
selectText:, for example, does something quite like this.

3

 Classes: NSResponder

Event and Action Messages in the Responder Chain

The main purpose of the responder chain is to route events and action messages to an appropriate target.
Event and action methods are dispatched in different ways, by different methods. Nearly all events enter an
application from the Window Server, and are handled automatically by NSApplication’s sendEvent:
method. Action messages are instigated by objects, who use NSApplication’s sendAction:to:from: method
to route them to their proper destinations.

NSApplication’s sendEvent: analyzes the event and handles some things specially—key equivalents, for
example. Most events, however, it passes to the appropriate window for dispatch up its responder chain
using NSWindow’s sendEvent: method. NSResponder’s default implementations of all event methods
simply pass the message to the next responder, so if no object in the responder chain does anything with the
event it’s simply lost. As mentioned before, an NSView’s next responder is nearly always its superview, so
if, for example, the NSView that receives a mouseDown: message doesn’t handle it, its superview gets a
chance, and so on up to the NSWindow. If no object is found to handle the event, the last responder in the
chain invokes noResponderFor:, which for a key-down event simply beeps. Event-handling objects
(subclasses of NSWindow and NSView) can override this method to perform additional steps as needed.

Event messages form a well-known set, so NSResponder provides implementations for all of them. Action
messages, however, are defined by custom classes and can’t be predicted. For this reason they’re dispatched
in different manner from events. To instigate an action message, an object invokes NSApplication’s
sendAction:to:from: . The first argument is the selector for the action method to invoke. The second is the
intended recipient of the message, often called the target. The final argument is usually the object invoking
sendAction:to:from: , thus indicating which object instigated the action message. If the intended target
isn’t nil , the action is simply sent directly to that object; this is called a targeted action message. In the case
of an untargeted action message, where the target is nil , sendAction:to:from: searches the full responder
chain for an object that implements the action method specified. If it finds one, it sends the message to that
object with the instigator of the action message as the sole argument. The receiver of the action message
can then use the argument directly as input or query it for additional information. You can find the recipient
of an untargeted action message without actually sending the message using targetForAction: .

A more general mechanism, which applies to the shorter form of the responder chain, is provided by
NSResponder’s tryToPerform:with: . This method checks the receiver to see if it responds to the selector
provided, if so invoking the message. If not, it sends tryToPerform:with: to its next responder. NSWindow
and NSApplication override this method to include their delegates, but they don’t link individual responder
chains in the way that NSApplication’s sendAction:to:from: does. Similar to tryToPerform:with: is
doCommandBySelector:, which takes a method selector and tries to find a responder that implements it.
If none is found, the method beeps.

Warning: NSResponder declares a number of action messages, but doesn’t actually implement them. You
should never send an action message directly to a responder object of an unknown class. Always
use NSApplication’s sendAction:to:from: , NSResponder’s tryToPerform:with: or
doCommandBySelector:, or check that the target responds using the NSObject method
respondsToSelector:.

4

Implementing Event and Action Methods

Implementing event methods is fairly straightforward. If your subclass handles a particular event, it
overrides the method—keyDown:, for example—usurping the implementation of its superclass. If your
subclass needs to handle particular events some of the time—only some typed characters, perhaps—then it
must override the event method to handle the cases it’s interested in and to invoke super’s implementation
otherwise. This allows a superclass to catch the cases it’s interested in, and ultimately allows the event to
continue on its way along the responder chain if it isn’t handled. “Key Events” below describes how to
handle keyboard events in your application. See the NSView class specification for information on handling
mouse events.

Action methods don’t have default implementations, so responder subclasses shouldn’t blindly forward
action messages to super. Passing of action messages is predicated merely on whether an object responds
to the method, unlike with the passing of event messages. Of course, if you know that a superclass does in
fact implement the method, you can pass it on up from your subclass.

Key Events

Processing keyboard input is by far the most complex part of event handling. The Application Kit goes to
great lengths to ease this process for you, and in fact handling the key events that get to your custom objects
is fairly straightforward. However, a lot happens to those events on their way from the hardware to the
responder chain. The sections below attempt to explain how events are handled through the operating
system and the Application Kit, so that you can understand what your objects receive and don’t receive.

The Path of a Key Event

Physical keyboard events must pass through the operating system before becoming NSEvent objects in the
Application Kit. Depending on the operating system, some of these “raw” events might be trapped before
they ever become NSEvent objects. Reserved key combinations are often handled in this way. Key events
that arrive at the Application Kit are processed by NSApplication’s sendEvent: method as indicated before.
The application object filters out key equivalents (also known as “Command key events”) and sends them
out as described under “Key Equivalents and Mnemonics” below. All other key events are passed to the key
window’s sendEvent: method.

The key window first checks the event to see if the Control key is pressed. If it is, the window treats the
event as a forced control event, which is blocked from the responder chain and is processed immediately as
a potential mnemonic or keyboard interface control event. If this doesn’t apply, the event is passed to the
window’s first responder in a keyDown: message, which is how your custom responders receive
uninterpreted key events. “Keyboard Input” describes how you can handle these events.

If no view object in the key window accepts the key event, NSWindow’s keyDown: attempts to handle the
key event itself. It tries to interpret the key event as each of the following, in order, beeping if it fails to match
any of them to let the user know that the typing couldn’t be processed:

• A mnemonic matching the character(s) typed, not requiring the Alternate key to be pressed

5

 Classes: NSResponder

• A key equivalent, not requiring the Command (or Control) key to be pressed
• A keyboard interface control event

Key Equivalents and Mnemonics

A key equivalent is a character bound to some view in a window, which causes that view to perform a
specified action when the user types that character, usually while pressing the Command key (the Control
key on Microsoft Windows). A mnemonic works similarly, using the Alternate key as its cue to action. If
both modifier keys are pressed, the key event is interpreted only as a mnemonic. A key equivalent or
mnemonic must be a character that can be typed with no modifier keys, or with Shift only. Each is sent down
the view hierarchy of a window instead of up the responder chain, but at different times.

Key equivalents are dispatched by the NSApplication object’s sendEvent: method. On the Mach operating
system, this results in a performKeyEquivalent: message being sent to every NSWindow in the
application until one of them returns YES. On the Microsoft Windows operating system, it results in a
performKeyEquivalent: message being sent to the menu of the key window, and of the main window if
the key window’s menu doesn’t handle it. This difference in handling means that, among other things,
NSWindow subclasses shouldn’t override performKeyEquivalent: . Also, objects other than menu items
shouldn’t be assigned key equivalents; they should instead be assigned mnemonics. Key equivalents sent to
a window on Mach are passed down the view hierarchy through NSView’s abstract implementation of
performKeyEquivalent: , which forwards the message to each of its subviews until one responds YES,
returning NO if none does.

Mnemonics, on the other hand, are dispatched by the key window. If the user presses the Control key as
well as the mnemonic’s key combination, NSWindow’s sendEvent: immediately treats that event as a
mnemonic to be performed, without sending the event up the responder chain. If the user doesn’t press the
Control key, the event passes through the window’s responder chain, possibly being handled by a responder,
before arriving as a keyDown: message to the window. In either case, a mnemonic for a top-level menu on
Microsoft Windows is sent back to the operating system, and eventually results in the Application Kit
invoking a menu item’s action. Any other mnemonic is handled by sending a performMnemonic: message
down the window’s view hierarchy, in the same manner as for a performKeyEquivalent: message.

Note: performKeyEquivalent: takes an NSEvent as its argument, while performMnemonic: takes an
NSString containing the uninterpreted characters of the key event. You should extract the characters
for a key equivalent using NSEvent’s charactersIgnoringModifiers method.

Keyboard Interface Control

Mnemonics are actually part of a more general means of controlling the user interface via the keyboard. An
NSWindow treats certain key events specially, as commands to move control to a different interface object,
to simulate a mouse click on it, and so on. In brief, pressing Tab moves control to the next object, whether
a button, a text field, or some other kind of control object. Shift-Tab moves control to the previous one.
Pressing Space simulates a mouse click for many kinds of control objects, causing a push button to click, a
radio button to toggle its state, and so on. In selection lists, pressing Space selects or deselects the

6

highlighted item; the user can also press Alternate or Shift to extend the selection, not affecting other
selected items. Some interface controls also accept arrow-key input.

Each window can be assigned a default button, which is triggered by the Return or Enter key. Also, in modal
windows or panels the user can press the Escape key to dismiss the window or panel. If interface control
moves to another button, the default button temporarily loses this ability as the user’s focus shifts to the
button where control resides. However, if control then moves to a different kind of interface object, the
default button resumes its normal ability.

The interface objects that are connected together within a window make up the window’s key view loop. You
normally set up the key view loop using Interface Builder, establishing connections to each interface
object’s nextKeyView outlet. You can also set the object that’s initially selected when a window is first
opened by setting the window’s initialFirstResponder outlet in Interface Builder. If you do not set this
outlet, the window will set a key loop (not necessarily the same as the one you may have specified!) and
pick a default initial outlet for you. NSView and NSWindow also define a number of methods for
manipulating the key view loop programmatically; see their class specifications for more information.

Keyboard Input

A normal key event eventually makes its way to the responder chain as a keyDown: message, which the
receiver can handle in any way it sees fit. A text object typically interprets the message as a request to insert
text, while a drawing object might only be interested in a few keys, such as Delete and the arrow keys to
delete and move selected items. The receiver of a keyDown: message can extract the event’s characters
directly using NSEvent’s characters or charactersIgnoringModifiers methods, or it can pass the key
event to the Application Kit’s input manager for interpretation according to the user’s key bindings. Input
management allows key events to be interpreted as text not directly available on the keyboard, such as Kanji
and some accented characters, and as commands that affect the content of the responder object handling the
event. See the NSInputManager and NSTextInput class and protocol specifications for more information on
input management and key binding.

To invoke the input manager, simply invoke NSResponder’s interpretKeyEvents: message in your
implementation of keyDown:. This method sends an NSArray of events to the input manager, which
interprets the events as text or commands and responds by sending insertText: or
doCommandBySelector: to your responder object. The section “Standard Action Methods for Selecting
and Editing” below describes the messages that might be sent to your object.

Standard Action Methods for Selecting and Editing

NSResponder declares prototypes for a number of standard action methods, nearly all related to
manipulating selections and editing text. These methods are typically invoked through
doCommandBySelector: as a result of interpretation by the input manager. They fall into the following
general groups:

• Selection movement and expansion
• Text insertion

7

 Classes: NSResponder

• General deletion of elements
• Modifying selected text
• Scrolling a document

In most cases the intent of the action method is clear from its name. The individual method descriptions in
this specification also provide detailed information about what such a method should normally do.
However, a few general concepts apply to many of these methods, and are explained here.

Selection Direction. Some methods refer to spatial directions; left, right, up, down. These are meant to be
taken literally, especially in text. To accommodate writing systems with directionality different from Latin
script, the terms forward, beginning, backward, and end are used.

Selection and insertion point. Methods that refer to moving, deleting, or inserting imply that some
elements in the responder are selected, or that there’s a zero-length selection at some location (the insertion
point). These two things must always be treated consistently. For example, the insertText: method is
defined as replacing the selection with the text provided. moveForwardAndModifySelection: extends or
contracts a selection, even if the selection is merely an insertion point. When a selection is modified for the
first time, it must always be extended. So a moveForward... message extends the selection from its end,
while a moveBackward... message extends it from its beginning.

Marks . A number of action methods for editing text imitate the Emacs concepts of point (the insertion
point), and mark (an anchor for larger operations normally handled by selections in graphical interfaces).
setMark: establishes the mark at the current selection, which then remains in effect until the mark is
changed again. selectToMark: extends the selection to include the mark and all characters between the
selection and the mark.

The kill buffer . Also like Emacs, deletion methods affecting lines, paragraphs, and the mark implicitly
place the deleted text into a buffer, separate from the pasteboard, from which you can later retrieve it.
Methods such as deleteToBeginningOfLine: add text to this buffer, and yank: replaces the selection with
the item in the kill buffer.

Other Uses

The responder chain is utilized by two other mechanisms in the Application Kit. In enabling and disabling
a menu item, the application object consults the full responder chain for an object that implements the menu
item’s action method, as described in the NSMenuActionResponder protocol specification. Similarly, the
Services facility passes validRequestorForSendType:returnType: messages along the full responder
chain to check for objects that are eligible for services offered by other applications. The Services validation
process is described fully in “Services” in OPENSTEP Programming Topics.

8

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

Method Types

Changing the first responder
– acceptsFirstResponder
– becomeFirstResponder
– resignFirstResponder

Setting the next responder
– setNextResponder:
– nextResponder

Event methods
– mouseDown:
– mouseDragged:
– mouseUp:
– mouseMoved:
– mouseEntered:
– mouseExited:
– rightMouseDown:
– rightMouseDragged:
– rightMouseUp:
– keyDown:
– keyUp:
– flagsChanged:
– helpRequested:

Special key event methods
– interpretKeyEvents:
– performKeyEquivalent:
– performMnemonic:

Clearing key events
– flushBufferedKeyEvents

9

 Classes: NSResponder

Action methods
– capitalizeWord:
– centerSelectionInVisibleArea:
– changeCaseOfLetter:
– complete:
– deleteBackward:
– deleteForward:
– deleteToBeginningOfLine:
– deleteToBeginningOfParagraph:
– deleteToEndOfLine:
– deleteToEndOfParagraph:
– deleteToMark:
– deleteWordBackward:
– deleteWordForward:
– indent:
– insertBacktab:
– insertNewline:
– insertNewlineIgnoringFieldEditor:
– insertParagraphSeparator:
– insertTab:
– insertTabIgnoringFieldEditor:
– insertText:
– lowercaseWord:
– moveBackward:
– moveBackwardAndModifySelection:
– moveDown:
– moveDownAndModifySelection:
– moveForward:
– moveForwardAndModifySelection:
– moveLeft:
– moveRight:
– moveToBeginningOfDocument:
– moveToBeginningOfLine:
– moveToBeginningOfParagraph:
– moveToEndOfDocument:
– moveToEndOfLine:
– moveToEndOfParagraph:
– moveUp:
– moveUpAndModifySelection:
– moveWordBackward:
– moveWordBackwardAndModifySelection:
– moveWordForward:
– moveWordForwardAndModifySelection:

10

– pageDown:
– pageUp:
– scrollLineDown:
– scrollLineUp:
– scrollPageDown:
– scrollPageUp:
– selectAll:
– selectLine:
– selectParagraph:
– selectToMark:
– selectWord:
– setMark:
– showContextHelp:
– swapWithMark:
– transpose:
– transposeWords:
– uppercaseWord:
– yank:

Dispatch methods
– doCommandBySelector:
– tryToPerform:with:

Terminating the responder chain
– noResponderFor:

Services menu updating
– validRequestorForSendType:returnType:

Setting the menu
– setMenu:
– menu

Setting the interface style
– setInterfaceStyle:
– interfaceStyle

Instance Methods

acceptsFirstResponder
– (BOOL)acceptsFirstResponder

Overridden by subclasses to return YES if the receiver can handle key events and action messages sent up
the responder chain. NSResponder’s implementation returns NO, indicating that by default a responder

11

 Classes: NSResponder

object doesn’t agree to become first responder. Objects that aren’t first responder can receive mouse event
messages, but no other event or action messages.

See also: – becomeFirstResponder, – resignFirstResponder, – needsPanelToBecomeKey (NSView)

becomeFirstResponder
– (BOOL)becomeFirstResponder

Notifies the receiver that it’s about to become first responder in its NSWindow. NSResponder’s
implementation returns YES, accepting first responder status. Subclasses can override this method to update
state or perform some action such as highlighting the selection, or to return NO, refusing first responder
status.

Use NSWindow’s makeFirstResponder:, not this method, to make an object the first responder. Never
invoke this method directly.

See also: – resignFirstResponder, – acceptsFirstResponder

capitalizeWord:
– (void)capitalizeWord:(id)sender

Implemented by subclasses to capitalize the word or words surrounding the insertion point or selection,
expanding the selection if necessary. If either end of the selection partially covers a word, that entire word
is made lowercase. NSResponder declares, but doesn’t implement this method.

See also: – lowercaseWord:, – uppercaseWord:, – changeCaseOfLetter:

centerSelectionInVisibleArea:
– (void)centerSelectionInVisibleArea:(id)sender

Implemented by subclasses to scroll the selection, whatever it is, inside its visible area. NSResponder
declares, but doesn’t implement this method.

See also: – scrollLineDown:, – scrollLineUp: , – scrollPageDown:, – scrollPageUp:

12

changeCaseOfLetter:
– (void)changeCaseOfLetter:(id)sender

Implemented by subclasses to change the case of a letter or letters in the selection, perhaps by opening a
panel with capitalization options or by cycling through possible case combinations. NSResponder declares,
but doesn’t implement this method.

See also: – lowercaseWord:, – uppercaseWord:, – capitalizeWord:

complete:
– (void)complete:(id)sender

Implemented by subclasses to complete an operation in progress or a partially constructed element. This
can be interpreted, for example, as a request to attempt expansion of a partial word, such as for expanding
a glossary shortcut, or to close a graphic item being drawn. NSResponder declares, but doesn’t implement
this method.

deleteBackward:
– (void)deleteBackward:(id)sender

Implemented by subclasses to delete the selection if there is one, or a single element backward from the
insertion point (a letter or character in text, for example). NSResponder declares, but doesn’t implement
this method.

deleteForward:
– (void)deleteForward:(id)sender

Implemented by subclasses to delete the selection if there is one, or a single element forward from the
insertion point (a letter or character in text, for example). NSResponder declares, but doesn’t implement
this method.

deleteToBeginningOfLine:
– (void)deleteToBeginningOfLine:(id)sender

Implemented by subclasses to delete the selection if there is one, or all text from the insertion point to the
beginning of a line (typically of text). Also places the deleted text into the kill buffer. NSResponder
declares, but doesn’t implement this method.

See also: – yank:

13

 Classes: NSResponder

deleteToBeginningOfParagraph:
– (void)deleteToBeginningOfParagraph:(id)sender

Implemented by subclasses to delete the selection if there is one, or all text from the insertion point to the
beginning of a paragraph of text. Also places the deleted text into the kill buffer. NSResponder declares, but
doesn’t implement this method.

See also: – yank:

deleteToEndOfLine:
– (void)deleteToEndOfLine:(id)sender

Implemented by subclasses to delete the selection if there is one, or all text from the insertion point to the
end of a line (typically of text). Also places the deleted text into the kill buffer. NSResponder declares, but
doesn’t implement this method.

deleteToEndOfParagraph:
– (void)deleteToEndOfParagraph:(id)sender

Implemented by subclasses to delete the selection if there is one, or all text from the insertion point to the
end of a paragraph of text. Also places the deleted text into the kill buffer. NSResponder declares, but
doesn’t implement this method.

See also: – yank:

deleteToMark:
– (void)deleteToMark:(id)sender

Implemented by subclasses to delete the selection if there is one, or all items from the insertion point to a
previously placed mark, including the selection itself if not empty. Also places the deleted text into the kill
buffer. NSResponder declares, but doesn’t implement this method.

See also: – setMark: , – selectToMark:, – yank:

deleteWordBackward:
– (void)deleteWordBackward:(id)sender

Implemented by subclasses to delete the selection if there is one, or a single word backward from the
insertion point. NSResponder declares, but doesn’t implement this method.

14

deleteWordForward:
– (void)deleteWordForward:(id)sender

Implemented by subclasses to delete the selection if there is one, or a single word forward from the insertion
point. NSResponder declares, but doesn’t implement this method.

doCommandBySelector:
– (void)doCommandBySelector:(SEL)aSelector

Attempts to perform the method indicated by aSelector. The method should take a single argument of type
id and return void. If the receiver responds to aSelector, it invokes the method with nil as the argument. If
the receiver doesn’t respond, it sends this message to its next responder with the same selector. NSWindow
and NSApplication also send the message to their delegates. If the receiver has no next responder or
delegate, it beeps.

See also: – tryToPerform:with: , – sendAction:to:from: (NSApplication)

flagsChanged:
– (void)flagsChanged:(NSEvent *)theEvent

Informs the receiver that the user has pressed or released a modifier key (Shift, Control, and so on).
NSResponder’s implementation simply passes this message to the next responder.

flushBufferedKeyEvents
– (void)flushBufferedKeyEvents

Overridden by subclasses to clear any unprocessed key events.

helpRequested:
– (void)helpRequested:(NSEvent *)theEvent

Displays context-sensitive help for the receiver if such exists, otherwise passes this message to the next
responder. NSWindow invokes this method automatically when the user clicks for help. Subclasses need
not override this method, and application code shouldn’t directly invoke it.

See also: – showContextHelp:

15

 Classes: NSResponder

indent:
– (void)indent:(id)sender

Implemented by subclasses to indent the selection or the insertion point if there is no selection.
NSResponder declares, but doesn’t implement this method.

insertBacktab:
– (void)insertBacktab:(id)sender

Implemented by subclasses to handle a “backward tab.” A field editor might respond to this by selecting the
field before it, while a regular text object either doesn’t respond to, or ignores such a message. NSResponder
declares, but doesn’t implement this method.

insertNewline:
– (void)insertNewline:(id)sender

Implemented by subclasses to insert a line-break character at the insertion point or selection, deleting the
selection if there is one, or to end editing if the receiver is a text field or other field editor. NSResponder
declares, but doesn’t implement this method.

insertNewlineIgnoringFieldEditor:
– (void)insertNewlineIgnoringFieldEditor: (id)sender

Implemented by subclasses to insert a line-break character at the insertion point or selection, deleting the
selection if there is one. Unlike insertNewline:, this method always inserts a line-break character and
doesn’t cause the receiver to end editing. NSResponder declares, but doesn’t implement this method.

insertParagraphSeparator:
– (void)insertParagraphSeparator:(id)sender

Implemented by subclasses to insert a paragraph separator at the insertion point or selection, deleting the
selection if there is one. NSResponder declares, but doesn’t implement this method.

16

insertTab:
– (void)insertTab:(id)sender

Implemented by subclasses to insert a tab character at the insertion point or selection, deleting the selection
if there is one, or to end editing if the receiver is a text field or other field editor. NSResponder declares, but
doesn’t implement this method.

insertTabIgnoringFieldEditor:
– (void)insertTabIgnoringFieldEditor: (id)sender

Implemented by subclasses to insert a tab character at the insertion point or selection, deleting the selection
if there is one. Unlike insertTab:, this method always inserts a tab character and doesn’t cause the receiver
to end editing. NSResponder declares, but doesn’t implement this method.

insertText:
– (void)insertText:(NSString *)aString

Overridden by subclasses to insert aString at the insertion point or selection, deleting the selection if there
is one. NSResponder’s implementation simply passes this message to the next responder, or beeps if there
is no next responder.

interfaceStyle
– (NSInterfaceStyle)interfaceStyle

Returns the receiver’s interface style. interfaceStyle is an abstract method in NSResponder and just returns
NSNoInterfaceStyle. It is overridden in classes such as NSWindow and NSView to return the interface
style, such as NSMacintoshInterfaceStyle or NSWindows95InterfaceStyle. A responder's style (if other
than NSNoInterfaceStyle) overrides all other settings, such as those established by the defaults system.

See also: – setInterfaceStyle:

interpretKeyEvents:
– (void)interpretKeyEvents:(NSArray *)eventArray

Invoked by subclasses from their keyDown: method to handle a series of key events. This method sends the
character input in eventArray to the system input manager for interpretation as text to insert or commands
to perform. The input manager responds to the request by sending insertText: and
doCommandBySelector: messages back to the invoker of this method. Subclasses shouldn’t override this
method.

17

 Classes: NSResponder

See the NSInputManager and NSTextInput class and protocol specifications for more information on input
management.

keyDown:
– (void)keyDown:(NSEvent *)theEvent

Informs the receiver that the user has pressed a key. The receiver can interpret theEvent itself, or pass it to
the system input manager using interpretKeyEvents:. NSResponder’s implementation simply passes this
message to the next responder.

keyUp:
– (void)keyUp:(NSEvent *)theEvent

Informs the receiver that the user has released a key. NSResponder’s implementation simply passes this
message to the next responder.

lowercaseWord:
– (void)lowercaseWord:(id)sender

Implemented by subclasses to make lowercase every letter in the word or words surrounding the insertion
point or selection, expanding the selection if necessary. If either end of the selection partially covers a word,
that entire word is made lowercase. NSResponder declares, but doesn’t implement this method.

See also: – uppercaseWord:, – capitalizeWord:, – changeCaseOfLetter:

menu
– (NSMenu *)menu

Returns the receiver’s menu. For NSApplication this is the same as the menu returned by its mainMenu
method.

See also: – setMenu:, – menuForEvent: (NSView), + defaultMenu (NSView)

mouseDown:
– (void)mouseDown:(NSEvent *)theEvent

Informs the receiver that the user has pressed the left mouse button. NSResponder’s implementation simply
passes this message to the next responder.

18

mouseDragged:
– (void)mouseDragged:(NSEvent *)theEvent

Informs the receiver that the user has moved the mouse with the left button pressed. NSResponder’s
implementation simply passes this message to the next responder.

mouseEntered:
– (void)mouseEntered:(NSEvent *)theEvent

Informs the receiver that the mouse has entered a tracking rectangle. NSResponder’s implementation
simply passes this message to the next responder.

mouseExited:
– (void)mouseExited:(NSEvent *)theEvent

Informs the receiver that the mouse has exited a tracking rectangle. NSResponder’s implementation simply
passes this message to the next responder.

mouseMoved:
– (void)mouseMoved:(NSEvent *)theEvent

Informs the receiver that the mouse has moved. NSResponder’s implementation simply passes this message
to the next responder.

See also: – setAcceptsMouseMovedEvents: (NSWindow)

mouseUp:
– (void)mouseUp:(NSEvent *)theEvent

Informs the receiver that the user has released the left mouse button. NSResponder’s implementation simply
passes this message to the next responder.

moveBackward:
– (void)moveBackward:(id)sender

Implemented by subclasses to move the selection or insertion point one element or character backward. In
text, if there is a selection it should be deselected, and the insertion point should be placed at the beginning
of the former selection. NSResponder declares, but doesn’t implement this method.

19

 Classes: NSResponder

moveBackwardAndModifySelection:
– (void)moveBackwardAndModifySelection:(id)sender

Implemented by subclasses to expand or reduce either end of the selection backward by one element or
character. If the end being modified is the backward end, this method expands the selection; if the end being
modified is the forward end, it reduces the selection. The first moveBackwardAndModifySelection: or
moveForwardAndModifySelection: method in a series determines the end being modified by always
expanding. Hence, this method results in the backward end becoming the mobile one if invoked first.

NSResponder declares, but doesn’t implement this method.

moveDown:
– (void)moveDown:(id)sender

Implemented by subclasses to move the selection or insertion point one element or character down. In text,
if there is a selection it should be deselected, and the insertion point should be placed below the beginning
of the former selection. NSResponder declares, but doesn’t implement this method.

moveDownAndModifySelection:
– (void)moveDownAndModifySelection:(id)sender

Implemented by subclasses to expand or reduce the top or bottom end of the selection downward by one
element, character, or line (whichever is appropriate for text direction). If the end being modified is the
bottom, this method expands the selection; if the end being modified is the top, it reduces the selection. The
first moveDownAndModifySelection: or moveUpAndModifySelection: method in a series determines
the end being modified by always expanding. Hence, this method results in the bottom end becoming the
mobile one if invoked first.

NSResponder declares, but doesn’t implement this method.

moveForward:
– (void)moveForward:(id)sender

Implemented by subclasses to move the selection or insertion point one element or character forward. In
text, if there is a selection it should be deselected, and the insertion point should be placed at the end of the
former selection. NSResponder declares, but doesn’t implement this method.

20

moveForwardAndModifySelection:
– (void)moveForwardAndModifySelection:(id)sender

Implemented by subclasses to expand or reduce either end of the selection forward by one element or
character. If the end being modified is the backward end, this method reduces the selection; if the end being
modified is the forward end, it expands the selection. The first moveBackwardAndModifySelection: or
moveForwardAndModifySelection: method in a series determines the end being modified by always
expanding. Hence, this method results in the forward end becoming the mobile one if invoked first.

NSResponder declares, but doesn’t implement this method.

moveLeft:
– (void)moveLeft:(id)sender

Implemented by subclasses to move the selection or insertion point one element or character to the left. In
text, if there is a selection it should be deselected, and the insertion point should be placed at the left end of
the former selection. NSResponder declares, but doesn’t implement this method.

moveRight:
– (void)moveRight:(id)sender

Implemented by subclasses to move the selection or insertion point one element or character to the right. In
text, if there is a selection it should be deselected, and the insertion point should be placed at the right end
of the former selection. NSResponder declares, but doesn’t implement this method.

moveToBeginningOfDocument:
– (void)moveToBeginningOfDocument:(id)sender

Implemented by subclasses to move the selection to the first element of the document, or the insertion point
to the beginning. NSResponder declares, but doesn’t implement this method.

moveToBeginningOfLine:
– (void)moveToBeginningOfLine:(id)sender

Implemented by subclasses to move the selection to the first element of the selected line, or the insertion
point to the beginning of the line. NSResponder declares, but doesn’t implement this method.

21

 Classes: NSResponder

moveToBeginningOfParagraph:
– (void)moveToBeginningOfParagraph:(id)sender

Implemented by subclasses to move the insertion point to the beginning of the selected paragraph.
NSResponder declares, but doesn’t implement this method.

moveToEndOfDocument:
– (void)moveToEndOfDocument:(id)sender

Implemented by subclasses to move the selection to the last element of the document, or the insertion point
to the end. NSResponder declares, but doesn’t implement this method.

moveToEndOfLine:
– (void)moveToEndOfLine:(id)sender

Implemented by subclasses to move the selection to the last element of the selected line, or the insertion
point to the end of the line. NSResponder declares, but doesn’t implement this method.

moveToEndOfParagraph:
– (void)moveToEndOfParagraph:(id)sender

Implemented by subclasses to move the insertion point to the end of the selected paragraph. NSResponder
declares, but doesn’t implement this method.

moveUp:
– (void)moveUp:(id)sender

Implemented by subclasses to move the selection or insertion point one element or character up. In text, if
there is a selection it should be deselected, and the insertion point should be placed above the beginning of
the former selection. NSResponder declares, but doesn’t implement this method.

moveUpAndModifySelection:
– (void)moveUpAndModifySelection:(id)sender

Implemented by subclasses to expand or reduce the top or bottom end of the selection upward by one
element, character, or line (whichever is appropriate for text direction). If the end being modified is the
bottom, this method reduces the selection; if the end being modified is the top, it expands the selection. The

22

first moveDownAndModifySelection: or moveUpAndModifySelection: method in a series determines
the end being modified by always expanding. Hence, this method results in the top end becoming the mobile
one if invoked first.

NSResponder declares, but doesn’t implement this method.

moveWordBackward:
– (void)moveWordBackward:(id)sender

Implemented by subclasses to move the selection or insertion point one word backward. If there is a
selection it should be deselected, and the insertion point should be placed at the end of the first word
preceding the former selection. NSResponder declares, but doesn’t implement this method.

moveWordBackwardAndModifySelection:
– (void)moveWordBackwardAndModifySelection:(id)sender

Implemented by subclasses to expand or reduce either end of the selection backward by one whole word.
If the end being modified is the backward end, this method expands the selection; if the end being modified
is the forward end, it reduces the selection. The first moveWordBackwardAndModifySelection: or
moveWordForwardAndModifySelection: method in a series determines the end being modified by
always expanding. Hence, this method results in the backward end becoming the mobile one if invoked first.

NSResponder declares, but doesn’t implement this method.

moveWordForward:
– (void)moveWordForward: (id)sender

Implemented by subclasses to move the selection or insertion point one word forward. If there is a selection
it should be deselected, and the insertion point should be placed at the beginning of the first word following
the former selection. NSResponder declares, but doesn’t implement this method.

moveWordForwardAndModifySelection:
– (void)moveWordForwardAndModifySelection:(id)sender

Implemented by subclasses to expand or reduce either end of the selection forward by one whole word. If
the end being modified is the backward end, this method reduces the selection; if the end being modified is
the forward end, it expands the selection. The first moveWordBackwardAndModifySelection: or
moveWordForwardAndModifySelection: method in a series determines the end being modified by
always expanding. Hence, this method results in the forward end becoming the mobile one if invoked first.

23

 Classes: NSResponder

NSResponder declares, but doesn’t implement this method.

nextResponder
– (NSResponder *)nextResponder

Returns the receiver’s next responder, or nil if it has none.

See also: – setNextResponder:, – noResponderFor:

noResponderFor:
– (void)noResponderFor:(SEL)eventSelector

Handles the case where an event or action message falls off the end of the responder chain. NSResponder’s
implementation beeps if eventSelector is keyDown:.

pageDown:
– (void)pageDown:(id)sender

Implemented by subclasses to scroll the receiver down (or back) one page in its scroll view, also moving
the insertion point to the top of the newly-displayed page. NSResponder declares, but doesn’t implement
this method.

See also: – scrollPageDown:, – scrollPageUp:

pageUp:
– (void)pageUp:(id)sender

Implemented by subclasses to scroll the receiver up (or forward) one page in its scroll view, also moving
the insertion point to the top of the newly-displayed page. NSResponder declares, but doesn’t implement
this method.

See also: – scrollPageDown:, – scrollPageUp:

performKeyEquivalent:
– (BOOL)performKeyEquivalent: (NSEvent *)theEvent

Overridden by subclasses to handle a key equivalent. If the character code or codes in theEvent match the
receiver’s key equivalent, the receiver should respond to the event and return YES. NSResponder’s
implementation does nothing and returns NO.

24

Note: performKeyEquivalent: takes an NSEvent as its argument, while performMnemonic: takes an
NSString containing the uninterpreted characters of the key event. You should extract the characters
for a key equivalent using NSEvent’s charactersIgnoringModifiers method.

See also: – performKeyEquivalent: (NSView), – performKeyEquivalent: (NSButton)

performMnemonic:
– (BOOL)performMnemonic: (NSString *)aString

Overridden by subclasses to handle a mnemonic. If the character code or codes in theEvent match the
receiver’s mnemonic, the receiver should respond to the event and return YES. NSResponder’s
implementation does nothing and returns NO.

See also: – performMnemonic: (NSView)

resignFirstResponder
– (BOOL)resignFirstResponder

Notifies the receiver that it’s been asked to relinquish its status as first responder in its NSWindow.
NSResponder’s implementation returns YES, resigning first responder status. Subclasses can override this
method to update state or perform some action such as unhighlighting the selection, or to return NO,
refusing to relinquish first responder status.

Use NSWindow’s makeFirstResponder:, not this method, to make an object the first responder. Never
invoke this method directly.

See also: – becomeFirstResponder, – acceptsFirstResponder

rightMouseDown:
– (void)rightMouseDown:(NSEvent *)theEvent

Informs the receiver that the user has pressed the right mouse button. NSResponder’s implementation
simply passes this message to the next responder.

rightMouseDragged:
– (void)rightMouseDragged:(NSEvent *)theEvent

Informs the receiver that the user has moved the mouse with the right button pressed. NSResponder’s
implementation simply passes this message to the next responder.

25

 Classes: NSResponder

rightMouseUp:
– (void)rightMouseUp:(NSEvent *)theEvent

Informs the receiver that the user has released the right mouse button. NSResponder’s implementation
simply passes this message to the next responder.

scrollLineDown:
– (void)scrollLineDown:(id)sender

Implemented by subclasses to scroll the receiver one line down in its scroll view, without changing the
selection. NSResponder declares, but doesn’t implement this method.

See also: – scrollPageDown:, – lineScroll (NSScrollView)

scrollLineUp:
– (void)scrollLineUp: (id)sender

Implemented by subclasses to scroll the receiver one line up in its scroll view, without changing the
selection. NSResponder declares, but doesn’t implement this method.

See also: – scrollPageUp:, – lineScroll (NSScrollView)

scrollPageDown:
– (void)scrollPageDown:(id)sender

Implemented by subclasses to scroll the receiver one page down in its scroll view, without changing the
selection. NSResponder declares, but doesn’t implement this method.

See also: – pageDown:, – pageUp:, – pageScroll (NSScrollView)

scrollPageUp:
– (void)scrollPageUp:(id)sender

Implemented by subclasses to scroll the receiver one page up in its scroll view, without changing the
selection. NSResponder declares, but doesn’t implement this method.

See also: – pageDown:, – pageUp:, – pageScroll (NSScrollView)

26

selectAll:
– (void)selectAll:(id)sender

Implemented by subclasses to select all selectable elements. NSResponder declares, but doesn’t implement
this method.

selectLine:
– (void)selectLine:(id)sender

Implemented by subclasses to select all elements in the line or lines containing the selection or insertion
point. NSResponder declares, but doesn’t implement this method.

selectParagraph:
– (void)selectParagraph:(id)sender

Implemented by subclasses to select all paragraphs containing the selection or insertion point.
NSResponder declares, but doesn’t implement this method.

selectToMark:
– (void)selectToMark:(id)sender

Implemented by subclasses to select all items from the insertion point or selection to a previously placed
mark, including the selection itself if not empty. NSResponder declares, but doesn’t implement this method.

See also: – setMark: , – deleteToMark:

selectWord:
– (void)selectWord:(id)sender

Implemented by subclasses to extend the selection to the nearest word boundaries outside it (up to, but not
including, word delimiters). NSResponder declares, but doesn’t implement this method.

setInterfaceStyle:
– (void)setInterfaceStyle:(NSInterfaceStyle)interfaceStyle

Sets the receiver’s style to the style specified by interfaceStyle, such as NSMacintoshInterfaceStyle or
NSWindows95InterfaceStyle. setInterfaceStyle: is an abstract method in NSResponder, but is overridden

27

 Classes: NSResponder

in classes such as NSWindow and NSView to actually set the interface style. You should almost never need
to invoke or override this method, but if you do override it, your version should always invoke super.

See also: – interfaceStyle

setMark:
– (void)setMark: (id)sender

Implemented by subclasses to set a mark at the insertion point or selection, which is used by
deleteToMark: and selectToMark:. NSResponder declares, but doesn’t implement this method.

See also: – swapWithMark:

setMenu:
– (void)setMenu:(NSMenu *)aMenu

Sets the receiver’s menu to aMenu. For NSApplication this is the same as the main menu, typically set using
setMainMenu:.

See also: – menu

setNextResponder:
– (void)setNextResponder:(NSResponder *)aResponder

Sets the receiver’s next responder to aResponder.

See also: – nextResponder

showContextHelp:
– (void)showContextHelp:(id)sender

Implemented by subclasses to invoke the host platform’s help system, displaying information relevant to
the receiver and its current state.

See also: – helpRequested:

28

swapWithMark:
– (void)swapWithMark: (id)sender

Swaps the mark and the selection or insertion point, so that what was marked is now the selection or
insertion point, and what was the insertion point or selection is now the mark. NSResponder declares, but
doesn’t implement this method.

See also: – setMark:

transpose:
– (void)transpose:(id)sender

Transposes the characters to either side of the insertion point and advances the insertion point past both of
them. Does nothing to a selected range of text. NSResponder declares, but doesn’t implement this method.

transposeWords:
– (void)transposeWords:(id)sender

NSResponder declares, but doesn’t implement this method.

tryToPerform:with:
– (BOOL)tryToPerform: (SEL)anAction with: (id)anObject

Attempts to perform the action method indicated by anAction. The method should take a single argument
of type id and return void. If the receiver responds to anAction, it invokes the method with anObject as the
argument and returns YES. If the receiver doesn’t respond, it sends this message to its next responder with
the same selector and object. Returns NO if no responder is found that responds to anAction.

See also: – doCommandBySelector:, – sendAction:to:from: (NSApplication)

uppercaseWord:
– (void)uppercaseWord:(id)sender

Implemented by subclasses to make uppercase every letter in the word or words surrounding the insertion
point or selection, expanding the selection if necessary. If either end of the selection partially covers a word,
that entire word is made uppercase. NSResponder declares, but doesn’t implement this method.

See also: – lowercaseWord:, – capitalizeWord:, – changeCaseOfLetter:

29

 Classes: NSResponder

validRequestorForSendType:returnType:
– (id)validRequestorForSendType:(NSString *)sendType returnType: (NSString *)returnType

Overridden by subclasses to determine what services are available. With each event, and for each service in
the Services menu, the application object sends this message up the responder chain with the send and
return type for the service being checked. This method is therefore invoked many times per event. If the
receiver can place data of sendType on the pasteboard and receive data of returnType, it should return self;
otherwise it should return nil . NSResponder’s implementation simply forwards this message to the next
responder, ultimately returning nil .

Either sendType or returnType—but not both—may be empty. If sendType is empty, the service doesn’t
require input from the application requesting the service. If returnType is empty, the service doesn’t return
data.

See “Services” in OPENSTEP Programming Topics for more information.

See also: – registerServicesMenuSendTypes:returnTypes: (NSApplication),
– writeSelectionToPasteboard:types: (NSServicesRequests protocol),
– readSelectionFromPasteboard: (NSServicesRequests protocol)

yank:
– (void)yank:(id)sender

Replaces the insertion point or selection with text from the kill buffer. If invoked sequentially, cycles
through the kill buffer in reverse order. See “Standard Action Methods for Selecting and Editing” in the
class description for more information on the kill buffer. NSResponder declares, but doesn’t implement this
method.

See also: – deleteToBeginningOfLine:, – deleteToEndOfLine:, – deleteToBeginningOfParagraph:,
– deleteToEndOfParagraph:, – deleteToMark:

1

 Classes: NSRulerMarker

NSRulerMarker

Inherits From: NSObject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: AppKit/NSRulerMarker.h

Class Description

An NSRulerMarker displays a symbol on an NSRulerView, indicating a location for whatever graphic
element it represents in the client of the NSRulerView (for example, a margin or tab setting, or the edges of
a graphic on the page). A ruler marker comprises three primary attributes: the image it displays on the
NSRulerView, the location of that image, and the object it represents. The setImage:, setMarkerLocation:
and setRepresentedObject: methods set each of these attributes, respectively. In addition, a ruler marker
records an offset for the image, allowing it to be placed relative to the marker location much in the way a
cursor’s hot spot relates a cursor image to the mouse location; the setImageOrigin: method establishes this
offset.

Most of these attributes are set upon initialization by the initWithRulerView:markerLocation:image:
imageOrigin: method. New ruler markers don’t have represented objects; the client typically establishes
the represented object in its rulerView:didAddMarker: method. A new NSRulerMarker can be moved
around in its NSRulerView, but not removed from it. The setMovable: and setRemovable: methods alter
these default settings.

Represented objects allow the NSRulerView’s client to distinguish among different attributes of the
selection. In the NSRulerView client methods, the client can retrieve the marker’s represented object to
determine what attribute to alter. Generic attributes can be represented by string or other value objects, such
as the edge names “Left”, “Right”, “Top”, and “Bottom”. Attributes already implemented as objects can be
represented by those objects. For example, the text system records tab stops as NSTextTab objects, which
include the tab location and its alignment. When an NSTextView is the client view of a ruler, it simply
makes the NSTextTabs the represented objects of the ruler markers.

Adopted Protocols

NSCopying
– copyWithZone:

2

Method Types

Creating instances
– initWithRulerView:markerLocation:image:imageOrigin:

Getting the ruler view
– ruler

Setting the image
– setImage:
– image
– setImageOrigin:
– imageOrigin
– imageRectInRuler
– thicknessRequiredInRuler

Setting movability
– setMovable:
– isMovable
– setRemovable:
– isRemovable

Setting the location
– setMarkerLocation:
– markerLocation

Setting the represented object
– setRepresentedObject:
– representedObject

Drawing and event handling
– drawRect:
– isDragging
– trackMouse:adding:

Instance Methods

drawRect:
– (void)drawRect:(NSRect)aRect

Draws the part of the receiver’s image that intersects aRect in the NSRulerView’s coordinate system.

See also: – imageRectInRuler

3

 Classes: NSRulerMarker

image
– (NSImage *)image

Returns the NSImage object displayed by the receiver.

See also: – setImage:

imageOrigin
– (NSPoint)imageOrigin

Returns the point in the receiver’s image that’s positioned at the receiver’s location on the NSRulerView,
expressed in the image’s coordinate system.

For a horizontal ruler, the x coordinate of the image origin is aligned with the location of the marker, and
the y coordinate lies on the baseline of the ruler. For vertical rulers, the y coordinate of the image origin is
the location, and the x coordinate lies on the baseline.

See also: – setImageOrigin:, – imageRectInRuler

imageRectInRuler
– (NSRect)imageRectInRuler

Returns the rectangle occupied by the marker’s image, in the NSRulerView’s coordinate system, accounting
for whether the NSRulerView’s coordinate system is flipped.

See also: – drawRect:, – thicknessRequiredInRuler

initWithRulerView:markerLocation:image:imageOrigin:
– (id)initWithRulerView: (NSRulerView *)aRulerView

markerLocation: (float)location
image:(NSImage *)anImage
imageOrigin:(NSPoint)imageOrigin

Initializes a newly allocated NSRulerMarker object, associating it with (but not adding it to) aRulerView
and assigning the attributes provided. location is the x or y position of the marker in the client view’s
coordinate system, depending on whether the NSRulerView is horizontal or vertical. anImage is the image
displayed at the marker location, and imageOrigin is the point within the image that’s positioned at the
marker location, expressed in pixels relative to the lower-left corner of the image. This method raises an
NSInvalidArgumentException if aRulerView or anImage is nil .

4

Note: The image used to draw the marker must be appropriate for the orientation of the ruler. Markers may
need to look different on a horizontal ruler than on a vertical ruler, and the NSRulerView neither
scales nor rotates the images.

To add the new ruler marker to aRulerView, use either of NSRulerView’s addMarker: or trackMarker:
withMouseEvent: methods. addMarker: immediately puts the marker on the ruler, while trackMarker:
withMousEvent: allows the client view to intercede in the addition and placement of the marker.

A new ruler marker is can be moved on its NSRulerView, but not removed. Use setMovable: and
setRemovable: to change these attributes. The new ruler marker also has no represented object; use
setRepresentedObject: to provide or change it.

This method retains anImage, since it’s an essential part of the ruler marker, but doesn’t retain aRulerView
(the NSRulerView instead retains the new marker when it’s added). This method is the designated initializer
for the NSRulerMarker class. Returns self.

See also: – setMarkerLocation: , – setImage:, – setImageOrigin:

isDragging
– (BOOL)isDragging

Returns YES if the receiver is being dragged, NO otherwise.

See also: – trackMouse:adding:

isMovable
– (BOOL)isMovable

Returns YES if the user can move the receiver on its NSRulerView, NO otherwise. NSRulerMarkers are by
default movable.

See also: – setMovable:, – isRemovable

isRemovable
– (BOOL)isRemovable

Returns YES if the user can remove the receiver from its NSRulerView, NO otherwise. NSRulerMarkers
cannot by default be removed from their NSRulerViews.

See also: – setRemovable:, – isMovable

5

 Classes: NSRulerMarker

markerLocation
– (float)makerLocation

Returns the location of the receiver in the coordinate system of the NSRulerView’s client view. This is an x
position for a horizontal ruler, a y position for a vertical ruler.

See also: – setMarkerLocation:

representedObject
– (id <NSCopying>)representedObject

Returns the object that the receiver represents, as explained in the class description.

See also: – setRepresentedObject:

ruler
– (NSRulerView *)ruler

Returns the NSRulerView that the receiver belongs to.

See also: – addMarker: (NSRulerView)

setImage:
– (void)setImage:(NSImage *)anImage

Sets the receiver’s image to anImage.

See also: – image, – setImageOrigin:

setImageOrigin:
– (void)setImageOrigin:(NSPoint)aPoint

Sets the point in the receiver’s image that’s positioned at the receiver’s location on the NSRulerView to that
at aPoint. This point is always expressed in pixels relative to the lower-left corner of the image.

For a horizontal ruler, the x coordinate of the image origin is aligned with the location of the marker, and
the y coordinate lies on the baseline of the ruler. For vertical rulers, the y coordinate of the image origin is
the location, and the x coordinate lies on the baseline.

See also: – imageOrigin, – setImage:, – setMarkerLocation:

6

setMarkerLocation:
– (void)setMarkerLocation: (float)location

Sets the location of the receiver in the coordinate system of the NSRulerView’s client view to location. This
is an x position for a horizontal ruler, a y position for a vertical ruler.

See also: – markerLocation , – setImageOrigin:

setMovable:
– (void)setMovable:(BOOL)flag

Controls whether the user can move the receiver in its NSRulerView. If flag is YES, the user can drag the
marker image in the ruler. If flag is NO, the receiver is immovable. NSRulerMarkers are by default movable.

See also: – isMovable, – setRemovable:

setRemovable:
– (void)setRemovable:(BOOL)flag

Controls whether the user can remove the receiver from its NSRulerView. If flag is YES, the user can drag
the marker image off of the ruler. If flag is NO, the receiver can’t be removed. NSRulerMarkers are by
default not removable.

See also: – isRemovable, – setMovable:

setRepresentedObject:
– (void)setRepresentedObject:(id <NSCopying>)anObject

Sets the object that the receiver represents to anObject. See the class description for more information on
the represented object.

See also: – representedObject

thicknessRequiredInRuler
– (float)thicknessRequiredInRuler

Returns the amount of the receiver’s image that’s displayed above or to the left of the NSRulerView’s
baseline, the height for a horizontal ruler or width for a vertical ruler.

See also: – imageOrigin

7

 Classes: NSRulerMarker

trackMouse:adding:
– (BOOL)trackMouse:(NSEvent *)theEvent adding:(BOOL)flag

Handles user manipulation of the receiver in its NSRulerView. NSRulerView invokes this method
automatically to add a new marker or to move or remove an existing marker. You should never need to
invoke it directly.

If flag is YES, the receiver is a new marker being added to its NSRulerView. Before the receiver actually
adds itself to the NSRulerView, it queries the NSRulerView’s client view using rulerView:
shouldAddMarker: . If the client view responds to this method and returns NO, this method immediately
returns NO and the new marker isn’t added.

If flag is NO, this method attempts to move or remove an existing marker, once again based on responses
from the NSRulerView’s client view. If the receiver is neither movable nor removable, this method
immediately returns NO. Further, if the NSRulerView’s client responds to rulerView:
shouldMoveMarker: and returns NO, this method returns NO, indicating that the receiver can’t be moved.

If the receiver is being added or moved, this method queries the client view using rulerView:
willAddMarker:atLocation: or rulerView:willMoveMarker:toLocation: , respectively. If the client
responds to the method, the return value is used as the receiver’s location. These methods are invoked
repeatedly as the receiver is dragged within the NSRulerView.

If the receiver is an existing marker being removed (dragged off the ruler), this method queries the client
view using rulerView:shouldRemoveMarker: . If the client responds to this method and returns NO, the
marker is pinned to the NSRulerView’s baseline (following the mouse on the baseline if it’s movable).

When the user releases the mouse, this method informs the client view of the marker’s new status using
rulerView:didAddMarker: , rulerView:didMoveMarker: , or rulerView:didRemoveMarker: as
appropriate. The client view can use this notification to set the marker’s represented object, modify its state
and redisplay (for example, adjusting text layout around a new tab stop), or take whatever other action it
might need. If flag is YES and the user dragged the new marker away from the ruler, the marker isn’t added,
no message is sent, and this method returns NO.

See the NSRulerView class description for more information on these client methods.

See also: – isMovable, – isRemovable

1

 Classes: NSRulerView

NSRulerView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSRulerView.h

Class at a GlanceˇClass at a Glance

Purpose
An NSRulerView displays a ruler and markers above or to the side of an NSScrollView’s document view. Views
within the NSScrollView can become clients of the ruler view, having it display markers for their elements, and
receiving messages from the ruler view when the user manipulates the markers.

Principal Attributes
• Displays markers that represent elements of the client view
• Displays in arbitrary units
• Provides for an accessory view containing extra controls

Creation
– setHasHorizontalRuler: (NSScrollView)
– setHasVerticalRuler: (NSScrollView)
– initWithScrollView:orientation: Designated initializer.

Commonly Used Methods

– setClientView: Changes the ruler’s client view.

– setMarkers: Sets the markers displayed by the ruler view.

– setAccessoryView: Sets the accessory view.

– trackMarker:withMouseEvent: Allows the user to add a new marker.

2

Class Description

An NSRulerView resides in an NSScrollView, displaying a labeled ruler and markers for its client, the
document view of the NSScrollView or a subview of the document view. The client view can add and
remove markers representing its contents, such as graphic elements, margins, and text tabs. The
NSRulerView tracks user manipulation of the markers and informs the client view of those actions.
NSRulerView handles both horizontal and vertical rulers, which are tiled in the scroll view above and to the
side of the content view, respectively. NSRulerViews are sometimes called simply ruler views or even
rulers.

A ruler view comprises three regions. First is the ruler area, where the ruler’s baseline, hash marks, and
labels are drawn. The ruler area is largely static, but it scales its hash marks to document view’s coordinate
system, and can display the hash marks in arbitrary units. The second region is the marker area, where ruler
markers (NSRulerMarker objects) representing elements of the client view are displayed. This is a more
dynamic area, changing with the selection and state of the client view. The final region is the accessory view
area, which is by default not present but appears when you add an accessory view to the ruler view. An
accessory view can contain additional controls for manipulating the ruler’s client view, such as alignment
buttons or a set of markers that can be dragged onto the ruler.

A ruler view interacts with its client view in several ways. On appropriating the ruler view, the client view
usually sets it up according to its needs. The client view can also dynamically update the ruler view’s
markers as its layout changes. In its turn, the ruler view informs the client view of actions the user takes on
the ruler markers, allowing the client view to approve or limit the actions and to update its state based on
the results of the actions.

The appearance of a ruler is based on both the document view and the client view. The document view, as
the backdrop within the scroll view, serves as the canvas on which any client views are laid. Because of the
document view’s anchoring role, a ruler always draws its hash marks and labels relative to the document
view’s coordinate system. A vertical ruler also checks whether the document view is flipped and acts
accordingly. However, the ruler view treats subviews of the document view as items laid out within the
coordinate system defined by the document view, and so doesn’t change its hash marks when a client view
other than the document view is moved or scaled. For the client view’s convenience it does, however,
express marker locations in the client view’s coordinate system. A few other operations that ruler views
perform are defined in terms of the ruler’s own coordinate system. The discussion of a feature or method
makes clear which coordinate system applies. For reference, this table summarizes all of the coordinate
systems involved in using ruler views, and the operations based on them:

Coordinate System Used for

Client view Marker locations

Document view
Calculating hash marks based on measurement units and scaling,origin
offset for zero marks

Ruler view Temporary rulerlines, component layout

3

 Classes: NSRulerView

Measurement Units

A new ruler view automatically uses the user’s preferred measurement units for drawing hash marks and
labels, as stored in the user defaults system under the key “NSMeasurementUnit”. If your application allows
the user to change his preferred measurement units, you can change them at run time using
setMeasurementUnits:, which takes the name of the units to use, such as “Inches” or “Centimeters”, and
causes the ruler view to use that unit definition in spacing its hash marks and labels.

NSRulerView supports the units Inches, Centimeters, Points, and Picas by default. If your application uses
other measurement units, your application should define and register them before creating any ruler views.
To do, use the class method registerUnitWithName:abbreviation:unitsToPointsConversionFactor:
stepUpCycle:stepDownCycle:. Your application can register these wherever it’s most convenient, such as
in the NSApplication delegate method applicationDidFinishLaunching: . This code fragment registers a
new unit called Grummets, with the abbreviation gt:

NSArray *upArray;

NSArray *downArray;

upArray = [NSArray arrayWithObjects:[NSNumber numberWithFloat:2.0], nil];

downArray = [NSArray arrayWithObjects:[NSNumber numberWithFloat:0.5],

[NSNumber numberWithFloat:0.2], nil];

[NSRulerView registerUnitWithName:@"Grummets"

abbreviation:NSLocalizedString(@"gt", @"Grummets abbreviation string")

unitToPointsConversionFactor:100.0

stepUpCycle:upArray stepDownCycle:downArray];

A Grummet is 100.0 PostScript units (points) in length, so a ruler view using it draws a major hash mark
every 100.0 points when its document view is unscaled. If the document view is scaled, the ruler view
spaces its hash marks accordingly.

The step-up and step-down cycles control how hash marks are drawn for fractions and multiples of units.
NSRulerView attempts to place hash marks so that they’re neither too crowded nor too sparse based on the
current scale of the document view. It does so by drawing smaller hash marks for fractions of units where
possible, and by removing hash marks for whole units where necessary.

The step-down cycle determines the fractional units checked by the ruler view. For example, with the unit
Grummets defined above, the step down cycle is 0.5, then 0.2. With this cycle, the ruler view first checks to
see if there’s room for marks every half Grummet, placing them if there is. Then, it checks every fifth of the
remaining space, or a tenth of a full Grummet, placing further hash marks there if there’s room. Then it
returns to the first step in the cycle to further subdivide the ruler, and so on.

Marker image Image origin (which locates the image relative to the marker location)

Coordinate System Used for

4

The step-up cycle determines how many full unit marks get dropped when there isn’t room for each one.
The example uses a single-step cycle of 2.0, which means that each second Grommet’s hash mark is
displayed if there isn’t room for every one, then every fourth if there still isn’t room, and so on.

Preparing a Ruler View for Use

Adding a ruler view to a scroll view can be as simple as invoking NSScrollView’s setHasHorizontalRuler:
and setHasVerticalRuler: methods. These create instances of the default ruler view class, which you can
change using the NSScrollView class method setRulerViewClass:. You can also set ruler views directly on
a per-instance basis using setHorizontalRulerView: and setVerticalRulerView:. Once you’ve added
rulers to a scroll view, you can hide and reveal them using setRulersVisible:.

Beyond creating the rulers, you need take only a few steps to set them up properly for use by the views
contained within the scroll view: locating the zero marks of the rulers, and reserving room for accessory
views. You normally perform these steps only once, when setting up the NSScrollView with rulers.
However, if you allow the user to reset document attributes such as margins, you should change the zero
mark locations as well. Also, if you reuse the scroll view by swapping in a new document view you may
need to set up the rulers again with different settings.

The first step is to determine where you want the zero marks of the rulers to be located relative to the bounds
origin of the document view. The zero marks are coincident with the bounds origin by default, but you can
change this with the method setOriginOffset:. This method takes an offset specified in the document view’s
coordinate system. If you need to set the origin offset based on a point in a subview of the document view,
such as a text view that’s inset on a page, use convertPoint:fromView: to realize it in the document view’s
coordinate system. This code fragment places the zero marks at the bounds origin of a client view, which
lies somewhere inside the document view:

zero = [docView convertPoint:[clientView bounds].origin fromView:clientView];

[horizRuler setOriginOffset:zero.x - [docView bounds].origin.x];

After placing the zero marks, you should set up your rulers so that they don’t change in size as the user
works within the document view. For example, if two different subviews of the document view use different
accessory views, the ruler view enlarges itself as necessary each time you change the accessory view. Such
changes are at best unsightly and at worst confusing to the user. To avoid this problem, calculate ahead of
time the sizes of the largest accessory view and the largest markers, and set the ruler view’s required
thickness for these elements using setReservedThicknessForAccessoryView: and
setReservedThicknessForMarkers:. For example, if you have two accessory views for the horizontal
ruler, one 16.0 PostScript units high and the other 24.0, invoke setReservedThicknessForAccessoryView:
with an argument of 24.0.

Changing the Client

Once the ruler view is fully set up, the scroll view’s document view, or any subview of the document view,
can become its client by sending it a setClientView: message. This method notifies the prior client that it’s
losing the ruler view using the rulerView:willSetClientView: method, removes all of the ruler view’s

5

 Classes: NSRulerView

markers, and sets the new client view. A client view normally appropriates the ruler when it becomes first
responder and keeps it until some other view appropriates it. After appropriating the ruler view, the client
needs to set up its layout and markers.

Adjusting the Layout

If the client has a custom accessory view, it sets that using setAccessoryView:. Clients without accessory
views should avoid removing the ruler view’s accessory view when appropriating the ruler, as this can cause
unsightly screen flicker as the ruler is redrawn. It’s better in this case for a client view that has an accessory
view to implement rulerView:willSetClientView: , disabling the controls in the accessory view so that
they’re not active when other clients are using the ruler. Then, when the client view with the accessory view
appropriates the ruler, it should set its accessory view again in case another client swapped the accessory
view out, and reenable the controls.

Setting Ruler Markers

Aside from the layout of the ruler view itself, the client can also add markers to indicate the positions of its
graphic elements, such as tabs and margins in text or the bounding boxes of drawn shapes or images. Each
marker is an NSRulerMarker object, which displays a graphic image on the ruler at its given location, and
can be associated with an object that identifies the attribute indicated by the marker. You initialize an
NSRulerMarker using its initWithRulerView:markerLocation:image:imageOrigin: method, which
takes as arguments the NSRulerView where the marker will be displayed, its location on the ruler in the
client view’s coordinate system, the image to display, and the point within the image that lies on the ruler’s
baseline. Once you’ve created the markers, you can use NSRulerView’s addMarker: or setMarkers:
methods to put them on the ruler. This code fragment, for example, sets up markers denoting the left and
right edges of the selected object’s frame rectangle:

NSRulerMarker *leftMarker;

NSRulerMarker *rightMarker;

leftMarker = [[NSRulerMarker alloc] initWithRulerView:horizRuler

markerLocation:NSMinX([selectedItem frame]) image:leftImage

imageOrigin:NSMakePoint(0.0, 0.0)];

rightMarker = [[NSRulerMarker alloc] initWithRulerView:horizRuler

markerLocation:NSMaxX([selectedItem frame]) image:rightImage

imageOrigin:NSMakePoint(8.0, 0.0)];

[horizRuler setMarkers:[NSArray arrayWithObjects:leftMarker, rightMarker, nil]];

The images used for this example are 8 pixels square, and lie just inside of their relevant positions. The
figure below shows the left and right marker images, enlarged and with gray bounding boxes. Thus, the left
marker’s image must be placed with its lower left corner, or (0.0, 0.0), at the marker location, while the
lower right corner of the right marker, at (8.0, 0.0), is used. The image origin is always expressed in the
coordinate system of the image itself, just as an NSCursor’s hot spot is.

6

A new NSRulerMarker allows the user to drag it around on its ruler, but not to remove it. You can change
these defaults by sending it setMovable: and setRemovable: messages. For example, you might make
markers representing tabs in text removable to allow the user to edit the paragraph settings.

Markers bear one additional attribute, which allows you to distinguish among multiple markers, specifically
markers that share the same image. This is the represented object, set with NSRulerMarker’s
setRepresentedObject: method. A represented object can simply be a string identifying a generic attribute,
such as “Left Margin” or “Right Margin”. It can also be an object stored in the client view or in the
selection; for example, the text system records tab stops as NSTextTab objects, which include the tab
location and its alignment. When the user manipulates a tab marker, the client can simply retrieve its
represented object to get the tab being affected.

Updating the Ruler View

A single client view may contain many selectable items, such as graphic shapes or paragraphs of text with
different ruler settings. When the selection changes, the client must reset the ruler view’s markers based on
the new selection. This kind of updating is fairly straightforward and can be performed as described above
for situations where the client view itself changes.

Another kind of updating is needed when you wish to support dynamic updating of ruler markers as the user
manipulates the elements of the client view. For example, when the user moves a shape, you want the ruler
markers to relocate when the user finishes moving it. Any method that changes relevant attributes of the
selection should update the ruler markers, whether by replacing them wholesale or by checking each one
present and updating its location.

You can even put such updating code within a modal loop that handles dragging items around in the client
view, so that the markers track the position of the selected item. This can be a fairly heavyweight operation
to perform while also handling movement of the selected item, however. In support of a lighter weight
means of showing this information, NSRulerView allows you to draw temporary rulerlines that can be
drawn and erased very quickly. One method, moveRulerlineFromLocation:toLocation:, controls the
drawing of rulerlines. It takes two locations expressed in the NSRulerView’s coordinate system, erasing the
rulerline at the old location and redrawing it at the new. To create a new rulerline, specify –1.0 as the old
location; to erase one completely, specify –1.0 as the new location. Although you’re responsible for keeping
track of the locations to erase and redraw, this isn’t as cumbersome or inefficient as sifting through or
replacing the markers themselves.

7

 Classes: NSRulerView

User Manipulation of Markers

While a ruler’s client view must perform the work of determining marker locations and placing them on the
ruler, the ruler itself handles all the work of tracking user manipulations of the markers, sending messages
to the client view that inform it of the changes before they begin, as they occur, and after they finish. The
client view can use these messages to update its own state. The following sections describe the individual
processes of moving, removing, and adding markers, along with a special method for handling mouse
events in the ruler area.

Moving Markers

When the user presses the mouse button over a ruler marker, NSRulerView sends the marker a trackMouse:
adding: message. If the marker isn’t movable this method does nothing and immediately returns NO. If it
is movable, then it sends the client a series of messages allowing it to determine how the user can move the
marker around on the ruler.

First of these messages is rulerView:shouldMoveMarker: , which allows the client view to prevent an
otherwise movable marker from being moved. Normally, whether a marker can be moved should be set on
the marker itself, but there are situations, such as where items can be locked in place, where this is more
properly tracked by the client view instead. If the client view returns YES, allowing the movement, then it
receives a series of rulerView:willMoveMarker:toLocation: messages as the user drags the marker
around. Each message identifies the marker being moved and its proposed new location in the client view’s
coordinate system. The client view can return an altered location to restrict the marker’s movement, or
update its display to reflect the new location. Finally, when the user releases the mouse button, the client
receives a rulerView:didMoveMarker: , on which it can update its state and clean up any information it
may have used while tracking the marker’s movements.

Removing Markers

Removal of markers is handled by a similar set of messages. However, these are always sent during a
movement operation, as the user must first be dragging a marker within the ruler to be able to drag it off the
ruler. If a marker isn’t set to be removable, the user simply can’t drag it off. If the marker is removable, then
when the user drags the mouse far enough away from the ruler’s baseline, it sends the client view a
rulerView:shouldRemoveMarker: message, allowing the client to approve or veto the removal. No
messages are necessary for new locations, of course, but if the user returns the marker to the ruler then it
resumes sending rulerView:willMoveMarker:toLocation: messages as before. If the user releases the
mouse with the marker dragged away from the ruler, the marker sends the client view a rulerView:
didRemoveMarker: message, so the user can delete the item or attribute represented by the marker.

Adding Markers

User addition of a marker must be initiated by the application, of course, since there is no marker yet for
the ruler to track. The first step in adding a marker, then, is to create one, using NSRulerMarker’s
initWithRulerView:markerLocation:image:imageOrigin: method. Once the new marker is created, you

8

instruct the ruler view to handle dragging it onto itself by sending it a trackMarker:withMouseEvent:
message. One means of doing this is to use the mouse event from the client view method rulerView:
handleMouseDown:, as described in “Handling Mouse Events in the Ruler Area” below. Another is to
create a custom view object—which typically resides in the ruler’s accessory view—that displays prototype
markers, and that handles a mouse-down event by creating a new marker for the ruler and invoking
trackMarker:withMouseEvent: with the new marker and that mouse-down event.

Once you’ve initiated the addition process, things proceed in the same manner as for moving a marker. The
ruler view sends the new marker a trackMouse:adding: message, with YES as the second argument to
indicate that the marker isn’t merely being moved. The marker being added then sends the client view a
rulerView:shouldAddMarker: message, and if the client approves then it repeatedly sends rulerView:
willAddMarker:atLocation: messages as the user moves the marker around on the ruler. The user can
drag the marker away to avoid adding it, or release the mouse button over the ruler, in which case the client
receives a rulerView:didAddMarker: message.

As with moving a marker, you should consider enabling and disabling in a more immediate fashion than by
the client view method if possible. If the user shouldn’t be able to drag a marker from the accessory view,
for example, the view containing the prototype marker should disable itself and indicate this in its
appearance, rather than allowing the user to drag a marker out only to discover that the ruler won’t accept it.

Handling Mouse Events in the Ruler Area

In addition to handling user manipulation of markers, a ruler informs its client view when the user presses
the mouse button while the mouse is inside the ruler area (where hash marks are drawn), by sending it a
rulerView:handleMouseDown: message. This allows the client view to take some special action, such as
adding a new marker to the ruler, as described above. This approach works well when it’s quite clear what
kind of marker will be created. The client view can also use this message as a cue to change its display in
some way; for example to add or remove a guideline that assists the user in laying out and aligning items
in the view.

Method Types

Creating instances
– initWithScrollView:orientation:

Altering measurement units
+ registerUnitWithName:abbreviation:

unitToPointsConversionFactor:stepUpCycle:stepDownCycle:
– setMeasurementUnits:
– measurementUnits

Setting the client view
– setClientView:
– clientView

9

 Classes: NSRulerView

Setting an accessory view
– setAccessoryView:
– accessoryView

Setting the zero mark position
– setOriginOffset:
– originOffset

Adding and removing markers
– setMarkers:
– markers
– addMarker:
– removeMarker:
– trackMarker:withMouseEvent:

Drawing temporary rulerlines
– moveRulerlineFromLocation:toLocation:

Drawing
– drawHashMarksAndLabelsInRect:
– drawMarkersInRect:
– invalidateHashMarks

Ruler layout
– setScrollView:
– scrollView
– setOrientation:
– orientation
– setReservedThicknessForAccessoryView:
– reservedThicknessForAccessoryView
– setReservedThicknessForMarkers:
– reservedThicknessForMarkers
– setRuleThickness:
– ruleThickness
– requiredThickness
– baselineLocation
– isFlipped

10

Class Methods

registerUnitWithName:abbreviation:unitToPointsConversionFactor:
stepUpCycle:stepDownCycle:

+ (void)registerUnitWithName: (NSString *)unitName
abbreviation:(NSString *)abbreviation
unitToPointsConversionFactor:(float)conversionFactor
stepUpCycle:(NSArray *)stepUpCycle
stepDownCycle:(NSArray *)stepDownCycle

Registers a new unit of measurement with the NSRulerView class, making it available to all instances of
NSRulerView. unitName is the name of the unit in English, in plural form and capitalized by convention;
“Inches”, for example. The unit name is used as a key to identify the measurement units, and so shouldn’t
be localized. abbreviation is a localized short form of the unit name, such as “in” for Inches.
conversionFactor is the number of PostScript points in the specified unit; there are 72.0 points per inch, for
example. stepUpCycle and stepDownCycle are arrays of NSNumbers that specify how hash marks are
calculated, as explained in the class description under the “Preparing a Ruler View for Use” heading. All
numbers in stepUpCycle should be greater than 1.0, those in stepDownCycle should be less than 1.0.

NSRulerView supports these units by default:

See also: – setMeasurementUnits:

Instance Methods

accessoryView
– (NSView *)accessoryView

Returns the receiver’s accessory view, if it has one.

See also: – setAccessoryView:, – reservedThicknessForAccessoryView

Unit Name Abbreviation Points/Unit Step-up Cycle Step-down Cycle

Inches in 72.0 2.0 0.5

Centimeters cm 28.35 2.0 0.5, 0.2

Points pt 1.0 10.0 0.5

Picas pc 12.0 10.0 0.5

11

 Classes: NSRulerView

addMarker:
– (void)addMarker: (NSRulerMarker *)aMarker

Adds aMarker to the receiver, without consulting the client view for approval. Raises
NSInternalInconsistencyException if the receiver has no client view.

See also: – setMarkers:, – removeMarker: , – markers, – trackMarker:withMouseEvent:

baselineLocation
– (float)baselineLocation

Returns the location of the receiver’s baseline, in its own coordinate system. This is a y position for
horizontal rulers and an x position for vertical ones.

See also: – ruleThickness

clientView
– (NSView *)clientView

Returns the receiver’s client view, if it has one.

See also: – setClientView:

drawHashMarksAndLabelsInRect:
– (void)drawHashMarksAndLabelsInRect:(NSRect)aRect

Draws the receiver’s hash marks and labels in aRect, which is expressed in the receiver’s coordinate system.
This method is invoked by drawRect:—you should never need to invoke it directly. You can define custom
measurement units using the class method registerUnitWithName:.... Override this method if you want to
customize the appearance of the hash marks themselves.

See also: – invalidateHashMarks, – drawMarkersInRect:

drawMarkersInRect:
– (void)drawMarkersInRect: (NSRect)aRect

Draws the receiver’s markers in aRect, which is expressed in the receiver’s coordinate system. This method
is invoked by drawRect:; you should never need to invoke it directly, but you might want to override it if
you want to do something different when drawing markers.

See also: – reservedThicknessForMarkers, – drawHashMarksAndLabelsInRect:

12

initWithScrollView:orientation:
– (id)initWithScrollView: (NSScrollView *)aScrollView orientation: (NSRulerOrientation)orientation

Initializes a newly allocated NSRulerView to have orientation (NSHorizontalRuler or NSVerticalRuler)
within aScrollView. The new ruler view displays the user’s preferred measurement units, and has no client,
markers, or accessory view. Unlike most subclasses of NSView, no initial frame rectangle is given for
NSRulerView; its containing NSScrollView adjusts its frame rectangle as needed.

This is the designated initializer for the NSRulerView class. Returns self.

invalidateHashMarks
– (void)invalidateHashMarks

Forces recalculation of the hash mark spacing for the next time the receiver is displayed. You should never
need to invoke this method directly, but might need to override it if you override
drawHashMarksAndLabelsInRect:.

See also: – drawHashMarksAndLabelsInRect:

isFlipped
– (BOOL)isFlipped

Returns YES if the NSRulerView’s coordinate system is flipped, NO otherwise. A vertical ruler takes into
account whether the coordinate system of the NSScrollView’s document view—not the receiver’s client
view—is flipped. A horizontal ruler is always flipped.

markers
– (NSArray *)markers

Returns the receiver’s NSRulerMarkers. The markers aren’t guaranteed to be sorted in any particular order.

See also: – setMarkers:, – addMarker: , – removeMarker: , – markerLocation (NSRulerMarker)

measurementUnits
– (NSString *)measurementUnits

Returns the full name of the measurement units in effect for the receiver.

See also: – setMeasurementUnits:, + registerUnitWithName:abbreviation:
unitToPointsConversionFactor:stepUpCycle:stepDownCycle:

13

 Classes: NSRulerView

moveRulerlineFromLocation:toLocation:
– (void)moveRulerlineFromLocation:(float)oldLoc toLocation:(float)newLoc

Draws temporary lines in the ruler area. If oldLoc is zero or greater, erases the rulerline at that location; if
newLoc is zero or greater, draws a new rulerline at that location. oldLoc and newLoc are expressed in the
coordinate system of the NSRulerView, not of the client or document view, and are x coordinates for
horizontal rulers and y coordinates for vertical rulers. Use NSView’s convert... methods to convert
coordinates from the client or document view’s coordinate system to that of the NSRulerView.

This method is useful for drawing highlight lines in the ruler to show the position or extent of an object
while it’s being dragged in the client view. The sender is responsible for keeping track of the number and
positions of temporary lines—the NSRulerView only does the drawing.

orientation
– (NSRulerOrientation)orientation

Returns the orientation of the NSRulerView, either NSHorizontalRuler or NSVerticalRuler.

See also: – setOrientation:

originOffset
– (float)originOffset

Returns the distance from the receiver’s zero hash mark to the bounds origin of the NSScrollView’s
document view (not the receiver’s client view), in the document view’s coordinate system.

See also: – setOriginOffset:

removeMarker:
– (void)removeMarker: (NSRulerMarker *)aMarker

Removes aMarker from the receiver, without consulting the client view for approval.

See also: – setMarkers:, – addMarker:

14

requiredThickness
– (float)requiredThickness

Returns the thickness needed for proper tiling of the receiver within an NSScrollView. This is the height of
a horizontal ruler and the width of a vertical ruler. The required thickness is the sum of the thicknesses of
the ruler area, the marker area, and the accessory view.

See also: – ruleThickness, – reservedThicknessForMarkers, – reservedThicknessForAccessoryView

reservedThicknessForAccessoryView
– (float)reservedThicknessForAccessoryView

Returns the thickness reserved to contain the receiver’s accessory view, its height or width depending on
the receiver’s orientation. This is automatically enlarged as necessary to the accessory view’s thickness (but
never automatically reduced). To prevent retiling of a ruler view’s scroll view, you should set its maximal
thickness upon creating using setReservedThicknessForAccessoryView:.

reservedThicknessForMarkers
– (float)reservedThicknessForMarkers

Returns the thickness reserved to contain the images of the receiver’s ruler markers, the height or width
depending on the receiver’s orientation. This is automatically enlarged as necessary to accommodate the
thickest ruler marker image (but never automatically reduced). To prevent retiling of a ruler view’s scroll
view, you should set its maximal thickness upon creating using setReservedThicknessForMarkers:.

See also: – thicknessRequiredInRuler (NSRulerMarker)

ruleThickness
– (float)ruleThickness

Returns the thickness of the receiver’s ruler area (the area where hash marks and labels are drawn), its height
or width depending on the receiver’s orientation.

See also: – setRuleThickness:

15

 Classes: NSRulerView

scrollView
– (NSScrollView *)scrollView

Returns the NSScrollView object that contains the receiver.

See also: – setScrollView:, – setHorizontalRulerView: (NSScrollView), – setVerticalRulerView:
 (NSScrollView)

setAccessoryView:
– (void)setAccessoryView:(NSView *)aView

Sets the receiver’s accessory view to aView. Raises an NSInternalInconsistencyException if aView is
non-nil and the receiver has no client view.

See also: – accessoryView, – reservedThicknessForAccessoryView

setClientView:
– (void)setClientView:(NSView *)aView

Sets the receiver’s client view to aView, without retaining it, and removes its ruler markers, after informing
the prior client of the change using rulerView:willSetClientView: . aView must be either the document
view of the NSScrollView that contains the receiver, or a subview of the document view.

See also: – clientView

setMarkers:
– (void)setMarkers:(NSArray *)markers

Sets the receiver’s ruler markers to markers, removing any existing ruler markers and not consulting with
the client view about the new markers. markers can be nil or empty to remove all ruler markers. Raises an
NSInternalInconsistencyException if markers is non-nil and the receiver has no client view.

See also: – addMarker: , – removeMarker:

16

setMeasurementUnits:
– (void)setMeasurementUnits:(NSString *)unitName

Sets the measurement units used by the ruler to unitName. unitName must have been registered with the
NSRulerView class object prior to invoking this method. See the description of the class method
registerUnitWithName:... for a list of predefined units.

See also: – measurementUnits

setOrientation:
– (void)setOrientation:(NSRulerOrientation)orientation

Sets the orientation of the receiver to orientation, which may be NSHorizontalRuler or NSVerticalRuler.
You should never need to invoke this method directly—it’s automatically invoked by the containing
NSScrollView.

See also: – orientation

setOriginOffset:
– (void)setOriginOffset:(float)offset

Sets the distance to the zero hash mark from the bounds origin of the NSScrollView’s document view (not
of the receiver’s client view), in the document view’s coordinate system. The default offset is 0.0, meaning
that the ruler origin coincides with the bounds origin of the document view.

See also: – originOffset

setReservedThicknessForAccessoryView:
– (void)setReservedThicknessForAccessoryView:(float)thickness

Sets the room available for the NSRulerView’s accessory view to thickness. If the ruler is horizontal,
thickness is the height of the accessory view; otherwise, it’s the width. NSRulerViews by default reserve no
space for an accessory view.

An NSRulerView automatically increases the reserved thickness as necessary to that of the accessory view.
When the accessory view is thinner than the reserved space, it’s centered in that space. If you plan to use
several accessory views of different sizes, you should set the reserved thickness beforehand to that of the
thickest accessory view, in order to avoid retiling of the NSScrollView.

See also: – reservedThicknessForAccessoryView, – setAccessoryView:,
– setReservedThicknessForMarkers:

17

 Classes: NSRulerView

setReservedThicknessForMarkers:
– (void)setReservedThicknessForMarkers:(float)thickness

Sets the room available for ruler markers to thickness. The default thickness reserved for markers is 15.0
PostScript units for a horizontal ruler and 0.0 PostScript units for a vertical ruler (under the assumption that
vertical rulers rarely contain markers). If you don’t expect to have any markers on the ruler, you can set the
reserved thickness to 0.0.

An NSRulerView automatically increases the reserved thickness as necessary to that of its thickest marker.
If you plan to use markers of varying sizes, you should set the reserved thickness beforehand to that of the
thickest one in order to avoid retiling of the NSScrollView.

See also: – reservedThicknessForMarkers, – setMarkers:,
– setReservedThicknessForAccessoryView:, – thicknessRequiredInRuler (NSRulerMarker)

setRuleThickness:
– (void)setRuleThickness:(float)thickness

Sets to thickness the thickness of the area where ruler hash marks and labels are drawn. This value is the
height of the ruler area for a horizontal ruler or the width of the ruler area for a vertical ruler. Rulers are by
default 16.0 PostScript units thick. You should rarely need to change this layout attribute, but subclasses
might do so to accommodate custom drawing.

See also: – ruleThickness

setScrollView:
– (void)setScrollView:(NSScrollView *)scrollView

Sets the NSScrollView that owns the receiver to scrollView, without retaining it. This method is generally
invoked only by the ruler’s scroll view; you should rarely need to invoke it directly.

See also: – scrollView, – setHorizontalRulerView: (NSScrollView), – setVerticalRulerView:
 (NSScrollView)

trackMarker:withMouseEvent:
– (BOOL)trackMarker: (NSRulerMarker *)aMarker withMouseEvent:(NSEvent *)theEvent

Tracks the mouse to add aMarker based on the initial mouse-down or mouse-dragged event theEvent.
Returns YES if the receiver adds aMarker, NO if it doesn’t. This method works by sending trackMouse:
adding: to aMarker with theEvent and YES as arguments.

18

An application typically invokes this method in one of two cases. In the simpler case, the client view can
implement rulerView:handleMouseDown: to invoke this method when the user presses the mouse button
in the NSRulerView’s ruler area. This technique is appropriate when it’s clear what kind of marker will be
added by clicking in the ruler area. The second, more general, case involves the application providing a
palette of different kinds of markers that can be dragged onto the ruler, from the ruler’s accessory view or
from some other place. With this technique the palette tracks the mouse until it enters the ruler view, at
which time it hands over control to the ruler view by invoking trackMarker:withMouseEvent: .

See also: – addMarker: , – setMarkers:

Methods Implemented by the NSRulerView’s Client

rulerView:didAddMarker:
– (void)rulerView: (NSRulerView *)aRulerView didAddMarker: (NSRulerMarker *)aMarker

Informs the client that aRulerView allowed the user to add aMarker. The client can take whatever action it
needs based on this message, such as adding a new tab stop to the selected paragraph or creating a layout
guideline.

See also: – representedObject (NSRulerMarker), – markerLocation (NSRulerMarker)

rulerView:didMoveMarker:
– (void)rulerView: (NSRulerView *)aRulerView didMoveMarker: (NSRulerMarker *)aMarker

Informs the client that aRulerView allowed the user to move aMarker. The client can take whatever action
it needs based on this message, such as updating the location of a tab stop in the selected paragraph, moving
a layout guideline, or resizing a graphic element.

See also: – representedObject (NSRulerMarker), – markerLocation (NSRulerMarker)

rulerView:didRemoveMarker:
– (void)rulerView: (NSRulerView *)aRulerView didRemoveMarker:(NSRulerMarker *)aMarker

Informs the client that aRulerView allowed the user to remove aMarker. The client can take whatever action
it needs based on this message, such as deleting a tab stop from the paragraph style or removing a layout
guideline.

See also: – representedObject (NSRulerMarker)

19

 Classes: NSRulerView

rulerView:handleMouseDown:
– (void)rulerView: (NSRulerView *)aRulerView handleMouseDown:(NSEvent *)theEvent

Informs the client that the user has pressed the mouse button while the cursor is in the ruler area of
aRulerView. theEvent is the mouse-down event that triggered the message. The client view can implement
this method to perform an action such as adding a new marker using trackMarker:withMouseEvent: or
adding layout guidelines.

rulerView:shouldAddMarker:
– (BOOL)rulerView: (NSRulerView *)aRulerView shouldAddMarker: (NSRulerMarker *)aMarker

Requests permission for aRulerView to add aMarker, an NSRulerMarker being dragged onto the ruler by
the user. If the client returns YES then the ruler view accepts the new marker and begins tracking its
movement; if the client returns NO then the ruler view refuses the new marker.

See also: – rulerView:willAddMarker:atLocation:

rulerView:shouldMoveMarker:
– (BOOL)rulerView: (NSRulerView *)aRulerView shouldMoveMarker: (NSRulerMarker *)aMarker

Requests permission for aRulerView to move aMarker. If the client returns YES then the ruler view allows
the user to move the marker; if the client returns NO then the marker doesn’t move.

The user’s ability to move a marker is typically set on the marker itself, using NSRulerMarker’s
setMovable: method. You should use this client view method only when the marker’s movability can vary
depending on a variable condition (for example, if graphic items can be locked down to prevent them from
being inadvertently moved).

See also: – rulerView:willMoveMarker:toLocation:

rulerView:shouldRemoveMarker:
– (BOOL)rulerView: (NSRulerView *)aRulerView shouldRemoveMarker:

(NSRulerMarker *)aMarker

Requests permission for aRulerView to remove aMarker. If the client returns YES then the ruler view allows
the user to remove the marker; if the client returns NO then the marker is kept pinned to the ruler’s baseline.
This message is sent as many times as needed while the user drags the marker.

The user’s ability to remove a marker is typically set on the marker itself, using NSRulerMarker’s
setRemovable: method. You should use this client view method only when the marker’s removability can
vary while the user drags it (for example, if the user must press the Shift key to remove a marker).

20

rulerView:willAddMarker:atLocation:
– (float)rulerView: (NSRulerView *)aRulerView

willAddMarker: (NSRulerMarker *)aMarker
atLocation:(float)location

Informs the client that aRulerView will add the new NSRulerMarker, aMarker. location is the marker’s
tentative new location, expressed in the client view’s coordinate system. The value returned by the client
view is actually used; the client can simply return location unchanged, or adjust it as needed. For example,
it may snap the location to a grid. This message is sent repeatedly to the client as the user drags the marker.

See also: – rulerView:willMoveMarker:toLocation:

rulerView:willMoveMarker:toLocation:
– (float)rulerView: (NSRulerView *)aRulerView

willMoveMarker: (NSRulerMarker *)aMarker
toLocation:(float)location

Informs the client that aRulerView will move aMarker, an NSRulerMarker already on the ruler view.
location is the marker’s tentative new location, expressed in the client view’s coordinate system. The value
returned by the client view is actually used; the client can simply return location unchanged, or adjust it as
needed. For example, it may snap the location to a grid. This message is sent repeatedly to the client as the
user drags the marker.

See also: – rulerView:willAddMarker:atLocation:

rulerView:willSetClientView:
– (void)rulerView: (NSRulerView *)aRulerView

willSetClientView: (NSView *)newClient

Informs the client view that aRulerView is about to be appropriated by newClient. The client view can use
this opportunity to clear any cached information related to the ruler.

1

 Classes: NSSavePanel

NSSavePanel

Inherits From: Windows: NSObject
Mach: NSPanel : NSWindow : NSResponder : NSObject

Conforms To: Windows: NSObject (NSObject)
Mach: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSavePanel.h

Class at a GlanceˇClass at a Glance

Purpose
An NSSavePanel object manages a panel that allows users to specify the directory and name under which a file
is saved. It supports browsing of the file system and it accommodates custom accessory views. An NSSavePanel

2

is a recycled object: when you request a Save panel, NSSavePanel tries to reuse an existing Save panel rather than
create a new one.

Principal Attributes

Creation
+ savePanel (class method)

Commonly Used Methods

Class Description

NSSavePanel creates and manages a Save panel, and allows you to run the panel in a modal loop. The Save
panel provides a simple way for a user to specify a file to use when saving a document or other data. It can
restrict the user to files of a certain type, as specified by a file name extension.

When the user decides on a file name, the message panel:isValidFilename: is sent to the NSSavePanel’s
delegate. If it responds to that message, the delegate can determine whether the specified file name can be
used; it returns YES if the file name is valid, or NO if the Save panel should stay up and wait for the user to
type in a different file name.

Typically, you access an NSSavePanel by invoking the savePanel method. When the class receives a
savePanel message, it tries to reuse an existing panel rather than create a new one. When a panel is reused
its attributes are reset to the default values so that the effect is the same as receiving a new panel. Because

Delegate Browser

Form Prompt

Title File name

Directory Accessory view

runModal Displays the panel and begins the event loop.

filename Returns the selected or entered file name.

directory Returns the full path of the selected file.

ok: Invoked when users click OK.

3

 Classes: NSSavePanel

a Save panel may be reused, you shouldn't modify the instance returned by savePanel except through the
methods listed below. For example, you can set the panel’s title and required file type, but not the
arrangement of the buttons within the panel. If you must modify the Save panel substantially, create and
manage your own instance using the alloc... and init... methods rather than the savePanel method.

A typical programmatic use of NSavePanel requires you to:

• Invoke savePanel.
• Configure the panel (for instance, set its title or add a custom view).
• Run the panel in a model loop.
• Test the result; if successful, save the file under the chosen name and in the chosen directory.

The following code fragment demonstrates this sequence. (Two objects in this example, newView and
textData, are assumed to be defined and created elsewhere.)

NSSavePanel *sp;

int runResult;

/* create or get the shared instance of NSSavePanel */

sp = [NSSavePanel savePanel];

/* set up new attributes */

[sp setAccessoryView:newView];

[sp setRequiredFileType:@"txt"];

/* display the NSSavePanel */

runResult = [sp runModalForDirectory:NSHomeDirectory() file:@""];

/* if successful, save file under designated name */

if (runResult == NSOKButton) {

if (![textData writeToFile:[sp filename] atomically:YES])

 NSBeep();

}

Method Types

Creating an NSSavePanel
+ savePanel

Customizing the NSSavePanel
– setAccessoryView:
– accessoryView
– setTitle:
– title
– setPrompt:
– prompt

4

Setting directory and file type
– setDirectory:
– setRequiredFileType:
– requiredFileType
– treatsFilePackagesAsDirectories
– setTreatsFilePackagesAsDirectories:
– validateVisibleColumns

Running the NSSavePanel
– runModal
– runModalForDirectory:file:

Getting user selections
– directory
– filename

Action methods
– cancel:
– ok:

Responding to user input
– selectText:

Setting the delegate
– setDelegate:

Class Methods

savePanel
+ (NSSavePanel *)savePanel

Returns an instance of NSSavePanel, creating one if necessary. Otherwise, the instance is a recycled
NSSavePanel object. The method sets the attributes of the instance to the default values:

• Current working directory as starting point
• Prompt of “Name”
• No required file types
• File packages not treated as directories
• No delegate
• No accessory view

5

 Classes: NSSavePanel

Instance Methods

accessoryView
− (NSView *)accessoryView

Returns the custom accessory view for the current application. This view is set by setAccessoryView:.

See also: – setAccessoryView:

cancel:
− (void)cancel:(id)sender

Invoked when the user clicks the panel’s Cancel button.

directory
– (NSString *)directory

Returns the absolute pathname of the directory currently shown in the panel. Do not invoke this method
within a modal session (runModal or runModalForDirectory:file:) because the directory information is
only updated just before the modal session ends.

See also: – setDirectory:

encodeWithCoder:
– (void)encodeWithCoder:(NSCoder *)coder

Overrides the superclass implementation of this NSCoding protocol method to raise an exception. The
NSSavePanel does not get encoded.

See also: – initWithCoder:

filename
− (NSString *)filename

Returns the absolute path name of the file currently shown in the panel. Do not invoke this method within
a modal session (runModal or runModalForDirectory:file:) because the filename information is only
updated just before the modal session ends.

6

initWithCoder:
– (id)initWithCoder: (NSCoder *)coder

Overrides the superclass implementation of this NSCoding protocol method to raise an exception. The
NSSavePanel does not get decoded.

See also: – encodeWithCoder:

ok:
− (void)ok:(id)sender

Invoked when the user clicks the panel’s OK button.

prompt
– (NSString *)prompt

Returns the prompt of the Save panel field that holds the current pathname or file name. By default this
prompt is “Name:”.

See also: – setPrompt:

requiredFileType
– (NSString *)requiredFileType

Returns the required file type (if any). A file specified in the Save panel is saved with the designated file
name and this file type as an extension. Examples of common file types are “rtf”, “tiff”, and “ps”. An empty
NSString return value indicates that the user can save to any ASCII file.

See also: – setRequiredFileType:

runModal
− (int)runModal

Displays the panel and begins its event loop with the current working (or last selected) directory as the
default starting point. Invokes runModalForDirectory:file: (file argument is an empty NSString), which
in turn performs NSApplication’s runModalForWindow: method with self as the argument. Returns
NSOKButton (if the user clicks the OK button) or NSCancelButton (if the user clicks the Cancel button).

7

 Classes: NSSavePanel

Do not invoke filename or directory within a modal loop because the information that these methods fetch
is updated only upon return.

See also: – runModalForDirectory:file: , – runModalForWindow: (NSApplication)

runModalForDirectory:file:
− (int)runModalForDirectory: (NSString *)path file:(NSString *)filename

Initializes the panel to the directory specified by path and, optionally, the file specified by filename, then
displays it and begins its modal event loop; path and filename can be empty strings, but cannot be nil . The
method invokes Application’s runModalForWindow: method with self as the argument. Returns
NSOKButton (if the user clicks the OK button) or NSCancelButton (if the user clicks the Cancel button).
Do not invoke filename or directory within a modal loop because the information that these methods fetch
is updated only upon return.

See also: – runModal , – runModalForWindow: (Application)

selectText:
− (void)selectText:(id)sender

Advances the current browser selection one line when Tab or the up-arrow key is pressed, and goes back
one line when Shift-Tab or the down-arrow key is pressed; after it makes the new selection it writes the
selected item in the field after the prompt. The argument sender identifies the object invoking this method.
This method is primarily of interest to those who want to override it to get different behavior.

setAccessoryView:
– (void)setAccessoryView:(NSView *)aView

Customizes the panel for the application by adding a custom NSView (aView) to the panel. The custom
NSView that’s added appears just above the OK and Cancel buttons at the bottom of the panel. The
NSSavePanel automatically resizes itself to accommodate aView. You can invoke this method repeatedly to
change the accessory view as needed. If aView is nil , the NSSavePanel removes the current accessory view.

See also: – accessoryView

setDelegate:
– (void)setDelegate:(id)anObject

Makes anObject the NSSavePanel’s delegate, after verifying which delegate methods are implemented. Use
NSWindow’s delegate method to retrieve the NSSavePanel’s delegate.

8

setDirectory:
– (void)setDirectory:(NSString *)path

Sets the current path name in the Save panel’s browser. The path argument must be an absolute path name.

See also: – directory

setPrompt:
– (void)setPrompt:(NSString *)prompt

Sets the prompt of the field that holds the current pathname or file name. This prompt appears on all
NSSavePanels (or all NSOpenPanels if the receiver of this message is an NSOpenPanel) in your application.
“Name:” is the default prompt string.

See also: – prompt

setRequiredFileType:
– (void)setRequiredFileType:(NSString *)type

Specifies the type, a file name extension to be appended to any selected files that don’t already have that
extension; “nib” and “rtf” are examples. The argument type should not include the period that begins the
extension. You need to invoke this method each time the Save panel is used for another file type within the
application.

See also: – requiredFileType

setTreatsFilePackagesAsDirectories:
– (void)setTreatsFilePackagesAsDirectories:(BOOL)flag

Sets the NSSavePanel’s behavior for displaying file packages (for example, MyApp.app) to the user. If flag
is YES, the user is shown files and subdirectories within a file package. If NO, the NSSavePanel shows each
file package as a file, thereby giving no indication that it is a directory.

See also: – treatsFilePackagesAsDirectories

9

 Classes: NSSavePanel

setTitle:
– (void)setTitle:(NSString *)title

Sets the title of the NSSavePanel to title. By default, “Save” is the title string. If you adapt the NSSavePanel
for other uses, its title should reflect the user action that brings it to the screen.

See also: – title

title
- (NSString *)title

Returns the title of the NSSavePanel.

See also: – setTitle:

treatsFilePackagesAsDirectories
– (BOOL)treatsFilePackagesAsDirectories

Use to determine whether the Save panel displays file packages to the user as directories. Returns YES if
the user is shown files and subdirectories within a file package; returns NO (the default) if the user is shown
only file-package names, with no indication that they are directories.

See also: – setTreatsFilePackagesAsDirectories:

validateVisibleColumns
– (void)validateVisibleColumns

Validates and possibly reloads the browser columns visible in the Save panel by causing the delegate
method panel:shouldShowFilename: to be invoked. One situation in which this method would find use is
whey you want the browser show only files with certain extensions based on the selection made in an
accessory-view pop-up list. When the user changes the selection, you would invoke this method to
revalidate the visible columns.

10

Methods Implemented by the Delegate

panel:compareFilename:with:caseSensitive:
− (NSComparisonResult)panel:(id)sender

compareFilename:(NSString *)fileName1
with: (NSString *)fileName2
caseSensitive:(BOOL)flag

Controls the ordering of files presented by the NSSavePanel. This method should return:

• NSOrderedAscending if fileName1 should precede fileName2
• NSOrderedSame if the two names are equivalent
• NSOrderedDescending if fileName2 should precede fileName1

The flag argument, if YES, indicates that the ordering is to be case-sensitive.

Don’t reorder file names in the Save panel without good reason, since it may confuse the user to have files
in one Save panel or Open panel ordered differently than those in other such panels or in the Workspace
Manager. The default behavior of Save and Open panel is to order files as they appear in the Workspace
Manager file viewer. Note also that by implementing this method you will reduce the operating performance
of the panel.

panel:shouldShowFilename:
− (BOOL)panel:(id)sender

shouldShowFilename:(NSString *)filename

The NSSavePanel sends this message to the panel’s delegate for each file or directory (filename) it is about
to load in the browser. This method gives the delegate the opportunity to filter out items that it doesn’t want
the user to see or choose. The delegate returns YES if filename should be displayed, and NO if the
NSSavePanel should ignore the file or directory.

panel:isValidFilename:
− (BOOL)panel:(id)sender

isValidFilename:(NSString *)filename

The NSSavePanel sends this message just before the end of a modal session for each file name displayed
or selected (including file names in multiple selections). The delegate determines whether it wants the file
identified by filename; it returns YES if the file name is valid, or NO if the NSSavePanel should stay in its
modal loop and wait for the user to type in or select a different file name or names. If the delegate refuses
a file name in a multiple selection, none of the file names in the selection are accepted.

1

 Classes: NSScreen

NSScreen

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSScreen.h

Class Description

An NSScreen object describes the attributes of a computer’s monitor, or screen. An application may use an
NSScreen object to retrieve information about a screen and use this information to decide what to display
upon that screen. For example, an application may use the deepestScreen method to find out which of the
available screens can best represent color and then may choose to display all of its windows on that screen.

The two main attributes of a screen are its depth and its dimensions. The depth method describes the screen
depth (such as two-bit, eight-bit, or twelve-bit) and tells you if the screen can display color. The frame
method gives the screen’s dimensions and location as an NSRect.

The device description dictionary contains more complete information about the screen. Use NSScreen’s
deviceDescription method to access the dictionary, and use these keys to retrieve information about a
screen:

The device description dictionary contains information about not only screens, but all other system devices
such as printers and windows. There are other keys into the dictionary that you would use to obtain
information about these other devices. For a complete list of device dictionary keys, see NSGraphics.h.

Dictionary Key Value

NSDeviceResolution
An NSValue that contains an NSSize which indicates the
screen’s resolution in dots per inch (dpi).

NSDeviceColorSpaceName
The screen’s color space name. See the NSGraphics class
specification for a list of possible values.

NSDeviceBitsPerSample
An NSNumber containing an integer that indicates the bit
depth of screen images (2-bit, 8-bit, and so on).

NSDeviceIsScreen "YES" (a string), indicating the device is a screen.

NSDeviceSize
An NSValue that contains an NSSize which indicates the
screen’s size in points.

2

The application object should be created before you use the methods in this class, so that the application
object can make the necessary connection to the Window System. You can make sure the application object
exists by invoking NSApplication's sharedApplication method, which creates it if necessary. If you created
your application with Project Builder, the application object is automatically created for you in main().

Method Types

 Getting NSScreens
+ mainScreen
+ deepestScreen
+ screens

Reading screen information
– depth
– frame
– supportedWindowDepths
– deviceDescription
– visibleFrame

Class Methods

deepestScreen
+ (NSScreen *)deepestScreen

Returns an NSScreen object representing the screen that can best represent color. This method always
returns an object, even if there is only one screen and it is not a color screen.

mainScreen
+ (NSScreen *)mainScreen

Returns an NSScreen object representing the main screen. The main screen is the screen with the key
window.

screens
+ (NSArray *)screens

Returns an array of NSScreen objects representing all of the screens available on the system. Raises
NSWindowServerCommunicationException if the screens information can’t be obtained from the window
system.

3

 Classes: NSScreen

Instance Methods

depth
– (NSWindowDepth)depth

Returns the screen’s depth, including whether the screen can display color.

deviceDescription
– (NSDictionary *)deviceDescription

Returns the device dictionary as described in the class description.

frame
– (NSRect)frame

Returns the dimensions and location of the screen in an NSRect.

supportedWindowDepths
– (const NSWindowDepth *)supportedWindowDepths

Returns a zero-terminated array of the window depths supported by the screen.

visibleFrame
– (NSRect)visibleFrame

Returns the dimensions and location of the visible screen in an NSRect. The frame for the visible screen is
adjusted according to the interface style. For example, on the Macintosh, the visible screen area does not
include the menu bar.

1

 Classes: NSScroller

NSScroller

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSScroller.h

Class at a GlanceˇClass at a Glance

Purpose
An NSScroller object is a user control for scrolling a document view within a container view. You normally don’t
need to program with NSScrollers, as Interface Builder allows you to fully configure them with an NSScrollView.

Principal Attributes
• Scrolling by small and large increments
• Proportional knob showing visible amount of document

Creation

Commonly Used Methods

Interface Builder

– initWithFrame: Initializes the NSScroller.

– hitPart Indicates where the user clicked the NSScroller.

– floatValue (NSControl) Returns the position of the NSScroller’s knob.

– setFloatValue:knobProportion: Sets the position and size of the NSScroller’s knob.

2

Class Description

An NSScroller controls scrolling of a document view within an NSScrollView’s clip view (or potentially
another kind of container view). It typically displays a pair of buttons that the user can click to scroll by a
small amount (called a line increment or decrement) and Alternate-click to scroll by a large amount (called
a page increment or decrement), plus a slot containing a knob that the user can drag directly to the desired
location. The knob indicates both the position within the document view and, by varying in size within the
slot, the amount visible relative to the size of the document view. You can configure whether an NSScroller
uses scroll buttons, but it always draws the knob when there’s room for it.

Interface Builder automatically associates NSScrollers with an NSScrollView, allowing you to configure
most aspects of scrolling behavior without programming. If you create one programmatically using
initWithFrame: the new NSScroller automatically collapses the shorter of its two dimensions to the
standard scroller width, as returned by the scrollerWidth class method. In this manner a tall, narrow frame
results in a vertical NSScroller and a short, wide frame results in a horizontal NSScroller.

Don’t use an NSScroller when an NSSlider would be better. A slider represents a range of values for
something in the application and lets the user choose a setting. A scroller represents the relative position of
the visible portion of a view and lets the user choose which portion to view.

Interaction with a Container View

NSScroller is a public class primarily for programmers who decide not to use an NSScrollView but who
want to present a consistent user interface. Its use outside of NSScrollViews is discouraged except in cases
where the porting of an existing application is made more straightforward. Setting up an NSScroller with a
custom container view class (or a completely different kind of target) involves establishing the standard
target and action as defined by NSControl, and implementing the target’s action method appropriately.

As an NSScroller tracks the mouse, it sends an action message to its target with itself as the argument. The
target then performs the scrolling operation based on these things:

• The orientation of the NSScroller, vertical or horizontal, which determines the axis to scroll along. This
can be done by getting the NSScroller’s frame and determining the longer dimension, or by keeping a
reference to designated vertical and horizontal scrollers (as NSScrollView does).

• The direction and scale of scrolling. NSScroller’s hitPart method returns this information, described in
more detail below.

• If the hit part is the knob or its slot, the NSScroller’s value, which indicates where to position the
document view in the container view. The floatValue method provides this information, which the target
should interpret relative to the size of the document view’s frame minus the size of the container view’s
bounds.

3

 Classes: NSScroller

As indicated above, the direction and scale of a scrolling operation is determined by the value returned from
a hitPart message, which indicates the various parts of an NSScroller in terms of their intended result (not
in terms of their location or appearance):

Note: These part codes are interpreted differently depending on the method you use them with. See the
individual method descriptions for hitPart , rectForPart: , and testPart: for details.

The four decrement/increment values require the target to calculate an appropriate amount to scroll by. Line
and page amounts are up to the target or the container view to define. NSScrollView, for example, allows
you to set these in Interface Builder or with its setLineScroll: and setPageScroll: methods. Once the target
has scrolled the document view by a decrement or increment, it should update the NSScroller’s position
using setFloatValue:.

The container view or target should also keep tabs on its size and on the size and position of its document
view. Any time these change it should update its NSScrollers using setFloatValue:knobProportion:.
NSClipView, for example, overrides most of NSView’s setBounds... and setFrame... methods to perform
this updating.

Method Types

Determining NSScroller size
+ scrollerWidth

Laying out an NSScroller
– setArrowsPosition:
– arrowsPosition

Value How to Scroll

NSScrollerKnob Directly to the NSScroller’s value, as given by floatValue

NSScrollerKnobSlot Directly to the NSScroller’s value, as given by floatValue

NSScrollerDecrementLine Up or left by a small amount

NSScrollerDecrementPage Up or left by a large amount

NSScrollerIncrementLine Down or right by a small amount

NSScrollerIncrementPage Down or right by a large amount

NSScrollerNoPart Don’t scroll at all

4

Setting the knob position
– setFloatValue:knobProportion:
– knobProportion

Calculating layout
– rectForPart:
– testPart:
– checkSpaceForParts
– usableParts

Drawing the parts
– drawArrow:highlight:
– drawKnob
– drawParts
– highlight:

Event handling
– hitPart
– trackKnob:
– trackScrollButtons:

Class Methods

scrollerWidth
+ (float)scrollerWidth

Returns the width of instances. NSScrollView uses this value to lay out its components. Subclasses that use
a different width should override this method.

Instance Methods

arrowsPosition
– (NSScrollArrowPosition)arrowsPosition

Returns the location of the scroll buttons within the receiver, as described under setArrowsPosition:.

5

 Classes: NSScroller

checkSpaceForParts
– (void)checkSpaceForParts

Checks to see if there is enough room in the receiver to display the knob and buttons. usableParts returns
the state calculated by this method. You should never need to invoke this method; it’s invoked automatically
whenever the NSScroller’s size changes.

drawArrow:highlight:
– (void)drawArrow: (NSScrollerArrow)arrow highlight: (BOOL)flag

Draws the scroll button indicated by arrow, which is either NSScrollerIncrementArrow (the down or right
scroll button) or NSScrollerDecrementArrow (up or left). If flag is YES, the button is drawn highlighted,
otherwise it’s drawn normally. You should never need to invoke this method directly, but may wish to
override it to customize the appearance of scroll buttons.

See also: – drawKnob , – rectForPart:

drawKnob
– (void)drawKnob

Draws the knob. You should never need to invoke this method directly, but may wish to override it to
customize the appearance of the knob.

See also: – drawArrow:highlight: , – rectForPart:

drawParts
– (void)drawParts

Caches images for the scroll buttons and knob. It’s invoked only once when the NSScroller is created. You
may want to override this method if you alter the look of the NSScroller, but you should never invoke it
directly.

highlight:
– (void)highlight: (BOOL)flag

Highlights or unhighlights the scroll button that the user clicked. The receiver invokes this method while
tracking the mouse; you should not invoke it directly. If flag is YES, the appropriate part is drawn
highlighted, otherwise it’s drawn normally.

See also: – drawArrow:highlight: , – rectForPart:

6

hitPart
– (NSScrollerPart)hitPart

Returns a part code indicating the manner in which the scrolling should be performed:

This method is typically invoked by an NSScrollView to determine how to scroll its document view when
it receives an action message from the NSScroller.

initWithFrame
– (id)initWithFrame: (NSRect)frameRect

Initializes the receiver as normal, but collapsing frameRect’s narrower dimension to the value returned by
the scrollerWidth method. This enforces the appearance of vertical and horizontal NSScrollers. This is the
designated initializer for the NSScroller class. Returns self.

knobProportion
– (float)knobProportion

Returns the portion of the knob slot that the knob should fill, as a floating-point value from 0.0 (minimal
size) to 1.0 (fills the slot).

Value How to Scroll

NSScrollerKnob Directly to the NSScroller’s value, as given by floatValue

NSScrollerKnobSlot Directly to the NSScroller’s value, as given by floatValue

NSScrollerDecrementLine Up or left by a small amount

NSScrollerDecrementPage Up or left by a large amount

NSScrollerIncrementLine Down or right by a small amount

NSScrollerIncrementPage Down or right by a large amount

NSScrollerNoPart Don’t scroll at all

7

 Classes: NSScroller

rectForPart:
– (NSRect)rectForPart: (NSScrollerPart)aPart

Returns the rectangle occupied by aPart, which for this method is interpreted literally rather than as an
indicator of scrolling direction:

Note the interpretations of NSScrollerDecrementPage and NSScrollerIncrementPage. The actual part of an
NSScroller that causes page-by-page scrolling varies from platform to platform, so as a convenience these
part codes refer to useful parts different from the scroll buttons.

Returns NSZeroRect if the part requested isn’t present on the receiver.

See also: – hitPart , – testPart:, – usableParts

setArrowsPosition:
– (void)setArrowsPosition:(NSScrollArrowPosition)location

Sets the location of the scroll buttons within the Scroller to location, or inhibits their display, as follows:

Value Part

NSScrollerKnob The knob itself

NSScrollerKnobSlot The slot that the knob moves in

NSScrollerDecrementLine The up or left scroll button

NSScrollerDecrementPage The region of the slot above or to the left of the knob

NSScrollerIncrementLine The down or right scroll button

NSScrollerIncrementPage The region of the slot below or to the right of the knob

Value Meaning

NSScrollerArrowsMaxEnd Buttons at bottom or right

NSScrollerArrowsMinEnd Buttons at top or left

NSScrollerArrowsNone No buttons

8

Note: On Microsoft Windows scroll buttons appear at either end of the scroller rather than both on one end.
A value other than NSScrollerArrowsNone is thus reinterpreted on that platform to display the
buttons at either end.

See also: – arrowsPosition

setFloatValue:knobProportion:
– (void)setFloatValue:(float)aFloat knobProportion: (float)knobProp

Sets the position of the knob to aFloat, which is a value between 0.0 (indicating the top or left end) and 1.0
(the bottom or right end). Also sets the proportion of the knob slot filled by the knob to knobProp, also a
value between 0.0 (minimal size) and 1.0 (fills the slot).

See also: – floatValue (NSControl), – knobProportion

testPart:
– (NSScrollerPart)testPart:(NSPoint)aPoint

Returns the part that would be hit by a mouse-down event at aPoint (expressed in the receiver’s coordinate
system):

Note the interpretations of NSScrollerDecrementPage and NSScrollerIncrementPage. The actual part of an
NSScroller that causes page-by-page scrolling varies from platform to platform, so as a convenience these
part codes refer to useful parts different from the scroll buttons.

See also: – hitPart , – rectForPart:

Return Value Part Identified

NSScrollerKnob The knob itself

NSScrollerKnobSlot The slot that the knob moves in (returned only if there’s no knob)

NSScrollerDecrementLine The up or left scroll button

NSScrollerDecrementPage The region of the slot above or to the left of the knob

NSScrollerIncrementLine The down or right scroll button

NSScrollerIncrementPage The region of the slot below or to the right of the knob

NSScrollerNoPart (aPoint isn’t in the NSScroller)

9

 Classes: NSScroller

trackKnob:
– (void)trackKnob: (NSEvent *)theEvent

Tracks the knob and sends action messages to the receiver’s target. This method is invoked automatically
when the NSScroller receives a mouse-down event in the knob; you should not invoke it directly.

trackScrollButtons:
– (void)trackScrollButtons: (NSEvent *)theEvent

Tracks the scroll buttons and sends action messages to the receiver’s target. This method is invoked
automatically when the NSScroller receives a mouse-down event in a scroll button; you should not invoke
this method directly.

usableParts
– (NSUsableScrollerParts)usableParts

Returns a value indicating which parts of the receiver are displayed and usable. This is one of:

See also: – checkSpaceForParts, – arrowsPosition

Value Meaning

NSNoScrollerParts Scroller has neither a knob nor scroll buttons, only the knob slot.

NSOnlyScrollerArrows Scroller has only scroll buttons, no knob.

NSAllScrollerParts Scroller has at least a knob, possibly also scroll buttons.

1

 Classes: NSScrollView

NSScrollView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSScrollView.h

Class at a GlanceˇClass at a Glance

Purpose
An NSScrollView allows the user to scroll a document view that’s too large to display in its entirety. In addition
to the document view, it displays horizontal and vertical scrollers and rulers (depending on which it’s configured
to have).

Principal Attributes
• Configurable scrollers • Small and large increment scrolling
• Configurable rulers • Dynamic (continuous) scrolling
• Displays a special cursor over its document view

Creation
Interface Builder
– initWithFrame: Designated initializer.

Commonly Used Methods
– setDocumentView: Sets the cursor used over the document view.
– setLineScroll: Sets the amount by which the document view moves during scrolling.
– setRulersVisible: Displays or hides rulers.

Class Description

The NSScrollView class is the central coordinator for the Application Kit’s scrolling machinery, composed
of this class, NSClipView, and NSScroller. An NSScrollView displays a portion of a document view that’s
too large to be displayed whole, and provides NSScrollers that allow the user to move the document view
within the NSScrollView. An NSScrollView can be configured with a vertical scroller, a horizontal scroller,

2

or both. In addition to the basic accoutrements, an NSScrollView keeps a cursor that it sets whenever the
mouse is over its document view, and maintains both horizontal and vertical ruler objects that can be hidden
and displayed.

An NSScrollView encloses its document view within an NSClipView, using this view to actually position
and monitor the document view. Because the NSClipView manages the content of the NSScrollView, it’s
also called the content view. The content view positions the document view by altering its bounds rectangle,
which determines where the document view’s frame lies. The content view also monitors changes in the
document view’s size and notifies the NSScrollView so that the scrollers can be updated to reflect the new
size. The documentView and contentView methods return an NSScrollView’s major component views.

NSScrollView defines three levels of scrolling: by line, by page, and direct. Scrolling by line moves the
document view by a small amount, typically when the user clicks the scroll buttons of a scroller. Scrolling
by page moves the document view by a larger amount, typically near the size of the content view, when the
user Alternate-clicks the scroll buttons, and on some platforms in the slot of the scroller. You set these
amounts using setLineScroll: and setPageScroll:, respectively (Interface Builder also lets you set these
directly). Direct scrolling moves the document view to the position of the scroller’s knob as the user drags
it. This either displays the document view continuously as it scrolls or displays it only when the user
releases the mouse, as configured with the setScrollsDynamically: method.

When created programmatically, an NSScrollView has no scrollers. You can set them up using the
setHasVerticalScroller: and setHasHorizontalScroller: methods with an argument of YES, which cause
the NSScrollView to allocate and maintain instances of the NSScroller class. You can substitute specialized
scrollers using the setVerticalScroller: and setHorizontalScroller: methods. Note that in any case you
must use the setHas... methods to make sure the NSScrollView displays its scrollers.

NSView contains a few additional methods for scrolling a document programmatically. To scroll a specific
point to the upper left corner of the view, use scrollPoint:. To scroll a specific area into view, use
scrollRectToVisible:. To scroll automatically as the user drags something outside the window, use
autoscroll:.

Rulers

An NSScrollView can be set to hold both horizontal and vertical rulers using the setHasHorizontalRuler:
and setHasVerticalRuler: methods. These allocate instances of the NSRulerView class, but unlike with
scrollers don’t immediately display the rulers. To do this, use the setRulersVisible: method. You can
substitute custom ruler objects using setHorizontalRulerView: and setVerticalRulerView:, and to
customize the rulers for all instances of NSScrollView you can set the class used with setRulerViewClass:
. This causes all subsequent rulers created by NSScrollViews to be of the class you specify.

An NSScrollView’s rulers don’t automatically establish the document view as their client. The document
view itself (or a subview) is responsible, as its selection and other state changes, for retrieving the rulers
using NSScrollView’s horizontalRulerView and verticalRulerView methods and for establishing itself as
the client using NSRulerView’s setClientView: method.

3

 Classes: NSScrollView

How Scrolling Works

As indicated above, an NSScrollView’s document view is actually positioned by the content view, which
sets its bounds rectangle in such a way that the document view’s frame moves relative to it. However, the
action sequence between the scrollers and the NSScrollView and the manner in which scrolling is
performed involve a bit more detail than this.

Scrolling typically occurs because of user actions on an NSScroller object, which sends the NSScrollView
a private action message telling it to scroll based on the NSScroller’s state. This process is described in the
class description for the NSScroller class under “Interaction with a Container View.” If you plan to
implement your own kind of scrolling view or scroller object, you should read that section.

NSClipView’s scrollToPoint: is the method that actually scrolls the document view. It essentially translates
the origin of the content view’s bounds rectangle, but it also optimizes redisplay by copying as much of the
rendered document view as remains visible, and only asking the document view to draw newly exposed
regions. This usually improves scrolling performance, but may not always be appropriate behavior. You can
turn it off using NSClipView’s setCopiesOnScroll: method. If you do leave copy-on-scroll active, be sure
to scroll the document view programmatically using scrollToPoint: rather than translateOriginToPoint: .

Whether the document view scrolls explicitly through a user action or an NSClipView message, or
implicitly through a setFrame: or other such message, the content view monitors it closely. Whenever the
document view’s frame or bounds rectangle changes, it informs the NSScrollView of the change with a
reflectScrolledClipView: message. This method updates the NSScroller objects to reflect the position and
size of the visible portion of the document view. You may find on occasion that you need to invoke this
method explicitly when manipulating the document view directly.

Autoscrolling

In addition to user-driven and programmatic scrolling, you can program any NSView to automatically scroll
when the user drags the mouse outside the enclosing NSClipView. This allows the user to drag an item in
order to move it, and have the document view automatically shift itself in the appropriate direction when
the user drags the item past the visible area. NSClipView’s autoscroll: method takes an NSEvent object of
the mouse-dragged type and scrolls its document view in the opposite direction from the mouse location,
making the portion of the document view that would be under the mouse become visible. NSView also
implements autoscroll: to forward the message to its superview. This allows any NSView to simply send
the message to itself during a mouse-dragging loop without checking whether it’s contained in an
NSClipView (though it does need to check whether the mouse is outside of its visible portion, as returned
by visibleRect).

4

Method Types

Calculating layout
+ contentSizeForFrameSize:hasHorizontalScroller:

hasVerticalScroller:borderType:
+ frameSizeForContentSize:hasHorizontalScroller:

hasVerticalScroller:borderType:

Determining component sizes
– contentSize
– documentVisibleRect

Managing graphic attributes
– setBackgroundColor:
– backgroundColor
– setBorderType:
– borderType

Managing the scrolled views
– setContentView:
– contentView
– setDocumentView:
– documentView
– setDocumentCursor:

Managing scrollers
– setHorizontalScroller:
– horizontalScroller
– setHasHorizontalScroller:
– hasHorizontalScroller
– setVerticalScroller:
– verticalScroller
– setHasVerticalScroller:
– hasVerticalScroller

5

 Classes: NSScrollView

Managing rulers
+ setRulerViewClass:
+ rulerViewClass
– setHasHorizontalRuler:
– hasHorizontalRuler
– setHorizontalRulerView:
– horizontalRulerView
– setHasVerticalRuler:
– hasVerticalRuler
– setVerticalRulerView:
– verticalRulerView
– setRulersVisible:
– rulersVisible
– isRulerVisible
– toggleRuler:

Setting scrolling behavior
– setLineScroll:
– lineScroll
– setPageScroll:
– pageScroll
– setScrollsDynamically:
– scrollsDynamically

Updating display after scrolling
– reflectScrolledClipView:

Arranging components
– tile

Class Methods

contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType:
+ (NSSize)contentSizeForFrameSize:(NSSize)frameSize

hasHorizontalScroller:(BOOL)hFlag
hasVerticalScroller:(BOOL)vFlag
borderType:(NSBorderType)borderType

Returns the size of a content view for an NSScrollView whose frame size is frameSize. hFlag and vFlag
indicate whether a horizontal or vertical scroller, respectively, is present. If the flag is YES then the content
size is reduced in the appropriate dimension by the width of an NSScroller. borderType indicates the
appearance of the NSScrollView’s edge, which also affects the content size; see the description of
setBorderType: for a list of possible values.

6

For an existing NSScrollView, you can simply use the contentSize method.

See also: + frameSizeForContentSize:hasHorizontalScroller:hasVerticalScroller:borderType:,
+ scrollerWidth (NSScroller)

frameSizeForContentSize:hasHorizontalScroller:hasVerticalScroller:borderType:
+ (NSSize)frameSizeForContentSize:(NSSize)contentSize

hasHorizontalScroller:(BOOL)hFlag
hasVerticalScroller:(BOOL)vFlag
borderType:(NSBorderType)borderType

Returns the frame size of an NSScrollView that contains a content view whose size is contentSize. hFlag
and vFlag indicate whether a horizontal or vertical scroller, respectively, is present. If the flag is YES then
the frame size is increased in the appropriate dimension by the width of an NSScroller. borderType indicates
the appearance of the NSScrollView’s edge, which also affects the frame size; see the description of
setBorderType: for a list of possible values.

For an existing NSScrollView, you can simply use the frame method and extract its size.

See also: + contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType:,
+ scrollerWidth (NSScroller)

rulerViewClass
+ (Class)rulerViewClass

Returns the default class to be used for ruler objects in NSScrollViews. This is normally NSRulerView.

See also: + setRulerViewClass:

setRulerViewClass:
+ (void)setRulerViewClass:(Class)aClass

Sets the default class to be used for ruler objects in NSScrollViews to aClass. This is normally
NSRulerView, but you can use this method to set it to a custom subclass of NSRulerView.

Note: This method simply sets a global variable private to NSScrollView.Subclasses of NSScrollView
should override both this method and rulerViewClass to store their ruler view classes in private
variables.

See also: + rulerViewClass

7

 Classes: NSScrollView

Instance Methods

backgroundColor
– (NSColor *)backgroundColor

Returns the content view’s background color.

See also: – setBackgroundColor:, – backgroundColor (NSClipView)

borderType
– (NSBorderType)borderType

Returns a value that represents the type of border surrounding the receiver; see the description of
setBorderType: for a list of possible values.

contentSize
– (NSSize)contentSize

Returns the size of the receiver’s content view.

See also: + contentSizeForFrameSize:hasHorizontalScroller:hasVerticalScroller:borderType:

contentView
– (NSClipView *)contentView

Returns the receiver’s content view, the view that clips the document view.

See also: – setContentView:, – documentView

documentCursor
– (NSCursor *)documentCursor

Returns the content view’s document cursor.

See also: – setDocumentCursor:, – documentCursor (NSClipView)

8

documentView
– (id)documentView

Returns the view that the receiver scrolls within its content view.

See also: – setDocumentView:, – documentView (NSClipView)

documentVisibleRect
– (NSRect)documentVisibleRect

Returns the portion of the document view, in its own coordinate system, that’s visible through the receiver’s
content view.

See also: – documentVisibleRect (NSClipView), – visibleRect (NSView)

hasHorizontalRuler
– (BOOL)hasHorizontalRuler

Returns YES if the receiver maintains a horizontal ruler view, NO if it doesn’t. Display of rulers is
controlled using the setRulersVisible: method.

See also: – horizontalRulerView, – setHasHorizontalRuler:, – hasVerticalRuler, + rulerViewClass

hasHorizontalScroller
– (BOOL)hasHorizontalScroller

Returns YES if the receiver displays a horizontal scroller, NO if it doesn’t.

See also: – horizontalScroller, – setHasHorizontalScroller:, – hasVerticalScroller

hasVerticalRuler
– (BOOL)hasVerticalRuler

Returns YES if the receiver maintains a vertical ruler view, NO if it doesn’t. Display of rulers is controlled
using the setRulersVisible: method.

See also: – verticalRulerView, – setHasVerticalRuler:, – hasHorizontalRuler, + rulerViewClass

9

 Classes: NSScrollView

hasVerticalScroller
– (BOOL)hasVerticalScroller

Returns YES if the receiver displays a vertical scroller, NO if it doesn’t.

See also: – verticalScroller, – setHasVerticalScroller:, – hasHorizontalScroller

horizontalLineScroll
– (float)horizontalLineScroll

Returns the amount by which the receiver scrolls itself horizontally when scrolling line-by-line, expressed
in the content view’s coordinate system. This amount is used when the user clicks the scroll arrows on the
horizontal scroll bar without holding a modifier key.

See also: – setHorizontalLineScroll:, – verticalLineScroll, – setLineScroll:, – horizontalPageScroll

horizontalPageScroll
– (float)horizontalPageScroll

Returns the amount of the document view kept visible when scrolling horizontally page-by-page, expressed
in the content view’s coordinate system. This amount is used when the user clicks the scroll arrows on the
horizontal scroll bar while holding the Alternate key.

Note: This amount expresses the context that remains when the receiver scrolls by one page, allowing the
user to orient himself to the new display. It differs from the line scroll amount, which indicates how
far the document view moves. The page scroll amount is the amount common to the content view
before and after the document view is scrolled by one page.

See also: – setHorizontalPageScroll:, – verticalPageScroll, – setPageScroll:, – horizontalLineScroll

horizontalRulerView
– (NSRulerView *)horizontalRulerView

Returns the receiver’s horizontal ruler view, whether or not the receiver is currently displaying it, or nil if
the receiver has none. If the receiver is set to display a horizontal ruler view and doesn’t yet have one, this
method creates an instance of the ruler view class set using the class method setRulerViewClass:. Display
of rulers is controlled using the setRulersVisible: method.

See also: – hasHorizontalRuler, – verticalRulerView

10

horizontalScroller
– (NSScroller *)horizontalScroller

Returns the receiver’s horizontal scroller, whether or not the receiver is currently displaying it, or nil if the
receiver has none.

isRulerVisible
– (BOOL)isRulerVisible

This method is being deprecated in favor of rulersVisible. Use this method only when modifying older
applications that use NSCStringText. New applications should use either NSText or NSTextView.

Returns YES if the receiver was set to show rulers using setRulersVisible: (whether or not it has rulers at
all), NO if it was set to hide them.

See also: – toggleRuler:

lineScroll
– (float)lineScroll

Returns the vertical line scroll amount: the amount by which the receiver scrolls itself vertically when
scrolling line-by-line, expressed in the content view’s coordinate system. This amount is used when the user
clicks the scroll arrows on the veritcal scroll bar without holding a modifier key. As part of its
implementation, this method calls verticalLineScroll .

Note that a scroll view can have two different line scroll amounts: veritcalLineScroll and
horizontalLineScroll . Use this method only if you can be sure they’re both the same; for example, you
always use setLineScroll:, which sets both amounts to the same value.

See also: – setLineScroll:, – verticalPageScroll , – horizontalPageScroll

pageScroll
– (float)pageScroll

Returns the vertical page scroll amount: the amount of the document view kept visible when scrolling
vertically page-by-page, expressed in the content view’s coordinate system. This amount is used when the
user clicks the scroll arrows on the vertical scroll bar while holding the Alternate key. As part of its
implementation, this method calls verticalPageScroll.

Note: This amount expresses the context that remains when the receiver scrolls by one page, allowing the
user to orient himself to the new display. It differs from the line scroll amount, which indicates how

11

 Classes: NSScrollView

far the document view moves. The page scroll amount is the amount common to the content view
before and after the document view is scrolled by one page.

Note that a scroll view can have two different page scroll amounts: veritcalPageScroll and
horizontalPageScroll. Use this method only if you can be sure they’re both the same; for example, you
always use setPageScroll:, which sets both amounts to the same value.

See also: – setPageScroll:, – verticalLineScroll , – horizontalLineScroll

reflectScrolledClipView:
– (void)reflectScrolledClipView:(NSClipView *)aClipView

If aClipView is the receiver’s content view, adjusts the receiver’s scrollers to reflect the size and positioning
of its document view. Does nothing if aClipView is any other view object (in particular, if it’s an
NSClipView that isn’t the content view).

This method is invoked automatically during scrolling and when an NSClipView’s relationship to its
document view changes; you should rarely need to invoke it yourself, but may wish to override it for custom
updating or other behavior.

See also: – contentView, – documentView

rulersVisible
– (BOOL)rulersVisible

Returns YES if the receiver was set to show rulers using setRulersVisible: (whether or not it has rulers at
all), NO if it was set to hide them.

See also: – hasHorizontalRuler, – hasVerticalRuler

scrollsDynamically
– (BOOL)scrollsDynamically

Returns YES if the receiver redraws its document view while tracking the knob, NO if it redraws only when
the scroller knob is released. NSScrollView scrolls dynamically by default.

See also: – setScrollsDynamically:

12

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the color of the content view’s background to aColor. This color is used to paint areas inside the content
view that aren’t covered by the document view.

See also: – backgroundColor, – setBackgroundColor: (NSClipView)

setBorderType:
– (void)setBorderType:(NSBorderType)borderType

Sets the border type of the receiver to borderType, which may be one of:

NSNoBorder
NSLineBorder
NSBezelBorder
NSGrooveBorder

See also: – borderType

setContentView:
– (void)setContentView:(NSClipView *)aView

Sets the receiver’s content view, the view that clips the document view, to aView. If aView has a document
view, this method also sets the receiver’s document view to be aView’s document view. The original content
view retains its document view.

See also: – contentView, – setDocumentView:

setDocumentCursor:
– (void)setDocumentCursor:(NSCursor *)aCursor

Sets the cursor used when the mouse is over the content view to aCursor, by sending setDocumentCursor:
to the content view.

See also: – documentCursor

13

 Classes: NSScrollView

setDocumentView:
– (void)setDocumentView:(NSView *)aView

Sets the receiver’s document view to aView.

See also: – documentView, – setDocumentView: (NSClipView)

setHasHorizontalRuler:
– (void)setHasHorizontalRuler:(BOOL)flag

Determines whether the receiver keeps a horizontal ruler object. If flag is YES, the receiver allocates a
horizontal ruler the first time it’s needed. Display of rulers is handled independently with the
setRulersVisible: method.

See also: – hasHorizontalRuler, – horizontalRulerView, – setHasVerticalRuler:

setHasHorizontalScroller:
– (void)setHasHorizontalScroller:(BOOL)flag

Determines whether the receiver keeps a horizontal scroller. If flag is YES, the receiver allocates and
displays a horizontal scroller as needed. An NSScrollView by default has neither a horizontal nor a vertical
scroller.

See also: – hasHorizontalScroller, – horizontalScroller, – setHasVerticalScroller:

setHasVerticalRuler:
– (void)setHasVerticalRuler:(BOOL)flag

Determines whether the receiver keeps a vertical ruler object. If flag is YES, the receiver allocates a vertical
ruler the first time it’s needed. Display of rulers is handled independently with the setRulersVisible:
method.

See also: – hasVerticalRuler, – verticalRulerView, – setHasHorizontalRuler:, – setRulersVisible:

setHasVerticalScroller:
– (void)setHasVerticalScroller:(BOOL)flag

Determines whether the receiver keeps a vertical scroller. If flag is YES, the receiver allocates and displays
a vertical scroller as needed. An NSScrollView by default has neither a vertical nor a horizontal scroller.

See also: – hasVerticalScroller, – verticalScroller, – setHasHorizontalScroller:

14

setHorizontalLineScroll:
– (void)setHorizontalLineScroll:(float)aFloat

Sets the amount by which the receiver scrolls itself horizontally when scrolling line-by-line to aFloat,
expressed in the content view’s coordinate system. This is the amount used when the user clicks the scroll
arrows on the horizontal scroll bar without holding a modifier key. When displaying text in an
NSScrollView, for example, you might set this to the height of a single line of text in the default font.

See also: – lineScroll, – setPageScroll:

setHorizontalPageScroll:
– (void)setHorizontalPageScroll:(float)aFloat

Sets the amount of the document view kept visible when scrolling horizontally page-by-page to aFloat,
expressed in the content view’s coordinate system. This amount is used when the user clicks the scroll
arrows on the horizontal scroll bar while holding the Alternate key.

Note: This amount expresses the context that remains when the receiver scrolls by one page, allowing the
user to orient himself to the new display. It differs from the line scroll amount, which indicates how
far the document view moves. The page scroll amount is the amount common to the content view
before and after the document view is scrolled by one page. Thus, setting the page scroll amount to
0.0 implies that the entire visible portion of the document view is replaced when a page scroll occurs.

See also: – pageScroll, – setLineScroll:

setHorizontalRulerView:
– (void)setHorizontalRulerView:(NSRulerView *)aRulerView

Sets the receiver’s horizontal ruler view to aRulerView. You can use this method to override the default ruler
class set using the class method setRulerClass:. Display of rulers is controlled using the setRulersVisible:
method.

See also: – horizontalRulerView,– setHasHorizontalRuler:, – setVerticalRulerView:,
– setRulersVisible:

15

 Classes: NSScrollView

setHorizontalScroller:
– (void)setHorizontalScroller:(NSScroller *)aScroller

Sets the receiver’s horizontal scroller to aScroller, establishing the appropriate target-action relationships
between them. To make sure the scroller is visible, invoke the setHasHorizontalScroller: method with an
argument of YES.

See also: – horizontalScroller, – setVerticalScroller:

setLineScroll:
– (void)setLineScroll:(float)aFloat

Sets the horizontal and vertical line scroll amounts to aFloat. The line scroll is the amount by which the
receiver scrolls itself when scrolling line-by-line, expressed in the content view’s coordinate system. It’s
used when the user clicks the scroll arrows without holding a modifier key. When displaying text in an
NSScrollView, for example, you might set this to the height of a single line of text in the default font.

As part of its implementation, this method calls setVerticalLineScroll: and setHorizontalLineScroll:.

See also: – verticalLineScroll , – horizontalLineScroll

setPageScroll:
– (void)setPageScroll:(float)aFloat

Sets the horizontal and vertical page scroll amounts to aFloat. The page scroll is the amount of the
document view kept visible when scrolling page-by-page to aFloat, expressed in the content view’s
coordinate system. It’s used when the user clicks the scroll arrows while holding the Alternate key.

Note: This amount expresses the context that remains when the receiver scrolls by one page, allowing the
user to orient himself to the new display. It differs from the line scroll amount, which indicates how
far the document view moves. The page scroll amount is the amount common to the content view
before and after the document view is scrolled by one page. Thus, setting the page scroll amount to
0.0 implies that the entire visible portion of the document view is replaced when a page scroll occurs.

As part of its implementation, this method calls setVerticalPageScroll: and setHorizontalPageScroll:.

See also: – verticalPageScroll, – verticalLineScroll

16

setRulersVisible:
– (void)setRulersVisible:(BOOL)flag

Determines whether the receiver displays its rulers. If flag is YES, the receiver displays its rulers (creating
them if needed). If flag is NO, the receiver doesn’t display its rulers.

See also: – rulersVisible, – hasHorizontalRuler, – hasVerticalRuler

setScrollsDynamically:
– (void)setScrollsDynamically:(BOOL)flag

Determines whether the receiver redraws its document view while scrolling continuously. If flag is YES it
does, if flag is NO it redraws only when the scroller knob is released. NSScrollView scrolls dynamically by
default.

See also: – scrollsDynamically

setVerticalLineScroll:
– (void)setVerticalLineScroll:(float)aFloat

Sets the amount by which the receiver scrolls itself vertically when scrolling line-by-line to aFloat,
expressed in the content view’s coordinate system. This is the amount used when the user clicks the scroll
arrows on the vertical scroll bar without holding a modifier key. When displaying text in an NSScrollView,
for example, you might set this to the height of a single line of text in the default font.

See also: – verticalLineScroll, – setHorizontalLineScroll:, – lineScroll, – setVerticalPageScroll:

setVerticalPageScroll:
– (void)setVerticalPageScroll:(float)aFloat

Sets the amount of the document view kept visible when scrolling vertically page-by-page to aFloat,
expressed in the content view’s coordinate system. This amount is used when the user clicks the scroll
arrows on the vertical scroll bar while holding the Alternate key.

Note: This amount expresses the context that remains when the receiver scrolls by one page, allowing the
user to orient himself to the new display. It differs from the line scroll amount, which indicates how
far the document view moves. The page scroll amount is the amount common to the content view
before and after the document view is scrolled by one page. Thus, setting the page scroll amount to
0.0 implies that the entire visible portion of the document view is replaced when a page scroll occurs.

See also: – verticalPageScroll, – setHorizontalPageScroll:, – pageScroll, – setVerticalLineScroll

17

 Classes: NSScrollView

setVerticalRulerView:
– (void)setVerticalRulerView:(NSRulerView *)aRulerView

Sets the receiver’s vertical ruler view to aRulerView. You can use this method to override the default ruler
class set using the class method setRulerClass:. Display of rulers is controlled using the setRulersVisible:
method.

See also: – verticalRulerView, – setHasVerticalRuler:, – setHorizontalRulerView:, – setRulersVisible:

setVerticalScroller:
– (void)setVerticalScroller:(NSScroller *)aScroller

Sets the receiver’s vertical scroller to aScroller, establishing the appropriate target-action relationships
between them. To make sure the scroller is visible, invoke the setHasVerticalScroller: method with an
argument of YES.

See also: – verticalScroller, – setHorizontalScroller:

tile
– (void)tile

Lays out the components of the receiver: the content view, the scrollers, and the ruler views. You rarely need
to invoke this method, but subclasses may override it to manage additional components.

toggleRuler:
– (void)toggleRuler:(id)sender

This method is being deprecated in favor of NSText’s toggleRuler:. Use this method only when modifying
older applications that use NSCStringText. New applications should use either NSText or NSTextView.

This action method shows or hides the ruler, if the receiver is enclosed in a scroll view.

See also: – isRulerVisible

18

verticalLineScroll
– (float)verticalLineScroll

Returns the amount by which the receiver scrolls itself vertically when scrolling line-by-line, expressed in
the content view’s coordinate system. This amount is used when the user clicks the scroll arrows on the
vertical scroll bar without holding a modifier key.

See also: – setVerticalLineScroll:, – horizontalLineScroll, – setLineScroll:, – verticalPageScroll

verticalPageScroll
– (float)verticalPageScroll

Returns the amount of the document view kept visible when scrolling vertically page-by-page, expressed
in the content view’s coordinate system. This amount is used when the user clicks the scroll arrows on the
vertical scroll bar while holding the Alternate key.

Note: This amount expresses the context that remains when the receiver scrolls by one page, allowing the
user to orient himself to the new display. It differs from the line scroll amount, which indicates how
far the document view moves. The page scroll amount is the amount common to the content view
before and after the document view is scrolled by one page.

See also: – setVerticalPageScroll:, – horizontalPageScroll, – setPageScroll:, – verticalLineScroll

verticalRulerView
– (NSRulerView *)verticalRulerView

Returns the receiver’s vertical ruler view, whether or not the receiver is currently displaying it, or nil if the
receiver has none. If the receiver is set to display a vertical ruler view and doesn’t yet have one, this method
creates an instance of the ruler view class set using the class method setRulerViewClass:. Display of rulers
is controlled using the setRulersVisible: method.

See also: – hasVerticalRuler, – horizontalRulerView

verticalScroller
– (NSScroller *)verticalScroller

Returns the receiver’s vertical scroller, whether or not the receiver is currently displaying it, or nil if the
receiver has none.

See also: – hasVerticalScroller, – setVerticalScroller:, – horizontalScroller

1

 Classes: NSSecureTextField

NSSecureTextField

Inherits From: NSTextField : NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSSecureTextField.h

Class Description

NSSecureTextField is a subclass of NSTextField that hides its text from display or other access via the user
interface. It’s suitable for use as a password-entry object, or for any item in which a secure value must be
kept. An NSSecureTextField uses an NSSecureTextFieldCell, and adds behavior to the text system to
protect its text value. Your code can get the text field’s string value using the standard stringValue method,
but users can’t extract it themselves. NSSecureTextField overrides many aspects of text editing to prevent
passing of the object’s value out by mechanisms available to the user (namely, through Cut, Copy, and Paste
commands, and the Services facility). This object also overrides the text system’s drawing routine to draw
no text at all.

1

 Classes: NSSecureTextFieldCell

NSSecureTextFieldCell

Inherits From: NSTextFieldCell : NSActionCell : NSCell : NSObject

Conforms To: NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSSecureTextField.h

Class Description

NSSecureTextFieldCell works with NSSecureTextField to provide a text field whose value is guarded from
user examination. It overrides the general cell use of the field editor to provide its own field editor, which
doesn’t display text or allow the user to Cut, Copy, or Paste its value. See the NSSecureTextField class
specification for more information.

1

 Classes: NSSlider

NSSlider

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (from NSResponder)
NSObject (from NSObject)

Declared In: AppKit/NSSlider.h

Class Description

An NSSlider displays a range of values for something in the application. An indicator, or knob, notes the
current setting. The user can move the knob in the slider’s bar to change the setting. If the slider is vertical,
its minimum is at its bottom; if it is horizontal, its minimum is at its left.

The minimum and maximum can be obtained with the minValue and maxValue methods, and set with the
setMinValue: and setMaxValue: methods. To read the value represented by the current position of the
knob, you use an NSControl method like floatValue; conversely, to send a value to the slider, you use a
NSControl method like setFloatValue:.

By default, an NSSlider is a continuous NSControl: while the user drags the slider’s knob, the slider sends
its action message continuously. If, instead, you want the slider to reserve its action message until the mouse
is released, invoke setContinuous: (an NSControl method) with an argument of NO.

In its bar, an NSSlider can display an image, a title, or both. The title can be drawn in any color and any
font. However, since a title in the bar may be obscured by the slider knob, you will more often label a slider
by placing an NSTextField near it.

An NSSlider can have tick marks to either side of it. The values represented by the tick marks are
determined by the number of tick marks and the minimum and maximum values of the slider; a slider’s
values can be pegged to the values represented by the tick marks.

MaximumMinimum

Bar Knob

2

Like most NSControls, NSSlider relies heavily on a related cell class, NSSliderCell. For more information,
see the NSSliderCell class specification.

Don’t use an NSSlider when an NSScroller would be better. A scroller represents the relative position of
the visible portion of a view and lets the user choose which portion to view. A slider represents a range of
values for something in the application and lets the user choose a setting.

Method Types

 Asking about the slider’s appearance
– altIncrementValue:
– image
– knobThickness
– isVertical

Changing the slider’s appearance
– setAltIncrementValue:
– setImage:
– setKnobThickness:

Asking about the slider’s title
– title
– titleCell
– titleColor
– titleFont

Changing the slider’s title
– setTitle:
– setTitleCell:
– setTitleColor:
– setTitleFont:

Asking about the value limits
– maxValue
– minValue

Changing the value limits
– setMaxValue:
– setMinValue:

Handling mouse-down events
– acceptsFirstMouse:

3

 Classes: NSSlider

Managing tick marks
– allowsTickMarkValuesOnly
– closestTickMarkValueToValue:
– indexOfTickMarkAtPoint:
– numberOfTickMarks
– rectOfTickMarkAtIndex:
– setAllowsTickMarkValuesOnly:
– setNumberOfTickMarks:
– setTickMarkPosition:
– tickMarkPosition
– tickMarkValueAtIndex:

Instance Methods

acceptsFirstMouse:
– (BOOL)acceptsFirstMouse:(NSEvent *)mouseDownEvent

Returns YES by default, so that a single mouse-down event can simultaneously activate the window and
take hold of the slider’s knob.

If you want the slider to wait for its own mouse-down event, you must override this method.

allowsTickMarkValuesOnly
– (BOOL)allowsTickMarkValuesOnly

Returns whether the receiver fixes its values to those values represented by its tick marks. In its
implementation of this method, the receiving NSSlider simply invokes the method of the same name of its
NSSliderCell.

See also: – setAllowsTickMarkValuesOnly:

altIncrementValue:
– (double)altIncrementValue

Returns the amount that the slider will change its value when the user drags the knob with the Alt key held
down.

Unless you call setAltIncrementValue:, altIncrementValue returns –1.0, and the slider behaves no
differently with the Alt key down than with it up.

See also: – setAltIncrementValue:

4

closestTickMarkValueToValue:
– (double)closestTickMarkValueToValue:(double)aValue;

Returns the value of the tick mark closest to aValue. In its implementation of this method, the receiving
NSSlider simply invokes the method of the same name of its NSSliderCell.

See also: – indexOfTickMarkAtPoint:

image
– (NSImage *)image

Returns the image that the slider displays in its bar, or nil if no image has been set.

See also: – setImage:

indexOfTickMarkAtPoint:
– (int)indexOfTickMarkAtPoint: (NSPoint)point

Returns the index of the tick mark closest to the location of the slider represented by point. If point is not
within the bounding rectangle (plus an extra pixel of space) of any tick mark, the method returns
NSNotFound. In its implementation of this method, the receiving NSSlider simply invokes the method of
the same name of its NSSliderCell. This method invokes rectOfTickMarkAtIndex: for each tick mark on
the slider until it finds a tick mark containing the point.

See also: – closestTickMarkValueToValue:

isVertical
– (int)isVertical

Returns 1 if the slider is vertical, 0 if it’s horizontal, and –1 if the orientation can’t be determined (for
example, if the slider hasn’t been displayed yet). A slider is defined as vertical if its height is greater than
its width.

5

 Classes: NSSlider

knobThickness
– (float)knobThickness

Returns the knob’s thickness, in pixels. The thickness is defined to be the extent of the knob along the long
dimension of the bar. In a vertical slider, then, a knob’s thickness is its height; in a horizontal slider, a knob’s
thickness is its width.

See also: – setKnobThickness:

maxValue
– (double)maxValue

Returns the maximum value that the slider can send to its target. A horizontal slider sends its maximum
value when the knob is at the right end of the bar; a vertical slider sends it when the knob is at the top.

See also: – setMaxValue:

minValue
– (double)minValue

Returns the minimum value that the slider can send to its target. A vertical slider sends its minimum value
when its knob is at the bottom; a horizontal slider, when its knob is all the way to the left.

See also: – setMinValue:

numberOfTickMarks
– (int)numberOfTickMarks

Returns the number of tick marks associated with the slider. The tick marks assigned to the minimum and
maximum values are included. In its implementation of this method, the receiving NSSlider simply invokes
the method of the same name of its NSSliderCell.

See also: – setNumberOfTickMarks:

rectOfTickMarkAtIndex:
– (NSRect)rectOfTickMarkAtIndex: (int)index

Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark is at
index 0). If no tick mark is associated with index, the method raises NSRangeException. In its

6

implementation of this method, the receiving NSSlider simply invokes the method of the same name of its
NSSliderCell.

See also: – indexOfTickMarkAtPoint:

setAllowsTickMarkValuesOnly:
– (void)setAllowsTickMarkValuesOnly: (BOOL)flag

Sets whether the receiver’s values are fixed to the values represented by the tick marks. For example, if a
slider has a minimum value of 0, a maximum value of 100, and five markers, the allowable values are 0, 25,
50, 75, and 100. When users move the slider’s knob, it jumps to the tick mark nearest the cursor when the
mouse is released. This method has no effect if the slider has no tick marks. In its implementation of this
method, the receiving NSSlider simply invokes the method of the same name of its NSSliderCell.

See also: – allowsTickMarkValuesOnly

setAltIncrementValue:
– (void)setAltIncrementValue:(double)increment

Sets the amount by which the NSSliderCell modifies its value when the user Alt-drags the knob. increment
must fit the range of values that the slider can represent—for example, if the slider has a minimum value of
5 and a maximum value of 10, increment should be between 0 and 5. If increment is outside that range, the
value is unchanged.

If you don’t call this method, the slider behaves the same with the Alt key down as with it up. This is also
the result when you call setAltIncrementValue: with an increment of -1.

See also: – maxValue, – minValue

setImage:
– (void)setImage:(NSImage *)barImage

Sets the image that the slider displays in the bar behind its knob. The slider may scale and distort barImage
to fit inside the bar.

The knob may cover part of the image. If you want the image to be visible all the time, you’re better off
placing it near the slider.

See also: – setImage:

7

 Classes: NSSlider

setKnobThickness:
– (void)setKnobThickness:(float)thickness

Lets you set the knob’s thickness, measured in pixels. The thickness is defined to be the extent of the knob
along the long dimension of the bar. In a vertical slider, then, a knob’s thickness is its height; in a horizontal
slider, a knob’s thickness is its width.

See also: – knobThickness

setMaxValue:
– (void)setMaxValue:(double)maxValue

Sets the maximum value that the slider can send to its target—the value that a horizontal slider sends when
its knob is all the way to the right, or that a vertical slider sends when its knob is at the top.

See also: – maxValue

setMinValue:
– (void)setMinValue:(double)minValue

Sets the minimum value that the slider can send to its target. A horizontal slider sends its minimum value
when its knob is all the way to the left; a vertical slider sends its minimum value when its knob is at the
bottom.

See also: – minValue

setNumberOfTickMarks:
– (void)setNumberOfTickMarks: (int)numberOfTickMarks

Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum and
maximumvalues). By default, this value is zero, and no tick marks appear. The number of tick marks
assigned to a slider, along with the slider’s minimum and maximum values, determine the values associated
with the tick marks. In its implementation of this method, the receiving NSSlider simply invokes the method
of the same name of its NSSliderCell.

See also: – numberOfTickMarks

8

setTickMarkPosition:
– (void)setTickMarkPosition: (NSTickMarkPosition)position

Sets where tick marks appear relative to the receiver. For horizontal sliders, position can be
NSTickMarksBelow (the default) or NSTickMarksAbove; for vertical sliders, position can be
NSTickMarksLeft (the default) or NSTickMarksRight. This method has no effect if no tick marks have been
assigned (that is, numberOfTickMarks returns zero). In its implementation of this method, the receiving
NSSlider simply invokes the method of the same name of its NSSliderCell.

See also: – tickMarkPosition

setTitle:
– (void)setTitle:(NSString *)barTitle

Sets the title that the slider displays in the bar behind its knob.

The knob may cover part or all of the title. If you want the title to be visible all of the time, you’re better off
placing a label near the slider.

See also: – title

setTitleCell:
– (void)setTitleCell:(NSCell *)titleCell

Sets the cell used to draw the slider’s title. You only need to invoke this method if the default title cell,
NSTextFieldCell, doesn’t suit your needs—that is, if you want to display the title in a manner that
NSTextFieldCell doesn’t permit. When you do choose to override the default, titleCell should be an instance
of a subclass of TextFieldCell.

See also: – titleCell

setTitleColor:
– (void)setTitleColor:(NSColor *)color

Sets the color used to draw the slider’s title.

See also: – titleColor

9

 Classes: NSSlider

setTitleFont:
– (void)setTitleFont:(NSFont *)font

Sets the font used to draw the slider’s title.

See also: – titleFont

– tickMarkPosition
– (NSTickMarkPosition)tickMarkPosition

Returns how the receiver’s tick marks are aligned with it: NSTickMarkBelow, NSTickMarkAbove,
NSTickMarkLeft, or NSTickMarkRight (the last two are for vertical sliders). The default alignments are
NSTickMarkBelow and NSTickMarkLeft. In its implementation of this method, the receiving NSSlider
simply invokes the method of the same name of its NSSliderCell.

See also: – setTickMarkPosition:

– tickMarkValueAtIndex:
– (double)tickMarkValueAtIndex: (int)index

Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has an
index of zero). In its implementation of this method, the receiving NSSlider simply invokes the method of
the same name of its NSSliderCell.

title
– (NSString *)title

Returns the slider’s title. The default title is the empty string (“”).

See also: – setTitle:

titleCell
– (id)titleCell

Returns the cell used to draw the title. The default is an NSTextFieldCell.

See also: – setTitleCell:

10

titleColor
– (NSColor *)titleColor

Returns the color used to draw the slider’s title. The default color is NSColor’s controlTextColor.

See also: – setTitleColor:

titleFont
– (NSFont *)titleFont

Returns the font used to draw the slider’s title.

See also: – setTitleColor:

1

 Classes: NSSliderCell

NSSliderCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding, NSCopying (from NSCell)
NSObject (from NSObject)

Declared In: AppKit/NSSliderCell.h

Class Description

An NSSliderCell controls the appearance and behavior of an NSSlider, or of a single slider in an NSMatrix.
A slider can have tick marks to either side of it. The values represented by the tick marks are determined by
the number of tick marks and the minimum and maximum values of the slider; a slider’s values can be
pegged to the values represented by the tick marks.

You can customize an NSSliderCell to a certain degree, using its set... methods. If these do not allow you
sufficient flexibility, you can create a subclass. In that subclass, you can override any of the following
methods: knobRectFlipped:, drawBarInside:flipped: , drawKnob: , or prefersTrackingUntilMouseUp.

Method Types

Asking about the cell’s behavior
– altIncrementValue
+ prefersTrackingUntilMouseUp
– trackRect

Changing the cell’s behavior
– setAltIncrementValue:

Displaying the cell
– knobRectFlipped:
– drawBarInside:flipped:
– drawKnob
– drawKnob:

2

Asking about the cell’s appearance
– knobThickness
– isVertical
– title
– titleCell
– titleFont
– titleColor

Changing the cell’s appearance
– setKnobThickness:
– setTitle:
– setTitleCell:
– setTitleColor:
– setTitleFont:

Asking about the value limits
– maxValue
– minValue

Changing the value limits
– setMaxValue:
– setMinValue:

Managing tick marks
– allowsTickMarkValuesOnly
– closestTickMarkValueToValue:
– indexOfTickMarkAtPoint:
– numberOfTickMarks
– rectOfTickMarkAtIndex:
– setAllowsTickMarkValuesOnly:
– setNumberOfTickMarks:
– setTickMarkPosition:
– tickMarkPosition
– tickMarkValueAtIndex:

Class Methods

prefersTrackingUntilMouseUp
+ (BOOL)prefersTrackingUntilMouseUp

By default, this method returns YES, so that an NSSliderCell continues to track the mouse even after the
mouse leaves the cell’s tracking rectangle. This means that, once you take hold of a slider’s knob (by putting
the mouse inside the cell’s frame rectangle and pressing the mouse button), you retain control of the knob
until you release the mouse button, even if you drag the mouse clear to the other side of the screen.

3

 Classes: NSSliderCell

Never call this method explicitly. Override it if you create a subclass of NSSliderCell that you want to track
the mouse differently.

Instance Methods

allowsTickMarkValuesOnly
– (BOOL)allowsTickMarkValuesOnly

Returns whether the receiver fixes its values to those values represented by its tick marks.

See also: – setAllowsTickMarkValuesOnly:

altIncrementValue
– (double)altIncrementValue

Returns the amount that the slider will change its value when the user drags the knob with the Alt key held
down.

Unless you call setAltIncrementValue, altIncrementValue returns –1.0, and the slider behaves no
differently with the Alt key down than with it up.

See also: – setAltIncrementValue:

closestTickMarkValueToValue:
– (double)closestTickMarkValueToValue:(double)aValue;

Returns the value of the tick mark closest to aValue.

See also: – indexOfTickMarkAtPoint:

drawBarInside:flipped:
– (void)drawBarInside: (NSRect)aRect flipped:(BOOL)flipped

Draws the slider’s bar—but not its bezel or knob—in aRect.

flipped indicates whether the cell’s control view—that is, the NSSlider or NSMatrix associated with the
NSSliderCell—has a flipped coordinate system.

You should never invoke this method explicitly. It’s included so that you can override it in a subclass.

See also: – drawKnob:

4

drawKnob
– (void)drawKnob

Calculates the rectangle in which the knob should be drawn, then invokes drawKnob: to actually draw the
knob. Before this message is sent, a lockFocus method must be sent to the cell’s control view.

You might invoke this method if you override one of the display methods belonging to NSControl or
NSCell.

If you create a subclass of NSSliderCell, don’t override this method. Override drawKnob: instead.

drawKnob:
– (void)drawKnob: (NSRect)knobRect

Draws the knob in knobRect. Before this message is sent, a lockFocus message must be sent to the cell’s
control view.

You should never invoke this method explicitly. It’s included so that you can override it in a subclass.

indexOfTickMarkAtPoint:
– (int)indexOfTickMarkAtPoint: (NSPoint)point

Returns the index of the tick mark closest to the location of the slider represented by point. If point is not
within the bounding rectangle (plus an extra pixel of space) of any tick mark, the method returns
NSNotFound. This method invokes rectOfTickMarkAtIndex: for each tick mark on the slider until it finds
a tick mark containing the point.

isVertical
– (int)isVertical

Returns 1 if the slider is vertical, 0 if it’s horizontal, and –1 if the orientation can’t be determined (for
example, if the slider hasn’t been displayed yet). A slider is defined as vertical if its height is greater than
its width.

knobRectFlipped:
– (NSRect)knobRectFlipped:(BOOL)flipped

Returns the rectangle in which the knob will be drawn, specified in the coordinate system of the NSSlider
or NSMatrix with which the NSSliderCell is associated. flipped indicates whether that coordinate system is
flipped, a question you can answer by sending NSView’s isFlipped message to the NSMatrix or NSSlider.

5

 Classes: NSSliderCell

The knob rectangle depends on where in the slider the knob belongs—that is, it depends on the SliderCell’s
minimum and maximum values, and on the value which the position of the knob will represent.

You should never invoke this method explicitly. It’s included so that you can override it in a subclass.

knobThickness
– (float)knobThickness

Returns the knob’s thickness, in pixels. The thickness is defined to be the extent of the knob along the long
dimension of the bar. In a vertical slider, then, a knob’s thickness is its height; in a horizontal slider, its
thickness is its width.

See also: – setKnobThickness:

maxValue
– (double)maxValue

Returns the maximum value that the slider can send to its target. A horizontal slider sends its maximum
value when the knob is at the right end of the slider; a vertical slider sends it when the knob is at the top.

See also: – setMaxValue:

minValue
– (double)minValue

Returns the minimum value that the slider can send to its target. A vertical slider sends this value when its
knob is at the bottom; a horizontal slider sends it when its knob is all the way to the left.

numberOfTickMarks
– (int)numberOfTickMarks

Returns the number of tick marks associated with the slider. The tick marks assigned to the minimum and
maximum values are included.

See also: – setNumberOfTickMarks:

6

rectOfTickMarkAtIndex:
– (NSRect)rectOfTickMarkAtIndex: (int)index

Returns the bounding rectangle of the tick mark identified by index (the minimum-value tick mark is at
index 0). If no tick mark is associated with index, the method raises NSRangeException.

See also: – indexOfTickMarkAtPoint:

setAllowsTickMarkValuesOnly:
– (void)setAllowsTickMarkValuesOnly: (BOOL)flag

Sets whether the receiver’s values are fixed to the values represented by the tick marks. For example, if a
slider has a minimum value of 0, a maximum value of 100, and five markers, the allowable values are 0, 25,
50, 75, and 100. When users move the slider’s knob, it jumps to the tick mark nearest the cursor when the
mouse is released. This method has no effect if the slider has no tick marks.

See also: – allowsTickMarkValuesOnly

setAltIncrementValue:
– (void)setAltIncrementValue:(double)increment

Sets the amount by which the NSSliderCell modifies its value when the knob is Alt-dragged. increment
should fit the range of values that the slider can represent—for example, if the slider has a minimum value
of 5 and a maximum value of 10, increment should be between 0 and 5.

If you don’t call this method, the slider behaves the same with the Alt key down as with it up. This is also
the result when you call setAltIncrementValue: with an increment of -1.

See also: – maxValue, – minValue

setKnobThickness:
– (void)setKnobThickness:(float)thickness

Lets you set the knob’s thickness, measured in pixels. The thickness is defined to be the extent of the knob
along the long dimension of the bar. In a vertical slider, then, a knob’s thickness is its height; in a horizontal
slider, its thickness is its width.

See also: – knobThickness

7

 Classes: NSSliderCell

setMaxValue:
– (void)setMaxValue:(double)aDouble

Sets the maximum value that the slider can send to its target—the value that a horizontal slider will send
when its knob is all the way to the right, or that a vertical slider will send when its knob is at the top.

See also: – maxValue

setMinValue:
– (void)setMinValue:(double)aDouble

Sets the minimum value that the slider can send to its target. A horizontal slider sends its minimum value
when its knob is all the way to the left; a vertical slider sends its minimum value when its knob is at the
bottom.

See also: – minValue

setNumberOfTickMarks:
– (void)setNumberOfTickMarks: (int)numberOfTickMarks

Sets the number of tick marks displayed by the receiver (which include those assigned to the minimum and
maximumvalues). By default, this value is zero, and no tick marks appear. The number of tick marks
assigned to a slider, along with the slider’s minimum and maximum values, determine the values associated
with the tick marks.

See also: – numberOfTickMarks

setTickMarkPosition:
– (void)setTickMarkPosition: (NSTickMarkPosition)position

Sets where tick marks appear relative to the receiver. For horizontal sliders, position can be
NSTickMarksBelow (the default) or NSTickMarksAbove; for vertical sliders, position can be
NSTickMarksLeft (the default) or NSTickMarksRight. This method has no effect if no tick marks have been
assigned (that is, numberOfTickMarks returns zero).

See also: – tickMarkPosition

8

setTitle:
– (void)setTitle:(NSString *)title

Sets the title in the bar behind the slider’s knob to title.

See also: – title

setTitleCell:
– (void)setTitleCell:(NSCell *)aCell

Sets the cell used to draw the slider’s title. You only need to invoke this method if the default title cell,
NSTextFieldCell, doesn’t suit your needs—that is, if you want to display the title in a manner that
NSTextFieldCell doesn’t permit. When you do choose to override the default, aCell should be an instance
of a subclass of TextFieldCell.

See also: – titleCell

setTitleColor:
– (void)setTitleColor:(NSColor *)color

Sets the color used to draw the slider’s title.

See also: – titleColor

setTitleFont:
– (void)setTitleFont:(NSFont *)font

Sets the font used to draw the slider’s title.

See also: – titleFont

– tickMarkPosition
– (NSTickMarkPosition)tickMarkPosition

Returns how the receiver’s tick marks are aligned with it: NSTickMarkBelow, NSTickMarkAbove,
NSTickMarkLeft, or NSTickMarkRight (the last two are for vertical sliders). The default alignments are
NSTickMarkBelow and NSTickMarkLeft.

See also: – setTickMarkPosition:

9

 Classes: NSSliderCell

– tickMarkValueAtIndex:
– (double)tickMarkValueAtIndex: (int)index

Returns the receiver’s value represented by the tick mark at index (the minimum-value tick mark has an
index of zero).

title
– (NSString *)title

Returns the slider’s title. The default title is the empty string (“”).

See also: – setTitle:

titleCell
– (id)titleCell

Returns the cell used to draw the title. The default is an NSTextFieldCell.

See also: – setTitleCell:

titleColor
– (NSColor *)titleColor

Returns the color used to draw the slider’s title. The default color is NSColor’s controlTextColor.

See also: – setTitleColor:

titleFont
– (NSFont *)titleFont

Returns the font used to draw the slider’s title.

See also: – setTitleFont:

trackRect
– (NSRect)trackRect

Returns the rectangle within which the cell tracks the mouse while the mouse button is down. This rectangle
includes the slider bar, but not the bezel.

1

 Classes: NSSpellChecker

NSSpellChecker

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSSpellChecker.h

Class Description

The NSSpellChecker class gives any application an interface to the OpenStep spell-checking service. To
handle all its spell checking, an application needs only one instance of NSSpellChecker. It provides a panel
in which the user can specify decisions about words that are suspect. To check the spelling of a piece of text,
the application:

• Includes in its user interface a menu item (or a button or command) by which the user will request spell
checking.

• Makes the text available by way of an NSString object.

• Creates an instance of the NSSpellChecker class and sends it a checkSpellingOfString:startingAt:
message.

For example, you might use the following statement to create a spell checker:

range = [[NSSpellChecker sharedSpellChecker] checkSpellingOfString:aString startingAt:0];

The checkSpellingOfString:startingAt: method checks the spelling of the words in the specified string
beginning at the specified offset (this example uses 0 to start at the beginning of the string) until it finds a
word that is misspelled. Then it returns an NSRange to indicate the location of the misspelled word.

In a graphical application, whenever a misspelled word is found, you’ll probably want to highlight the word
in the document, using the NSRange that checkSpellingOfString:startingAt: returned to determine the
text to highlight. Then you should show the misspelled word in the Spelling panel’s misspelled-word field
by calling updateSpellingPanelWithMisspelledWord:. If checkSpellingOfString:startingAt: does not
find a misspelled word, you should call updateSpellingPanelWithMisspelledWord: with the empty
string. This causes the system to beep, letting the user know that the spell check is complete and no
misspelled words were found. None of these steps is required, but if you do one, you should do them all.

2

The object that provides the string being checked should adopt the following protocols:

The application may choose to split a document’s text into segments and check them separately. This will
be necessary when the text has segments in different languages. Spell checking is invoked for one language
at a time, so a document that contains portions in three languages will require at least three checks.

Dictionaries and Word Lists

The process of checking spelling makes use of three references:

• A dictionary registered with the system’s spell-checking service. When the Spelling panel first appears,
by default it shows the dictionary for the user’s preferred language. The user may select a different
dictionary from the list in the Spelling panel.

• The user’s “learn” list of correctly-spelled words in the current language. The NSSpellChecker updates
the list when the user presses the Learn or Forget buttons in the Spelling panel.

• The document’s list of words to be ignored while checking it (if the first responder conforms to the
NSIgnoreMisspelledWords protocol). The NSSpellChecker updates its copy of this list when the user
presses the Ignore button in the Spelling panel.

A word is considered to be misspelled if none of these three accepts it.

Matching a List of Ignored Words with the Document It Belongs To

The NSString being checked isn’t the same as the document. In the course of processing a document, an
application might run several checks based on different parts or different versions of the text. But they’d all
belong to the same document. The NSSpellChecker keeps a separate “ignored words” list for each
document that it checks. To help match “ignored words” lists to documents, you should call
uniqueSpellDocumentTag once for each document. This method returns a unique arbitrary integer that
will serve to distinguish one document from the others being checked and to match each “ignored words”
list to a document. When searching for misspelled words, pass the tag as the fourth argument of
checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:wordCount:. (The
convenience method checkSpellingOfString:startingAt: takes no tag. This method is suitable when the
first responder does not conform to the NSIgnoreMisspelledWords protocol.)

Protocol Description

NSChangeSpelling
A message in this protocol (changeSpelling:) is sent down the responder
chain when the user presses the Correct button.

NSIgnoreMisspelledWords
When the object being checked responds to this protocol, the spell server
keeps a list of words that are acceptable in the document and enables the
Ignore button in the Spelling panel.

3

 Classes: NSSpellChecker

When the application saves a document, it may choose to retrieve the “ignored words” list and save it along
with the document. To get back the right list, it must send the NSSpellChecker an
ignoredWordsInSpellDocumentWithTag: message. When the application has closed a document, it
should notify the NSSpellChecker that the document’s “ignored words” list can now be discarded, by
sending it a closeSpellDocumentWithTag: message. When the application reopens the document, it should
restore the “ignored words” list with the message setIgnoredWords:inSpellDocumentWithTag:.

Method Types

Getting the spell checker
+ sharedSpellChecker
+ sharedSpellCheckerExists

Managing the spelling panel
– setAccessoryView:
– accessoryView
– spellingPanel

Checking spelling
– countWordsInString:language:
– checkSpellingOfString:startingAt:
– checkSpellingOfString:startingAt:language:wrap:

inSpellDocumentWithTag:wordCount:

Setting the language
– setLanguage:
– language

Managing the Spelling Process
+ uniqueSpellDocumentTag
– closeSpellDocumentWithTag:
– ignoreWord:inSpellDocumentWithTag:
– setIgnoredWords:inSpellDocumentWithTag:
– ignoredWordsInSpellDocumentWithTag:
– setWordFieldStringValue:
– updateSpellingPanelWithMisspelledWord:

4

Class Methods

sharedSpellChecker
+ (NSSpellChecker *)sharedSpellChecker

Returns the NSSpellChecker (one per application).

See also: + sharedSpellCheckerExists

sharedSpellCheckerExists
+ (BOOL)sharedSpellCheckerExists

Returns whether the application’s NSSpellChecker has already been created.

See also: + sharedSpellChecker

uniqueSpellDocumentTag
+ (int)uniqueSpellDocumentTag

Returns a guaranteed unique tag to use as the spell-document tag for a document. Use this method to
generate tags to avoid collisions with other objects that can be spell-checked.

Instance Methods

accessoryView
– (NSView *)accessoryView

Returns the Spelling panel’s accessory NSView object.

See also: – setAccessoryView:

checkSpellingOfString:startingAt:
– (NSRange)checkSpellingOfString:(NSString *)stringToCheck

startingAt: (int)startingOffset

Starts the search for a misspelled word in stringToCheck starting at startingOffset within the string object.
Returns the range of the first misspelled word. Wrapping occurs but no ignored-words dictionary is used.

5

 Classes: NSSpellChecker

checkSpellingOfString:startingAt:language:wrap:inSpellDocumentWithTag:
wordCount:

– (NSRange)checkSpellingOfString:(NSString *)stringToCheck
startingAt: (int)startingOffset
language:(NSString *)language
wrap: (BOOL)wrapFlag
 inSpellDocumentWithTag:(int)tag
wordCount: (int *)wordCount

Starts the search for a misspelled word in stringToCheck starting at startingOffset within the string object.
Returns the range of the first misspelled word and optionally the word count by reference. tag is an identifier
unique within the application used to inform the spell check which document (actually, a dictionary) of
ignored words to use. wrapFlag determines whether spell checking continues at the beginning of the string
when the end is reached. language is the language used in the string. If language is the empty string, the
current selection in the Spelling panel’s pop-up menu is used.

closeSpellDocumentWithTag:
– (void)closeSpellDocumentWithTag:(int)tag

Notifies the spell checker that the user has finished with the ignored-word document identified by tag,
causing it to throw that dictionary away.

countWordsInString:language:
– (int)countWordsInString: (NSString *)stringToCount

language:(NSString *)language

Returns the number of words in stringToCount. The language argument specifies the language used in the
string. If language is the empty string, the current selection in the Spelling panel’s pop-up menu is used.

ignoreWord:inSpellDocumentWithTag:
– (void)ignoreWord: (NSString *)wordToIgnore inSpellDocumentWithTag:(int)tag

Instructs the spell checker to ignore all future occurrences of wordToIgnore in the document identified by
tag. You should invoke this method from within your implementation of the NSIgnoreMisspelledWords
protocol’s ignoreSpelling: method.

6

ignoredWordsInSpellDocumentWithTag:
– (NSArray *)ignoredWordsInSpellDocumentWithTag:(int)tag

Returns the array of ignored words for a document identified by tag. Invoke this before
closeSpellDocumentWithTag: if you want to store the ignored words.

See also: – setIgnoredWords:inSpellDocumentWithTag:

language
– (NSString *)language

Returns the current language used in spell-checking.

See also: – setLanguage:

setAccessoryView:
– (void)setAccessoryView:(NSView *)aView

Makes an NSView object an accessory of the Spelling panel by making it a subview of the panel’s content
view. This method posts the notification NSWindowDidResizeNotification with the Spelling panel object
to the default notification center.

See also: – accessoryView

setIgnoredWords:inSpellDocumentWithTag:
– (void)setIgnoredWords:(NSArray *)someWords inSpellDocumentWithTag:(int)tag

Initializes the ignored-words document (i.e., dictionary identified by tag with someWords), an array of
words to ignore.

See also: – ignoredWordsInSpellDocumentWithTag:

setLanguage:
– (BOOL)setLanguage:(NSString *)language

Sets the language to use in spell-checking to language. Returns whether the Language pop-up list in the
Spelling panel lists language.

See also: – language

7

 Classes: NSSpellChecker

setWordFieldStringValue:
– (void)setWordFieldStringValue:(NSString *)aString

Sets the string that appears in the misspelled word field, using the string object aString.

spellingPanel
– (NSPanel *)spellingPanel

Returns the spell checker’s panel.

updateSpellingPanelWithMisspelledWord:
– (void)updateSpellingPanelWithMisspelledWord:(NSString *)word

Causes the spell checker to update the Spelling panel’s misspelled-word field to reflect word. You are
responsible for highlighting word in the document and for extracting it from the document using the range
returned by the checkSpelling:... methods. Pass the empty string as word to have the system beep,
indicating no misspelled words were found.

1

 Classes: NSSpellServer

NSSpellServer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSSpellServer.h

Class Description

The NSSpellServer class gives you a way to make your particular spelling checker a service that’s available
to any application. A service is an application that declares its availability in a standard way, so that any
other applications that wish to use it can do so. If you build a spelling checker that makes use of the
NSSpellServer class and list it as an available service, then users of any application that makes use of
NSSpellChecker or includes a Services menu will see your spelling checker as one of the available
dictionaries.

To make use of NSSpellServer, you write a small program that creates an NSSpellServer instance and a
delegate that responds to messages asking it to find a misspelled word and to suggest guesses for a
misspelled word. Send the NSSpellServer registerLanguage:byVendor: messages to tell it the languages
your delegate can handle.

The program that runs your spelling checker should not be built as an Application Kit application, but as a
simple program. Suppose you supply spelling checkers under the vendor name “Acme.” Suppose the file
containing the code for your delegate is called AcmeEnglishSpellChecker. Then the following might be
your program's main:

void main()

{

NSSpellServer *aServer = [[NSSpellServer alloc] init];

if ([aServer registerLanguage:"English" byVendor:"Acme"]) {

[aServer setDelegate:[[AcmeEnglishSpellChecker alloc] init]];

[aServer run];

fprintf(stderr, "Unexpected death of Acme SpellChecker!\n");

else {

fprintf(stderr, "Unable to check in Acme SpellChecker.\n");

}

}

Your delegate is an instance of a custom subclass. (It’s simplest to make it a subclass of NSObject, but that's
not a requirement.) Given an NSString, your delegate must be able to find a misspelled word by
implementing the method spellServer:findMisspelledWordInString:language:wordCount:countOnly:
. Usually, this method also reports the number of words it has scanned, but that isn’t mandatory.

2

Optionally, the delegate may also suggest corrections for misspelled words. It does so by implementing the
method spellServer:suggestGuessesForWord:inLanguage:.

Service Availability Notice

When there’s more than one spelling checker available, the user selects the one desired. The application that
requests a spelling check uses an NSSpellChecker object, and it provides a Spelling panel; in the panel
there’s a pop-up list of available spelling checkers. Your spelling checker appears in that list if it has a
service descriptor.

A service descriptor is an entry in a text file called services. Usually it’s located within the bundle that also
contains your spelling checker’s executable file. The bundle (or directory) that contains the services file
must have a name ending in “.service” or “.app”. The system looks for service bundles in a standard set of
directories.

A spell checker service availability notice has a standard format, illustrated in the following example for
the Acme spelling checker:

Spell Checker: Acme

Language: French

Language: English

Executable: franglais.daemon

The first line identifies the type of service; for a spelling checker, it must say “Spell Checker:” followed by
your vendor name. The next line contains the English name of a language your spelling checker is prepared
to check. (The language must be one your system recognizes.) If your program can check more than one
language, use an additional line for each additional language. The last line of a descriptor gives the name
of the service’s executable file. (It requires a complete path if it's in a different directory.)

If there’s a service descriptor for your Acme spelling checker and also a service descriptor for the English
checker provided by a vendor named Consolidated, a user looking at the Spelling panel’s pop-up list would
see:

English (Acme)

English (Consolidated)

French (Acme)

Illustrative Sequence of Messages to an NSSpellServer

The act of checking spelling usually involves the interplay of objects in two classes: the user application’s
NSSpellChecker (which responds to interactions with the user) and your spelling checker’s NSSpellServer
(which provides the application interface for your spelling checker). You can see the interaction between
the two in the following list of steps involved in finding a misspelled word.

• The user of an application selects a menu item to request a spelling check. The application sends a
message to its NSSpellChecker object. The NSSpellChecker in turn sends a corresponding message to
the appropriate NSSpellServer.

3

 Classes: NSSpellServer

• The NSSpellServer receives the message asking it to check the spelling of an NSString. It forwards the
message to its delegate.

• The delegate searches for a misspelled word. If it finds one, it returns an NSRange identifying the word’s
location in the string.

• The NSSpellServer receives a message asking it to suggest guesses for the correct spelling of a
misspelled word, and forwards the message to its delegate.

• The delegate returns a list of possible corrections, which the NSSpellServer in turn returns to the
NSSpellChecker that initiated the request.

• The NSSpellServer doesn’t know what the user does with the errors its delegate has found or with the
guesses its delegate has proposed. (Perhaps the user corrects the document, perhaps by selecting a
correction from the NSSpellChecker’s display of guesses; but that’s not the NSSpellServer’s
responsibility.) However, if the user presses the Learn or Forget buttons (thereby causing the
NSSpellChecker to revise the user’s word list), the NSSpellServer receives a notification of the word thus
learned or forgotten. It’s up to you whether your spell checker acts on this information. If the user presses
the Ignore button, the delegate is not notified (but the next time that word occurs in the text, the method
isWordInUserDictionaries:caseSensitive: will report YES rather than NO).

• Once the NSSpellServer delegate has reported a misspelled word, it has completed its search. Of course,
it’s likely that the user’s application will then send a new message, this time asking the NSSpellServer to
check a string containing the part of the text it didn’t get to earlier.

Method Types

Registering your service
– registerLanguage:byVendor:

Assigning a delegate
– setDelegate:
– delegate

Running the service
– run

Checking user dictionaries
– isWordInUserDictionaries:caseSensitive:

4

Instance Methods

delegate
– (id)delegate

Returns the NSSpellServer’s delegate.

See also: – setDelegate:

isWordInUserDictionaries:caseSensitive:
– (BOOL)isWordInUserDictionaries:(NSString *)word caseSensitive:(BOOL)flag

Indicates whether word is in the user’s list of learned words or the document’s list of words to ignore. If
YES, the word is acceptable to the user. flag indicates whether the comparison is to be case-sensitive.

registerLanguage:byVendor:
– (BOOL)registerLanguage:(NSString *)language byVendor:(NSString *)vendor

Notifies the NSSpellServer of a language your spelling checker can check. language is the English name of
a language on NeXT’s list of languages. vendor identifies the vendor (to distinguish your spelling checker
from those that others may offer for the same language). If your spelling checker supports more than one
language, it should invoke this method once for each language. Registering a language/vendor combination
causes it to appear in the Spelling Panel’s pop-up list of spelling checkers.

Returns YES if the language is registered, NO if for some reason it can’t be registered.

run
– (void)run

Causes the NSSpellServer to start listening for spell-checking requests. This method starts a loop that never
returns; you need to set the NSSpellServer’s delegate before sending this message.

See also: – setDelegate:

setDelegate:
– (void)setDelegate:(id)anObject

Assigns a delegate to the NSSpellServer. Since the delegate is where the real work is done, this is an
essential step before telling the NSSpellServer to run.

See also: – delegate, – run

5

 Classes: NSSpellServer

Methods Implemented by the Delegate

spellServer:didForgetWord:inLanguage:
– (void)spellServer:(NSSpellServer *)sender

didForgetWord: (NSString *)word
inLanguage:(NSString *)language

Notifies the delegate that word has been removed from the user’s list of acceptable words. If your delegate
maintains a similar auxiliary word list, you may wish to edit the list accordingly.

spellServer:didLearnWord:inLanguage:
– (void)spellServer:(NSSpellServer *)sender

didLearnWord: (NSString *)word
inLanguage:(NSString *)language

Notifies the delegate that word has been added to the user’s list of acceptable words. If your delegate
maintains a similar auxiliary word list, you may wish to edit the list accordingly.

spellServer:findMisspelledWordInString:language:wordCount:countOnly:
– (NSRange)spellServer:(NSSpellServer *)sender

findMisspelledWordInString: (NSString *)stringToCheck
language:(NSString *)language
wordCount: (int *)wordCount
countOnly:(BOOL)countOnly

Asks the delegate to search for a misspelled word in stringToCheck, using language, and marking the first
misspelled word found by returning its range within the string object. In wordCount, return by reference the
number of words from the beginning of the string object until the misspelled word (or the end-of-string). If
countOnly is YES, just count the words in the string object; do not spell-check. Send
isWordInUserDictionaries:caseSensitive: to the spelling server to determine if word exists in the user’s
language dictionaries.

spellServer:suggestGuessesForWord:inLanguage:
– (NSArray *)spellServer:(NSSpellServer *)sender

suggestGuessesForWord:(NSString *)word
inLanguage:(NSString *)language

Gives the delegate the opportunity to suggest guesses for the correct spelling of the misspelled word. Return
the guesses as an array of NSStrings.

1

 Classes: NSSplitView

NSSplitView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (from NSResponder)
NSObject (from NSObject)

Declared In: AppKit/NSSplitView.h

Class Description

An NSSplitView object stacks several subviews within one view so that the user can change their relative
sizes. By default, the split bars between the views are horizontal, so the views are one on top of the other.
To have vertical split bars (so the views are side by side), use the method setVertical:. The rest of this
section assumes you have horizontal split bars and gives information on vertical split bars in parentheses.

The NSSplitView resizes its subviews so that each subview is the same width (or height) as the
NSSplitView, and the total of the subviews’ heights (or widths), plus the total of the dividers’ thicknesses,
is equal to the height (or width) of the NSSplitView. The NSSplitView positions its subviews so that the
first subview is at the top (or left) of the NSSplitView, and each successive subview is positioned below (or
to the right of) the previous one. The user can set the height (or width) of two subviews by moving a
horizontal (or vertical) bar called the divider, which makes one subview smaller and the other larger.
Programmatically, you adjust the relative height of subviews simply by modifying the frame of each of the
subviews.

Generally, you’ll create an NSSplitView in Interface Builder by selecting the subviews and choosing the
Group in Split View command. To add and remove subview to an NSSplitView programmatically, use the
NSView methods addSubview: and removeFromSuperview:.

When a mouse-down occurs in an NSSplitView’s divider, the NSSplitView determines the limits of the
divider’s travel and tracks the mouse to allow the user to drag the divider within these limits. With the
following mouse-up, the NSSplitView resizes the two affected subviews, informs the delegate that the
subviews were resized, and displays the affected views and divider. The NSSplitView’s delegate can
constrain the travel of specific dividers by implementing the method splitView:constrainMinCoordinate:
maxCoordinate:ofSubviewAt or splitView:constrainSplitPosition:ofSubviewAt:

When the NSSplitView is displayed—whether it’s being displayed for the first time or redisplayed because
the user resized the NSSplitView’s window—it checks to see if its subviews are properly tiled. If not, it
invokes the delegate method splitView:resizeSubviewsWithOldSize:, allowing the delegate to specify the
heights (or widths) of specific subviews. If the delegate doesn’t implement this method, the NSSplitView
sends adjustSubviews to itself to resize the subviews proportionately. Note that the NSSplitView doesn’t
call the delegate methods splitView:constrainMinCoordinate:maxCoordinate:ofSubviewAt: or

2

splitView:constrainSplitPosition:ofSubviewAt: and may resize its subviews in a way that isn’t allowed
by these delegate methods.

Method Types

Managing component views
– adjustSubviews
– dividerThickness
– drawDividerInRect:

Managing orientation
– isVertical
– setVertical:

Assigning a delegate
– delegate
– setDelegate:

Instance Methods

adjustSubviews
– (void)adjustSubviews

Adjusts the sizes of the NSSplitView’s subviews so they (plus the dividers) fill the NSSplitView. The
subviews are resized proportionally; the size of a subview relative to the other subviews doesn’t change.

See also: – setDelegate:, – setFrame: (NSView)

delegate
– (id)delegate

Returns the NSSplitView’s delegate.

dividerThickness
– (float)dividerThickness

Returns the thickness of the divider. The default thickness depends on the platform. You can subclass
NSSplitView and override this method to change the divider’s size, if necessary.

See also: – drawDividerInRect:

3

 Classes: NSSplitView

drawDividerInRect:
– (void)drawDividerInRect: (NSRect)aRect

Draws the divider between two of the NSSplitView’s subviews. aRect describes the entire divider rectangle
in the NSSplitView’s coordinates, which are flipped. The default implementation draws a default “dimple”
image to the center of aRect; if you override this method and use a different icon to identify the divider, you
may want to change the size of the divider.

See also: – dividerThickness, – compositeToPoint:operation: (NSImage)

isVertical
– (BOOL)isVertical

Returns YES if the split bars are vertical (subviews are side by side), NO if it they are horizontal (views are
one on top of the other). By default, split bars are vertical.

See also: – setVertical:

setDelegate:
– (void)setDelegate:(id)anObject

Makes anObject the NSSplitView’s delegate. The notification messages that the delegate can expect to
receive are listed at the end of the NSSplitView class specification. The delegate doesn’t need to implement
all of the delegate methods.

setVertical:
– (void)setVertical:(BOOL)flag

Sets whether the split bars are vertical. If flag is YES, they’re vertical (views are side by side); if it’s NO,
they’re horizontal (views are one on top of the other).

See also: – isVertical

Methods Implemented By the Delegate

splitView:canCollapseSubview:
– (BOOL)splitView: (NSSplitView *)sender canCollapseSubview:(NSView *)subview

Allows the delegate to determine whether the user can collapse and un-collapse subview. If this method
returns NO or is undefined, subview can’t be collapsed. If this method returns YES, subview collapses when

4

the user drags a divider beyond the halfway mark between its minimum size and its edge. subview
un-collapses when the user drags the divider back beyond that point. To specify the minimum size, define
the method splitView:constrainMinCoordinate:maxCoordinate:ofSubviewAt: . Note that a subview
can collapse only if you also define splitView:constrainMinCoordinate:maxCoordinate:ofSubviewAt: .

A collapsed subview is hidden but retained by the NSSplitView object, with the same size it had before it
was collapsed

splitView:constrainMinCoordinate:maxCoordinate:ofSubviewAt:
– (void)splitView: (NSSplitView *)sender constrainMinCoordinate: (float *)min maxCoordinate:

(float *)max ofSubviewAt:(int)offset

Allows the delegate to constrain the coordinate limits of a divider when the user drags it. Invoke this method
before the NSSplitView begins tracking the mouse to position a divider. You may further constrain the limits
that have been already set, but you cannot extend the divider limits. min and max are specified in the
NSSplitView’s flipped coordinate system. If the split bars are horizontal (views are one on top of the other),
min is the top limit and max is the bottom limit. If the split bars are vertical (views are side by side), min is
the left limit and max is the right limit. The initial value of min is top (or left side) of the subview before the
divider, and the initial value of max is the bottom (or right side) of the subview after the divider. offset
specifies the divider the user is moving, with the first divider being 0 and going from top to bottom (or from
left to right).

See also: – isVertical

splitView:constrainSplitPosition:ofSubviewAt:
– (float)splitView:(NSSplitView *)splitView

constrainSplitPosition:(float)proposedPosition
ofSubviewAt:(int)offset

Allows the delegate to constrain the divider to certain positions. If the delegate implemements this method,
the NSSplitView calls it repeatedly as the user moves the divider. This method returns where you want the
divider to be, given proposedPosition, the mouse’s current position. offset is the divider the user is moving,
with the first divider being 0 and going from top to bottom (or from left to right).

For example, if a subview’s height must be a multiple of a certain number, use this method to return the
multiple nearest to proposedPosition.

5

 Classes: NSSplitView

splitView:resizeSubviewsWithOldSize:
– (void)splitView: (NSSplitView *)sender resizeSubviewsWithOldSize:(NSSize)oldSize

Allows the delegate to specify custom sizing behavior for the subviews of the NSSplitView. If the delegate
implements this method, splitView:resizeSubviewsWithOldSize: is invoked after the NSSplitView is
resized. The size of the NSSplitView before the user resized it is indicated by oldSize; the subviews should
be resized such that the sum of the sizes of the subviews plus the sum of the thickness of the dividers equals
the size of the NSSplitView’s new frame. You can get the thickness of a divider through the
dividerThickness method.

Note that if you implement this delegate method to resize subviews on your own, the NSSplitView does not
perform any error checking for you. However, you can invoke adjustSubviews to perform the default sizing
behavior.

See also: – adjustSubviews, – setFrame: (NSView)

splitViewDidResizeSubviews:
– (void)splitViewDidResizeSubviews:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is always an
NSSplitViewDidResizeSubviewsNotification. If the delegate implements this method, the delegate is
automatically registered to receive this notification. This method is invoked after the NSSplitView resizes
two of its subviews in response to the repositioning of a divider.

splitViewWillResizeSubviews:
– (void)splitViewWillResizeSubviews:(NSNotification *)aNotification

Sent by the default notification center to the delegate; aNotification is always an
NSSplitViewWillResizeSubviewsNotification. If the delegate implements this method, the delegate is
automatically registered to receive this notification. This method is invoked before the NSSplitView resizes
two of its subviews in response to the repositioning of a divider.

Notifications

NSSplitView declares and posts the following notifications. In addition, it posts notifications that are
declared by its superclass, NSView. See the NSView class specification for more information.

NSSplitViewDidResizeSubviewsNotification

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSSplitView that resized its subviews.

6

Posted after the NSSplitView changes the sizes of some or all of its subviews.

See also: – splitViewDidResizeSubviews:

NSSplitViewWillResizeSubviewsNotification

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSSplitView object that is about to resize its subviews.

Posted before the NSSplitView changes the sizes of some or all of its subviews.

See also: – splitViewWillResizeSubviews:

1

 Classes: NSString Additions

NSString Additions

Inherits From: NSObject

Declared In: AppKit/NSStringDrawing.h

Class Description

The Application Kit adds three methods to the NSString class to support drawing string objects directly in
an NSView: drawAtPoint:withAttributes: , drawInRect:withAttributes: , and sizeWithAttributes: . The
Application Kit adds similar method the NSAttributedString class. The two drawing methods draw a string
object with a single set of attributes that apply to the entire string. To draw a string with multiple attributes,
such as multiple text fonts, you must use an NSAttributedString.

Method Types

Drawing an NSString
– drawAtPoint:withAttributes:
– drawInRect:withAttributes:
– sizeWithAttributes:

Instance Methods

drawAtPoint:withAttributes:
– (void)drawAtPoint: (NSPoint)aPoint withAttributes: (NSDictionary *)attributes

Draws the receiver with the font and other display characteristics of attributes, at aPoint in the currently
focused NSView. You should only invoke this method when an NSView has PostScript focus.

See also: – lockFocus (NSView)

drawInRect:withAttributes:
– (void)drawInRect: (NSRect)aRect withAttributes: (NSDictionary *)attributes

Draws the receiver with the font and other display characteristics of attributes, within aRect in the currently
focused NSView. You should only invoke this method when an NSView has PostScript focus.

See also: – lockFocus (NSView)

2

sizeWithAttributes:
– (NSSize)sizeWithAttributes: (NSDictionary *)attributes

Returns the bounding box size that the receiver occupies when drawn with attributes.

1

 Classes: NSTableColumn

NSTableColumn

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSTableColumn.h

Class Description

An NSTableColumn stores the display characteristics and attribute identifier for a column in an
NSTableView. The NSTableColumn determines the width and width limits, resizability, and editability of
its column in the NSTableView. It also stores two NSCell objects: the header cell, which is used to draw the
column header, and the data cell, used to draw the values for each row. You can control the display of the
column by setting the subclasses of NSCell used and by setting the font and other display characteristics
for these NSCells. For example, you can use the default NSTextFieldCell for displaying string values or
substitute an NSImageCell to display pictures.

See the NSTableView class specification for a general overview.

Method Types

Creating an NSTableColumn instance
– initWithIdentifier:

Setting the identifier
– setIdentifier:
– identifier

Setting the NSTableView
– setTableView:
– tableView

2

Controlling size
– setWidth:
– width
– setMinWidth:
– minWidth
– setMaxWidth:
– maxWidth
– setResizable:
– isResizable
– sizeToFit

Controlling editability
– setEditable:
– isEditable

Setting component cells
– setHeaderCell:
– headerCell
– setDataCell:
– dataCell

Instance Methods

dataCell
– (id)dataCell

Returns the NSCell object used by the NSTableView to draw values for the NSTableColumn.

See also: – setDataCell:

headerCell
– (id)headerCell

Returns the NSTableHeaderCell object used to draw the header of the NSTableColumn. You can set the
column title by sending setStringValue: to this object.

See also: – setHeaderCell:

3

 Classes: NSTableColumn

initWithIdentifier:
– (id)initWithIdentifier: anObject

Initializes a newly created NSTableColumn with anObject as its identifier and with an NSTextFieldCell as
its data cell. Send setStringValue: to the header cell to set the column title. This is the designated initializer
for the NSTableColumn class. Returns self.

See the NSTableView class specification for information on identifiers.

See also: – setIdentifier:

identifier
– (id)identifier

Returns the object used by the data source to identify the attribute corresponding to the NSTableColumn.

See also: – setIdentifier:

isEditable
– (BOOL)isEditable

Returns YES if the user can edit cells associated with the NSTableColumn by double-clicking the column
in the NSTableView, NO otherwise. You can initiate editing programmatically regardless of this setting with
NSTableView’s editColumn:row:withEvent:select: method.

See also: – setEditable:

isResizable
– (BOOL)isResizable

Returns YES if the user is allowed to resize the NSTableColumn in its NSTableView, NO otherwise. You
can change the size programmatically regardless of this setting.

See also: – setWidth:, – setMinWidth: , – setMaxWidth: , – setResizable:

4

maxWidth
– (float)maxWidth

Returns the maximum width for the NSTableColumn. The NSTableColumn’s width can’t be made larger
than this either by the user or programmatically.

See also: – minWidth , – width , – setMaxWidth: , – sizeToFit (NSTableView),
– autoresizesAllColumnsToFit (NSTableView)

minWidth
– (float)minWidth

Returns the minimum width for the NSTableColumn. The NSTableColumn’s width can’t be made less than
this either by the user or programmatically.

See also: – maxWidth , – width , – setMinWidth: , – sizeToFit (NSTableView),
– autoresizesAllColumnsToFit (NSTableView)

setDataCell:
– (void)setDataCell:(NSCell *)aCell

Sets the NSCell used by the NSTableView to draw individual values for the NSTableColumn to aCell. You
can use this method to control the font, alignment, and other text attributes for an NSTableColumn. You can
also assign a cell to display things other than text—for example, an NSImageCell to display images.

See also: – dataCell

setEditable:
– (void)setEditable:(BOOL)flag

Controls whether the user can edit cells in the receiver by double-clicking them. If flag is YES a double click
initiates editing; if flag is NO it merely sends the double action to the NSTableView’s target. You can initiate
editing programmatically regardless of this setting with NSTableView’s editColumn:row:withEvent:
select: method.

See also: – isEditable

5

 Classes: NSTableColumn

setHeaderCell:
– (void)setHeaderCell:(NSCell *)aCell

Sets the NSCell used to draw the NSTableColumn’s header to aCell. aCell should never be nil .

See also: – headerCell

setIdentifier:
– (void)setIdentifier:(id)anObject

Sets the NSTableColumn’s identifier to anObject. This object is used by the data source to identify the
attribute corresponding to the NSTableColumn.

See also: – identifier

setMaxWidth:
– (void)setMaxWidth: (float)maxWidth

Sets the NSTableColumn’s maximum width to maxWidth, also adjusting the current width if it’s greater than
this value. The NSTableView can be made no wider than this, either by the user or programmatically.

See also: – setMinWidth: , – setWidth:, – maxWidth , – sizeToFit (NSTableView),
– autoresizesAllColumnsToFit (NSTableView)

setMinWidth:
– (void)setMinWidth: (float)minWidth

Sets the NSTableColumn’s minimum width to minWidth, also adjusting the current width if it’s less than
this value. The NSTableView can be made no less wide than this, either by the user or programmatically.

See also: – setMaxWidth: , – setWidth:, – minWidth , – sizeToFit (NSTableView),
– autoresizesAllColumnsToFit (NSTableView)

setResizable:
– (void)setResizable:(BOOL)flag

Sets whether the user can resize the receiver in its NSTableView. If flag is YES the user can resize the
receiver; if flag is NO the user can’t resize it (though you can set the size programmatically).

See also: – isResizable, – setWidth:, – setMinWidth: , – setMaxWidth:

6

setTableView:
– (void)setTableView:(NSTableView *)aTableView

Sets aTableView as the NSTableColumn’s NSTableView. You should never need to invoke this method; it’s
invoked automatically when you add an NSTableColumn to an NSTableView.

See also: – tableView, – addTableColumn: (NSTableView)

setWidth:
– (void)setWidth:(float)newWidth

Sets the NSTableColumn’s width to newWidth. If newWidth exceeds the minimum or maximum width, it’s
adjusted to the appropriate limiting value. Marks the NSTableView as needing display.

This method posts NSTableViewColumnDidResizeNotification on behalf of the NSTableColumn’s
NSTableView.

See also: – width , – setMinWidth: , – setMaxWidth: , – sizeToFit (NSTableView),
– autoresizesAllColumnsToFit (NSTableView)

sizeToFit
– (void)sizeToFit

Resizes the NSTableColumn to fit the width of its header cell. If the maximum width is less than the width
of the header, the maximum is increased to the header’s width. Similarly, if the minimum width is greater
than the width of the header, the minimum is reduced to the header’s width. Marks the NSTableView as
needing display if the width actually changes.

See also: – width , – minWidth , – maxWidth , – sizeToFit (NSTableView),
– autoresizesAllColumnsToFit (NSTableView)

tableView
– (NSTableView *)tableView

Returns the NSTableView that the NSTableColumn belongs to.

See also: – setTableView:

7

 Classes: NSTableColumn

width
– (float)width

Returns the width of the NSTableColumn.

See also: – width

1

 Classes: NSTableHeaderCell

NSTableHeaderCell

Inherits From: NSTextFieldCell : NSActionCell : NSCell : NSObject

Conforms To: NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSTableHeaderCell.h

Class Description

An NSTableHeaderCell is used by an NSTableHeaderView to draw its column headers. See the
NSTableView class specification for more information on how it’s used.

Subclasses of NSTableHeaderCell can override drawInteriorWithFrame:inView: , drawWithFrame:
inView: , and highlight:withFrame:inView: to change the way headers appear. See the NSCell class
specification, and the description below, for information on these methods.

Instance Methods

drawInteriorWithFrame:inView:
– (void)drawInteriorWithFrame: (NSRect)cellFrame inView: (NSView *)controlView

Draws the receiver’s interior, as described for this same method in the NSCell class specification.
NSTableHeaderCell’s implementation overrides NSTextFieldCell’s to draw the receiver’s image if it has
one, instead of its string value. If the receiver has no image, it simply draws its string value. This allows
column headers to be labeled with images rather than text.

To make an NSTableHeaderCell display an image, use NSCell’s setImage: method, which changes the
receiver’s cell type to NSImageCellType and stores the image provided. To restore it to displaying a text
label, supply a new title using setStringValue:, which removes the image and reverts the receiver’s cell type
to NSTextCellType.

1

 Classes: NSTableHeaderView

NSTableHeaderView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSTableHeaderView.h

Class Description

An NSTableHeaderView is used by an NSTableView to draw headers over its columns and to handle mouse
events in those headers. See the NSTableView class specification for more information.

Method Types

Setting the table view
– setTableView:
– tableView

Checking altered columns
– draggedColumn
– draggedDistance
– resizedColumn

Utility methods
– columnAtPoint:
– headerRectOfColumn:

Instance Methods

columnAtPoint:
– (int)columnAtPoint: (NSPoint)aPoint

Returns the index of the column whose header lies under aPoint in the NSTableHeaderView, or –1 if no
such column is found. aPoint is expressed in the NSTableHeaderView’s coordinate system.

2

draggedColumn
– (int)draggedColumn

If the user is dragging a column in the NSTableView, returns the index of that column. Otherwise returns –1.

See also: – draggedDistance

draggedDistance
– (float)draggedDistance

If the user is dragging a column in the NSTableView, returns the column’s horizontal distance from its
original position. Otherwise the return value is meaningless.

See also: – draggedColumn

headerRectOfColumn:
– (NSRect)headerRectOfColumn:(int)columnIndex

Returns the rectangle containing the header tile for the column at columnIndex. Raises an
NSInternalInconistencyException if columnIndex is out of bounds.

See also: – rectOfColumn: (NSTableView)

resizedColumn
– (int)resizedColumn

If the user is resizing a column in the NSTableView, returns the index of that column. Otherwise returns –1.

setTableView:
– (void)setTableView:(NSTableView *)aTableView

Sets aTableView as the NSTableColumn’s NSTableView. You should never need to invoke this method; it’s
invoked automatically when you set the header view for an NSTableView.

See also: – setHeaderView: (NSTableView)

3

 Classes: NSTableHeaderView

tableView
– (NSTableView *)tableView

Returns the NSTableView that the NSTableHeaderView belongs to.

1

 Classes: NSTableView

NSTableView

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSTableView.h

Class at a GlanceˇClass at a Glance

Purpose

An NSTableView object displays record-oriented data in a table, and allows the user to edit values and
resize and rearrange columns.

2

Principal Attributes

Creation

Commonly Used Methods

Class Description

An NSTableView displays data for a set of related records, with rows representing individual records and
columns representing the attributes of those records. A record is a set of values for a particular real-world
entity, such as an employee or a bank account. For example, in a table of employee records, each row
represents one employee, and the columns represent such attributes as the first and last name, address,
salary, and so on. An NSTableView is usually displayed in an NSScrollView, like this:

Displays record-oriented data Works with NSScrollView

Gets data from an object you provide Uses a delegate

Lazily retrieves only data that needs to be
displayed

Interface Builder

– initWithFrame: Designated initializer

– dataSource Returns the object providing the data that the NSTableView displays.

– tableColumns
Returns the NSTableColumn objects representing attributes for the
NSTableView.

– selectedColumn Returns the index of the selected column.

– selectedRow Returns the index of the selected column.

– numberOfRows Returns the number of rows in the NSTableView.

– reloadData
Informs the NSTableView that data has changed and needs to be
retrieved and displayed again.

3

 Classes: NSTableView

In this illustration, the NSTableView itself is only the portion displaying values. The header is drawn by two
auxiliary views: the column headers by the header view, and the blank square above the vertical scroller by
the corner view. The roles of these two auxiliary views are discussed in ““Auxiliary Components”.”

The user selects rows or columns in the table by clicking, and edits individual cells by double-clicking. The
user can also rearrange columns by dragging the column headers and can resize the columns by dragging
the divider between two column headers. You can configure the table’s parameters so that the user can select
more than one row or column (or have none selected), so that the user isn’t allowed to edit particular
columns or rearrange them, and so on. You can also specify an action message to be sent when the user
double-clicks something other than an editable cell.

Providing Data for Display

Unlike most NSControls, an NSTableView doesn’t store or cache the data it displays. Instead, it gets all of
its data from an object that you provide, called its data source. Your data source object can store records in
any way, but it must be able to identify them by integer index and must implement methods to provide the
following information: how many records the data source contains, and what the value is for a particular
record’s attribute. If you want to allow the user to edit the records, you must also provide a method for
changing the value of an attribute. These methods are described in the NSTableDataSource informal
protocol specification.

A record attribute is indicated by an object called its identifier, which is associated with a column in the
NSTableView, as described in ““Auxiliary Components”.” Because a column can be reordered, its index
can’t be used to identify a record attribute. Instead, the data source uses the column’s identifier as a key to
retrieve the value for a column’s attribute. The identifier can be any kind of object that uniquely identifies
attributes for the data source. For example, if you specify identifiers as NSStrings containing the names of

4

attributes, such as “Last Name”, “Address”, and so on, the data source object can use these strings as keys
into NSDictionary objects. See the NSTableDataSource informal protocol specification for an example of
how to use identifiers.

Auxiliary Components

As indicated earlier, an NSTableView is usually displayed in an NSScrollView along with its two auxiliary
views, the corner view and the header view. The corner view is by default a simple view that merely fills in
the corner above the vertical scroller. You can replace the default corner view with a custom view; for
example, a button that sorts based on the selected column. The header view is usually an instance of the
NSTableHeaderView class, which draws the column headers and handles column selection, rearranging,
and resizing. NSScrollView queries any document view it’s given for the cornerView and headerView
methods, and if the document view responds and returns objects for them, the NSScrollView automatically
tiles them along with its scrollers and the document view.

The NSTableView and the NSTableHeaderView both need access to information about columns (such as
their width), so this information is encapsulated in NSTableColumn objects. An NSTableColumn stores its
column’s width, and determines whether the user can resize the column or edit its cells. It also holds an
NSCell object that the NSTableHeaderView uses to draw the column header, and an NSCell object that the
NSTableView uses to draw values in the column (it reuses the same NSCell for each row in the column).
Finally, the NSTableColumn holds the attribute identifier mentioned in ““Providing Data for Display”.”

The cell for each column header is by default an instance of the NSTableHeaderCell class; it’s used by the
NSTableHeaderView to draw the column’s header. An NSTableHeaderCell contains the title displayed over
the column, as well as the font and color for that title. You use the API of its superclasses, NSTextFieldCell
and NSCell, to set a column’s title and to specify display attributes for that title (font, alignment, and so on).
In addition, you can use the NSCell method setImage: to make the NSTableHeaderCell display an image
instead of a title. To remove the image and restore the title, use the NSCell method setStringValue:.

The data cell for the column values is typically an instance of NSTextFieldCell, but can be an instance of
any NSCell subclass, such as NSImageCell. This object is used to draw all values in the column and
determines the font, alignment, text color, and other such display attributes for those values. You can
customize the presentation of various kinds of values by assigning an NSFormatter to the cell. For example,
to properly display NSDate values in a column, assign its data cell an NSDateFormatter.

Delegate Messages

NSTableView adds a handful of delegate messages to those defined by its superclass, NSControl. These
methods give the delegate control over the appearance of individual cells in the table, over changes in
selection, and over editing of cells. Delegate methods that request permission to alter the selection or edit
a value are invoked during user actions that affect the NSTableView, but are not invoked by programmatic
changes to the view. When making changes programmatically, you decide whether you want the delegate
to intervene and, if so, send the appropriate message (checking first that the delegate responds to that

5

 Classes: NSTableView

message). Because the delegate methods involve the actual data displayed by the NSTableView, the delegate
is typically the same object as the data source.

tableView:willDisplayCell:forTableColumn:row: informs the delegate that the NSTableView is about to
draw a particular cell. The delegate can modify the NSCell provided to alter the display attributes for that
cell; for example, making uneditable values display in italic or gray text (as in the figure above).

tableView:shouldSelectRow: and tableView:shouldSelectTableColumn: give the delegate control over
whether the user can select a particular row or column (though the user can still reorder columns). This is
useful for disabling particular rows or columns. For example, in a database client application, when another
user is editing a record you might want all other users not to be able to select it.

selectionShouldChangeInTableView: allows the delegate to deny a change in selection; for example, if
the user is editing a cell and enters an improper value, the delegate can prevent the user from selecting or
editing any other cells until a proper value has been entered into the original cell.

tableView:shouldEditTableColumn:row: asks the delegate whether it’s okay to edit a particular cell. The
delegate can approve or deny the request.

In addition to these methods, the delegate is also automatically registered to receive messages
corresponding to NSTableView notifications. These inform the delegate when the selection changes and
when a column is moved or resized:

Method Types

Creating an instance
– initWithFrame:

Setting the data source
– setDataSource:
– dataSource

Loading data
– reloadData

Delegate Message Notification

tableViewColumnDidMove: NSTableViewColumnDidMoveNotification

tableViewColumnDidResize: NSTableViewColumnDidResizeNotification

tableViewSelectionDidChange: NSTableViewSelectionDidChangeNotification

tableViewSelectionIsChanging: NSTableViewSelectionIsChangingNotification

6

Target-action behavior
– setDoubleAction:
– doubleAction
– clickedColumn
– clickedRow

Configuring behavior
– setAllowsColumnReordering:
– allowsColumnReordering
– setAllowsColumnResizing:
– allowsColumnResizing
– setAllowsMultipleSelection:
– allowsMultipleSelection
– setAllowsEmptySelection:
– allowsEmptySelection
– setAllowsColumnSelection:
– allowsColumnSelection

Setting display attributes
– setIntercellSpacing:
– intercellSpacing
– setRowHeight:
– rowHeight
– setBackgroundColor:
– backgroundColor

Manipulating columns
– addTableColumn:
– removeTableColumn:
– moveColumn:toColumn:
– tableColumns
– columnWithIdentifier:
– tableColumnWithIdentifier:

7

 Classes: NSTableView

Selecting columns and rows
– selectColumn:byExtendingSelection:
– selectRow:byExtendingSelection:
– deselectColumn:
– deselectRow:
– numberOfSelectedColumns
– numberOfSelectedRows
– selectedColumn
– selectedRow
– isColumnSelected:
– isRowSelected:
– selectedColumnEnumerator
– selectedRowEnumerator
– selectAll:
– deselectAll:

Getting the dimensions of the table
– numberOfColumns
– numberOfRows

Setting grid attributes
– setDrawsGrid:
– drawsGrid
– setGridColor:
– gridColor

Editing cells
– editColumn:row:withEvent:select:
– editedRow
– editedColumn

Setting auxiliary views
– setHeaderView:
– headerView
– setCornerView:
– cornerView

8

Layout support
– rectOfColumn:
– rectOfRow:
– columnsInRect:
– rowsInRect:
– columnAtPoint:
– rowAtPoint:
– frameOfCellAtColumn:row:
– setAutoresizesAllColumnsToFit:
– autoresizesAllColumnsToFit
– sizeLastColumnToFit
– sizeToFit
– noteNumberOfRowsChanged
– tile

Drawing
– drawRow:clipRect:
– drawGridInClipRect:
– highlightSelectionInClipRect:

Scrolling
– scrollRowToVisible:
– scrollColumnToVisible:

Text delegate methods
– textShouldBeginEditing:
– textDidBeginEditing:
– textDidChange:
– textShouldEndEditing:
– textDidEndEditing:

Persistence
– autosaveName
– autosaveTableColumns
– setAutosaveName:
– setAutosaveTableColumns:

Setting the delegate
– setDelegate:
– delegate

9

 Classes: NSTableView

Instance Methods

addTableColumn:
– (void)addTableColumn:(NSTableColumn *)aColumn

Appends aColumn to the receiver.

See also: – sizeLastColumnToFit, – sizeToFit, – removeTableColumn:

allowsColumnReordering
– (BOOL)allowsColumnReordering

Returns YES if the receiver allows the user to rearrange columns by dragging their headers, NO otherwise.
The default is YES. You can rearrange columns programmatically regardless of this setting.

See also: – moveColumn:toColumn:, – setAllowsColumnReordering:

allowsColumnResizing
– (BOOL)allowsColumnResizing

Returns YES if the receiver allows the user to resize columns by dragging between their headers, NO
otherwise. The default is YES. You can resize columns programmatically regardless of this setting.

See also: – setWidth: (NSTableColumn), – setAllowsColumnResizing:

allowsColumnSelection
– (BOOL)allowsColumnSelection

Returns YES if the receiver allows the user to select columns by clicking their headers, NO otherwise. The
default is YES. You can select columns programmatically regardless of this setting.

See also: – selectColumn:byExtendingSelection:, – allowsColumnReordering,
– setAllowsColumnSelection:

allowsEmptySelection
– (BOOL)allowsEmptySelection

Returns YES if the receiver allows the user to select zero columns or rows, NO otherwise. The default is
YES.

10

You can not set an empty selection programmatically if this setting is NO, unlike with the other settings that
affect selection behavior.

See also: – deselectAll:, – deselectColumn:, – deselectRow:, – setAllowsEmptySelection:

allowsMultipleSelection
– (BOOL)allowsMultipleSelection

Returns YES if the receiver allows the user to select more than one column or row at a time, NO otherwise.
The default is NO. You can select multiple columns or rows programmatically regardless of this setting.

See also: – selectColumn:byExtendingSelection:, – selectRow:byExtendingSelection:,
– setAllowsMultipleSelection:

autoresizesAllColumnsToFit
– (BOOL)autoresizesAllColumnsToFit

Returns YES if the receiver proportionally resizes its columns to fit when its superview’s frame changes,
NO if it only resizes the last column.

See also: – setAutoresizesAllColumnsToFit:, – sizeLastColumnToFit, – sizeToFit

autosaveName
– (NSString *)autosaveName

Returns the name under which table information is automatically saved. If no name has been set, this
method returns nil . The table information is saved separately for each user and for each application that user
uses.

Note that even when a table view has an autosave name, it may not be saving table information
automatically . To check whether table information is being saved automatically, use
autosaveTableColumns.

See also: – autosaveTableColumns, – setAutosaveName:

autosaveTableColumns
– (BOOL)autosaveTableColumns

Returns whether the order and width of this table view’s columns are automatically saved.

11

 Classes: NSTableView

The table information is saved separately for each user and for each application that user uses. Note that if
autosaveName returns nil , this setting is ignored and table information isn’t saved.

See also: – autosaveName, – setAutosaveTableColumns:, – setAutosaveName:

backgroundColor
– (NSColor *)backgroundColor

Returns the color used to draw the background of the receiver. The default background color is light gray.

See also: – setBackgroundColor:

clickedColumn
– (int)clickedColumn

Returns the index of the column the user clicked to trigger an action message. The return value of this
method is meaningful only in the target’s implementation of the action or double-action method.

See also: – clickedRow, – setAction: (NSControl), – setDoubleAction:

clickedRow
– (int)clickedRow

Returns the index of the row the user clicked to trigger an action message. The return value of this method
is meaningful only in the target’s implementation of the action or double-action method.

See also: – clickedColumn, – setAction: (NSControl), – setDoubleAction:

columnAtPoint:
– (int)columnAtPoint: (NSPoint)aPoint

Returns the index of the column that aPoint lies in, or –1 if aPoint lies outside the receiver’s bounds.

See also: – rowAtPoint:

columnsInRect:
– (NSRange)columnsInRect:(NSRect)aRect

Returns a range of indices for the receiver’s columns that lie wholly or partially within the horizontal
boundaries of aRect; the location of the range is the first such column’s index, and the length is the number

12

of columns that lie in aRect. Both the width and height of aRect must be nonzero values, or
columnsInRect: returns an NSRange whose length is zero.

See also: – rowsInRect:

columnWithIdentifier:
– (int)columnWithIdentifier: (id)anObject

Returns the index of the first column in the receiver whose identifier is equal to anObject, when compared
using isEqual:, or –1 if no columns are found with the specified identifier.

See also: – tableColumnWithIdentifier:

cornerView
– (NSView *)cornerView

Returns the NSView used to draw the area to the left of the column headers and above the vertical scroller
of the enclosing NSScrollView. This is by default a simple view that merely fills in its frame, but you can
replace it with a custom view using setCornerView:.

See also: – headerView

dataSource
– (id)dataSource

Returns the object that provides the data displayed by the receiver. See the class description and the
NSTableDataSource informal protocol specification for more information.

See also: – setDataSource:

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

13

 Classes: NSTableView

deselectAll:
– (void)deselectAll:(id)sender

Deselects all selected rows or columns if empty selection is allowed, otherwise does nothing. Posts
NSTableViewSelectionDidChangeNotification to the default notification center if the selection does in fact
change.

As a target-action method, deselectAll: checks with the delegate before changing the selection, using
selectionShouldChangeInTableView:.

See also: – allowsEmptySelection, – selectAll:, – selectColumn:byExtendingSelection:

deselectColumn:
– (void)deselectColumn:(int)columnIndex

Deselects the column at columnIndex if it’s selected, regardless of whether empty selection is allowed. If
the selection does in fact change, posts NSTableViewSelectionDidChangeNotification to the default
notification center.

If the indicated column was the last column selected by the user, the column nearest it effectively becomes
the last selected column. In case of a tie, priority is given to the column on the left.

This method doesn’t check with the delegate before changing the selection.

See also: – selectedColumn, – allowsEmptySelection, – selectRow:byExtendingSelection:

deselectRow:
– (void)deselectRow:(int)rowIndex

Deselects the row at rowIndex if it’s selected, regardless of whether empty selection is allowed. If the
selection does in fact change, posts NSTableViewSelectionDidChangeNotification to the default
notification center.

If the indicated row was the last row selected by the user, the row nearest it effectively becomes the last
selected row. In case of a tie, priority is given to the row above.

This method doesn’t check with the delegate before changing the selection.

See also: – selectedRow, – allowsEmptySelection

14

doubleAction
– (SEL)doubleAction

Returns the message sent to the target when the user double-clicks a column header or an uneditable cell.

See also: – action (NSControl), – target (NSControl), – setDoubleAction:

drawGridInClipRect:
– (void)drawGridInClipRect: (NSRect)aRect

Draws the grid lines within aRect, using the grid color set with setGridColor: . This method draws a grid
regardless of whether the receiver is set to draw one automatically.

Subclasses can override this method to draw grid lines other than the standard ones.

See also: – gridColor , – setIntercellSpacing:, – drawsGrid , – drawRow:clipRect:,
– highlightSelectionInClipRect:

drawRow:clipRect:
– (void)drawRow:(int)rowIndex clipRect:(NSRect)clipRect

Draws the cells for the row at rowIndex in the columns that intersect clipRect. Sends tableView:
willDisplayCell:forTableColum:row: to the delegate before drawing each cell.

Subclasses can override this method to customize their appearance.

See also: – columnsInRect:, – highlightSelectionInClipRect:, – drawGridInClipRect:

drawsGrid
– (BOOL)drawsGrid

Returns YES if the receiver draws grid lines around cells, NO if it doesn’t. The default is YES.

See also: – gridColor , – drawGridInClipRect: , – setDrawsGrid:

15

 Classes: NSTableView

editColumn:row:withEvent:select:
– (void)editColumn:(int)columnIndex

row: (int)rowIndex
withEvent: (NSEvent *)theEvent
select:(BOOL)flag

Edits the cell at columnIndex and rowIndex, selecting its entire contents if flag is YES. This method is
invoked automatically in response to user actions; you should rarely need to invoke it directly. theEvent is
usually the mouse event that triggered editing; it can be nil when starting an edit programmatically.

This method scrolls the receiver so that the cell is visible, sets up the field editor, and sends
selectWithFrame:inView:editor:delegate:start:length: and editWithFrame:inView:editor:delegate:
event: to the field editor’s NSCell object with the NSTableView as the text delegate.

See also: – editedColumn, – editedRow

editedColumn
– (int)editedColumn

If sent during editColumn:row:withEvent:select: returns the index of the column being edited; otherwise
returns –1.

editedRow
– (int)editedRow

If sent during editColumn:row:withEvent:select: returns the index of the row being edited; otherwise
returns –1.

frameOfCellAtColumn:row:
– (NSRect)frameOfCellAtColumn: (int)columnIndex row: (int)rowIndex

Returns a rectangle locating the cell that lies at the intersection of columnIndex and rowIndex. Returns
NSZeroRect if columnIndex or rowIndex are greater than the number of columns or rows in the
NSTableView.

The result of this method is used in a drawWithFrame:inView: message to the NSTableColumn’s data
cell.

See also: – rectOfColumn: , – rectOfRow:

16

gridColor
– (NSColor *)gridColor

Returns the color used to draw grid lines. The default color is gray.

See also: – drawsGrid , – drawGridInClipRect: , – setGridColor:

headerView
– (NSTableHeaderView *)headerView

Returns the NSTableHeaderView used to draw headers over columns, or nil if the NSTableView has no
header view. See the class description and the NSTableHeaderView class specification for more
information.

See also: – setHeaderView:

highlightSelectionInClipRect:
– (void)highlightSelectionInClipRect:(NSRect)clipRect

Highlights the region of the receiver in clipRect. This method is invoked before drawRow:clipRect:.

Subclasses can override this method to change the manner in which they highlight selections.

See also: – drawGridInClipRect:

initWithFrame:
– (id)initWithFrame: (NSRect)frameRect

Initializes a newly allocated NSTableView with frameRect as its frame rectangle. The new NSTableView
has a header view but has no columns; you can create NSTableColumn objects, set their titles and attributes,
and add them to the new NSTableView with addTableColumn:. You must also set the NSTableView up in
an NSScrollView with NSScrollView’s setDocView: method. This is the designated initializer for the
NSTableView class. Returns self.

It’s usually more convenient to create an NSTableView using Interface Builder. Interface Builder lets you
create an NSTableView already embedded in an NSScrollView, add and name the columns, and set up a
data source.

17

 Classes: NSTableView

intercellSpacing
– (NSSize)intercellSpacing

Returns the horizontal and vertical spacing between cells. The default spacing is (3.0, 2.0).

See also: – setDrawsGrid:, – setIntercellSpacing:

isColumnSelected:
– (BOOL)isColumnSelected:(int)columnIndex

Returns YES if the column at columnIndex is selected, NO otherwise.

See also: – selectedColumn, – selectedColumnEnumerator, – selectColumn:byExtendingSelection:

isRowSelected:
– (BOOL)isRowSelected:(int)rowIndex

Returns YES if the row at rowIndex is selected, NO otherwise.

See also: – selectedRow, – selectedRowEnumerator, – selectRow:byExtendingSelection:

moveColumn:toColumn:
– (void)moveColumn:(int)columnIndex toColumn:(int)newIndex

Moves the column and heading at columnIndex to newIndex.

This method posts NSTableViewColumnDidMoveNotification to the default notification center.

noteNumberOfRowsChanged
– (void)noteNumberOfRowsChanged

Informs the receiver that the number of records in its data source has changed, allowing the receiver to
update the scrollers in its NSScrollView without actually reloading data into the receiver. It’s useful for a
data source that continually receives data in the background over a period of time, in which case the
NSTableView can remain responsive to the user while the data is received.

See the NSTableDataSource informal protocol specification for information on the messages an
NSTableView sends to its data source.

See also: – reloadData, – numberOfRowsInTableView: (NSTableDataSource informal protocol)

18

numberOfColumns
– (int)numberOfColumns

Returns the number of columns in the receiver.

See also: – numberOfRows

numberOfRows
– (int)numberOfRows

Returns the number of rows in the receiver.

See also: – numberOfColumns, – numberOfRowsInTableView: (NSTableDataSource informal protocol)

numberOfSelectedColumns
– (int)numberOfSelectedColumns

Returns the number of selected columns.

See also: – numberOfSelectedRows, – selectedColumnEnumerator

numberOfSelectedRows
– (int)numberOfSelectedRows

Returns the number of selected rows.

See also: – numberOfSelectedColumns, – selectedRowEnumerator

rectOfColumn:
– (NSRect)rectOfColumn: (int)columnIndex

Returns the rectangle containing the column at columnIndex. Raises an NSInternalInconsistencyException
if columnIndex lies outside the range of valid column indices for the NSTableView.

See also: – frameOfCellAtColumn:row: , – rectOfRow:, – headerRectOfColumn:
 (NSTableHeaderView)

19

 Classes: NSTableView

rectOfRow:
– (NSRect)rectOfRow:(int)rowIndex

Returns the rectangle containing the row at rowIndex. Raises an NSInternalInconistencyException if
columnIndex lies outside the range of valid column indices for the receiver.

See also: – frameOfCellAtColumn:row: , – rectOfColumn:

reloadData
– (void)reloadData

Marks the receiver as needing redisplay, so that it will reload the data for visible cells and draw the new
values.

See also: – noteNumberOfRowsChanged

removeTableColumn:
– (void)removeTableColumn:(NSTableColumn *)aTableColumn

Deletes aTableColumn from the receiver.

See also: – sizeLastColumnToFit, – sizeToFit, – addTableColumn:

rowAtPoint:
– (int)rowAtPoint: (NSPoint)aPoint

Returns the index of the row that aPoint lies in, or –1 if aPoint lies outside the receiver’s bounds.

See also: – columnAtPoint:

rowHeight
– (float)rowHeight

Returns the height of each row in the receiver. The default row height is 16.0.

See also: – setRowHeight:

20

rowsInRect:
– (NSRange)rowsInRect:(NSRect)aRect

Returns a range of indices for the rows that lie wholly or partially within the vertical boundaries of aRect;
the location of the range is the first such row’s index, and the length is the number of rows that lie in aRect.
Both the width and height of aRect must be nonzero values, or columnsInRect: returns an NSRange whose
length is zero.

See also: – columnsInRect:

scrollColumnToVisible:
– (void)scrollColumnToVisible:(int)columnIndex

Scrolls the receiver and header view horizontally in an enclosing NSClipView so that the column specified
by columnIndex is visible.

See also: – scrollRowToVisible:, – scrollToPoint: (NSClipView)

scrollRowToVisible:
– (void)scrollRowToVisible:(int)rowIndex

Scrolls the receiver vertically in an enclosing NSClipView so that the row specified by rowIndex is visible.

See also: – scrollColumnToVisible:, – scrollToPoint: (NSClipView)

selectAll:
– (void)selectAll:(id)sender

If the table allows multiple selection, selects all rows or all columns, according to whether rows or columns
were most recently selected. If nothing has been recently selected, this method selects all rows. If this table
doesn’t allow multiple selection, this method does nothing.

If the selection does change, this method posts NSTableViewSelectionDidChangeNotification to the default
notification center.

As a target-action method, selectAll: checks with the delegate before changing the selection.

See also: – allowsMultipleSelection, – deselectAll:, – selectColumn:byExtendingSelection:

21

 Classes: NSTableView

selectColumn:byExtendingSelection:
– (void)selectColumn:(int)columnIndex byExtendingSelection:(BOOL)flag

Selects the column at columnIndex, regardless of whether column selection is allowed. If flag is NO,
deselects all before selecting the new column. Raises an NSInternalInconistencyException if multiple
selection isn’t allowed and flag is YES. Posts NSTableViewSelectionDidChangeNotification to the default
notification center if the selection does in fact change.

This method doesn’t check with the delegate before changing the selection. If the user is editing a cell,
editing is simply forced to end and the selection is changed.

See also: – allowsMultipleSelection, – allowsColumnSelection, – deselectColumn:, – selectedColumn,
– selectRow:byExtendingSelection:

selectedColumn
– (int)selectedColumn

Returns the index of the last column selected or added to the selection, or –1 if no column is selected.

See also: – selectedColumnEnumerator, – numberOfSelectedColumns, – selectColumn:
byExtendingSelection:, – deselectColumn:

selectedColumnEnumerator
– (NSEnumerator *)selectedColumnEnumerator

Returns an object that enumerates the indices of the selected columns as NSNumbers.

See also: – numberOfSelectedColumns, – selectedColumn, – selectedRowEnumerator

selectedRow
– (int)selectedRow

Returns the index of the last row selected or added to the selection, or –1 if no row is selected.

See also: – selectedRowEnumerator, – numberOfSelectedRows, – selectRow:byExtendingSelection:,
– deselectRow:

22

selectedRowEnumerator
– (NSEnumerator *)selectedRowEnumerator

Returns an object that enumerates the indices of the selected rows as NSNumbers.

See also: – numberOfSelectedRows, – selectedRow, – selectedColumnEnumerator

selectRow:byExtendingSelection:
– (void)selectRow:(int)rowIndex byExtendingSelection:(BOOL)flag

Selects the row at rowIndex. If flag is NO, deselects all before selecting the new row. Raises an
NSInternalInconistencyException if multiple selection isn’t allowed and flag is YES. Posts
NSTableViewSelectionDidChangeNotification to the default notification center if the selection does in fact
change.

This method doesn’t check with the delegate before changing the selection. If the user is editing a cell,
editing is simply forced to end and the selection is changed.

See also: – allowsMultipleSelection, – deselectRow:, – selectedRow, – selectColumn:
byExtendingSelection:

setAllowsColumnReordering:
– (void)setAllowsColumnReordering:(BOOL)flag

Controls whether the user can drag column headers to reorder columns. If flag is YES the user can reorder
columns; if flag is NO the user can’t. The default is YES. You can rearrange columns programmatically
regardless of this setting.

See also: – moveColumn:toColumn:, – allowsColumnReordering

setAllowsColumnResizing:
– (void)setAllowsColumnResizing:(BOOL)flag

Controls whether the user can resize columns by dragging between headers. If flag is YES the user can
resize columns; if flag is NO the user can’t. The default is YES. You can resize columns programmatically
regardless of this setting.

See also: – setWidth: (NSTableColumn), – allowsColumnResizing

23

 Classes: NSTableView

setAllowsColumnSelection:
– (void)setAllowsColumnSelection:(BOOL)flag

Controls whether the user can select an entire column by clicking its header. If flag is YES the user can
select columns; if flag is NO the user can’t. The default is YES. You can select columns programmatically
regardless of this setting.

See also: – selectColumn:byExtendingSelection:, – setAllowsColumnReordering:,
– allowsColumnSelection

setAllowsEmptySelection:
– (void)setAllowsEmptySelection:(BOOL)flag

Controls whether the receiver allows zero rows or columns to be selected. If flag is YES empty selection is
allowed; if flag is NO it isn’t. The default is YES.

You can not set an empty selection programmatically if empty selection is disallowed, unlike with the other
settings that affect selection behavior.

See also: – deselectAll:, – deselectColumn:, – deselectRow:, – allowsEmptySelection

setAllowsMultipleSelection:
– (void)setAllowsMultipleSelection:(BOOL)flag

Controls whether the user can select more than one row or column at a time. If flag is YES the user can
select multiple rows or columns; if flag is NO the user can’t. The default is NO. You can select multiple
columns or rows programmatically regardless of this setting.

See also: – selectColumn:byExtendingSelection:, – selectRow:byExtendingSelection:,
– allowsMultipleSelection

setAutoresizesAllColumnsToFit:
– (void)setAutoresizesAllColumnsToFit:(BOOL)flag

Controls whether the receiver proportionally resizes its columns to fit when its superview’s frame changes.
If flag is YES, the difference in width is distributed among the receiver’s table columns; if flag is NO, only
the last column is resized to fit.

See also: – autoresizesAllColumnsToFit, – sizeLastColumnToFit, – sizeToFit

24

setAutosaveName:
– (void)setAutosaveName:(NSString *)name

Sets the name under which table information is automatically saved to name. If name is different from the
current name, this method also reads in the saved information and sets the order and width of this table
view’s columns to match.

The table information is saved separately for each user and for each application that user uses. Note that
even though a table view has an autosave name, it may not be saving table information automatically . To
set whether table information is being saved automatically, use setAutosaveTableColumns:.

See also: autosaveName, setAutosaveTableColumns:

setAutosaveTableColumns:
– (void)setAutosaveTableColumns:(BOOL)flag

Sets whether the order and width of this table view’s columns are automatically saved. If flag is different
from the current value, this method also reads in the saved information and sets the table options to match.

The table information is saved separately for each user and for each application that user uses. Note that if
autosaveName returns nil , this setting is ignored and table information isn’t saved.

See also: autosaveTableColumns, setAutosaveName:

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the receiver’s background color to aColor.

See also: – setNeedsDisplay: (NSView), – backgroundColor

setCornerView:
– (void)setCornerView:(NSView *)aView

Sets the receiver’s corner view to aView. The default corner view merely draws a bezeled rectangle using a
blank NSTableHeaderCell, but you can replace it with a custom view that displays an image or with a
control that can handle mouse events, such as a select-all button. Your custom corner view should be as wide
as a vertical NSScroller and as tall as the receiver’s header view.

See also: – setHeaderView:, – cornerView

25

 Classes: NSTableView

setDataSource:
– (void)setDataSource:(id)anObject

Sets the receiver’s data source to anObject and invokes tile. anObject should implement the appropriate
methods of the NSTableDataSource informal protocol.

This method raises an NSInternalInconistencyException if anObject doesn’t respond to either
numberOfRowsInTableView: or tableView:objectValueForTableColumn:row:.

See also: – dataSource

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject.

See also: – delegate

setDoubleAction:
– (void)setDoubleAction:(SEL)aSelector

Sets to aSelector the message sent to the target when the user double-clicks an uneditable cell or a column
header. If the double-clicked cell is editable, this message isn’t sent and the cell is edited instead. You can
use this method to implement features such as sorting records according to the column that was
double-clicked.

See also: – setAction: (NSControl), – setTarget: (NSControl), – doubleAction

setDrawsGrid:
– (void)setDrawsGrid:(BOOL)flag

Controls whether the receiver draws grid lines around cells. If flag is YES it does; if flag is NO it doesn’t.
The default is YES.

See also: – setGridColor: , – drawGridInClipRect: , – drawsGrid

26

setGridColor:
– (void)setGridColor: (NSColor *)aColor

Sets the color used to draw grid lines to aColor. The default color is gray.

See also: – setDrawsGrid:, – drawGridInClipRect: , – gridColor

setHeaderView:
– (void)setHeaderView:(NSTableHeaderView *)aHeaderView

Sets the receiver’s header view to aHeaderView.

See also: – setCornerView:, – headerView

setIntercellSpacing:
– (void)setIntercellSpacing:(NSSize)aSize

Sets the width and height between cells to those in aSize and redisplays the receiver. The default intercell
spacing is (3.0, 2.0).

See also: – intercellSpacing

setRowHeight:
– (void)setRowHeight:(float)rowHeight

Sets the height for rows to rowHeight and invokes tile.

See also: – rowHeight

sizeLastColumnToFit
– (void)sizeLastColumnToFit

Resizes the last column if there’s room so that the receiver fits exactly within its enclosing NSClipView.

See also: – setAutoresizesAllColumnsToFit:, – minWidth (NSTableColumn),
– maxWidth (NSTableColumn)

27

 Classes: NSTableView

sizeToFit
– (void)sizeToFit

Resizes columns if there’s room so that all fit in the enclosing NSClipView and so all but the last are just
wide enough to display their titles and values. This method first sets all columns to their minimum widths;
then divides among the columns the space remaining to fill the width of the NSScrollView.

See also: – setAutoresizesAllColumnsToFit:, – minWidth (NSTableColumn),
– maxWidth (NSTableColumn)

tableColumns
– (NSArray *)tableColumns

Returns the NSTableColumns in the receiver.

tableColumnWithIdentifier:
– (NSTableColumn *)tableColumnWithIdentifier: (id)anObject

Returns the NSTableColumn object for the first column whose identifier is equal to anObject, as compared
using isEqual:, or nil if no columns are found with the specified identifier.

See also: – columnWithIdentifier:

textDidBeginEditing:
– (void)textDidBeginEditing: (NSNotification *)aNotification

Posts an NSControlTextDidBeginEditingNotification to the default notification center, as described in the
NSControl class specification. aNotification is the NSNotification posted by the field editor; see the NSText
class specifications for more information on this text delegate method.

See also: – textShouldBeginEditing:

textDidChange:
– (void)textDidChange:(NSNotification *)aNotification

Sends textDidChange: to the edited cell, and posts an NSControlTextDidChangeNotification to the default
notification center, as described in the NSControl class specification. aNotification is the NSNotification
posted by the field editor; see the NSText class specifications for more information on this text delegate
method.

28

textDidEndEditing:
– (void)textDidEndEditing: (NSNotification *)aNotification

Updates the data source based on the newly-edited value and selects another cell for editing if possible
according to the character that ended editing (Return, Tab, Backtab). aNotification is the NSNotification
posted by the field editor; see the NSText class specifications for more information on this text delegate
method.

See also: – textShouldEndEditing:

textShouldBeginEditing:
– (BOOL)textShouldBeginEditing:(NSNotification *)aNotification

Queries the delegate using control:textShouldBeginEditing:, returning the delegate’s response, or simply
returning YES to allow editing if the delegate doesn’t respond to that method. aNotification is the
NSNotification posted by the field editor; see the NSText class specifications for more information on this
text delegate method.

See also: – textDidBeginEditing:

textShouldEndEditing:
– (BOOL)textShouldEndEditing:(NSNotification *)aNotification

Validates the cell being edited and queries the delegate using control:textShouldEndEditing: , returning
the delegate’s response if it responds to that method. If it doesn’t, it returns YES if the cell’s new value is
valid and NO if it isn’t. aNotification is the NSNotification posted by the field editor; see the NSText class
specifications for more information on this text delegate method.

See also: – textDidEndEditing:

tile
– (void)tile

Properly sizes the receiver and its header view, and marks it as needing display. Also resets cursor rectangles
for the header view and line scroll amounts for the NSScrollView.

See also: – setNeedsDisplay: (NSView)

29

 Classes: NSTableView

Methods Implemented By the Delegate

selectionShouldChangeInTableView:
– (BOOL)selectionShouldChangeInTableView:(NSTableView *)aTableView

Returns YES to permit aTableView to change its selection (typically a row being edited), NO to deny
permission. The user can select and edit different cells within the same row, but can’t select another row
unless the delegate approves. The delegate can implement this method for complex validation of edited
rows based on the values of any of their cells.

tableView:shouldEditTableColumn:row:
– (BOOL)tableView:(NSTableView *)aTableView

shouldEditTableColumn:(NSTableColumn *)aTableColumn
row: (int)rowIndex

Returns YES to permit aTableView to edit the cell at rowIndex in aTableColumn, NO to deny permission.
The delegate can implement this method to disallow editing of specific cells.

tableView:shouldSelectRow:
– (BOOL)tableView:(NSTableView *)aTableView

shouldSelectRow:(int)rowIndex

Returns YES to permit aTableView to select the row at rowIndex, NO to deny permission. The delegate can
implement this method to disallow selection of particular rows.

tableView:shouldSelectTableColumn:
– (BOOL)tableView:(NSTableView *)aTableView

shouldSelectTableColumn:(NSTableColumn *)aTableColumn

Returns YES to permit aTableView to select aTableColumn, NO to deny permission. The delegate can
implement this method to disallow selection of particular columns.

30

tableView:willDisplayCell:forTableColumn:row:
– (void)tableView:(NSTableView *)aTableView

willDisplayCell: (id)aCell
forTableColumn: (NSTableColumn *)aTableColumn
row: (int)rowIndex

Informs the delegate that aTableView will display the cell at rowIndex in aTableColumn using aCell. The
delegate can modify the display attributes of aCell to alter the appearance of the cell. Since aCell is reused
for every row in aTableColumn, the delegate must set the display attributes both when drawing special cells
and when drawing normal cells.

tableViewColumnDidMove:
– (void)tableViewColumnDidMove:(NSNotification *)aNotification

Informs the delegate that a column was moved by user action in the NSTableView. aNotification is an
NSTableViewColumnDidMoveNotification.

tableViewColumnDidResize:
– (void)tableViewColumnDidResize:(NSNotification *)aNotification

Informs the delegate that a column was resized in the NSTableView. aNotification is an
NSTableViewColumnDidResizeNotification.

tableViewSelectionDidChange:
– (void)tableViewSelectionDidChange:(NSNotification *)aNotification

Informs the delegate that the NSTableView’s selection has changed. aNotification is an
NSTableViewSelectionDidChangeNotification.

tableViewSelectionIsChanging:
– (void)tableViewSelectionIsChanging:(NSNotification *)aNotification

Informs the delegate that the NSTableView’s selection is in the process of changing (typically because the
user is dragging the mouse across a number of rows). aNotification is an
NSTableViewSelectionIsChangingNotification.

31

 Classes: NSTableView

Notifications

NSTableViewColumnDidMoveNotification

Posted whenever a column is moved by user action in the NSTableView. The notification object is the
NSTableView in which a column moved. The userInfo dictionary contains these keys and values:

See also: – moveColumn:toColumn:

NSTableViewColumnDidResizeNotification

Posted whenever a column is resized in the NSTableView. The notification object is the NSTableView in
which a column was resized. The userInfo dictionary contains these keys and values:

NSTableViewSelectionDidChangeNotification

Posted after the NSTableView’s selection changes. The notification object is the NSTableView whose
selection changed. The userInfo dictionary is nil .

NSTableViewSelectionIsChangingNotification

Posted as the NSTableView’s selection changes (while the mouse is still down). The notification object is
the NSTableView whose selection is changing. The userInfo dictionary is nil .

Key Value

NSOldColumn The column’s original index (an NSNumber)

NSNewColumn The column’s present index (an NSNumber)

Key Value

NSOldWidth The column’s original width (an NSNumber)

1

 Classes: NSTabView

NSTabView

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSTabView.h

Class Description

Note: The NSTabView class and its supporting class NSTabViewItem are under development. If you want to
use these classes, you will have to instantiate them programmatically because Interface Builder does not
yet include support for them.

An NSTabView provides a convenient mechanism for presenting information in a multi-page format. The
view is distinguished by a row of tabs that give the visual appearance of folder tabs, as shown in the figure
below. The user selects the desired page by clicking the appropriate tab or using the arrow keys to move
between pages. Each page displays a view hierarchy provided by your application.

An NSTabView can support a multi-page format without visible tabs. For example, instead of tabs, you
might use a pop-up menu or radio buttons, similar to those shown in the illustration, to let the user select
from several view pages. When a tab view is drawn with tabs (the default), the border must be bezeled.
When a tab view is drawn without tabs, the view can have a bezeled border, a lined border, or no border.

2

An NSTabView keeps a zero-based array of NSTabViewItems, one per tab in the view. A tab view item
provides access to a tab’s color, state, label text, initial first responder, and associated view.Your application
can supply each tab view item with an optional identifier object to customize tab handling. For more
information, see the documentation for NSTabViewItem.Tab label text defaults to the default font and font
size used for standard interface items, such as button labels and menu items. When you invoke setFont: to
change the tab view’s font, tab height and width is adjusted automatically to accommodate a new font size.
If the view allows truncating, tab labels are truncated as needed.

Delegate Messages

NSTabView defines delegate messages to allow the delegate to control or react to changes in selection and
changes in the number of tabs:

tabViewDidChangeNumberOfTabViewItems: informs the delegate that the number of tab view
items in tabView has changed.

tabView:didSelectTabViewItem: informs the delegate that the specified tab view item has been
selected.

tabView:shouldSelectTabViewItem: informs the delegate that the specified tab view item is about
to be selected. The delegate can return NO to prevent the selection.

tabView:willSelectTabViewItem: informs the delegate that the specified tab view item will be
selected. The delegate can perform tasks related to the selection, but cannot prevent it.

Method Types

Adding and removing tabs
– addTabViewItem:
– insertTabViewItem: atIndex:
– removeTabViewItem:

Accessing tabs
– indexOfTabViewItem:
– indexOfTabViewItemWithIdentifier:
– numberOfTabViewItems
– tabViewItemAtIndex:
– tabViewItems

3

 Classes: NSTabView

Selecting a tab
– selectFirstTabViewItem:
– selectLastTabViewItem:
– selectNextTabViewItem:
– selectPreviousTabViewItem:
– selectedTabViewItem
– selectTabViewItemAtIndex:
– takeSelectedTabViewItemFromSender:

Modifying the font
– font
– setFont:

Modifying the tab type
– setTabViewType:
– tabViewType

Manipulating the background
– drawsBackground
– setDrawsBackground:

Determining the size
– minimumSize
– contentRect

Truncating tab labels
– allowsTruncatedLabels
– setAllowsTruncatedLabels:

Assigning a delegate
– setDelegate:
– delegate

Event handling
– tabViewItemAtPoint:

4

Instance Methods

addTabViewItem:
– (void)addTabViewItem:(NSTabViewItem *)tabViewItem

Adds the tab item specified by tabViewItem. The item is added at the end of the array of tab items, so that
the new tab appears on the right side of the view. If the delegate supports it, invokes the delegate’s
tabViewDidChangeNumberOfTabViewItems: method.

See also: – insertTabViewItem:atIndex: , – numberOfTabViewItems, – removeTabViewItem:,
– tabViewItemAtIndex: , – tabViewItems

allowsTruncatedLabels
– (BOOL)allowsTruncatedLabels

Returns YES if the tab view allows truncating for labels that don’t fit on a tab. The default is NO. When
truncating is allowed, the tab view inserts an ellipsis, if necessary, to fit a label in the tab.

See also: – setAllowsTruncatedLabels:

contentRect
– (NSRect)contentRect

Returns the rectangle describing the content area of a tab view. This area does not include the space required
for the tab view’s tabs or borders (if any).

delegate
– (id)delegate

Returns the tab view’s delegate.

See also: – setDelegate:

5

 Classes: NSTabView

drawsBackground
– (BOOL) drawsBackground

Returns YES if the tab view draws a background color when the tab view type is NSNoTabsNoBorder. If
the tab view uses bezeled edges or a line border, the appropriate background color for that border is used.

See also: – setTabViewType:, – setDrawsBackground:

font
– (NSFont *)font

Returns the font for tab label text.

See also: – setFont:

indexOfTabViewItem:
– (int)indexOfTabViewItem:(NSTabViewItem *)tabViewItem

Returns the index of the item that matches tabViewItem, or NSNotFound if the item is not found. A tab view
keeps an array containing one tab view item for each tab in the view—this is the array that is searched. The
returned index is base 0.

See also: – indexOfTabViewItemWithIdentifier: , – insertTabViewItem:atIndex: ,
– numberOfTabViewItems, – tabViewItemAtIndex:

indexOfTabViewItemWithIdentifier:
– (int)indexOfTabViewItemWithIdentifier :(id)identifier

Returns the index of the item that matches identifier, or NSNotFound if the item is not found. A tab view
keeps an array containing one tab view item for each tab in the view—this is the array that is searched. The
returned index is base 0.

See also: – indexOfTabViewItem: , – insertTabViewItem:atIndex: , – numberOfTabViewItems,
– tabViewItemAtIndex:

6

insertTabViewItem:atIndex:
– (void)insertTabViewItem: (NSTabViewItem *)tabViewItem

atIndex:(int)index

Inserts tabViewItem into the tab view’s array of tab view items at index. The index parameter is base 0. If
there is a delegate and the delegate supports it, sends the delegate the
tabViewDidChangeNumberOfTabViewItems: message.

See also: – indexOfTabViewItem: , – indexOfTabViewItemWithIdentifier: ,
– numberOfTabViewItems, – tabViewItemAtIndex:

minimumSize
– (NSSize)minimumSize

Returns the minimum size necessary for the view to display tabs in a useful way. You can use the value
returned by this method to limit how much a user can resize a tab view.

See also: – setTabViewType:

numberOfTabViewItems
– (int)numberOfTabViewItems

Returns the number of items in the tab view’s array of tab view items. Because there is one item in the array
for each tab in the view, this is equivalent to the number of tabs in the view.

See also: – indexOfTabViewItem: , – tabViewItems

removeTabViewItem:
– (void)removeTabViewItem:(NSTabViewItem *)tabViewItem

Removes the item specified by tabViewItem from the tab view’s array of tab view items. If there is a delegate
and the delegate supports it, sends the delegate the tabViewDidChangeNumberOfTabViewItems:
message.

See also: – addTabViewItem:, – insertTabViewItem:atIndex: , – tabViewItems

7

 Classes: NSTabView

selectFirstTabViewItem:
– (void)selectFirstTabViewItem:(id)sender

Selects the first tab view item. The sender parameter is ignored.

See also: – selectTabViewItem:

selectLastTabViewItem:
– (void)selectLastTabViewItem:(id)sender

Selects the last tab view item. The sender parameter is ignored.

See also: – selectTabViewItem:

selectNextTabViewItem:
– (void)selectNextTabViewItem:(id)sender

Selects the next tab view item in the sequence. If the currently visible item is the last item in the sequence,
this method does nothing and the last page remains displayed. The sender parameter is ignored.

See also: – selectTabViewItem:

selectPreviousTabViewItem:
– (void)selectPreviousTabViewItem:(id)sender

Selects the previous tab view item in the sequence. If the currently visible item is the first item in the
sequence, this method does nothing and the first page remains displayed. The sender parameter is ignored.

See also: – selectTabViewItem:

selectedTabViewItem
– (NSTabViewItem *)selectedTabViewItem

Returns the tab view item for the currently-selected tab, or nil if no item is selected. If there is a delegate
and the delegate supports it, sends the delegate the shouldSelectTabViewItem: message.

See also: – selectTabViewItemAtIndex:

8

selectTabViewItem:
– (void)selectTabViewItem:(NSTabViewItem *)tabViewItem

Selects the tab view item specified by tabViewItem. If there is a delegate and the delegate supports it, sends
the delegate the shouldSelectTabViewItem: message.

See also: – insertTabViewItem:atIndex: , – selectedTabViewItem

selectTabViewItemAtIndex:
– (void)selectTabViewItemAtIndex:(int)index

Selects the tab view item specified by index. The index parameter is base 0.

See also: – insertTabViewItem:atIndex: , – selectedTabViewItem

selectTabViewItemWithIdentifier
– (void)selectTabViewItemWithIdentifier: (id)identifier;

Selects the tab view item specified by identifier.

See also: – setIdentifier: (NSTabViewItem), – identifier (NSTabViewItem),
– selectTabViewItemAtIndex:, – selectedTabViewItem

setAllowsTruncatedLabels :

– (void)setAllowsTruncatedLabels:(BOOL)allowTruncatedLabels

Returns YES if the tab view allows truncating for names that don’t fit on a tab.

See also: – allowsTruncatedLabels

setDelegate:
– (void)setDelegate:(id)anObject

Sets the tab view’s delegate to anObject.

See also: – delegate

9

 Classes: NSTabView

setDrawsBackground:
– (void)setDrawsBackground:(BOOL)flag

Sets whether a background is drawn when the view type is NSNoTabsNoBorder. If the tab view has a
bezeled border or a line border the appropriate background for that border is used.

See also: – setTabViewType:, – drawsBackground

setFont:
– (void)setFont:(NSFont *)font

Sets the font for tab label text to font. Tab height is adjusted automatically to accommodate a new font size.
If the view allows truncating, tab labels are truncated as needed.

See also: – allowsTruncatedLabels, – font, – setAllowsTruncatedLabels:

setTabViewType:
– (void)setTabViewType:(NSTabViewType)tabViewType

Sets the tab type to tabViewType. The available types are:

See also: – tabViewType

tabViewItemAtIndex:
– (NSTabViewItem *)tabViewItemAtIndex: (int)index

Returns the tab view item at index in the tab view’s array of items. The index parameter is base 0.

See also: – indexOfTabViewItem: , – insertTabViewItem:atIndex: , – tabViewItems

Tab Type Description

NSTopTabsBezelBorder The view includes tabs and has a bezeled border (the default)

NSNoTabsBezelBorder The view does not include tabs and has a bezeled border

NSNoTabsLineBorder The view does not include tabs and has a lined border

NSNoTabsNoBorder The view does not include tabs and has no border

10

tabViewItemAtPoint:
– (NSTabViewItem *)tabViewItemAtPoint: (NSPoint)point

Returns the tab view item identified by point. You can use this method to find a tab view item based on a
user’s mouse click.

tabViewItems
– (NSArray *)tabViewItems

Returns the tab view’s array of tab view items. A tab view keeps an array containing one tab view item for
each tab in the view. The array is base 0.

See also: – numberOfTabViewItems, – tabViewItemAtIndex:

tabViewType
– (NSTabViewType)tabViewType

Returns the tab type for the tab view. The available types are described with the setTabViewType: method.

takeSelectedTabViewItemFromSender:
– (void)takeSelectedTabViewItemFromSender:(id)sender

If sender responds to the indexOfSelectedItem method, this method invokes that method and selects the
tab view item at the specified index. If sender does not respond to indexOfSelectedItem but is an instance
of NSMatrix, this method uses the index of the matrix’ currently selected cell.

The location of the selected cell is a zero-based number, obtained by counting the number of cells up to and
including the selected cell. Cells are counted from left to right and from top to bottom. For example in a 5
by 5 matrix, if the selected cell is three rows down in column five (location [2,4] in the matrix), the
corresponding index would be 14.

Methods Implemented By the Delegate

tabViewDidChangeNumberOfTabViewItems:
– (void)tabViewDidChangeNumberOfTabViewItems:(NSTabView *)tabView

Informs the delegate that the number of tab view items in tabView has changed.

See also: – numberOfTabViewItems (NSTabView class)

11

 Classes: NSTabView

tabView:didSelectTabViewItem:
– (void)tabView:(NSTabView *)tabView

didSelectTabViewItem:(NSTabViewItem *)tabViewItem

Informs the delegate that tabView has selected tabViewItem.

tabView:shouldSelectTabViewItem:
– ((BOOL)tabView:(NSTabView *)tabView

shouldSelectTabViewItem:(NSTabViewItem *)tabViewItem

Invoked just before tabViewItem in tabView is selected. The delegate can return NO to prevent selection of
specific tabs.

tabView:willSelectTabViewItem:
– (void)tabView:(NSTabView *)tabView

willSelectTabViewItem:(NSTabViewItem *)tabViewItem

Informs the delegate that tabView is about to select tabViewItem.

1

 Classes: NSTabViewItem

NSTabViewItem

Inherits From: NSObject

Conforms To: NSCoding
NSObject (NSObject)

Declared In: AppKit/NSTabViewItem.h

Class Description

Note: The NSTabView class and its supporting class NSTabViewItem are under development. If you want to
use these classes, you will have to instantiate them programmatically because Interface Builder does not
yet include support for them.An NSTabView provides a convenient mechanism for presenting information
in a multi-page format. A tab view is usually distinguished by a row of tabs that give the visual appearance
of folder tabs. When the user clicks on a tab, the tab view displays a view page provided by your application.

A tab view keeps a zero-based array of NSTabViewItems, one for each tab in the view. A tab view item
provides access to the tab’s color, state, label text, initial first responder, and associated view. Your
application can supply each tab view item with an optional identifier object to customize tab handling.

Method Types

Creating a tab view item
– initWithIdentifier:

Working with labels
– drawLabel:inRect:
– label
– setLabel:
– sizeOfLabel:

Checking the tab display state
– tabState

Assigning an identifier object
– identifier
– setIdentifier:

2

Setting the color
– color
– setColor:

Assigning a view
– view
– setView:

Setting the initial first responder
– initialFirstResponder
– setInitialFirstResponder:

Accessing the parent tab view
– tabView

Instance Methods

color
– (NSColor *)color

Returns the color for the tab view item. By default, the color is set to the system color used for the flat
surfaces of a control.

See also: – setColor:

drawLabel:inRect:
– (void)drawLabel: (BOOL)shouldTruncateLabel inRect:(NSRect)tabRect

If shouldTruncateLabel is NO, draws the full label in the rect specified by tabRect. If shouldTruncateLabel
is YES, draws the truncated label. You can override this method to perform customized label drawing. For
example, you might want to add an icon to each tab in the view.

See also: – sizeOfLabel:

identifier
– (id)identifier

Returns the tab view item’s optional identifier object. To customize how your application works with tabs,
you can initialize each tab view item with an identifier object.

See also: – initWithIdentifier :, – setIdentifier:

3

 Classes: NSTabViewItem

initialFirstResponder
– (id)initialFirstResponder

Returns the id for the initial first responder for the view associated with the tab view item.

See also: – setInitialFirstResponder:

initWithIdentifier:
– (id)initWithIdentifier: (id)identifier

Performs default initialization for the tab view item. Sets the item’s identifier object to identifier, if it is not
nil . Use this method when creating tab view items programmatically.

See also: – identifier, – setIdentifier:

label
– (NSString *)label

Returns the label text for the tab view item.

See also: – setLabel:

setColor:
– (void)setColor:(NSColor *)color

Sets the color for the tab view item to color.

See also: – color

setIdentifier:
– (void)setIdentifier:(id)identifier

Sets the tab view item’s optional identifier object to identifier. To customize how your application works
with tabs, you can specify an identifier object for each tab view item.

See also: – identifier, – initWithIdentifier:

4

setInitialFirstResponder:
– (void)setInitialFirstResponder:(NSView *)view

Sets the initial first responder for the view associated with the tab view item (the view that is displayed when
a user clicks on the tab) to view.

See also: – initialFirstResponder

setLabel:
– (void)setLabel:(NSString *)label

Sets the label text for the tab view item according to the passed string label.

See also: – label

setView:
– (void)setView:(NSView *)view

Sets the view associated with the tab view item to view. This is the view that is displayed when a user clicks
on the tab. When you set a new view, the old view is released.

See also: – view

sizeOfLabel:
– (NSSize)sizeOfLabel:(BOOL)shouldTruncateLabel

If shouldTruncateLabel is NO, returns the size of the tab view item’s full label. If shouldTruncateLabel is
YES, returns the truncated size. If your application does anything to change the size of tab labels, such as
overriding the drawLabel:inRect: method to add an icon to each tab, you should override sizeOfLabel:
too so that the NSTabView knows the correct size for the tab label.

See also: – drawLabel:inRect: , – setFont: (NSTabView)

tabState
– (NSTabState)tabState

Returns the current display state of the tab associated with this tab view item. The possible values are
NSSelectedTab, NSBackgroundTab, or NSPressedTab. Your application does not directly set the tab state.

5

 Classes: NSTabViewItem

tabView
– (NSTabView *)tabView

Returns the parent tab view for the tab view item. Note that this is the tab view itself, not the view that is
displayed when a user clicks on the tab.

A tab view item normally learns about its parent tab view when it is inserted into the view’s array of items.
The NSTabView methods addTabViewItem: and insertTabViewItem:atIndex: set the tab view for the
added or inserted item.

See also: – setView:, – view

view
– (id)view

Returns the id for the view associated with the tab view item. This is the view that is displayed when a user
clicks on the tab.

See also: – setView:

1

 Classes: NSText

NSText

Inherits From: NSView : NSResponder : NSObject

Conforms To: NSChangeSpelling
NSIgnoreMisspelledWords
NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSText.h

2

Class at a GlanceˇClass at a Glance

Purpose
NSText declares the most general programmatic interface for objects that manage text. You usually use instances
of its subclass, NSTextView.

Principal Attributes

Creation
See the class description.

Commonly Used Methods

Class Description

The NSText class declares the most general programmatic interface to objects that manage text. NSText is
part of the OpenStep specification. Rhapsody offers a subclass of NSText, NSTextView, that extends the
interface declared by NSText and provides much more sophisticated functionality than that declared in
NSText.

NSText’s initWithFrame: method creates an instance of a concrete subclass, such as NSTextView,
depending on the platform. Instances of any of these classes are generically called text objects.

Supports rich text and graphics Provides delegation and notification

Works with the Font Panel and menu Works with the pasteboard

Works with the Services facility Works with the spell-checking service

– readRTFDFromFile: Reads an .rtf or .rtfd file.

– writeRTFDToFile:atomically: Writes the receiver’s text to a file.

– string Returns the receiver’s text, without attributes.

– RTFFromRange: Returns the receiver’s text with attributes.

– RTFDFromRange: Returns the receiver’s text with attributes and attachments.

3

 Classes: NSText

Text objects are used by the Application Kit wherever text appears in interface objects: A text object draws
the title of a window, the commands in a menu, the title of a button, and the items in a browser. Your
application can also create text objects for its own purposes.

The text classes are unlike most other classes in the Application Kit in the richness and complexity of their
interface. One of their design goals is to provide a comprehensive set of text-handling features so that you’ll
rarely need to create a subclass. Among other things, a text object can:

• Control whether the user can select or edit text.

• Control the font and layout characteristics of its text by working with the Font Panel and menu.

• Let the user control the format of paragraphs by manipulating a ruler.

• Control the color of its text and background.

• Wrap text on a word or character basis.

• Display graphic images within its text.

• Write text to or read text from files in the form of RTFD—Rich Text Format files that contain TIFF or
EPS images, or attached files.

• Let another object, the delegate, dynamically control its properties.

• Let the user copy and paste text within and between applications.

• Let the user copy and paste font and format information between NSText objects.

• Let the user check the spelling of words in its text.

Graphical user-interface building tools (such as Interface Builder) may give you access to text objects in
several different configurations, such as those found in the NSTextField, NSForm, and NSScrollView
objects. These classes configure a text object for their own specific purposes. Additionally, all
NSTextFields, NSForms, NSButtons within the same window—in short, all objects that access a text object
through associated cells—share the same text object, reducing the memory demands of an application.
Thus, it’s generally best to use one of these classes whenever it meets your needs, rather than create text
objects yourself. If one of these classes doesn’t provide enough flexibility for your purposes, you can create
text objects programmatically.

Text objects typically work closely with various other objects. Some of these—such as the delegate or an
embedded graphic object—require a degree of programming on your part. Others—such as the Font Panel,
spell checker, or ruler—take no effort other than deciding whether the service should be enabled or
disabled. Several of the following sections discuss these interrelationships.

Plain and Rich Text Objects

Text objects are differentiated into two groups: those that allow only one set of text attributes for all of their
text, and those that allow multiple fonts, sizes, indents, and other attributes for different sets of characters
and paragraphs. Text objects in the former group are called plain text objects, while those in the latter are

4

called rich text objects. You can control whether a text object is plain or rich using the setRichText: method.
Rich text objects are also capable of allowing the user to drag images and files into them. This behavior is
controlled by the setImportsGraphics: method.

A rich NSText object can use RTF (Rich Text Format) as an interchange format. Not all RTF control words
are supported: On input, an NSText object ignores any control word it doesn’t recognize; some of those it
can read and interpret it doesn’t write out. The table below lists the RTF control words that any text object
recognizes. Subclasses may recognize more.

Control Word Read Write

\ansi yes yes

\b yes yes

\cb yes yes

\cf yes yes

\colortbl yes yes

\dnn yes yes

\fin yes yes

\fn yes yes

\fonttbl yes yes

\fsn yes yes

\i yes yes

\lin yes yes

\margrn yes yes

\paperwn yes yes

\mac yes no

\margln yes yes

\par yes yes

\pard yes no

\pca yes no

5

 Classes: NSText

Notifying a Text Object’s Delegate

Many of an NSText object’s actions can be controlled through an associated object, the NSText object’s
delegate. The delegate can be any object you choose, and one delegate can control multiple NSText objects.
If it implements any of the following methods, the delegate receives the corresponding message at the
appropriate time:

textShouldBeginEditing:
textDidBeginEditing:
textDidChange:
textShouldEndEditing:
textDidEndEditing:

Of special note are the two “textShould” methods. These methods are requests for permission. Any time a
text object begins an operation that would change its text or attributes, it uses textShouldBeginEditing: to
request approval for the change. The delegate can return YES to permit the change, or NO to forbid it.
Similarly, textShouldEndEditing: enables the delegate to prevent a text object from ending editing, such
as when it contains an invalid value.

Adding Graphics and Other Attachments to the Text

A rich text object may allow graphics or other file attachments to be embedded in the text. Each graphic is
treated as a single (possibly large) “character”: The text’s line height and character placement are adjusted
to accommodate the graphic. Graphics are embedded in the text in either of two ways: programmatically or
directly through user actions. In the programmatic approach, graphic objects can be added using
replaceRange:WithRTFD:, or through a more specific method defined by a subclass.

An alternate means of adding an image or other attachment to the text is for the user to drag an image or
other file directly into the text object. The text object automatically creates an attachment object to manage
the display of the image. This feature requires a rich text object that has been configured to receive dragged
images using the setImportsGraphics: method.

\qc yes yes

\ql yes yes

\qr yes yes

\sn yes no

\tab yes yes

\upn yes yes

Control Word Read Write

6

Images that have been imported can be written as part of an RTFD document. RTFD documents use a file
package, or directory, to store the components of the document (the “D” stands for “directory”). The file
package has the name of the document plus an .rtfd extension. The file package always contains a file called
TXT.rtf for the text of the document, and one or more TIFF or EPS files for the images, plus the files for
other attachments. A text object can transfer information in an RTFD document to a file and read it from a
file using the writeRTFDToFile:atomically: and readRTFDFromFile: methods.

Working with the Font Panel

Text objects are designed to work with the Application Kit’s font conversion system, defined by the
NSFontPanel and NSFontManager classes. By default, a text object keeps the Font Panel updated with the
first font in its selection, or of its typing attributes (defined below). It also changes the font in response to
messages from the Font Panel and Font menu. Such changes apply to the selected text or typing attributes
for a rich text object, or to all the text in a plain text object. You can turn this behavior off using the
setUsesFontPanel: method. Doing so is recommended for a text object that serves as a field editor, for
example.

Working with Rulers and Paragraph Styles

Text objects also provide for a ruler, by which the user can edit paragraph attributes such as indents and
tabs. NSTextView works with the NSRulerView class and uses the NSTextStorage and NSParagraphStyle
classes to handle paragraph attributes. To show or hide a text object’s ruler, use the toggleRuler: action
method. Similar to the Font Panel, NSTextView can be set not to use a ruler with the setUsesRuler: method.

Adopted Protocols

NSChangeSpelling
– changeSpelling:

NSIgnoreMisspelledWords
– ignoreSpelling:

Method Types

Creating instances
– initWithFrame:

Getting the characters
– string

7

 Classes: NSText

Setting graphic attributes
– setBackgroundColor:
– backgroundColor
– setDrawsBackground:
– drawsBackground

Setting behavioral attributes
– setEditable:
– isEditable
– setSelectable:
– isSelectable
– setFieldEditor:
– isFieldEditor
– setRichText:
– isRichText
– setImportsGraphics:
– importsGraphics

Using the Font Panel and menu
– setUsesFontPanel:
– usesFontPanel

Using the ruler
– toggleRuler:
– isRulerVisible

Changing the selection
– setSelectedRange:
– selectedRange

Replacing text
– replaceCharactersInRange:withRTF:
– replaceCharactersInRange:withRTFD:
– replaceCharactersInRange:withString:
– setString:

Action methods for editing
– selectAll:
– copy:
– cut:
– paste:
– copyFont:
– pasteFont:
– copyRuler:
– pasteRuler:
– delete:

8

Changing the font
– changeFont:
– setFont:
– setFont:range:
– font

Setting text alignment
– setAlignment:
– alignCenter:
– alignLeft:
– alignRight:
– alignment

Setting text color
– setTextColor:
– setTextColor:range:
– textColor

Setting super- and subscripting
– superscript:
– subscript:
– unscript:

Underlining text
– underline:

Reading and writing RTF
– readRTFDFromFile:
– writeRTFDToFile:atomically:
– RTFDFromRange:
– RTFFromRange:

Checking spelling
– checkSpelling:
– showGuessPanel:

Constraining size
– setMaxSize:
– maxSize
– setMinSize:
– minSize
– setVerticallyResizable:
– isVerticallyResizable
– setHorizontallyResizable:
– isHorizontallyResizable
– sizeToFit

9

 Classes: NSText

Scrolling
– scrollRangeToVisible:

Setting the delegate
– setDelegate:
– delegate

Instance Methods

alignCenter:
– (void)alignCenter:(id)sender

This action method applies center alignment to selected paragraphs (or all text if the receiver is a plain text
object).

See also: – alignLeft: , – alignRight: , – alignment, – setAlignment:

alignLeft:
– (void)alignLeft: (id)sender

This action method applies left alignment to selected paragraphs (or all text if the receiver is a plain text
object).

See also: – alignCenter:, – alignRight: , – alignment, – setAlignment:

alignRight:
– (void)alignRight: (id)sender

This action method applies right alignment to selected paragraphs (or all text if the receiver is a plain text
object).

See also: – alignLeft: , – alignCenter:, – alignment, – setAlignment:

alignment
– (NSTextAlignment)alignment

Returns the alignment of the first selected paragraph, or of all text for a plain text object. This value is one
of:

NSLeftTextAlignment
NSRightTextAlignment

10

NSCenterTextAlignment
NSJustifiedTextAlignment
NSNaturalTextAlignment (realized as one of the above depending on the script)

backgroundColor
– (NSColor *)backgroundColor

Returns the receiver’s background color.

See also: – drawsBackground, – setBackgroundColor:

changeFont:
– (void)changeFont:(id)sender

This action method changes the font of the selection for a rich text object, or of all text for a plain text object.
If the receiver doesn’t use the Font Panel, however, this method does nothing.

This method changes the font by sending convertFont: messages to sender (which is presumed to be an
NSFontManager or similarly capable object) and applying each NSFont returned to the appropriate text. If
a rich text object’s selection contains multiple fonts, convertFont: is invoked for each contiguous range of
characters that share a font. See the NSFontManager class specification for more information on font
conversion.

See also: – usesFontPanel

checkSpelling:
– (void)checkSpelling:(id)sender

This action method searches for a misspelled word in the receiver’s text. The search starts at the end of the
selection and continues until it reaches a word suspected of being misspelled or the end of the text. If a word
isn’t recognized by the spelling server. A showGuessPanel: message then opens the Guess panel and allows
the user to make a correction or add the word to the local dictionary.

See also: – showGuessPanel:

11

 Classes: NSText

copy:
– (void)copy:(id)sender

This action method copies the selected text onto the general pasteboard, in as many formats as the receiver
supports. A plain text object uses NSStringPboardType for plain text, and a rich text object also uses
NSRTFPboardType.

See also: – copyFont:, – copyRuler:, – cut:, – paste:

copyFont:
– (void)copyFont:(id)sender

This action method copies the font information for the first character of the selection (or for the insertion
point) onto the font pasteboard, as NSFontPboardType.

See also: – copy:, – copyRuler:, – cut:, – paste:

copyRuler:
– (void)copyRuler:(id)sender

This action method copies the paragraph style information for first selected paragraph onto the ruler
pasteboard, as NSRulerPboardType, and expands the selection to paragraph boundaries.

See also: – copy:, – copyFont:, – cut:, – paste:

cut:
– (void)cut:(id)sender

This action method deletes the selected text and places it onto the general pasteboard, in as many formats
as the receiver supports. A plain text object uses NSStringPboardType for plain text, and a rich text object
also uses NSRTFPboardType.

See also: – delete:, – copy:, – copyFont:, – copyRuler:, – paste:

delegate
– (id)delegate

Returns the receiver’s delegate, or nil if it has none.

See also: – setDelegate:

12

delete:
– (void)delete:(id)sender

This action method deletes the selected text.

See also: – cut:

drawsBackground
– (BOOL)drawsBackground

Returns YES if the receiver draws its background, NO if it doesn’t.

See also: – backgroundColor, – setDrawsBackground:

font
– (NSFont *)font

Returns the font of the first character in the receiver’s text, or of the insertion point if there’s no text.

See also: – setFont:, – setFont:range:

importsGraphics
– (BOOL)importsGraphics

Returns YES if the receiver allows the user to import files by dragging, NO if it doesn’t. A text object that
accepts dragged files is also a rich text object.

See also: – isRichText, – setImportsGraphics:

initWithFrame:
– (id)initWithFrame: (NSRect)frameRect

Initializes the receiver with frameRect as its frame rectangle. This method actually substitutes an instance
of a concrete subclass of NSText, such as NSTextView, depending on the platform, and configures that
instance to archive itself in a manner portable across OpenStep implementations.

13

 Classes: NSText

isEditable
– (BOOL)isEditable

Returns YES if the receiver allows the user to edit text, NO if it doesn’t. You can change the receiver’s text
programmatically regardless of this setting.

If the receiver is editable, it’s also selectable.

See also: – isSelectable, – setEditable:

isFieldEditor
– (BOOL)isFieldEditor

Returns YES if the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing, and possibly
to change the first responder; no if it accepts them as text input. See the NSWindow class specification for
more information on field editors. By default, NSText objects don’t behave as field editors.

See also: – setFieldEditor:

isHorizontallyResizable
– (BOOL)isHorizontallyResizable

Returns YES if the receiver automatically changes its width to accommodate the width of its text, NO if it
doesn’t.

See also: – isVerticallyResizable, – setHorizontallyResizable:

isRichText
– (BOOL)isRichText

Returns YES if the receiver allows the user to apply attributes to specific ranges of the text, NO if it doesn’t.

See also: – importsGraphics, – setRichText:

isRulerVisible
– (BOOL)isRulerVisible

Returns YES if the receiver’s enclosing scroll view shows its ruler, NO otherwise.

See also: – toggleRuler:

14

isSelectable
– (BOOL)isSelectable

Returns YES if the receiver allows the user to select text, NO if it doesn’t.

See also: – isEditable, – setSelectable:

isVerticallyResizable
– (BOOL)isVerticallyResizable

Returns YES if the receiver automatically changes its height to accommodate the height of its text, NO if it
doesn’t.

See also: – isHorizontallyResizable, – setVerticallyResizable:

maxSize
– (NSSize)maxSize

Returns the receiver’s maximum size.

See also: – minSize, – setMaxSize:

minSize
– (NSSize)minSize

Returns the receiver’s minimum size.

See also: – maxSize, – setMinSize:

paste:
– (void)paste:(id)sender

This action method pastes text from the general pasteboard at the insertion point or over the selection.

See also: – copy:, – cut:, – pasteFont:, – pasteRuler:

15

 Classes: NSText

pasteFont:
– (void)pasteFont:(id)sender

This action method pastes font information from the font pasteboard onto the selected text or insertion point
of a rich text object, or over all text of a plain text object.

See also: – copyFont:, – pasteRuler:

pasteRuler:
– (void)pasteRuler:(id)sender

This action method pastes paragraph style information from the ruler pasteboard onto the selected
paragraphs of a rich text object. It doesn’t apply to a plain text object.

See also: – copyFont:, – pasteRuler:

readRTFDFromFile:
– (BOOL)readRTFDFromFile: (NSString *)path

Attempts to read the RTFD file at path, returning YES if successful and NO if not. path should be the path
for an .rtf file or an .rtfd file wrapper, not for the RTF file within an .rtfd file wrapper. <<Or not even a
.rtf file?>>

See also: – writeRTFDToFile:atomically:

replaceCharactersInRange:withRTF:
– (void)replaceCharactersInRange:(NSRange)aRange withRTF: (NSData *)rtfData

Replaces the characters in aRange with RTF text interpreted from rtfData. This method applies only to rich
text objects.

See also: – replaceCharactersInRange:withRTFD:, – replaceCharactersInRange:withString:

replaceCharactersInRange:withRTFD:
– (void)replaceCharactersInRange:(NSRange)aRange withRTFD: (NSData *)rtfdData

Replaces the characters in aRange with RTFD text interpreted from rtfdData. This method applies only to
rich text objects.

See also: – replaceCharactersInRange:withRTF:, – replaceCharactersInRange:withString:

16

replaceCharactersInRange:withString:
– (void)replaceCharactersInRange:(NSRange)aRange withString: (NSString *)aString

Replaces the characters in aRange with aString. For a rich text object, the text of aString is assigned the
formatting attributes of the first character of the text it replaces, or of the character immediately before
aRange if the range’s length is zero. If the range’s location is zero, the formatting attributes of the first
character in the receiver are used.

See also: – replaceCharactersInRange:withRTF:, – replaceCharactersInRange:withRTFD:

RTFDFromRange:
– (NSData *)RTFDFromRange:(NSRange)aRange

Returns an NSData object that contains an RTFD stream corresponding to the characters and attributes
within aRange. Raises an NSRangeException if any part of aRange lies beyond the end of the receiver’s
characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s
setData:forType: method, with a second argument of NSRTFDPboardType.

See also: – RTFFromRange:

RTFFromRange:
– (NSData *)RTFFromRange:(NSRange)range

Returns an NSData object that contains an RTF stream corresponding to the characters and attributes within
aRange, omitting any attachment characters and attributes. Raises an NSRangeException if any part of
aRange lies beyond the end of the receiver’s characters.

When writing data to the pasteboard, you can use the NSData object as the first argument to NSPasteboard’s
setData:forType: method, with a second argument of NSRTFPboardType.

See also: – RTFDFromRange:

scrollRangeToVisible:
– (void)scrollRangeToVisible:(NSRange)aRange

Scrolls the receiver in its enclosing scroll view so that the first characters of aRange are visible.

17

 Classes: NSText

selectAll:
– (void)selectAll:(id)sender

This action method selects all of the receiver’s text.

selectedRange
– (NSRange)selectedRange

Returns the range of selected characters.

See also: – setSelectedRange:

setAlignment:
– (void)setAlignment:(NSTextAlignment)mode

Sets the alignment of all the receiver’s text to mode, which may be one of:

NSLeftTextAlignment
NSRightTextAlignment
NSCenterTextAlignment
NSJustifiedTextAlignment
NSNaturalTextAlignment (realized as one of the above depending on the script)

See also: – alignment, – alignLeft: , – alignCenter:, – alignRight:

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the receiver’s background color to aColor.

See also: – setDrawsBackground:, – backgroundColor

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject, without retaining it.

See also: – delegate

18

setDrawsBackground:
– (void)setDrawsBackground:(BOOL)flag

Controls whether the receiver draws its background. If flag is YES, the receiver fills its background with the
background color; if flag is NO, it doesn’t.

See also: – setBackgroundColor:, – drawsBackground

setEditable:
– (void)setEditable:(BOOL)flag

Controls whether the receiver allows the user to edit its text. If flag is YES, the receiver allows the user to
edit text and attributes; if flag is NO, it doesn’t. You can change the receiver’s text programmatically
regardless of this setting. If the receiver is made editable, it’s also made selectable. NSText objects are by
default editable.

See also: – setSelectable:, – isEditable

setFieldEditor:
– (void)setFieldEditor:(BOOL)flag

Controls whether the receiver interprets Tab, Shift-Tab, and Return (Enter) as cues to end editing, and
possibly to change the first responder. If flag is YES, it does; if flag is NO, it doesn’t, instead accepting these
characters as text input. See the NSWindow class specification for more information on field editors. By
default, NSText objects don’t behave as field editors.

See also: – isFieldEditor

setFont:
– (void)setFont:(NSFont *)aFont

Sets the font of all the receiver’s text to aFont.

See also: – setFont:range:, – font

setFont:range:
– (void)setFont:(NSFont *)aFont range:(NSRange)aRange

Sets the font of characters within aRange to aFont. This method applies only to a rich text object.

See also: – setFont:, – font

19

 Classes: NSText

setHorizontallyResizable:
– (void)setHorizontallyResizable:(BOOL)flag

Controls whether the receiver changes its width to fit the width of its text. If flag is YES it does; if flag is
NO it doesn’t.

See also: – setVerticallyResizable:, – isHorizontallyResizable

setImportsGraphics:
– (void)setImportsGraphics:(BOOL)flag

Controls whether the receiver allows the user to import files by dragging. If flag is YES, it does; if flag is
NO, it doesn’t. If the receiver is set to accept dragged files, it’s also made a rich text object. Subclasses may
or may not accept dragged files by default.

See also: – setRichText:, – importsGraphics

setMaxSize:
– (void)setMaxSize:(NSSize)aSize

Sets the receiver’s maximum size to aSize.

See also: – setMinSize:, – maxSize

setMinSize:
– (void)setMinSize:(NSSize)aSize

Sets the receiver’s minimum size to aSize.

See also: – setMaxSize:, – minSize

setRichText:
– (void)setRichText:(BOOL)flag

Controls whether the receiver allows the user to apply attributes to specific ranges of the text. If flag is YES
it does; if flag is NO it doesn’t. If flag is NO, the receiver is also set not to accept dragged files. Subclasses
may or may not let the user apply multiple attributes to the text and accept drag files by default.

See also: – isRichText, – setImportsGraphics:

20

setSelectable:
– (void)setSelectable:(BOOL)flag

Controls whether the receiver allows the user to select its text. If flag is YES, the receiver allows the user to
select text; if flag is NO, it doesn’t. You can set selections programmatically regardless of this setting. If the
receiver is made not selectable, it’s also made not editable. NSText objects are by default editable and
selectable.

See also: – setEditable:, – isSelectable

setSelectedRange:
– (void)setSelectedRange:(NSRange)aRange

Selects the receiver’s characters within aRange.

See also: – selectedRange

setString:
– (void)setString:(NSString *)aString

Replaces the receiver’s entire text with aString, applying the formatting attributes of the old first character
to its new contents.

setTextColor:
– (void)setTextColor:(NSColor *)color

Sets the text color of all characters in the receiver to aColor. Removes the text color attribute if aColor is nil .

See also: – setTextColor:range:, – textColor

setTextColor:range:
– (void)setTextColor:(NSColor *)aColor range:(NSRange)aRange

Sets the text color of characters within aRange to aColor. Removes the text color attribute if aColor is nil .
This method applies only to rich text objects.

See also: – setTextColor:, – textColor

21

 Classes: NSText

setUsesFontPanel:
– (void)setUsesFontPanel:(BOOL)flag

Controls whether the receiver uses the Font Panel and Font menu. If flag is YES, the receiver responds to
messages from the Font Panel and from the Font menu, and updates the Font Panel with the selection font
whenever it changes. If flag is NO the receiver doesn’t do any of this. By default, an NSText object uses the
Font Panel and menu.

See also: – usesFontPanel

setVerticallyResizable:
– (void)setVerticallyResizable:(BOOL)flag

Controls whether the receiver changes its height to fit the height of its text. If flag is YES it does; if flag is
NO it doesn’t.

See also: – setHorizontallyResizable:, – isVerticallyResizable

showGuessPanel:
– (void)showGuessPanel:(id)sender

This action method opens the Spelling panel, allowing the user to make a correction during spell checking.

See also: – checkSpelling:

sizeToFit
– (void)sizeToFit

Resizes the receiver to fit its text.

See also: – isHorizontallyResizable, – isVerticallyResizable

string
– (NSString *)string

Returns the characters of the receiver’s text.

See also: – setString:

22

subscript:
– (void)subscript:(id)sender

This action method applies a subscript attribute to selected text (or all text if the receiver is a plain text
object), lowering its baseline offset by a predefined amount.

See also: – subscript:, – unscript: , – lowerBaseline: (NSTextView)

superscript:
– (void)superscript:(id)sender

This action method applies a superscript attribute to selected text (or all text if the receiver is a plain text
object), raising its baseline offset by a predefined amount.

See also: – subscript:, – unscript: , – raiseBaseline: (NSTextView)

textColor
– (NSColor *)textColor

Returns the color of the receiver’s first character, or for the insertion point if there’s no text.

See also: – setTextColor:, – setTextColor:range:

toggleRuler:
– (void)toggleRuler:(id)sender

This action method shows or hides the ruler, if the receiver is enclosed in a scroll view.

underline:
– (void)underline:(id)sender

This action method underlines selected text for a rich text object, or all text for a plain text object.

23

 Classes: NSText

unscript:
– (void)unscript: (id)sender

This action method removes any superscripting or subscripting from selected text (or all text if the receiver
is a plain text object).

See also: – subscript:, – superscript:, – raiseBaseline: (NSTextView), – lowerBaseline: (NSTextView)

usesFontPanel
– (BOOL)usesFontPanel

Returns YES if the receiver uses the Font Panel, NO otherwise.

See also: – setUsesFontPanel:

writeRTFDToFile:atomically:
– (BOOL)writeRTFDToFile: (NSString *)path atomically:(BOOL)flag

Writes the receiver’s text as RTF with attachments to a file or directory at path. Returns YES on success and
NO on failure. If atomicFlag is YES, attempts to write the file safely so that an existing file at path is not
overwritten, nor does a new file at path actually get created, unless the write is successful.

See also: – RTFFromRange:, – RTFDFromRange:, – readRTFDFromFile:

Methods Implemented By the Delegate

textDidBeginEditing:
– (void)textDidBeginEditing: (NSNotification *)aNotification

Informs the delegate that the text object has begun editing (that it has become first responder). The name of
aNotification is NSTextViewDidBeingEditingNotification.

textDidChange:
– (void)textDidChange:(NSNotification *)aNotification

Informs the delegate that the text object has changed its characters or formatting attributes. The name of
aNotification is NSTextViewDidChangeNotification.

24

textDidEndEditing:
– (void)textDidEndEditing: (NSNotification *)aNotification

Informs the delegate that the text object has finished editing (that it has resigned first responder status). The
name of aNotification is NSTextViewDidEndEditingNotification.

textShouldBeginEditing:
– (BOOL)textShouldBeginEditing:(NSText *)aTextObject

Invoked from a text object’s implementation of becomeFirstResponder, this method requests permission
for aTextObject to begin editing. If the delegate returns YES, the text object proceeds to make changes. If
the delegate returns NO, the text object abandons the editing operation. This method is invoked whenever
aTextObject attempts to become first responder.

See also: – makeFirstResponder: (NSWindow), – becomeFirstResponder (NSResponder)

textShouldEndEditing:
– (BOOL)textShouldEndEditing:(NSText *)aTextObject

Invoked from a text object’s implementation of resignFirstResponder, this method requests permission for
aTextObject to end editing. If the delegate returns YES, the text object proceeds to finish editing and resign
first responder status. If the delegate returns NO, the text object selects all of its text and remains the first
responder.

See also: – resignFirstResponder (NSResponder)

Notifications

NSTextDidBeginEditingNotification

Posted when an NSText object begins any operation that changes characters or formatting attributes.

The notification contains a notification object but no userInfo dictionary. The notification object is the
notifying NSText object.

NSTextDidChangeNotification

Posted after an NSText object performs any operation that changes characters or formatting attributes.

The notification contains a notification object but no userInfo dictionary. The notification object is the
notifying NSText object.

25

 Classes: NSText

NSTextDidEndEditingNotification

<< Forthcoming. >> NeXTSTEP

1

 Classes: NSTextAttachment

NSTextAttachment

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSTextAttachment.h

Class Description

NSTextAttachment objects are used by the NSAttributedString class cluster as the values for attachment
attributes (stored in the attributed string under the key named NSAttachmentAttributeName). The objects
you create with this class are referred to as text attachment objects, or when no confusion will result, as text
attachments or merely attachments. See the NSAttributedString and NSTextView class specifications for
general information on text attachments.

A text attachment object contains an NSFileWrapper, which in turn holds the contents of the attached file.
It also uses a cell object conforming to the NSTextAttachmentCell protocol to draw and handle mouse
events. Most of the behavior of a text attachment is relegated to the file wrapper and the attachment cell.
See the corresponding class and protocol specifications for more information.

Method Types

Creating an NSTextAttachment
– initWithFileWrapper:

Setting the file wrapper
– setFileWrapper:
– fileWrapper

Setting the attachment cell
– setAttachmentCell:
– attachmentCell

2

Instance Methods

attachmentCell
– (id <NSTextAttachmentCell>)attachmentCell

Returns the object used to draw the icon for the attachment and to handle mouse events. An
NSTextAttachment by default uses an NSTextAttachmentCell that displays the attached file’s icon, or its
contents if the file contains an image.

See also: – fileWrapper, – image (NSCell), – icon (NSFileWrapper), – setAttachmentCell:

fileWrapper
– (NSFileWrapper *)fileWrapper

Returns the receiver’s file wrapper, which holds the contents of the attached file.

See also: – setFileWrapper:

initWithFileWrapper:
– (id)initWithFileWrapper: (NSFileWrapper *)aWrapper

Initializes a newly allocated NSTextAttachment to contain aWrapper and to use an NSTextAttachmentCell
as its attachment cell. If aWrapper contains an image file that the receiver can interpret as an NSImage
object, it sets the attachment cell’s image to the NSImage rather than to aWrapper’s icon.

This method is the designated initializer for the NSTextAttachment class. Returns self.

See also: – setFileWrapper:, – setAttachmentCell:

setAttachmentCell:
– (void)setAttachmentCell:(id <NSTextAttachmentCell>)aCell

Sets the object used to draw the icon for the attachment and to handle mouse events to aCell.

See also: – setFileWrapper:, – setImage: (NSCell), – icon (NSFileWrapper), – attachmentCell

setFileWrapper:
– (void)setFileWrapper:(NSFileWrapper *)aWrapper

Sets the receiver’s file wrapper, which holds the contents of the attached file, to aWrapper.

See also: – fileWrapper

1

 Classes: NSTextAttachmentCell

NSTextAttachmentCell

Inherits From: NSCell : NSObject

Conforms To: NSTextAttachmentCell
NSObject (NSObject)

Declared In: NSTextAttachment.h

Class Description

NSTextAttachmentCell implements the functionality of the NSTextAttachmentCell protocol. See the
NSTextAttachment protocol specification for a general discussion of the protocol’s methods. This
specification describes only those methods whose implementations have features peculiar to this class.

See the NSAttributedString and NSTextView class specifications for general information on text
attachments.

Adopted Protocols

NSTextAttachmentCell
– attachment
– cellBaselineOffset
– cellSize
– drawWithFrame:inView:
– highlight:withFrame:inView:
– trackMouse:inRect:ofView:untilMouseUp:
– setAttachment:
– wantsToTrackMouse

2

Instance Methods

trackMouse:inRect:ofView:untilMouseUp:
@protocol NSTextAttachmentCell
– (BOOL)trackMouse:(NSEvent *)theEvent

inRect:(NSRect)cellFrame
ofView:(NSView *)aTextView
untilMouseUp:(BOOL)flag

Handles a mouse-down event on the receiver’s image. NSTextAttachmentCell’s implementation of this
method calls upon aTextView’s delegate to handle the event. If theEvent concludes as a double click, the text
attachment cell sends the delegate a textView:doubleClickedOnCell:inRect: message and returns YES.
Otherwise, depending on whether the user clicks or drags the cell, it sends the delegate a textView:
clickedOnCell:inRect: or a textView:draggingCell:inRect:event: message and returns YES.
NSTextAttachmentCell’s implementation returns NO only if flag is NO and the mouse is dragged outside
of cellFrame. The delegate methods are invoked only if the delegate can respond to them.

See also: – wantsToTrackMouse, – trackMouse:inRect:ofView:untilMouseUp: (NSCell),
– lockFocus (NSView)

wantsToTrackMouse
@protocol NSTextAttachmentCell
– (BOOL)wantsToTrackMouse

Returns YES. NSTextAttachmentCell objects support dragging. An NSTextView invokes this method
before sending trackMouse:inRect:ofView:untilMouseUp: to the text attachment cell.

A more static subclass might override this method to return NO, which results in the attachment image
behaving as any other glyph in the text, and not allow itself to be dragged or to perform a method on being
clicked.

1

 Classes: NSTextContainer

NSTextContainer

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSTextContainer.h

Class Description

An NSTextContainer defines a region where text is laid out. An NSLayoutManager uses NSTextContainers
to determine where to break lines, lay out portions of text, and so on. NSTextContainer defines rectangular
regions, but you can create subclasses that define regions of other shapes, such as circular regions, regions
with holes in them, or regions that flow alongside graphics.

You normally use an NSTextView to display the text laid out within an NSTextContainer. An NSTextView
can have only one NSTextContainer; however, since the two are separate objects, you can replace an
NSTextView’s container to change the layout of the text it displays. You can also display an
NSTextContainer’s text in any NSView by locking the graphics focus on it and using NSLayoutManager’s
drawBackgroundForGlyphRange:atPoint: and drawGlyphsForGlyphRange:atPoint: methods. If you
have no need of actually displaying the text—if you’re only calculating line breaks or number of lines or
pages, for example—you can use an NSTextContainer without an NSTextView.

Region, Bounding Rectangle, and Inset

An NSTextContainer’s region is defined within a bounding rectangle whose coordinate system starts at
(0, 0) in the top left corner. The size of this rectangle is returned by the containerSize method and set using
setContainerSize:. You can define a container’s region so that it’s always the same shape, such as a circle
whose diameter is the narrower of the bounding rectangle’s dimensions, or you can define the region relative
to the bounding rectangle, such as an oval region that fits inside the bounding rectangle (and that’s a circle
when the bounding rectangle is square). Regardless of a text container’s shape, its NSTextView always clips
drawing to its bounding rectangle.

A subclass of NSTextContainer defines its region by overriding three methods. The first,
isSimpleRectangularTextContainer, indicates whether the region is currently a nonrotated rectangle, thus
allowing the NSLayoutManager to optimize layout of text (since custom NSTextContainers typically define
more complex regions, your implementation of this method will probably return NO). The second method,
containsPoint:, is used for testing mouse events and determines whether or not a given point lies in the
region. The third method is used for the actual layout of text, defining the region in terms of rectangles
available to lay text in; this process is described in “Calculating Text Layout”.

2

An NSTextContainer usually covers its NSTextView exactly, but can be inset within the view frame with
NSTextView’s setTextContainerInset: method. The NSTextContainer’s bounding rectangle from the inset
position then establishes the limits of the NSTextContainer’s region. The inset also helps to determine the
size of the bounding rectangle when the NSTextContainer tracks the height or width of its NSTextView, as
described in “Tracking the Size of the NSTextView”.

Calculating Text Layout

An NSLayoutManager lays text within an NSTextContainer in lines of glyphs, running either horizontally
or vertically. The layout of these lines within an NSTextContainer is determined by its shape. For example,
if the NSTextContainer is narrower in some parts than in others, the lines in those parts must be shortened;
if there are holes in the region, some lines must be fragmented; if there’s a gap across the entire region, the
lines that would overlap it have to be shifted to compensate. This is illustrated in the figure below.

Note: The text system currently supports only horizontal text layout.

The NSLayoutManager proposes a rectangle for a given line, and then asks the NSTextContainer to adjust
the rectangle to fit. The proposed rectangle usually spans the NSTextContainer’s bounding rectangle, but it
can be narrower or wider, and it can also lie partially or completely outside the bounding rectangle. The
message that an NSLayoutManager sends the container to adjust the proposed rectangle is
lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:, which
returns the largest rectangle available for the proposed rectangle, based on the direction text is laid out. It
also returns a rectangle containing any remaining space, such as that left on the other side of a hole or gap
in the NSTextContainer.

Text is laid out along lines that run either horizontally or vertically, and in either direction. This type of
movement is called the sweep direction and is expressed by the NSLineSweepDirection type. The direction
in which the lines progress is then called the line movement direction and is expressed by the
NSLineMovementDirection type. Each affects the adjustment of a line fragment rectangle in a different

3

 Classes: NSTextContainer

way: The rectangle can be moved or shortened along the sweep direction and shifted (but not resized) in the
line movement direction.

For the three examples above, the sweep direction is NSLineSweepRight and the line movement direction
is NSLineMovesDown. In the first example, the proposed rectangle spans the region’s bounding rectangle
and is shortened by the text container to fit inside the hourglass shape with no remainder.

In the second example, the proposed rectangle crosses a hole, so the text container must return a shorter
rectangle (the white rectangle on the left) along with a remainder (the white rectangle on the right). The
next rectangle proposed by the NSLayoutManager will then be this remainder rectangle, and will be
returned unchanged by the text container.

In the third example, a gap crosses the entire NSTextContainer. Here the text container shifts the proposed
rectangle down until it lies completely within the container’s region. If the line movement direction here
were NSLineDoesntMove, the NSTextContainer would have to return NSZeroRect indicating that the line
simply doesn’t fit. In such a case it’s up to the NSLayoutManager to propose a different rectangle or to move
on to a different container. When a text container shifts a line fragment rectangle, the layout manager takes
this into account for subsequent lines.

The NSLayoutManager makes one final adjustment when it actually fits text into the rectangle. This
adjustment is a small amount fixed by the NSTextContainer, called the line fragment padding, which defines
the portion on each end of the line fragment rectangle left blank. Text is inset within the line fragment
rectangle by this amount (the rectangle itself is unaffected). Padding allows for small-scale adjustment of
the NSTextContainer’s region at the edges and around any holes, and keeps text from abutting any other
graphics displayed near the region. You can change the padding from its default value with the
setLineFragmentPadding: method, or override the default in your subclass. Note that line fragment
padding isn’t a suitable means for expressing margins; you should set the NSTextView’s position and size
for document margins or the paragraph margin attributes for text margins.

NSLineSweepDirection values NSLineMovementDirection values

NSLineSweepLeft NSLineMovesLeft

NSLineSweepRight NSLineMovesRight

NSLineSweepDown NSLineMovesDown

NSLineSweepUp NSLineMovesUp

NSLineDoesntMove

4

Tracking the Size of the NSTextView

Normally, if you resize an NSTextView its NSTextContainer doesn’t change in size. You can, however, set
an NSTextContainer to track the size of its NSTextView and adjust its own size to match whenever the
NSTextView’s size changes. The setHeightTracksTextView: and setWidthTracksTextView: methods
allow you to control this tracking for either dimension.

When an NSTextContainer adjusts its size to match that of its NSTextView, it takes into account the inset
specified by the NSTextView so that the bounding rectangle is inset from every edge possible. In other
words, an NSTextContainer that tracks the size of its NSTextView is always smaller than the NSTextView
(in the appropriate dimension) by twice the inset. Suppose an NSTextContainer is set to track width and its
NSTextView gives it an inset of (10, 10). Now, if the NSTextView’s width is changed to 138, the
NSTextContainer’s top left corner is set to lie at (10, 10) and its width is set to 118, so that its right edge is
10 points from the NSTextView’s right edge. Its height remains the same.

Whether it tracks the size of its NSTextView or not, an NSTextContainer doesn’t grow or shrink as text is
added or deleted; instead, the NSLayoutManager resizes the NSTextView based on the portion of the
NSTextContainer actually filled with text. To allow an NSTextView to be resized in this manner, use
NSTextView’s setVerticallyResizable: or setHorizontallyResizable: methods as needed, set the text
container not to track the size of its text view, and set the text container’s size in the appropriate dimension
large enough to accommodate a great amount of text—about 1e7 (this incurs no cost whatever in processing
or storage).

Note that an NSTextView can be resized based on its NSTextContainer, and an NSTextContainer can resize
itself based on its NSTextView. If you set both objects up to resize automatically in the same dimension,
your application can get trapped in an infinite loop. When text is added to the NSTextContainer, the
NSTextView is resized to fit the area actually used for text; this causes the NSTextContainer to resize itself
and relay its text, which causes the NSTextView to resize itself again, and so on ad infinitum. Each type of
size tracking has its proper uses; be sure to use only one for either dimension.

Method Types

Creating an instance
– initWithContainerSize:

Managing text components
– setLayoutManager:
– layoutManager
– replaceLayoutManager:
– setTextView:
– textView

5

 Classes: NSTextContainer

Controlling size
– setContainerSize:
– containerSize
– setWidthTracksTextView:
– widthTracksTextView
– setHeightTracksTextView:
– heightTracksTextView

Setting line fragment padding
– setLineFragmentPadding:
– lineFragmentPadding

Calculating text layout
– lineFragmentRectForProposedRect:sweepDirection:

movementDirection:remainingRect:
– isSimpleRectangularTextContainer

Mouse hit testing
– containsPoint:

Instance Methods

containerSize
– (NSSize)containerSize

Returns the size of the receiver’s bounding rectangle, regardless of the size of its region.

See also: – textContainerInset (NSTextView), – setContainerSize:

containsPoint:
– (BOOL)containsPoint:(NSPoint)aPoint

Overridden by subclasses to returns YES if aPoint lies within the receiver’s region or on the region’s edge—
not simply within its bounding rectangle—NO otherwise. For example, if the receiver defines a donut shape
and aPoint lies in the hole, this method returns NO. This method can be used for hit testing of mouse events.

NSTextContainer’s implementation merely checks that aPoint lies within its bounding rectangle.

6

heightTracksTextView
– (BOOL)heightTracksTextView

Returns YES if the receiver adjusts the height of its bounding rectangle when its NSTextView is resized,
NO otherwise. The height is adjusted to the height of the NSTextView minus twice the inset height (as given
by NSTextView’s textContainerInset method).

See the class description for more information on size tracking.

See also: – widthTracksTextView, – setHeightTracksTextView:

initWithContainerSize:
– (id)initWithContainerSize: (NSSize)aSize

Initializes the receiver, a newly allocated NSTextContainer, with aSize as the size of its bounding rectangle.
The new NSTextContainer must be added to an NSLayoutManager before it can be used; it must also have
an NSTextView set for text to be displayed. This method is the designated initializer for the
NSTextContainer class. Returns self.

See also: – addTextContainer: (NSLayoutManager), – setTextView:

isSimpleRectangularTextContainer
– (BOOL)isSimpleRectangularTextContainer

Overridden by subclasses to return YES if the receiver’s region is a rectangle with no holes or gaps and
whose edges are parallel to the NSTextView’s coordinate system axes; returns NO otherwise. An
NSTextContainer whose shape changes can return YES if its region is currently a simple rectangle, but
when its shape does change it must send textContainerChangedGeometry: to its NSLayoutManager so
the layout can be recalculated.

NSTextContainer’s implementation of this method returns YES.

layoutManager
– (NSLayoutManager *)layoutManager

Returns the receiver’s NSLayoutManager.

See also: – setLayoutManager:, – replaceLayoutManager:

7

 Classes: NSTextContainer

lineFragmentPadding
– (float)lineFragmentPadding

Returns the amount (in points) by which text is inset within line fragment rectangles.

See also: – lineFragmentRectForProposedRect:sweepDirection:movementDirection:
remainingRect:, – setLineFragmentPadding:

lineFragmentRectForProposedRect:sweepDirection:movementDirection:
remainingRect:

– (NSRect)lineFragmentRectForProposedRect:(NSRect)proposedRect
sweepDirection:(NSLineSweepDirection)sweepDirection
movementDirection:(NSLineMovementDirection)movementDirection
remainingRect:(NSRect *)remainingRect

Overridden by subclasses to calculate and return the longest rectangle available for proposedRect for
displaying text, or NSZeroRect if there is none according to the receiver’s region definition.

There is no guarantee as to the width of the proposed rectangle or to its location. For example, the proposed
rectangle is likely to be much wider than the width of the receiver. The receiver should examine
proposedRect to see that it intersects its bounding rectangle, and should return a modified rectangle based
on sweepDirection and movementDirection, whose possible values are listed in the class description. If
sweepDirection is NSLineSweepRight, for example, the receiver uses this information to trim the right end
of proposedRect as needed rather than the left end.

If proposedRect doesn’t completely overlap the region along the axis of movementDirection and
movementDirection isn’t NSLineDoesntMove, this method can either shift the rectangle in that direction as
much as needed so that it does completely overlap, or return NSZeroRect to indicate that the proposed
rectangle simply doesn’t fit.

Upon returning, remainingRect contains the unused, possibly shifted, portion of proposedRect that’s
available for further text, or NSZeroRect if there is no remainder.

See the class description for more information on overriding this method.

replaceLayoutManager:
– (void)replaceLayoutManager:(NSLayoutManager *)aLayoutManager

Replaces the NSLayoutManager for the group of text-system objects containing the receiver with
aLayoutManager. All NSTextContainers and NSTextViews sharing the original NSLayoutManager then
share the new one. This method makes all the adjustments necessary to keep these relationships intact,
unlike setLayoutManager:.

See also: – layoutManager

8

setContainerSize:
– (void)setContainerSize:(NSSize)aSize

Sets the size of the receiver’s bounding rectangle to aSize and sends textContainerChangedGeometry: to
the NSLayoutManager.

See also: – setTextContainerInset: (NSTextView), – containerSize

setHeightTracksTextView:
– (void)setHeightTracksTextView:(BOOL)flag

Controls whether the receiver adjusts the height of its bounding rectangle when its NSTextView is resized.
If flag is YES, the receiver follows changes to the height of its text view; if flag is NO, it doesn’t.

See the class description for more information on size tracking.

See also: – setContainerSize:, – setWidthTracksTextView:, – heightTracksTextView

setLayoutManager:
– (void)setLayoutManager:(NSLayoutManager *)aLayoutManager

Sets the receiver’s NSLayoutManager to aLayoutManager. This method is invoked automatically when you
add an NSTextContainer to an NSLayoutManager; you should never need to invoke it directly, but might
want to override it. If you want to replace the NSLayoutManager for an established group of text-system
objects, use replaceLayoutManager:.

See also: – addTextContainer: (NSLayoutManager), – layoutManager

setLineFragmentPadding:
– (void)setLineFragmentPadding:(float)aFloat

Sets the amount (in points) by which text is inset within line fragment rectangles to aFloat. Also sends
textContainerChangedGeometry: to the receiver’s NSLayoutManager to inform it of the change.

See also: – lineFragmentRectForProposedRect:sweepDirection:movementDirection:
remainingRect:, – lineFragmentPadding

9

 Classes: NSTextContainer

setTextView:
– (void)setTextView:(NSTextView *)aTextView

Sets the receiver’s NSTextView to aTextView and sends setTextContainer: to aTextView to complete the
association of the text container and text view. Since you usually specify an NSTextContainer when you
create an NSTextView, you should rarely need to invoke this method. An NSTextContainer doesn’t need an
NSTextView to calculate line fragment rectangles, but must have one to display text.

You can use this method to disconnect an NSTextView from a group of text-system objects by sending this
message to its text container and passing nil as aTextView.

See also: – initWithFrame:textContainer: (NSTextView), – replaceTextContainer: (NSTextView)

setWidthTracksTextView:
– (void)setWidthTracksTextView:(BOOL)flag

Controls whether the receiver adjusts the width of its bounding rectangle when its NSTextView is resized.
If flag is YES, the receiver follows changes to the width of its text view; if flag is NO, it doesn’t.

See the class description for more information on size tracking.

See also: – setContainerSize:, – setHeightTracksTextView:, – widthTracksTextView

textView
– (NSTextView *)textView

Returns the receiver’s NSTextView, or nil if it has none.

See also: – setTextView:

widthTracksTextView
– (BOOL)widthTracksTextView

Returns YES if the receiver adjusts the width of its bounding rectangle when its NSTextView is resized, NO
otherwise. The width is adjusted to the width of the NSTextView minus twice the inset width (as given by
NSTextView’s textContainerInset method).

See the class description for more information on size tracking.

See also: – heightTracksTextView, – setWidthTracksTextView:

1

 Classes: NSTextField

NSTextField

Inherits From: NSControl : NSView : NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSTextField.h

Class Description

An NSTextField is a kind of NSControl that displays text that the user can select or edit, and which sends
its action message to its target when the user presses the Return key while editing. Like other controls, it
also performs validation on its value when edited; if the value isn’t valid it sends a special error action
message to its target. An NSTextField can be assigned a delegate, who is then informed of delegate
messages sent by the window’s field editor, such as textShouldEndEditing:. See the NSWindow and
NSTextView class specifications for more information on a window’s field editor.

Typical of several kinds of control, NSTextField allows you to set its text and background color, whether it
draws the background, and whether it draws a bezel or border around its text. Note that the text and
background colors of selected text are configurable. The selected text color overshadows any actual text
color applied to the text while it’s selected (this is generally the case with controls).

You can link text fields together in their window’s key view loop, as described in the NSWindow class
specification.

Method Types

Controlling editability and selectability
– setEditable:
– isEditable
– setSelectable:
– isSelectable

Setting the error action
– setErrorAction:
– errorAction

2

Controlling rich text behavior
– setAllowsEditingTextAttributes:
– allowsEditingTextAttributes
– setImportsGraphics:
– importsGraphics

Setting the text color
– setTextColor:
– textColor

Controlling the background
– setBackgroundColor:
– backgroundColor
– setDrawsBackground:
– drawsBackground

Setting a border
– setBezeled:
– isBezeled
– setBordered:
– isBordered

Linking text fields together
– setNextText:
– nextText
– setPreviousText:
– previousText

Selecting the text
– selectText:

Working with the responder chain
– acceptsFirstResponder

Using keyboard interface control
– setTitleWithMnemonic:

Setting the delegate
– setDelegate:
– delegate

Text delegate methods
– textShouldBeginEditing:
– textDidBeginEditing:
– textDidChange:
– textShouldEndEditing:
– textDidEndEditing:

3

 Classes: NSTextField

Instance Methods

acceptsFirstResponder
– (BOOL)acceptsFirstResponder

Returns YES if the receiver is editable or selectable, NO otherwise.

allowsEditingTextAttributes
– (BOOL)allowsEditingTextAttributes

Returns YES if the receiver allows the user to change font attributes of the receiver’s text, NO if the user
isn’t permitted to do so. You can change text attributes programmatically regardless of this setting.

See also: – importsGraphics, – setAllowsEditingTextAttributes:

backgroundColor
– (NSColor *)backgroundColor

Returns the color of the background that the receiver draws behind the text.

See also: – drawsBackground, – setBackgroundColor:

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – textShouldBeginEditing:, – textShouldEndEditing:, – textDidBeginEditing: ,
– textDidEndEditing: , – textDidChange:, – setDelegate:

drawsBackground
– (BOOL)drawsBackground

Returns YES if the receiver’s cell draws its background color behind its text, NO if it draws no background.

See also: – backgroundColor, – drawsBackground (NSTextFieldCell), – setDrawsBackground:

4

errorAction
– (SEL)errorAction

Returns the selector for the message sent to the receiver’s target whenever a validation error occurs.

See also: – textShouldEndEditing:, – setErrorAction:

importsGraphics
– (BOOL)importsGraphics

Returns YES if the receiver allows the user to drag image files into it, NO if it doesn’t accept dragged
images. You can add images programmatically regardless of this setting.

See also: – allowsEditingTextAttributes , – importsGraphics (NSTextView), – setImportsGraphics:

isBezeled
– (BOOL)isBezeled

Returns YES if the receiver draws a bezeled frame around its contents, NO if it doesn’t.

See also: – isBordered, – setBezeled:

isBordered
– (BOOL)isBordered

Returns YES if the receiver draws a solid black border around its contents, NO if it doesn’t.

See also: – isBezeled, – setBordered:

isEditable
– (BOOL)isEditable

Returns YES if the user is allowed to select and edit the receiver’s text, NO if the user isn’t allowed to edit
it (though the user may be able to select it).

See also: – isSelectable, – setEditable:

5

 Classes: NSTextField

isSelectable
– (BOOL)isSelectable

Returns YES if the user is allowed to select the receiver’s text, NO if the user isn’t allowed to select it.
Selectable text isn’t necessarily editable; use isEditable to check for editability.

See also: – setSelectable:

nextText
– (id)nextText

Returns the receiver’s next key view, the object that’s made first responder when the user presses the Tab
key while editing the receiver. See the description of the nextKeyView method in NSView for more
information.

See also: – previousText, – setNextText:

previousText
– (id)previousText

Returns the receiver’s previous key view, the object that’s made first responder when the user presses
Shift-Tab while editing the receiver. See the description of the previousKeyView method in NSView for
more information.

See also: – nextText, – setPreviousText:

selectText:
– (void)selectText:(id)sender

Selects the entire contents of the receiver if it’s selectable. However, if the receiver isn’t in some window’s
view hierarchy, this method has no effect.

See also: – isSelectable

6

setAllowsEditingTextAttributes:
– (void)setAllowsEditingTextAttributes: (BOOL)flag

Controls whether the receiver allows the user to change font attributes of the receiver’s text. If flag is YES,
the user is permitted to make such changes; if flag is NO, the user isn’t so permitted. You can change text
attributes programmatically regardless of this setting.

See also: – setImportsGraphics:, – allowsEditingTextAttributes

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the color of the background that the receiver draws behind the text to aColor.

See also: – setDrawsBackground:, – backgroundColor

setBezeled:
– (void)setBezeled:(BOOL)flag

Controls whether the receiver draws a bezeled border around its contents. If flag is NO, it draws no border;
if flag is YES, it draws a bezeled border and invokes setDrawsBackground: with an argument of NO.

See also: – isBezeled, – setBordered:

setBordered:
– (void)setBordered:(BOOL)flag

Controls whether the receiver draws a solid black border around its contents. If flag is YES, then it draws a
border; if flag is NO, it draws no border.

See also: – isBordered, – setBezeled:

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject.

See also: – textShouldBeginEditing:, – textShouldEndEditing:, – textDidBeginEditing: ,
– textDidEndEditing: , – textDidChange:, – delegate

7

 Classes: NSTextField

setDrawsBackground:
– (void)setDrawsBackground:(BOOL)flag

Controls whether the receiver draws its background color behind its text. If flag is YES, then it does; if flag
is NO, then it draws nothing behind its text.

See also: – setBackgroundColor:, – setDrawsBackground: (NSTextFieldCell), – drawsBackground

setEditable:
– (void)setEditable:(BOOL)flag

Controls whether the user can edits the receiver’s text. If flag is YES, then the user is allowed to both select
and edit text. If flag is NO, then the user isn’t permitted to edit text, and the receiver’s selectability is
restored to its previous value. For example, if an NSTextField is selectable but not editable, then made
editable for a time, then made not editable, it remains selectable. To guarantee that text is neither editable
nor selectable, simply use setSelectable: to turn off selectability.

See also: – isEditable

setErrorAction:
– (void)setErrorAction: (SEL)aSelector

Sets the selector for the message sent to the receiver’s target whenever a validation error occurs to aSelector.

See also: – textShouldEndEditing:, – errorAction

setImportsGraphics:
– (void)setImportsGraphics:(BOOL)flag

Controls whether the receiver allows the user to drag image files into it. If flag is YES, the receiver accepts
dragged images; if flag is NO, it doesn’t. You can add images programmatically regardless of this setting.

See also: – setAllowsEditingTextAttributes: , – setImportsGraphics: (NSTextView),
– importsGraphics

8

setNextText:
– (void)setNextText:(id)anObject

Sets the receiver’s next key view to anObject, which should be a kind of NSView. See the description of the
setNextKeyView: method in the NSView class specification for more information.

See also: – setPreviousText:, – nextText

setPreviousText:
– (void)setPreviousText:(id)anObject

Sets the receiver’s previous key view to anObject, which should be a kind of NSView. See the description
of the setPreviousKeyView: method in the NSView class specification for more information.

See also: – setNextText:, – previousText

setSelectable:
– (void)setSelectable:(BOOL)flag

If flag is YES, the receiver is made selectable but not editable (use setEditable: to make text both selectable
and editable). If NO, then the text is made neither editable nor selectable.

See also: – setEditable:

setTextColor:
– (void)setTextColor:(NSColor *)aColor

Sets the color used to draw the receiver’s text to aColor.

See also: – setBackgroundColor:, – setTextColor: (NSTextFieldCell), – textColor

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)aString

Sets the receiver’s string value to aString, using the first character preceded by an ampersand (‘&’) as the
mnemonic and stripping out that first ampersand character. Use this method only with a non-editable text
field being used as a label for another interface component, which you should establish using
setNextKeyView:. When set up in this fashion, the text field’s mnemonic serves to select the other interface
component.

9

 Classes: NSTextField

textColor
– (NSColor *)textColor

Returns the color used to draw the receiver’s text.

See also: – backgroundColor, – textColor (NSTextFieldCell), – setTextColor:

textDidBeginEditing:
– (void)textDidBeginEditing: (NSNotification *)aNotification

Posts an NSControlTextDidBeginEditingNotification to the default notification center. This causes the
receiver’s delegate to receive a controlTextDidBeginEditing: message. See the NSControl class
specification for more information on the text delegate method.

See also: – textDidBeginEditing: , – textDidChange:, – textShouldEndEditing:, – textDidEndEditing:

textDidChange:
– (void)textDidChange:(NSNotification *)aNotification

Forwards this message to the receiver’s cell if it responds, and posts an
NSControlTextDidChangeNotification to the default notification center. This causes the receiver’s delegate
to receive a controlTextDidChange: message. See the NSControl class specification for more information
on the text delegate method.

See also: – textShouldBeginEditing:, – textDidBeginEditing: , – textShouldEndEditing:,
– textDidEndEditing:

textDidEndEditing:
– (void)textDidEndEditing: (NSNotification *)aNotification

Handles an end to editing. After validating the new value, posts an
NSControlTextDidEndEditingNotification to the default notification center. This causes the receiver’s
delegate to receive a controlTextDidEndEditing: message. After this, sends endEditing: to the receiver’
cell, and handles the key that caused editing to end:

• If the user ended editing by pressing Return, this method tries to send the receiver’s action to its target;
if unsuccessful, it sends performKeyEquivalent: to its NSWindow (for example, to handle the default
button on a panel); if that also fails, then the receiver simply selects its text.

• If the user ended editing by pressing Tab or Shift-Tab, the receiver tries to have its NSWindow select its
next or previous key view, using the NSWindow method selectKeyViewFollowingView: or
selectKeyViewPreceedingView:. If unsuccessful in doing this, the receiver simply selects its text.

10

See the NSControl class specification for more information on the text delegate method.

See also: – textShouldBeginEditing:, – textDidBeginEditing: , – textDidChange:,
– textShouldEndEditing:

textShouldBeginEditing:
– (BOOL)textShouldBeginEditing:(NSText *)textObject

If the receiver isn’t editable, returns NO immediately. If it is editable and its delegate responds to control:
textShouldBeginEditing:, invokes that method and returns the result. Otherwise simply returns YES to
allow editing to occur. See the NSControl class specification for more information on the text delegate
method.

See also: – textDidBeginEditing: , – textDidChange:, – textShouldEndEditing:, – textDidEndEditing:

textShouldEndEditing:
– (BOOL)textShouldEndEditing:(NSText *)textObject

Performs validation on the receiver’s new value using NSCell’s isEntryAcceptable:, sending the receiver’s
error action to its target if validation fails. If the new value is valid and the delegate responds to control:
textShouldEndEditing:, invokes that method and returns the result, in addition beeping if the delegate
returns NO. See the NSControl class specification for more information on the text delegate method.

See also: – textShouldBeginEditing:, – textDidBeginEditing: , – textDidChange:,
– textDidEndEditing: , – errorAction

1

 Classes: NSTextFieldCell

NSTextFieldCell

Inherits From: NSActionCell : NSCell : NSObject

Conforms To: NSCoding (NSCell)
NSCopying (NSCell)
NSObject (NSObject)

Declared In: AppKit/NSTextFieldCell.h

Class Description

NSTextFieldCell adds to NSCell’s text-display capabilities by allowing you to set the color of both the text
and its background. You can also specify whether the cell draws its background at all. All of the methods
declared by this class are also declared by NSTextField, which uses NSTextFieldCells to draw and edit text.

Method Types

Setting the text color
– setTextColor:
– textColor

Controlling the background
– setBackgroundColor:
– backgroundColor
– setDrawsBackground:
– drawsBackground

Changing the field editor
– setUpFieldEditorAttributes:

Instance Methods

backgroundColor
– (NSColor *)backgroundColor

Returns the color of the background that the receiver draws behind the text.

See also: – drawsBackground, – backgroundColor (NSTextField), – setBackgroundColor:

2

drawsBackground
– (BOOL)drawsBackground

Returns YES if the receiver’s cell draws its background color behind its text, NO if it draws no background.

See also: – backgroundColor, – drawsBackground (NSTextField), – setDrawsBackground:

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)color

Sets the color of the background that the receiver draws behind the text to aColor.

See also: – setDrawsBackground:, – setBackgroundColor: (NSTextField) – backgroundColor

setDrawsBackground:
– (void)setDrawsBackground:(BOOL)flag

Controls whether the receiver draws its background color behind its text. If flag is YES, then it does; if flag
is NO, then it draws nothing behind its text.

See also: – setBackgroundColor:, – setDrawsBackground: (NSTextField), – drawsBackground

setTextColor:
– (void)setTextColor:(NSColor *)color

Sets the color used to draw the receiver’s text to aColor.

See also: – setBackgroundColor:, – setTextColor: (NSTextField), – textColor

setUpFieldEditorAttributes:
– (NSText *)setUpFieldEditorAttributes: (NSText *)textObj

You never invoke this method directly; by overriding it, however, you can customize or replace the field
editor. When you override this method, you should generally invoke super, and return the textObj argument.
For information on field editors, see the “Field Editors” section of the NSWindow class description.

3

 Classes: NSTextFieldCell

textColor
– (NSColor *)textColor

Returns the color used to draw the receiver’s text.

See also: – backgroundColor, – textColor (NSTextField), – setTextColor:

1

 Classes: NSTextStorage

NSTextStorage

Inherits From: NSMutableAttributedString : NSAttributedString : NSObject

Conforms To: NSCopying
NSMutableCopying
NSObject (NSObject)

Declared In: AppKit/NSTextStorage.h

Class Description

NSTextStorage is a semi-concrete subclass of NSMutableAttributedString that manages a set of client
NSLayoutManagers, notifying them of any changes to its characters or attributes so that they can re-lay and
redisplay the text as needed. NSTextStorage defines the fundamental storage mechanism of NeXT’s
extended text-handling system.

Like an abstract class of a class cluster, allocating and initializing an NSTextStorage actually produces an
instance of a private subclass. You can use any of NSAttributedString and NSMutableAttributedString’s
initialization methods to create an NSTextStorage object. Following this, you add NSLayoutManagers to it
using addLayoutManager:.

The behavior of an NSTextStorage object is best illustrated by following the methods it invokes while being
changed. There are three stages to editing a text storage object programmatically. The first stage is to send
it a beginEditing message to announce a group of changes. In the second stage, you send it some editing
messages, such as deleteCharactersInRange: and addAttributes:range: , to effect the changes in
characters or attributes. Each time you send such a method, the text storage object invokes edited:range:
changeInLength: to record the range of its characters affected since it received the beginEditing message.
For the third stage, when you’re done changing the text storage object, you send it an endEditing message.
This causes it to invoke its own processEditing method, fixing attributes within the recorded range of
changed characters. After fixing its attributes, the text storage object sends a message to each
NSLayoutManager indicating the range in the text storage object that has changed, along with the nature of
those changes. The NSLayoutManagers in turn use this information to re-lay their glyphs and redisplay if
necessary. NSTextStorage also keeps a delegate and sends it messages before and after processing edits.

Creating a Subclass of NSTextStorage

As indicated above, NSTextStorage isn’t a fully concrete class. It defines the storage for its
NSLayoutManagers and implements all of the methods described in this specification, but doesn’t provide
the primitive attributed string methods to subclasses. A subclass must define the storage for its attributed
string, typically as an instance variable of type NSMutableAttributedString, override init and define its own

2

initialization methods, and implement the primitive methods of both NSAttributedString and
NSMutableAttributedString. For the record, these methods are:

– string
– attributesAtIndex:effectiveRange:
– replaceCharactersInRange:withString:
– setAttributes:range:

Beyond these requirements, if a subclass overrides or adds any methods that change its characters or
attributes directly (not using the primitive methods or making extra changes after invoking the primitives),
those methods must invoke edited:range:changeInLength: after performing the change in order to keep
the change-tracking information up to date. See the description of this method for more information.

Method Types

Managing NSLayoutManagers
– addLayoutManager:
– removeLayoutManager:
– layoutManagers

Handling text edited messages
– edited:range:changeInLength:
– endEditing
– processEditing

Determining the nature of changes
– editedMask

Determining the extent of changes
– editedRange
– changeInLength

Setting the delegate
– setDelegate:
– delegate

Instance Methods

addLayoutManager:
– (void)addLayoutManager:(NSLayoutManager *)aLayoutManager

Adds aLayoutManager to the receiver’s set of NSLayoutManagers.

See also: – removeLayoutManager:, – layoutManagers

3

 Classes: NSTextStorage

changeInLength
– (int)changeInLength

Returns the difference between the current length of the edited range and its length before editing began
(that is, before the receiver was sent the first beginEditing message or a single edited:range:
changeInLength: message). This difference is accumulated with each invocation of edited:range:
changeInLength:, until a final endEditing message processes the changes.

The receiver’s delegate and layout managers can use this information to determine the nature of edits in
their respective notification methods.

See also: – editedRange, – editedMask

delegate
– (id)delegate

Returns the receiver’s delegate.

See also: – setDelegate:

edited:range:changeInLength:
– (void)edited:(unsigned)mask

range:(NSRange)oldRange
changeInLength:(int)lengthChange

Tracks changes made to the receiver, allowing the NSTextStorage to record the full extent of changes made
between a pair of beginEditing and endEditing messages. If invoked outside of such a pair, this method
immediately invokes processEditing. NSTextStorage invokes this method automatically each time it
makes a change to its attributed string. Subclasses that override or add methods that alter their attributed
strings directly should invoke this method after making those changes. The information accumulated with
this method is then used in an invocation of processEditing to report the affected portion of the receiver.

mask specifies the nature of the changes. Its value is made by combining these options with the C bitwise
OR operator:

Option Meaning

NSTextStorageEditedAttributes Attributes were added, removed, or changed.

NSTextStorageEditedCharacters Characters were added, removed, or replaced.

4

oldRange indicates the extent of characters affected before the change took place. If the
NSTextStorageEditedCharacters bit of mask is set, lengthChange gives the number of characters added to
or removed from oldRange (otherwise its value is irrelevant). For example, when replacing “The” with
“Several” in the string “The files couldn’t be saved”, oldRange is {0, 3} and lengthChange is 4.

Note: The methods for querying changes, editedRange and changeInLength, indicate the extent of
characters affected after the change. This method expects the characters before the change because
that information is readily available as the argument to whatever method performs the change (such
as replaceCharactersInRange:withString:).

editedMask
– (unsigned int)editedMask

Returns the kinds of edits pending for the receiver, as a mask containing either or both of
NSTextStorageEditedAttributes and NSTextStorageEditedCharacters. Use the C bitwise AND operator to
test the mask; testing for equality will fail if additional mask flags are added later. The receiver’s delegate
and layout managers can use this information to determine the nature of edits in their respective notification
methods.

See also: – editedRange, – changeInLength

editedRange
– (NSRange)editedRange

Returns the range of the receiver to which pending changes have been made, whether of characters or of
attributes. The receiver’s delegate and layout managers can use this information to determine the nature of
edits in their respective notification methods.

See also: – changeInLength, – editedMask

endEditing
– (void)endEditing

Clears the last recorded invocation of beginEditing, and if there are no more, invokes processEditing to
clean up after changes and notify the delegate and layout managers of the edits.

5

 Classes: NSTextStorage

layoutManagers
– (NSArray *)layoutManagers

Returns the receiver’s NSLayoutManagers.

See also: – addLayoutManager:, – removeLayoutManager:

processEditing
– (void)processEditing

Cleans up changes made to the receiver and notifies its delegate and layout managers of changes. This
method is automatically invoked in response to an endEditing or edited:range:changeInLength:
message. You should never need to invoke it directly.

This method begins by posting an NSTextStorageWillProcessEditingNotification to the default notification
center (which results in the delegate receiving a textStorageWillProcessEditing: message). It then invokes
the inherited fixAttributesAfterEditingRange: method to fix up attributes after a batch of editing changes.
After this, it posts an NSTextStorageDidProcessEditingNotification to the default notification center (which
results in the delegate receiving a textStorageDidProcessEditing: message). Finally, it sends a
textStorage:edited:range:changeInLength:invalidatedRange: message to each of the receiver’s
NSLayoutManagers using the argument values provided.

removeLayoutManager:
– (void)removeLayoutManager:(NSLayoutManager *)aLayoutManager

Removes aLayoutManager from the receiver’s set of NSLayoutManagers.

See also: – addLayoutManager:, – layoutManagers

setDelegate:
– (void)setDelegate:(id)anObject

Sets the receiver’s delegate to anObject.

See also: – delegate

6

Methods Implemented By the Delegate

textStorageDidProcessEditing:
– (void)textStorageDidProcessEditing:(NSNotification *)aNotification

Informs the delegate that an NSTextStorage object has finished processing edits. The text storage object is
available by sending object to aNotification, which is always an
NSTextStorageDidProcessEditingNotification. The delegate can use this notification to verify the final state
of the text storage object; it can’t change the text storage object’s characters without leaving it in an
inconsistent state, but if necessary it can change attributes. Note that even in this case it’s possible to put a
text storage object into an inconsistent state—for example by changing the font of a range to one that
doesn’t support the characters in that range (such as using a Latin font for Kanji text).

textStorageWillProcessEditing:
– (void)textStorageWillProcessEditing:(NSNotification *)aNotification

Informs the delegate that an NSTextStorage object is about to process edits. The text storage object is
available by sending object to aNotification, which is always an
NSTextStorageWillProcessEditingNotification. The delegate can use this notification to verify the changed
state of the text storage object, and to make changes to the text storage object’s characters or attributes to
enforce whatever constraints it establishes (which doesn’t result in this message being sent again, however).
For example, a code editor application might add a delegate that checks after edits to make sure that all
programming language keywords are set in boldface.

Notifications

NSTextStorageDidProcessEditingNotification

Posted after the NSTextStorage finishes processing edits in processEditing. Observers other than the
delegate shouldn’t make further changes to the NSTextStorage. This notification contains a notification
object but no userInfo dictionary. The notification object is the NSTextStorage object that processed the
edits.

NSTextStorageWillProcessEditingNotification

Posted before the NSTextStorage finishes processing edits in processEditing. Observers other than the
delegate shouldn’t make further changes to the NSTextStorage. This notification contains a notification
object but no userInfo dictionary. The notification object is the NSTextStorage object that is a bout to
process the edits.

1

 Classes: NSTextTab

NSTextTab

Inherits From: NSObject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: AppKit/NSParagraphStyle.h

Class Description

An NSTextTab represents a tab in an NSParagraphStyle object, storing an alignment type and location.
NSTextTabs are most frequently used with the Application Kit’s text system and with NSRulerView and
NSRulerMarker objects. See the appropriate class specifications for more information on these uses.

The text system supports four alignment types: left, center, right, and decimal (based on the decimal
separator character of the locale in effect). These alignment types are absolute, not based on the line sweep
direction of text. For example, tabbed text is always positioned to the left of a right-aligned tab, whether the
line sweep direction is left-to-right or right-to-left. A tab’s location, on the other hand, is relative to the back
margin. A tab set at 1.5", for example, is at 1.5" from the right in right-to-left text.

Adopted Protocols

NSCopying
– copyWithZone:

Method Types

Creating an NSTextTab
– initWithType:location:

Getting tab stop information
– location
– tabStopType

2

Instance Methods

initWithType:location:
– (id)initWithType: (NSTextTabType)type location:(float)location

Initializes a newly allocated NSTextTab with an alignment of type at location on the paragraph. The location
is relative to the back margin, based on the line sweep direction of the paragraph. type can be any one of:

location
– (float)location

Returns the receiver’s ruler location relative to the back margin.

tabStopType
– (NSTextTabType)tabStopType

Returns the receiver’s tab stop type. The possible values are listed in the initWithType:location: method
description.

NSLeftTabStopType NSRightTabStopType

NSCenterTabStopType NSDecimalTabStopType

1

 Classes: NSTextView

NSTextView

Inherits From: NSText : NSView : NSResponder : NSObject

Conforms To: NSTextInput
NSChangeSpelling (NSText)
NSIgnoreMisspelledWords (NSText)
NSCoding (NSResponder) — Note: NSTextView doesn’t implement this protocol
NSObject (NSObject)

Declared In: AppKit/NSTextView.h

Class at a GlanceˇClass at a Glance

Purpose
NSTextView is the front-end component of the Application Kit’s text system. It displays and manipulates text
laid out in an area defined by an NSTextContainer, and adds many features to those defined by its superclass,

2

NSText. Many of the methods that you’ll use most frequently are declared by the superclass; see the NSText class
specification for details.

Principal Attributes
• Supports rich text and graphics
• Supports input management and key bindings
• Works with the Font Panel and menu
• Works with rulers
• Provides delegation and notification
• Works with the Services facility
• Works with the pasteboard
• Works with spell-checking services

Creation
Instances of this class can be created using Interface Builder or using one of the following methods:

Commonly Used Methods
The methods most commonly used with NSTextView objects are declared in NSText, the superclass. These
methods provide access to the other major components of the text system:

Class Description

NSTextView is the front-end class to the Application Kit’s extended text-handling system. It draws the text
managed by the back-end components and handles user events to select and modify its text. NSTextView
is the principal means to obtain a text object that caters to almost all needs for displaying and managing text
at the user interface level. While NSTextView is a subclass of NSText—which declares the most general
OpenStep interface to the text system—NSTextView adds several major features over and above the
capabilities of NSText.

– initWithFrame: Creates an NSTextView along with all its supporting objects.

– initWithFrame:textContainer: Designated initializer.

– textStorage Returns the associated NSTextStorage object.

– textContainer Returns the associated NSTextContainer object.

– layoutManager Returns the associated NSLayoutManager object.

3

 Classes: NSTextView

One of the design goals of NSTextView is to provide a comprehensive set of text-handling features so that
you should rarely need to create a subclass. In its standard incarnation, NSTextView creates the requisite
group of objects that support the text handling system—NSTextContainer, NSLayoutManager, and
NSTextStorage objects. Refer to “The OPENSTEP Text System” for a comprehensive overview of the
components of the text system. Here are the major features that NSTextView adds to those of NSText:

Rulers. NSTextView works with the NSRulerView class to let users control paragraph formatting,
in addition to using commands in the Format Text menu provided by Interface Builder.

Input management and key binding. Certain key combinations are bound to specific NSTextView
methods so that the user can move the insertion point, for example, without using the mouse.

Marked text attributes . NSTextView defines a set of text attributes that support special display
characteristics during input management. Marked text attributes only affect visual aspects of text—
color, underline, and so on—they don’t include any attributes that would change the layout of text.

File and graphic attachments. The extended text system provides programmatic access to text
attachments as instances of NSTextAttachment, through the NSTextView and NSTextStorage
classes.

Delegate messages and notifications. NSTextView adds several delegate messages and
notifications to those used by NSText. The delegate and observers of an NSTextView can receive any
of the messages or notifications declared by both classes.

Creating NSTextView Objects

The easiest way to add an NSTextView to your application is through Interface Builder. Interface Builder’s
Data Views palette supplies a specially configured NSScrollView object that contains an NSTextView
object as its document view. This NSTextView is configured to work with the NSScrollView and other
user-interface controls such as a ruler, the Font menu, the Edit menu, and so on.

Interface Builder also offers other objects—of the NSTextField and NSForm classes—that make use of
NSTextView objects for their text-editing facilities. In fact, all NSTextFields and NSForms within the same
window share the same NSTextView object (known as the field editor), thus reducing the memory demands
of an application. If your application requires stand-alone or grouped text fields that support editing (and
all the other facilities provided by the NSTextView class), these are the classes to use.

You can also create NSTextView objects programmatically, using either of the methods initWithFrame:
textContainer: (the designated initializer), or initWithFrame: . The initWithFrame: method is the
simplest way to obtain an NSTextView object—it creates all the other components of the text-handling
system for you and releases them when you’re done. If you use initWithFrame:textContainer: , you must
construct (and release) the other components yourself. See the “The OPENSTEP Text System” for more
information.

4

Configuring Editing Behavior

Like NSText, NSTextView allows you to grant or deny the user the ability to select or edit its text, using the
setSelectable: and setEditable: methods. These methods only affect what the user can do; you can still
make changes to the NSTextView programmatically. An editable text view can behave as a normal text
editor, accepting Tab and Return characters, or as a field editor, interpreting tabs and returns as cues to end
editing. The setFieldEditor: method controls this behavior. NSTextView also implements the distinction
between plain and rich text defined by NSText with its setRichText: and setImportsGraphics: methods.
See the NSText class specification for more information on these various distinctions.

Attachments

While NSText leaves open the nature of imported graphics and other attachments, NSTextView explicitly
uses NSTextAttachment objects, which contain NSFileWrappers to represent the attached files.
NSTextView declares several delegate methods that let you handle user actions on an attachment’s image
or icon. textView:clickedOnCell:inRect:atIndex: and textView:doubleClickedOnCell:inRect:
atIndex: let the delegate take action on mouse clicks, textView:draggedCell:inRect:event:atIndex: lets
the delegate initiate a dragging session for the attachment, and textView:clickedOnLink:atIndex: lets the
delegate act on mouse clicks in a link. See the NSTextAttachment, NSTextAttachmentCell, and
NSFileWrapper class and protocol specifications for more information on working with attachments.

Input Management

NSTextView uses an input manager to turn basic character information into text and commands. It passes
uninterpreted keyboard input to the input manager, which examines the characters generated and sends
messages to the NSTextView based on those characters. If the typed characters are interpreted as text to
input, the input manager sends the text view an insertText: message. If they’re interpreted as commands to
perform, such as moving the insertion point or deleting text, the input manager sends the text view a
doCommandBySelector: message. Many of the standard commands are described in the NSResponder
class specification. NSTextView also gives its delegate a chance to handle a command by sending it a
textView:doCommandBySelector: message. If the delegate implements this method and returns YES, the
text view does nothing further; otherwise it tries to perform the command itself.

See the NSInputManager class and NSTextInput protocol specifications for more information.

Using the Font Panel and Ruler

NSTextView is designed to work with the Application Kit’s font conversion system, defined by the
NSFontPanel and NSFontManager classes. By default, an NSTextView keeps the Font Panel updated with
the first font in its selection, or of its typing attributes (defined below). It also changes the font in response
to messages from the Font Panel and Font menu. Such changes apply to the selected text or typing attributes
for a rich text view, or to all the text in a plain text view. You can turn this behavior off using the
setUsesFontPanel: method. Doing so is recommended for a text view that serves as a field editor, for
example. Making an NSTextView not use the font conversion system renders some of its other methods

5

 Classes: NSTextView

unusable, as these methods require access to font information to work. See the description of
setUsesFontPanel: for these side effects.

NSTextView also defines a comprehensive interface for manipulating paragraph attributes, using the
NSRulerView class. If an NSTextView is enclosed in an NSScrollView, it can display a ruler view, which
displays margin and tab markers that the user can manipulate to adjust their settings, as well as other
controls for setting alignment, paragraph spacing, and so on. setRulerVisible: and the inherited
toggleRuler: control whether the ruler view is displayed. The NSTextView serves as the ruler view’s client,
as described in the NSRulerView class specification. Similar to the Font Panel, NSTextView can be set not
to use a ruler with the setUsesRuler: method. This has side effects similar to those of setUsesFontPanel:.

Examining and Setting the Selection

Most of the time the selection is determined by the user through mouse or keyboard operations. You can get
the range of characters currently selected using the selectedRange method. This is the single most
commonly used method for examining the selection. You can also set the selection programmatically using
setSelectedRange:. NSTextView indicates its selection by applying a special set of attributes to it.
selectedTextAttributes returns these attributes, and setSelectedTextAttributes: sets them.

While changing the selection in response to user input, an NSTextView invokes its setSelectedRange:
affinity:stillSelecting: method. The first argument is of course the range to select. The second, called the
selection affinity, determines which glyph the insertion point displays near when the two glyphs aren’t
adjacent. It’s typically used where lines wrap to place the insertion point at the end of one line or the
beginning of the following line. You can get the selection affinity in effect using the selectionAffinity
method. The last argument indicates whether the selection is still in the process of changing; the delegate
and any observers aren’t notified of the change in the selection until the method is invoked with NO for this
argument. An additional factor affecting selection behavior is the selection granularity: whether characters,
words, or whole paragraphs are being selected. This is usually determined by number of initial clicks; for
example, a double-click initiates word-level selection. NSTextView decides how much to change the
selection during input tracking using its selectionRangeForProposedRange:granularity: method, as
described under “Subclass Responsibilities” below.

An additional aspect of selection, actually related to input management, is the range of marked text. As the
input manager interprets keyboard input, it can mark incomplete input in a special way. markedRange
returns the range of any marked text, and markedTextAttributes returns the attributes used to highlight the
marked text. You can change these attributes using setMarkedTextAttributes:

Setting Text Attributes

NSTextView allows you to change the attributes of its text programmatically through various methods, most
inherited from the superclass, NSText. NSTextView adds its own methods for setting the attributes of text
that the user types, for setting the baseline offset of text as an absolute value, and for adjusting kerning and
use of ligatures. Most of the methods for changing attributes are defined as action methods, and apply to
the selected text or typing attributes for a rich text view, or to all of the text in a plain text view.

6

An NSTextView maintains a set of typing attributes (font, size, color, and so on) that it applies to newly
entered text, whether typed by the user or pasted as plain text. It automatically sets the typing attributes to
the attributes of the first character immediately preceding the insertion point, of the first character of a
paragraph if the insertion point is at the beginning of a paragraph, or of the first character of a selection. The
user can change the typing attributes by choosing menu commands and using utilities such as the Font
Panel. You can also set the typing attributes programmatically using setTypingAttributes: , though you
should rarely find need to do so unless creating a subclass.

NSText defines the action methods superscript:, subscript:, and unscript: , which raise and lower the
baseline of text by predefined increments. NSTextView gives you much finer control over the baseline offset
of text by defining the raiseBaseline: and lowerBaseline: action methods, which raise or lower text by one
point each time they’re invoked.

Kerning

NSTextView provides convenient action methods for adjusting the spacing between characters. By default,
an NSTextView object uses standard kerning (as provided by the data in a font’s AFM file). A
turnOffKerning: message causes this kerning information to be ignored and the selected text to be
displayed using nominal widths. The loosenKerning: and tightenKerning: methods adjust kerning values
over the selected text and useStandardKerning: reestablishes the default kerning values.

Kerning information is a character attribute that’s stored in the text view’s NSTextStorage object. If your
application needs finer control over kerning than the methods of this class provide, you should operate on
the NSTextStorage object directly through methods defined by its superclass, NSMutableAttributedString.
See the NSAttributedString Class Cluster Additions specification for information on setting attributes.

Ligatures

NSTextView’s support for ligatures provides the minimum required ligatures for a given font and script. The
required ligatures for a specific font and script are determined by the mechanisms that generate glyphs for
a specific language. Some scripts may well have no ligatures at all—English text, as an example, doesn’t
require ligatures, although certain ligatures such as “fi” and “fl” are desirable and are used if they’re
available. Other scripts, such as Arabic, demand that certain ligatures must be available even if a
turnOffLigatures: message is sent to the NSTextView. Other scripts and fonts have standard ligatures that
are used if they’re available. The useAllLigatures: method extends ligature support to include all possible
ligatures available in each font for a given script.

Ligature information is a character attribute that’s stored in the text view’s NSTextStorage object. If your
application needs finer control over ligature use than the methods of this class provide, you should operate
on the NSTextStorage object directly through methods defined by its superclass,
NSMutableAttributedString. See the NSAttributedString Class Cluster Additions specification for
information on setting attributes.

7

 Classes: NSTextView

Using Multiple NSTextViews

A single NSLayoutManager can be assigned any number of NSTextContainers, in whose NSTextViews it
lays out text sequentially. In such a configuration, many of the attributes accessed through the NSTextView
interface are actually shared by all of these text views. Among these attributes are:

• The selection
• The delegate (see “Other Delegate Messages and Notifications” below for details)
• Selectability
• Editability
• Whether they act as a field editor
• Whether they display plain or rich text
• Whether they import graphics
• Whether the ruler is visible
• Whether they use the Font Panel
• Whether they use the ruler

Setting any of these attributes causes all associated NSTextView’s to share the new value.

With multiple NSTextViews, only one is the first responder at any time. NSLayoutManager defines these
methods for determining and appropriately setting the first responder:

– layoutManagerOwnsFirstResponderInWindow:
– firstTextView
– textViewForBeginningOfSelection

See their descriptions in the NSLayoutManager class specification for more information.

Other Delegate Messages and Notifications

An NSTextView object can have a delegate that it informs of certain actions or pending changes to the state
of the text. Several of the delegate methods have already been mentioned; here are all of the messages that
a delegate can receive:

textView:willChangeSelectionFromCharacterRange:toCharacterRange:
textViewDidChangeSelection:

textShouldBeginEditing:
textDidBeginEditing:
textView:shouldChangeTextInRange:replacementString:
textDidChange:
textShouldEndEditing:
textDidEndEditing:

textView:doCommandBySelector:

8

textView:clickedCell:inRect:
textView:doubleClickedCell:inRect:
textView:draggedCell:inRect:event:

Those whose names begin with “text” rather than “textView” are declared by NSText and described in the
NSText class specification. See “Methods Implemented By the Delegate” at the end of this class description
for more details. The delegate can be any object you choose, and one delegate can control multiple
NSTextView objects (or multiple series of connected NSTextView objects).

All NSTextView objects attached to the same NSLayoutManager share the same delegate: Setting the
delegate of one such NSTextView sets the delegate for all the others. Delegate messages pass the id of the
sender as an argument. For multiple NSTextViews attached to the same NSLayoutManager, the id is that of
the notifying text view, the first NSTextView for the shared NSLayoutManager. As the name implies, this
NSTextView is also responsible for posting notifications at the appropriate times.

The notifications posted by NSTextView are:

NSTextViewDidChangeSelectionNotification

NSTextDidBeginEditingNotification
NSTextDidEndEditingNotification
NSTextDidChangeNotification

NSTextViewWillChangeNotifyingTextViewNotification

Of these, the last is crucially import for observers to register for. If a new NSTextView is added at the
beginning of a series of connected NSTextViews, it becomes the new notifying text view. It doesn’t have
access to which objects are observing its group of text objects, so it posts an
NSTextViewWillChangeNotifyingTextViewNotification, which allows all those observers to unregister
themselves from the old notifying text view and reregister themselves with the new one. See the description
for this notification at the end of this specification for more information.

Subclass Responsibilities

NSTextView expects subclasses to abide by certain rules of behavior, and provides many methods to help
subclasses do so. Some of these methods are meant to be overridden to add information and behavior into
the basic infrastructure. Some are meant to be invoked as part of that infrastructure when the subclass
defines its own behavior. The following sections describe the major areas where a subclass has obligations
or where it can expect help in implementing its new features.

Updating State

NSTextView automatically updates the Font Panel and ruler as its selection changes. If you add any new
font or paragraph attributes to your subclass of NSTextView, you’ll need to override the methods that
perform this updating to account for the added information. updateFontPanel makes the Font Panel
display the font of the first character in the selection; you might override it to update the display of an

9

 Classes: NSTextView

accessory view in the Font Panel. Similarly, updateRuler causes the ruler to display the paragraph
attributes for the first paragraph in the selection. You can also override this to customize display of items in
the ruler. Be sure to invoke super’s implementation to have the basic updating performed as well.

Custom Import Types

NSTextView supports pasteboard operations and the dragging of files and colors into its text. If you
customize the ability of your subclass to handle pasteboard operations for new data types, you should
override the readablePasteboardTypes and writablePasteboardTypes methods to reflect those types.
Similarly, for to support new types of data for dragging operations, you should override the
acceptableDragTypes method. Your implementation of these methods should invoke the superclass’
implementation, add the new data types to the array returned from super, and then return the modified array.

For dragging operations, if your subclass’s ability to accept your custom dragging types varies over time,
you can override updateDragTypeRegistration to register or unregister the custom types according to the
text view’s current status. By default this method enables dragging of all acceptable types if the receiver is
editable and a rich text view.

To read and write custom pasteboard types, you must override the readSelectionFromPasteboard:type:
and writeSelectionToPasteboard:type: methods. In your implementation of these methods, you should
read the new data types your subclass supports and let the superclass handle any other types.

Altering Selection Behavior

Your subclass of NSTextView can customize the way selections are made for the various granularities
described in “Examining and Setting the Selection”. While tracking user changes to the selection, whether
by the mouse or keyboard, an NSTextView repeatedly invokes selectionRangeForProposedRange:
granularity: to determine what range to actually select. When finished tracking changes, it sends the
delegate a textView:willChangeSelectionFromCharacterRange:toCharacterRange:. message By
overriding the NSTextView method or implementing the delegate method, you can alter the way the
selection is extended or reduced. For example, in a code editor you can provide a delegate that extends a
double click on a brace or parenthesis character to its matching delimiter.

Note: These mechanisms aren’t meant for changing language word definitions (such as what’s selected on
a double click). This detail of selection is handled at a lower (and currently private) level of the text
system.

Preparing to Change Text

If you create a subclass of NSTextView to add new capabilities that will modify the text in response to user
actions, you may need to modify the range selected by the user before actually applying the change. For
example, if the user is making a change to the ruler, the change must apply to whole paragraphs, so the
selection may have to be extended to paragraph boundaries. Three methods calculate the range to which
certain kinds of change should apply. rangeForUserTextChange returns the range to which any change to
characters themselves—insertions and deletions—should apply.

10

rangeForUserCharacterAttributeChange returns the range to which a character attribute change, such
as a new font or color, should apply. Finally, rangeForUserParagraphAttributeChange returns the range
for a paragraph-level change, such as a new or moved tab stop, or indent. These methods all return a range
whose location is NSNotFound if a change isn’t possible; you should check the returned range and abandon
the change in this case.

Notifying About Changes to the Text

In actually making changes to the text, you must ensure that the changes are properly performed and
recorded by different parts of the text system. You do this by bracketing each batch of potential changes
with shouldChangeTextInRange:replacementString: and didChangeText messages. These methods
ensure that the appropriate delegate messages are sent and notifications posted. The first method asks the
delegate for permission to begin editing with a textShouldBeginEditing: message. If the delegate returns
NO, shouldChangeTextInRange:replacementString: in turn returns NO, in which case your subclass
should disallow the change. If the delegate returns YES, the text view posts an
NSTextDidBeginEditingNotification, and shouldChangeTextInRange:replacementString: in turn
returns YES. In this case you can make your changes to the text, and follow up by invoking didChangeText.
This method concludes the changes by posting an NSTextDidChangeNotification, which results in the
delegate receiving a textDidChange: message.

The textShouldBeginEditing: and textDidBeginEditing: messages are sent only once during an editing
session. More precisely, they’re sent upon the first user input since the NSTextView became the first
responder. Thereafter, these messages—and the NSTextDidBeginEditingNotification—are skipped in the
sequence. textView:shouldChangeTextInRange:replacementString:, however, must be invoked for
each individual change.

Smart Insert and Delete

NSTextView defines several methods to aid in “smart” insertion and deletion of text, so that spacing and
punctuation is preserved after a change. Smart insertion and deletion typically applies when the user has
selected whole words or other significant units of text. A smart deletion of a word before a comma, for
example, also deletes the space that would otherwise be left before the comma (though not placing it on the
pasteboard in a Cut operation). A smart insertion of a word between another word and a comma adds a space
between the two words to protect that boundary. NSTextView automatically uses smart insertion and
deletion by default; you can turn this behavior off using setSmartInsertDeleteEnabled:. Doing so causes
only the selected text to be deleted, and inserted text to be added with no addition of white space.

If your subclass of NSTextView defines any methods that insert or delete text, you can make them smart by
taking advantage of two NSTextView methods. smartDeleteRangeForProposedRange: expands a
proposed deletion range to include any whitespace that should also be deleted. If you need to save the text
deleted, though, it’s typically best to save only the text from the original range. For smart insertion,
smartInsertForString:replacingRange:beforeString:afterString: returns by reference two strings that
you can insert before and after a given string to preserve spacing and punctuation. See the method
descriptions for more information.

11

 Classes: NSTextView

Adopted Protocols

NSTextInput
– conversationIdentifier
– doCommandBySelector:
– getMarkedText:selectedRange:
– hasMarkedText
– insertText:
– setMarkedText:selectedRange:
– unmarkText

Method Types

Creating an instance
– initWithFrame:textContainer:
– initWithFrame:

Registering Services information
+ registerForServices

Accessing related text-system objects
– setTextContainer:
– replaceTextContainer:
– textContainer
– setTextContainerInset:
– textContainerInset
– textContainerOrigin
– invalidateTextContainerOrigin
– layoutManager
– textStorage

Setting graphic attributes
– setBackgroundColor:
– backgroundColor
– setDrawsBackground:
– drawsBackground

Controlling display
– setNeedsDisplayInRect:avoidAdditionalLayout:
– shouldDrawInsertionPoint
– drawInsertionPointInRect:color:turnedOn:
– setConstrainedFrameSize:
– cleanUpAfterDragOperation

12

Setting behavioral attributes
– setEditable:
– isEditable
– setSelectable:
– isSelectable
– setFieldEditor:
– isFieldEditor
– setRichText:
– isRichText
– setImportsGraphics:
– importsGraphics

Using the Font Panel and menu
– setUsesFontPanel:
– usesFontPanel

Using the ruler
– setUsesRuler:
– usesRuler
– setRulerVisible:
– isRulerVisible

Managing the selection
– setSelectedRange:
– selectedRange
– setSelectedRange:affinity:stillSelecting:
– selectionAffinity
– setSelectionGranularity:
– selectionGranularity
– setInsertionPointColor:
– insertionPointColor
– updateInsertionPointStateAndRestartTimer:
– setSelectedTextAttributes:
– selectedTextAttributes
– markedRange
– setMarkedTextAttributes:
– markedTextAttributes

Managing the pasteboard
– preferredPasteboardTypeFromArray:restrictedToTypesFromArray:
– readSelectionFromPasteboard:
– readSelectionFromPasteboard:type:
– readablePasteboardTypes
– writablePasteboardTypes
– writeSelectionToPasteboard:type:
– writeSelectionToPasteboard:types:

13

 Classes: NSTextView

Setting text attributes
– alignJustified:
– changeColor:
– setAlignment:range:
– setTypingAttributes:
– typingAttributes
– useStandardKerning:
– lowerBaseline:
– raiseBaseline:
– turnOffKerning:
– loosenKerning:
– tightenKerning:
– useStandardLigatures:
– turnOffLigatures:
– useAllLigatures:

Other action methods
– clickedOnLink:atIndex:
– pasteAsPlainText:
– pasteAsRichText:

Methods that subclasses should use or override
– updateFontPanel
– updateRuler
– acceptableDragTypes
– updateDragTypeRegistration
– selectionRangeForProposedRange:granularity:
– rangeForUserCharacterAttributeChange
– rangeForUserParagraphAttributeChange
– rangeForUserTextChange
– shouldChangeTextInRange:replacementString:
– didChangeText
– setSmartInsertDeleteEnabled:
– smartInsertDeleteEnabled
– smartDeleteRangeForProposedRange:
– smartInsertForString:replacingRange:beforeString:afterString:

Changing first responder status
– resignFirstResponder
– becomeFirstResponder
– validRequestorForSendType:returnType:

Working with the spelling checker
– spellCheckerDocumentTag

14

NSRulerView client methods
– rulerView:didMoveMarker:
– rulerView:didRemoveMarker:
– rulerView:didAddMarker:
– rulerView:shouldMoveMarker:
– rulerView:shouldAddMarker:
– rulerView:willMoveMarker:toLocation:
– rulerView:shouldRemoveMarker:
– rulerView:willAddMarker:atLocation:
– rulerView:handleMouseDown:

Assigning a delegate
– setDelegate:
– delegate

Class Methods

registerForServices
+ (void)registerForServices

Registers send and return types for the Services facility. This method is invoked automatically; you should
never need to invoke it directly.

Instance Methods

acceptableDragTypes
– (NSArray *)acceptableDragTypes

Returns the data types that the receiver accepts as the destination view of a dragging operation. These types
are automatically registered as necessary by the NSTextView. Subclasses should override this method as
necessary to add their own types to those returned by NSTextView’s implementation. They must then also
override the appropriate methods of the NSDraggingDestination protocol to support import of those types.
See that protocol’s specification for more information.

See also: – updateDragTypeRegistration

15

 Classes: NSTextView

alignJustified:
– (void)alignJustified:(id)sender

This action method applies full justification to selected paragraphs (or all text, if the receiver is a plain text
object).

See also: – alignCenter: (NSText), – alignLeft: (NSText), – alignRight: (NSText), – alignment
(NSText), – setAlignment: (NSText)

backgroundColor
– (NSColor *)backgroundColor

Returns the receiver’s background color.

See also: – drawsBackground, – setBackgroundColor:

becomeFirstResponder
– (BOOL)becomeFirstResponder

Informs the receiver that it’s becoming the first responder. If the previous first responder was not an
NSTextView on the same NSLayoutManager as the receiving NSTextView, this method draws the selection
and updates the insertion point if necessary. Returns YES.

Use NSWindow’s makeFirstResponder:, not this method, to make an NSTextView the first responder.
Never invoke this method directly.

See also: – resignFirstResponder

changeColor:
– (void)changeColor:(id)sender

Invoked by the NSColorPanel (sender) to set the color of the selected text. NSTextView’s implementation
queries sender for the color by sending it a color message.

cleanUpAfterDragOperation
– (void)cleanUpAfterDragOperation

Releases the drag information still existing after the dragging session has completed. Subclasses may
override this method to clean up any additional data structures used for dragging. In your overridden
method, make sure to invoke the superclass’ version.

16

clickedOnLink:atIndex:
– (void)clickedOnLink: (id)link atIndex:(unsigned int)charIndex

Notifies the delegate that the user clicked in a link at the specified charIndex. The delegate may take any
appropriate actions to handle the click in its textView:clickedOnLink:atIndex: method.

See also: – textView:clickedOnLink:atIndex: (delegate method)

delegate
– (id)delegate

Returns the delegate used by the receiver (and by all other NSTextViews sharing the receiver’s
NSLayoutManager), or nil if there is none.

See also: – setDelegate:

didChangeText
– (void)didChangeText

Invoked automatically at the end of a series of changes, this method posts an NSTextDidChangeNotification
to the default notification center, which also results in the delegate receiving an NSText-delegate
textDidChange: message. Subclasses implementing methods that change their text should invoke this
method at the end of those methods. See the class description for more information.

See also: – shouldChangeTextInRange:replacementString:

dragOperationForDraggingInfo:type:
– (unsigned int)dragOperationForDraggingInfo: (id <NSDraggingInfo>)dragInfo

type:(NSString *)type

Returns the type of drag operation that should be performed if the image were released now. type is the
pasteboard type that will be read from the dragging pasteboard , and dragInfo is an object the Application
Kit creates which holds information about the dragging session. The returned value should be one of the
following:

Option Meaning

NSDragOperationCopy The data represented by the image will be copied.

NSDragOperationLink The data will be shared.

17

 Classes: NSTextView

If none of the operations is appropriate, this method should return NSDragOperationNone.

This method is called repeatedly from draggingEntered: and draggingUpdated: as the user drags the
image.

See also: draggingEntered: (NSDraggingDestination), draggingUpdated: (NSDraggingDestination)

drawInsertionPointInRect:color:turnedOn:
– (void)drawInsertionPointInRect: (NSRect)aRect

color:(NSColor *)aColor
turnedOn: (BOOL)flag

If flag is YES, draws the insertion point in aRect using aColor. If flag is NO, this method erases the insertion
point. The PostScript focus must be locked on the receiver when this method is invoked.

See also: – insertionPointColor, – shouldDrawInsertionPoint, – backgroundColor,
– lockFocus (NSView)

drawsBackground
– (BOOL)drawsBackground

Returns YES if the receiver draws its background, NO if it doesn’t.

See also: – backgroundColor, – setDrawsBackground:

encodeWithCoder:
@protocol NSCoding
– (void)encodeWithCoder:(NSCoder *)encoder

Raises an NSInternalInconsistencyException. NSTextView doesn’t support coding.

NSDragOperationGeneric The operation will be defined by the destination.

NSDragOperationPrivate The operation is negotiated privately between the source and the destination.

Option Meaning

18

importsGraphics
– (BOOL)importsGraphics

Returns YES if the text views sharing the receiver’s NSLayoutManager allow the user to import files by
dragging, NO if they don’t.

A text view that accepts dragged files is also a rich text view.

See also: – isRichText, – textStorage, + attributedStringWithAttachment: (NSAttributedString
Additions), – insertAttributedString:atIndex: (NSMutableAttributedString),
– setImportsGraphics:

initWithCoder:
@protocol NSCoding
– (id)initWithCoder: (NSCoder *)decoder

Raises an NSInternalInconsistencyException. NSTextView doesn’t support coding.

initWithFrame:
– (id)initWithFrame: (NSRect)frameRect

Initializes a newly allocated NSTextView object with frameRect as its frame rectangle. This method creates
the entire collection of objects associated with an NSTextView—its NSTextContainer, NSLayoutManager,
and NSTextStorage—and invokes initWithFrame:textContainer: . Returns self.

This method creates the text web in such a manner that the NSTextView object is the principal owner of the
objects in the web. See “The OPENSTEP Text System” for a detailed description of ownership issues.

initWithFrame:textContainer:
– (id)initWithFrame: (NSRect)frameRect textContainer:(NSTextContainer *)aTextContainer

Initializes a newly allocated NSTextView object with frameRect as its frame rectangle and aTextContainer
as its text container. This method is the designated initializer for NSTextView objects. Returns self.

Unlike initWithFrame: , which builds up an entire group of text-handling objects, you use this method after
you’ve created the other components of the text handling system—an NSTextStorage object, an
NSLayoutManager object, and an NSTextContainer object. Assembling the components in this fashion
means that the NSTextStorage, not the NSTextView, is the principal owner of the component objects. See
“The OPENSTEP Text System” for a detailed description of ownership issues.

See also: – initWithFrame:

19

 Classes: NSTextView

insertText:
– (void)insertText:(NSString *)aString

Inserts aString into the receiver’s text at the insertion point if there is one, otherwise replacing the selection.
The inserted text is assigned the current typing attributes, as explained in the class description under
“Setting Text Attributes”.

This method is the means by which typed text enters an NSTextView. See the NSInputManager class and
NSTextInput protocol specifications for more information.

See also: – typingAttributes

insertionPointColor
– (NSColor *)insertionPointColor

Returns the color used to draw the insertion point.

See also: – drawInsertionPointInRect:color:turnedOn: , – shouldDrawInsertionPoint,
– setInsertionPointColor:

invalidateTextContainerOrigin
– (void)invalidateTextContainerOrigin

Informs the receiver that it needs to recalculate the origin of its text container, usually because it’s been
resized or the contents of the text container have changed. This method is invoked automatically; you should
never need to invoke it directly.

See also: – textContainer, – textContainerOrigin

isEditable
– (BOOL)isEditable

Returns YES if the text views sharing the receiver’s NSLayoutManager allow the user to edit text, NO if
they don’t. If a text view is editable, it’s also selectable.

See also: – isSelectable, – setEditable:

20

isFieldEditor
– (BOOL)isFieldEditor

Returns YES if the text views sharing the receiver’s NSLayoutManager interpret Tab, Shift-Tab, and Return
(Enter) as cues to end editing, and possibly to change the first responder; no if they accept them as text input.
See the NSWindow class specification for more information on field editors. By default, NSTextViews
don’t behave as field editors.

See also: – setFieldEditor:

isRichText
– (BOOL)isRichText

Returns YES if the text views sharing the receiver’s NSLayoutManager allow the user to apply attributes to
specific ranges of the text, NO if they don’t.

See also: – importsGraphics, – textStorage, – setRichText:

isRulerVisible
– (BOOL)isRulerVisible

Returns YES if the scroll view enclosing the text views sharing the receiver’s NSLayoutManager shows its
ruler, NO otherwise.

See also: – usesRuler, – setRulerVisible:, – toggleRuler: (NSText)

isSelectable
– (BOOL)isSelectable

Returns YES if the text views sharing the receiver’s NSLayoutManager allow the user to select text, NO if
they don’t.

See also: – isEditable, – setSelectable:

21

 Classes: NSTextView

layoutManager
– (NSLayoutManager *)layoutManager

Returns the NSLayoutManager that lays out text for the receiver’s text container, or nil if there’s no such
object (which is the case when a text view isn’t linked into a group of text objects).

See also: – textContainer, – setLayoutManager: (NSTextContainer), – replaceLayoutManager:
 (NSTextContainer)

loosenKerning:
– (void)loosenKerning:(id)sender

This action method increases the space between glyphs in the receiver’s selection, or in all text if the
receiver is a plain text view. Kerning values are determined by the point size of the fonts in the selection.

See also: – tightenKerning: , – turnOffKerning: , – useStandardKerning:

lowerBaseline:
– (void)lowerBaseline:(id)sender

This action method lowers the baseline offset of selected text by one point, or of all text if the receiver is a
plain text view. As such, this method defines a more primitive operation than subscripting.

See also: – raiseBaseline:, – subscript: (NSText), – unscript: (NSText)

markedRange
– (NSRange)markedRange

Returns the range of marked text. If there’s no marked text, returns a range whose location is NSNotFound.

See also: – setMarkedTextAttributes:

markedTextAttributes
– (NSDictionary *)markedTextAttributes

Returns the attributes used to draw marked text.

See also: – setMarkedTextAttributes:

22

pasteAsPlainText:
– (void)pasteAsPlainText:(id)sender

This action method inserts the contents of the pasteboard into the receiver’s text as plain text, in the manner
of insertText:.

See also: – pasteAsRichText:, – insertText:

pasteAsRichText:
– (void)pasteAsRichText:(id)sender

This action method inserts the contents of the pasteboard into the receiver’s text as rich text, maintaining its
attributes. The text is inserted at the insertion point if there is one, otherwise replacing the selection.

See also: – pasteAsRichText:, – insertText:

preferredPasteboardTypeFromArray:restrictedToTypesFromArray:
– (NSString *)preferredPasteboardTypeFromArray:(NSArray *)availableTypes

restrictedToTypesFromArray: (NSArray *)allowedTypes

Returns whatever type on the pasteboard would be most preferred for copying data. The availableTypes
parameter lists the types that are currently available on the pasteboard. If the allowedTypes parameter is
non-nil then only types in that array may be returned; otherwise, if allowedTypes is nil , any of the available
pasteboard types may be returned.

You should not need to override this method. You should also not need to invoke it unless you were
implementing a new type of pasteboard to handle services other than copy/paste or dragging.

See also: – pasteAsPlainText:, – pasteAsRichText:

raiseBaseline:
– (void)raiseBaseline:(id)sender

This action method raises the baseline offset of selected text by one point, or of all text if the receiver is a
plain text view. As such, this method defines a more primitive operation than superscripting.

See also: – lowerBaseline:, – superscript: (NSText), – unscript: (NSText)

23

 Classes: NSTextView

rangeForUserCharacterAttributeChange
– (NSRange)rangeForUserCharacterAttributeChange

Returns the range of characters affected by an action method that changes character (not paragraph)
attributes, such as the NSText action method changeFont:. For rich text this is typically the range of the
selection. For plain text this is the entire contents of the receiver.

If the receiver isn’t editable or doesn’t use the Font Panel, the range returned has a location of NSNotFound.

See also: – rangeForUserParagraphAttributeChange, – rangeForUserTextChange, – isEditable,
– usesFontPanel

rangeForUserParagraphAttributeChange
– (NSRange)rangeForUserParagraphAttributeChange

Returns the range of characters affected by a method that changes paragraph (not character) attributes, such
as the NSText action method alignLeft: . For rich text this is typically calculated by extending the range of
the selection to paragraph boundaries. For plain text this is the entire contents of the receiver.

If the receiver isn’t editable the range returned has a location of NSNotFound.

See also: – rangeForUserParagraphAttributeChange, – rangeForUserTextChange, – isEditable,
– usesRuler

rangeForUserTextChange
– (NSRange)rangeForUserTextChange

Returns the range of characters affected by a method that changes characters (as opposed to attributes), such
as insertText:. This is typically the range of the selection.

If the receiver isn’t editable or doesn’t use a ruler, the range returned has a location of NSNotFound.

See also: – rangeForUserParagraphAttributeChange, – rangeForUserTextChange, – isEditable,
– usesRuler

readablePasteboardTypes
– (NSArray *)readablePasteboardTypes

Returns an array of strings describing the types this text view can read immediately from the pasteboard.
The strings are ordered by the default preferences.

24

You can override this method to provide support for new types of data. If you want to add support for the
default types, you can invoke the superclass version of this method or add the types directly in your
overridden version.

See also: – preferredPasteboardTypeFromArray:restrictedToTypesFromArray: ,
– writablePasteboardTypes

readSelectionFromPasteboard:
– (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Reads the text view’s preferred type of data from the pasteboard specified by the pboard parameter. This
method invokes the preferredPasteboardTypeFromArray:restrictedToTypesFromArray: method to
determine the text view’s preferred type of data and then reads the data using the
readSelectionFromPasteboard:type: method. Returns YES if the data was successfully read.

You should not need to override this method. You might need to invoke this method if you are implementing
a new type of pasteboard to handle services other than copy/paste or dragging.

See also: – preferredPasteboardTypeFromArray:restrictedToTypesFromArray: ,
– readSelectionFromPasteboard:type:

readSelectionFromPasteboard:type:
– (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard type:(NSString *)type

Reads data of the given type from pboard. The new data is placed at the current insertion point, replacing
the current selection if one exists. Returns YES if the data was successfully read.

You should override this method to read pasteboard types other than the default types. Use the
rangeForUserTextChange method to obtain the the range of characters (if any) to be replaced by the new
data.

See also: – rangeForUserTextChange

replaceTextContainer:
– (void)replaceTextContainer:(NSTextContainer *)aTextContainer

Replaces the NSTextContainer for the group of text-system objects containing the receiver with
aTextContainer, keeping the association between the receiver and its layout manager intact, unlike
setTextContainer:. Raises NSInvalidArgumentException if aTextContainer is nil .

See also: – initWithFrame:textContainer: , – setTextContainer:

25

 Classes: NSTextView

resignFirstResponder
– (BOOL)resignFirstResponder

Notifies the receiver that it’s been asked to relinquish its status as first responder in its NSWindow. If the
object that will become the new first responder is an NSTextView attached to the same NSLayoutManager
as the receiver, this method returns YES with no further action. Otherwise, this method sends a
textShouldEndEditing: message to its delegate (if any). If the delegate returns NO, this method returns
NO. If the delegate returns YES this method hides the selection highlighting and posts an
NSTextDidEndEditingNotification to the default notification center.

Use NSWindow’s makeFirstResponder:, not this method, to make an NSTextView the first responder.
Never invoke this method directly.

See also: – becomeFirstResponder

rulerView:didAddMarker:
– (void)rulerView: (NSRulerView *)aRulerView didAddMarker: (NSRulerMarker *)aMarker

This NSRulerView client method modifies the paragraph style of the paragraphs containing the selection to
accommodate a new NSTextTab represented by aMarker. It then records the change by invoking
didChangeText.

NSTextView checks for permission to make the change in its rulerView:shouldAddMarker: method,
which invokes shouldChangeTextInRange:replacementString: to send out the proper request and
notifications, and only invokes this method if permission is granted.

See also: – representedObject (NSRulerMarker), – rulerView:didMoveMarker: , – rulerView:
didRemoveMarker:

rulerView:didMoveMarker:
– (void)rulerView: (NSRulerView *)aRulerView didMoveMarker: (NSRulerMarker *)aMarker

This NSRulerView client method modifies the paragraph style of the paragraphs containing the selection to
record the new location of the NSTextTab represented by aMarker. It then records the change by invoking
didChangeText.

NSTextView checks for permission to make the change in its rulerView:shouldMoveMarker: method,
which invokes shouldChangeTextInRange:replacementString: to send out the proper request and
notifications, and only invokes this method if permission is granted.

See also: – representedObject (NSRulerMarker), – rulerView:didAddMarker: , – rulerView:
didRemoveMarker:

26

rulerView:didRemoveMarker:
– (void)rulerView: (NSRulerView *)aRulerView didRemoveMarker:(NSRulerMarker *)aMarker

This NSRulerView client method modifies the paragraph style of the paragraphs containing the selection—
if possible—by removing the NSTextTab represented by aMarker. It then records the change by invoking
didChangeText.

NSTextView checks for permission to move or remove a tab stop in its rulerView:shouldMoveMarker:
method, which invokes shouldChangeTextInRange:replacementString: to send out the proper request
and notifications, and only invokes this method if permission is granted.

See also: – representedObject (NSRulerMarker), – shouldChangeTextInRange:replacementString:,
– rulerView:didAddMarker: , – rulerView:didMoveMarker:

rulerView:handleMouseDown:
– (void)rulerView: (NSRulerView *)aRulerView handleMouseDown:(NSEvent *)theEvent

This NSRulerView client method adds a left tab marker to the ruler, but a subclass can override this method
to provide other behavior, such as creating guidelines. This method is invoked once with theEvent when the
user first clicks in the aRulerView’s ruler area, as described in the NSRulerView class specification.

rulerView:shouldAddMarker:
– (BOOL)rulerView: (NSRulerView *)aRulerView shouldAddMarker: (NSRulerMarker *)aMarker

This NSRulerView client method controls whether a new tab stop can be added. The receiver checks for
permission to make the change by invoking shouldChangeTextInRange:replacementString: and
returning the return value of that message. If the change is allowed, the receiver is then sent a rulerView:
didAddMarker: message.

See also: – rulerView:shouldMoveMarker: , – rulerView:shouldRemoveMarker:

rulerView:shouldMoveMarker:
– (BOOL)rulerView: (NSRulerView *)aRulerView shouldMoveMarker: (NSRulerMarker *)aMarker

This NSRulerView client method controls whether an existing tab stop can be moved. The receiver checks
for permission to make the change by invoking shouldChangeTextInRange:replacementString: and
returning the return value of that message. If the change is allowed, the receiver is then sent a rulerView:
didMoveMarker: message.

See also: – rulerView:shouldAddMarker: , – rulerView:shouldRemoveMarker:

27

 Classes: NSTextView

rulerView:shouldRemoveMarker:
– (BOOL)rulerView: (NSRulerView *)aRulerView shouldRemoveMarker:

(NSRulerMarker *)aMarker

This NSRulerView client method controls whether an existing tab stop can be removed. Returns YES if
aMarker represents an NSTextTab, NO otherwise. Because this method can be invoked repeatedly as the
user drags a ruler marker, it returns that value immediately. If the change is allows and the user actually
removes the marker, the receiver is also sent a rulerView:didRemoveMarker: message.

See also: – rulerView:shouldAddMarker: , – rulerView:shouldMoveMarker:

rulerView:willAddMarker:atLocation:
– (float)rulerView: (NSRulerView *)aRulerView

willAddMarker: (NSRulerMarker *)aMarker
atLocation:(float)location

This NSRulerView client method ensures that the proposed location of aMarker lies within the appropriate
bounds for the receiver’s text container, returning the modified location.

See also: – rulerView:didAddMarker:

rulerView:willMoveMarker:toLocation:
– (float)rulerView: (NSRulerView *)aRulerView

willMoveMarker: (NSRulerMarker *)aMarker
toLocation:(float)location

This NSRulerView client method ensures that the proposed location of aMarker lies within the appropriate
bounds for the receiver’s text container, returning the modified location.

See also: – rulerView:didMoveMarker:

selectedRange
– (NSRange)selectedRange

Returns the range of characters selected in the receiver’s layout manager.

See also: – selectedTextAttributes, – setSelectedRange:affinity:stillSelecting:,
– selectionRangeForProposedRange:granularity:, – setSelectedRange:

28

selectedTextAttributes
– (NSDictionary *)selectedTextAttributes

Returns the attributes used to indicate the selection. This is typically just the text background color.

See also: – selectedRange, – setSelectedTextAttributes:

selectionAffinity
– (NSSelectionAffinity)selectionAffinity

Returns the preferred direction of selection, either NSSelectionAffinityUpstream or
NSSelectionAffinityDownstream. Selection affinity determines whether, for example, the insertion point
appears after the last character on a line or before the first character on the following line in cases where
text wraps across line boundaries.

See also: – setSelectedRange:affinity:stillSelecting:

selectionGranularity
– (NSSelectionGranularity)selectionGranularity

Returns the current selection granularity, used during mouse tracking to modify the range of the selection.
This is one of:

NSSelectByCharacter
NSSelectByWord
NSSelectByParagraph

See also: – selectionRangeForProposedRange:granularity:, – setSelectionGranularity:

selectionRangeForProposedRange:granularity:
– (NSRange)selectionRangeForProposedRange:(NSRange)proposedSelRange granularity:

(NSSelectionGranularity)granularity

Adjusts the proposedSelRange if necessary, based on granularity, which is one of:

NSSelectByCharacter
NSSelectByWord
NSSelectByParagraph

Returns the adjusted range. This method is invoked repeatedly during mouse tracking to modify the range
of the selection. Override this method to specialize selection behavior.

See also: – setSelectionGranularity:

29

 Classes: NSTextView

setAlignment:range:
– (void)setAlignment:(NSTextAlignment)alignment range:(NSRange)aRange

Sets the alignment of the paragraphs containing characters in aRange to alignment, which is one of:

NSLeftTextAlignment
NSRightTextAlignment
NSCenterTextAlignment
NSJustifiedTextAlignment
NSNaturalTextAlignment

See also: – rangeForUserParagraphAttributeChange

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the receiver’s background color to aColor.

See also: – setDrawsBackground:, – backgroundColor

setConstrainedFrameSize:
– (void)setConstrainedFrameSize:(NSSize)desiredSize

Attempts to set the frame size for the NSTextView to desiredSize, constrained by the receiver’s existing
minimum and maximum sizes and by whether resizing is permitted.

See also: – minSize (NSText), – maxSize (NSText), – isHorizontallyResizable (NSText),
– isVerticallyResizable (NSText)

setDelegate:
– (void)setDelegate:(id)anObject

Sets the delegate for all NSTextViews sharing the receiver’s NSLayoutManager to anObject, without
retaining it.

See also: – delegate

30

setDrawsBackground:
– (void)setDrawsBackground:(BOOL)flag

Controls whether the receiver draws its background. If flag is YES, the receiver fills its background with the
background color; if flag is NO, it doesn’t.

See also: – setBackgroundColor:, – drawsBackground

setEditable:
– (void)setEditable:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to edit text. If flag
is YES, they allow the user to edit text and attributes; if flag is NO, they don’t. If n NSTextView is made
editable, it’s also made selectable. NSTextViews are by default editable.

See also: – setSelectable:, – isEditable

setFieldEditor:
– (void)setFieldEditor:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager interpret Tab, Shift-Tab, and
Return (Enter) as cues to end editing, and possibly to change the first responder. If flag is YES, they do; if
flag is NO, they don’t, instead accepting these characters as text input. See the NSWindow class
specification for more information on field editors. By default, NSTextViews don’t behave as field editors.

See also: – isFieldEditor

setImportsGraphics:
– (void)setImportsGraphics:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to import files by
dragging. If flag is YES, they do; if flag is NO, they don’t. If an NSTextView is set to accept dragged files,
it’s also set for rich text. By default, NSTextViews don’t accept dragged files.

See also: – textStorage, – setRichText:, – importsGraphics

31

 Classes: NSTextView

setInsertionPointColor:
– (void)setInsertionPointColor:(NSColor *)aColor

Sets the color of the insertion point to aColor.

See also: – drawInsertionPointInRect:color:turnedOn: , – shouldDrawInsertionPoint,
– insertionPointColor

setMarkedTextAttributes:
– (void)setMarkedTextAttributes: (NSDictionary *)attributes

Sets the attributes used to draw marked text to attributes. Text color, background color, and underline are
the only supported attributes for marked text.

See also: – markedTextAttributes , – markedRange

setNeedsDisplayInRect:avoidAdditionalLayout:
– (void)setNeedsDisplayInRect:(NSRect)aRect avoidAdditionalLayout: (BOOL)flag

Marks the receiver as requiring display within aRect. If flag is YES, the receiver won’t perform any layout
that might be required to complete the display, even if this means that portions of the NSTextView remain
empty. If flag is NO, the receiver performs at least as much layout as needed to display aRect.

NSTextView overrides the NSView setNeedsDisplayInRect: method such that it invokes this method with
NO as flag.

setRichText:
– (void)setRichText:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to apply attributes
to specific ranges of the text. If flag is YES they do; if flag is NO they don’t. If flag is NO, they’re also set
not to accept dragged files. By default, NSTextViews let the user apply multiple attributes to text, but don’t
accept dragged files.

See also: – textStorage, – isRichText, – setImportsGraphics:

32

setRulerVisible:
– (void)setRulerVisible:(BOOL)flag

Controls whether the scroll view enclosing text views sharing the receiver’s NSLayoutManager displays the
ruler. If flag is YES it shows the ruler; if flag is NO it hides the ruler. By default, the ruler is not visible.

See also: – setUsesRuler:, – isRulerVisible, – toggleRuler: (NSText)

setSelectable:
– (void)setSelectable:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager allow the user to select text. If
flag is YES, they do; if flag is NO, they don’t. If an NSTextView is made not selectable, it’s also made not
editable. NSTextViews are by default both editable and selectable.

See also: – setEditable:, – isSelectable

setSelectedRange:
– (void)setSelectedRange:(NSRange)charRange

Sets the selection to the characters in charRange, resets the selection granularity to NSSelectByCharacter,
posts an NSTextViewDidChangeSelectionNotification to the default notification center. Also removes the
marking from marked text if the new selection is greater than the marked region.

charRange must begin and end on glyph boundaries and not split base glyphs and their non-spacing marks.

See also: – setSelectedRange:affinity:stillSelecting:, – selectionAffinity, – selectionGranularity,
– selectedRange

setSelectedRange:affinity:stillSelecting:
– (void)setSelectedRange:(NSRange)charRange

affinity: (NSSelectionAffinity)affinity
stillSelecting:(BOOL)flag

Sets the selection to the characters in charRange, using affinity if needed to determine how to display the
selection or insertion point (see the description for selectionAffinity for more information). flag indicates
whether this method is being invoked during mouse-dragging or after the user releases the mouse. If flag is
YES the receiver doesn’t send notifications or remove the marking from its marked text; if flag is NO it does
as appropriate. This method also resets the selection granularity to NSSelectByCharacter.

charRange must begin and end on glyph boundaries and not split base glyphs and their non-spacing marks.

See also: – setSelectedRange:, – selectionAffinity, – selectionGranularity, – setSelectedRange:

33

 Classes: NSTextView

setSelectedTextAttributes:
– (void)setSelectedTextAttributes:(NSDictionary *)attributes

Sets the attributes used to indicate the selection to attributes. Text color, background color, and underline
are the only supported attributes for selected text.

See also: – selectedRange, – selectedTextAttributes

setSelectionGranularity:
– (void)setSelectionGranularity:(NSSelectionGranularity)granularity

Sets the selection granularity for subsequent extension of a selection to granularity, which may be one of:

NSSelectByCharacter
NSSelectByWord
NSSelectByParagraph

Selection granularity is used to determine how the selection is modified when the user Shift-clicks or drags
the mouse after a double- or triple-click. For example, if the user selects a word by double-clicking, the
selection granularity is set to NSSelectByWord. Subsequent shift-clicks then extend the selection by words.

Selection granularity is reset to NSSelectByCharacter whenever the selection is set. You should always set
the selection granularity after setting the selection.

See also: – selectionGranularity, – setSelectedRange:

setSmartInsertDeleteEnabled:
– (void)setSmartInsertDeleteEnabled:(BOOL)flag

Controls whether the receiver inserts or deletes space around selected words so as to preserve proper
spacing and punctuation. If flag is YES it does; if flag is NO it inserts and deletes exactly what’s selected.

See also: – smartInsertForString:replacingRange:beforeString:afterString: ,
– smartDeleteRangeForProposedRange:, – smartInsertDeleteEnabled

setTextContainer:
– (void)setTextContainer:(NSTextContainer *)aTextContainer

Sets the receiver’s text container to aTextContainer. The receiver then uses the layout manager and text
storage of aTextContainer. This method is invoked automatically when you create an NSTextView; you
should never invoke it directly, but might want to override it. To change the text view for an established
group of text-system objects, send setTextView: to the text container. To replace the text container for a text

34

view and maintain the view’s association with the existing layout manager and text storage, use
replaceTextContainer:.

See also: – textContainer

setTextContainerInset:
– (void)setTextContainerInset:(NSSize)inset

Sets the empty space the NSTextView leaves around its associated text container to inset.

See also: – textContainerOrigin , – invalidateTextContainerOrigin , – textContainerInset

setTypingAttributes:
– (void)setTypingAttributes: (NSDictionary *)attributes

Sets the receiver’s typing attributes to attributes. Typing attributes are reset automatically whenever the
selection changes. If you add any user actions that change text attributes, you should use this method to
apply those attributes to a zero-length selection.

See also: – typingAttributes

setUsesFontPanel:
– (void)setUsesFontPanel:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager use the Font Panel and Font
menu. If flag is YES, they respond to messages from the Font Panel and from the Font menu, and update
the Font Panel with the selection font whenever it changes. If flag is NO they disallow character attribute
changes. By default, NSTextView objects use the Font Panel and menu.

See also: – rangeForUserCharacterAttributeChange, – usesFontPanel

setUsesRuler:
– (void)setUsesRuler:(BOOL)flag

Controls whether the text views sharing the receiver’s NSLayoutManager use an NSRulerView and respond
to Format menu commands. If flag is YES, they respond to NSRulerView client messages and to
paragraph-related menu actions, and update the ruler (when visible) as the selection changes with its
paragraph and tab attributes. If flag is NO, the ruler is hidden and the text views disallow paragraph attribute
changes. By default, NSTextView objects use the ruler.

See also: – setRulerVisible:, – rangeForUserParagraphAttributeChange, – usesRuler

35

 Classes: NSTextView

shouldChangeTextInRange:replacementString:
– (BOOL)shouldChangeTextInRange:(NSRange)affectedCharRange replacementString:

(NSString *)replacementString

Initiates a series of delegate messages (and general notifications) to determine whether modifications can
be made to the receiver’s text. If characters in the text string are being changed, replacementString contains
the characters that will replace the characters in affectedCharRange. If only text attributes are being
changed, replacementString is nil . This method checks with the delegate as needed using
textShouldBeginEditing: and textView:shouldChangeTextInRange:replacementString:, returning
YES to allow the change, and NO to prohibit it.

This method must be invoked at the start of any sequence of user-initiated editing changes. If your subclass
of NSTextView implements new methods that modify the text, make sure to invoke this method to
determine whether the change should be made. If the change is allowed, complete the change by invoking
the didChangeText method. See “Notifying About Changes to the Text” in the class description for more
information. If you can’t determine the affected range or replacement string before beginning changes, pass
(NSNotFound, 0) and nil for these values.

See also: – isEditable

shouldDrawInsertionPoint
– (BOOL)shouldDrawInsertionPoint

Returns YES if the receiver should draw its insertion point, NO if the insertion point can’t or shouldn’t be
drawn (for example, if the receiver’s window isn’t key).

See also: – drawInsertionPointInRect:color:turnedOn:

smartDeleteRangeForProposedRange:
– (NSRange)smartDeleteRangeForProposedRange:(NSRange)proposedCharRange

Given proposedCharRange, returns an extended range that includes adjacent whitespace that should be
deleted along with the proposed range in order to preserve proper spacing and punctuation of the text
surrounding the deletion.

NSTextView uses this method as necessary; you can also use it in implementing your own methods that
delete text, typically when the selection granularity is NSSelectByWord. To do so, invoke this method with
the proposed range to delete, then actually delete the range returned. If placing text on the pasteboard,
however, you should put only the characters from the proposed range onto the pasteboard.

See also: – smartInsertForString:replacingRange:beforeString:afterString: , – selectionGranularity,
– smartInsertDeleteEnabled

36

smartInsertDeleteEnabled
– (BOOL)smartInsertDeleteEnabled

Returns YES if the receiver inserts or deletes space around selected words so as to preserve proper spacing
and punctuation, NO if it inserts and deletes exactly what’s selected.

See also: – smartInsertForString:replacingRange:beforeString:afterString: ,
– smartDeleteRangeForProposedRange:, – setSmartInsertDeleteEnabled:

smartInsertAfterStringForString:replacingRange:
– (NSString *)smartInsertAfterStringForString: (NSString *)aString

replacingRange:(NSRange)charRange

Returns any whitespace that needs to be added after aString to preserve proper spacing and punctuation
when aString is inserted into the receiver’s text over charRange. If aString is nil or if smart insertion and
deletion is disabled, this method returns nil .

If you’re writing an Objective-C method, don’t invoke this method directly. Instead, use
smartInsertForString:replacingRange:beforeString:afterString: , which calls this method as part of its
implementation.

If you’re writing a Java method that inserts text, insert the following over charRange:

• The results of the Java version of smartInsertBeforeStringForString:replacingRange:
• aString
• The results of the Java version of this method

smartInsertBeforeStringForString:replacingRange:
– (NSString *)smartInsertBeforeStringForString: (NSString *)aString

replacingRange:(NSRange)charRange

Returns any whitespace that needs to be added before aString to preserve proper spacing and punctuation
when aString is inserted into the receiver’s text over charRange. If aString is nil or if smart insertion and
deletion is disabled, this method returns nil .

If you’re writing an Objective-C method, don’t invoke this method directly. Instead, use
smartInsertForString:replacingRange:beforeString:afterString: , which calls this method as part of its
implementation.

If you’re writing a Java method that inserts text, insert the following over charRange:

• The results of the Java version of this method
• aString
• The results of the Java version of smartInsertAfterStringForString:replacingRange

37

 Classes: NSTextView

smartInsertForString:replacingRange:beforeString:afterString:
– (void)smartInsertForString:(NSString *) aString

replacingRange:(NSRange)charRange
beforeString:(NSString **) beforeString
afterString:(NSString **) afterString

Determines whether whitespace needs to be added around aString to preserve proper spacing and
punctuation when it’s inserted into the receiver’s text over charRange. Returns by reference in beforeString
and afterString any whitespace that should be added, unless either or both is NULL. Both are returned as
nil if aString is nil or if smart insertion and deletion is disabled.

As part of its implementation, this method calls smartInsertAfterStringForString:replacingRange: and
smartInsertBeforeStringForString:replacingRange:.To change this method’s behavior, override those
two methods instead of this one.

NSTextView uses this method as necessary. You can also use it in implementing your own methods that
insert text. To do so, invoke this method with the proper arguments, then insert beforeString, aString, and
afterString in order over charRange.

See also: – smartDeleteRangeForProposedRange:, – smartInsertDeleteEnabled

spellCheckerDocumentTag
– (int)spellCheckerDocumentTag

Returns a tag identifying the NSTextView text as a document for the spell checker server. The document
tag is obtained by sending a uniqueSpellDocumentTag message to the spell server the first time this
method is invoked for a particular group of NSTextViews. See the NSSpellChecking and NSSpellServer
class specifications for more information on how this tag is used.

textContainer
– (NSTextContainer *)textContainer

Returns the receiver’s text container.

See also: – setTextContainer:

textContainerInset
– (NSSize)textContainerInset

Returns the empty space the NSTextView leaves around its text container.

See also: – textContainerOrigin , – invalidateTextContainerOrigin , – setTextContainerInset:

38

textContainerOrigin
– (NSPoint)textContainerOrigin

Returns the origin of the receiver’s text container, which is calculated from the receiver’s bounds rectangle,
container inset, and the container’s used rect.

See also: – invalidateTextContainerOrigin , – textContainerInset, – usedRectForTextContainer:
 (NSLayoutManager)

textStorage
– (NSTextStorage *)textStorage

Returns the receiver’s text storage object.

tightenKerning:
– (void)tightenKerning: (id)sender

This action method decreases the space between glyphs in the receiver’s selection, or for all glyphs if the
receiver is a plain text view. Kerning values are determined by the point size of the fonts in the selection.

See also: – loosenKerning:, – useStandardKerning:, – turnOffKerning:

turnOffKerning:
– (void)turnOffKerning: (id)sender

This action method causes the receiver to use nominal glyph spacing for the glyphs in its selection, or for
all glyphs if the receiver is a plain text view.

See also: – useStandardKerning:, – loosenKerning:, – tightenKerning: , – isRichText

turnOffLigatures:
– (void)turnOffLigatures: (id)sender

This action method causes the receiver to use only required ligatures when setting text, for the glyphs in the
selection if the receiver is a rich text view, or for all glyphs if it’s a plain text view.

See also: – useAllLigatures:, – isRichText, – useStandardLigatures:

39

 Classes: NSTextView

typingAttributes
– (NSDictionary *)typingAttributes

Returns the current typing attributes.

See also: – setTypingAttributes:

updateDragTypeRegistration
– (void)updateDragTypeRegistration

If the receiver is editable and is a rich text view, causes all NSTextViews associated with the receiver’s
NSLayoutManager to register their acceptable drag types. If the NSTextView isn’t editable or isn’t rich text,
causes those NSTextViews to unregister their dragged types.

Subclasses can override this method to change the conditions for registering and unregistering drag types,
whether as a group or individually based on the current state of the NSTextView. They can then invoke this
method when that state changes to perform that reregistration.

See also: – acceptableDragTypes, – registerForDraggedTypes: (NSView),
– unregisterDraggedTypes (NSView), – isEditable, – importsGraphics, – isRichText

updateFontPanel
– (void)updateFontPanel

Updates the Font Panel to contain the font attributes of the selection. Does nothing if the receiver doesn’t
use the Font Panel. You should never need to invoke this method directly, but you can override it if needed
to handle additional font attributes.

See also: – usesFontPanel

updateInsertionPointStateAndRestartTimer:
– (void)updateInsertionPointStateAndRestartTimer:(BOOL)flag

Updates the insertion point’s location and, if flag is YES, restarts the blinking cursor timer. This method is
invoked automatically whenever the insertion point needs to be moved; you should never need to invoke it
directly, but you can override it to add different insertion point behavior.

See also: – shouldDrawInsertionPoint, – drawInsertionPointInRect:color:turnedOn:

40

updateRuler
– (void)updateRuler

Updates the NSRulerView in the receiver’s enclosing scroll view to reflect the selection’s paragraph and
marker attributes. Does nothing if the ruler isn’t visible or if the receiver doesn’t use the ruler. You should
never need to invoke this method directly, but you can override this method if needed to handle additional
ruler attributes.

See also: – usesRuler

useAllLigatures:
– (void)useAllLigatures:(id)sender

This action method causes the receiver to use all ligatures available for the fonts and languages used when
setting text, for the glyphs in the selection if the receiver is a rich text view, or for all glyphs if it’s a plain
text view.

See also: – turnOffLigatures: , – useStandardLigatures:

usesFontPanel
– (BOOL)usesFontPanel

Returns YES if the text views sharing the receiver’s NSLayoutManager use the Font Panel, NO otherwise.
See setUsesFontPanel: and rangeForUserCharacterAttributeChange for the effect this has on an
NSTextView’s behavior.

usesRuler
– (BOOL)usesRuler

Returns YES if the text views sharing the receiver’s NSLayoutManager use a ruler view, NO otherwise. See
setUsesRuler: and rangeForUserParagraphAttributeChange for the effect this has on an NSTextView’s
behavior

See also: – setUsesRuler:

41

 Classes: NSTextView

useStandardKerning:
– (void)useStandardKerning:(id)sender

This action method causes the receiver to use pair kerning data for the glyphs in its selection, or for all
glyphs if the receiver is a plain text view. This data is taken from a font’s AFM file

See also: – isRichText, – loosenKerning:, – tightenKerning: , – turnOffKerning:

useStandardLigatures:
– (void)useStandardLigatures:(id)sender

This action method causes the receiver to use the standard ligatures available for the fonts and languages
used when setting text, for the glyphs in the selection if the receiver is a rich text view, or for all glyphs if
it’s a plain text view.

See also: – turnOffLigatures: , – useAllLigatures:

validRequestorForSendType:returnType:
– (id)validRequestorForSendType:(NSString *)sendType returnType: (NSString *)returnType

Returns self if sendType specifies a type of data the text view can put on the pasteboard and returnType
contains a type of data the text view can read from the pasteboard, otherwise returns nil .

See also: – validRequestorForSendType:returnType: (NSResponder)

writablePasteboardTypes
– (NSArray *)writablePasteboardTypes

If the text view contains some selected data, this method returns an array of strings describing the types that
can be written to the pasteboard immediately. You can override this method to add new supported types to
the array of strings.

See also: – readablePasteboardTypes

writeSelectionToPasteboard:type:
– (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard type:(NSString *)type

Writes the current selection to pboard using the given type. Returns YES if the data was successfully
written. You can override this method to add support for writing new types of data to the pasteboard. You

42

should invoke the superclass’ version of the method to handle any types of data your overridden version
does not.

See also: – readSelectionFromPasteboard:type:

writeSelectionToPasteboard:types:
– (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types

Writes the current selection to pboard under each type in the types array. Returns YES if the data for any
single type was written successfully.

You should not need to override this method. You might need to invoke this method if you are implementing
a new type of pasteboard to handle services other than copy/paste or dragging.

See also: – writeSelectionToPasteboard:type:

Methods Implemented By the Delegate

NSTextView communicates with its delegate through methods declared both by NSTextView and by its
superclass, NSText. See the NSText class specification for those other delegate methods.

textView:clickedOnCell:inRect:
– (void)textView:(NSTextView *)aTextView

clickedOnCell:(id <NSTextAttachmentCell>)attachmentCell
inRect:(NSRect)cellFrame

Invoked after the user clicks on attachmentCell within cellFrame in an NSTextView and the cell wants to
track the mouse. The delegate can use this message as its cue to perform an action or select the attachment
cell’s character. aTextView is the first NSTextView in a series shared by an NSLayoutManager, not
necessarily the one that draws attachmentCell.

The delegate may subsequently receive a textView:doubleClickedOnCell: message if the user continues
to perform a double click.

Implementing the textView:clickedOnCell:inRect:atIndex: method is preferred to implementing this
method. If you implement that method, you do not need to implement this one.

See also: – wantsToTrackMouse (NSTextAttachmentCell)

43

 Classes: NSTextView

textView:clickedOnCell:inRect:atIndex:
- (void)textView:(NSTextView *)textView

clickedOnCell:(id <NSTextAttachmentCell>)cell
inRect:(NSRect)cellFrame
atIndex:(unsigned)charIndex

Invoked after the user clicks on cell within cellFrame at the specified charIndex in an NSTextView and the
cell wants to track the mouse. The delegate can use this message as its cue to perform an action or select
the attachment cell’s character. textView is the first NSTextView in a series shared by an NSLayoutManager,
not necessarily the one that draws cell.

The delegate may subsequently receive a textView:doubleClickedOnCell:atIndex: message if the user
continues to perform a double click.

See also: – textView:doubleClickedOnCell:atIndex:

textView:clickedOnLink:
- (BOOL)textView:(NSTextView *)textView clickedOnLink: (id)link

Invoked after the user clicks on link in an NSTextView if the delegate does not respond to the textView:
clickedOnLink:atIndex: message. The delegate can use this method to handle the click on the link.

Implementing the textView:clickedOnLink:atIndex: method is preferred to implementing this method. If
you implement that method, you do not need to implement this one.

See also: – clickedOnLink:atIndex: (NSTextView), – textView:clickedOnLink:atIndex:

textView:clickedOnLink:atIndex:
- (BOOL)textView:(NSTextView *)textView

clickedOnLink: (id)link
atIndex:(unsigned)charIndex

Invoked after the user clicks on link at the specified charIndex in an NSTextView. The delegate can use this
method to handle the click on the link. Return YES to indicate that the click was handled, otherwise return
NO to allow the next responder to handle it.

See also: – clickedOnLink:atIndex: (NSTextView)

44

textView:doCommandBySelector:
– (BOOL)textView:(NSTextView *)aTextView

doCommandBySelector:(SEL)aSelector

Sent from NSTextView’s doCommandBySelector:, this method allows the delegate to perform the
command for the text view. If the delegate returns YES, the text view doesn’t perform aSelector; if the
delegate returns NO, the text view attempts to perform it. aTextView is the first NSTextView in a series
shared by an NSLayoutManager.

textView:doubleClickedOnCell:inRect:
– (void)textView:(NSTextView *)aTextView

doubleClickedOnCell:(id <NSTextAttachmentCell>)attachmentCell
inRect:(NSRect)cellFrame

Invoked when the user double-clicks on attachmentCell within cellFrame in an NSTextView and the cell
wants to track the mouse. The delegate can use this message as its cue to perform an action, such as opening
the file represented by the attachment. aTextView is the first NSTextView in a series shared by an
NSLayoutManager, not necessarily the one that draws attachmentCell.

Implementing the textView:doubleClickedOnCell:inRect:atIndex: method is preferred to implementing
this method. If you implement that method, you do not need to implement this one.

See also: – wantsToTrackMouse (NSTextAttachmentCell), – textView:doubleClickedOnCell:inRect:
atIndex:

textView:doubleClickedOnCell:inRect:atIndex:
- (void)textView:(NSTextView *)textView

doubleClickedOnCell:(id <NSTextAttachmentCell>)cell
inRect:(NSRect)cellFrame
atIndex:(unsigned)charIndex

Invoked when the user double-clicks on attachmentCell within cellFrame at the specified charIndex in an
NSTextView and the cell wants to track the mouse. The delegate can use this message as its cue to perform
an action, such as opening the file represented by the attachment. aTextView is the first NSTextView in a
series shared by an NSLayoutManager, not necessarily the one that draws attachmentCell.

See also: – wantsToTrackMouse (NSTextAttachmentCell)

45

 Classes: NSTextView

textView:draggedCell:inRect:event:
– (void)textView:(NSTextView *)aTextView

draggedCell:(id <NSTextAttachmentCell>)attachmentCell
inRect:(NSRect)aRect
event:(NSEvent *)theEvent

Invoked when the user attempts to drag attachmentCell from aRect within an NSTextView and the cell
wants to track the mouse. theEvent is the mouse-down event that preceded the mouse-dragged event. The
delegate can use this message as its cue to initiate a dragging operation.

Implementing the textView:draggedCell:inRect:event:atIndex: method is preferred to implementing
this method. If you implement that method, you do not need to implement this one.

See also: – wantsToTrackMouse (NSTextAttachmentCell), – dragImage:at:offset:event:pasteboard:
source:slideBack: (NSView), – dragFile:fromRect:slideBack:event: (NSView)

textView:draggedCell:inRect:event:atIndex:
- (void)textView:(NSTextView *)view

draggedCell:(id <NSTextAttachmentCell>)cell
inRect:(NSRect)rect
event:(NSEvent *)event
atIndex:(unsigned int)charIndex

Invoked when the user attempts to drag attachmentCell from aRect within an NSTextView and the cell
wants to track the mouse. The event parameter is the mouse-down event that preceded the mouse-dragged
event. The charIndex parameter indicates the character position where the mouse was clicked. The delegate
can use this message as its cue to initiate a dragging operation.

See also: – wantsToTrackMouse (NSTextAttachmentCell), – dragImage:at:offset:event:pasteboard:
source:slideBack: (NSView), – dragFile:fromRect:slideBack:event: (NSView)

textView:shouldChangeTextInRange:replacementString:
– (BOOL)textView:(NSTextView *)aTextView

shouldChangeTextInRange:(NSRange)affectedCharRange
replacementString:(NSString *)replacementString

Invoked when an NSTextView needs to determine if text in the range affectedCharRange should be
changed. If characters in the text string are being changed, replacementString contains the characters that
will replace the characters in affectedCharRange. If only text attributes are being changed,
replacementString is nil . The delegate can return YES to allow the replacement, or NO to reject the change.

aTextView is the first NSTextView in a series shared by an NSLayoutManager.

46

textView:willChangeSelectionFromCharacterRange:toCharacterRange:
– (NSRange)textView:(NSTextView *)aTextView

willChangeSelectionFromCharacterRange:(NSRange)oldSelectedCharRange
toCharacterRange:(NSRange)newSelectedCharRange

Invoked before an NSTextView finishes changing the selection—that is, when the last argument to a
setSelectedRange:affinity:stillSelecting: message is NO. oldSelectedCharRange is the original range of
the selection. newSelectedCharRange is the proposed character range for the new selection. The delegate
can return and adjusted range or return newSelectedCharRange unmodified.

aTextView is the first NSTextView in a series shared by an NSLayoutManager.

textViewDidChangeSelection:
– (void)textViewDidChangeSelection:(NSNotification *)aNotification

Invoked when the selection changes in the NSTextView. The name of aNotification is
NSTextViewDidChangeSelectionNotification.

See also: NSTextViewDidChangeSelectionNotification (notification)

Notifications

NSTextView posts the following notifications as well as those declared by its superclasses, particularly
NSText. See the NSText class specification for those other notifications.

NSTextViewDidChangeSelectionNotification

Posted when the selected range of characters changes. NSTextView posts this notification whenever
setSelectedRange:affinity:stillSelecting: is invoked either directly, or through the many methods
(mouseDown:, selectAll:, and so on) that invoke it indirectly. When the user is selecting text, this
notification is posted only once, at the end of the selection operation. The NSTextView’s delegate receives
a textViewDidChangeSelection: message when this notification is posted.

This notification contains a notification object and a userInfo dictionary. The notification object is the
notifying NSTextView. The userInfo dictionary contains these keyes and values:

Key Value

NSOldSelectedCharacterRange An NSValue object containing an NSRange

47

 Classes: NSTextView

NSTextViewWillChangeNotifyingTextViewNotification

Posted when a new NSTextView is established as the NSTextView that sends notifications. This allows
observers to reregister themselves for the new NSTextView. Methods such as
removeTextContainerAtIndex:, textContainerChangedTextView:, and insertTextContainer:atIndex:
cause this notification to be posted.

This notification contains a notification object and a userInfo dictionary. The notification object is the old
notifying NSTextView, or nil . The userInfo dictionary contains these keyes and values:

There’s no delegate method associated with this notification. The text-handling system ensures that when a
new NSTextView replaces an old one as the notifying NSTextView, the existing delegate becomes the
delegate of the new NSTextView and the delegate is registered to receive NSTextView notifications from
the new notifying NSTextView. All other observers are responsible for registering themselves on receiving
this notification.

See also: – removeObserver: (NSNotificationCenter), – addObserver:selector:name:object:
 (NSNotificationCenter)

Key Value

NSOldNotifyingTextView The old NSTextView, if one exists

NSNewNotifyingTextView The new NSTextView, if one exists

1

 Classes: NSView

NSView

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (NSResponder)
NSObject (NSObject)

Declared In: AppKit/NSView.h

Class at a GlanceˇClass at a Glance

Purpose
NSView is an abstract class that defines the basic drawing, event-handling, and printing architecture of an
OPENSTEP application. You typically don’t interact with NSView API directly; rather, your custom view classes

2

inherit from NSView and override many of its methods, which are invoked automatically by the Application Kit.
If you’re not creating a custom view class, there are few methods you need to use.

Principal Attributes
• Event handling
• Integrated display to screen and printer
• Flexible coordinate systems
• Icon dragging

Creation
Interface Builder
– initWithFrame: Designated initializer.

Commonly Used Methods

Class Description

NSView is an abstract class that provides concrete subclasses with a structure for drawing, printing, and
handling events. NSViews are arranged within an NSWindow, in a nested hierarchy of subviews. A view
object claims a rectangular region of its enclosing superview, is responsible for all drawing within that
region, and is eligible to receive mouse events occurring in it as well. In addition to these major
responsibilities, NSView handles dragging of icons and works with the NSScrollView class to support
efficient scrolling. The following sections explore these areas and more.

Most of the functionality of NSView is either automatically invoked by the Application Kit, or is available
in Interface Builder. Unless you’re implementing a concrete subclass of NSView or working intimately with
the content of the view hierarchy at run time, you don’t need to know much about this class’s interface. See
“Commonly Used Methods” above for methods you might use regardless.

– frame Returns the NSView’s location and size.

– bounds Returns the NSView’s internal origin and size.

– setNeedsDisplay: Marks the NSView as needing to be redrawn.

– window Returns the NSWindow that contains the NSView.

– drawRect:
Draws the NSView. (All subclasses must implement this method, but
it’s rarely invoked explicitly.)

3

 Classes: NSView

The View Hierarchy

To be displayed, an NSView must be placed in an NSWindow. All view objects within an NSWindow are
arranged in a hierarchy that begins at the NSWindow’s content view, with each NSView having a single
superview and zero or more subviews (see the NSWindow class specification for more on the content view).
An NSView’s superview and all the NSViews above the superview are sometimes referred to as the
NSView’s ancestors. An NSView’s subviews and all of their subviews on down are known as the NSView’s
descendants. Each NSView in the view hierarchy has its own area to draw in and its own coordinate system,
expressed as a transformation of its superview’s coordinate system. An NSView can scale, translate, or
rotate its coordinates dynamically, and a subclass can declare its y axis flipped to allow drawing from top
to bottom—useful for drawing text, for example.

Graphically, an NSView can be regarded as a framed canvas. The frame locates the NSView in its
superview, defines its size, and clips drawing to its edges, while the canvas defines the NSView’s own
internal coordinate system and hosts the actual drawing. The frame can be moved around, resized, and
rotated in the superview, so that the NSView’s image moves with it. Similarly, the canvas can be shifted,
stretched, and rotated, so that the drawn image moves within the frame. The frame maps onto a region of
the canvas that defines the bounds of what can possibly be seen. An NSView therefore keeps track of its
space using two rectangles, one for each perspective: The frame rectangle gives the exterior perspective and
the bounds rectangle give the interior. The frame and bounds methods, respectively, return these
rectangles. This figure shows the relation between the frame rectangle, on the left, and the bounds rectangle
over the canvas, on the right:

Although the bounds rectangle indicates the portion of the NSView that is potentially visible through the
frame, if the frame runs outside of the superview the image will be clipped even within the bounds
rectangle. An NSView’s visible rectangle reflects the portion of an NSView that actually displays, in terms
of its own coordinate system (the darker gray rectangle in the figure below). It isn’t often important to know
what the visible rectangle is, since the display mechanism automatically limits drawing to visible portions
of a view. If a subclass must perform expensive precalculation to build its image, though, it can use the
visibleRect method to limit its work to what’s actually needed.

Frame at (5.0, 5.0), size (50.0, 65.0)ˇ Bounds at (0.0, 0.0), size (50.0, 65.0)ˇ

superviewˇ

(0.0, 0.0)ˇ

4

The initWithFrame: method establishes an NSView’s frame rectangle, but doesn’t insert it into an
NSWindow’s view hierarchy. This is the job of the addSubview: method, which you send to the NSView
that you want to contain the newly initialized one. The frame rectangle is then interpreted in terms of the
superview, properly locating the new NSView both by its place in the view hierarchy and its location in the
superview’s NSWindow.

After initialization, you can move an NSView programmatically using any of the frame-setting methods:
setFrame:, setFrameOrigin:, setFrameSize:, and setFrameRotation:. When you move an NSView all
of its subviews move along with it. When you change the frame rectangle’s size, the bounds rectangle is
automatically resized to match (see figure below), and the subviews are automatically resized as described
in “Moving and Resizing NSViews” below. setFrameRotation: rotates the NSView around the origin of
the frame rectangle (which is typically the lower left corner).

A number of methods access the view hierarchy itself. superview returns the receiver’s containing NSView,
while subviews returns an NSArray containing its immediate descendant NSViews. The window method
returns the NSWindow whose view hierarchy the receiver belongs to. You can add NSViews to and remove
them from the view hierarchy using the methods addSubview:, removeFromSuperview, and
replaceSubview:with:. An additional method, addSubview:positioned:relativeTo:, allows you to specify
the ordering of NSViews that may overlap (though laying out NSViews so that they overlap isn’t
recommended).

Frame at (85.0, 30.0), size (50.0, 65.0)
Bounds at (0.0, 0.0), size (50.0, 65.0)

superview

Visible at (0.0, 0.0), size (35.0, 50.0)

(0.0, 0.0)

Frame at (20.0, 10.0), size (40.0, 30.0)ˇ Bounds at (0.0, 0.0), size (40.0, 30.0)ˇ

superviewˇ

(0.0, 0.0)ˇ

5

 Classes: NSView

When you add a subview with addSubview:, the receiver retains the view. When you remove a subview
from a view hierarchy with removeFromSuperview, or replace it with replaceSubview:with:, the view is
released. If you want to keep using a view after removing it from a view hierarchy (if, for example, you are
swapping through a number of views), you must retain it before removing or replacing it.

When an NSView is added as a subview of another view, it automatically invokes the
viewWillMoveToSuperview: and viewWillMoveToWindow: methods. Concrete subclasses can override
these methods, allowing an instance to query its new superview or NSWindow about relevant state and
update itself accordingly. A few other methods allow you to inspect relationships among NSViews:
isDescendantOf: confirms the containment of the receiver, ancestorSharedWithView: find the common
container of two NSViews, and opaqueAncestor returns the closest containing NSView that’s guaranteed
to draw every pixel in the receiver’s frame (possible the receiver itself).

Coordinate Conversion in the View Hierarchy

At various times, particularly when handling events, you need to convert a rectangle or point from the
coordinate system of one NSView to another (typically a superview or subview). NSView defines six
methods that convert rectangles, points, and sizes in either direction:

These methods convert geometric structures between the receiver’s coordinate system and another
NSView’s within the same NSWindow, returning an alternate expression for the same on-screen location or
area. Note that the structure in question needn’t actually be located within the NSView’s bounds rectangle;
it’s merely assumed to be expressed in that NSView’s coordinate system. If the second argument to a
conversion method is nil , the conversion is made between the receiver’s coordinate system and the base
coordinate system of its NSWindow.

For converting to and from the screen coordinate system, NSWindow defines the convertBaseToScreen:
and convertScreenToBase: methods. Using the NSView conversion methods along with these allows you
to convert a geometric structure between an NSView’s coordinate system and the screen’s with only two
messages.

Conversion is straightforward when neither NSView is rotated, or when dealing only with points. When
converting rectangles or sizes between NSViews with different rotations, the geometric structure must be
altered in a reasonable way. In converting a rectangle NSView makes the assumption that you want to
guarantee coverage of the original screen area. To this end, the converted rectangle is enlarged so that when
located in the appropriate NSView it completely covers the original rectangle (the left side of the figure
below, with 15 degrees of rotation). In converting a size NSView simply treats it as a vector from (0.0, 0.0)

– convertPoint:fromView: – convertPoint:toView:

– convertSize:fromView: – convertSize:toView:

– convertRect:fromView: – convertRect:toView:

6

and maps it onto the destination coordinate system. Though the length remains the same, the balance along
the two axes shifts according to the rotation (the right side of the figure below, rotated 45 degrees).

Drawing in an NSView

Drawing in an NSView is as simple as implementing the drawRect: method to generate the appropriate
PostScript code for the image you want displayed—the display mechanism handles the rest of the work. On
the other hand, it can be as complex as dealing with the PostScript language itself, the coordinate
transformations from superview to subview, and the operation of the display mechanism. This section and
“The Display Mechanism” progress from the basic to the esoteric, keeping the picture correct, if
incomplete, at each stage.

In order for a concrete subclass of NSView to display any kind of image, it must implement the drawRect:
method. This method is invoked during the display process to generate PostScript code that’s rendered by
the Window Server into a raster image. drawRect: takes a single argument, an NSRect describing the area
that needs to be drawn in the receiver’s own coordinate system. Here’s an example:

- (void)drawRect:(NSRect)aRect

{

PSsetgray(NSWhite);

NSRectFill(aRect);

PSsetgray(NSBlack);

PSarc(0.0, 0.0, 117.0, 0.0, 360.0);

PSfill();

return;

}

This method first fills the view’s background with white, then draws a black circle at the origin (0.0, 0.0).
An NSView automatically clips drawing to its frame rectangle, so the results look like this:

original rectangleˇ
converted rectangleˇ

original sizeˇ
(10.0, 10.0)ˇ

co
nv

er
ted

 si
ze

ˇ

(1
4.1

56
, 0

.0)
ˇ

7

 Classes: NSView

Except for the background, this implementation of drawRect: ignores the rectangle provided, drawing
everything each time it’s invoked. This isn’t a problem for a simple image, but for complex drawing it can
be an extremely inefficient practice. Sending drawing instructions and data to the Window Server has a cost,
and it’s best to minimize that cost where possible. You can do this by testing whether a particular graphic
shape intersects the rectangle being drawn, using NSIntersectsRect() and similar functions.

How to Draw

As indicated in the example above, drawing can be performed by invoking PostScript client library
functions (also known as single-operator functions), which map directly to PostScript operators. The
Application Kit provides a few higher-level mechanisms for handing PostScript instructions to the Window
Server. The first is the pswrap program, which converts custom PostScript procedures into C functions that
you can call in the same manner as client library functions. Wrapping complex drawing procedures
minimizes the overhead of communication with the Window Server by passing a group of instructions in
one interprocess message, as opposed to a number of such messages for repeated single-operator calls. The
Application Kit itself defines some pswrap functions, such as NSRectFill(), and you can define your own.

Describing the PostScript language, client libraries, and pswrap is outside this scope of this class
description. For more information, see:

PostScript Language Reference Manual, Second Edition. Adobe Systems Incorporated. Addison
Wesley, 1990. ISBN 0–201–18127–4.

Descriptions of OPENSTEP PostScript operators and client functions, accessible from the Project
Builder application in the Application Kit framework documentation.

For information on pswrap, contact Adobe Systems.

The second higher-level mechanism is provided by Application Kit classes that perform drawing within an
NSView, such as NSImage and the various NSCell subclasses. These classes send PostScript instructions
to the Window Server but don’t have the overhead of maintaining a drawing context that NSView has.
Objects that draw themselves are useful for encapsulating graphic elements that need to be drawn over and
over, at different locations, or in slightly different ways. See the appropriate class specifications for more
information on drawing with them.

Another way of drawing within an NSView is to add subviews that each do their own drawing. This is
somewhat more heavyweight than using NSCells or NSImages, but the elements of such a constructed
group have the full power of the NSView machinery at their disposal, including the autosizing of
components and event handling, features described later in this class description.

8

Checking the Output Device

Most of an NSView’s displayed image is a stable representation of its state, and is defined in the
device-independent PostScript language. View objects also interact dynamically with the user, however, and
this interaction often involves drawing that isn’t integral to the image itself—selections and other
highlighting, for example. Such drawing should be performed only to the computer screen, and never to a
printer or fax device, or to the pasteboard (as when drawing an EPS image). You can predicate drawing on
this difference of output device by sending the current DPS context an isDrawingToScreen message:

NSDPSContext *context = [NSDPSContext currentContext];

if (context && [context isDrawingToScreen]) {

/* Draw things that should only appear on a computer screen. */

}

Coordinate System Transformations

By default, an NSView’s coordinate system is based at (0.0, 0.0) in the lower-left corner of its bounds
rectangle, its units are the same size as those of its superview, and its axes are parallel to those of its frame
rectangle. To change this coordinate system you can alter the NSView’s bounds rectangle, thereby placing
the canvas inside the frame rectangle, or transform it directly using PostScript operators in the drawRect:
method. Changing the bounds rectangle sets up the basic coordinate system, with which all drawing
performed by the NSView begins; concrete subclasses of NSView typically alter the bounds rectangle
immediately as needed in their initWithFrame: methods (or other designated initializers). Direct
transformations are useful for temporary effects, such as scaling one axis to draw an oval instead of a circle,
then scaling it back before stroking the path to preserve line widths; rotating the axes to draw text at an
angle; or repeatedly translating the origin to draw the same figure in several locations.

The basic method for changing the bounds rectangle is setBounds:, which both positions and stretches the
canvas. The origin of the rectangle provided to setBounds: becomes the lower-left corner of the bounds
rectangle, and the size of the rectangle is made to fit in the frame rectangle, effectively scaling the NSView’s
drawn image. In the figure below, the bounds rectangle from the previous example is moved and doubled
in size; the result appears on the right:

Frame at (20.0, 10.0), size (40.0, 30.0)ˇBounds at (10.0, 10.0), size (80.0, 60.0)ˇ

superviewˇ

(0.0, 0.0)ˇ

9

 Classes: NSView

You can also set the parts of the bounds rectangle independently, using setBoundsOrigin: and
setBoundsSize:. An additional method, setBoundsRotation:, rotates the coordinate system around its
origin within the bounds rectangle (not the origin of the bounds rectangle itself). It also enlarges the visible
rectangle to account for the rotation, so that it’s expressed in the rotated coordinates yet completely covers
the visible portion of the frame rectangle. This adds regions that must be drawn, yet will never be displayed
(the triangular areas in the figure below). For this reason, rotating the bounds rectangle is strongly
discouraged. It’s better to rotate the coordinate system by using PostScript operators in the drawRect:
method rather than by rotating the bounds rectangle.

setBoundsOrigin:, setBoundsSize:, and setBoundsRotation: all express their transformations in absolute
terms. Another set of methods transform the coordinate system in relative terms; if you invoke them
repeatedly, their effects accumulate. These methods are translateOriginToPoint: ,
scaleUnitSquareToSize:, and rotateByAngle:. See the individual method descriptions for more
information.

One final type of coordinate transformation is statically established by overriding the isFlipped method.
NSView’s implementation returns NO, which means that the origin of the coordinate system lies at the
lower-left corner of the default bounds rectangle and the y axis runs from bottom to top. When a subclass
overrides this method to return YES, the NSView machinery automatically adjusts itself to assume that the
upper-left corner of the NSView holds the origin. In other words, when isFlipped returns YES the y axis
runs from top to bottom. A flipped coordinate system affects all drawing in the NSView itself and reckons
the frame rectangles of all immediate subviews from their upper-left corners, but it doesn’t affect the
coordinate systems of those subviews or the drawing performed by them.

A flipped coordinate system doesn’t affect an NSView’s subviews, but the other coordinate transformations
do. Translation of the bounds rectangle from the coordinate system origin shifts all subviews along with the
rest of the NSView’s image. Scaling and rotation actually affect the drawing of the subviews, as their
coordinate systems inherit and build on these alterations. You can determine whether an NSView’s
coordinate system is (or was ever) altered from the base coordinate system of its window using two
methods. isRotatedFromBase returns YES if the receiver or any of its ancestors in the view hierarchy has
ever been rotated, whether of the frame or of the bounds rectangle. isRotatedOrScaledFromBase similarly
returns YES if the receiver or any of its ancestors has ever been rotated or been scaled from the base

superviewˇ

visible rectangleˇ(0.0, 0.0)ˇ

10

coordinate system’s unit size. You can determine whether the NSView has never been rotated by checking
that isRotatedOrScaledFromBase returns YES while isRotatedFromBase returns NO. Note that these
methods only offer hints about the coordinate system. Their purpose is to help optimize certain operations,
not to reflect the present state: Once an NSView is marked as having been rotated or scaled, it remains so
marked for its lifetime.

To get the actual amount of rotation, use the frameRotation and boundsRotation methods. These return
the rotation relative to the superview only, not to the base coordinate system, so if you want the latter
amount you have to progress up through each superview to the NSWindow’s content view, accumulating
the rotation as you go. To get the scaling relative to the superview you can use convertSize:toView: and
examine the ratio of the original size to that of the superview. To get the scaling relative to the base
coordinate system, use nil as the second argument. This causes convertSize:toView: to convert to the
NSWindow’s base coordinate system.

The Display Mechanism

Displaying an NSView centers around the drawRect: method, which transmits drawing instructions to the
Window Server. Before this can happen, however, a number of other things must be established. First, of
course, is the rectangle in the view that needs to be drawn. Once this is known, the view must be checked
for opacity; if the view is partially transparent, its nearest opaque ancestor must be found and drawing must
commence from there. Once all of this is determined and a particular view is to be drawn, the Window
Server must know which window device the view is in, how to clip drawing to the appropriate region, and
what coordinate system to use. This is all handled outside drawRect:, by NSView’s various display
methods. The following sections examine each of these points in turn.

Marking a View as Needing Display

The most common way of causing an NSView to redisplay is to tell it that its image is invalid. On each pass
through the event loop, all views that need to redisplay do so. NSView defines two methods for marking a
view’s image as invalid; setNeedsDisplay:, which invalidates the view’s entire bounds rectangle, and
setNeedsDisplayInRect:, which invalidates a portion of the view. The automatic display of views is
controlled by their window; you can turn this behavior off using NSWindow’s setAutodisplay: method.
You should rarely need to do this however; the autodisplay mechanism is well-suited to most kinds of
update and redisplay.

The autodisplay mechanism invokes various methods that actually do the work of displaying. You can also
use these methods to force a view to redisplay itself immediately when necessary. display and displayRect:
are the counterparts to the methods mentioned above; both cause the receiver to redisplay itself regardless
of whether it needs to or not. Two additional methods, displayIfNeeded and displayIfNeededInRect:,
redisplay invalidated rectangles in the receiver if it’s been marked invalid with the methods above. The
rectangles that actually get drawn are guaranteed to be at least those marked as invalid, but the view may
coalesce them into larger rectangles to save multiple invocations of drawRect:.

11

 Classes: NSView

Opacity

NSViews don’t necessarily cover every bit of their frames with drawing. Because of this, the display
methods must be sure to find an opaque background behind the view that’s ostensibly being drawn, and
begin displaying from there forward. The display methods above all pull back up the view hierarchy to the
first view that responds YES to an isOpaque message, bringing the invalidated rectangles along. NSView
by default responds NO to isOpaque, so it’s important to remember to override this method to return YES
if appropriate when defining a subclass. Most Application Kit subclasses of NSView actually do this.

If you want to exclude background views from drawing when forcing display to occur unconditionally, you
can use NSView methods that explicitly omit backing up to an opaque ancestor. These methods, parallel to
those mentioned above, are displayRectIgnoringOpacity:, displayIfNeededIgnoringOpacity:, and
displayIfNeededInRectIgnoringOpacity:.

Locking Focus

Before a display... method invokes drawRect:, it sets the Window Server up with information about the
view, including the window device it draws in, the coordinate system and clipping path it uses, and other
PostScript graphics state (discussed in detail below, under “PostScript Graphics State Objects”). The
method used to do this is lockFocus, and it has a companion method that undoes its effects, called
unlockFocus.

All drawing code invoked by an NSView must be bracketed by invocations of these methods to produce
proper results. If you define some methods that need to draw in a view without going through the display
methods above, for example, you must send lockFocus to the view that you’re drawing in before sending
commands to the Window Server, and unlockFocus as soon as you are done.

It’s perfectly reasonable to lock the PostScript focus on one view when another already has it. In fact, this
is exactly what happens when subviews are drawn in their superview. The focusing machinery keeps a stack
of which views have been focused, so that when one view is sent an unlockFocus message, the PostScript
focus is restored to the view that was focused immediately before.

PostScript Graphics State Objects

When an NSView receives a lockFocus message, its basic drawing environment state is constructed and
sent to the Window Server as a PostScript graphics state object, or gstate (this is a PostScript user object,
not an Objective-C object). The basic state includes default values for parameters that don’t change often,
but leaves many other parameters undefined:

Parameter Default Value

coordinate transformation
The NSView’s coordinate system as established by the
bounds rectangle

position No default value, must be set before drawing

12

When drawing in an NSView, you must be sure to explicitly set relevant parameters that have no default
value, or a PostScript error will result. Further, although drawing methods are free to set any gstate

path No default value

clipping path As established by lockFocus

font No default value, must be set before drawing text

line width 0.0

line cap 0 (a square butt end)

line join 0 (mitered joins)

halftone screen A device-dependent, type 3 halftone dictionary

halftone phase 0,0

flatness 1.0

miter limit 10

dash pattern A normal solid line

device The current window

stroke adjust true

color No guaranteed default value

color space No guaranteed default value, varies with color

color rendering Calibrated RGB rendering

overprint false

black generation No default value

transfer No default value

undercolor removal No default value

alpha (opacity) 1.0 (opaque)

instance drawing mode false

Parameter Default Value

13

 Classes: NSView

parameter, they should always restore the parameters to their original values when finished. This protects
multiple drawing methods, and objects that draw within an NSView, such as NSImages and NSCells, from
altering each other’s graphics states. You can protect the gstate by bracketing the changes with PSgsave()
and PSgrestore(), or by explicitly placing the parameter in question on the stack and resetting it later—for
example, saving the line width only using PScurrentlinewidth(), performing your drawing, then calling
PSsetlinewidth() to restore the prior value.

Normally the graphics state object is reconstructed from scratch each time the NSView is focused. You can
instruct an NSView to keep a graphics state object indefinitely by sending it an allocateGState message
(typically in the initialization method for a concrete subclass). This eliminates the overhead of continual
reconstruction of the graphics state, and also allows you to omit commands for setting parameters from your
drawing code. However, because a graphics state object does consume a fair amount of memory, you should
be sure to test your application’s performance with and without it. Persistent gstate objects are most suitable
for NSViews that must be redrawn frequently with the same parameters.

When you set an NSView to use a persistent gstate object, it doesn’t actually allocate one until it needs it.
When it does create the graphics state object, the NSView invokes its setUpGState method to set the
parameters. Your subclass can override this method to establish the parameters that you want kept in the
graphics state. Your version of setUpGState can use methods such as the set method found in NSColor and
NSFont, as well as client library functions such as PSsetlinewidth(), PSsetdash(), and so on.

You can cause an NSView to discard its gstate object by sending it a releaseGState message, or cause the
view simply to invalidate its gstate object by sending a renewGState message. The latter method causes
the NSView to reestablish its gstate parameters by invoking setUpGState the next time it’s needed. Finally,
if for some reason you need to access the persistent gstate object directly, the gState method returns its
PostScript user object identifier.Although applications rarely need to use this value, it can be passed to the
few PostScript operators that take an object identifier as a parameter, such as PScomposite and PSdissolve.

Moving and Resizing NSViews

Repositioning an NSView is a potentially complex operation. Moving or resizing can expose portions of
the NSView’s superview that weren’t previously visible, requiring the superview to redisplay. Resizing can
also affect the layout of an NSView’s subviews. Changes to an NSView’s layout in any case may be of
interest to other objects, which might need to be notified of the change. The following sections explore each
of these areas.

Displaying After Moving or Resizing

None of the methods that alter an NSView’s frame rectangle redisplays the NSView or marks it as needing
display. When using the setFrame... methods, then, you must mark both the view being repositioned and
its superview as needing display. This can be as simple as marking the superview in its entirety as needing
display, or better, marking the superview in the old frame of the repositioned view and the view itself in its
entirety. This code fragment sets theView’s frame rectangle, and updates its superview appropriately:

14

NSView *theView; /* Assume this exists. */

NSRect newFrame; /* Assume this exists. */

[[theView superview] setNeedsDisplayInRect:[theView frame]];

[theView setFrame:newFrame];

[theView setNeedsDisplay:YES];

This sample marks the superview as needing display in the frame of the view about to be moved. Then, after
theView is repositioned, it’s marked as needing display in its entirety, which will nearly always be the case.

Note: The setBounds... methods also don’t redisplay the NSView, but because their changes don’t affect
superviews you can simply mark the repositioned NSView as needing display.

The NSView class provides a mechanism to notify interested objects when a view object’s frame rectangle
is changed or its bounds rectangle is changed. The setFrame... methods post an
NSViewFrameDidChangeNotification to the default notification center, unless the
setPostsFrameChangedNotification: method has been used to turn notification off. The setBounds...
methods post an NSViewBoundsDidChangeNotification to the default notification center, unless the
setPostsBoundsChangedNotification: method has been used to turn notification off. Your application can
use these notifications to perform special handling when a view object is moved or resized.

Autoresizing of Subviews

When an NSView’s frame size changes, the layout of its subviews must often be adjusted to fit in the new
size. NSView defines a mechanism that automates this process, allowing you to specify how any NSView
should reposition itself when its superview is resized. Interface Builder allows you to set these attributes
graphically with its Size Inspector, and in test mode you can examine the effects of autoresizing. You can
also set autoresizing attributes programmatically using setAutoresizingMask: with a mask containing any
of the constants illustrated below, combined using the C bitwise OR operator:

When one of these mask flags is omitted, the NSView’s layout is fixed in that aspect; when it’s included the
NSView’s layout is flexible in that aspect. For example, to keep an NSView in the lower left corner of its

NSViewWidthSizableˇ

NSViewMaxXMarginˇ

NSViewMaxYMarginˇ

NSViewHeightSizableˇ

NSViewMinYMarginˇ

NSViewMinXMarginˇ

(0.0, 0.0)ˇ

15

 Classes: NSView

superview, you specify NSViewMaxXMargin | NSViewMaxYMargin. When more than one aspect along
an axis is made flexible, the resize amount is distributed evenly among them.

Autoresizing is on by default, but you can turn it off using the setAutoresizesSubviews: method. Note that
when you turn off an NSView’s autoresizing, all of its descendants are likewise shielded from changes in
the superview. Changes to subviews, however, can still percolate downward. Similarly, if a subview has no
autoresize mask, it won’t change in size, and therefore none of its subview will autoresize.

Autoresizing is accomplished using two methods. resizeSubviewsWithOldSize: is invoked automatically
by an NSView whenever its frame size changes. This method then simply sends a
resizeWithOldSuperviewSize: message to each subview. Each subview compares the old frame size to the
new size and adjusts its position and size according to its autoresize mask. Subclasses of NSView can
override either method to alter their autoresizing behavior.

Two cautions apply to autoresizing. First, it doesn’t work at all in NSViews that have been rotated. Subviews
that have been rotated can autoresize within a nonaltered superview, but then their descendants aren’t
autoresized. Also, for autoresizing to work correctly, the subview being autoresized must lie completely
within its superview’s frame. Apart from these limitations, autoresizing covers most layout changes quite
well.

Notifications

Beyond resizing its subviews, an NSView broadcasts notifications to interested observers any time its
bounds and frame rectangles change. The notification names are NSViewFrameDidChangeNotification and
NSBoundsDidChangeNotification, respectively. An NSView that bases its own display on the layout of its
subviews, for example, can register itself as an observer for those subviews and update itself any time
they’re moved or resized. NSScrollView and NSClipView cooperate in this manner to adjust the
NSScrollView’s NSScrollers. You can turn notifications on and off using
setPostsFrameChangedNotification: and setPostsBoundsChangedNofitications:.

Event Handling

NSViews are the most typical receivers of event and action messages, as described in the NSResponder and
NSEvent class specifications. An NSView subclass can handle any event or action message simply by
implementing it (being sure to invoke super’s implementation as needed). Then, if an instance of that class
is the first in the responder chain to respond to that message, it receives such messages as they’re generated.

Except for an NSWindow’s content view, an NSView’s next responder is always its superview—most of the
responder chain, in fact, comprises the NSViews from an NSWindow’s first responder up to its content view.
NSView addSubview: method automatically sets the receiver as the new subview’s superview; you should
never send setNextResponder: to an NSView object. You can safely add responders to the top end of an
NSWindow’s responder chain—the NSWindow itself if it has no delegate, or the delegate if it does.

As the class that handles display, NSView is the typical recipient of mouse and keyboard events. Mouse
clicks, drags, and movements usually occur in some NSView or other, and most keystrokes represent text
to be added for display at some point in a window. A mouse event starts at the lowest NSView containing

16

it in the view hierarchy (or, the topmost NSView displayed under the cursor), and proceeds up the responder
chain through superviews until some object handles it. “Mouse Events” below covers the details of handling
mouse events. Most keyboard events start at the first responder, whatever it might be, and are similarly
offered up the responder chain. Some actually change the first responder, thus allowing the user to perform
many actions without using the mouse. See the NSResponder class specification for information on
keyboard events. Tracking-rectangle events are monitored by the NSWindow and dispatched directly to the
object that owns the tracking rectangle. “Tracking Rectangles and Cursor Rectangles” describes how to set
up and handle these. An additional section covers the use of context-sensitive pop-up menus by your views.

Mouse Events

An NSView can receive mouse events of three general types: clicks, drags, and movements. A custom
subclass of NSView can interpret a mouse event as a cue to perform a certain action, such as sending a
target-action message, selecting a graphic element, and so on. NSViews automatically receive
mouse-clicked and mouse-dragged events, but because mouse-moved events occur so often and can bog
down the event queue, an NSView must explicitly request its NSWindow to watch for them using
NSWindow’s setAcceptsMouseMovedEvents: method. Tracking rectangles, described below, are a less
expensive way of following the mouse’s location.

The NSView selected to receive a mouse event is determined by the NSWindow using NSView’s hitTest:
method, which returns the lowest descendant that contains the cursor location of the event (this is also the
topmost NSView displayed). Once the recipient is determined, the NSWindow sends it a mouseDown:
message, which includes an NSEvent object containing information about the click. NSEvent’s
locationInWindow locates the cursor’s hot spot in the coordinate system of the receiver’s NSWindow. To
convert it to the NSView’s coordinate system, use convertPoint:fromView: with a nil NSView argument.
From here, you can use mouse:inRect: to determine whether the click occurred in an interesting area.

One of the earliest things to consider in handling mouse-down events is whether the receiving NSView
should become the first responder, which means that it will be the first candidate for subsequent key events
and action messages. NSViews that handle graphic elements that the user can select—drawing shapes or
text, for example—should typically accept first responder status on a mouse-down event, by overriding the
acceptsFirstResponder method to return YES. This results in the window making the receiving NSView
first responder with NSWindow’s makeFirstResponder: method. Some NSViews, however, may not wish
to change the selection upon the first mouse click in a non-key window, which should normally only order
the window to the front. NSView’s acceptsFirstMouse: method controls whether an initial mouse click is
sent to the NSView or not. By default it returns NO, which in most cases is appropriate behavior. Certain
subclasses, such as controls that don’t affect the selection, override this method to return YES.

Once an NSView has accepted a mouse event and determined its location, it can also check which mouse
button was clicked and how many times. NSEvent’s type method distinguishes between left and right
mouse events, and the NSView can base its behavior on this information. Right mouse events are defined
by the Application Kit to open pop-up menus, but you can override this behavior if necessary. NSEvent’s
clickCount method returns a number identifying the mouse event as a single-, double-, or triple-click (and
so on).

17

 Classes: NSView

NSViews that handle mouse clicks as a single event, from mouse down, through dragging, to mouse up,
must usually short-circuit the application’s normal event loop, entering a modal event loop to catch and
process only events of interest. For example, an NSButton highlights upon a mouse-down event, then
follows the mouse location during dragging, highlighting when the mouse is inside and unhighlighting
when the mouse is outside. If the mouse is inside on the mouse-up event, the NSButton sends its action
message. This method template shows one possible kind of modal event loop:

- (void)mouseDown:(NSEvent *)theEvent

{

BOOL keepOn = YES;

BOOL isInside = YES;

NSPoint mouseLoc;

do {

 mouseLoc = [self convertPoint:[theEvent mouseLocationInWindow

fromView:nil]];

 isInside = [self mouse:mouseLoc inRect:[self bounds]];

 switch ([theEvent type]) {

case NSLeftMouseDragged:

[self highlight:isInside];

break;

case NSLeftMouseUp:

if (isInside) [self doSomethingSignificant];

[self highlight:NO];

keepOn = NO;

break;

default:

/* Ignore any other kind of event. */

break;

}

theEvent = [[self window] nextEventMatchingMask: NSLeftMouseUpMask |

NSLeftMouseDraggedMask];

 }while (keepOn);

return;

}

This loop converts the mouse location and checks whether it’s inside the receiver. It highlights itself using
the fictional highlight: method according to this, and on a mouse up inside, invokes
doSomethingSignificant to perform an important action. Instead of merely highlighting, a custom NSView
might move a selected object, draw a graphic image according to the mouse’s location, and so on.

This kind of modal event loop is driven only as long as the user actually moves the mouse. It won’t work,
for example, to cause continual scrolling if the user presses the mouse button but never moves the mouse

18

itself. For this, your modal loop should start a periodic event stream using NSEvent’s class method
startPeriodicEventsAfterDelay:withPeriod:, and add NSPeriodicMask to the mask passed to
nextEventMatchingMask:. In the switch() statement the NSView can then check for a case of NSPeriodic
and take whatever action it needs to; scrolling a document view or moving a step in an animation, for
example. If you need to check the mouse location during a periodic event, you can use NSWindow’s
mouseLocationOutsideOfEventStream method.

Tracking Rectangles and Cursor Rectangles

One special type of event is that for tracking mouse movement into and out of a region in the NSView. Such
a region is known as a tracking rectangle; it triggers mouse-entered events when the cursor enters it and
mouse-exited events when the cursor leaves it. This can be useful for displaying context-sensitive messages
or highlighting graphic elements under the cursor, for example. An NSView can have any number of
tracking rectangles, which can overlap or be nested one within the other; the NSEvent objects generated for
tracking events include a tag that identifies the rectangle that triggered the event.

To create a tracking rectangle, use the addTrackingRect:owner:userData:assumeInside: method. This
method registers an owner for the tracking rectangle provided, so that the owner receives the event
messages. This is typically the NSView itself, but need not be. The method returns the tracking rectangle’s
tag so that you can store it for later reference in the event handling methods, mouseEntered: and
mouseExited:. To remove a tracking rectangle, use the removeTrackingRect: method, which takes as an
argument the tag of the tracking rectangle to remove.

Tracking rectangles, though created and used by NSViews, are actually maintained by NSWindows.
Because of this, a tracking rectangle is a static entity; it doesn’t move or change its size when the NSView
does. If you use tracking rectangles, you should be sure to remove and reestablish them any time you change
the frame rectangle of the NSView that contains them. If you’re using a custom subclass of NSView, you
can override the frame- and bounds-setting methods to do this. You can also register an observer for the
NSViewFrameDidChangeNotification (described below), and have it reestablish the tracking rectangles on
receiving the notification.

One common use of tracking rectangles is to change the cursor image over different types of graphic
elements. Text, for example, typically requires an I-beam cursor. Changing the cursor is such a common
operation that NSView defines several convenience methods to ease the process. A tracking rectangle
generated by these methods is called a cursor rectangle. The Application Kit itself assumes ownership of
cursor rectangles, so that when the user moves the mouse over the rectangle the cursor automatically
changes to the appropriate image. Unlike general tracking rectangles, cursor rectangles may not partially
overlap. They may, however, be completely nested, one within the other.

Because cursor rectangles need to be reset often as the NSView’s size and graphic elements change,
NSView defines a single method, resetCursorRects, that’s invoked any time its cursor rectangles need to
be reestablished. A concrete subclass overrides this method, invoking addCursorRect:cursor: for each
cursor rectangle it wishes to set. Thereafter, the NSView’s cursor rectangles can be rebuilt by invoking
NSWindow’s invalidateCursorRectsForView: method. If you find you need to temporarily remove a

19

 Classes: NSView

single cursor rectangle, you can do this with removeCursorRect:cursor:. Be aware that
resetCursorRects will reestablish that rectangle, unless you implement it to do otherwise.

An NSView’s cursor rectangles are automatically reset whenever:

• Its frame or bounds rectangle changes, whether by a setFrame... or setBounds... message or by
autoresizing.

• Its NSWindow is resized. In this case all of the NSWindow’s view objects get their cursor rectangles
reset.

• It’s moved in the view hierarchy.

• It’s scrolled in an NSScrollView or NSClipView.

You can temporarily disable all the cursor rectangles in a window using NSWindow’s disableCursorRects
method or enable them with the enableCursorRects method. NSWindow’s areCursorRectsEnabled
method tells you whether they’re currently enabled.

Context-Sensitive Menus

On Microsoft Windows, any view can be assigned a pop-up menu that’s displayed when the user clicks the
right mouse button over the view. setMenu: assigns an NSMenu to a view, and menu returns it. Your
subclass can define a menu that’s used for all instances by implementing the defaultMenu class method. It
can also change the menu displayed based on the mouse event by overriding the menuForEvent: instance
method. This allows the view clicked to display different menus based on the location of the mouse and of
the view’s state, or to change or enable individual menu items based on the commands available for the view
or for that region of the view. See the NSMenu and NSMenuItem class and protocol specifications for more
information on using menus.

Tooltips

A tooltip is a bit of text that provides information about a view. If the user holds the cursor over the view
for more than the default delay, the tooltip text is displayed in a small framed rectangle next to the cursor.
By default, a view does not display a tooltip. To turn on tooltip display for a view, you invoke the
setToolTip: method to install tooltip text for the view. To turn display off, you invoke setToolTip: with a
nil string.

Printing and Faxing

Printing or faxing an NSView uses the same PostScript description as for displaying on the screen, by
simply changing the device. An NSView can check whether it’s drawing to the screen in order to
conditionally include or omit elements such as highlighting, but normally doesn’t need to be involved with
the PostScript generation process in a special way for printing. It may, however, need to take part in
peripheral issues, including how it’s divided into pages and placed on them, and generation of document
structuring comments used by some PostScript document programs. The sections below cover these areas.

20

To print or fax an NSView, send it a print: or fax: message. You can also generate an EPS representation
using either dataWithEPSInsideRect: or writeEPSInsideRect:toPasteboard:. For any of these jobs, the
NSView creates an NSPrintOperation object that manages the process of generating proper PostScript code
for a printer or fax device. NSPageLayout, NSPrintInfo, and NSPrintPanel objects are also involved in the
process. See those classes’ specifications for more information on the printing process itself.

Pagination

When an NSView is printed onto pages smaller than itself, it tiles itself out onto separate logical pages so
that its entire visible region is printed. A subclass of NSView can alter the way pagination is performed by
overriding two small sets of methods. The first set affects automatic pagination; the second replaces
automatic pagination completely. One extra method allows the NSView to adjust the location of the printed
image on the page. Finally, after pagination has actually been performed, the NSView is given the chance
to draw additional marks on the page.

NSView’s automatic pagination tries to fit as much of the view being printed onto a logical page, slicing the
view into the largest possible chunks. This is sufficient for many views, but if a view’s image must be
divided only at certain places—between lines of text or cells in a table, for example, the view can adjust the
automatic mechanism to accommodate this by reducing the height or width of each page. It does so by
overriding up to four methods. adjustPageHeightNew:top:bottom:limit: provides an out parameter for
the new bottom coordinate of the page, followed by the proposed top and bottom. An additional parameter
limits the height of the page; the bottom can’t be moved above it. adjustPageWidthNew:left:right:limit:
works in the same way to allow the view to adjust the width of a page. The limits are calculated as a
percentage of the proposed page’s height or width. Your view subclass can also customize this percentage
by overriding the methods heightAdjustLimit and widthAdjustLimit to return the reducible fraction of
the page.

More complex views, such as those that display separate pages over a background, need to direct their own
pagination. An NSView subclass that needs to do so overrides the knowsPagesFirst:last: method to return
YES, which signals that it will be calculating each page’s dimensions, and returns by reference its first and
last page numbers. The pagination machinery then uses these numbers, sending rectForPage: to the
NSView, which uses the page number and the current printing information to calculate an appropriate
rectangle in its coordinate system. The adjustPage... methods aren’t used in this case.

The last stage of pagination involves placing the image to be printed on the logical page. NSView’s
locationOfPrintRect: places it according to the NSPrintInfo’s status. By default it places the image in the
upper left corner of the page, but if NSPrintInfo’s isHorizontallyCentered or isVerticallyCentered
methods return YES, it centers a single-page image along the appropriate axis. A multiple-page document,
however, is always placed so that the divided pieces can be assembled at their edges.

After the NSView has sliced out a rectangle and positioned it on a page, it’s given two chances to add extra
marks to the page, such as crop marks or fold lines. drawPageBorderWithSize: is used for logical pages,
and is invoked for each paginated portion of the view. drawSheetBorderWithSize: is used for actual
physical pages, or sheets, on which one or more logical pages may be laid out. In a 2-up printing, for
example, the former method is invoked twice for each sheet, while the latter is invoked once for each sheet.

21

 Classes: NSView

PostScript Document Structure

As an adjunct to the PostScript language itself, Adobe has defined a set of document structuring conventions
that describe the internal structure of a given PostScript language document. NSView properly generates
the basic information needed to structure its output, and defines a number of methods that subclasses can
override to provide additional information. This section only describes the methods that relate to the
structure of a conforming PostScript language document; see the individual method descriptions and
Adobe’s PostScript Language Reference Manual, Appendix G for more information.

An NSView subclass can override any of the methods that write out document structuring comments and
definitions. When overriding begin... or add... methods, be sure to invoke super’s implementation before
writing additional information; when overriding end... methods, invoke super’s implementation last. This
sample method, for example, adds a comment to the header of a document:

- (void)endHeaderComments

{

NSDPSContext *context = [NSDPSContext currentContext];

[context printFormat:@"%%%%SomeComment: %d\n", someNumber];

[super endHeaderComments];

return;

}

The initial portion of a conforming PostScript language document is called the prologue, and contains two
parts itself: the header and a set of procedure definitions. NSView’s beginPrologueBBox:... writes out the
very beginning of the document. endHeaderComments closes the first part of the prologue. Subclasses can
add their own procedure definitions to the end of the prologue by overriding endPrologue.

After the prologue comes the script, which contains a section that applies to the entire document, followed
by sections for each page, and finally the document trailer. beginSetup and endSetup write the document
setup section. Each page is written with five methods, in addition to drawRect:. beginPage:label:bBox:
fonts: writes out the beginning of each page’s document structuring comments. It’s followed by
beginPageSetupRect:placement:, which starts the page setup section. An additional method,
addToPageSetup, does nothing by default, but allows subclasses to append extra procedure definitions and
comments to the page setup. The page setup concludes with an endPageSetup message. After all this,
endPage wraps up the page description; subclasses can override this method to add document structuring
comments and PostScript code to the page trailer. The document trailer is written by the beginTrailer and
endTrailer methods.

Communicating with the Window Server During Printing

While an NSView is printing, its connection to the Window Server is replaced by a connection to the print
job output. Sometimes the NSView needs to communicate briefly with the Window Server while printing;
for example, it may need to read some data stored only on the Window Server, or open an attention panel
to alert the user of a problem. In these cases, it can temporarily swap in the NSApplication object’s DPS

22

context to restore access to the application’s Window Server state and to the screen. When finished, the view
object restores the print operation’s context to continue generating its image:

[NSDPSContext setCurrentContext:[NSApp context]];

/* Communicate with the Window Server. */

[NSDPSContext setCurrentContext:[[NSPrintOperation currentOperation] context]];

/* Resume generating PostScript code. */

Other Features

Besides the fundamentals of drawing and event handling, NSView includes several auxiliary features.
These are tagging NSViews for quick location, support for dragging of images and file icons, and
cooperation with the scrolling machinery to facilitate viewing larger NSViews through smaller ones. The
following sections introduce each of these features and name the methods and cooperating classes or
protocols involved in each.

Tags

NSView defines methods that allow you to tag individual view objects with integer tags and to search the
view hierarchy based on those tags. NSView’s tag method always returns –1. You can override this in
subclasses to return a special value, or even add a setTag: method to allow the tag to be changed at run time
(several Application Kit classes, especially NSControl and NSCell, do just this). The viewWithTag:
method proceeds through all of the receiver’s descendants (including itself), searching for a subview with
the given tag and returning it if it’s found.

Dragging

A view object can act as either the source or destination for dragged images and file icons. The basic
dragging methods, dragImage:... and dragFile:... methods, handle the mechanics of moving the image on
the screen and notifying the destination of the dragging operations. To act as a source for dragging
operations, a concrete subclass of NSView can adopt the NSDraggingSource protocol, by which the source
indicates what kinds of dragging operations are allowed and is notified of dragging operations as they begin.
Both NSView and NSWindow subclasses can act as destinations for dragging operations, by adopting the
NSDraggingDestination protocol and making use of the NSDraggingInfo protocol. For more information
see the dragging protocol specifications and the descriptions of dragImage:... and dragFile:... in this
specification.

Scrolling

NSView defines a number of methods to support scrolling, whereby the NSView being scrolled—the
document view—is displayed partially through another—the content or clip view (not to be confused with a
window’s content view). Scrolling is effected by moving the clip view’s bounds rectangle, which reveals
the different regions of the document view. Most of the scrolling methods assume that the NSView is

23

 Classes: NSView

enclosed within an NSClipView and an NSScrollView, which handle the mechanics of scrolling for you.
You can, however, reproduce the effects of scrolling yourself if you wish. See the NSScrollView,
NSClipView, and NSScroller class specifications for information on how scrolling is implemented by the
Application Kit.

NSView’s most direct scrolling methods are scrollPoint: and scrollRectToVisible:, both of which assume
that the receiver is embedded in an NSClipView. These methods move the clip view so that the requested
point or rectangle in the receiver become visible. Another method, autoscroll:, automatically scrolls the
receiver in an NSClipView based on the location of the mouse. It’s useful for moving the document view
when the user drags an icon outside of the visible area. The enclosingScrollView method returns the
NSScrollView that contains the NSView, allowing you to tune the way scrolling occurs.

Two other methods aid in scrolling. A subclass of NSView can override adjustScroll: to change the way
automatic (user-driven) scrolling occurs. It can quantize scrolling into regular units, to the edges of a
spreadsheet’s cells, for example, or simply limit scrolling to a specific region of the NSView. The last
scrolling method, scrollRect:by:, copies an already-drawn portion of the NSView to a new location. It’s
useful for producing temporary effects, but note that any subsequent drawing will obliterate the copied
portion.

Method Types

Creating instances
– initWithFrame:

Managing the view hierarchy
– superview
– subviews
– window
– addSubview:
– addSubview:positioned:relativeTo:
– removeFromSuperview
– removeFromSuperviewWithoutNeedingDisplay
– replaceSubview:with:
– isDescendantOf:
– opaqueAncestor
– ancestorSharedWithView:
– sortSubviewsUsingFunction:context:
– viewWillMoveToSuperview:
– viewWillMoveToWindow:

Searching by tag
– viewWithTag:
– tag

24

Modifying the frame rectangle
– setFrame:
– frame
– setFrameOrigin:
– setFrameSize:
– setFrameRotation:
– frameRotation

Modifying the bounds rectangle
– setBounds:
– bounds
– setBoundsOrigin:
– setBoundsSize:
– setBoundsRotation:
– boundsRotation

Modifying the coordinate system
– translateOriginToPoint:
– scaleUnitSquareToSize:
– rotateByAngle:

Examining coordinate system modifications
– isFlipped
– isRotatedFromBase
– isRotatedOrScaledFromBase

Converting coordinates
– convertPoint:fromView:
– convertPoint:toView:
– convertSize:fromView:
– convertSize:toView:
– convertRect:fromView:
– convertRect:toView:
– centerScanRect:

Controlling notifications
– setPostsFrameChangedNotifications:
– postsFrameChangedNotifications
– setPostsBoundsChangedNotifications:
– postsBoundsChangedNotifications

25

 Classes: NSView

Resizing subviews
– resizeSubviewsWithOldSize:
– resizeWithOldSuperviewSize:
– setAutoresizesSubviews:
– autoresizesSubviews
– setAutoresizingMask:
– autoresizingMask

Focusing
– lockFocus
– unlockFocus
+ focusView

Displaying
– setNeedsDisplay:
– setNeedsDisplayInRect:
– needsDisplay
– display
– displayRect:
– displayRectIgnoringOpacity:
– displayIfNeeded
– displayIfNeededInRect:
– displayIfNeededIgnoringOpacity
– displayIfNeededInRectIgnoringOpacity:
– isOpaque

Drawing
– drawRect:
– visibleRect
– canDraw
– shouldDrawColor

Setting the interface style
– setInterfaceStyle:
– interfaceStyle

Managing a graphics state
– allocateGState
– gState
– setUpGState
– renewGState
– releaseGState

26

Event handling
– acceptsFirstMouse:
– hitTest:
– mouse:inRect:
– performKeyEquivalent:
– performMnemonic:

Dragging operations
– dragImage:at:offset:event:pasteboard:source:slideBack:
– dragFile:fromRect:slideBack:event:
– registerForDraggedTypes:
– unregisterDraggedTypes
– shouldDelayWindowOrderingForEvent:

Managing cursor rectangles
– addCursorRect:cursor:
– removeCursorRect:cursor:
– discardCursorRects
– resetCursorRects

Managing tool tips
– setToolTip:
– toolTip

Managing tracking rectangles
– addTrackingRect:owner:userData:assumeInside:
– removeTrackingRect:

Scrolling
– scrollPoint:
– scrollRectToVisible:
– autoscroll:
– adjustScroll:
– scrollRect:by:
– enclosingScrollView
– scrollClipView:toPoint:
– reflectScrolledClipView:

Context-sensitive menus
– menuForEvent:
+ defaultMenu

Managing the key view loop
– setNextKeyView:
– nextKeyView
– nextValidKeyView
– previousKeyView
– previousValidKeyView

27

 Classes: NSView

Printing and faxing
– print:
– fax:
– dataWithEPSInsideRect:
– writeEPSInsideRect:toPasteboard:

Pagination
– heightAdjustLimit
– widthAdjustLimit
– adjustPageWidthNew:left:right:limit:
– adjustPageHeightNew:top:bottom:limit:
– knowsPagesFirst:last:
– rectForPage:
– locationOfPrintRect:

Adorning pages in printout
– drawPageBorderWithSize:
– drawSheetBorderWithSize:

Writing conforming PostScript
– beginPrologueBBox:creationDate:createdBy:fonts:

forWhom:pages:title:
– endHeaderComments
– endPrologue
– beginSetup
– endSetup
– beginPage:label:bBox:fonts:
– beginPageSetupRect:placement:
– addToPageSetup
– endPageSetup
– endPage
– beginTrailer
– endTrailer

Class Methods

defaultMenu
+ (NSMenu *)defaultMenu

Overridden by subclasses to return the default pop-up menu for instances of the receiving class. NSView’s
implementation returns nil . This menu is used only on Microsoft Windows.

See also: – menuForEvent:, – menu(NSResponder)

28

focusView
+ (NSView *)focusView

Returns the currently focused NSView object, or nil if there is none.

See also: – lockFocus, – unlockFocus

Instance Methods

acceptsFirstMouse:
– (BOOL)acceptsFirstMouse:(NSEvent *)theEvent

Overridden by subclasses to return YES if the receiver should be sent a mouseDown: message for theEvent,
an initial mouse-down event over the receiver in its window, NO if not. The receiver can either return a value
unconditionally, or use theEvent’s location to determine whether or not it wants the event. NSView’s
implementation ignores theEvent and returns NO.

Override this method in a subclass to allow instances to respond to initial mouse-down events. For example,
most view objects refuse an initial mouse-down event, so that the event simply activates the window. Many
control objects, however, such as NSButton and NSSlider, do accept them, so that the user can immediately
manipulate the control without having to release the mouse button.

See also: – hitTest:

addCursorRect:cursor:
– (void)addCursorRect:(NSRect)aRect cursor:(NSCursor *)aCursor

Establishes aCursor as the cursor to be used when the mouse pointer lies within aRect.

Note: Cursor rectangles aren’t subject to clipping by superviews, nor are they intended for use with rotated
NSViews. You should explicitly confine a cursor rectangle to the NSView’s visible rectangle to
prevent improper behavior.

This method is intended to be invoked only by the resetCursorRects method. If invoked in any other way,
the resulting cursor rectangle will be discarded the next time the NSView’s cursor rectangles are rebuilt.

See also: – removeCursorRect:cursor:, – discardCursorRects, – resetCursorRects, – visibleRect

addSubview:
– (void)addSubview:(NSView *)aView

Adds aView to the receiver’s subviews so that it’s displayed above its siblings. Also sets the receiver as
aView’s next responder.

29

 Classes: NSView

The receiver retains aView. If you use removeFromSuperview to remove aView from the view hierarchy,
aView is released. If you want to keep using aView after removing it from the view hierarchy (if, for
example, you are swapping through a number of views), you must retain it before invoking
removeFromSuperview.

See also: – addSubview:positioned:relativeTo:, – subviews, – removeFromSuperview,
– setNextResponder: (NSResponder), – viewWillMoveToSuperview:,
– viewWillMoveToWindow:

addSubview:positioned:relativeTo:
– (void)addSubview:(NSView *)aView

positioned:(NSWindowOrderingMode)place
relativeTo:(NSView *)otherView

Inserts aView among the receiver’s subviews so that it’s displayed immediately above or below otherView
according to whether place is NSWindowAbove or NSWindowBelow. If otherView is nil (or isn’t a subview
of the receiver), aView is added above or below all of its new siblings. Also sets the receiver as aView’s next
responder.

The receiver retains aView. If you use removeFromSuperview to remove aView from the view hierarchy,
aView is released. If you want to keep using aView after removing it from the view hierarchy (if, for
example, you are swapping through a number of views), you must retain it before invoking
removeFromSuperview.

See also: – addSubview:, – subviews, – removeFromSuperview, – setNextResponder: (NSResponder)

addToPageSetup
– (void)addToPageSetup

Implemented by subclasses that perform their own pagination to add a scaling operator to the PostScript
code generated when printing. This method is invoked by print: and fax:. NSView’s implementation of this
method does nothing.

See the NSPrintInfo class specification for information on retrieving document scaling during printing.

See also: – beginPageSetupRect:placement:

30

addTrackingRect:owner:userData:assumeInside:
– (NSTrackingRectTag)addTrackingRect:(NSRect)aRect

owner:(id)anObject
userData:(void *)userData
assumeInside:(BOOL)flag

Establishes aRect as an area for tracking mouse-entered and mouse-exited events within the receiver, and
returns an tag that identifies the tracking rectangle in NSEvent objects and that can be used to remove the
tracking rectangle. anObject is the object that gets sent the event messages. It can be the receiver itself or
some other object (such as an NSCursor or a custom drawing tool object), as long as it responds to both
mouseEntered: and mouseExited:. userData is supplied in the NSEvent object for each tracking event.
flag determines which event is sent first by indicating where the mouse is assumed to be at the time this
method is invoked. If flag is YES, the first event will be generated when the mouse leaves aRect; if flag is
NO the first event will be generated when the mouse enters it.

Tracking rectangles provide a general mechanism that can be used to trigger actions based on the mouse
location (for example, a status bar or hint field that provides information on the item the cursor lies over).
To simply change the cursor over a particular area, use addCursorRect:cursor:. If you must use tracking
rectangles to change the cursor, the NSCursor class specification describes the additional methods that must
be invoked to change cursors by using tracking rectangles.

See also: – removeTrackingRect:, – userData (NSEvent)

adjustPageHeightNew:top:bottom:limit:
– (void)adjustPageHeightNew:(float *)newBottom

top:(float)top
bottom:(float)proposedBottom
limit: (float)bottomLimit

Overridden by subclasses to adjust page height during automatic pagination. This method is invoked by
print: and fax: with top and proposedBottom set to the top and bottom edges of the pending page rectangle
in the receiver’s coordinate system. The receiver can raise the bottom edge and return the new value in
newBottom, allowing it to prevent items such as lines of text from being divided across pages. bottomLimit
is the topmost value that newBottom can be set to, as calculated using the return value of
heightAdjustLimit . If this limit is exceeded, the pagination mechanism simply uses bottomLimit for the
bottom edge.

NSView’s implementation of this method propagates the message to its subviews, allowing nested views to
adjust page height for their drawing as well. An NSButton or other small view, for example, will nudge the
bottom edge up if necessary to prevent itself from being cut in two (thereby pushing it onto an adjacent
page). Subclasses should invoke super’s implementation, if desired, after first making their own
adjustments.

See also: – adjustPageWidthNew:left:right:limit:

31

 Classes: NSView

adjustPageWidthNew:left:right:limit:
– (void)adjustPageWidthNew:(float *)newRight

left: (float)left
right: (float)proposedRight
limit: (float)rightLimit

Overridden by subclasses to adjust page width during automatic pagination. This method is invoked by
print: and fax: with left and proposedRight set to the side edges of the pending page rectangle in the
receiver’s coordinate system. The receiver can pull in the right edge and return the new value in newRight,
allowing it to prevent items such as small images or text columns from being divided across pages.
rightLimit is the leftmost value that newRight can be set to, as calculated using the return value of
widthAdjustLimit . If this limit is exceeded, the pagination mechanism simply uses rightLimit for the right
edge.

NSView’s implementation of this method propagates the message to its subviews, allowing nested views to
adjust page width for their drawing as well. An NSButton or other small view, for example, will nudge the
bottom edge up if necessary to prevent itself from being cut in two (thereby pushing it onto an adjacent
page). Subclasses should invoke super’s implementation, if desired, after first making their own
adjustments.

See also: – adjustPageHeightNew:top:bottom:limit:

adjustScroll:
– (NSRect)adjustScroll:(NSRect)proposedVisibleRect

Overridden by subclasses to modify proposedVisibleRect, returning the altered rectangle. NSClipView
invokes this method to allow its document view to adjust its position during scrolling. For example, a
custom view object that displays a table of data can adjust the origin of proposedVisibleRect so that rows
or columns aren’t cut off by the edge of the enclosing NSClipView. NSView’s implementation simply
returns proposedVisibleRect.

Note: NSClipView only invokes this method during automatic or user-controlled scrolling. Its
scrollToPoint: method doesn’t invoke this method, so you can still force a scroll to an arbitrary point.

allocateGState
– (void)allocateGState

Causes the receiver to maintain a private PostScript graphics state object, which encapsulates all parameters
of the graphics environment. If you do not invoke allocateGState, a graphics state object is constructed
from scratch each time the NSView is focused.

The receiver builds the graphics state parameters using setUpGState, then automatically establishes this
graphics state each time the PostScript focus is locked on it. A graphics state may improve performance for

32

view objects that are focused often and need to set many parameters, but use of standard PostScript
operators is normally efficient enough.

Because graphics states occupy a fair amount of memory, they can actually degrade performance. Be sure
to test application performance with and without the private graphics state before committing to its use.

See also: – setUpGState, – gState, – renewGState, – releaseGState, – lockFocus

ancestorSharedWithView:
– (NSView *)ancestorSharedWithView:(NSView *)aView

Returns the closest ancestor shared by the receiver and aView, or nil if there’s no such object. Returns self
if aView is identical to the receiver.

See also: – isDescendantOf:

autoresizesSubviews
– (BOOL)autoresizesSubviews

Returns YES if the receiver automatically resizes its subviews using resizeSubviewsWithOldSize:
whenever its frame size changes, NO otherwise.

See also: – setAutoresizesSubviews:

autoresizingMask
– (unsigned int)autoresizingMask

Returns the receiver’s autoresizing mask, which determines how it’s resized by the
resizeWithOldSuperviewSize: method. The autoresizing mask values are listed under the
setAutoresizingMask: method description. If the autoresizing mask is equal to NSViewNotSizable (that
is, if none of the options are set), then the receiver doesn’t resize at all in resizeWithOldSuperviewSize:.

autoscroll:
– (BOOL)autoscroll:(NSEvent *)theEvent

Scrolls the receiver’s closest ancestor NSClipView proportionally to theEvent’s distance outside of it.
theEvent’s location should be expressed in the window’s base coordinate system (which it normally is), not
the receiving view object’s. Returns YES if any scrolling is performed; otherwise returns NO.

33

 Classes: NSView

View objects that track mouse-dragged events can use this method to scroll automatically when the mouse
is dragged outside of the NSClipView. Repeated invocations of this method (with an appropriate delay)
result in continual scrolling, even when the mouse doesn’t move.

See also: – autoscroll: (NSClipView), – scrollPoint:, – isDescendantOf:

beginPage:label:bBox:fonts:
– (void)beginPage:(int)ordinalNum

label:(NSString *)aString
bBox:(NSRect)pageRect
fonts:(NSString *)fontNames

Writes a conforming PostScript page separator. This method is invoked by print: and fax:.

ordinalNum is the page’s position in the document’s page sequence (from 1 through n for an n-page
document).

aString is a string that contains no white space characters. It identifies the page according to the document’s
internal numbering scheme. If aString is empty (@“”), the text equivalent of ordinalNum is used.

pageRect is the rectangle enclosing all the drawing on the page about to be printed, in the default PostScript
coordinate system of the page (not of the receiving NSView). If pageRect is an empty rectangle (width and
height of zero), “(atend)” is output instead of a description of the bounding box, and the bounding box is
output at the end of the page.

fontNames is a string containing the names of the fonts used in the page, each pair separated by a space. If
the fonts used are unknown before the page is printed, fontNames can be empty. In this case “(atend)” is
output instead of the font names, which are listed automatically at the end of the page description.

See also: – endPage, NSIsEmptyRect() (Foundation Kit)

beginPageSetupRect:placement:
– (void)beginPageSetupRect:(NSRect)aRect placement:(NSPoint)location

Writes the page setup section for a page, generating the initial coordinate transformation for printing the
region defined by aRect in the receiver’s coordinate system. location is the offset in page coordinates of the
rectangle on the physical page.

This method is invoked by print: and fax: after the starting comments for the page have been written. It
generates a PostScript save operation and invokes lockFocus, which are balanced in the endPage method
with an unlockFocus and a PostScript restore operation.

See also: – addToPageSetup

34

beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title:
– (void)beginPrologueBBox:(NSRect)boundingBox

creationDate:(NSString *)dateCreated
createdBy:(NSString *)anApplication
fonts:(NSString *)fontNames
forWhom: (NSString *)user
pages:(int)numPages
title: (NSString *)aTitle

Invoked by print: and fax: to write the start of a conforming PostScript header.

boundingBox is the bounding box of the document, expressed in the default PostScript coordinate system
on the page. The document bounding box is the union of the bounding boxes of every page in the document.
If it’s unknown, boundingBox should be empty (width and height of zero). In this case “(atend)” is output
instead of the bounding box, which is accumulated as pages are printed and written in the trailer.

dateCreated is a text string containing a human readable date. If dateCreated is empty (@“”) the current
date is used.

anApplication is a string containing the name of the document creator. If anApplication is empty then the
string returned by NSProcessInfo’s processName instance method is used.

fontNames is a string holding the names of the fonts used in the document, each pair separated by a space.
If the fonts used are unknown before the document is printed, fontNames should be empty. In this case
“(atend)” is output instead of the font names, and the name of each NSFont used by the view is written in
the trailer.

user is a string containing the name of the person the document is being printed for. If user is empty the
login name of the current user is substituted.

numPages specifies the number of pages in the document. If unknown at the beginning of printing,
numPages should have a value of –1. In this case “(atend)” is output instead of a page count, the pages are
counted as they are generated, and the resulting count is written in the trailer.

aTitle is a string specifying the title of the document. If aTitle is empty, then the title of the receiver’s
window is used. If the window has no title, “Untitled” is output.

See also: – beginTrailer, – endTrailer, – set (NSFont), + useFont: (NSFont)

beginSetup
– (void)beginSetup

Writes the beginning of the document setup section, which begins with a %%BeginSetup comment and
includes a %%PaperSize comment declaring the type of paper being used. This method is invoked by print:
and fax: at the start of the setup section of the document, which occurs after the prologue of the document

35

 Classes: NSView

has been written, but before any pages are written. This section of the output is intended for device setup or
general initialization code.

beginTrailer
– (void)beginTrailer

Writes the start of a conforming PostScript trailer, which begins with a %%Trailer comment. This method
is invoked by print: and fax: immediately after all pages have been written.

bounds
– (NSRect)bounds

Returns the receiver’s bounds rectangle, which expresses its location and size in its own coordinate system.
The bounds rectangle may be rotated; use the boundsRotation method to check this.

See also: – frame, – setBounds:

boundsRotation
– (float)boundsRotation

Returns the angle of the receiver’s bounds rectangle relative to its frame rectangle. See the
setBoundsRotation: method description for more information on bounds rotation.

See also: – rotateByAngle:, – setBoundsRotation:

canDraw
– (BOOL)canDraw

Returns YES if drawing commands will produce any result, NO otherwise. Use this method when invoking
a draw method directly along with lockFocus and unlockFocus, bypassing the display... methods (which
test drawing ability and perform locking for you). If this method returns NO, you shouldn’t invoke
lockFocus or perform any drawing.

An NSView can draw if it’s attached to a view hierarchy in an NSWindow and the NSWindow has a
corresponding PostScript window device, or during printing if the NSView is a descendant of the view
being printed.

36

centerScanRect:
– (NSRect)centerScanRect:(NSRect)aRect

Converts the corners of a rectangle to lie on the center of device pixels, which is useful in compensating for
PostScript overscanning when the coordinate system has been scaled. This method converts the given
rectangle to device coordinates, adjusts the rectangle to lie in the center of the pixels, and converts the
resulting rectangle back to the receiver’s coordinate system. Returns the adjusted rectangle.

See also: – isRotatedOrScaledFromBase

convertPoint:fromView:
– (NSPoint)convertPoint:(NSPoint)aPoint fromView: (NSView *)aView

Converts aPoint from aView’s coordinate system to that of the receiver. If aView is nil , this method instead
converts from window base coordinates. Both aView and the receiver must belong to the same NSWindow.
Returns the converted point.

See also: – convertRect:fromView:, – convertSize:fromView:, – ancestorSharedWithView:,
– contentView (NSWindow)

convertPoint:toView:
– (NSPoint)convertPoint:(NSPoint)aPoint toView:(NSView *)aView

Converts aPoint from the receiver’s coordinate system to that of aView. If aView is nil , this method instead
converts to window base coordinates. Both aView and the receiver must belong to the same NSWindow.
Returns the converted point.

See also: – convertRect:toView:, – convertSize:toView:, – ancestorSharedWithView:,
– contentView (NSWindow)

convertRect:fromView:
– (NSRect)convertRect:(NSRect)aRect fromView: (NSView *)aView

Converts aRect from aView’s coordinate system to that of the receiver. If aView is nil , this method instead
converts from window base coordinates. Both aView and the receiver must belong to the same NSWindow.
Returns the converted rectangle.

See also: – convertPoint:fromView: , – convertSize:fromView:, – ancestorSharedWithView:,
– contentView (NSWindow)

37

 Classes: NSView

convertRect:toView:
– (NSRect)convertRect:(NSRect)aRect toView:(NSView *)aView

Converts aRect from the receiver’s coordinate system to that of aView. If aView is nil , this method instead
converts to window base coordinates. Both aView and the receiver must belong to the same NSWindow.
Returns the converted rectangle.

See also: – convertPoint:toView:, – convertSize:toView:, – ancestorSharedWithView:,
– contentView (NSWindow)

convertSize:fromView:
– (NSSize)convertSize:(NSSize)aSize fromView: (NSView *)aView

Converts aSize from aView’s coordinate system to that of the receiver. If aView is nil , this method instead
converts from window base coordinates. Both aView and the receiver must belong to the same NSWindow.
Returns the converted size.

See also: – convertPoint:fromView: , – convertRect:fromView:, – ancestorSharedWithView:,
– contentView (NSWindow)

convertSize:toView:
– (NSSize)convertSize:(NSSize)aSize toView:(NSView *)aView

Converts aSize from the receiver’s coordinate system to that of aView. If aView is nil , this method instead
converts to window base coordinates. Both aView and the receiver must belong to the same NSWindow.
Returns the converted size.

See also: – convertPoint:toView:, – convertRect:toView:, – ancestorSharedWithView:,
– contentView (NSWindow)

dataWithEPSInsideRect:
– (NSData *)dataWithEPSInsideRect:(NSRect)aRect

Returns EPS data that draws the region of the receiver within aRect. This data can be placed on an
NSPasteboard, written to a file, or used to create an NSImage object.

See also: – writeEPSInsideRect:toPasteboard:

38

discardCursorRects
– (void)discardCursorRects

Invalidates all cursor rectangles set up using addCursorRect:cursor:. You need never invoke this method
directly; it’s invoked automatically before the NSView’s cursor rectangles are reestablished using
resetCursorRects.

See also: – discardCursorRects (NSWindow)

display
– (void)display

Displays the receiver and all its subviews if possible, invoking each NSView’s lockFocus, drawRect:, and
unlockFocus methods as necessary. If the receiver isn’t opaque, this method backs up the view hierarchy
to the first opaque ancestor, calculates the portion of the opaque ancestor covered by the receiver, and begins
displaying from there.

See also: – canDraw, – opaqueAncestor, – visibleRect, – displayIfNeededIgnoringOpacity

displayIfNeeded
– (void)displayIfNeeded

Displays the receiver and all its subviews if any part of the receiver has been marked as needing display
with a setNeedsDisplay: or setNeedsDisplayInRect: message. This method invokes each NSView’s
lockFocus, drawRect:, and unlockFocus methods as necessary. If the receiver isn’t opaque, this method
backs up the view hierarchy to the first opaque ancestor, calculates the portion of the opaque ancestor
covered by the receiver, and begins displaying from there.

See also: – display, – needsDisplay, – displayIfNeededIgnoringOpacity

displayIfNeededIgnoringOpacity
– (void)displayIfNeededIgnoringOpacity

Acts as displayIfNeeded, except that this method doesn’t back up to the first opaque ancestor—it simply
causes the receiver and its descendants to execute their drawing code.

displayIfNeededInRect:
– (void)displayIfNeededInRect:(NSRect)aRect

Acts as displayIfNeeded, confining drawing to aRect.

39

 Classes: NSView

displayIfNeededInRectIgnoringOpacity:
– (void)displayIfNeededInRectIgnoringOpacity:(NSRect)rect

Acts as displayIfNeeded, but confining drawing to aRect and not backing up to the first opaque ancestor—
it simply causes the receiver and its descendants to execute their drawing code.

displayRect:
– (void)displayRect:(NSRect)aRect

Acts as display, confining drawing to aRect.

displayRectIgnoringOpacity:
– (void)displayRectIgnoringOpacity:(NSRect)aRect

Acts as display, but confining drawing to aRect and not backing up to the first opaque ancestor—it simply
causes the receiver and its descendants to execute their drawing code.

dragFile:fromRect:slideBack:event:
– (BOOL)dragFile:(NSString *)fullPath

fromRect:(NSRect)aRect
slideBack:(BOOL)flag
event:(NSEvent *)theEvent

Initiates a dragging operation from the receiver, allowing the user to drag a file icon to any application that
has window or view objects that accept files. This method must be invoked only within an implementation
of the mouseDown: method. Returns YES if the receiver successfully initiates the dragging operation
(which doesn’t necessarily mean the dragging operation concluded successfully). Otherwise returns NO.

The dragging operation uses these arguments:

• fullPath is an absolute path for the file to be dragged.

• aRect describes the position of the icon in the receiver’s coordinate system.

• flag indicates whether the icon being dragged should slide back to its position in the receiver if the file
isn’t accepted. The icon slides back to aRect, if flag is YES, the file is not accepted by the dragging
destination, and the user has not disabled icon animation; otherwise it simply disappears.

• theEvent is the mouse-down event object from which to initiate the drag operation. In particular, its
mouse location is used for the offset of the icon being dragged.

40

See the NSDraggingSource, NSDraggingInfo, and NSDraggingDestination protocol specifications for
more information on dragging operations.

See also: – dragImage:at:offset:event:pasteboard:source:slideBack:,
– shouldDelayWindowOrderingForEvent:

dragImage:at:offset:event:pasteboard:source:slideBack:
– (void)dragImage:(NSImage *)anImage

at:(NSPoint)imageLoc
offset:(NSSize)mouseOffset
event:(NSEvent *)theEvent
pasteboard:(NSPasteboard *)pboard
source:(id)sourceObject
slideBack:(BOOL)flag

Initiates a dragging operation from the receiver, allowing the user to drag arbitrary data with a specified icon
into any application that has window or view objects that accept dragged data. This method must be invoked
only within an implementation of the mouseDown: method. The dragging operation uses these arguments:

• anImage is the NSImage to be dragged.

• imageLoc is the location of the image’s lower left corner, in the receiver’s coordinate system. It
determines the placement of the dragged image under the cursor.

• mouseOffset is the mouse’s current location relative to the mouse-down location. It determines the initial
location of the image when dragging commences. If you initiate a dragging operation immediately on a
mouse-down event, this should be (0.0, 0.0). If you test for a mouse-dragged event first, this should be
the difference between the mouse-dragged event’s location and that of the mouse-down event.

• theEvent is the left-mouse-down event that triggered the dragging operation (see below).

• pboard holds the data to be transferred to the destination (see below).

• sourceObject serves as the controller of the dragging operation. It must conform to the
NSDraggingSource protocol, and is typically the receiver itself or its NSWindow.

• flag determines whether the NSImage should slide back if it’s rejected. The image slides back to aPoint
if flag is YES, the image isn’t accepted by the dragging destination, and the user hasn’t disabled icon
animation; otherwise it simply disappears.

Before invoking this method, you must place the data to be transferred on pboard. To do this, get the drag
pasteboard object (NSDragPboard), declare the types of the data, and then put the data on the pasteboard.
This code fragment initiates a dragging operation on an image itself (that is, the image is the data to be
transferred):

41

 Classes: NSView

- (void)mouseDown:(NSEvent *)theEvent

{

NSSize dragOffset = NSMakeSize(0.0, 0.0);

NSPasteboard *pboard;

pboard = [NSPasteboard pasteboardWithName:NSDragPboard];

[pboard declareTypes:[NSArray arrayWithObject:NSTIFFPboardType] owner:self];

[pboard setData:[[self image] TIFFRepresentation] forType:NSTIFFPboardType];

[self dragImage:[self image] at:[self imageLocation] offset:dragOffset

event:theEvent pasteboard:pboard source:self slideBack:YES];

return;

}

See the NSDraggingSource, NSDraggingInfo, and NSDraggingDestination protocol specifications for
more information on dragging operations.

See also: – dragFile:fromRect:slideBack:event:, – shouldDelayWindowOrderingForEvent:

drawPageBorderWithSize:
– (void)drawPageBorderWithSize:(NSSize)borderSize

Allows applications that use the Application Kit pagination facility to draw additional marks on each logical
page, such as alignment marks or a virtual sheet border. This method is invoked by beginPageSetupRect:
placement:. The default implementation doesn’t draw anything.

See also: – drawSheetBorderWithSize:

drawRect:
– (void)drawRect:(NSRect)aRect

Overridden by subclasses to draw the receiver’s image within aRect. The receiver can assume that the
PostScript focus has been locked, that drawing will be clipped to its frame rectangle, and that the coordinate
transformations of its frame and bounds rectangles have been applied; all it need do is invoke PostScript
client functions. aRect is provided for optimization; it’s perfectly correct, though inefficient, to draw images
that lie outside the requested rectangle. See “How to Draw” in the class description for information and
references on drawing.

This method is intended to be completely overridden by each subclass that performs drawing. Don’t invoke
super’s implementation in your subclass.

See also: – display, – shouldDrawColor, – isFlipped

42

drawSheetBorderWithSize:
– (void)drawSheetBorderWithSize:(NSSize)borderSize

Allows applications that use the Application Kit pagination facility to draw additional marks on each
printed sheet, such as crop marks or fold lines. This method is invoked by beginPageSetupRect:
placement:. The default implementation doesn’t draw anything.

See also: – drawPageBorderWithSize:

enclosingScrollView
– (NSScrollView *)enclosingScrollView

Returns the nearest ancestor NSScrollView containing the receiver (not including the receiver itself);
otherwise returns nil .

endHeaderComments
– (void)endHeaderComments

Writes out the end of a conforming PostScript header, starting with the %%EndComments line and then the
start of the prologue, including the Application Kit’s standard printing package. Override endPrologue to
add your own global definitions. This method is invoked by print: and fax: after beginPrologueBBox:
creationDate:createdBy:fonts:forWhom:pages:title: and before endPrologue.

endPage
– (void)endPage

Writes the end of a conforming PostScript page. This method is invoked after each page is printed. It
balances the preceding invocation of beginPageSetupRect:placement: by invoking unlockFocus and
generating a PostScript restore operator, and generates a PostScript showpage operator to finish the page.
This method also generates comments for the bounding box and page fonts, if they were specified as being
at the end of the page.

See also: – beginPrologueBBox:creationDate:createdBy:fonts:forWhom:pages:title:

endPageSetup
– (void)endPageSetup

Writes the end of the page setup section, which begins with a %%EndPageSetup comment. This method is
invoked by print: and fax: just after beginPageSetupRect:placement: is invoked.

43

 Classes: NSView

endPrologue
– (void)endPrologue

Writes the end of the conforming PostScript prologue. This method is invoked by print: and fax: after the
prologue of the document has been written. Subclasses can override this method to add their own definitions
to the prologue. For example:

- endPrologue

{

[[NSDPSContext currentContext] printFormat:@"/littleProc {pop} def");

[super endPrologue];

return;

}

endSetup
– (void)endSetup

Writes out the end of the setup section, which begins with a %%EndSetup comment. This method is
invoked by print: and fax: just after beginSetup is invoked.

endTrailer
– (void)endTrailer

Writes the end of the conforming PostScript trailer. This method is invoked by print: and fax: just after
beginTrailer is invoked.

See also: – beginTrailer

fax:
– (void)fax:(id)sender

Opens the Fax panel, and if the user chooses an option other than canceling, prints the receiver and all its
subviews to a fax modem.

See also: – print:

44

frame
– (NSRect)frame

Returns the receiver’s frame rectangle, which defines its position in its superview. The frame rectangle may
be rotated; use the frameRotation method to check this.

See also: – bounds, – setFrame:

frameRotation
– (float)frameRotation

Returns the angle of the receiver’s frame relative to its superview’s coordinate system.

See also: – setFrameRotation:, – boundsRotation

gState
– (int)gState

Returns the PostScript user object identifier for the receiver’s PostScript graphics state object, or 0 if the
receiver doesn’t have a graphics state object. A view object’s graphics state object is recreated from scratch
whenever the view is focused, unless the allocateGState method has been invoked. So if the receiver hasn’t
been focused or hasn’t received the allocateGState message, this method returns 0. For more information
on graphics objects and when they are created, see the “PostScript Graphics State Objects” section.

Although applications rarely need to use the value returned by gState, it can be passed to the few PostScript
operators that take an object identifier as a parameter, such as PScomposite and PSdissolve.

See also: – allocateGState, – setUpGState, – renewGState, – releaseGState, – lockFocus

heightAdjustLimit
– (float)heightAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next page during
automatic pagination to prevent items such as lines of text from being divided across pages. This fraction
is used to calculate the bottom edge limit for a adjustPageHeightNew:top:bottom:limit: message.

See also: – widthAdjustLimit

45

 Classes: NSView

hitTest:
– (NSView *)hitTest:(NSPoint)aPoint

Returns the farthest descendant of the receiver in the view hierarchy (including itself) that contains aPoint,
or nil if aPoint lies completely outside the receiver. aPoint is in the coordinate system of the receiver’s
superview, not of the receiver itself.

This method is used primarily by an NSWindow to determine which NSView should receive a mouse-down
event. You’d rarely need invoke this method, but you might want to override it to have a view object hide
mouse-down events from its subviews.

See also: – mouse:inRect:, – convertPoint:toView:

initWithFrame:
– (id)initWithFrame: (NSRect)frameRect

Initializes a newly allocated NSView with frameRect as its frame rectangle. The new view object must be
inserted into the view hierarchy of an NSWindow before it can be used. This method is the designated
initializer for the NSView class. Returns self.

See also: – addSubview:, – addSubview:positioned:relativeTo:, – setFrame:

interfaceStyle
– (NSInterfaceStyle)interfaceStyle

Returns the receiver’s interface style, such as NSMacintoshInterfaceStyle or NSWindows95InterfaceStyle.
A responder's style (if other than NSNoInterfaceStyle) overrides all other settings, such as those established
by the defaults system.

See also: – setInterfaceStyle:

isDescendantOf:
– (BOOL)isDescendantOf:(NSView *)aView

Returns YES if the receiver is a subview, immediate or not, of aView, or if it’s identical to aView; otherwise
returns NO.

See also: – superview, – subviews, – ancestorSharedWithView:

46

isFlipped
– (BOOL)isFlipped

Returns YES if the receiver uses flipped drawing coordinates or NO if it uses native PostScript coordinates.
NSView’s implementation returns NO; subclasses that use flipped coordinates should override this method
to return YES.

isOpaque
– (BOOL)isOpaque

Overridden by subclasses to return YES if the receiver is opaque, NO otherwise. A view object is opaque if
it completely covers its frame rectangle when drawing itself. NSView, being an abstract class, performs no
drawing at all and so returns NO.

See also: – opaqueAncestor, – displayRectIgnoringOpacity:, – displayIfNeededIgnoringOpacity,
– displayIfNeededInRectIgnoringOpacity:

isRotatedFromBase
– (BOOL)isRotatedFromBase

Returns YES if the receiver or any of its ancestors has ever received a setFrameRotation: or
setBoundsRotation: message; otherwise returns NO. This intent of this information is to optimize drawing
and coordinate calculation, not necessarily to reflect the exact state of the receiver’s coordinate system, so
it may not reflect the actual rotation. For example, if an NSView is rotated to 45 degrees and later back to
zero, this method still returns YES.

See also: – frameRotation, – boundsRotation

isRotatedOrScaledFromBase
– (BOOL)isRotatedOrScaledFromBase

Returns YES if the receiver or any of its ancestors have ever had a nonzero frame or bounds rotation, or has
been scaled from the window’s base coordinate system; otherwise returns NO. This intent of this
information is to optimize drawing and coordinate calculation, not necessarily to reflect the exact state of
the receiver’s coordinate system, so it may not reflect the actual rotation or scaling. For example, if an
NSView is rotated to 45 degrees and later back to zero, this method still returns YES.

See also: – frameRotation, – boundsRotation, – centerScanRect:, – setBounds:, – setBoundsSize:,
– scaleUnitSquareToSize:

47

 Classes: NSView

knowsPagesFirst:last:
– (BOOL)knowsPagesFirst:(int *)firstPageNum last:(int *) lastPageNum

Overridden by subclasses to indicate whether the receiver wishes to perform its own pagination. This
method is invoked by print: and fax:. If the receiver returns NO, it’s paginated by NSView’s automatic
pagination mechanism. If the receiver returns YES, the printing mechanism later invokes rectForPage: to
determine the rectangle of each page from the out parameters firstPageNum to lastPageNum. NSView’s
implementation returns NO.

This method is normally invoked with the value of firstPageNum set to 1 and of lastPageNum set to the
maximum integer size. If the receiver returns YES it must alter these values to reflect its own numbering
scheme, and possibly to limit which pages are printed.

See also: – rectForPage:

locationOfPrintRect:
– (NSPoint)locationOfPrintRect: (NSRect)aRect

Invoked by print: and fax: to determine the location of aRect, the rectangle being printed on the physical
page. The return value of this method is used to set the origin for aRect, whose size the receiver can examine
in order to properly place it. Both the rectangle and the returned location are expressed in the default
PostScript coordinate system of the page.

NSView’s implementation places aRect according to the status of the NSPrintInfo object for the print job.
By default it places the image in the upper left corner of the page, but if NSPrintInfo’s
isHorizontallyCentered or isVerticallyCentered method returns YES, it centers a single-page image
along the appropriate axis. A multiple-page document, however, is always placed so that the divided pieces
can be assembled at their edges.

lockFocus
– (void)lockFocus

Locks the PostScript focus on the receiver, so that subsequent PostScript commands take effect in the
receiver’s window and coordinate system. If you don’t use a display... method to draw an NSView, you
must invoke lockFocus before invoking methods that send PostScript commands to the Window Server, and
must balance it with an unlockFocus message when finished.

See also: + focusView, – display, – drawRect:

48

menuForEvent:
– (NSMenu *)menuForEvent:(NSEvent *)theEvent

Overridden by subclasses to return a context-sensitive pop-up menu for the mouse-up event theEvent. The
receiver can use information in the mouse event, such as its location over a particular element of the
receiver, to determine what kind of menu to return. For example, a text object might display a text-editing
menu when the mouse lies over text and a menu for changing graphic attributes when the mouse lies over
an embedded image.

NSView’s implementation returns the receiver’s normal menu. This menu is used only on Microsoft
Windows.

See also: + defaultMenu, – menu (NSResponder)

mouse:inRect:
– (BOOL)mouse:(NSPoint)aPoint inRect:(NSRect)aRect

Returns YES if aRect contains aPoint (which represents the hot spot of the mouse cursor), accounting for
whether the receiver is flipped or not. aPoint and aRect must be expressed in the receiver’s coordinate
system.

Never use the Foundation Kit’s NSPointInRect() function as a substitute for this method. It doesn’t account
for flipped coordinate systems.

See also: – hitTest:, – isFlipped, NSMouseInRect() (Foundation Kit), – convertPoint:fromView:

needsDisplay
– (BOOL)needsDisplay

Returns YES if the receiver needs to be displayed, as indicated using the setNeedsDisplay: and
setNeedsDisplayInRect: methods; returns NO otherwise. The displayIfNeeded... methods check this
status to avoid unnecessary drawing, and all display methods clear this status to indicate that the view object
is up to date.

needsPanelToBecomeKey
– (BOOL)needsPanelToBecomeKey

Overridden by subclasses to return YES if the receiver requires its panel, which might otherwise avoid
becoming key, to become the key window so that it can handle keyboard input. Such a subclass should also
override acceptsFirstResponder to return YES. NSView’s implementation returns NO.

See also: – becomesKeyOnlyIfNeeded (NSPanel)

49

 Classes: NSView

nextKeyView
– (NSView *)nextKeyView

Returns the view object following the receiver in the key view loop, or nil if there is none. This view should,
if possible, be made first responder when the user navigates forward from the receiver using keyboard
interface control.

See also: – nextValidKeyView, – setNextKeyView:, – previousKeyView, – previousValidKeyView

nextValidKeyView
– (NSView *)nextValidKeyView

Returns the closest view object in the key view loop that follows the receiver and actually accepts first
responder status, or nil if there is none.

See also: – nextKeyView, – setNextKeyView:, – previousKeyView, – previousValidKeyView

opaqueAncestor
– (NSView *)opaqueAncestor

Returns the receiver’s closest opaque ancestor (including the receiver itself).

See also: – isOpaque, – displayRectIgnoringOpacity:, – displayIfNeededIgnoringOpacity,
– displayIfNeededInRectIgnoringOpacity:

performKeyEquivalent:
– (BOOL)performKeyEquivalent: (NSEvent *)theEvent

Implemented by subclasses to respond to key equivalents (also known as shortcuts). If the receiver’s key
equivalent is the same as the characters of the key-down event theEvent, as returned by
charactersIgnoringModifiers, it should take the appropriate action and return YES. Otherwise, it should
return the result invoking super’s implementation. NSView’s implementation of this method simply passes
the message down the view hierarchy (from superviews to subviews) and returns NO if none of the
receiver’s subviews responds YES.

See also: – performMnemonic: , – keyDown: (NSWindow)

50

performMnemonic:
– (BOOL)performMnemonic: (NSString *)aString

Implemented by subclasses to respond to mnemonics. If the receiver’s mnemonic is the same as the
characters of the key-down event theEvent, as returned by charactersIgnoringModifiers, it should take the
appropriate action and return YES. Otherwise, it should return the result invoking super’s implementation.
NSView’s implementation of this method simply passes the message down the view hierarchy (from
superviews to subviews) and returns NO if none of the receiver’s subviews responds YES.

See also: – performKeyEquivalent: , – keyDown: (NSWindow)

postsBoundsChangedNotifications
– (BOOL)postsBoundsChangedNotifications

Returns YES if the receiver posts notifications to the default notification center whenever its bounds
rectangle changes; returns NO otherwise. See setPostsBoundsChangedNotifications: for a list of methods
that result in notifications.

postsFrameChangedNotifications
– (BOOL)postsFrameChangedNotifications

Returns YES if the receiver posts notifications to the default notification center whenever its frame rectangle
changes; returns NO otherwise. See setFrameRotation: for a list of methods that result in notifications.

previousKeyView
– (NSView *)previousKeyView

Returns the view object preceding the receiver in the key view loop, or nil if there is none. This view should,
if possible, be made first responder when the user navigates backward from the receiver using keyboard
interface control.

See also: – previousValidKeyView, – nextKeyView, – nextValidKeyView, – setNextKeyView:

previousValidKeyView
– (NSView *)previousValidKeyView

Returns the closest view object in the key view loop that precedes the receiver and actually accepts first
responder status, or nil if there is none.

See also: – previousKeyView, – nextValidKeyView, – nextKeyView, – setNextKeyView:

51

 Classes: NSView

print:
– (void)print: (id)sender

Opens the Print panel, and if the user chooses an option other than canceling, prints the receiver and all its
subviews to the device specified in the Print panel.

See also: – fax:, – dataWithEPSInsideRect:, – writeEPSInsideRect:toPasteboard:

rectForPage:
– (NSRect)rectForPage:(int)pageNumber

Implemented by subclasses to determine the portion of the receiver to be printed for page number page. If
the receiver responded YES to an earlier knowsPagesFirst:last: message, this method is invoked for each
page it specified in the out parameters of that message. The receiver is later made to display this rectangle
in order to generate the image for this page. This method should return NSZeroRect if pageNumber is
outside the receiver’s bounds.

If an NSView responds NO to knowsPagesFirst:last:, this method isn’t invoked by the printing
mechanism.

See also: – adjustPageHeightNew:top:bottom:limit:, – adjustPageWidthNew:left:right:limit:

reflectScrolledClipView:
– (void)reflectScrolledClipView:(NSClipView *)aClipView

Notifies aClipView’s superview that either aClipView’s bounds rectangle or the document view’s frame
rectangle has changed, and that any indicators of the scroll position need to be adjusted. NSScrollView
implements this method to update its NSScrollers.

registerForDraggedTypes:
– (void)registerForDraggedTypes:(NSArray *)pboardTypes

Registers pboardTypes as the pasteboard types that the receiver will accept as the destination of an
image-dragging session.

Note: Registering an NSView for dragged types automatically makes it a candidate destination object for
a dragging session. As such, it must properly implement some or all of the NSDraggingDestination
protocol methods. As a convenience, NSView provides default implementations of these methods.
See the NSDraggingDestination protocol specification for details.

See also: – unregisterDraggedTypes

52

releaseGState
– (void)releaseGState

Frees the receiver’s PostScript graphics state object, if it has one.

See also: – allocateGState

removeCursorRect:cursor:
– (void)removeCursorRect:(NSRect)aRect cursor:(NSCursor *)aCursor

Completely removes a cursor rectangle from the receiver. aRect and aCursor must match values previously
specified using addCursorRect:cursor:.

You should rarely need to use this method. resetCursorRects, which is invoked any time cursor rectangles
need to be rebuilt, should establish only the cursor rectangles needed. If you implement resetCursorRects
in this way, you can then simply modify the state that resetCursorRects uses to build its cursor rectangles
and then invoke NSWindow’s invalidateCursorRectsForView:.

See also: – discardCursorRects

removeFromSuperview
– (void)removeFromSuperview

Unlinks the receiver from its superview and its NSWindow, removes it from the responder chain, and
invalidates its cursor rectangles. The receiver is also released; if you plan to reuse it, be sure to retain it
before sending this message and to release it as appropriate when adding it as a subview of another NSView.

Never invoke this method during display.

See also: – addSubview:, – addSubview:positioned:relativeTo:,
– removeFromSuperviewWithoutNeedingDisplay

removeFromSuperviewWithoutNeedingDisplay
– (void)removeFromSuperviewWithoutNeedingDisplay

Unlinks the receiver from its superview and its NSWindow, removes it from the responder chain, but does
not invalidate its cursor rectangles to cause redrawing. The receiver is also released; if you plan to reuse it,
be sure to retain it before sending this message and to release it as appropriate when adding it as a subview
of another NSView.

Unlike its counterpart, removeFromSuperview, this method can be safely invoked during display.

See also: – addSubview:, – addSubview:positioned:relativeTo:

53

 Classes: NSView

removeTrackingRect:
– (void)removeTrackingRect:(NSTrackingRectTag)aTag

Removes the tracking rectangle identified by aTag, which is the value returned by a previous
addTrackingRect:owner:userData:assumeInside: message.

renewGState
– (void)renewGState

Invalidates the receiver’s PostScript graphics state object, if it has one, so that it will be regenerated using
setUpGState the next time the receiver is focused for drawing.

See also: – lockFocus

replaceSubview:with:
– (void)replaceSubview:(NSView *)oldView with: (NSView *)newView

Replaces oldView with newView in the receiver’s subviews. Does nothing and returns nil if oldView is not
a subview of the receiver.

This method causes oldView to be released; if you plan to reuse it, be sure to retain it before sending this
message and to release it as appropriate when adding it as a subview of another NSView.

See also: – addSubview:, – addSubview:positioned:relativeTo:

resetCursorRects
– (void)resetCursorRects

Overridden by subclasses to define their default cursor rectangles. A subclass’s implementation must invoke
addCursorRect:cursor: for each cursor rectangle it wants to establish. NSView’s implementation does
nothing.

Application code should never invoke this method directly; it’s invoked automatically as described in the
“Tracking Rectangles and Cursor Rectangles” section. Use the invalidateCursorRectsForView: method
instead to explicitly rebuild cursor rectangles.

See also: – visibleRect

54

resizeSubviewsWithOldSize:
– (void)resizeSubviewsWithOldSize:(NSSize)oldFrameSize

Informs the receivers’s subviews that the receiver’s bounds rectangle size has changed from oldFrameSize.
If the receiver is configured to autoresize its subviews, this method is automatically invoked by any method
that changes the receiver’s frame size.

NSView’s implementation sends resizeWithOldSuperviewSize: to the receiver’s subviews with
oldFrameSize as the argument. You shouldn’t invoke this method directly, but you can override it to define
a specific retiling behavior.

See also: – setAutoresizesSubviews:

resizeWithOldSuperviewSize:
– (void)resizeWithOldSuperviewSize:(NSSize)oldFrameSize

Informs the receiver that the frame size of its superview has changed from oldFrameSize. This method is
normally invoked automatically from resizeSubviewsWithOldSize:.

NSView’s implementation resizes the receiver according to the autoresizing options listed under the
setAutoresizingMask: method description. You shouldn’t invoke this method directly, but you can override
it to define a specific resizing behavior.

rotateByAngle:
– (void)rotateByAngle:(float)angle

Rotates the receiver’s bounds rectangle by angle degrees around the origin of the coordinate system, (0.0,
0.0) See the setBoundsRotation: method description for more information.This method neither redisplays
the receiver nor marks it as needing display. You must do this yourself with display or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: – setFrameRotation:, – setPostsBoundsChangedNotifications:

scaleUnitSquareToSize:
– (void)scaleUnitSquareToSize:(NSSize)newUnitSize

Scales the receiver’s coordinate system so that the unit square changes to newUnitSize. For example, a
newUnitSize of (0.5, 1.0) causes the receiver’s horizontal coordinates to be halved, in turn doubling the
width of its bounds rectangle. Note that scaling is performed from the origin of the coordinate system, (0.0,

55

 Classes: NSView

0.0), not the origin of the bounds rectangle; as a result, both the origin and size of the bounds rectangle are
changed. The frame rectangle remains unchanged.

This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: – setBoundsSize:, – setPostsBoundsChangedNotifications:

scrollClipView:toPoint:
– (void)scrollClipView: (NSClipView *)aClipView toPoint:(NSPoint)newOrigin

Notifies aClipView’s superview that aClipView needs to set its bounds rectangle origin to newOrigin.
aClipView’s superview should then send a scrollToPoint: message to aClipView with newOrigin as the
argument. This mechanism is provided so that the NSClipView’s superview can coordinate scrolling of
multiple tiled NSClipViews.

See also: – scrollToPoint: (NSClipView)

scrollPoint:
– (void)scrollPoint:(NSPoint)aPoint

Scrolls the receiver’s closest ancestor NSClipView so that aPoint in the receiver lies at the origin of the
NSClipView’s bounds rectangle.

See also: – autoscroll:, – scrollToPoint: (NSClipView), – isDescendantOf:

scrollRect:by:
– (void)scrollRect:(NSRect)aRect by:(NSSize)offset

Copies the visible portion of the receiver’s rendered image within aRect and lays that portion down again
at offset from aRect’s origin. This method is useful during scrolling or translation of the coordinate system
to efficiently move as much of the receiver’s rendered image as possible without requiring it to be redrawn,
following these steps:

1. Invoke scrollRect:by: to copy the rendered image.

2. Move the view object’s origin or scroll it within its superview.

3. Calculate the newly exposed rectangles and invoke either displayRect: or setNeedsDisplayInRect: to draw
them.

56

You should rarely need to use this method, however. The scrollPoint:, scrollRectToVisible:, and
autoscroll: methods automatically perform optimized scrolling.

See also: – setBoundsOrigin:, – translateOriginToPoint:

scrollRectToVisible:
– (BOOL)scrollRectToVisible:(NSRect)aRect

Scrolls the receiver’s closest ancestor NSClipView the minimum distance needed so that aRect in the
receiver becomes visible in the NSClipView. Returns YES if any scrolling is performed; otherwise returns
NO.

See also: – autoscroll:, – scrollToPoint: (NSClipView), – isDescendantOf:

setAutoresizesSubviews:
– (void)setAutoresizesSubviews:(BOOL)flag

Determines whether the receiver automatically resizes its subviews when its frame size changes. If flag is
YES, the receiver invokes resizeSubviewsWithOldSize: whenever its frame size changes; if flag is NO, it
doesn’t. View objects by default do autoresize their subviews.

See also: – autoresizesSubviews

setAutoresizingMask:
– (void)setAutoresizingMask:(unsigned int)mask

Determines how the receiver’s resizeWithOldSuperviewSize: method changes its frame rectangle. mask
can be specified by combining any of the following options using the C bitwise OR operator:

Option Meaning

NSViewMinXMargin The left margin between the receiver and its superview is flexible.

NSViewWidthSizable The receiver’s width is flexible.

NSViewMaxXMargin The right margin between the receiver and its superview is flexible.

NSViewMinYMargin The bottom margin between the receiver and its superview is flexible.

NSViewHeightSizable The receiver’s height is flexible.

NSViewMaxYMargin The top margin between the receiver and its superview is flexible.

57

 Classes: NSView

Where more than one option along an axis is set, resizeWithOldSuperviewSize: by default distributes the
size difference as evenly as possible among the flexible portions. For example, if NSViewWidthSizable and
NSViewMaxXMargin are set and the superview’s width has increased by 10.0 units, the receiver’s frame
and right margin are each widened by 5.0 units.

See also: – autoresizingMask, – resizeSubviewsWithOldSize:, – setAutoresizesSubviews:

setBounds:
– (void)setBounds:(NSRect)boundsRect

Sets the receiver’s bounds rectangle to boundsRect. The bounds rectangle determines the origin and scale
of the receiver’s coordinate system within its frame rectangle. This method neither redisplays the receiver
nor marks it as needing display. You must do this yourself with display or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: – bounds, – setBoundsRotation:, – setBoundsOrigin:, – setBoundsSize:, – setFrame:,
– setPostsBoundsChangedNotifications:

setBoundsOrigin:
– (void)setBoundsOrigin:(NSPoint)newOrigin

Sets the origin of the receiver’s bounds rectangle to newOrigin, effectively shifting its coordinate system so
that newOrigin lies at the origin of the receiver’s frame rectangle. This method neither redisplays the
receiver nor marks it as needing display. You must do this yourself with display or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: – translateOriginToPoint: , – bounds, – setBoundsRotation:, – setBounds:, – setBoundsSize:,
– setPostsBoundsChangedNotifications:

setBoundsRotation:
– (void)setBoundsRotation:(float)angle

Sets the rotation of the receiver’s bounds rectangle to angle. Positive values indicate counterclockwise
rotation, negative clockwise. Rotation is performed around the coordinate system origin, (0.0, 0.0), which
need not coincide with that of the frame rectangle or the bounds rectangle. This method neither redisplays
the receiver nor marks it as needing display. You must do this yourself with display or setNeedsDisplay:.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

58

Bounds rotation affects the orientation of the drawing within the view object’s frame rectangle, but not the
orientation of the frame rectangle itself. Also, for a rotated bounds rectangle to enclose all the visible areas
of its view object—that is, to guarantee coverage over the frame rectangle—it must also contain some areas
that aren’t visible. This can cause unnecessary drawing to be requested, which may affect performance. It
may be better in many cases to rotate the PostScript coordinate system in the drawRect: method rather than
use this method.

See also: – rotateByAngle:, – boundsRotation, – setFrameRotation:,
– setPostsBoundsChangedNotifications:

setBoundsSize:
– (void)setBoundsSize:(NSSize)newSize

Sets the size of the receiver’s bounds rectangle to newSize, inversely scaling its coordinate system relative
to its frame rectangle. For example, a view object with a frame size of (100.0, 100.0) and a bounds size of
(200.0, 100.0) draws half as wide along the x axis. This method neither redisplays the receiver nor marks it
as needing display. You must do this yourself with display or setNeedsDisplay:.

This method posts an NSViewFrameDidChangeNotification to the default notification center if the receiver
is configured to do so.

See also: – bounds, – setBoundsRotation:, – setBounds:, – setBoundsOrigin:,
– setPostsBoundsChangedNotifications:

setFrame:
– (void)setFrame:(NSRect)frameRect

Sets the receiver’s frame rectangle to frameRect, thereby repositioning and resizing it within the coordinate
system of its superview. This method neither redisplays the receiver nor marks it as needing display. You
must do this yourself with display or setNeedsDisplay:.

This method posts an NSViewFrameDidChangeNotification to the default notification center if the receiver
is configured to do so.

See also: – frame, – setFrameRotation:, – setFrameOrigin:, – setFrameSize:, – setBounds:,
– setPostsFrameChangedNotifications:

59

 Classes: NSView

setFrameOrigin:
– (void)setFrameOrigin:(NSPoint)newOrigin

Sets the origin of the receiver’s frame rectangle to newOrigin, effectively repositioning it within its
superview. This method neither redisplays the receiver nor marks it as needing display. You must do this
yourself with display or setNeedsDisplay:.

This method posts an NSViewFrameDidChangeNotification to the default notification center if the receiver
is configured to do so.

See also: – frame, – setFrameSize:, – setFrame:, – setFrameRotation:,
– setPostsFrameChangedNotifications:

setFrameRotation:
– (void)setFrameRotation:(float)angle

Sets the rotation of the receiver’s frame rectangle to angle, rotating it within its superview without affecting
its coordinate system. Positive values indicate counterclockwise rotation, negative clockwise. Rotation is
performed around the origin of the frame rectangle.

This method neither redisplays the receiver nor marks it as needing display. You must do this yourself with
display or setNeedsDisplay:.

This method posts an NSViewFrameDidChangeNotification to the default notification center if the receiver
is configured to do so.

See also: – frameRotation, – setBoundsRotation:

setFrameSize:
– (void)setFrameSize:(NSSize)newSize

Sets the size of the receiver’s frame rectangle to newSize, resizing it within its superview without affecting
its coordinate system. This method neither redisplays the receiver nor marks it as needing display. You must
do this yourself with display or setNeedsDisplay:.

This method posts an NSViewFrameDidChangeNotification to the default notification center if the receiver
is configured to do so.

See also: – frame, – setFrameOrigin:, – setFrame:, – setFrameRotation:,
– setPostsFrameChangedNotifications:

60

setInterfaceStyle:
– (void)setInterfaceStyle:(NSInterfaceStyle)interfaceStyle

Sets the interface style for the view and for its subviews to the style specified by interfaceStyle, such as
NSMacintoshInterfaceStyle or NSWindows95InterfaceStyle. You should almost never need to invoke or
override this method, but if you do override it, your version should always invoke super.

See also: – interfaceStyle

setNeedsDisplay:
– (void)setNeedsDisplay:(BOOL)flag

If flag is YES, marks the receiver’s entire bounds as needing display; if flag is NO, marks it as not needing
display. Whenever the data or state used for drawing a view object changes, the view should be sent a
setNeedsDisplay: message. NSViews marked as needing display are automatically redisplayed on each
pass through the application’s event loop. (View objects that need to redisplay before the event loop comes
around can of course immediately be sent the appropriate display... method.)

See also: – setNeedsDisplayInRect:, – needsDisplay

setNeedsDisplayInRect:
– (void)setNeedsDisplayInRect:(NSRect)invalidRect

Marks the region of the receiver within invalidRect as needing display, increasing the receiver’s existing
invalid region to include it. A later displayIfNeeded... method will then perform drawing only within the
invalid region. NSViews marked as needing display are automatically redisplayed on each pass through the
application’s event loop. (View objects that need to redisplay before the event loop comes around can of
course immediately be sent the appropriate display... method.)

See also: – setNeedsDisplay:, – needsDisplay

setNextKeyView:
– (void)setNextKeyView:(NSView *)aView

Inserts aView after the receiver in the key view loop of the receiver’s NSWindow.

See also: – nextKeyView, – nextValidKeyView, – previousKeyView, – previousValidKeyView

61

 Classes: NSView

setPostsBoundsChangedNotifications:
– (void)setPostsBoundsChangedNotifications:(BOOL)flag

Controls whether the receiver informs observers when its bounds rectangle changes. If flag is YES, the
receiver will post notifications to the default notification center whenever its bounds rectangle changes; if
flag is NO it won’t. The following methods can result in notification posting:

setBounds:
setBoundsOrigin:
setBoundsSize:
setBoundsRotation:
translateOriginToPoint:
scaleUnitSquareToSize:
rotateByAngle:

See also: – postsBoundsChangedNotifications

setPostsFrameChangedNotifications:
– (void)setPostsFrameChangedNotifications:(BOOL)flag

Controls whether the receiver informs observers when its frame rectangle changes. If flag is YES, the
receiver will post notifications to the default notification center whenever its frame rectangle changes; if flag
is NO it won’t. The following methods can result in notification posting:

setFrame:
setFrameOrigin:
setFrameSize:
setFrameRotation:

See also: – postsFrameChangedNotifications

setToolTip:
– (void)setToolTip:(NSString *)string

Sets the tooltip text for the view according to the passed string. If string is nil , cancels tooltip display for
the view.

See also: – toolTip

62

setUpGState
– (void)setUpGState

Overridden by subclasses to (re)initialize the receiver’s graphics state object. This method is automatically
invoked when the graphics state object created using allocateGState needs to be initialized. NSView’s
implementation does nothing. Your subclass can override it to set the current font, line width, or any other
PostScript graphics state parameter except coordinate transformations and the clipping path—these are
established by the frame and bounds rectangles, and by methods such as scaleUnitSquareToSize: and
translateOriginToPoint: . Note that drawSelf: can further transform the coordinate system and clipping
path for whatever temporary effects it needs.

See also: – allocateGState, – renewGState

shouldDelayWindowOrderingForEvent:
– (BOOL)shouldDelayWindowOrderingForEvent:(NSEvent *)theEvent

Overridden by subclasses to allow the user to drag images from the receiver without its window moving
forward and possibly obscuring the destination, and without activating the application. If this method
returns YES, the normal window ordering and activation mechanism is delayed (not necessarily prevented)
until the next mouse-up event. If it returns NO then normal ordering and activation occurs. Never invoke
this method directly; it’s invoked automatically for each mouse-down event directed at the NSView.

An NSView subclass that allows dragging should implement this method to return YES if theEvent, an
initial mouse-down event, is potentially the beginning of a dragging session or of some other context where
window ordering isn’t appropriate. This method is invoked before a mouseDown: message for theEvent is
sent. NSView’s implementation returns NO.

If, after delaying window ordering, the receiver actually initiates a dragging session or similar operation, it
should also send a preventWindowOrdering message to NSApp, which completely prevents the window
from ordering forward and the activation from becoming active. preventWindowOrdering is sent
automatically by NSView’s dragImage:... and dragFile:... methods.

shouldDrawColor
– (BOOL)shouldDrawColor

Returns NO if the receiver is being drawn in an NSWindow (as opposed, for example, to being printed) and
the NSWindow can’t store color; otherwise returns YES. An NSView can base its drawing behavior on the
return value of this method to improve its appearance in grayscale windows.

See also: – drawRect:, – canStoreColor (NSWindow)

63

 Classes: NSView

sortSubviewsUsingFunction:context:
– (void)sortSubviewsUsingFunction:(int (*)(id, id, void *))compare context:(void *)context

Orders the receivers immediate subviews using the comparator function compare, which takes as arguments
two subviews to be ordered and the context supplied, which may be arbitrary data used to help in the
decision. compare should return NSOrderedAscending if the first subview should be ordered lower,
NSOrderedDescending if the second subview should be ordered lower, and NSOrderedSame if their
ordering isn’t important.

See also: – sortedArrayUsingFunction:context: (NSArray class cluster of the Foundation Kit)

subviews
– (NSArray *)subviews

Return the receiver’s immediate subviews.

See also: – superview, – addSubview:, – addSubview:positioned:relativeTo:, – removeFromSuperview

superview
– (NSView *)superview

Returns the receiver’s superview, or nil if it has none. When applying this method iteratively or recursively,
be sure to compare the returned NSView to the content view of the NSWindow to avoid proceeding out of
the view hierarchy.

See also: – window, – subviews, – removeFromSuperview

tag
– (int)tag

Returns the receiver’s tag, an integer that you can use to identify view objects in your application. NSView’s
implementation returns –1. Subclasses can override this method to provide individual tags, possibly adding
storage and a setTag: method (which NSView doesn’t define).

See also: – viewWithTag:

64

toolTip
– (NSString *)toolTip

Returns the text for the view’s tool tip. Returns nil if the view doesn’t currently display tooltip text.

See also: – setToolTip:

translateOriginToPoint:
– (void)translateOriginToPoint: (NSPoint)newOrigin

Translates the receiver’s coordinate system so that its origin moves to newOrigin. In the process, the origin
of the receiver’s bounds rectangle is shifted by (–newOrigin.x, –newOrigin.y). This method neither
redisplays the receiver nor marks it as needing display. You must do this yourself with display or
setNeedsDisplay:.

Note the difference between this method and setting the bounds origin. Translation effectively moves the
image inside the bounds rectangle, while setting the bounds origin effectively moves the rectangle over the
image. The two are in a sense inverse, although translation is cumulative and setting the bounds origin is
absolute.

This method posts an NSViewBoundsDidChangeNotification to the default notification center if the
receiver is configured to do so.

See also: – setBoundsOrigin:, – setBounds:, – setPostsBoundsChangedNotifications:

unlockFocus
– (void)unlockFocus

Balances an earlier lockFocus message, restoring the focus to the previously focused view is necessary.

See also: – allocateGState

unregisterDraggedTypes
– (void)unregisterDraggedTypes

Unregisters the receiver as a possible destination in a dragging session.

See also: – registerForDraggedTypes:

65

 Classes: NSView

viewWillMoveToSuperview:
– (void)viewWillMoveToSuperview:(NSView *)newSuperview

Informs the receiver that it’s being added as a subview of newSuperview. Subclasses can override this
method to perform whatever actions are necessary.

See also: – viewWillMoveToWindow:

viewWillMoveToWindow:
– (void)viewWillMoveToWindow: (NSWindow *)newWindow

Informs the receiver that it’s being added to the view hierarchy of newWindow. Subclasses can override this
method to perform whatever actions are necessary.

See also: – viewWillMoveToSuperview:

viewWithTag:
– (id)viewWithTag: (int)aTag

Returns the receiver’s nearest descendant (including itself) whose tag is aTag, or nil if no subview has that
tag.

See also: – tag

visibleRect
– (NSRect)visibleRect

Returns the portion of the receiver not clipped by its superviews. Visibility is therefore defined quite simply,
and doesn’t account for whether other NSViews (or windows) overlap the receiver or whether the receiver
has a window at all.

Note: During a printing operation the visible rectangle is further clipped to the page being imaged.

See also: – isVisible (NSWindow), – documentVisibleRect (NSScrollView),
– documentVisibleRect (NSClipView)

widthAdjustLimit
– (float)widthAdjustLimit

Returns the fraction (between 0.0 and 1.0) of the page that can be pushed onto the next page during
automatic pagination to prevent items such as small images or text columns from being divided across

66

pages. This fraction is used to calculate the right edge limit for a adjustPageWidthNew:left:right:limit:
message.

See also: – heightAdjustLimit

window
– (NSWindow *)window

Returns the receiver’s window object, or nil if it has none.

See also: – superview

writeEPSInsideRect:toPasteboard:
– (void)writeEPSInsideRect:(NSRect)aRect toPasteboard:(NSPasteboard *)pboard

Writes EPS data that draws the region of the receiver within aRect onto pboard.

See also: – dataWithEPSInsideRect:

Notifications

NSViewBoundsDidChangeNotification

Posted whenever the NSView’s bounds rectangle changes independently of the frame rectangle, if the
NSView is configured using setPostsBoundsChangedNotifications: to post such notifications.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSView whose bounds rectangle has changed.

The following methods can result in notification posting:

setBounds:
setBoundsOrigin:
setBoundsSize:
setBoundsRotation:
translateOriginToPoint:
scaleUnitSquareToSize:
rotateByAngle:

Note that the bounds rectangle resizes automatically to track the frame rectangle. Because the primary
change is that of the frame rectangle, however, setFrame: and setFrameSize: don’t result in a
bounds-changed notification.

67

 Classes: NSView

NSViewFocusDidChangeNotification

Posted whenever the NSView loses the PostScript focus other than by an unlockFocus message (for
example, when its frame or bounds rectangle is changed).

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSView that has lost focus.

See also: + focusView

NSViewFrameDidChangeNotification

Posted whenever the NSView’s frame rectangle changes, if the NSView is configured using
setPostsFrameChangedNotifications: to post such notifications.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSView whose frame rectangle has changed.

The following methods can result in notification posting:

setFrame:
setFrameOrigin:
setFrameSize:
setFrameRotation:

1

 Classes: NSWindow

NSWindow

Inherits From: NSResponder : NSObject

Conforms To: NSCoding (from NSResponder)
NSObject (from NSObject)

Declared In: AppKit/NSWindow.h

2

Class at a GlanceˇClass at a Glance

Purpose
An NSWindow manages an on-screen window, coordinating the display and event handling for its NSViews.
Interface Builder allows you to create and set up NSWindows, but there are many things you may wish to do
programmatically as well.

Principal Attributes
• Manages a view hierarchy
• Uses a delegate
• Distributes events to view objects
• Provides a field editor to view objects

Creation
Interface Builder
– initWithContentRect:styleMask:backing:defer: Designated initializer.

Commonly Used Methods

– makeKeyAndOrderFront: Moves the NSWindow to the front and makes it the key window.

– makeFirstResponder: Sets the first responder in the NSWindow.

– fieldEditor:forObject: Returns the shared text object for the NSWindow.

– setContentView: Sets the root-level NSView in the NSWindow.

– representedFilename Returns the filename whose contents the NSWindow presents.

– setDocumentEdited: Sets whether the NSWindow’s represented file needs to be saved.

– setTitle: Sets the title of the NSWindow.

– setTitleWithRepresentedFilename: Sets the title of the NSWindow in a readable format for filenames.

3

 Classes: NSWindow

Class Description

The NSWindow class defines objects that manage and coordinate the windows that an application displays
on the screen. A single NSWindow object corresponds to at most one on-screen window. The two principal
functions of NSWindow are to provide an area in which NSViews can be placed and to accept and distribute,
to the appropriate NSViews, events that the user instigates through actions with the mouse and keyboard.
Note that the term window sometimes refers to the Application Kit object and sometimes to the Window
Server’s PostScript window device; which meaning is intended is made clear in context. The Application
Kit also defines an abstract subclass of NSWindow—NSPanel—that adds behavior more appropriate for
auxiliary windows.

You typically set windows up using Interface Builder, which allows you to position them, set up many of
their visual and behavioral attributes, and lay out views in them. The programmatic work you do with
windows more often involves bringing them on and off the screen; changing dynamic attributes such as the
window’s title; running modal windows to restrict user input; and assigning a delegate that can monitor
certain of the window’s actions, such as closing, zooming, and resizing.

Window Anatomy

An NSWindow is defined by a frame rectangle that encloses the entire window, including its title bar,
border, and other peripheral elements (such as the resize bar on OPENSTEP for Mach), and by a content
rectangle that encloses just its content area. Both rectangles are specified in the screen coordinate system
and restricted to integer values. The frame rectangle establishes the NSWindow’s base coordinate system.
This coordinate system is always aligned with and measured in the same increments as the screen
coordinate system (in other words, the base coordinate system can’t be rotated or scaled). The origin of the
base coordinate system is the bottom-left corner of the NSWindow’s frame rectangle.

You create an NSWindow programmatically through one of the initWithContentRect:... methods by
specifying, among other attributes, the size and location of its content rectangle. The frame rectangle is
derived from the dimensions of the content rectangle. Various sections below describe other attributes you
can specify at initialization and afterward.

When it’s created, an NSWindow automatically creates two NSViews: An opaque frame view that fills the
frame rectangle and draws the border, title bar, other peripheral elements, and background, and a transparent
content view that fills the content rectangle. The frame view and its peripheral elements are private objects
that your application can’t access directly. The content view is the “highest” accessible NSView in the
NSWindow; you can replace the default content view with an NSView of your own creation using the
setContentView: method. The NSWindow determines the placement of the content view; you can’t
position it using NSView’s setFrame... methods, but must use NSWindow’s placement methods, described
in “Windows on the Screen” below.

You add other NSViews to the NSWindow as subviews of the content view or as subviews of any of the
content view’s subviews, and so on, through NSView’s addSubview: method. This tree of NSViews is
called the NSWindow’s view hierarchy. When an NSWindow is told to display itself, it does so by sending
display... messages to the top-level NSView in its view hierarchy. Because displaying is carried out in a

4

determined order, the content view (which is drawn first) may be wholly or partially obscured by its
subviews, and these subviews may be obscured by their subviews (and so on).

Window Styles

The peripheral elements that an NSWindow displays define its style. Though you can’t access and
manipulate them directly, you can determine at initialization whether an NSWindow has them by providing
a style mask to the initWithContentRect:styleMask:backing:defer: method. There are four possible style
elements, specifiable by combining their mask values using the C bitwise OR operator:

You can also specify NSBorderlessWindowMask, in which case none of these style elements is used.

Windows on the Screen

NSWindows can be placed on the screen in three dimensions. Besides horizontal and vertical placement,
NSWindows are ordered back-to-front in several distinct levels, which group windows of similar type and
purpose so that the more “important” ones appear in front of those less so. (For more information, see the
description for setLevel:.) Placing an NSWindow on the screen is accomplished with the setFrame:
display: method and its variants setFrameOrigin: and setFrameTopLeftPoint:. Ordering takes place in
two ways. The setLevel: method puts an NSWindow into a group, such as that for standard windows,
floating windows (for example, palettes and some inspector panels), menus, and so on. The orderWindow:
relativeTo: method orders an NSWindow within its level in front of or in back of another. Convenience
methods for ordering include makeKeyAndOrderFront: , orderFront: and orderBack:, as well as
orderOut: , which removes an NSWindow from the screen. The isVisible method tells whether an
NSWindow is on or off the screen. You can also set a window to be removed from the screen automatically
when its application isn’t active using setHidesOnDeactivate:.

NSWindow offers several means of constraining and adjusting window placement:

setMinSize: and setMaxSize: limit the user’s ability to resize the NSWindow (you can still set it to
any size programmatically). Similarly, setAspectRatio: keeps a window’s width and height at the
same proportions as the user resizes it, and setResizeIncrements: makes the window resize in
discrete amounts larger than a single pixel. (Aspect ratio and resize increments are mutually

Element Mask Value

A title bar NSTitledWindowMask

A close button NSClosableWindowMask

A miniaturize button NSMiniaturizableWindowMask

A resize bar, border, or box NSResizableWindowMask

5

 Classes: NSWindow

exclusive attributes. See the setAspectRatio: and setResizeIncrements: method descriptions for
more information.)

The constrainFrameRect:toScreen: method adjusts a proposed frame rectangle so that it lies on the
screen in such a way that the user can move and resize a window. Note that any NSWindow with a
title bar automatically constrains itself to the screen. The cascadeTopLeftFromPoint: method shifts
the top left point by an amount that allows one NSWindow to be placed relative to another so that
both their title bars are visible.

The zoom: method toggles the size and location of a window between its standard state, as
determined by the application, and its user state—a new size and location the user may have set by
moving or resizing the window.

Finally, the center method places an NSWindow in the most prominent location on the screen, one
suitable for important messages and attention panels.

Closely related to window ordering is the idea of opening or closing an NSWindow. Normally, opening is
accomplished simply by ordering the NSWindow in front of or in back of another that’s on screen. Closing
a window involves explicit use of either the close method, which simply removes the NSWindow from the
screen, or performClose:, which highlights the close button as though the user clicked it. Closing an
NSWindow involves at least removing it from the screen but adds the possibility of disposing of it
altogether. The setReleasedWhenClosed: method sets whether an NSWindow releases itself when it
receives a close message. An NSWindow’s delegate is also notified when it’s about to close, as described in
the “Notifications and the NSWindow’s Delegate” section.

Miniaturizable windows can be removed from the screen and replaced by a smaller counterpart, whether a
freestanding miniwindow or, on Microsoft Windows, a button in the task bar. The miniaturize: and
deminiaturize: methods reduce and reconstitute an NSWindow, and performMiniaturize: simulates the
user clicking the NSWindow’s miniaturize button. You can also set the image and title displayed in a
freestanding miniwindow by sending setMiniwindowImage: and setMiniwindowTitle: messages to the
NSWindow object.

An NSWindow can store its placement in the user defaults system, so that it appears in the same location
the next time the user starts the application. The saveFrameUsingName: method stores the frame
rectangle, and setFrameUsingName: sets it from the value in user defaults. You can also use the
setFrameAutosaveName: method to have an NSWindow save the frame rectangle any time it changes. To
expunge a frame rectangle from the defaults system, use the class method removeFrameUsingName:.

Titles and Represented Files

A titled NSWindow can display an arbitrary title or one derived from a filename. The setTitle: method puts
an arbitrary string on the title bar. The setTitleWithRepresentedFilename: method formats a filename in
the title bar in a readable format (which varies with the platform) and associates the NSWindow with that
file. You can set the associated file without changing the title using setRepresentedFilename:. You can use
the association between the NSWindow and the file in any way you see fit. One convenience offered by
NSWindow is marking the file as being edited, so that you can prompt the user to save it on closing the

6

window. The method for marking this is setDocumentEdited:. When the window closes, its delegate can
check it with isDocumentEdited to see whether the document needs to be saved.

Most OPENSTEP applications include a submenu that displays the titles of windows, called the Windows
menu. This submenu automatically lists windows that have a title bar and are resizable and that can become
the main window (as described under “Event Handling”). When you change an NSWindow’s title, this
change is also automatically reflected in the Windows menu. You can exclude a window that would
otherwise be listed by sending it a setExcludedFromWindowsMenu: message.

Window Device Attributes

Nearly every NSWindow has a corresponding PostScript window device in the Window Server. The
window device holds the NSWindow’s drawn image, and has two attributes determined by the Window
Server and five attributes that the NSWindow controls. The Window Server assigns the window device a
unique identifier (within an application). This is the window number, and it’s returned by the
windowNumber method. Each window also has a PostScript graphics state that most NSViews share for
drawing (NSViews can create their own as well). The gstate method returns its identifier. The five attributes
under direct NSWindow control are:

• Where the drawn image is stored, determined by the window’s backing store type
• When the window device is created
• Whether the window device persists when the window is off screen
• How much memory is used for each pixel (also called the depth limit)
• Whether the depth limit changes with the screen capacity

A window device’s backing store type is set when the NSWindow is initialized and can be one of three
types. A buffered window device renders all drawing into a display buffer and then flushes it to the screen.
Always drawing to the buffer produces very smooth display, but can require significant amounts of memory.
Buffered windows are best for displaying material that must be redrawn often, such as text. A retained
window device also uses a buffer, but draws directly to the screen where possible and to the buffer for any
portions that are obscured. A nonretained window device has no buffer at all, and must redraw portions as
they’re exposed. Further, this redrawing is suspended when the NSWindow’s display mechanism is
preempted. For example, if the user drags a window across a nonretained window, the nonretained window
is “erased” and isn’t redrawn until the user releases the mouse. Both retained and nonretained windows are
also subject to a flashing effect as individual drawing operations are performed, but their results do get to
the screen more quickly than those of buffered windows. You can change the backing store type between
buffered and retained after initialization using the setBackingType: method.

The last argument to initWithContentRect:styleMask:backing:defer: specifies whether the NSWindow
creates its window device immediately or only when it’s moved on screen. Deferring creation of the window
device can offer some performance gain for windows that aren’t displayed immediately because it reduces
the amount of work that needs to be performed up front. Deferring creation of the window device is
particularly useful when creation of the NSWindow itself can’t be deferred or when an NSWindow is
needed for purposes other than displaying content. Submenus with key equivalents, for example, must exist
for the key equivalents to work, but may never actually be displayed.

7

 Classes: NSWindow

Memory can also be saved by destroying the window device when the window is removed from the screen.
The setOneShot: method controls this behavior. One-shot window devices exist only when their
NSWindows are on screen.

Like the display hardware, a window device’s buffer has a depth, or a limit to the memory allotted each
pixel. Buffered and retained windows start out with a default window depth of 2 bits per pixel, and this depth
grows to the window device’s limit as the NSWindow draws richer images (more shades of gray, more
colors). A window device’s depth is set using the setDepthLimit: method, which takes as an argument a
window depth limit created using the NSBestDepth function.

If an NSWindow draws color into its buffer and there’s a color screen available, the Window Server
automatically promotes the window’s depth (up to its limit). This happens whether or not the window is
actually on a color screen; similarly, if the user drags a window that displays color from a color screen to a
monochrome screen, it remains at its richer depth. In both cases, the window’s depth is greater than the
screen can properly display. Keeping a window’s depth at its richest preserves the displayed image, but it
may produce undesired results such as dithering on a more limited screen and does causes slight
performance reduction when the window buffer is deeper than the screen requires. You can set an
NSWindow to keep its depth at the limit of the screen it’s on with the setDynamicDepthLimit: method.
When it’s moved to a new screen, a window with a dynamic depth limit is redrawn into the newly adjusted
buffer. Making a window’s depth limit dynamic overrides the limit set using setDepthLimit: , and removing
the dynamic limit reverts the static limit to the default.

Window Display and Updating

Display of an NSWindow begins with the drawing performed by its view objects, which accumulates in the
window’s display buffer or appears immediately on the screen. NSWindows, like NSViews, can be
displayed unconditionally or merely marked as needing display, using the display and
setViewsNeedDisplay: methods, respectively. A displayIfNeeded message causes the NSWindow’s views
to display only if they’ve been marked as needing display. Normally, any time an NSView is marked as
needing display, the NSWindow makes note of this fact and automatically displays itself shortly after. This
automatic display is typically performed on each pass through the event loop, but can be turned off using
the setAutodisplay: method. If you turn off autodisplay for an NSWindow, you’re then responsible for
displaying it whenever necessary.

A related mechanism is that of updating. On each pass through the event loop, the application object invokes
its updateWindows method, which sends an update message to each NSWindow. Subclasses of
NSWindow can override this method to examine the state of the application and change their own state or
appearance accordingly—enabling or disabling menus, buttons, and other controls based on the object
that’s selected, for example.

In addition to displaying itself on the screen, an NSWindow can print itself in its entirety, just as an NSView
can. The print: method runs the application’s Print panel and causes the NSWindow’s frame view to print
itself. The fax: and dataWithEPSInsideRect: methods behave similarly. See the NSView class
specification for more information on printing.

8

Event Handling

As described in the NSResponder class specification, most events coming into an application make their
way to an NSWindow in a sendEvent: message. A key event is directed at the key window, while a mouse
event is directed at whatever window lies under the cursor. If an event affects the window directly—resizing
or moving it, for example—it performs the appropriate operation itself and sends messages to its delegate
informing it of its intentions, thus allowing your application to intercede. The window sends other events
up its responder chain from the appropriate starting point: the first responder for a key event, the view under
the cursor for a mouse event. These events are then typically handled by some view object in the window.
See the NSView and NSEvent class specifications for more information on how to intercept and handle
events.

The following sections describe aspects of events not directly related to handling individual events. These
include changing the key and main windows, changing the first responder by keyboard rather than mouse
actions, sharing a single text object for lightweight editing tasks, and running a modal event loop around an
entire window rather than a single view object.

Changing the Key and Main Windows

Windows already on screen automatically change their status as the key or main window based on the user’s
actions with the mouse and on how the clicked view handles the mouse event. You can also set the key and
main windows programmatically by sending the relevant window object a makeKeyWindow or
makeMainWindow message. Setting the key and main windows programmatically is particularly useful
when creating a new window. Because making a window key is often combined with ordering the window
to the front of the screen, NSWindow defines a convenience method, makeKeyAndOrderFront: , that
performs both operations.

Not all windows are suitable for acting as the key or main window. For example, a window that merely
displays information, and contains no objects that need to respond to events or action messages, can
completely forgo ever becoming the key window. Similarly, a window that acts as a floating palette of items
that are only dragged out by mouse actions never needs to be the key window. Such a window can be defined
as a subclass of NSWindow that overrides the methods canBecomeKeyWindow and
canBecomeMainWindow to return NO instead of the default of YES. Defining a window in this way
prevents it from ever becoming the key or main window. Though NSWindow defines these methods,
typically only subclasses of NSPanel refuse to accept key or main window status.

Keyboard Interface Control

A window’s first responder is often a view object selected by the user clicking it. For text fields and other
view objects (mainly subclasses of NSControl), the user can select the first responder with the keyboard
using the Tab and Shift keys. NSView defines the methods for setting up and examining the loop of objects
that the user can select in this manner. A view that’s the first responder is called the key view, and the views
that can become the key view in a window are linked together in the window’s key view loop. You normally
set up the key view loop using Interface Builder, establishing connections between the nextKeyView
outlets of views in the window and setting the window’s initialFirstResponder outlet to the view that you

9

 Classes: NSWindow

want selected when the window is first placed on screen. If you do not set this outlet, the window sets a key
loop (not necessarily the same as the one you may have specified!) and picks a default initial first responder
for you.

In addition to the key view loop, a window can have a default button cell, which uses the Return (or Enter)
key as its key equivalent. The setDefaultButtonCell: method establishes this button cell; you can also set
it in Interface Builder by setting a button cell’s key equivalent to ‘\r’. The default button cell draws itself as
a focal element for keyboard interface control unless another button cell is focused on. In this case, it
temporarily draws itself as normal and disables its key equivalent. Another default key established by
NSWindow is the Escape key, which immediately aborts a modal loop (described below under “Modal
Windows”).

See the NSResponder class specification for more information on keyboard interface control.

The Field Editor

Each NSWindow has a text object that is shared for light editing tasks. This object, the window’s field editor,
is inserted in the view hierarchy when an object needs to edit some text and removed when the object is
finished. The field editor is used by NSTextFields and other controls, for example, to edit the text that they
display. The fieldEditor:forObject: method returns a window’s field editor, after asking the delegate for a
substitute using windowWillReturnFieldEditor:toObject: . You can override the NSWindow method in
subclasses or provide a delegate to substitute a class of text object different from the default of NSTextView,
thereby customizing text editing in your application.

Modal Windows

You can make a whole window or panel run in modal fashion, using the application’s normal event loop
machinery but restricting input to the modal window or panel. Modal operation is useful for windows and
panels that require the user’s attention before an action can proceed. Examples include error messages and
warnings, as well as operations that require input, such as printing or saving a document.

There are two mechanisms for operating a modal window or panel. The first, and simpler, is to invoke
NSApplication’s runModalForWindow: method, which monopolizes events for the specified window
until one of the NSApplication methods stopModal, abortModal , or stopModalWithCode: is invoked,
typically by a button’s action method. The stopModal method ends the modal status of the window or panel
from within the event loop. It doesn’t work if invoked from a method invoked by a timer or by a distributed
object because those mechanisms operate outside of the event loop. To terminate the modal loop in these
situations, you can use abortModal . The stopModal method is typically invoked when the user clicks the
OK button (or equivalent), abortModal when the user clicks the Cancel button (or presses the Escape key).
These two methods are equivalent to stopModalWithCode: with the appropriate argument. See the method
descriptions in the NSApplication class specification for more information.

The second mechanism for operating a modal window or panel, called a modal session, allows the
application to perform a long operation while it still sends events to the window or panel. Modal sessions
are particularly useful for panels that allow the user to cancel or modify an operation. To begin a modal

10

session, invoke NSApplication’s beginModalSessionForWindow: method, which sets the window up for
the session and returns an identifier used for other session-controlling methods. At this point, the application
can run in a loop that performs the operation, on each pass sending runModalSession: to the application
object so that pending events can be dispatched to the modal window. This method returns a code indicating
whether the operation should continue, stop, or abort, which is typically established by the methods
described above for runModalForWindow: . After the loop concludes, you can remove the window from
the screen and invoke NSApplication’s endModalSession: method to restore the normal event loop. The
method description for runModalForWindow in the NSApplication class specification includes sample
code illustrating a modal session.

Note: You can write a modal event loop for a view object so that the object has access to all events
pertaining to a particular task, such as tracking the mouse in the view. For an example, see “Mouse
Events” in the class specification for NSView.

The normal behavior of a modal window or session is to exclude all other windows and panels from
receiving events. For windows and panels that serve as general auxiliary controls, such as menus and the
Font panel, this behavior is overly restrictive. The user must be able to use menu key equivalents (such as
those for Cut and for Paste) and change the font of text in the modal window, and this requires that
nonmodal panels be able to receive events. To support this behavior, an NSWindow subclass overrides the
worksWhenModal method to return YES. This allows the window to receive mouse and keyboard events
even when a modal window is present. If a subclass needs to work when a modal window is present, it
should usually be a subclass of NSPanel, not of NSWindow.

Modal windows and modal sessions provide different levels of control to the application and the user.
Modal windows restrict all action to the window itself and any methods invoked from the window. Modal
sessions allow the application to continue an operation while accepting input only through the modal
session window. Beyond this, you can use distributed objects to perform background operations in a
separate thread, while allowing the user to perform other actions with any part of the application. The
background thread can communicate with the main thread, allowing the application to display the status of
the operation in a nonmodal panel, perhaps including controls to stop or affect the operation as it occurs.
Note that because the Application Kit isn’t thread-safe, the background thread should communicate with a
designated object in the main thread that in turn interacts with the Application Kit.

Notifications and the NSWindow’s Delegate

NSWindow offers observers a rich set of notifications, which it broadcasts on such occurrences as gaining
or losing key or main window status, miniaturizing, moving or resizing, becoming exposed, and closing.
Each notification is matched to a delegate method, so an NSWindow’s delegate is automatically registered
for all notifications that it has methods for. NSWindow also offers its delegate a few other methods, such as
windowShouldClose:, which requests approval to close, windowWillResize:toSize:, which allows the
delegate to constrain the NSWindow’s size, windowWillUseStandardFrame:defaultFrame:, which
allows the delegate to set the window frame for zooming, and windowWillReturnFieldEditor:toObject ,
which gives the delegate a chance to modify the field editor or substitute a different editor. See the
individual notification and delegate method descriptions at the end of this specification for more
information.

11

 Classes: NSWindow

Other Features

NSWindow defines a number of methods to assist its view objects in certain operations that may extend in
scope beyond a single view or even outside the window containing them. One of these operations is image
dragging. Although most dragging operations are initiated by and occur between view objects, NSWindow
also defines an image-dragging method, dragImage:at:offset:event:pasteboard:source:slideBack:. An
NSWindow can also serve as the destination for dragging operations, registering the types it accepts with
registerForDraggedTypes: and unregisterDraggedTypes.

NSView provides methods for adding, removing, discarding, and resetting cursor rectangles—areas where
the cursor image changes when the mouse enters them. NSWindow overrides some of these methods and
provides additional methods for working with cursor rectangles. For example, an NSWindow can:

• disable and reenable all of its cursor rectangles with disableCursorRects and enableCursorRects
• determine if its cursor rects are enabled with areCursorRectsEnabled
• reset the cursor rectangles for a particular NSView with invalidateCursorRectsForView:
• reset all its cursor rectangles with resetCursorRects

Finally, to support transitory drawing by NSViews, NSWindow declares methods that temporarily cache a
portion of its raster image so that it can be restored later. This feature is useful for situations where highly
dynamic drawing must be done over the otherwise static image of the window. For example, in a drawing
program where the user drags lines and other shapes directly onto a canvas, it’s more efficient to restore the
window’s cached image and draw anew over that than to have all of the view objects send PostScript
instructions to the Window Server. For more information, see the method descriptions for
cacheImageInRect:, restoreCachedImage, and discardCachedImage.

Method Types

Creating instances
– initWithContentRect:styleMask:backing:defer:
– initWithContentRect:styleMask:backing:defer:screen:

Calculating layout
+ contentRectForFrameRect:styleMask:
+ frameRectForContentRect:styleMask:
+ minFrameWidthWithTitle:styleMask:

Converting coordinates
– convertBaseToScreen:
– convertScreenToBase:

12

Moving and resizing
– setFrame:display:
– frame
– setFrameOrigin:
– setFrameTopLeftPoint:
– setContentSize:
– cascadeTopLeftFromPoint:
– center
– resizeFlags
– performZoom:
– zoom:

Constraining window size
– maxSize
– minSize
– setMaxSize:
– setMinSize:
– setAspectRatio:
– aspectRatio
– setResizeIncrements:
– resizeIncrements
– constrainFrameRect:toScreen:

Saving the frame to user defaults
+ removeFrameUsingName:
– saveFrameUsingName:
– setFrameUsingName:
– setFrameAutosaveName:
– frameAutosaveName
– setFrameFromString:
– stringWithSavedFrame

Ordering windows
– orderBack:
– orderFront:
– orderFrontRegardless
– orderOut:
– orderWindow:relativeTo:
– setLevel:
– level
– isVisible

13

 Classes: NSWindow

Making key and main windows
– becomeKeyWindow
– canBecomeKeyWindow
– isKeyWindow
– makeKeyAndOrderFront:
– makeKeyWindow
– resignKeyWindow
– becomeMainWindow
– canBecomeMainWindow
– isMainWindow
– makeMainWindow
– resignMainWindow

Working with the default button
– defaultButtonCell
– setDefaultButtonCell:
– disableKeyEquivalentForDefaultButtonCell
– enableKeyEquivalentForDefaultButtonCell

Display and drawing
– display
– displayIfNeeded
– setViewsNeedDisplay:
– viewsNeedDisplay
– useOptimizedDrawing:
– setAutodisplay:
– isAutodisplay
– update

Setting the interface style
– setInterfaceStyle:
– interfaceStyle

Flushing graphics
– flushWindow
– flushWindowIfNeeded
– enableFlushWindow
– disableFlushWindow
– isFlushWindowDisabled

Bracketing temporary drawing
– cacheImageInRect:
– restoreCachedImage
– discardCachedImage

14

Window Server information
– windowNumber
– gState
– deviceDescription
– setBackingType:
– backingType
– setOneShot:
– isOneShot
+ defaultDepthLimit
– setDepthLimit:
– depthLimit
– setDynamicDepthLimit:
– hasDynamicDepthLimit
– canStoreColor

Screen information
– deepestScreen
– screen

Working with the responder chain
– makeFirstResponder:
– firstResponder

Event handling
– currentEvent
– nextEventMatchingMask:
– nextEventMatchingMask:untilDate:inMode:dequeue:
– discardEventsMatchingMask:beforeEvent:
– postEvent:atStart:
– sendEvent:
– tryToPerform:with:
– keyDown:
– mouseLocationOutsideOfEventStream
– setAcceptsMouseMovedEvents:
– acceptsMouseMovedEvents

Working with the field editor
– fieldEditor:forObject:
– endEditingFor:

15

 Classes: NSWindow

Keyboard interface control
– setInitialFirstResponder:
– initialFirstResponder
– selectKeyViewFollowingView:
– selectKeyViewPrecedingView:
– selectNextKeyView:
– selectPreviousKeyView:
– keyViewSelectionDirection

Setting the title and filename
– setTitle:
– setTitleWithRepresentedFilename:
– title
– setRepresentedFilename:
– representedFilename

Marking a window edited
– setDocumentEdited:
– isDocumentEdited

Closing the window
– close
– performClose:
– setReleasedWhenClosed:
– isReleasedWhenClosed

Miniaturizing and miniwindows
– miniaturize:
– performMiniaturize:
– deminiaturize:
– isMiniaturized
– setMiniwindowImage:
– miniwindowImage
– setMiniwindowTitle:
– miniwindowTitle

Working with menus
+ menuChanged:

Working with the Windows menu
– setExcludedFromWindowsMenu:
– isExcludedFromWindowsMenu

16

Working with cursor rectangles
– areCursorRectsEnabled
– enableCursorRects
– disableCursorRects
– discardCursorRects
– invalidateCursorRectsForView:
– resetCursorRects

Dragging
– dragImage:at:offset:event:pasteboard:source:slideBack:
– registerForDraggedTypes:
– unregisterDraggedTypes

Controlling behavior
– setHidesOnDeactivate:
– hidesOnDeactivate
– worksWhenModal

Setting the content view
– setContentView:
– contentView

Setting the background color
– setBackgroundColor:
– backgroundColor

Getting the style mask
– styleMask

Working with Services
– validRequestorForSendType:returnType:

Printing and faxing
– print:
– dataWithEPSInsideRect:
– fax:

Getting the Microsoft Windows handle
– windowHandle

Setting the delegate
– setDelegate:
– delegate

17

 Classes: NSWindow

Class Methods

contentRectForFrameRect:styleMask:
+ (NSRect)contentRectForFrameRect:(NSRect)frameRect styleMask:(unsigned int)aStyle

Returns the content rectangle used by an NSWindow with a frame rectangle of frameRect and a style mask
of aStyle. Both frameRect and the returned content rectangle are expressed in screen coordinates. See the
initWithContentRect:styleMask:backing:defer: method description for a list of style mask values.

See also: + frameRectForContentRect:styleMask:

defaultDepthLimit
+ (NSWindowDepth)defaultDepthLimit

Returns the default depth limit for instances of NSWindow. This is determined by the depth of the deepest
screen level available to the window server.

The value returned can be examined with the Application Kit functions NSPlanarFromDepth,
NSColorSpaceFromDepth, NSBitsPerSampleFromDepth, NSBitsPerPixelFromDepth.

See also: – setDepthLimit: , – setDynamicDepthLimit:, – canStoreColor

frameRectForContentRect:styleMask:
+ (NSRect)frameRectForContentRect:(NSRect)contentRect styleMask:(unsigned int)aStyle

Returns the frame rectangle used by an NSWindow with a content rectangle of contentRect and a style mask
of aStyle. Both contentRect and the returned frame rectangle are expressed in screen coordinates. See the
initWithContentRect:styleMask:backing:defer: method description for a list of style mask values.

See also: + contentRectForFrameRect:styleMask:

menuChanged:
+ (void)menuChanged:(NSMenu *)aMenu

On Microsoft Windows, locates all objects inheriting from NSWindow that use aMenu and causes them to
update their state and redisplay the menu. With other operating systems, this method does nothing.

See also: – menu (NSResponder)

18

minFrameWidthWithTitle:styleMask:
+ (float)minFrameWidthWithTitle: (NSString *)aTitle styleMask:(unsigned int)aStyle

Returns the minimum width that an NSWindow’s frame rectangle must have for it to display all of aTitle,
given aStyle as its style mask. See the initWithContentRect:styleMask:backing:defer: method
description for a list of acceptable style mask values.

removeFrameUsingName:
+ (void)removeFrameUsingName:(NSString *)name

Removes the frame data stored under name from the application’s user defaults.

See also: – setFrameUsingName:, – setFrameAutosaveName:

Instance Methods

acceptsMouseMovedEvents
– (BOOL)acceptsMouseMovedEvents

Returns YES if the receiver accepts and distributes mouse-moved events, NO if it doesn’t. NSWindows by
default don’t accept mouse-moved events.

See also: – setAcceptsMouseMovedEvents:

areCursorRectsEnabled
– (BOOL)areCursorRectsEnabled

Returns YES if the receiver’s cursor rectangles are enabled, NO if they’re not.

See also: – enableCursorRects, – addCursorRect:cursor: (NSView)

aspectRatio
– (NSSize)aspectRatio

Returns the receiver’s size aspect ratio. The size of the receiver’s frame rectangle is constrained to integral
multiples of this ratio when the user resizes it. You can set an NSWindow’s size to any ratio
programmatically.

See also: – resizeIncrements, – setAspectRatio:, – setFrame:display:

19

 Classes: NSWindow

backgroundColor
– (NSColor *)backgroundColor

Returns the color of the receiver’s background.

See also: – setBackgroundColor:

backingType
– (NSBackingStoreType)backingType

Returns the receiver’s backing store type as one of the following constants:

NSBackingStoreBuffered
NSBackingStoreRetained
NSBackingStoreNonretained

See also: – setBackingType:

becomeKeyWindow
– (void)becomeKeyWindow

Invoked automatically to inform the receiver that it has become the key window; never invoke this method
directly. This method reestablishes the receiver’s first responder, sends the becomeKeyWindow message
to that object if it responds, and posts an NSWindowDidBecomeKeyNotification to the default notification
center.

See also: – makeKeyWindow, – makeKeyAndOrderFront: , – becomeMainWindow

becomeMainWindow
– (void)becomeMainWindow

Invoked automatically to inform the receiver that it has become the main window; never invoke this method
directly. This method posts an NSWindowDidBecomeMainNotification to the default notification center.

See also: – makeMainWindow, – becomeKeyWindow

cacheImageInRect:
– (void)cacheImageInRect:(NSRect)aRect

Stores the receiver’s raster image from aRect, which is expressed in the receiver’s base coordinate system.
This allows the receiver to perform temporary drawing, such as a band around the selection as the user drags

20

the mouse, and to quickly restore the previous image by invoking restoreCachedImage and
flushWindowIfNeeded. The next time the window displays, it discards its cached image rectangles. You
can also explicitly use discardCachedImage to free the memory occupied by cached image rectangles.

See also: – display

canBecomeKeyWindow
– (BOOL)canBecomeKeyWindow

Returns YES if the receiver is able to be the key window, NO if it can’t. Attempts to make the receiver the
key window are abandoned if this method returns NO. NSWindow’s implementation returns YES if the
receiver has a title bar or a resize bar (size border in Windows), NO otherwise.

See also: – isKeyWindow, – makeKeyWindow

canBecomeMainWindow
– (BOOL)canBecomeMainWindow

Returns YES if the receiver is able to be the main window, NO if it can’t. Attempts to make the receiver the
main window are abandoned if this method returns NO. NSWindow’s implementation returns YES if the
receiver is visible, is not an NSPanel, and has a title bar or a resize mechanism. Otherwise it returns NO.

See also: – isMainWindow, – makeMainWindow

canStoreColor
– (BOOL)canStoreColor

Returns YES if the receiver has a depth limit that allows it to store color values, NO if it doesn’t.

See also: – depthLimit , – shouldDrawColor (NSView)

cascadeTopLeftFromPoint:
– (NSPoint)cascadeTopLeftFromPoint:(NSPoint)topLeftPoint

Returns a point shifted from topLeftPoint that can be used to place the receiver in a cascade relative to
another NSWindow positioned at topLeftPoint, so that the title bars of both NSWindows are fully visible.
Both points are expressed in screen coordinates.

See also: – setFrameTopLeftPoint:

21

 Classes: NSWindow

center
– (void)center

Sets the receiver’s location to the center of the screen: The receiver is placed exactly in the center
horizontally and somewhat above center vertically. Such a placement carries a certain visual immediacy and
importance. This method doesn’t put the receiver on screen, however; use makeKeyAndOrderFront: to
do that.

You typically use this method to place a NSWindow—most likely an attention panel—where the user can’t
miss it. This method is invoked automatically when an NSPanel is placed on the screen by NSApplication’s
runModalForWindow: method.

close
– (void)close

Removes the receiver from the screen. If the receiver is set to be released when it’s closed, a release
message is sent to the object after the current event is completed. For an NSWindow object, the default is
to be released on closing, while for an NSPanel object, the default is not to be released. You can use the
setReleasedWhenClosed: method to change the default behavior.

A window doesn’t have to be visible to receive the close message. For example, when the application
terminates, it sends the close message to all windows in its window list, even those that are not currently
visible.

The close method posts an NSWindowWillCloseNotification to the default notification center.

The close method differs in two important ways from the performClose: method:

• It does not attempt to send a windowShouldClose: message to the receiver or its delegate.

• It does not simulate the user clicking the close button by momentarily highlighting the button.

Use performClose: if you need these features.

See also: – orderOut:

constrainFrameRect:toScreen:
– (NSRect)constrainFrameRect:(NSRect)frameRect toScreen:(NSScreen *)aScreen

Modifies and returns frameRect so that its top edge lies on aScreen. If the receiver is resizable, the
rectangle’s height is adjusted to bring the bottom edge onto the screen as well. The rectangle’s width and
horizontal location are unaffected. You shouldn’t need to invoke this method yourself; it’s invoked
automatically (and the modified frame is used to locate and set the size of the receiver) whenever a titled
NSWindow is placed on screen and whenever its size is changed.

22

Subclasses can override this method to prevent their instances from being constrained or to constrain them
differently.

contentView
– (id)contentView

Returns the receivers’s content view, the highest accessible NSView object in the receiver’s view hierarchy.

See also: – setContentView:

convertBaseToScreen:
– (NSPoint)convertBaseToScreen:(NSPoint)aPoint

Converts aPoint from the receiver’s base coordinate system to the screen coordinate system. Returns the
converted point.

See also: – convertScreenToBase:, – convertPoint:toView: (NSView)

convertScreenToBase:
– (NSPoint)convertScreenToBase:(NSPoint)aPoint

Converts aPoint from the screen coordinate system to the receiver’s base coordinate system. Returns the
converted point.

See also: – convertBaseToScreen:, – convertPoint:fromView: (NSView)

currentEvent
– (NSEvent *)currentEvent

Returns the event currently being processed by the application, by invoking NSApplication’s currentEvent
method.

23

 Classes: NSWindow

dataWithEPSInsideRect:
– (NSData *)dataWithEPSInsideRect:(NSRect)aRect

Returns EPS data that draws the region of the receiver within aRect (which is expressed in the receiver’s
base coordinate system). This data can be placed on a pasteboard, written to a file, or used to create an
NSImage object.

See also: – dataWithEPSInsideRect: (NSView), – writeEPSInsideRect:toPasteboard: (NSView)

deepestScreen
– (NSScreen *)deepestScreen

Returns the deepest screen that the receiver is on (it may be split over several screens), or nil if the receiver
is off screen.

See also: – screen

defaultButtonCell
– (NSButtonCell *)defaultButtonCell

Returns the button cell that performs as if clicked when the NSWindow receives a Return (or Enter) key
event. This cell draws itself as the focal element for keyboard interface control, unless another button cell
is focused on, in which case the default button cell temporarily draws itself as normal and disables its key
equivalent.

The window receives a Return key event if no responder in its responder chain claims it, or if the user
presses the Control key along with the Return key.

See also: – setDefaultButtonCell:, – disableKeyEquivalentForDefaultButtonCell,
– enableKeyEquivalentForDefaultButtonCell

delegate
– (id)delegate

Returns the receiver’s delegate, or returns nil if it doesn’t have one.

See also: – setDelegate:

24

deminiaturize:
– (void)deminiaturize:(id)sender

Deminiaturizes the receiver. You rarely need to invoke this method; it’s invoked automatically when an
NSWindow is deminiaturized by the user.

See also: – miniaturize: , – styleMask

depthLimit
– (NSWindowDepth)depthLimit

Returns the depth limit of the receiver. The value returned can be examined with the Application Kit
functions NSPlanarFromDepth, NSColorSpaceFromDepth, NSBitsPerSampleFromDepth,
NSBitsPerPixelFromDepth.

See also: + defaultDepthLimit , – setDepthLimit: , – setDynamicDepthLimit:

25

 Classes: NSWindow

deviceDescription
– (NSDictionary *)deviceDescription

Returns a dictionary containing information about the receiver’s resolution, color depth, and so on. This
information is useful for tuning images and colors to the window’s display capabilities. The contents of the
dictionary are:

See also: – deviceDescription (NSScreen), – bestRepresentationForDevice: (NSImage),
– colorUsingColorSpaceName: (NSColor)

disableCursorRects
– (void)disableCursorRects

Disables all cursor rectangle management within the receiver. Use this method when you need to do some
special cursor manipulation and you don’t want the Application Kit interfering.

See also: – enableCursorRects

disableFlushWindow
– (void)disableFlushWindow

Disables the flushWindow method for the receiver. If the receiver is buffered, disabling flushWindow
prevents drawing from being automatically flushed by NSView’s display... methods from the receiver’s
backing store to the screen. This permits several NSViews to be drawn before the results are shown to
the user.

Dictionary Key Value

NSDeviceResolution
An NSValue containing a value of type NSSize that describe
the receiver’s raster resolution in dots per inch (dpi).

NSDeviceColorSpaceName
An NSString giving the name of the receiver’s color space.
See the Application Kit Types and Constants for a list of
possible values.

NSDeviceBitsPerSample
An NSNumber containing an integer that gives the bit depth
of the receiver’s raster image (2-bit, 8-bit, and so forth).

NSDeviceIsScreen YES, indicating that the receiver displays on the screen.

NSDeviceSize
An NSValue containing a value of type NSSize that gives the
size of the receiver’s frame rectangle.

26

Flushing should be disabled only temporarily, while the NSWindow’s display is being updated. Each
disableFlushWindow message must be paired with a subsequent enableFlushWindow message.
Invocations of these methods can be nested; flushing isn’t reenabled until the last (unnested)
enableFlushWindow message is sent.

disableKeyEquivalentForDefaultButtonCell
– (void)disableKeyEquivalentForDefaultButtonCell

Disables the default button cell’s key equivalent, so that it doesn’t perform a click when the user presses
Return (or Enter). See the method description for defaultButtonCell for more information.

See also: – enableKeyEquivalentForDefaultButtonCell

discardCachedImage
– (void)discardCachedImage

Discards all of the receiver’s cached image rectangles. An NSWindow automatically discards its cached
image rectangles when it displays.

See also: – cacheImageInRect:, – restoreCachedImage, – display

discardCursorRects
– (void)discardCursorRects

Invalidates all cursor rectangles in the receiver. This method is invoked by resetCursorRects to clear out
existing cursor rectangles before resetting them. You shouldn’t invoke it in the code you write, but might
want to override it to change its behavior.

discardEventsMatchingMask:beforeEvent:
– (void)discardEventsMatchingMask:(unsigned int)mask beforeEvent:(NSEvent *)lastEvent

Forwards the message to the NSApplication object, which handles it as described in the NSApplication
class specification.

27

 Classes: NSWindow

display
– (void)display

Passes a display message down the receiver’s view hierarchy, thus redrawing all NSViews within the
receiver, including the frame view which draws the border, title bar, and other peripheral elements.

You rarely need to invoke this method. NSWindows normally record which of their NSViews need display
and display them automatically on each pass through the event loop.

See also: – display (NSView), – displayIfNeeded, – isAutodisplay

displayIfNeeded
– (void)displayIfNeeded

Passes a displayIfNeeded message down the receiver’s view hierarchy, thus redrawing all NSViews that
need to be displayed, including the frame view which draws the border, title bar, and other peripheral
elements. This method is useful when you want to modify some number of NSViews and then display only
the ones that were modified.

You rarely need to invoke this method. NSWindows normally record which of their NSViews need display
and display them automatically on each pass through the event loop.

See also: – display, – displayIfNeeded (NSView), – setNeedsDisplay: (NSView), – isAutodisplay

dragImage:at:offset:event:pasteboard:source:slideBack:
– (void)dragImage:(NSImage *)anImage

at:(NSPoint)aPoint
offset:(NSSize)initialOffset
event:(NSEvent *)theEvent
pasteboard:(NSPasteboard *)pboard
source:(id)sourceObject
slideBack:(BOOL)flag

Begins a dragging session. This method should be invoked only from within a view’s implementation of the
mouseDown: method (which overrides the version defined in NSResponder). Essentially the same as
NSView’s method of the same name, except that aPoint is given in the NSWindow’s base coordinate
system. See the description of this method in the NSView class specification for more information.

enableCursorRects
– (void)enableCursorRects

Reenables cursor rectangle management within the receiver after a disableCursorRects message.

28

enableFlushWindow
– (void)enableFlushWindow

Reenables the flushWindow method for the receiver after it was disabled through a previous
disableFlushWindow message.

enableKeyEquivalentForDefaultButtonCell
– (void)enableKeyEquivalentForDefaultButtonCell

Reenables the default button cell’s key equivalent, so that it performs a click when the user presses Return
(or Enter). See the method description for defaultButtonCell for more information.

See also: – disableKeyEquivalentForDefaultButtonCell

endEditingFor:
– (void)endEditingFor: (id)anObject

Forces the field editor, which anObject is assumed to be using, to give up its first responder status, and
prepares it for its next assignment. If the field editor is the first responder, it’s made to resign that status even
if its resignFirstResponder method returns NO. This forces the field editor to send a textDidEndEditing:
message to its delegate. The field editor is then removed from the view hierarchy, its delegate is set to nil ,
and it’s emptied of any text it may contain.

This method is typically invoked by the object using the field editor when it’s finished. Other objects
normally change the first responder by simply using makeFirstResponder:, which allows a field editor or
other object to retain its first responder status if, for example, the user has entered an invalid value. The
endEditingFor: method should be used only as a last resort if the field editor refuses to resign first
responder status. Even in this case, you should always allow the field editor a chance to validate its text and
take whatever other action it needs first. You can do this by first trying to make the NSWindow the first
responder:

if ([myWindow makeFirstResponder:myWindow]) {

/* All fields are now valid; it’s safe to use fieldEditor:forObject:

to claim the field editor. */

}

else {

/* Force first responder to resign. */

[myWindow endEditingFor:nil];

}

See also: – fieldEditor:forObject: , – windowWillReturnFieldEditor:toObject:

29

 Classes: NSWindow

fax:
– (void)fax:(id)sender

Runs the Fax panel, and if the user chooses an option other than canceling, prints the receiver (its frame
view and all subviews) to a fax modem.

See also: – print:

fieldEditor:forObject:
– (NSText *)fieldEditor: (BOOL)createFlag forObject: (id)anObject

Returns the receiver’s field editor, creating it if needed and if createFlag is YES. Returns nil if createFlag
is NO and the field editor doesn’t exist. anObject is used to allow the receiver’s delegate to substitute
another object in place of the field editor, as described below. The field editor may be in use by some view
object, so be sure to properly dissociate it from that object before actually using it yourself (the appropriate
way to do this is illustrated in the description of endEditingFor:). Once you retrieve the field editor, you
can insert it in the view hierarchy, set a delegate to interpret text events, and have it perform whatever editing
is needed. Then, when it sends a textDidEndEditing: message to the delegate, you can get its text to
display or store, and remove the field editor using endEditingFor: .

The field editor is provided as a convenience and can be used however your application sees fit. Typically,
the field editor is used by simple text-bearing objects—for example, an NSTextField object uses its
window’s field editor to display and manipulate text. The field editor can be shared by any number of objects
and so its state may be constantly changing. Therefore, it shouldn’t be used to display text that demands
sophisticated layout (for this you should create a dedicated NSText object).

A freshly created NSWindow doesn’t have a field editor. After a field editor has been created for an
NSWindow, the createFlag argument is ignored. By passing NO for createFlag and testing the return value,
however, you can predicate an action on the existence of the field editor.

The receiver’s delegate can substitute a custom editor in place of the NSWindow’s field editor by
implementing windowWillReturnFieldEditor:toObject: . The receiver sends this message to its delegate
with itself and anObject as the arguments, and if the return value is not nil the NSWindow returns that object
instead of its field editor. However, note the following:

• If the NSWindow’s delegate is identical to anObject, windowWillReturnFieldEditor:toObject:
isn’t sent.

• The object returned by the delegate method, though it may become first responder, does not become the
NSWindow’s field editor. Other objects continue to use the NSWindow’s established field editor.

30

firstResponder
– (NSResponder *)firstResponder

Returns the receiver’s first responder.

See also: – makeFirstResponder:, – acceptsFirstResponder (NSResponder)

flushWindow
– (void)flushWindow

Flushes the receiver’s off-screen buffer to the screen if the receiver is buffered and flushing is enabled. Does
nothing for other display devices, such as a printer. This method is automatically invoked by NSWindow’s
and NSView’s display and displayIfNeeded methods.

See also: – flushWindowIfNeeded, – disableFlushWindow, – enableFlushWindow

flushWindowIfNeeded
– (void)flushWindowIfNeeded

Flushes the receiver’s off-screen buffer to the screen if flushing is enabled and if the last flushWindow
message had no effect because flushing was disabled. To avoid unnecessary flushing, use this method rather
than flushWindow to flush an NSWindow after flushing has been reenabled.

See also: – flushWindow, – disableFlushWindow, – enableFlushWindow

frame
– (NSRect)frame

Returns the receiver’s frame rectangle. The frame rectangle is always reckoned in the screen coordinate
system.

See also: – screen, – deepestScreen

frameAutosaveName
– (NSString *)frameAutosaveName

Returns the name used to automatically save the receiver’s frame rectangle data in the defaults system, as
set through setFrameAutosaveName:. If the receiver has an autosave name, its frame data is written
whenever the frame rectangle changes.

See also: – setFrameUsingName:

31

 Classes: NSWindow

gState
– (int)gState

Returns the PostScript graphics state object associated with the receiver. This graphics state is used by
default for all NSViews in the receiver’s view hierarchy, but individual NSViews can be made to use their
own with the NSView method allocateGState.

hasDynamicDepthLimit
– (BOOL)hasDynamicDepthLimit

Returns YES if the receiver’s depth limit can change to match the depth of the screen it’s on, NO if it can’t.

See also: – setDynamicDepthLimit:

hidesOnDeactivate
– (BOOL)hidesOnDeactivate

Returns YES if the receiver is removed from the screen when its application is deactivated, NO if it remains
on screen.

See also: – setHidesOnDeactivate:

initialFirstResponder
– (NSView *)initialFirstResponder

Returns the NSView that’s made first responder the first time the receiver is placed on screen.

See also: – setInitialFirstResponder:, – setNextKeyView: (NSView)

initWithContentRect:styleMask:backing:defer:
– (id)initWithContentRect: (NSRect)contentRect

styleMask:(unsigned int)styleMask
backing:(NSBackingStoreType)backingType
defer:(BOOL)flag

Initializes the receiver, a newly allocated NSWindow object, and returns self. This method is the designated
initializer for the NSWindow class.

contentRect specifies the location and size of the NSWindow’s content area in screen coordinates. Note that
the Window Server limits window position coordinates to ±16,000 and sizes to 10,000.

32

styleMask specifies the receiver’s style. It can either be NSBorderlessWindowMask, or it can contain any
of the following options, combined using the C bitwise OR operator:

Borderless windows display none of the usual peripheral elements and are generally useful only for display
or caching purposes; you should normally not need to create them. Also, note that an NSWindow’s style
mask should include NSTitledWindowMask if it includes any of the others.

backingType specifies how the drawing done in the receiver is buffered by the object’s window device:

NSBackingStoreBuffered
NSBackingStoreRetained
NSBackingStoreNonretained

flag determines whether the Window Server creates a window device for the new object immediately. If flag
is YES, it defers creating the window until the receiver is moved on screen. All display messages sent to the
NSWindow or its NSViews are postponed until the window is created, just before it’s moved on screen.
Deferring the creation of the window improves launch time and minimizes the virtual memory load on the
Window Server.

The new NSWindow creates an instance of NSView to be its default content view. You can replace it with
your own object by using the setContentView: method.

See also: – orderFront: , – setTitle:, – setOneShot:, – initWithContentRect:styleMask:backing:defer:
screen:

Option Meaning

NSTitledWindowMask The NSWindow displays a title bar.

NSClosableWindowMask The NSWindow displays a close button.

NSMiniaturizableWindowMask The NSWindow displays a miniaturize button.

NSResizableWindowMask The NSWindow displays a resize bar or border.

33

 Classes: NSWindow

initWithContentRect:styleMask:backing:defer:screen:
– (id)initWithContentRect: (NSRect)contentRect

styleMask:(unsigned int)styleMask
backing:(NSBackingStoreType)bufferingType
defer:(BOOL)flag
screen:(NSScreen *)aScreen

Initializes a newly allocated NSWindow object and returns self. This method is equivalent to
initWithContentRect:styleMask:backing:defer: , except that the content rectangle is specified relative to
the lower-left corner of aScreen.

If aScreen is nil , the content rectangle is interpreted relative to the lower-left corner of the main screen. The
main screen is the one that contains the current key window, or, if there is no key window, the one that
contains the main menu. If there’s neither a key window nor a main menu (if there’s no active application),
the main screen is the one where the origin of the screen coordinate system is located.

See also: – orderFront: , – setTitle:, – setOneShot:

interfaceStyle
– (NSInterfaceStyle)interfaceStyle

Returns the receiver’s interface style, such as NSMacintoshInterfaceStyle or NSWindows95InterfaceStyle.
A responder’s style (if other than NSNoInterfaceStyle) overrides all other settings, such as those established
by the defaults system.

See also: – setInterfaceStyle:

invalidateCursorRectsForView:
– (void)invalidateCursorRectsForView:(NSView *)aView

Marks as invalid the cursor rectangles of aView, an NSView in the receiver’s view hierarchy, so that they’ll
be set up again when the receiver becomes key (or immediately if the receiver is key).

See also: – resetCursorRects, – resetCursorRects (NSView)

isAutodisplay
– (BOOL)isAutodisplay

Returns YES if the receiver automatically displays its views that are marked as needing it, NO if it doesn’t.
Automatic display typically occurs on each pass through the event loop.

See also: – setAutodisplay:, – displayIfNeeded, – setNeedsDisplay: (NSView)

34

isDocumentEdited
– (BOOL)isDocumentEdited

Returns YES or NO according to the argument supplied with the last setDocumentEdited: message.

isExcludedFromWindowsMenu
– (BOOL)isExcludedFromWindowsMenu

Returns YES if the receiver’s title is omitted from the application’s Windows menu, NO if it is listed.

See also: – setExcludedFromWindowsMenu:

isFlushWindowDisabled
– (BOOL)isFlushWindowDisabled

Returns YES if the receiver’s flushing ability has been disabled; otherwise returns NO.

See also: – disableFlushWindow, – enableFlushWindow

isKeyWindow
– (BOOL)isKeyWindow

Returns YES if the receiver is the key window for the application, NO if it isn’t.

See also: – isMainWindow, – makeKeyWindow

isMainWindow
– (BOOL)isMainWindow

Returns YES if the receiver is the main window for the application, NO if it isn’t.

See also: – isKeyWindow, – makeMainWindow

35

 Classes: NSWindow

isMiniaturized
– (BOOL)isMiniaturized

Returns YES if the receiver has been miniaturized, NO if it hasn’t. A miniaturized window is removed from
the screen and replaced by a miniwindow, icon, or button that represents it, called the counterpart (the
particular form depends on the platform).

See also: – miniaturize:

isOneShot
– (BOOL)isOneShot

Returns YES if the PostScript window device that the receiver manages is freed when it’s removed from the
screen list, NO if not. The default is NO.

See also: – setOneShot:

isReleasedWhenClosed
– (BOOL)isReleasedWhenClosed

Returns YES if the receiver is automatically released after being closed, NO if it’s simply removed from the
screen. The default for NSWindow is YES; the default for NSPanel is NO.

See also: – setReleasedWhenClosed:

isVisible
– (BOOL)isVisible

Returns YES if the receiver is on screen (even if it’s obscured by other windows).

See also: – visibleRect (NSView)

keyDown:
– (void)keyDown:(NSEvent *)theEvent

Handles a keyboard event that may need to be interpreted as changing the key view or triggering a
mnemonic.

See also: – selectNextKeyView:, – nextKeyView (NSView), – performMnemonic: (NSView)

36

keyViewSelectionDirection
– (NSSelectionDirection)keyViewSelectionDirection

Returns the direction that the receiver is currently using to change the key view, one of:

See also: – selectNextKeyView:, – selectPreviousKeyView:

level
– (int)level

Returns the level of the receiver as set using setLevel:. See that method description for a list of possible
values.

makeFirstResponder:
– (BOOL)makeFirstResponder:(NSResponder *)aResponder

Attempts to make aResponder the first responder for the receiver. If aResponder isn’t already the first
responder, this method first sends a resignFirstResponder message to the object that is. If that object
refuses to resign, it remains the first responder and this method immediately returns NO. If it returns YES,
this methods sends a becomeFirstResponder message to aResponder. If aResponder accepts first
responder status, this method returns YES. If it refuses, this method returns NO, and the NSWindow
becomes first responder.

The Application Kit uses this method to alter the first responder in response to mouse-down events; you can
also use it to explicitly set the first responder from within your program. aResponder is typically an NSView
in the receiver’s view hierarchy.

See also: – becomeFirstResponder (NSResponder), – resignFirstResponder (NSResponder)

Value Meaning

NSDirectSelection The receiver isn’t traversing the key view loop.

NSSelectingNext The receiver is proceeding to the next valid key view.

NSSelectingPrevious The receiver is proceeding to the previous valid key view.

37

 Classes: NSWindow

makeKeyAndOrderFront:
– (void)makeKeyAndOrderFront: (id)sender

Moves the receiver to the front of the screen list, within its level, and makes it the key window.

See also: – orderFront: , – orderBack:, – orderOut: , – orderWindow:relativeTo: , – setLevel:

makeKeyWindow
– (void)makeKeyWindow

Makes the receiver the key window.

See also: – makeMainWindow, – becomeKeyWindow, – isKeyWindow

makeMainWindow
– (void)makeMainWindow

Makes the receiver the main window.

See also: – makeKeyWindow, – becomeMainWindow, – isMainWindow

maxSize
– (NSSize)maxSize

Returns the maximum size to which the receiver’s frame can be sized either by the user or by the
setFrame... methods other than setFrame:display:.

See also: – setMaxSize:, – minSize, – aspectRatio, – resizeIncrements

miniaturize:
– (void)miniaturize: (id)sender

Removes the receiver from the screen list and displays its counterpart in the appropriate location.

See also: – deminiaturize:

38

miniwindowImage
– (NSImage *)miniwindowImage

Returns the image that’s displayed in the receiver’s miniwindow.

See also: – setMiniwindowImage:, – miniwindowTitle

miniwindowTitle
– (NSString *)miniwindowTitle

Returns the title that’s displayed in the receiver’s miniwindow.

See also: – setMiniwindowTitle: , – miniwindowImage

minSize
– (NSSize)minSize

Returns the minimum size to which the receiver’s frame can be sized either by the user or by the setFrame...
methods other than setFrame:display:.

See also: – setMinSize:, – maxSize, – aspectRatio, – resizeIncrements

mouseLocationOutsideOfEventStream
– (NSPoint)mouseLocationOutsideOfEventStream

Returns the current location of the mouse reckoned in the receiver’s base coordinate system, regardless of
the current event being handled or of any events pending.

See also: – currentEvent (NSApplication)

nextEventMatchingMask:
– (NSEvent *)nextEventMatchingMask:(unsigned int)mask

Invokes NSApplication’s nextEventMatchingMask:untilDate:inMode:dequeue: method, using mask as
the first argument, with an unlimited expiration, a mode of NSEventTrackingRunLoopMode, and a dequeue
flag of YES. See the method description in the NSApplication class specification for more information.

39

 Classes: NSWindow

nextEventMatchingMask:untilDate:inMode:dequeue:
– (NSEvent *)nextEventMatchingMask:(unsigned int)mask

untilDate: (NSDate *)expirationDate
inMode:(NSString *)mode
dequeue:(BOOL)flag

Forwards the message to the global NSApplication object, NSApp. See the method description in the
NSApplication class specification for more information.

orderBack:
– (void)orderBack:(id)sender

Moves the receiver to the back of its level in the screen list, without changing either the key window or the
main window.

See also: – orderFront: , – orderOut: , – orderWindow:relativeTo: , – makeKeyAndOrderFront: ,
– level

orderFront:
– (void)orderFront: (id)sender

Moves the receiver to the front of its level in the screen list, without changing either the key window or the
main window.

See also: – orderBack:, – orderOut: , – orderWindow:relativeTo: , – makeKeyAndOrderFront: , – level

orderFrontRegardless
– (void)orderFrontRegardless

Moves the receiver to the front of its level, even if its application isn’t active, but without changing either
the key window or the main window. Normally an NSWindow can’t be moved in front of the key window
unless the NSWindow and the key window are in the same application. You should rarely need to invoke
this method; it’s designed to be used when applications are cooperating in such a way that an active
application (with the key window) is using another application to display data.

See also: – orderFront: , – level

40

orderOut:
– (void)orderOut: (id)sender

Takes the receiver out of the screen list. If the receiver is the key or main window, the NSWindow
immediately behind it is made key or main in its place. Calling the orderOut: method causes the receiver
to be removed from the screen, but does not cause it to be released. See the close method for information
on when a window is released.

See also: – orderFront: , – orderBack:, – orderWindow:relativeTo: , – setReleasedWhenClosed:

orderWindow:relativeTo:
– (void)orderWindow: (NSWindowOrderingMode)place relativeTo:(int)otherWindowNumber

Repositions the receiver’s window device in the Window Server’s screen list. If place is NSWindowOut, the
receiver is removed from the screen list and otherWindowNumber is ignored. If it’s NSWindowAbove the
receiver is ordered immediately in front of the window whose window number is otherWindowNumber.
Similarly, if place is NSWindowBelow, the receiver is placed immediately behind the window represented
by otherWindowNumber. If otherWindowNumber is 0, the receiver is placed in front of or behind all other
windows in its level.

See also: – orderFront: , – orderBack:, – orderOut: , – makeKeyAndOrderFront: , – level,
– windowNumber

performClose:
– (void)performClose:(id)sender

Simulates the user clicking the close button by momentarily highlighting the button and then closing the
window. If the receiver’s delegate or the receiver itself implements windowShouldClose:, then that
message is sent with the receiver as the argument. (Only one such message is sent; if both the delegate and
the NSWindow implement the method, only the delegate receives the message.) If the
windowShouldClose: method returns NO, the window isn’t closed. If it returns YES, or if it isn’t
implemented, performClose: invokes the close method to close the window.

If the receiver doesn’t have a close button or can’t be closed (for example, if the delegate replies NO to a
windowShouldClose: message), then this method calls the NSBeep function.

See also: – styleMask, – performClick: (NSButton), – performMiniaturize:

41

 Classes: NSWindow

performMiniaturize:
– (void)performMiniaturize: (id)sender

Simulates the user clicking the miniaturize button by momentarily highlighting the button then
miniaturizing the window. If the receiver doesn’t have a miniaturize button or can’t be miniaturized for
some reason, this method calls the NSBeep function.

See also: – close, – styleMask, – performClick: (NSButton), – performClose:

performZoom:
– (void)performZoom: (id)sender

Simulates the user clicking the zoom box by momentarily highlighting the button and then zooming the
window. If the receiver doesn’t have a zoom box or can’t be zoomed for some reason, this method calls the
NSBeep function.

See also: – styleMask, – performClick: (NSButton), – zoom:

postEvent:atStart:
– (void)postEvent:(NSEvent *)anEvent atStart: (BOOL)flag

Forwards the message to the global NSApplication object, NSApp.

print:
– (void)print: (id)sender

Runs the Print panel, and if the user chooses an option other than canceling, prints the receiver (its frame
view and all subviews).

See also: – fax:

registerForDraggedTypes:
– (void)registerForDraggedTypes:(NSArray *)pboardTypes

Registers pboardTypes as the pasteboard types that the receiver will accept as the destination of an
image-dragging session.

Note: Registering an NSWindow for dragged types automatically makes it a candidate destination object
for a dragging session. As such, it must properly implement some or all of the
NSDraggingDestination protocol methods. As a convenience, NSWindow provides default

42

implementations of these methods. See the NSDraggingDestination protocol specification for
details.

See also: – unregisterDraggedTypes

representedFilename
– (NSString *)representedFilename

Returns the name of the file that the receiver represents.

See also: – setRepresentedFilename:

resetCursorRects
– (void)resetCursorRects

Invokes discardCursorRects to clear the receiver’s cursor rectangles, then sends resetCursorRects to
every NSView in the receiver’s view hierarchy.

This method is typically invoked by the NSApplication object when it detects that the key window’s cursor
rectangles are invalid. In program code, it’s more efficient to invoke invalidateCursorRectsForView:.

resignKeyWindow
– (void)resignKeyWindow

Never invoke this method; it’s invoked automatically when the NSWindow resigns key window status. This
method sends resignKeyWindow to the receiver’s first responder, sends windowDidResignKey: to the
receiver’s delegate, and posts an NSWindowDidResignKeyNotification to the default notification center.

See also: – becomeKeyWindow, – resignMainWindow

resignMainWindow
– (void)resignMainWindow

Never invoke this method; it’s invoked automatically when the NSWindow resigns main window status.
This method sends windowDidResignMain: to the receiver’s delegate and posts an
NSWindowDidResignMainNotification to the default notification center.

See also: – becomeMainWindow, – resignKeyWindow

43

 Classes: NSWindow

resizeFlags
– (int)resizeFlags

Valid only while the receiver is being resized, this method returns the flags field of the event record for the
mouse-down event that initiated the resizing session. The integer encodes, as a mask, which of the modifier
keys was held down when the event occurred. The flags are listed in the NSEvent class’s modifierFlags
method description. You can use this method to constrain the direction or amount of resizing. Because of
its limited validity, this method should only be invoked from within an implementation of the delegate
method windowWillResize:toSize:.

resizeIncrements
– (NSSize)resizeIncrements

Returns the receiver’s resizing increments, which restrict the user’s ability to resize it so that its width and
height alter by integral multiples of increments.width and increments.height when the user resizes it. These
amounts are whole number values, 1.0 or greater. You can set an NSWindow’s size to any value
programmatically.

See also: – setResizeIncrements:, – setAspectRatio:, – setFrame:display:

restoreCachedImage
– (void)restoreCachedImage

Splices the receiver’s cached image rectangles, if any, back into its raster image (and buffer if it has one),
undoing the effect of any drawing performed within those areas since they were established using
cacheImageInRect:. You must invoke flushWindowIfNeeded after this method to guarantee proper
redisplay. An NSWindow automatically discards its cached image rectangles when it displays.

See also: – discardCachedImage, – display

saveFrameUsingName:
– (void)saveFrameUsingName:(NSString *)name

Saves the receiver’s frame rectangle in the user defaults system. With the companion method
setFrameUsingName:, you can save and reset an NSWindow’s frame over various launchings of an
application. The default is owned by the application and stored under the name “NSWindow Frame name”.
See the NSUserDefaults class specification for more information.

See also: – stringWithSavedFrame

44

screen
– (NSScreen *)screen

Returns the screen that the receiver is on. If the receiver is partly on one screen and partly on another, the
screen where most of it lies is the one returned.

See also: – deepestScreen

selectKeyViewFollowingView:
– (void)selectKeyViewFollowingView:(NSView *)aView

Sends the NSView message nextValidKeyView: to aView, and if that message returns an NSView, invokes
makeFirstResponder: with the returned NSView.

See also: – selectKeyViewPrecedingView:

selectKeyViewPrecedingView:
– (void)selectKeyViewPrecedingView:(NSView *)aView

Sends the NSView message previousValidKeyView: to aView, and if that message returns an NSView,
invokes makeFirstResponder: with the returned NSView.

See also: – selectKeyViewFollowingView:

selectNextKeyView:
– (void)selectNextKeyView:(id)sender

Searches for a candidate key view and, if it finds one, invokes makeFirstResponder: to establish it as the
first responder. The candidate is one of the following (searched for in this order):

• The current first responder’s next valid key view, as returned by NSView’s nextValidKeyView: method.

• The object designated as the receiver’s initial first responder (using setInitialFirstResponder:) if it
returns YES to an acceptsFirstResponder message.

• Otherwise, the initial first responder’s next valid key view, which may end up being nil .

See also: – selectPreviousKeyView:, – selectKeyViewFollowingView:

45

 Classes: NSWindow

selectPreviousKeyView:
– (void)selectPreviousKeyView:(id)sender

Searches for a candidate key view and, if it finds one, invokes makeFirstResponder: to establish it as the
first responder. The candidate is one of the following (searched for in this order):

• The current first responder’s previous valid key view, as returned by NSView’s previousValidKeyView:
method.

• The object designated as the receiver’s initial first responder (using setInitialFirstResponder:) if it
returns YES to an acceptsFirstResponder message.

• Otherwise, the initial first responder’s previous valid key view, which may end up being nil .

See also: – selectNextKeyView:, – selectKeyViewPrecedingView:

sendEvent:
– (void)sendEvent:(NSEvent *)theEvent

Dispatches mouse and keyboard events sent to the receiver by the NSApplication object. Never invoke this
method directly.

setAcceptsMouseMovedEvents:
– (void)setAcceptsMouseMovedEvents:(BOOL)flag

Sets whether the receiver accepts mouse-moved events and distributes them to its responders. If flag is YES
it does accept them; if flag is NO it doesn’t. NSWindows by default don’t accept mouse-moved events.

See also: – acceptsMouseMovedEvents

setAspectRatio:
– (void)setAspectRatio:(NSSize)ratio

Sets the receiver’s size aspect ratio to ratio, constraining the size of its frame rectangle to integral multiples
of this size when the user resizes it.

An NSWindow’s aspect ratio and its resize increments are mutually exclusive attributes. In fact, setting one
attribute cancels the setting of the other. For example, to cancel an established aspect ratio setting for an
NSWindow, you send the NSWindow object a setResizeIncrements: message with the width and height
set to 1.0:

[myWindow setResizeIncrements:NSMakeSize(1.0,1.0)];

See also: – aspectRatio, – setFrame:display:

46

setAutodisplay:
– (void)setAutodisplay:(BOOL)flag

Sets whether the receiver automatically displays its views that are marked as needing it. If flag is YES, views
are automatically displayed as needed, typically on each pass through the event loop. If flag is NO, the
receiver or its views must be explicitly displayed.

See also: – isAutodisplay, – displayIfNeeded, – displayIfNeeded (NSView)

setBackgroundColor:
– (void)setBackgroundColor:(NSColor *)aColor

Sets the color of the receiver’s background to aColor.

See also: – backgroundColor

setBackingType:
– (void)setBackingType:(NSBackingStoreType)backingType

Sets the receiver’s backing store type to backingType, which may be one of the following constants:

NSBackingStoreBuffered
NSBackingStoreRetained

This method can only be used to switch a buffered NSWindow to retained or vice versa; you can’t change
the backing type to or from nonretained after initializing an NSWindow (a PostScript error is generated if
you attempt to do so).

See also: – backingType, – initWithContentRect:styleMask:backing:defer: , – initWithContentRect:
styleMask:backing:defer:screen:

setContentSize:
– (void)setContentSize:(NSSize)aSize

Sets the size of the receiver’s content view to aSize, which is expressed in the receiver’s base coordinate
system. This in turn alters the size of the NSWindow itself. Note that the Window Server limits window
sizes to 10,000; if necessary, be sure to limit aSize relative to the frame rectangle.

See also: – setFrame:display:, + contentRectForFrameRect:styleMask:,
+ frameRectForContentRect:styleMask:

47

 Classes: NSWindow

setContentView:
– (void)setContentView:(NSView *)aView

Makes aView the receiver’s content view; the previous content view is removed from the receiver’s view
hierarchy and released. aView is resized to fit precisely within the content area of the NSWindow. You can
modify the content view’s coordinate system through its bounds rectangle, but can’t alter its frame rectangle
(that is, its size or location) directly.

This method causes the old content view to be released; if you plan to reuse it, be sure to retain it before
sending this message and to release it as appropriate when adding it to another NSWindow or NSView.

See also: – contentView, – setContentSize:

setDefaultButtonCell:
– (void)setDefaultButtonCell:(NSButtonCell *)aButtonCell

Makes the key equivalent of aButtonCell’s the Return (or Enter) key, so that when the user presses Return
that button performs as if clicked. See the method description for defaultButtonCell for more information.

See also: – disableKeyEquivalentForDefaultButtonCell,
– enableKeyEquivalentForDefaultButtonCell

setDelegate:
– (void)setDelegate:(id)anObject

Makes anObject the receiver’s delegate, without retaining it. An NSWindow’s delegate is inserted in the
responder chain after the NSWindow itself and is informed of various actions by the NSWindow through
delegation messages.

See also: – delegate, – tryToPerform:with: , – sendAction:to:from: (NSApplication)

setDepthLimit:
– (void)setDepthLimit: (NSWindowDepth)limit

Sets the depth limit of the receiver to limit, which can be determined using the NSBestDepth function.
Passing a value of 0 for limit sets the depth limit to the receiver’s default depth limit; using a value of 0 can
be useful for reverting an NSWindow to its initial depth.

See also: – depthLimit , + defaultDepthLimit , – setDynamicDepthLimit:

48

setDocumentEdited:
– (void)setDocumentEdited:(BOOL)flag

Sets whether the receiver’s document has been edited and not saved. NSWindows are by default in “not
edited” status.

You should invoke this method with an argument of YES every time the NSWindow’s document changes
in such a way that it needs to be saved and with an argument of NO every time it gets saved. Then, before
closing the NSWindow you can use isDocumentEdited to determine whether to allow the user a chance to
save the document.

setDynamicDepthLimit:
– (void)setDynamicDepthLimit:(BOOL)flag

Sets whether the receiver changes its depth to match the depth of the screen that it’s on, or the depth of the
deepest screen when it spans multiple screens. If flag is YES, the depth limit depends on which screen the
receiver is on. If flag is NO, the receiver uses either its preset depth limit or the default depth limit. A
different, and nondynamic, depth limit can be set with the setDepthLimit: method.

See also: – hasDynamicDepthLimit, + defaultDepthLimit

setExcludedFromWindowsMenu:
– (void)setExcludedFromWindowsMenu:(BOOL)flag

Sets whether the receiver’s title is omitted from the application’s Windows menu. If flag is YES it’s omitted;
if flag is NO, it’s listed when it or its miniwindow is on screen. The default is NO.

See also: – isExcludedFromWindowsMenu

setFrame:display:
– (void)setFrame:(NSRect)frameRect display:(BOOL)flag

Sets the origin and size of the receiver’s frame rectangle according to frameRect, thereby setting its position
and size on screen, and invokes display if flag is YES. Note that the Window Server limits window position
coordinates to ±16,000 and sizes to 10,000.

See also: – frame, – setFrameFromString:, – setFrameOrigin:, – setFrameTopLeftPoint:,
– setFrameUsingName:

49

 Classes: NSWindow

setFrameAutosaveName:
– (BOOL)setFrameAutosaveName:(NSString *)name

Sets the name used to automatically save the receiver’s frame rectangle in the defaults system to name. If
name isn’t the empty string (@“”), the receiver’s frame is saved as a user default (as described in
saveFrameUsingName:) each time the frame changes. Returns YES if the name is set successfully, NO if
it’s being used as an autosave name by another NSWindow in the application (in which case the receiver’s
old name remains in effect).

See also: + removeFrameUsingName:, – stringWithSavedFrame, – setFrameFromString:

setFrameFromString:
– (void)setFrameFromString:(NSString *)aString

Sets the receiver’s frame rectangle from the string representation aString, a representation previously
creating using stringWithSavedFrame. The frame is constrained according to the receiver’s minimum and
maximum size settings. This method causes a windowWillResize:toSize: message to be sent to the
delegate.

setFrameOrigin:
– (void)setFrameOrigin:(NSPoint)aPoint

Positions the lower-left corner of the receiver’s frame rectangle at aPoint in screen coordinates. Note that
the Window Server limits window position coordinates to ±16,000.

See also: – setFrame:display:, – setFrameTopLeftPoint:

setFrameTopLeftPoint:
– (void)setFrameTopLeftPoint:(NSPoint)aPoint

Positions the top-left corner of the receiver’s frame rectangle at aPoint in screen coordinates. Note that the
Window Server limits window position coordinates to ±16,000; if necessary, adjust aPoint relative to the
window’s lower-left corner to account for this.

See also: – cascadeTopLeftFromPoint:, – setFrame:display:, – setFrameOrigin:

50

setFrameUsingName:
– (BOOL)setFrameUsingName:(NSString *)name

Sets the receiver’s frame rectangle by reading the rectangle data stored in name from the defaults system.
The frame is constrained according to the receiver’s minimum and maximum size settings. This method
causes a windowWillResize:toSize: message to be sent to the delegate. Returns YES if name is read and
the frame is set successfully; otherwise returns NO.

See also: – setFrameAutosaveName:, + removeFrameUsingName:, – stringWithSavedFrame,
– setFrameFromString:

setHidesOnDeactivate:
– (void)setHidesOnDeactivate:(BOOL)flag

Sets whether the receiver is removed from the screen when the application is inactive. If flag is YES, the
receiver is hidden (taken out of the screen list) when the application stops being the active application. If
flag is NO, the receiver stays on screen. The default for NSWindow is NO; the default for NSPanel is YES.

See also: – hidesOnDeactivate

setInitialFirstResponder:
– (void)setInitialFirstResponder:(NSView *)aView

Sets aView as the NSView that’s made first responder (also called the key view) the first time the receiver
is placed on screen.

See also: – initialFirstResponder

setInterfaceStyle:
– (void)setInterfaceStyle:(NSInterfaceStyle)interfaceStyle

Sets the receiver’s style to the style specified by interfaceStyle, such as NSMacintoshInterfaceStyle or
NSWindows95InterfaceStyle. You should almost never need to invoke or override this method, but if you
do override it, your version should always invoke super.

See also: – interfaceStyle

51

 Classes: NSWindow

setLevel:
– (void)setLevel:(int)newLevel

Sets the receiver’s window level to newLevel. Some useful predefined values are:

Each level in the list groups windows within it in front of those in all preceding groups. Floating windows,
for example, appear in front of all normal-level windows. When a window enters a new level, it’s ordered
in front of all of its peers in that level.

The constant NSTornOffMenuWindowLevel is preferable to its synonym, NSSubmenuWindowLevel

See also: – level, – orderWindow:relativeTo: , – orderFront: , – orderBack:

setMaxSize:
– (void)setMaxSize:(NSSize)aSize

Sets the maximum size to which the receiver’s frame can be sized to aSize. The maximum size constraint
is enforced for resizing by the user as well as for the setFrame... methods other than setFrame:display:.
Note that the Window Server limits window sizes to 10,000.

See also: – maxSize, – setMinSize:, – setAspectRatio:, – setResizeIncrements:

Level Comment

NSNormalWindowLevel The default level for NSWindow objects.

NSFloatingWindowLevel Useful for floating palettes.

NSDockWindowLevel Reserved for the application dock (Mach-based systems only).

NSSubmenuWindowLevel
Reserved for submenus (not used on Microsoft Windows). Synonymous with
NSTornOffMenuWindowLevel.

NSTornOffMenuWindowLevel The level for a torn-off menu. Synonymous with NSSubmenuWindowLevel.

NSMainMenuWindowLevel Reserved for the application’s main menu (not used on Microsoft Windows).

NSModalPanelWindowLevel The level for a modal panel.

NSPopUpMenuWindowLevel The level for a popup menu.

52

setMiniwindowImage:
– (void)setMiniwindowImage:(NSImage *)anImage

Sets the image displayed by the receiver’s miniwindow to anImage.

See also: – miniwindowImage, – isMiniaturized

setMiniwindowTitle:
– (void)setMiniwindowTitle: (NSString *)aString

Sets the title of the receiver’s miniaturized counterpart to aString and redisplays it. A miniwindow’s title
normally reflects that of its full-size counterpart, abbreviated to fit if necessary. Although this method allows
you to set the miniwindow’s title explicitly, changing the full-size NSWindow’s title (through setTitle: or
setTitleWithRepresentedFilename:) automatically changes the miniwindow’s title as well.

See also: – miniwindowTitle

setMinSize:
– (void)setMinSize:(NSSize)aSize

Returns the minimum size to which the receiver’s frame can be sized to aSize. The minimum size constraint
is enforced for resizing by the user as well as for the setFrame... methods other than setFrame:display:.

See also: – minSize, – setMaxSize:, – setAspectRatio:, – setResizeIncrements:

setOneShot:
– (void)setOneShot:(BOOL)flag

Sets whether the PostScript window device that the receiver manages should be freed when it’s removed
from the screen list (and another one created if it’s returned to the screen). Freeing the window device when
it’s removed from the screen list can result in memory savings and performance improvement for
NSWindows that don’t take long to display. It’s particularly appropriate for NSWindows that the user might
use once or twice but not display continually. The default is NO.

See also: – isOneShot

setReleasedWhenClosed:
– (void)setReleasedWhenClosed:(BOOL)flag

Sets whether the receiver is merely hidden (NO) or hidden and then released (YES) when it receives a close
message. The default for NSWindow is YES; the default for NSPanel is NO.

53

 Classes: NSWindow

Another strategy for releasing an NSWindow is to have its delegate autorelease it on receiving a
windowShouldClose: message.

See also: – close, – isReleasedWhenClosed

setRepresentedFilename:
– (void)setRepresentedFilename:(NSString *)path

Sets the name of the file that the receiver represents to path.

See also: – representedFilename, – setTitleWithRepresentedFilename:

setResizeIncrements:
– (void)setResizeIncrements:(NSSize)increments

Restricts the user’s ability to resize the window so that the width and height change by multiples of
increments.width and increments.height as the user resizes the window. The width and height increments
should be whole numbers, 1.0 or greater. Whatever the current resize increments, you can set an
NSWindow’s size to any height and width programmatically.

Resize increments and aspect ratio are mutually exclusive attributes. For more information, see
setAspectRatio:.

See also: – resizeIncrements, – setFrame:display:

setTitle:
– (void)setTitle:(NSString *)aString

Sets the string that appears in the receiver’s title bar (if it has one) to aString and displays the title. Also sets
the title of the receiver’s miniwindow.

See also: – title , – setTitleWithRepresentedFilename:, – setMiniwindowTitle:

setTitleWithRepresentedFilename:
– (void)setTitleWithRepresentedFilename:(NSString *)path

Sets path as the receiver’s title, formatting it as a file system path, and records path as the receiver’s
associated filename using setRepresentedFilename:. The title format varies with the platform. On
Mach-based systems, the filename is displayed first, followed by an em dash and the path for the directory
containing the file. The em dash is offset by two spaces on either side. For example:

54

MyFile — /Net/server/group/home

This method also sets the title of the receiver’s miniwindow.

See also: – title , – setTitle:, – setMiniwindowTitle:

setViewsNeedDisplay:
– (void)setViewsNeedDisplay:(BOOL)flag

Sets whether the receiver’s views need display (YES) or do not need display (NO). You should rarely need
to invoke this method; NSView’s setNeedsDisplay: and similar methods invoke it automatically.

See also: – viewsNeedDisplay

stringWithSavedFrame
– (NSString *)stringWithSavedFrame

Returns a string that represents the receiver’s frame rectangle in a format that can be used with a later
setFrameUsingName: message.

styleMask
– (unsigned int)styleMask

Returns the receiver’s style mask, indicating what kinds of control items it displays. See the information
about the style mask in the initWithContentRect:styleMask:backing:defer: method description. An
NSWindow’s style is set when the object is initialized. Once set, it can’t be changed.

title
– (NSString *)title

Returns the string that appears in the title bar of the receiver.

See also: – setTitle:, – setTitleWithRepresentedFilename:

tryToPerform:with:
– (BOOL)tryToPerform: (SEL)anAction with: (id)anObject

Dispatches action messages. The receiver tries to perform the method anAction using its inherited
NSResponder method tryToPerform:with: . If the receiver doesn’t perform anAction, the delegate is given

55

 Classes: NSWindow

the opportunity to perform it using its inherited NSObject method performSelector:withObject: . If either
the receiver or its delegate accepts anAction, this method returns YES; otherwise it returns NO.

unregisterDraggedTypes
– (void)unregisterDraggedTypes

Unregisters the receiver as a possible destination for dragging operations.

See also: – registerForDraggedTypes:

update
– (void)update

The default implementation of this method does nothing more than post an
NSWindowDidUpdateNotification to the default notification center. A subclass can override this method to
perform specialized operations, but should send an update message to super just before returning. For
example, the NSMenu class implements this method to disable and enable menu commands.

An NSWindow is automatically sent an update message on every pass through the event loop and before
it’s displayed on screen. You can manually cause an update message to be sent to all visible NSWindows
through NSApplication’s updateWindows method.

See also: – setWindowsNeedUpdate: (NSApplication), – updateWindows (NSApplication)

useOptimizedDrawing:
– (void)useOptimizedDrawing:(BOOL)flag

Informs the receiver whether to optimize focusing and drawing when displaying its NSViews. The
optimizations may prevent sibling subviews from being displayed in the correct order—which matters only
if the subviews overlap. You should always set flag to YES if there are no overlapping subviews within the
NSWindow. The default is NO.

validRequestorForSendType:returnType:
– (id)validRequestorForSendType:(NSString *)sendType returnType: (NSString *)returnType

Searches for an object that responds to a Services request by providing input of sendType and accepting
output of returnType. Returns that object, or nil if none is found.

56

Messages to perform this method are initiated by the Services menu. It’s part of the mechanism that passes
validRequestorForSendType:returnType: messages up the responder chain. See the Services
documentation in Programming Topics for more information.

This method works by forwarding the message to the receiver’s delegate if it responds (and provided it isn’t
an NSResponder with its own next responder). If the delegate doesn’t respond to the message or returns nil
when sent it, this method forwards the message to the NSApplication object. If the NSApplication object
returns nil , this method also returns nil . Otherwise this method returns the object returned by the delegate
or the NSApplication object.

See also: – validRequestorForSendType:returnType: (NSResponder and NSApplication)

viewsNeedDisplay
– (BOOL)viewsNeedDisplay

Returns YES if any of the receiver’s NSView’s need to be displayed, NO otherwise.

See also: – setViewsNeedDisplay:

windowHandle
– (void *)windowHandle

Returns a Microsoft Windows HWND handle as a pointer to void. This value can be cast directly to HWND.
This method exists only on Microsoft Windows; don’t attempt to invoke it on Mach or Macintosh.

windowNumber
– (int)windowNumber

Returns the window number of the receiver’s PostScript window device. Each window device in an
application is given a unique window number—note that this isn’t the same as the global window number
assigned by the Window Server. This number can be used to identify the window device with the
orderWindow:relativeTo: method and in the Application Kit functions NSWindowList and
NSConvertWindowNumberToGlobal.

If the receiver doesn’t have a window device, the value returned will be equal to or less than 0.

See also: – initWithContentRect:styleMask:backing:defer: , – setOneShot:

57

 Classes: NSWindow

worksWhenModal
– (BOOL)worksWhenModal

Returns YES if the receiver is able to receive keyboard and mouse events even when some other window is
being run modally, NO otherwise. NSWindow’s implementation of this method returns NO. Only
subclasses of NSPanel should override this default.

See also: – setWorksWhenModal: (NSPanel)

zoom:
– (void)zoom:(id)sender

Toggles the size and location of the window between its standard state (provided by the application as the
“best” size to display the window’s data) and its user state (a new size and location the user may have set
by moving or resizing the window). For more information on the standard and user states, see
windowWillUseStandardFrame:defaultFrame:.

The zoom: method is typically invoked after a user clicks the window’s zoom box but may also be invoked
programmatically from the performZoom: method. It performs the following steps:

1. Invokes the windowWillUseStandardFrame:defaultFrame: method, if the delegate or the window class
implements it, to obtain a “best fit” frame for the window. If neither the delegate nor the window class
implements the method, uses a default frame that nearly fills the current screen, which is defined to be the
screen containing the largest part of the window’s current frame

2. Adjusts the resulting frame, if necessary, to fit on the current screen.

3. Compares the resulting frame to the current frame to determine whether the window’s standard frame is
currently displayed. If the current frame is within a few pixels of the standard frame in size and location, it is
considered a match.

4. Determines a new frame. If the window is currently in the standard state, the new frame represents the user
state, saved during a previous zoom. If the window is currently in the user state, the new frame represents the
standard state, computed in step 1. above. If there is no saved user state because there has been no previous
zoom, the size and location of the window does not change.

5. Determines whether the window currently allows zooming. By default, zooming is allowed. If the window’s
delegate implements the windowShouldZoom:toFrame: method, zoom: invokes that method. If the delegate
doesn’t implement the method but the window does, zoom: invokes the window’s version.
windowShouldZoom:toFrame: returns NO if zooming is not currently allowed.

6. If the window currently allows zooming, sets the new frame.

58

Methods Implemented By the Delegate

windowDidBecomeKey:
– (void)windowDidBecomeKey:(NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has become key. aNotification is
always NSWindowDidBecomeKeyNotification. You can retrieve the NSWindow object in question by
sending object to aNotification.

windowDidBecomeMain:
– (void)windowDidBecomeMain:(NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has become main. aNotification is
always NSWindowDidBecomeMainNotification. You can retrieve the NSWindow object in question by
sending object to aNotification.

windowDidChangeScreen:
– (void)windowDidChangeScreen:(NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has changed screens. aNotification
is always NSWindowDidChangeScreenNotification. You can retrieve the NSWindow object in question by
sending object to aNotification.

windowDidDeminiaturize:
– (void)windowDidDeminiaturize: (NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has been deminiaturized.
aNotification is always NSWindowDidDeminiaturizeNotification. You can retrieve the NSWindow object
in question by sending object to aNotification.

windowDidExpose:
– (void)windowDidExpose:(NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has been exposed. aNotification is
always NSWindowDidExposeNotification. You can retrieve the NSWindow object in question by sending
object to aNotification.

59

 Classes: NSWindow

windowDidMiniaturize:
– (void)windowDidMiniaturize: (NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has been miniaturized. aNotification
is always NSWindowDidMiniaturizeNotification. You can retrieve the NSWindow object in question by
sending object to aNotification.

windowDidMove:
– (void)windowDidMove:(NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has been moved. aNotification is
always NSWindowDidMoveNotification. You can retrieve the NSWindow object in question by sending
object to aNotification.

windowDidResignKey:
– (void)windowDidResignKey:(NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has resigned its status as key
window. aNotification is always NSWindowDidResignKeyNotification. You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidResignMain:
– (void)windowDidResignMain:(NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has resigned its status as main
window. aNotification is always NSWindowDidResignMainNotification. You can retrieve the NSWindow
object in question by sending object to aNotification.

windowDidResize:
– (void)windowDidResize:(NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow has been resized. aNotification is
always NSWindowDidResizeNotification. You can retrieve the NSWindow object in question by sending
object to aNotification.

60

windowDidUpdate:
– (void)windowDidUpdate:(NSNotification *)aNotification

Sent by the default notification center immediately after an NSWindow receives an update message.
aNotification is always NSWindowDidUpdateNotification. You can retrieve the NSWindow object in
question by sending object to aNotification.

windowShouldClose:
– (BOOL)windowShouldClose:(id)sender

Invoked when the user attempts to close the window or when the NSWindow receives a performClose:
message. The delegate can return NO to prevent sender from closing.

windowShouldZoom:toFrame:
– (BOOL)windowShouldZoom:(NSWindow *)sender toFrame:(NSRect)newFrame

Invoked just before sender is zoomed. Zooming will change the frame of sender to newFrame. The delegate
can return NO to prevent sender from zooming.

See also: – windowWillUseStandardFrame:defaultFrame:

windowWillClose:
– (void)windowWillClose:(NSNotification *)aNotification

Sent by the default notification center immediately before an NSWindow closes. aNotification is always
NSWindowWillCloseNotification. You can retrieve the NSWindow object in question by sending object to
aNotification.

windowWillMiniaturize:
– (void)windowWillMiniaturize: (NSNotification *)aNotification

Sent by the default notification center immediately before an NSWindow is miniaturized. aNotification is
always NSWindowWillMiniaturizeNotification. You can retrieve the NSWindow object in question by
sending object to aNotification.

61

 Classes: NSWindow

windowWillMove:
– (void)windowWillMove: (NSNotification *)aNotification

Sent by the default notification center immediately before an NSWindow is moved. aNotification is always
NSWindowWillMoveNotification. You can retrieve the NSWindow object in question by sending object to
aNotification.

windowWillResize:toSize:
– (NSSize)windowWillResize:(NSWindow *)sender toSize:(NSSize)proposedFrameSize

Invoked when sender is being resized (whether by the user or through one of the setFrame... methods other
than setFrame:display:). proposedFrameSize contains the size (in screen coordinates) that the sender will
be resized to. To resize to a different size, simply return the desired size from this method; to avoid resizing,
return the current size. The NSWindow’s minimum and maximum size constraints have already been
applied when this method is invoked.

While the user is resizing an NSWindow, the delegate is sent a series of windowWillResize:toSize:
messages as the NSWindow’s outline is dragged. The NSWindow’s outline is displayed at the constrained
size as set by this method.

windowWillReturnFieldEditor:toObject:
– (id)windowWillReturnFieldEditor: (NSWindow *)sender toObject:(id)anObject

Invoked when the field editor of sender is requested by anObject. If the delegate’s implementation of this
method returns an object other than nil , the NSWindow substitutes it for the field editor and returns it to
anObject.

See also: – fieldEditor:forObject:

windowWillUseStandardFrame:defaultFrame:
– (NSRect)windowWillUseStandardFrame:(NSWindow *)sender

defaultFrame (NSRect)defaultFrame

Invoked by the zoom: method while determining a frame the window may be zoomed to. Returns the
standard frame (described below) for window. The defaultFrame parameter passed in is the size of the
current screen, which is the screen containing the largest part of the window's current frame, possibly
reduced on the top, bottom, left, or right, depending on the current interface style. For the Macintosh style,
for example, the frame is reduced on the top to leave room for the menu bar.

The standard frame for a window should supply the size and location that are “best” for the type of
information shown in the window, taking into account the available display or displays. For example, the

62

best width for a window that displays a word-processing document is the width of a page or the width of
the display, whichever is smaller. The best height can be determined similarly. On return from this method,
the zoom: method modifies the returned standard frame, if necessary, to fit on the current screen.

To customize the standard state, you implement windowWillUseStandardFrame:defaultFrame: in the
class of the window’s delegate or, if necessary, in a window subclass. Your version should return a suitable
standard frame, based on the currently displayed data or other factors.

See also: – windowShouldZoom:toFrame:, – zoom: (NSWindow class)

Notifications

NSWindowDidBecomeKeyNotification

Posted whenever the NSWindow becomes the key window.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that has become key.

NSWindowDidBecomeMainNotification

Posted whenever the NSWindow becomes the main window.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that has become main.

NSWindowDidChangeScreenNotification

Posted whenever a portion of the NSWindow’s frame moves onto or off of a screen.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that has changed screens.

NSWindowDidDeminiaturizeNotification

Posted whenever the NSWindow is deminiaturized.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that has been deminiaturized.

63

 Classes: NSWindow

NSWindowDidExposeNotification

Posted whenever a portion of a nonretained NSWindow is exposed, whether by being ordered in front of
other windows or by other widows being removed from in front of it.

This notification contains a notification object and a userInfo dictionary. The notification object is the
NSWindow that has been exposed. The userInfo dictionary contains the key NSExposedRect and an
associated value for the rectangle that has been exposed.

NSWindowDidMiniaturizeNotification

Posted whenever the NSWindow is miniaturized.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that has been miniaturized.

NSWindowDidMoveNotification

Posted whenever the NSWindow is moved.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that has moved.

NSWindowDidResignKeyNotification

Posted whenever the NSWindow resigns its status as key window.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that has resigned its key window status.

NSWindowDidResignMainNotification

Posted whenever the NSWindow resigns its status as main window.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that has resigned its main window status.

NSWindowDidResizeNotification

Posted whenever the NSWindow’s size changes.

64

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow whose size has changed.

NSWindowDidUpdateNotification

Posted whenever the NSWindow receives an update message.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that received the update message.

NSWindowWillCloseNotification

Posted whenever the NSWindow is about to close.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that is about to close.

NSWindowWillMiniaturizeNotification

Posted whenever the NSWindow is about to be miniaturized.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that is about to be miniaturized.

NSWindowWillMoveNotification

Posted whenever the NSWindow is about to move.

This notification contains a notification object but no userInfo dictionary. The notification object is the
NSWindow that is about to move.

1

 Classes: NSWindowController

NSWindowController

Inherits From: NSObject

Conforms To: NSObject (NSObject)
NSCoding

Declared In: AppKit/NSWindowController.h

Class Description

An NSWindowController object manages a window, usually a window stored in a nib file. This
management entails:

• Loading and displaying the window
• Closing the window when appropriate
• Customizing the window’s title
• Storing the window’s frame (size and location) in the defaults database
• Cascading the window in relation to other document windows of the application

An NSWindowController can manage a window by itself or as a role player in the Application Kit’s
document-based architecture, which also includes NSDocument and NSDocumentController objects. In
this architeture, an NSWindowController is created and managed by a "document" (an instance of an
NSDocument subclass) and, in turn, keeps a reference to the document. For a discussion of this architecture,
see "“Document-Based Application Architecture”" in the NSDocument specification..

The relationship between an NSWindowController (or, simply, a window controller) and a nib file is
important. Although a window controller can manage a programmatically created window, it usually
manages a window in a nib file. The nib file can contain other top-level objects, including other windows,
but the window controller’s responsibility is this primary window. The window controller is usually the
owner of the nib file, even when it is part of a document-based application. Regardless of who is the file’s
owner, the window controller is responsible for freeing all top-level objects in the nib file it loads.

For simple documents—that is, documents with only one nib file containing a window—you need do little
directly with NSWindowController. The Application Kit will create one for you. However, if the default
window controller is not sufficient, you can create a custom subclass of NSWindowController. For
documents with multiple windows or panels, your document must create separate instances of
NSWindowController (or of custom subclasses of NSWindowController), one for each window or panel.
An example is a CAD application that has different windows for side, top, and front views of drawn objects.
What you do in your NSDocument subclass determines whether the default NSWindowController or
separately created and configured NSWindowController objects are used.

2

Window Closing Behavior

When a window is closed and it is part of a document-based application, the document removes the
window’s NSWindowController from its list of window controllers. This results in the deallocation of the
window controller and the window, and possibly the deallocation of the NSDocument object itself. But
when a window controller is not part of a document-based application, closing the window by default does
not result in the deallocation of the window or window controller. This is desired behavior for a window
controller that manages something like an Inspector panel; you shouldn’t have to load the nib file again and
recreate the objects the next time the user requests the Inspector.

If you want the closing of a window to make both window and window controller go away when it isn’t part
of a document, your subclass of NSWindowController can observe NSWindow’s
“NSWindowWillCloseNotification” or, as window delegate, implement the windowWillClose: method
and in your implementations include the following line of code:

[self autorelease];

As a consequence of autoreleasing itself, a NSWindowController object autoreleases its window as well as
all other top-level objects in its nib file. In any case, a window controller should not get rid of its window
until it ensures its own deallocation.

Subclassing NSWindowController

You should create a subclass of NSWindowController when you want to augment the default behavior, such
as to give the window a custom title or to perform some setup tasks before the window is loaded. In your
class’s initialization method, be sure to invoke on super either one of the initWithWindowNibName:...
initializers or the initWithWindow: initializer. Which one depends on whether the window object
originates in a nib file or is programmatically created.

Three NSWindowController methods are most commonly overriden:

• windowWillLoad . Override to perform tasks before the window nib file is loaded.
• windowDidLoad. Override to perform tasks after the window nib file is loaded.
• windowTitleForDisplayName:. Override to customize the window title.

You can also override loadWindow to get different nib-searching or nib-loading behavior, although there
is usually no need to do this.

Adopted Protocols

NSCoding
– encodeWithCoder:
– initWithCoder:

3

 Classes: NSWindowController

Method Types

Initializing NSWindowControllers
– initWithWindow:
– initWithWindowNibName:
– initWithWindowNibName:owner:

Loading and display the window
– loadWindow
– showWindow:
– isWindowLoaded
– window
– windowDidLoad
– windowWillLoad

Setting and getting the document
– setDocument:
– document

Closing the window – close
– shouldCloseDocument
– setShouldCloseDocument:

Getting nib file information
– owner
– windowNibName

Setting and getting window attributes
– setShouldCascadeWindows:
– shouldCascadeWindows
– setWindowFrameAutosaveName:
– windowFrameAutosaveName
– windowTitleForDocumentDisplayName:

Instance Methods

close
– (void)close

Closes the window if it was loaded. Because this method closes the window without asking the user for
confirmation, you usually do not invoke it when the Close menu command is chosen. Instead invoke
NSWindow’s performClose: on the receiver’s window. See "“Window Closing Behavior”" in the class
description for an overview of deallocation behavior when a window is closed.

See also: – shouldCloseDocument, – setShouldCloseDocument:

4

document
– (id)document

Returns the NSDocument object associated with the receiver or nil if there is none. If the receiver is part of
a document-based application, it typically keeps a reference to its NSDocument. When a window is loaded
or the document changes, the NSWindowController gets the edited status from the document and sets the
window with it (NSWindow’s setDocumentEdited:). The Application Kit also uses this outlet to access the
document for relevant next-responder messages.

See also: – setDocument:

initWithWindow:
– (id)initWithWindow: (NSWindow *)window

Returns an NSWindowController object initialized with window, the window object to manage. The
window argument can be nil .This initializer is useful when a window has been loaded but no window
controller is assigned. This is the designated initializer for NSWindowController. The default initialization
turns on cascading, sets the shouldCloseDocument flag to NO, and sets the window frame autosave name
to an empty string. As a side effect, the created window controller is added as an observer of the
NSWindowWillCloseNotifications posted by that window object (which is handled by a private method).
If you make the window controller a delegate of the window, you can implement NSWindow’s
windowShouldClose: delegate method.

initWithWindowNibName:
– (id)initWithWindowNibName: (NSString *)windowNibName

Returns an NSWindowController object initialzed with windowNibName, the name of the nib file (minus
the ".nib" extension) that archives the receiver’s window. The windowNibName argument cannot be nil .
Sets the owner of the nib file to the receiver. The default initialization turns on cascading, sets the
shouldCloseDocument flag to NO, and sets the autosave name for the window’s frame to an empty string.

initWithWindowNibName:owner:
– (id)initWithWindowNibName: (NSString *)windowNibName owner:(id)owner

Returns an NSWindowController object initialzed with windowNibName and owner. Neither
windowNibName or owner can be nil . The windowNibName argument is the name of the nib file (minus the
".nib" extension) that archives the receiver’s window. The owner argument is the nib file’s owner. The
default initialization turns on cascading, sets the shouldCloseDocument flag to NO, and sets the autosave
name for the window’s frame to an empty string.

5

 Classes: NSWindowController

isWindowLoaded
– (BOOL)isWindowLoaded

Returns whether the nib file containing the receiver’s window has been loaded.

See also: – loadWindow, – window, – windowDidLoad, – windowWillLoad

loadWindow
– (void)loadWindow

Loads the receiver’s window from the nib file. You should never directly invoke this method. Instead,
invoke window so that the windowDidLoad and windowWillLoad methods are invoked. Subclasses can
override this method if the way it finds and loads the window is not adequate. It uses NSBundle’s
bundleForClass: method to get the bundle, using the class of the nib file owner as argument. It then locates
the nib file within the bundle and, if successful, loads it; if unsuccessful, it tries to find the nib file in the
main bundle.

See also: – isWindowLoaded

owner
– (id)owner

Returns the owner of the nib file containing the window managed by the receiver. This is usually self, but
can be the receiver’s document (an instance of an NSDocument subclass) or some other object.

See also: – windowNibName

setDocument:
– (void)setDocument:(NSDocument *)document

Sets the document associated with the window managed by the receiver. A document is an instance of an
NSDocument subclass that represents and manages the data displayed and captured in the window. A
window controller has a reference to its document document when it is part of a document-based
application.

See also: – document

6

setShouldCascadeWindows:
– (void)setShouldCascadeWindows:(BOOL)flag

Sets whether the window, when it is displayed, should cascade in relation to other document windows (that
is, have a slightly offset location so that the title bars of previously displayed windows are still visible). The
default is YES.

See also: – shouldCascadeWindows

setShouldCloseDocument:
– (void)setShouldCloseDocument:(BOOL)flag

Sets whether the receiver should close the associated document when the window it manages is closed (flag
is YES) or whether to close the document only when the last document window has been closed (flag is
NO). The default is NO.

See also: – shouldCloseDocument

setWindowFrameAutosaveName:
– (void)setWindowFrameAutosaveName:(NSString *)name

Sets the name under which the window’s frame (it’s size and location on the screen) is saved in the defaults
database. By default, name is an empty string, causing no information to be stored in the defaults database.

See also: – windowFrameAutosaveName, – setFrameAutosaveName: (NSWindow)

shouldCascadeWindows
– (BOOL)shouldCascadeWindows

Returns whether the window will cascade in relation to other document windows when it is displayed.

See also: – setShouldCascadeWindows:

shouldCloseDocument
– (BOOL)shouldCloseDocument

Returns whether the receiver closes the associated document when the window it manages is closed (YES)
or whether the document is closed only when last remaining window of the document is closed (NO).

See also: – setShouldCloseDocument:

7

 Classes: NSWindowController

showWindow:
– (void)showWindow:(id)sender

Displays the window associated with the receiver. If the window is an NSPanel object and has its
becomesKeyOnlyIfNeeded flag set to YES, the window is displayed in front of all other windows but is
not made key; otherwise it is displayed in front and is made key. This method is useful for menu actions.

See also: – makeKeyAndOrderFront: (NSWindow), – orderFront: (NSWindow)

window
– (NSWindow *)window

Returns the window owned by the receiver or nil if there isn’t one. If the window has not yet been loaded,
it attempts to load the window’s nib file using loadWindow. Before it loads the window, it invokes
windowWillLoad in subclass implementations and, if the NSWindowController has a document, it invokes
the NSDocument’s corresponding method windowControllerWillLoadNib: (if implemented). After
loading the window, it invokes windowDidLoad and, if there is a document, the NSDocument method
windowControllerDidLoadNib: (if implemented).

See also: – windowControllerWillLoadWindowNib: (NSDocument)

windowDidLoad
– (void)windowDidLoad

Allows subclasses of NSWindowController to perform any required tasks after the window owned by the
receiver has been loaded. The default implementation does nothing.

See also: – loadWindow, – window, – windowWillLoad

windowFrameAutosaveName
– (NSString *)windowFrameAutosaveName

Returns the name under which the frame rectangle of the window owned by the receiver is stored in the
defaults database.

See also: – setWindowFrameAutosaveName:

8

windowNibName
– (NSString *)windowNibName

Returns the name of the nib file that stores the window associated with the receiver. The name does not
include the ".nib" extension.

See also: – owner

windowTitleForDocumentDisplayName:
– (NSString *)windowTitleForDocumentDisplayName:(NSString *)displayName

Returns displayName by default. The display name, which is generally maintained by the associated
NSDocument, is the last path component under which the document file is saved. Subclasses can override
this method to customize the window title. For example, a CAD application could append "-Top" or "-Side",
depending on the view displayed by the window.

windowWillLoad
– (void)windowWillLoad

Allows subclasses of NSWindowController to perform any required tasks before the window owned by the
receiver is loaded. The default implementation does nothing.

See also: – loadWindow, – window, – windowDidLoad

1

 Classes: NSWorkspace

NSWorkspace

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: AppKit/NSWorkspace.h

Class Description

An NSWorkspace object responds to application requests to perform a variety of services:

• opening, manipulating, and obtaining information about files and devices
• tracking changes to the file system, devices, and the user database
• launching applications
• miscellaneous services such as animating an image and requesting additional time before power off

There is one shared NSWorkspace object per application. You use the class method sharedWorkspace to
access it. For example, the following statement uses an NSWorkspace object to request that a file be opened
in the Edit application:

[[NSWorkspace sharedWorkspace] openFile:@"/Myfiles/README"

withApplication:@"Edit"];

Note: On the Microsoft Windows platform, some of the methods in this class have no effect. Refer to the
method descriptions below.

Method Types

Accessing the shared NSWorkspace
+ sharedWorkspace

Accessing the NSWorkspace notification center
– notificationCenter

Opening files
– openFile:
– openFile:withApplication:
– openFile:fromImage:at:inView:
– openFile:withApplication:andDeactivate:
– openTempFile:

2

Manipulating applications
– launchApplication:
– launchApplication:showIcon:autolaunch:
– hideOtherApplications

Manipulating files
– performFileOperation:source:destination:files:tag:
– selectFile:inFileViewerRootedAtPath:

Requesting information about files
– iconForFile:
– iconForFileType:
– iconForFiles:
– getInfoForFile:application:type:
– fullPathForApplication:
– getFileSystemInfoForPath:isRemovable:isWritable:

isUnmountable:description:type:

Requesting additional time before logout
– extendPowerOffBy:

Tracking changes to the file system
– noteFileSystemChanged
– fileSystemChanged

Updating registered services and file types
– findApplications

Tracking changes to the defaults database
– noteUserDefaultsChanged
– userDefaultsChanged

Tracking status changes for applications and devices
– mountedRemovableMedia
– mountNewRemovableMedia
– checkForRemovableMedia

Animating an image
– slideImage:from:to:

Unmounting a device
– unmountAndEjectDeviceAtPath:

3

 Classes: NSWorkspace

Class Methods

sharedWorkspace
+ (NSWorkspace *)sharedWorkspace

Returns the shared NSWorkspace instance.

Instance Methods

checkForRemovableMedia
– (void)checkForRemovableMedia

On the Mach platform, polls the system’s drives for any disks that have been inserted but not yet mounted.
checkForRemovableMedia doesn’t wait until such disks are mounted; instead, it requests that the disk be
mounted asynchronously and returns immediately.

 This method has no effect on the Microsoft Windows platform.

See also: – mountNewRemovableMedia, – mountedRemovableMedia

extendPowerOffBy:
– (int)extendPowerOffBy:(int)requested

Requests requested milliseconds more time before the power goes off or the user logs out. Returns the
number of additional milliseconds granted. On some platforms you might not be able to extend the time.

fileSystemChanged
– (BOOL)fileSystemChanged

On the Mach platform, returns YES if a change to the file system has been registered with a
noteFileSystemChanged message since the last fileSystemChanged message; NO otherwise.

This method is not implemented on the Microsoft Windows platform. If you try to use it, it raises an
NSInvalidArgumentException.

4

findApplications
– (void)findApplications

On the Mach platform, examines all applications in the normal places (/Network/Applications,
/System/Applications, /System/Developer/Applications) and updates the records of registered services
and file types.

 This method has no effect on the Microsoft Windows platform.

fullPathForApplication:
– (NSString *)fullPathForApplication: (NSString *)appName

Returns the full path for the application appName, or nil if appName isn’t in one of the normal places.

getFileSystemInfoForPath:isRemovable:isWritable:isUnmountable:
description:type:

– (BOOL)getFileSystemInfoForPath:(NSString *)fullPath
isRemovable:(BOOL *)removableFlag
isWritable: (BOOL *)writableFlag
isUnmountable:(BOOL *)unmountableFlag
description:(NSString **)description
type:(NSString **)fileSystemType

On the Mach platform, describes the file system at fullPath. This method has no effect on the Microsoft
Windows platform.

Returns YES if fullPath is a file system mount point, NO otherwise. If the return value is YES, description
describes the file system; this value can be used in strings, but it shouldn’t be depended upon by program
logic. Example values for description are “hard,” “nfs,” and “foreign.” fileSystemType indicates the file
system type; values could be “NeXT,” “DOS,” or other values. removableFlag is YES if the file system is
on removable media, NO otherwise. writableFlag is YES if the file system’s media is writable, NO
otherwise. unmountableFlag returns YES if the file system is unmountable, NO otherwise.

5

 Classes: NSWorkspace

getInfoForFile:application:type:
– (BOOL)getInfoForFile: (NSString *)fullPath

application:(NSString **)appName
type:(NSString **)type

Retrieves information about the file specified by fullPath. If this method returns YES, the NSString pointed
to by appName is set to the application the system would use to open fullPath. The NSString pointed to by
type contains one of the following values or a file name extension such as “rtf” indicating the file’s type:

This method returns NO if it could not find fullPath.

See also: – iconForFile:, – iconForFiles:

hideOtherApplications
– (void)hideOtherApplications

Hides all applications other than the sender. This method has no effect on the Microsoft Windows platform.
On the Mach platform, the user can hide all applications except the current one by
Command-double-clicking an application’s tile, so programmatic invocation of this method is usually
unnecessary.

iconForFile:
– (NSImage *)iconForFile:(NSString *)fullPath

Returns an NSImage with the icon for the single file specified by fullPath.

See also: – getInfoForFile:application:type: , – iconForFileType:, – iconForFiles:

Value Type of File

NSPlainFileType Plain (untyped) file

NSDirectoryFileType Directory

NSApplicationFileType OpenStep application

NSFilesystemFileType File system mount point

NSShellCommandFileType Executable shell command

6

iconForFileType:
– (NSImage *)iconForFileType:(NSString *)fileType

Returns an NSImage with the icon for the file type specified by fileType.

See also: – iconForFile:, – iconForFiles:

iconForFiles:
– (NSImage *)iconForFiles:(NSArray *)fullPaths

Returns an NSImage with the icon for the files specified in fullPaths, an array of NSStrings. If fullPaths
specifies one file, its icon is returned. If fullPaths specifies more than one file, an icon representing the
multiple selection is returned.

See also: – iconForFile:, – iconForFileType:

launchApplication:
– (BOOL)launchApplication: (NSString *)appName

Launches the application appName. appName need not be specified with a full path and, in the case of an
application wrapper, can be specified with or without the .app extension. Returns YES if the application is
successfully launched or already running, NO if it can’t be launched.

Before this method begins, it posts an NSWorkspaceWillLaunchApplicationNotification to the
NSWorkspace’s notification center. When the operation is complete, it posts an
NSWorkspaceDidLaunchApplicationNotification.

See also: – launchApplication:showIcon:autolaunch:

launchApplication:showIcon:autolaunch:
– (BOOL)launchApplication: (NSString *)appName

showIcon:(BOOL)showIcon
autolaunch:(BOOL)autolaunch

Launches the application appName. If showIcon is NO, the application’s icon won’t be placed on the screen.
(The icon still exists, though.) If autolaunch is YES, the autolaunch default will be set as though the
application were autolaunched at startup. This method is provided to enable daemon-like applications that
lack a normal user interface and for use by alternative dock programs. Its use is not generally encouraged.

Returns YES if the application is successfully launched or already running, and NO if it can’t be launched.

7

 Classes: NSWorkspace

Before this method begins, it posts an NSWorkspaceWillLaunchApplicationNotification to the
NSWorkspace’s notification center. When the operation is complete, it posts an
NSWorkspaceDidLaunchApplicationNotification.

See also: – launchApplication:

mountNewRemovableMedia
– (NSArray *)mountNewRemovableMedia

On the Mach platform, polls the system’s drives for any disks that have been inserted but not yet mounted,
waits until the new disks have been mounted, and returns an NSArray of NSStrings containing full
pathnames to all newly mounted disks. This method posts an NSWorkspaceDidMountNotification to the
NSWorkspace’s notification center when it is finished.

This method is not implemented on the Microsoft Windows platform. If you try to use it, it raises an
NSInvalidArgumentException.

See also: – checkForRemovableMedia, – mountedRemovableMedia

mountedRemovableMedia
– (NSArray *)mountedRemovableMedia

Returns an NSArray of NSStrings containing the full pathnames of all currently mounted removable disks.
This method is not implemented on the Microsoft Windows platform. If you try to use it, it raises an
NSInvalidArgumentException.

On the Mach platform, if the computer provides an interrupt or other notification when the user inserts a
disk into a drive, the Workspace Manager will mount the disk immediately. However, if no notification is
given, the Workspace Manager won’t be aware that a disk needs to be mounted. On such systems, an
application should invoke either mountNewRemovableMedia or checkForRemovableMedia before
invoking mountedRemovableMedia. Either of these methods cause the Workspace Manager to poll the
drives to see if a disk is present. If a disk has been inserted but not yet mounted, these methods will cause
the Workspace Manager to mount it.

The Disk button in an Open or Save panel invokes mountedRemovableMedia and
mountNewRemovableMedia as part of its operation, so most applications won’t need to invoke these
methods directly.

See also: – checkForRemovableMedia, – mountNewRemovableMedia

8

noteFileSystemChanged
– (void)noteFileSystemChanged

On the Mach platform, informs NSWorkspace that the file system has changed. NSWorkspace then gets the
status of all the files and directories it is interested in and updates itself appropriately. This method is used
by many objects that write or delete files.

This method has no effect on the Microsoft Windows platform.

See also: – fileSystemChanged

noteUserDefaultsChanged
– (void)noteUserDefaultsChanged

On the Mach platform, informs NSWorkspace that the defaults database has changed. NSWorkspace then
reads all the defaults it is interested in and reconfigures itself appropriately. For example, on Mach
platforms, this method is used by the Preferences application to notify Workspace Manager whether the
user prefers to see hidden files.

This method has no effect on the Microsoft Windows platform.

See also: – userDefaultsChanged

notificationCenter
– (NSNotificationCenter *)notificationCenter

Returns the notification center for workspace notifications.

openFile:
– (BOOL)openFile:(NSString *)fullPath

Opens the file specified by fullPath using the default application for its type; returns YES if file was
successfully opened, NO otherwise. The sending application is deactivated before the request is sent.

See also: – openFile:fromImage:at:inView: , – openFile:withApplication: , – openFile:withApplication:
andDeactivate:, – openTempFile:

9

 Classes: NSWorkspace

openFile:fromImage:at:inView:
– (BOOL)openFile:(NSString *)fullPath

fromImage:(NSImage *)anImage
at:(NSPoint)point
inView: (NSView *)aView

Opens the file specified by fullPath using the default application for its type. On the Mach platform,
Workspace Manager provides animation before opening the file to give the user feedback that the file is to
be opened. To provide this animation, anImage should contain an icon for the file, and its image should be
displayed at point, specified in aView’s coordinates. On the Microsoft Windows platform, this method is the
same as the openFile: method.

The sending application is deactivated before the request is sent. Returns YES if the file is successfully
opened, NO otherwise.

See also: – openFile:, – openFile:withApplication: , – openFile:withApplication:andDeactivate:,
– openTempFile:

openFile:withApplication:
– (BOOL)openFile:(NSString *)fullPath withApplication: (NSString *)appName

Opens the file specified by fullPath using the appName application. appName need not be specified with a
full path and, in the case of an application wrapper, can be specified with or without the .app extension. The
sending application is deactivated before the request is sent. Returns YES if the file is successfully opened,
NO otherwise.

See also: – openFile:, – openFile:withApplication:andDeactivate:

openFile:withApplication:andDeactivate:
– (BOOL)openFile:(NSString *)fullPath

withApplication: (NSString *)appName
andDeactivate:(BOOL)flag

Opens the file specified by fullPath using the appName application. appName need not be specified with a
full path and, in the case of an application wrapper, can be specified with or without the .app extension. If
appName is nil , the default application for the file’s type is used. If flag is YES, the sending application is
deactivated before the request is sent, allowing the opening application to become the active application.
Returns YES if the file is successfully opened, NO otherwise.

See also: – openFile:, – openFile:withApplication: , – application:openFile: (NSApplication delegate
method)

10

openTempFile:
– (BOOL)openTempFile:(NSString *)fullPath

Opens the temporary file specified by fullPath using the default application for its type. The sending
application is deactivated before the request is sent. Using this method instead of one of the openFile:...
methods lets the receiving application know that it should delete the file when it no longer needs it. Returns
YES if the file is successfully opened, NO otherwise.

See also: – openFile:, – openFile:fromImage:at:inView: , – openFile:withApplication: , – openFile:
withApplication:andDeactivate:

performFileOperation:source:destination:files:tag:
– (BOOL)performFileOperation: (NSString *)operation

source:(NSString *)source
destination:(NSString *)destination
files:(NSArray *)files
tag:(int *) tag

Performs a file operation on a set of files in a particular directory. operation is some file operation, such as
compressing or moving files. files contains NSString specifying the names of the files to be manipulated.
The file names are given relative to the source directory. The list can contain both files and directories; all
of them must be located directly within source (not in one of its subdirectories).

Some operations—such as moving, copying, and linking files—require a destination directory to be
specified. If not, destination should be the empty string (@"").

The possible values for operation are:

Operation Meaning

NSWorkspaceMoveOperation Move file to destination

NSWorkspaceCopyOperation Copy file to destination

NSWorkspaceLinkOperation Create link to file in destination

NSWorkspaceCompressOperation Compress file

NSWorkspaceDecompressOperation Decompress file

NSWorkspaceEncryptOperation Encrypt file

NSWorkspaceDecryptOperation Decrypt file

NSWorkspaceDestroyOperation Destroy file

11

 Classes: NSWorkspace

Note: NSWorkspaceCompressOperation, NSWorkspaceDecompressOperation,
NSWorkspaceEncryptOperation, and NSWorkspaceDecryptOperation are not available on the
Microsoft Windows platform.

This method returns YES if the operation succeeded, NO otherwise, In tag, the method returns a negative
integer if the operation fails, 0 if the operation is performed synchronously and succeeds, and a positive
integer if the operation is performed asynchronously. The positive integer is a tag that identifies the
requested file operation. Before this method returns, it posts an
NSWorkspaceDidPerformFileOperationNotification to NSWorkspace’s notification center.

selectFile:inFileViewerRootedAtPath:
– (BOOL)selectFile:(NSString *)fullPath inFileViewerRootedAtPath:(NSString *)rootFullPath

Selects the file specified by fullPath. If a path is specified by rootFullPath, a new file viewer is opened. If
rootFullPath is an empty string (@""), the file is selected in the main viewer. Returns YES if the file is
successfully selected, NO otherwise.

slideImage:from:to:
– (void)slideImage:(NSImage *)image

from: (NSPoint)fromPoint
to:(NSPoint)toPoint

On Mach platforms, animates a sliding image of image from fromPoint to toPoint, specified in screen
coordinates. This method has no effect on the Microsoft Windows platform.

unmountAndEjectDeviceAtPath:
– (BOOL)unmountAndEjectDeviceAtPath:(NSString *)path

Unmounts and ejects the device at path. Returns YES if unmount succeeded and NO otherwise. When this
method begins, it posts an NSWorkspaceWillUnmountNotification to NSWorkspace’s notification center.
When it is finished, it posts an NSWorkspaceDidUnmountNotification.

NSWorkspaceRecycleOperation Move file to recycler

NSWorkspaceDuplicateOperation Duplicate file in source directory

Operation Meaning

12

userDefaultsChanged
– (BOOL)userDefaultsChanged

On the Mach platform, returns whether a change to the defaults database has been registered with a
noteUserDefaultsChanged message since the last userDefaultsChanged message.

This method has no effect on the Microsoft Windows platform.

Notifications

All NSWorkspace notifications are posted to NSWorkspace’s own notification center, not the application’s
default notification center. Access this center using the notificationCenter method.

NSNotificationCenter *workspaceCenter = [[NSWorkspace sharedWorkspace]

notificationCenter];

NSWorkspaceDidLaunchApplicationNotification

Posted when a new application has started up.

This notification contains a notification object and a userInfo dictionary. The notification object is the
shared NSWorkspace instance. The userInfo dictionary contains these keys and values:

NSWorkspaceDidMountNotification

Posted when a new device has been mounted.

This notification contains a notification object and a userInfo dictionary. The notification object is the
shared NSWorkspace instance. The userInfo dictionary contains these keys and values:

Key Value

NSApplicationName The application being terminated

Key Value

NSDevicePath The path where the device was mounted

13

 Classes: NSWorkspace

NSWorkspaceDidPerformFileOperationNotification

Posted when a file operation has been performed.

This notification contains a notification object and a userInfo dictionary. The notification object is the
shared NSWorkspace instance. The userInfo dictionary contains these keys and values:

NSWorkspaceDidTerminateApplicationNotification

Posted when an application finishes executing.

This notification contains a notification object and a userInfo dictionary. The notification object is the
shared NSWorkspace instance. The userInfo dictionary contains these keys and values:

NSWorkspaceDidUnmountNotification

Posted when the workspace has unmounted a device.

This notification contains a notification object and a userInfo dictionary. The notification object is the
shared NSWorkspace instance. The userInfo dictionary contains these keys and values:

NSWorkspaceWillLaunchApplicationNotification

Posted when the workspace is about to launch an application.

Key Value

NSOperationNumber A number indicating the type of file operation completed

Key Value

NSApplicationName The application that terminated

Key Value

NSDevicePath The path where the device was previously mounted

14

This notification contains a notification object and a userInfo dictionary. The notification object is the
shared NSWorkspace instance. The userInfo dictionary contains these keys and values:

NSWorkspaceWillPowerOffNotification

Posted when the user has requested that the machine be powered off.

This notification contains a notification object but no userInfo dictionary. The notification object is the
shared NSWorkspace instance.

NSWorkspaceWillUnmountNotification

Posted when the workspace is about to unmount a device.

This notification contains a notification object and a userInfo dictionary. The notification object is the
shared NSWorkspace instance. The userInfo dictionary contains these keys and values:

Key Value

NSApplicationName The application about to be launched

Key Value

NSDevicePath The path where the device is mounted

Functions
This section describes functions and function-like macros available in the Application Kit library.

NSApplicationMain

SUMMARY This function is called by the main function to create and run the application.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS int NSApplicationMain(int argc, const char *argv[])

DESCRIPTION The NSApplicationMain function creates the application, loads the main nib file from the
application’s main bundle, and runs the application. You typically only call this function once,
from your application’s main function, which is usually generated automatically.

NSAvailableWindowDepths

SUMMARY This function returns the available NSWindowDepth values.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS const NSWindowDepth *NSAvailableWindowDepths(void)

DESCRIPTION NSAvailableWindowDepths returns a null-terminated array of NSWindowDepth values that
specify which window depths are currently available. Window depth values are defined by the
constants NSTwoBitGrayDepth, NSEightBitGrayDepth, and so on.

1

n

NSBeep

SUMMARY This function plays the system beep.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSBeep(void)

DESCRIPTION This function plays the system beep. Users can select a sound to be played as the system beep. O
a Macintosh, for example, you can change sounds with the Sound control panel.

NSBestDepth

SUMMARY This function attempts to return a window depth adequate for the specified parameters.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSWindowDepth NSBestDepth(NSString *colorSpace, int bps, int bpp, BOOL planar, BOOL
*exactMatch)

DESCRIPTION NSBestDepth returns a window depth deep enough for the given number of colors in colorSpace,
bits per sample specified by bps, bits per pixel specified by bpp, and whether planar as specified
by planar. Upon return, the variable pointed to by exactMatch is YES if the window depth can
accommodate all of the values specified by the parameters, NO if it can’t.

NSBitsPerPixelFromDepth

SUMMARY This function returns the bits per pixel for the specified window depth.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS int NSBitsPerPixelFromDepth(NSWindowDepth depth)

2

DESCRIPTION NSBitsPerPixelFromDepth returns the number of bits per pixel for the window depth specified
by depth.

SEE ALSO NSBitsPerSampleFromDepth

NSBitsPerSampleFromDepth

SUMMARY This function returns the bits per sample for the specified window depth.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS int NSBitsPerSampleFromDepth(NSWindowDepth depth)

DESCRIPTION NSBitsPerSampleFromDepth returns the number of bits per sample (bits per pixel in each color
component) for the window depth specified by depth.

SEE ALSO NSBitsPerPixelFromDepth

NSColorSpaceFromDepth

SUMMARY This function returns the name of the color space corresponding to the passed window depth.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSColorSpaceFromDepth(NSWindowDepth depth)

DESCRIPTION Returns the color space name for the specified depth. For example, the returned color space name
can be NSCalibratedRGBColorSpace, NSDeviceCMYKColorSpace, or so on.

3

NSConvertGlobalToWindowNumber

SUMMARY This function converts a global window number to a local window number.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSConvertGlobalToWindowNumber(int globalNum, unsigned int *winNum)

DESCRIPTION In rare cases, two or more applications may need to refer to the same window. To pass a window
number to another application, an application uses the global window number, which has been
automatically assigned by the Window Server, rather than the local window number, which is
assigned by the application.

An application uses the NSConvertGlobalToWindowNumber function to convert a window
number from global to local. Given a global window number in globalNum, it returns the
corresponding local window number in the location specified by winNum.

SEE ALSO NSConvertWindowNumberToGlobal

NSConvertGlyphsToPackedGlyphs

SUMMARY This function prepares a set of glyphs for processing by character-based routines.

DECLARED IN AppKit/NSFont.h

SYNOPSIS int NSConvertGlyphsToPackedGlyphs(NSGlyph *glBuf, int count,
NSMultibyteGlyphPacking packing, char *packedGlyphs)

DESCRIPTION This function takes a buffer of glyphs, specified in the glBuf parameter, and packs them into a
condensed character array. The character array is returned in the packedGlyphs parameter, which
should have enough space for at least ((4 * count) + 1) bytes to guarantee that the packed glyphs
fit. The count parameter specifies the number of glyphs in glBuf. The packing parameter specifies
how the glyphs are currently packed.

4

NSConvertWindowNumberToGlobal

SUMMARY This function converts a local window number to a global window number.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSConvertWindowNumberToGlobal(int winNum, unsigned int *globalNum)

DESCRIPTION In rare cases, two or more applications may need to refer to the same window. To pass a window
number to another application, an application uses the global window number, which has been
automatically assigned by the Window Server, rather than the local window number, which is
assigned by the application.

NSConvertWindowNumberToGlobal takes the local window number and places the
corresponding global window number in the variable specified by globalNum. This global number
can then be passed to other applications that need access to the window.

SEE ALSO NSConvertGlobalToWindowNumber

NSCopyBitmapFromGState

SUMMARY This function copies a bitmap image to a destination rectangle.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSCopyBitmapFromGState(int srcGState, NSRect srcRect, NSRect destRect)

DESCRIPTION This function copies the pixels in the rectangle srcRect to the rectangle destRect. The source
rectangle is defined in the graphics state designated by srcGState. The destination is defined in the
current graphics state.

SEE ALSO NSCopyBits

5

NSCopyBits

SUMMARY This function copies a bitmap image to the location specified by a destination point.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSCopyBits(int srcGState, NSRect srcRect, NSPoint destPoint)

DESCRIPTION This function copies the pixels in the rectangle specified by srcRect to the location specified by
destPoint. The source rectangle is defined in the graphics state designated by srcGState. If
srcGState is NSNullObject, the current graphics state is assumed. The destPoint destination is
defined in the current graphics state.

SEE ALSO NSCopyBitmapFromGState

NSCountWindows

SUMMARY This function counts the number of on-screen windows belonging to an application.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSCountWindows(int *count)

DESCRIPTION NSCountWindows counts the number of on-screen windows belonging to the application; it
returns the number by reference in the count parameter.

SEE ALSO NSWindowList

6

NSCreateFileContentsPboardType

SUMMARY This function returns a pasteboard type based on the passed file type.

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSCreateFileContentsPboardType(NSString *fileType)

DESCRIPTION NSCreateFileContentsPboardType returns an NSString to a pasteboard type representing a
file’s contents based on the supplied string fileType. fileType should generally be the extension part
of a file name. The conversion from a named file type to a pasteboard type is simple; no mapping
to standard pasteboard types is attempted.

SEE ALSO NSCreateFilenamePboardType, NSGetFileType, NSGetFileTypes

NSCreateFilenamePboardType

SUMMARY This function returns a pasteboard type based on the passed file type.

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSCreateFilenamePboardType(NSString *fileType)

DESCRIPTION NSCreateFilenamePboardType returns an NSString to a pasteboard type representing a file
name based on the supplied string fileType.

SEE ALSO NSCreateFileContentsPboardType, NSGetFileType, NSGetFileTypes

7

NSDottedFrameRect

SUMMARY << Description forthcoming >>

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDottedFrameRect(NSRect aRect)

DESCRIPTION << Description forthcoming >>

NSDrawBitmap

SUMMARY This function draws a bitmap image.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDrawBitmap(const NSRect rect, int pixelsWide, int pixelsHigh, int bitsPerSample,
int samplesPerPixel, int bitsPerPixel, int bytesPerRow, BOOL isPlanar, BOOL hasAlpha,
NSColorSpace colorSpace, const unsigned char *const data[5])

Warning: This function is marginally obsolete. Most applications are better served using the
NSBitmapImageRep class to read and display bitmap images.

DESCRIPTION The NSDrawBitmap function renders an image from a bitmap, binary data that describes the
pixel values for the image (this function replaces NSImageBitmap).

NSDrawBitmap renders a bitmap image using an appropriate PostScript operator—image,
colorimage, or alphaimage. It puts the image in the rectangular area specified by its first
argument, rect; the rectangle is specified in the current coordinate system and is located in the
current window. The next two arguments, pixelsWide and pixelsHigh, give the width and height of
the image in pixels. If either of these dimensions is larger or smaller than the corresponding
dimension of the destination rectangle, the image will be scaled to fit.

The remaining arguments to NSDrawBitmap describe the bitmap data, as explained in the
following paragraphs.

bitsPerSample is the number of bits per sample for each pixel and samplesPerPixel is the number
of samples per pixel. bitsPerPixel is based on samplesPerPixel and the configuration of the

8

,

e

bitmap: if the configuration is planar, then the value of bitsPerPixel should equal the value of
bitsPerSample; if the configuration isn’t planar (is meshed instead), bitsPerPixel should equal
bitsPerSample * samplesPerPixel.

bytesPerRow is calculated in one of two ways, depending on the configuration of the image data
(data configuration is described below). If the data is planar, bytesPerRow is (7 + (pixelsWide *
bitsPerSample)) / 8. If the data is meshed, bytesPerRow is (7 + (pixelsWide * bitsPerSample *
samplesPerPixel)) / 8.

A sample is data that describes one component of a pixel. In an RGB color system, the red, green,
and blue components of a color are specified as separate samples, as are the cyan, magenta, yellow
and black components in a CMYK system. Color values in a gray scale are a single sample. Alpha
values that determine transparency and opaqueness are specified as a coverage sample separat
from color. In bitmap images with alpha, the color (or gray) components have to be premultiplied
with the alpha. This is the way images with alpha are displayed, this is the way they are read back,
and this is the way they are stored in TIFFs.

isPlanar refers to the way data is configured in the bitmap. This flag should be set YES if a separate
data channel is used for each sample. The function provides for up to five channels, data1, data2,
data3, data4, and data5. It should be set NO if sample values are interwoven in a single channel
(meshed); all values for one pixel are specified before values for the next pixel.

Figure 1 illustrates these two ways of configuring data.

Figure 1 . Planar and Meshed Configurations

r r r r r r r r r r r r r r r r

g g g g g g g g g g g g g g gg

b b b b b b b b b b b b b bb

Meshed

Planar

αααααααααααααα

b

α α

r αg b αg br αg br αg br

9

As shown in the illustration, color samples (rgb) precede the coverage sample (α) in
both configurations.

Gray-scale windows store pixel data in planar configuration; color windows store it in meshed
configuration. NSDrawBitmap can render meshed data in a planar window, or planar data in a
meshed window. However, it’s more efficient if the image has a depth (bitsPerSample) and
configuration (isPlanar) that matches the window.

hasAlpha indicates whether the image contains alpha. If it does, the number of samples should be
1 greater than the number of color components in the model (e.g., 4 for RGB).

colorSpace can be NS_CustomColorSpace, indicating that the image data is to be interpreted
according to the current color space in the PostScript graphics state. This allows for imaging using
custom color spaces. The image parameters supplied as the other arguments should match what
the color space is expecting.

If the image data is planar, data[0] through data[samplesPerPixel-1] point to the planes; if the data
is meshed, only data[0] needs to be set.

NSDrawButton, NSDrawGrayBezel, NSDrawGroove, NSDrawTiledRects,
NSDrawWhiteBezel, NSFrameRect, NSFrameRectWithWidth

SUMMARY Draw a bordered rectangle

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDrawButton(const NSRect aRect, const NSRect clipRect)
void NSDrawGrayBezel(const NSRect aRect, const NSRect clipRect)
void NSDrawGroove(const NSRect aRect, const NSRect clipRect)
void NSDrawWhiteBezel(const NSRect aRect, const NSRect clipRect)
NSRect NSDrawTiledRects(NSRect aRect, const NSRect clipRect, const NSRectEdge *sides,

const float *grays, int count)
void NSFrameRect(const NSRect aRect)
void NSFrameRectWithWidth(const NSRect aRect, NSCoord frameWidth)

DESCRIPTION These functions draw rectangles with borders. NSDrawButton draws the rectangle used to signify
a user-interface button, NSDrawTiledRects is a generic function that can be used to draw
different types of borders, and the other functions provide ready-made bezeled, grooved, or line

10

borders. These borders can be used to outline an area or to give rectangles the effect of being
recessed from or elevated above the surface of the screen, as shown in Figure 2.

Figure 2 . Rectangle Borders

Each function’s first argument specifies the rectangle within which the border is to be drawn in the
current coordinate system. Since these functions are often used to draw the border of a View, this
rectangle will typically be that View’s bounds rectangle. Some of the functions also take a clipping
rectangle; only those parts of aRect that lie within the clipping rectangle will be drawn.

As its name suggests, NSDrawWhiteBezel fills in its rectangle with white; NSDrawButton,
NSDrawGrayBezel, and NSDrawGroove use light gray. These functions are designed for
rectangles that are defined in unscaled, unrotated coordinate systems (that is, where the y-axis is
vertical, the x-axis is horizontal, and a unit along either axis is equal to one screen pixel). The
coordinate system can be either flipped or unflipped. The sides of the rectangle should lie on pixel
boundaries.

NSFrameRect and NSFrameRectWithWidth draw a frame around the inside of a rectangle in
the current color. NSFrameRect draws a frame with a width equal to 1.0 in the current coordinate
system; NSFrameRectWithWidth allows you to set the width of the frame. Since the frame is
drawn inside the rectangle, it will be visible even if drawing is clipped to the rectangle (as it would
be if the rectangle were a View object). These functions work best if the sides of the rectangle lie
on pixel boundaries.

In addition to its aRect and clipRect arguments, NSDrawTiledRects takes three more arguments,
which determine how thick the border is and what gray levels are used to form it.
NSDrawTiledRects works through the Foundation framework’s NSDivideRect function to take
successive 1.0–unit-wide slices from the sides of the rectangle specified by the sides argument.
Each slice is then drawn using the corresponding gray level from grays. NSDrawTiledRects

NXFrameRect() NXDrawButton() NXDrawWhiteBezel()

NXFrameRectWithWidth() NXDrawGroove() NXDrawGrayBezel()

11

makes and draws these slices count number of times. NSDivideRect returns a pointer to the
rectangle after the slice has been removed; therefore, if a side is used more than once, the second
slice is made inside the first. This also makes it easy to fill in the rectangle inside of the border.

In the following example, NSDrawTiledRects draws a bezeled border consisting of a
1.0–unit-wide white line at the top and on the left side, and a 1.0–unit-wide dark-gray line inside
a 1.0–unit-wide black line on the other two sides. The rectangle inside this border is filled in using
light gray.

int mySides[] = {NX_YMIN, NX_XMAX, NX_YMAX, NX_XMIN,

_YMIN, NX_XMAX};

float myGrays[] = {NS_BLACK, NS_BLACK, NS_WHITE, NS_WHITE,

NS_DARKGRAY, NS_DARKGRAY};

NSRect *aRect;

NSDrawTiledRects(aRect, (NSRect *)0, mySides, myGrays, 6);

PSsetgray(NS_LIGHTGRAY);

PSrectfill(aRect->origin.x, aRect->origin.y,

aRect->size.width, aRect->size.height);

As shown, mySides is an array that specifies sides of a rectangle; for example, NX_YMIN selects
the side parallel to the x-axis with the smallest y-coordinate value. myGrays is an array that
specifies the successive gray levels to be used in drawing parts of the border.

NSDrawTiledRects returns a pointer to the rectangle that lies within the border.

NSDrawColorTiledRects

SUMMARY << Description forthcoming >>

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSRect NSDrawColorTiledRects(NSRect boundsRect, NSRect clipRect, const NSRectEdge
*sides, NSColor **colors, int count)

DESCRIPTION << Description forthcoming >>

12

NSDrawDarkBezel

SUMMARY << Description forthcoming >>

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDrawDarkBezel(NSRect aRect, NSRect clipRect)

DESCRIPTION << Description forthcoming >>

NSDrawLightBezel

SUMMARY << Description forthcoming >>

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDrawLightBezel(NSRect aRect, NSRect clipRect)

DESCRIPTION << Description forthcoming >>

NSEraseRect

SUMMARY This function erases the passed rect by filling it with white.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSEraseRect(const NSRect aRect)

DESCRIPTION As its name suggests, NSEraseRect erases the rectangle referred to by its argument, filling it with
white. It does not alter the current color.

SEE ALSO NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

13

NSEventMaskFromType

SUMMARY This function returns the event mask for the specified type.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS unsigned int NSEventMaskFromType(NSEventType type)

DESCRIPTION NSEventMaskFromType returns the event mask corresponding to the specified type (an
enumerated constant). The returned mask is equal to 1 left-shifted by type bits.

NSFrameLinkRect

SUMMARY This function draws a distinctive outline around linked data.

DECLARED IN AppKit/NSDataLinkManager.h

SYNOPSIS void NSFrameLinkRect(NSRect aRect, BOOL isDestination)

DESCRIPTION NSFrameLinkRect draws a distinctive link outline just outside the rectangle specified by aRect.
To draw an outline around a destination link, isDestination should be YES, otherwise it should be
NO.

SEE ALSO NSLinkFrameThickness

NSGetAlertPanel

SUMMARY This function returns an alert panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS id NSGetAlertPanel(NSString *title, NSString *msg, NSString *defaultButton, NSString
*alternateButton, NSString *otherButton, ...)

14

DESCRIPTION NSGetAlertPanel returns an NSAlert panel that can be used to set up a modal session. A modal
session is useful for allowing the user to interrupt the program. During a modal session, you can
perform activities while the panel is displayed and check at various points in your program
whether the user has clicked one of the panel’s buttons. The arguments for this function are the
same as those for the NSRunAlertPanel function, but unlike that function, no button is displayed
if defaultButton is nil .

To set up a modal session, send the Application object a beginModalSession:for: message with
the panel returned by NSGetAlertPanel as its second argument. When you want to check if the
user has clicked one of the panel’s buttons, use runModalSession:. To end the modal session, use
endModalSession:. When you’re finished with the panel created by NSGetAlertPanel, you must
free it by passing it to NSReleaseAlertPanel.

SEE ALSO NSGetCriticalAlertPanel, NSGetInformationalAlertPanel, NSReleaseAlertPanel,
NSRunAlertPanel, NSRunCriticalAlertPanel, NSRunInformationalAlertPanel

NSGetCriticalAlertPanel

SUMMARY This function returns an alert panel to display a critical message.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS id NSGetCriticalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton,
NSString *alternateButton, NSString *otherButton, ...)

DESCRIPTION NSGetCriticalAlertPanel returns an NSAlert panel that can be used to set up a modal session.
Unlike the NSRunCriticalAlertPanel function, no button is displayed if defaultButton is nil .
When you’re finished with the panel created by NSGetCriticalAlertPanel, you must free it by
passing it to NSReleaseAlertPanel.

The arguments for this function are the same as those for the NSRunAlertPanel function. For
more information on using a panel in a modal session, see NSGetAlertPanel.

SEE ALSO NSGetAlertPanel, NSGetInformationalAlertPanel, NSReleaseAlertPanel,
NSRunAlertPanel, NSRunCriticalAlertPanel, NSRunInformationalAlertPanel

15

NSGetFileType

SUMMARY This function returns a file type based on the passed pasteboard type.

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSGetFileType(NSArray *pboardType)

DESCRIPTION NSGetFileType is the inverse of both NSCreateFileContentsPboardType and
NSCreateFilenamePboardType. When passed a pasteboard type as returned by those functions,
it returns the extension or file name from which the type was derived. It returns nil if pboardType
isn’t a pasteboard type created by those functions.

SEE ALSO NSCreateFileContentsPboardType, NSCreateFilenamePboardType, NSGetFileTypes

NSGetFileTypes

SUMMARY This function returns an array of file type based on the passed pasteboard types.

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSArray *NSGetFileTypes(NSArray *pboardType)

DESCRIPTION NSGetFileTypes accepts a null-terminated array of pointers to pasteboard types and returns a
null-terminated array of the unique extensions and file names from the file-content and file-name
types found in the input array. It returns nil if the input array contains no file-content or file-name
types. The returned array is allocated and must be freed by the caller. The pointers in the return
array point into strings passed in the input array.

SEE ALSO NSCreateFileContentsPboardType, NSCreateFilenamePboardType, NSGetFileType

16

NSGetInformationalAlertPanel

SUMMARY This function returns an alert panel to display an informational message.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS id NSGetInformationalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton,
NSString *alternateButton, NSString *otherButton, ...)

DESCRIPTION NSGetInformationalAlertPanel returns an NSAlert panel that can be used to set up a modal
session. Unlike the NSRunInformationalAlertPanel function, no button is displayed if
defaultButton is nil . When you’re finished with the panel created by
NSGetInformationalAlertPanel, you must free it by passing it to NSReleaseAlertPanel.

The arguments for this function are the same as those for the NSRunAlertPanel function. For
more information on using a panel in a modal session, see NSGetAlertPanel.

SEE ALSO NSGetAlertPanel, NSGetCriticalAlertPanel, NSReleaseAlertPanel, NSRunAlertPanel,
NSRunCriticalAlertPanel, NSRunInformationalAlertPanel

NSGetWindowServerMemory

SUMMARY This function returns the amount of memory being used by a context.

DECLARED IN AppKit/Application.h

SYNOPSIS int NSGetWindowServerMemory(DPSContext context, int *virtualMemory,
int *windowBackingMemory, NSString **windowDumpStream)

DESCRIPTION NSGetWindowServerMemory calculates the amount of Window Server memory being used at
the moment by the given Window Server context. If nil is passed for the context, the current
context is used. The amount of PostScript virtual memory used by the current context is returned
in the int pointed to by virtualMemory; the amount of window backing store used by windows
owned by the current context is returned in the int pointed to by windowBackingMemory. The sum
of these two numbers is the amount of the Window Server’s memory that this context is
responsible for.

17

To calculate these numbers, NSGetWindowServerMemory uses the PostScript language
operators dumpwindows and vmstatus. It takes some time to execute; thus, calling this function
in normal operation is not recommended.

If a non–nil value is passed in for windowDumpStream, the information returned from the
dumpwindows operator is echoed to the specified stream. This can be useful for finding out more
about which windows are using up your storage.

Normally, NSGetWindowServerMemory returns 0. If nil is passed for context and there’s no
current DPS context, this function returns –1.

NSHighlightRect

SUMMARY This function highlights the passed rect by filling it with white.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSHighlightRect(const NSRect aRect)

DESCRIPTION NSHighlightRect uses the compositerect operator to highlight the rectangle referred to by its
argument. Light gray becomes white, and white becomes light gray. This function must be called
twice, once to highlight the rectangle and once to unhighlight it; the rectangle should not be left
in its highlighted state. When not drawing on the screen, the compositing operation is replaced by
one that fills the rectangle with light gray.

SEE ALSO NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSInterfaceStyleForKey

SUMMARY This function returns an interface style value for the specified key and responder.

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS NSInterfaceStyle NSInterfaceStyleForKey(NSString *key, NSResponder *responder)

18

DESCRIPTION You call the NSInterfaceStyleForKey function to determine an interface style based on a key and
a responder, either of which may be nil . An NSInterfaceStyle value specifies the style in which an
interface item, such as a button or a scrollbar, should be drawn. For example, a value of
NSMacintoshInterfaceStyle indicates an item should be drawn in the Macintosh style. The enum
values defined for NSInterfaceStyle are NSNoInterfaceStyle, NSNextStepInterfaceStyle,
NSWindows95InterfaceStyle, and NSMacintoshInterfaceStyle. Note that
NSInterfaceStyleForKey never returns NSNoInterfaceStyle.

The interface style value returned by NSInterfaceStyleForKey depends on several factors. If
responder is not nil and if responder specifies an interface style other than NSNoInterfaceStyle,
NSInterfaceStyleForKey returns the responder’s style, and key is ignored.

Otherwise, if key is not nil and there is an interface style for key specified by the defaults system,
NSInterfaceStyleForKey returns the interface style for key from the defaults system.

Finally, if key is nil , or if there is no interface style for key specified by the defaults system,
NSInterfaceStyleForKey returns the global interface style specified by the defaults system.

The defaults system allows an application to customize its behavior to match a user’s
preferences.You can read about the defaults system in the documentation for NSUserDefaults.

NSLinkFrameThickness

SUMMARY This function returns the thickness of the outline around linked data.

DECLARED IN AppKit/NSDataLinkManager.h

SYNOPSIS float NSLinkFrameThickness(void)

DESCRIPTION NSLinkFrameThickness returns the thickness of the link outline around linked data so that the
outline can be properly erased by the application, or for other purposes.

SEE ALSO NSFrameLinkRect

19

NSNumberOfColorComponents

SUMMARY This function returns the number of color components in the specified color space.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS int NSNumberOfColorComponents(NSString *colorSpaceName)

DESCRIPTION NSNumberOfColorComponents returns the number of color components in the color space
whose name is provided by colorSpaceName.

NSPerformService

SUMMARY This function programmatically invokes a Services menu service.

DECLARED IN AppKit/Listener.h

SYNOPSIS BOOL NSPerformService(NSString *itemName, NSPasteboard *pboard)

DESCRIPTION NSPerformService allows an application to programmatically invoke a service found in its
services menu. itemName is a Services menu item, in any language. If the requested service is
from a submenu of the Services menu, itemName must contain a slash (for example,
“Mail/Selection”). The Pasteboard pboard must contain the data required by the service, and when
the function returns, pboard will contain the data supplied by the service provider.

NSPerformService returns YES if the service is successfully performed, NO otherwise.

20

NSPlanarFromDepth

SUMMARY This function returns whether the specified window depth is planar.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS BOOL NSPlanarFromDepth(NSWindowDepth depth)

DESCRIPTION NSPlanarFromDepth returns YES if the specified window depth is planar and NO if it is not.

NSReadPixel

SUMMARY This function reads a pixel value at the specified location.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSColor *NSReadPixel(NSPoint passedPoint)

DESCRIPTION NSReadPixel returns the color of the pixel at the given location. The location argument is taken
in the current coordinate system—in other words, you must lock focus on the View that contains
the pixel that you wish to query, and then pass the coordinate for the pixel in the View’s coordinate
system.

NSRectClip

SUMMARY This function modifies the current clipping path by intersecting it with the passed rect.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectClip(NSRect aRect)

21

DESCRIPTION NSRectClip intersects the current clipping path with the rectangle referred to by its argument,
aRect, to determine a new clipping path. This function works through the rectclip operator. After
computing the new clipping path, the current path is reset to empty.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectClipList

SUMMARY This function modifies the current clipping path by intersecting it with the passed rect.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectClipList(const NSRect *rects, int count)

DESCRIPTION NSRectClipList takes an array of count number of rectangles, constructs a path that’s the graphic
union of those rectangles, and intersects that path with the current clipping path. This function
works through the rectclip operator. After computing the new clipping path, the current path is
reset to empty.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectFill

SUMMARY This function fills the passed rect with the current color.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectFillList(const NSRect aRect)

22

DESCRIPTION NSRectFill fills the rectangle referred to by its argument with the current color. It works through
the rectfill operator.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectClipList, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectFillList

SUMMARY This function fills the rectangles in the passed list with the current color.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectFillList(const NSRect *rects, int count)

DESCRIPTION NSRectFillList fills a list of count rectangles with the current color. It works through the rectfill
operator.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectFillListWithColors

SUMMARY This function fills the rectangles in the passed list with the current color.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectFillListWithColors(const NSRect *rects, NSColor **colors, int count)

DESCRIPTION NSRectFillListWithColors takes a list of count rectangles and a matching list of count color
values. The first rectangle is filled with the first color, the second rectangle with the second color,
and so on. There must be an equal number of rectangles and color values. The rectangles should

23

not overlap; the order in which they’ll be filled can’t be guaranteed. This function alters the current
color of the current graphics state, setting it unpredictably to one of the values passed in colors.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectFillListWithGrays

SUMMARY This function fills the rectangles in the passed list with the current color.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectFillListWithGrays(const NSRect *rects, const float *grays, int count)

DESCRIPTION NSRectFillListWithGrays takes a list of count rectangles and a matching list of count gray
values. The first rectangle is filled with the first gray, the second rectangle with the second gray,
and so on. There must be an equal number of rectangles and gray values. The rectangles should
not overlap; the order in which they’ll be filled can’t be guaranteed. This function alters the current
color of the current graphics state, setting it unpredictably to one of the values passed in grays.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSUnionRect (Foundation Kit)

NSRegisterServicesProvider

SUMMARY This function registers a service provider.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS void NSRegisterServicesProvider(id provider, NSString *name)

DESCRIPTION NSRegisterServicesProvider registers provider as a service provider and associates it with the
specified name. name should be unique; it is the name by which the service is advertised to service
requestors.

24

NSApplications shouldn’t use this function. Instead, they should use NSApplication’s
setServicesProvider: method, passing a non-nil argument.

SEE ALSO NSSetShowsServicesMenuItem, NSShowsServicesMenuItem,
NSUnRegisterServicesProvider,

NSReleaseAlertPanel

SUMMARY This function releases an attention panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS void NSReleaseAlertPanel(id alertPanel)

DESCRIPTION When you’re finished with a panel created by a function such as NSGetAlertPanel,
NSGetCriticalAlertPanel, or NSGetInformationalAlertPanel, you must free it by passing it to
NSReleaseAlertPanel.

SEE ALSO NSGetAlertPanel, NSRunAlertPanel, NSRunCriticalAlertPanel

NSRunAlertPanel

SUMMARY This function creates an attention panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS int NSRunAlertPanel(NSString *title, NSString *msg, NSString *defaultButton, NSString
*alternateButton, NSString *otherButton, ...)

DESCRIPTION NSRunAlertPanel creates an attention panel that alerts the user to some consequence of a
requested action; the panel may also let the user cancel or modify the action. NSRunAlertPanel
runs the panel in a modal event loop.

The first argument is the title of the panel, which should be at most a few words long. The default
title is “Alert”. The next argument is the message that’s displayed in the panel. It can use

25

r

printf -style formatting characters; any necessary arguments should be listed at the end of the
function’s argument list (after the otherButton argument). For more information on formatting
characters, see the Rhapsody man page for printf .

There are arguments to supply titles for up to three buttons, which will be displayed in a row across
the bottom of the panel. The panel created by NSRunAlertPanel must have at least one button,
which will have the symbol for the Return key; if you pass a nil title to the other two buttons, they
won’t be created. If nil is passed as the defaultButton, “OK” will be used as its title.

NSRunAlertPanel not only creates the panel, it puts the panel on screen and runs it using the
runModalFor: method defined in the Application class. This method sets up a modal event loop
that causes the panel to remain on screen until the user clicks one of its buttons.
NSRunAlertPanel then removes the panel from the screen list and returns a value that indicates
which of the three buttons the user clicked: NS_ALERTDEFAULT, NS_ALERTALTERNATE, or
NS_ALERTOTHER. (If an error occurred while creating the panel, NS_ALERTERROR is
returned.) For efficiency, NSRunAlertPanel creates the panel the first time it’s called and reuses
it on subsequent calls, reconfiguring it if necessary.

SEE ALSO NSGetAlertPanel, NSGetCriticalAlertPanel, NSGetInformationalAlertPanel,
NSReleaseAlertPanel, NSRunCriticalAlertPanel, NSRunInformationalAlertPanel

NSRunCriticalAlertPanel

SUMMARY This function creates and runs a critical attention panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS int NSRunCriticalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton,
NSString *alternateButton, NSString *otherButton, ...)

DESCRIPTION NSRunCriticalAlertPanel creates an attention panel that alerts the user to some critical
consequence of a requested action; the panel lets the user cancel the action and may allow the use
to modify the action. It then runs the panel in a modal event loop.

The arguments for this function are the same as those for the NSRunAlertPanel function.

SEE ALSO NSGetAlertPanel, NSGetCriticalAlertPanel, NSGetInformationalAlertPanel,
NSReleaseAlertPanel, NSRunAlertPanel, NSRunInformationalAlertPanel

26

NSRunInformationalAlertPanel

SUMMARY This function creates and runs an informational attention panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS int NSRunInformationalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton,
NSString *alternateButton, NSString *otherButton, ...)

DESCRIPTION NSRunInformationalAlertPanel creates an informational attention panel that provides
information related to a requested action. It then runs the panel in a modal event loop.

The arguments for this function are the same as those for the NSRunAlertPanel function.

SEE ALSO NSGetAlertPanel, NSGetCriticalAlertPanel, NSGetInformationalAlertPanel,
NSReleaseAlertPanel, NSRunAlertPanel, NSRunCriticalAlertPanel

NSSetShowsServicesMenuItem

SUMMARY This function specifies whether an item should be included in Services menus.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS int NSSetShowsServicesMenuItem(NSString * itemName, BOOL enabled)

DESCRIPTION NSSetShowsServicesMenuItem is used by a service-providing application to specify whether
the Services menus of other applications will contain the itemName command; if so, users of those
applications will be able to request services through that command. If enabled is YES, the
Application Kit will build Services menus for other applications that include the itemName
command. If enabled is NO, item won’t appear in any application’s Services menu. itemName
should be the same, language-independent character string entered in the “Menu Item:” field of
the services file.

Service-providing applications should let users decide whether the Services menus of other
applications they use should include the itemName command.

27

NSSetShowsServicesMenuItem returns 0 if it’s successful in enabling or disabling the itemName
command, and a number other than 0 if not.

SEE ALSO NSRegisterServicesProvider, NSShowsServicesMenuItem, NSUnRegisterServicesProvider,

NSShowsServicesMenuItem

SUMMARY This function specifies whether a Services menu item is currently enabled.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS BOOL NSShowsServicesMenuItem(NSString * itemName)

DESCRIPTION NSShowsServicesMenuItem returns YES if itemName is currently enabled, and NO if it’s not.
itemName should be the same, language-independent character string entered in the “Menu Item:
” field of the services file.

SEE ALSO NSRegisterServicesProvider, NSSetShowsServicesMenuItem,
NSUnRegisterServicesProvider,

NSUnRegisterServicesProvider

SUMMARY This function unregisters a service provider.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS void NSUnRegisterServicesProvider(NSString *name)

DESCRIPTION NSUnRegisterServicesProvider unregisters the object named by name as a service provider.

NSApplications shouldn’t use this function. Instead, they should use NSApplication’s
setServicesProvider: method, passing a nil argument.

SEE ALSO NSRegisterServicesProvider, NSSetShowsServicesMenuItem, NSShowsServicesMenuItem

28

NSUpdateDynamicServices

SUMMARY This function causes the services information for the system to be updated.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS void NSUpdateDynamicServices(void)

DESCRIPTION NSUpdateDynamicServices is used by a service-providing application to re-register the services
it’s willing to provide. To do this, you create a file with the extension “.service” and place it in the
application’s path or ~/Library/Services. The content of the file is identical to a normal service
file (see the “Other Features” section for a description of service file format). You then call this
function.

It is only necessary to call NSUpdateDynamicServices if your program adds dynamic services
to the system.

NSWindowList

SUMMARY Get information about an application’s windows

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSWindowList(int size, int list[])

DESCRIPTION NSWindowList provides an ordered list of the application’s on-screen windows. It fills the list
array with up to size window numbers; the order of windows in the array is the same as their order
in the Window Server’s screen list (their front-to-back order on the screen). Use the count obtained
by NSCountWindows to specify the size of the array for NSWindowList.

SEE ALSO NSCountWindows

29

Client Library Functions
Note: This section has not been updated and has not received recent technical review. It is included
in this release to test the linkage between application development tools and on-line
documentation. The information in this section should be considered at best preliminary and
subject to change. An updated version of this file will be included in the next release.

DPSAddFD

SUMMARY Monitor a file descriptor

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddFD(int fd, DPSFDProc handler, void *userData, int priority)

DESCRIPTION DPSAddFD registers the function handler to be called each time there is activity with the file
specified by file descriptor fd. The function is called provided the following are true:

• The file descriptor fd must be valid and open; typically fd is generated through a call to open.
There needn’t be any data waiting to be read on fd.

• priority, an integer from 0 to 30, must be equal to or greater than the application’s current
priority threshold. See DPSAddTimedEntry for a further explanation.

DPSFDProc, handler’s defined type, takes the form

void *handler (int fd , void * userData)

where fd is the file descriptor that prompted the function call and userData is the same pointer that
was passed as the third argument to DPSAddFD. The userData pointer is provided as a
convenience, allowing you to pass arbitrary data to handler.

Typically, DPSAddFD is used to listen to a socket or pipe; it’s rarely used to monitor a common
file.

SEE ALSO DPSAddPort, DPSAddTimedEntry, DPSRemoveFD

1

DPSAddNotifyPortProc

SUMMARY Set the handler function for the notify port

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddNotifyPortProc(DPSPortProc handler, void *userData)

DESCRIPTION DPSAddNotifyPortProc registers handler as the function that’s called when a message arrives
on the notify port, the unique port, created through the task_notify Mach function, on which
notifications (such as port death) are sent. You don’t need to create the notify port yourself;
DPSAddNotifyPortProc creates it for you if it doesn’t already exist.

DPSPortProc, handler’s defined type, takes the form

void ∗ handler (msg_header_t * msg, void * userData)

where msg is a pointer to the message that was received at the port and userData is the
same pointer that was passed as the second argument to DPSAddNotifyPortProc. The userData
pointer is provided as a convenience, allowing you to pass arbitrary data to handler.

The notify port can have only one handler at a time; adding a handler removes the current one. You
can remove the port’s handler without specifying a new one with the DPSRemoveNotifyPortProc
function. The function’s argument must match the notify port’s current handler.

SEE ALSO DPSAddPort, DPSAddTimedEntry, DPSRemoveNotifyPortProc

DPSAddPort

SUMMARY Monitor a Mach port

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddPort(port_t port, DPSPortProc handler, int maxMsgSize, void *userData,
int priority)

DESCRIPTION DPSAddPort registers the function handler to be called each time your application asks for an
event or peeks at the event queue. The function is called provided the following are true:

2

• The Mach port port must be valid and it must hold a message waiting to be read.

• priority, an integer from 0 to 30, must be equal to or greater than the application’s current
priority threshold. See DPSAddTimedEntry for a further explanation.

DPSPortProc, handler’s defined type, takes the form

void *handler (msg_header_t * msg, void * userData)

where msg is a pointer to the message that was received at the port and userData is the same
pointer that was passed as the fourth argument to DPSAddPort. The userData pointer is provided
as a convenience, allowing you to pass arbitrary data to handler.

If, within handler, you want to call msg_receive to receive further messages at the port, you must
first call DPSRemovePort to remove the port from the system’s port set. (This is because your
application can’t receive messages from a port that’s in a port set.) After your application is
finished receiving messages directly from the port, it can call DPSAddPort to have the system
continue to monitor the port.

The contents of the message buffer msg, as received by handler, are invalid after the function
returns. If you need to save any of the information that you find.

The maxMsgSize argument is an integer that gives the size, in bytes, of the largest message you
expect to receive.

SEE ALSO DPSAddFD, DPSAddTimedEntry, DPSRemovePort

DPSAddTimedEntry

SUMMARY Create a timed entry

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSTimedEntry DPSAddTimedEntry(double period, DPSTimedEntryProc handler,
void *userData, int priority)

DESCRIPTION DPSAddTimedEntry registers handler as a “timed entry,” a function that’s called repeatedly at a
given time interval. period determines the number of seconds between calls to the timed entry.
Whenever an application based on the Application Kit attempts to retrieve events from the event

3

queue, it also checks (depending on priority) to determine whether any timed entries are due to be
called. userData is a pointer that you can use to pass some data to the timed entry.

The function registered as handler has the form:

void *handler (DPSTimedEntry tag , double now, void * userData)

where tag is the timed entry identifier returned by DPSAddTimedEntry, now is the number of
seconds since some arbitrary point in the past, and userData is the pointer DPSAddTimedEntry
received when this timed entry was installed.

An application’s priority threshold can be set explicitly as an integer from 0 to 31 through a call
to DPSGetEvent or DPSPeekEvent. It’s against this threshold that priority is measured (note that
priority can be no greater than 30—the additional threshold level, 31, is provided to disallow all
inter-event function calls). However, if you’re using the Application Kit, you should access the
event queue through Application class methods such as getNextEvent:. Although some of these
methods let you set the priority threshold explicitly, you typically invoke the methods that set it
automatically. Such methods use only three priority levels:

When applicable, you should use these constants as the value for priority. For example, if you want
handler to be called during normal execution, but not if an attention panel or a modal loop is
running, then you would set priority to NX_BASETHRESHOLD.

RETURN DPSAddTimedEntry returns a number identifying the timed entry or −1 to indicate an error.

SEE ALSO DPSRemoveTimedEntry

Constant Meaning

NX_BASETHRESHOLD Normal execution

NX_RUNMODALTHRESHOLD An attention panel is being run

NX_MODALRESPTHRESHOLD A modal event loop is being run

4

DPSAsynchronousWaitContext

SUMMARY Proceed asynchronously while PostScript code is executed

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAsynchronousWaitContext(DPSContext context, DPSPingProc handler,
void *userData)

DESCRIPTION This function is similar to the more familiar DPSWaitContext functions, except that rather than
wait for all PostScript code to execute, it returns immediately, allowing your application to
proceed while the PostScript code is executed in the background. The DPSPingProc function
handler is called (with context and userData as its two arguments) when all the PostScript code
has been executed. The DPSPingProc function takes the form

void * handler (DPSContext context , void * userData);

Warning: Be careful when you use this function; you must not send more PostScript code while
waiting for the handler to be called. In general, it’s best to not make any demands on the
Application Kit or the Client Library if you’re waiting for an asynchronous handler to return.

DPSCreateContext

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc)

DESCRIPTION DPSCreateContext establishes a connection with the Window Server and creates a PostScript
execution context in it. The new context becomes the current context. The first argument,
hostName, identifies the machine that’s running the Window Server; the second argument,
serverName, identifies the Window Server that’s running on that machine. With these two
arguments and the help of the Mach network server nmserver, the Mach port for the Window
Server can be identified. If hostName is NULL, the network server on the local machine is queried

5

for the Window Server’s port. If serverName is NULL, a default name for the Window Server is
used.

The last two arguments, textProc and errorProc, refer to call-back functions (defined in the Client
Library specification) that handle text returned from the Window Server and errors generated on
either side of the connection.

For an application that’s based on the Application Kit, you could create an additional context by
making this call:

DPSContext c;

c = DPSCreateContext(NXGetDefaultValue([NXApp appName], "NXHost"),

XGetDefaultValue([NXApp appName], "NXPSName"),

NULL,

NULL);

This example queries the application’s default values for the identity of the host machine and the
Window Server. By doing this, the new context is created in the correct Window Server even if
that Server is not on the same machine as the application process.

The context that DPSCreateContext creates allocates memory from the default allocation zone.
Also, when there’s difficulty creating the context, DPSCreateContext waits up to 60 seconds
before raising an exception. If you want to change either of these parameters, use
DPSCreateContextWithTimeoutFromZone. Its two additional arguments let you specify the
zone for the context to use when allocating context-specific data and a timeout value in
milliseconds.

This function returns the newly created DPSContext structure.

EXCEPTIONS DPSCreateContext raises a dps_err_outOfMemory exception if it encounters difficulty
allocating ports or other resources for the new context. It raises a dps_err_cantConnect exception
if it can’t return a context within the timeout period.

SEE ALSO DPSCreateContextWithTimeoutFromZone, DPSCreateNonsecureContext,
DPSCreateStreamContext

6

DPSCreateContextWithTimeoutFromZone

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateContextWithTimeoutFromZone(const char *hostName,
const char *serverName, DPSTextProc textProc, DPSErrorProc errorProc, int timeout,
NSZone *zone)

DESCRIPTION DPSCreateContextWithTimeoutFromZone is identical to DPSCreateContext except that it
accepts two additional arguments that let you specify the zone to use when allocating
context-specific data and a timeout value other than the default value of 60 seconds. Specify the
new timeout value in milliseconds,

This function returns the newly created DPSContext structure.

EXCEPTIONS DPSCreateContextWithTimeoutFromZone raises a dps_err_outOfMemory exception if it
encounters difficulty allocating ports or other resources for the new context. It raises a
dps_err_cantConnect exception if it can’t return a context within the timeout period.

SEE ALSO DPSCreateContext, DPSCreateNonsecureContext, DPSCreateStreamContext

DPSCreateNonsecureContext

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateNonsecureContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc, int timeout, NSZone *zone)

DESCRIPTION DPSCreateNonsecureContext creates a “nonsecure” context in which you can use PostScript
operators that are normally disallowed. The most significant of these are operators that let you
write files.

7

Few programmers will need to call this function directly: The Application Kit manages contexts
for programs based on the Kit. For example, when an application is launched, its Application
object calls DPSCreateContext to create a context in the Window Server. Similarly, to print a
View the Kit calls DPSCreateStreamContext to temporarily redirect PostScript code from the
View to a stream.

This function returns the newly created DPSContext structure.

SEE ALSO DPSCreateContext, DPSCreateContextWithTimeoutFromZone, DPSCreateStreamContext

DPSCreateStreamContext

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateStreamContext(NXStream *stream, int debugging,
DPSProgramEncoding progEnc, DPSNameEncoding nameEnc, DPSErrorProc errorProc)

DESCRIPTION DPSCreateStreamContext is similar to DPSCreateContext, except that the new context is
actually a connection from the client application to a stream. This connection becomes the current
context. PostScript code that the application generates is sent to the stream rather than to the
Window Server. The first argument, stream, is a pointer to an NXStream structure, as created by
NXOpenFile or NXMapFile . The debugging argument is intended for debugging purposes but is
not currently implemented. progEnc and nameEnc specify the type of program and user-name
encodings to be used for output to the stream. The last argument, errorProc, identifies the
procedure that’s called when errors are generated.

Few programmers will need to call this function directly: The Application Kit manages contexts
for programs based on the Kit. For example, when an application is launched, its Application
object calls DPSCreateContext to create a context in the Window Server. Similarly, to print a
View the Kit calls DPSCreateStreamContext to temporarily redirect PostScript code from the
View to a stream.

This function returns the newly created DPSContext structure.

SEE ALSO DPSCreateContext, DPSCreateContextWithTimeoutFromZone,
DPSCreateNonsecureContext

8

DPSDefineUserObject

SUMMARY Create a user object

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSDefineUserObject(int index)

DESCRIPTION DPSDefineUserObject associates index with the PostScript object that’s on the top of the operand
stack, thereby creating a user object (as defined by the PostScript language). If index is 0, the
object is assigned the next available index number. The function returns the new index, which can
then be passed to a pswrap-generated function that takes a user object.

Warning: To avoid coming into conflict with user objects defined by the Client Library or
Application Kit, use DPSDefineUserObject rather than the PostScript operator defineuserobject
or the single-operator functions DPSdefineuserobject and PSdefineuserobject.

RETURN DPSDefineUserObject, if successful in assigning an index, returns the index that the object was
assigned. If unsuccessful, it returns 0.

SEE ALSO DPSUndefineUserObject

DPSDiscardEvents

SUMMARY Discard events from the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSDiscardEvents(DPSContext context, int mask)

DESCRIPTION DPSDiscardEvents’s two parameters, context and mask, are the same as those for DPSGetEvent
and DPSPeekEvent. DPSDiscardEvents removes from the application’s event queue those
records whose event types match mask and whose context matches context.

9

,

RETURN DPSGetEvent and DPSPeekEvent return 1 if they are successful in accessing an event record and
0 if they aren’t.

SEE ALSO DPSGetEvent, DPSPeekEvent, DPSAddFD, DPSAddPort, DPSAddTimedEntry,
DPSPostEvent

DPSDoUserPath

SUMMARY Send an encoded PostScript path to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSDoUserPath(void *coords, int numCoords, DPSNumberFormat numType,
unsigned char *ops, int numOps, void *bbox, int action)

DESCRIPTION DPSDoUserPath sends an encoded user path to the Window Server and then executes, upon that
path, the operator specified by action. The use of this function, rather than the analogous
step-by-step path construction, is encouraged; rendering an encoded path is much more efficient
than executing the individual PostScript operators that would otherwise be needed.

An encoded user path consists of an array of coordinate values, a sequence of PostScript operators
and a bounding box specification. The values in the coordinate array are used as operands to the
operators; the operands are distributed to the operators in the order that they’re given. The resulting
path must fit within the bounding box.

The coordinates, operators, and bounding box are given by the function’s first five arguments:

• The array of coordinate values is given by coords.

• numCoords is the number of elements in coords.

• numType specifies the data type of the coordinates, as described below. All the values in coords
must be of the same type.

• ops is the sequence of PostScript operators, represented by constants as listed below.

• The bounding box is defined by the four coordinate values that you pass as an array in the bbox
argument. These are passed as operands to the setbbox operator. (If you don’t supply a setbbox
as part of the ops sequence, one is inserted for you.)

10

The following integer constants represent the data types that you can pass as the
numType argument:

ConstantMeaning
dps_float single-precision floating-point number
dps_long 32-bit integer
dps_short 8-bit integer

You can also specify 16- and 32-bit fixed-point real numbers. For 16-bit fixed-point numbers, use
dps_short plus the number of bits in the fractional portion. For 32-bit fixed-point numbers, use
dps_long plus the number of bits in the fractional portion.

These constants are provided for ops:

dps_setbbox
dps_moveto
dps_rmoveto
dps_lineto
dps_rlineto
dps_curveto
dps_rcurveto
dps_arc
dps_arcn
dps_arct
dps_closepath
dps_ucache

Once the user path has been constructed, the operator specified by action is executed. The value
of action is an index into Display PostScript’s encoded system names; the following constants,
provided as a convenience, represent the most commonly used actions:

dps_uappend
dps_ufill
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill
dps_inueofill
dps_inustroke
dps_def
dps_put

11

,

The following program fragment demonstrates the use of DPSDoUserPath as it creates and
strokes a user path (an isosceles triangle) within a bounding rectangle whose lower left corner is
located at (0, 0) and whose width and height are 200.

short coords[6] = {0, 0, 200, 0, 100, 200};

char ops[4] = {dps_moveto, dps_lineto,dps_lineto, dps_closepath};

short bbox[4] = {0, 0, 200, 200};

DPSDoUserPath(coords, 6, dps_short, ops, 4, bbox, dps_ustroke);

Note: If an application calls DPSDoUserPath with large values (~10,000-20,000) of numCoords
and/or numOps, it may generate a Display PostScript error.

SEE ALSO DPSDoUserPathWithMatrix

DPSDoUserPathWithMatrix

SUMMARY Send an encoded PostScript path to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSDoUserPathWithMatrix(void *coords, int numCoords, DPSNumberFormat numType,
unsigned char *ops, int numOps, void *bbox, int action, float matrix[6])

DESCRIPTION DPSDoUserPathWithMatrix sends an encoded user path to the Window Server and then
executes, upon that path, the operator specified by action. The use of this function, rather than the
analogous step-by-step path construction, is encouraged; rendering an encoded path is much more
efficient than executing the individual PostScript operators that would otherwise be needed.

An encoded user path consists of an array of coordinate values, a sequence of PostScript operators
and a bounding box specification. The values in the coordinate array are used as operands to the
operators; the operands are distributed to the operators in the order that they’re given. The resulting
path must fit within the bounding box.

The coordinates, operators, and bounding box are given by the function’s first five arguments:

• The array of coordinate values is given by coords.

• numCoords is the number of elements in coords.

12

• numType specifies the data type of the coordinates, as described below. All the values in coords
must be of the same type.

• ops is the sequence of PostScript operators, represented by constants as listed below.

• The bounding box is defined by the four coordinate values that you pass as an array in the bbox
argument. These are passed as operands to the setbbox operator. (If you don’t supply a setbbox
as part of the ops sequence, one is inserted for you.)

The following integer constants represent the data types that you can pass as the
numType argument:

ConstantMeaning
dps_float single-precision floating-point number
dps_long 32-bit integer
dps_short 8-bit integer

You can also specify 16- and 32-bit fixed-point real numbers. For 16-bit fixed-point numbers, use
dps_short plus the number of bits in the fractional portion. For 32-bit fixed-point numbers, use
dps_long plus the number of bits in the fractional portion.

These constants are provided for ops:

dps_setbbox
dps_moveto
dps_rmoveto
dps_lineto
dps_rlineto
dps_curveto
dps_rcurveto
dps_arc
dps_arcn
dps_arct
dps_closepath
dps_ucache

13

Once the user path has been constructed, the operator specified by action is executed. The value
of action is an index into Display PostScript’s encoded system names; the following constants,
provided as a convenience, represent the most commonly used actions:

dps_uappend
dps_ufill
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill
dps_inueofill
dps_inustroke
dps_def
dps_put

DPSDoUserPathWithMatrix’s matrix argument represents the transformation matrix operand
used by the ustroke, inustroke, and ustrokepath operators. If matrix is NULL, the argument is
ignored.

DPSFlush

SUMMARY Send PostScript data to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSFlush

DESCRIPTION DPSFlush flushes the application’s output buffer, forcing any buffered PostScript code or data to
the Window Server.

SEE ALSO DPSSendEOF

14

DPSGetEvent

SUMMARY Access events from the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSGetEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

DESCRIPTION DPSGetEvent and DPSPeekEvent are macros that access event records in an application’s event
queue. These routines are provided primarily for programs that don’t use the Application Kit. An
application based on the Kit should use the corresponding Application class methods (such as
getNextEvent: and peekNextEvent:into:) so that it can be journaled. DPSDiscardEvents
removes all event records of a specified type from the queue.

DPSGetEvent and DPSPeekEvent differ only in how they treat the accessed event record.
DPSGetEvent removes the record from the queue after making its data available to the
application; DPSPeekEvent leaves the record in the queue.

DPSGetEvent and DPSPeekEvent take the same parameters. The first, context, represents a
PostScript execution context within the Window Server. Virtually all applications have only one
execution context, which can be returned using DPSGetCurrentContext. Applications having
more than one execution context can use the constant DPS_ALLCONTEXTS to access events
from all contexts belonging to them.

The second argument, anEvent, is a pointer to an event record. If DPSGetEvent or
DPSPeekEvent is successful in accessing an event record, the record’s data is copied into the
storage referred to by anEvent.

mask determines the types of events sought. See the section “Types and Constants” for a list of the
constants that represent the event type masks. To check for more than one type of event, you
combine individual constants using the bitwise OR operator.

If an event matching the event mask isn’t available in the queue, DPSGetEvent or DPSPeekEvent
waits until one arrives or until timeout seconds have elapsed, whichever occurs first. The value of
timeout can be in the range of 0.0 to NX_FOREVER. If timeout is 0.0, the routine returns an event
only if one is waiting in the queue when the routine asks for it. If timeout is NX_ FOREVER, the
routine waits until an appropriate event arrives before returning.

The last argument, threshold, is an integer in the range 0 through 31 that determines which other
services may be provided during a call to DPSGetEvent or DPSPeekEvent.

15

Requests for services are registered by the functions DPSAddTimedEntry, DPSAddPort, and
DPSAddFD. Each of these functions takes an argument specifying a priority level. If this level is
equal to or greater than threshold, the service is provided before DPSGetEvent or DPSPeekEvent
returns.

RETURN DPSGetEvent returns 1 if it is successful in accessing an event record and 0 if it isn’t.

SEE ALSO DPSPeekEvent, DPSDiscardEvents, DPSAddFD, DPSAddPort, DPSAddTimedEntry,
DPSPostEvent

DPSInterruptContext

Warning: This function is unimplemented in the NEXTSTEP version of the Client Library.

DPSNameFromTypeAndIndex

SUMMARY Access the system and user name tables

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS const char *DPSNameFromTypeAndIndex(short type, int index)

DESCRIPTION DPSNameFromTypeAndIndex returns the text associated with index from the system or user
name table. If type is −1, the text is returned from the system name table; if type is 0, it’s returned
from the user name table.

The name tables are used primarily by the Client Library and pswrap; few programmers will
access them directly.

RETURN This function returns a read-only character string.

16

DPSPeekEvent

SUMMARY Access events from the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSPeekEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

DESCRIPTION DPSGetEvent and DPSPeekEvent are macros that access event records in an application’s event
queue. These routines are provided primarily for programs that don’t use the Application Kit. An
application based on the Kit should use the corresponding Application class methods (such as
getNextEvent: and peekNextEvent:into:) so that it can be journaled. DPSDiscardEvents
removes all event records of a specified type from the queue.

DPSGetEvent and DPSPeekEvent differ only in how they treat the accessed event record.
DPSGetEvent removes the record from the queue after making its data available to the
application; DPSPeekEvent leaves the record in the queue.

DPSGetEvent and DPSPeekEvent take the same parameters. The first, context, represents a
PostScript execution context within the Window Server. Virtually all applications have only one
execution context, which can be returned using DPSGetCurrentContext. Applications having
more than one execution context can use the constant DPS_ALLCONTEXTS to access events
from all contexts belonging to them.

The second argument, anEvent, is a pointer to an event record. If DPSGetEvent or
DPSPeekEvent is successful in accessing an event record, the record’s data is copied into the
storage referred to by anEvent.

mask determines the types of events sought. See the section “Types and Constants” for a list of the
constants that represent the event type masks. To check for more than one type of event, you
combine individual constants using the bitwise OR operator.

If an event matching the event mask isn’t available in the queue, DPSGetEvent or DPSPeekEvent
waits until one arrives or until timeout seconds have elapsed, whichever occurs first. The value of
timeout can be in the range of 0.0 to NX_FOREVER. If timeout is 0.0, the routine returns an event
only if one is waiting in the queue when the routine asks for it. If timeout is NX_ FOREVER, the
routine waits until an appropriate event arrives before returning.

The last argument, threshold, is an integer in the range 0 through 31 that determines which other
services may be provided during a call to DPSGetEvent or DPSPeekEvent.

17

Requests for services are registered by the functions DPSAddTimedEntry, DPSAddPort, and
DPSAddFD. Each of these functions takes an argument specifying a priority level. If this level is
equal to or greater than threshold, the service is provided before DPSGetEvent or DPSPeekEvent
returns.

RETURN DPSPeekEvent returns 1 if it is successful in accessing an event record and 0 if it isn’t.

SEE ALSO DPSGetEvent, DPSDiscardEvents, DPSAddFD, DPSAddPort, DPSAddTimedEntry,
DPSPostEvent

DPSPostEvent

SUMMARY Create an event

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSPostEvent(NXEvent *anEvent, int atStart)

DESCRIPTION DPSPostEvent lets you add an event record to your application’s event queue without involving
the Window Server. anEvent is a pointer to the event record to be added. atStart specifies where
the new record will be placed in relation to any other records in the queue. If atStart is TRUE, the
event is posted in front of all others and so will be the next one your application receives. If atStart
is FALSE, the event is posted behind all others and so won’t be returned until events that precede
it are processed.

You can free, reuse, or otherwise mangle anEvent after you’ve posted it without fear of corrupting
the posted record. DPSEvent copies the record it receives and posts the copy.

Note that event records you post using DPSPostEvent aren’t filtered by an event filter function set
with DPSSetEventFunc.

RETURN DPSPostEvent returns 0 if successful in posting the event record; it returns −1 if unsuccessful in
posting the record because the event queue is full.

SEE ALSO DPSSetEventFunc

18

DPSPrintError

SUMMARY Print error messages

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSPrintError(FILE *fp, const DPSBinObjSeq error)

DESCRIPTION DPSPrintError and DPSPrintErrorToStream format and print error messages received from a
PostScript execution context in the Window Server. The error message is extracted from the binary
object sequence error. DPSPrintError prints the error message to the file identified by fp;
DPSPrintErrorToStream prints the error message to stream.

You rarely need to call this function directly. However, if you reset the error handler for a
PostScript execution context, the new handler you install could use this function to process errors
that it receives.

SEE ALSO DPSPrintErrorToStream

DPSPrintErrorToStream

SUMMARY Print error messages

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSPrintErrorToStream(NXStream *stream, const DPSBinObjSeq error)

DESCRIPTION DPSPrintError and DPSPrintErrorToStream format and print error messages received from a
PostScript execution context in the Window Server. The error message is extracted from the binary
object sequence error. DPSPrintError prints the error message to the file identified by fp;
DPSPrintErrorToStream prints the error message to stream.

You rarely need to call this function directly. However, if you reset the error handler for a
PostScript execution context, the new handler you install could use this function to process errors
that it receives.

SEE ALSO DPSPrintError

19

DPSRemoveFD

SUMMARY Stop monitoring a file descriptor

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSRemoveFD(int fd)

DESCRIPTION DPSRemoveFD removes the specified file descriptor from the list of those that the application
will check.

SEE ALSO DPSAddFD

DPSRemoveNotifyPortProc

SUMMARY Removes the handler function for the notify port

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSRemoveNotifyPortProc(DPSPortProc handler)

DESCRIPTION Removes the notify port’s handler without specifying a new one. The handler argument must
match the notify port’s current handler.

SEE ALSO DPSAddNotifyPortProc

DPSRemovePort

SUMMARY Remove the Mach port being monitored.

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSRemovePort(port_t port)

20

DESCRIPTION DPSRemovePort removes the specified Mach port from the list of those that the application will
check.

SEE ALSO DPSAddPort

DPSRemoveTimedEntry

SUMMARY Create a timed entry

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSRemoveTimedEntry(DPSTimedEntry tag)

DESCRIPTION DPSRemoveTimedEntry removes a previously registered timed entry.

SEE ALSO DPSAddTimedEntry

DPSResetContext

Warning: This function is unimplemented in the NEXTSTEP version of the Client Library.

DPSSendEOF

SUMMARY Send PostScript data to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSSendEOF(DPSContext context)

21

DESCRIPTION DPSSendEOF sends a PostScript end-of-file marker to the given context. The connection to the
context isn’t closed or disturbed in any way by this function.

SEE ALSO DPSFlush

DPSSetDeadKeysEnabled

SUMMARY Allow dead key processing for a context’s events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSSetDeadKeysEnabled(DPSContext context, int flag)

DESCRIPTION DPSSetDeadKeysEnabled turns dead key processing on or off for context. If flag is 0, dead key
processing is turned off; otherwise, it’s turned on (the default).

Dead key processing is a technique for extending the range of characters that can be entered from
the keyboard. In NEXTSTEP, it provides one way for users to enter accented characters. For
example, a user can type Alternate-e followed by the letter “e” to produce the letter “é”. The first
keyboard input, Alternate-e, seems to have no effect—it’s the “dead key”. However, it signals
Client Library routines that it and the following character should be analyzed as a pair. If, within
NEXTSTEP, the pair of characters has been associated with a third character, a keyboard event
record representing the third character is placed in the application’s event queue, and the first two
event records are discarded. If there is no such association between the two characters, the two
event records are added to the event queue.

DPSSetEventFunc

SUMMARY Set the function that filters events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSEventFilterFunc DPSSetEventFunc(DPSContext context, DPSEventFilterFunc func)

22

DESCRIPTION DPSSetEventFunc establishes the function func as the function to be called when an event record
is returned from the PostScript context context in the Window Server. The registered function is
called before the event record is put in the event queue. If the registered function returns 0, the
record is discarded. If the registered function returns 1, the record is passed on for further
processing.

Only event records coming from the Window Server are filtered by the registered function.
Records that you post to the event queue using DPSPostEvent aren’t affected.

A DPSEventFilterFunc function takes the following form:

int * func (NXEvent * anEvent)

RETURN DPSSetEventFunc returns a pointer to the previously registered event function. This lets you
chain together the current and previous event functions.

SEE ALSO DPSPostEvent

DPSSetTracking

SUMMARY Coalesce mouse events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSSetTracking(int flag)

DESCRIPTION DPSSetTracking turns mouse event-coalescing on or off for the current context. If flag is 0,
coalescing is turned off; otherwise, it’s turned on (the default).

Event coalescing is an optimization that’s useful when tracking the mouse. When the mouse is
moved, numerous events flow into the event queue. To reduce the number of events awaiting
removal by the application, adjacent mouse-moved events are replaced by the most recent event
of the contiguous group. The same is done for left and right mouse-dragged events, with the
addition that a mouse-up event replaces mouse-dragged events that come before it in the queue.

RETURN DPSSetTracking returns the previous state of the event-coalescing switch.

23

DPSStartWaitCursorTimer

SUMMARY Initiate a count down for the wait cursor

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSStartWaitCursorTimer

DESCRIPTION DPSStartWaitCursorTimer triggers the mechanism that displays a wait cursor when an
application is busy and can’t respond to user input. In most cases, wait cursor support is automatic:
You’ll only need to call this function if your application starts a time-consuming operation that’s
not initiated by a user-generated event.

Client Library routines and the Window Server cooperate to display the wait cursor whenever
more than a preset amount of time elapses between the time an application takes an event record
from the event queue and the time the application is again ready to consume events. However,
when an application starts an operation that isn’t initiated by an event—such as one caused by
receiving a Mach message or by processing data from a file (see DPSAddPort and
DPSAddFD)—the wait cursor mechanism is bypassed. To ensure proper wait cursor behavior in
these cases, call DPSStartWaitCursorTimer before beginning the time-consuming operation.

SEE ALSO DPSAddFD, DPSAddPort

DPSSynchronizeContext

SUMMARY Synchronize a context with your application

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSSynchronizeContext(DPSContext context, int flag)

DESCRIPTION DPSSynchronizeContext causes DPSWaitContext to be called after each pswrap function is
called, thus synchronizing the PostScript context with your application.

24

DPSTraceContext

SUMMARY Trace data and events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSTraceContext(DPSContext context, int flag)

DESCRIPTION DPSTraceContext controls the tracing of data between a PostScript execution context (or
contexts) in the Window Server and an application process.

The first argument, context, specifies the context to be traced. An application’s single context can
be returned with DPSGetCurrentContext. Applications having more than one execution context
can use the constant DPS_ALLCONTEXTS to trace all contexts belonging to them.

The second argument, flag, determines whether tracing is enabled. When data tracing is enabled,
a copy of the PostScript code generated by an application and the values returned to it by the
Window Server is sent to standard error. Values returned to the application are marked by the
prepended string:

% value returned ==>

For applications based on the Application Kit, there are two preferable methods for turning on data
tracing: You can use the NXShowPS command-line switch when you launch an application from
Terminal. Alternatively, when you run the application under GDB, you can use the showps and
shownops commands to control tracing output.

Only one tracing context can be created for the supplied context. If you attempt to create additional
tracing contexts for a context that’s already being traced, no new context is created and
DPSTraceContext returns −1.

RETURN DPSTraceContext returns 0 if successful in creating a tracing context, or −1 if not.

SEE ALSO DPSTraceEvents

25

DPSTraceEvents

SUMMARY Trace data and events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSTraceEvents(DPSContext context, int flag)

DESCRIPTION DPSTraceEvents controls the tracing of events between a PostScript execution context (or
contexts) in the Window Server and an application process.

The first argument, context, specifies the context to be traced. An application’s single context can
be returned with DPSGetCurrentContext. Applications having more than one execution context
can use the constant DPS_ALLCONTEXTS to trace all contexts belonging to them.

The second argument, flag, determines whether tracing is enabled. When event tracing is enabled,
information about each event that the application receives is sent to standard error. For example,
for a left mouse-down event the listing might look like this:

Receiving: LMouseDown at: 343.0,69.0 time: 1271899

flags: 0x0 win: 6 ctxt: 76128 data: 1111,1

The listing displays the fields of the event record: type, location, time, flags, local window number,
PostScript execution context, and data. The contents of the data field listing depends on the event
type; for instance, in the preceding example the event number and the click count were displayed.

To enable event tracing, you can use the NXTraceEvents command-line switch when you launch
an application from Terminal. Alternatively, when you run the application under GDB, you can
use the traceevents and tracenoevents commands to control event-tracing output.

SEE ALSO DPSTraceContext

26

DPSUndefineUserObject

SUMMARY Remove a user object

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSUndefineUserObject(int index)

DESCRIPTION DPSUndefineUserObject removes the association between index and the PostScript object it
refers to, thus destroying the user object. By destroying a user object that’s no longer needed, you
can let the garbage collector reclaim the previously associated PostScript object.

SEE ALSO DPSDefineUserObject

NX_EVENTCODEMASK

SUMMARY Generate an event mask for an event type

DECLARED IN dpsclient/event.h

SYNOPSIS int NX_EVENTCODEMASK(int type)

DESCRIPTION This handy utility macro returns an event mask that corresponds to the given (single) event type.

27

28

Single-Operator Functions

Note: This section has not been updated and has not received recent technical review. It is
included in this release to test the linkage between application development tools and on-line
documentation. The information in this section should be considered at best preliminary and
subject to change. An updated version of this file will be included in the next release.

PSadjustcursor(float dx, float dy)
PSalphaimage(void)
PSbasetocurrent(float bx, float by, float *cx, float *cy)
PSbasetoscreen(float bx, float by, float *sx, float *sy)
PSbuttondown(boolean *isdown)
PScleartrackingrect(int trectnum, userobject gstate)
PScomposite(float srcx, float srcy, float width, float height, userobject srcgstate, float destx, float

desty, int op)

The value passed as op should be one of the following:

PScompositerect(float destx, float desty, float width, float height, int op)

The value passed as op should be one of the constants listed under PScomposite, plus
NX_HIGHLIGHT.

PScountframebuffers(int *count)
PScountscreenlist(int context, int *count)
PScountwindowlist(int context, int *count)
PScurrentactiveapp(int *context)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentalpha(float *coverage)
PScurrentdefaultdepthlimit(int *depth)

NX_CLEAR NX_SIN NX_SATOP

NX_COPY NX_DIN NX_DATOP

NX_SOVER NX_SOUT NX_PLUSD

NX_DOVER NX_DOUT NX_PLUSL

NX_XOR

1

Warning: Don’t use this function if you’re using the Application Kit.

PScurrentdeviceinfo(userobject window, int *min, int *max, boolean *iscolor)
PScurrenteventmask(userobject window, int *mask)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentframebuffertransfer(void)
PScurrentmouse(userobject window, float *x, float *y)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentowner(userobject window, int *context)
PScurrentshowpageprocedure(void)
PScurrentrusage(float *ctime, float *utime, float *stime, int *msgsend, int *msgrcv, int

*nsignals, int *nvcsw, int *nivcsw)
PScurrenttobase(float cx, float cy, float *bx, float *by)
PScurrenttoscreen(float cx, float cx, float *sx, float *sy)
PScurrentuser(int *uiId, int *gid)
PScurrentwaitcursorenabled(boolean *isenabled)
PScurrentwindow(userobject *window)
PScurrentwindowalpha(userobject window, int *alpha)
PScurrentwindowbounds(userobject window, float *x, float *y, float *width, float *height)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowdepth(userobject window, int *depth)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowdepthlimit(userobject window, int *depth)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowdict(userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowlevel(userobject window, int *level)
PScurrentwriteblock(bool *doesblock)
PSdissolve(float srcx, float srcy, float sourceWidth, float width, userobject srcgstate, float destx,

float desty, float delta)
PSdumpwindow(int dumplevel, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSdumpwindows(int dumplevel, userobject context)

2

Warning: Don’t use this function if you’re using the Application Kit.

PSfindwindow(float x, float y, int place, userobject otherwindow, float *x', float *y',
userobject *window, boolean *found)

The value passed as place should be one of the following:

NX_ABOVE
NX_BELOW

PSflushgraphics(void)
Warning: Don’t use this function if you’re using the Application Kit.

PSframebuffer(int index, int stringlen, char string[], int *slot, int *unit, int *romid, int *x, int *y,
int *width, int *height, int *maxdepth)

PSfrontwindow(int *window)
Warning: Don’t use this function if you’re using the Application Kit.

PShidecursor(void)
PShideinstance(float x, float y, float width, float height)
PSmachportdevice(int width, int height, const int bbox[], int bboxSize, const float matrix[], const

char *hostname, const char *portname, const char *pixelencoding)
PSmovewindow(float x, float y, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSnewinstance(void)
PSnextrelease(int size, char string[])
PSobscurecursor(void)
PSorderwindow(int place, userobject otherwindow, int window)
Warning: Don’t use this function if you’re using the Application Kit.

The value passed as place should be one of the following:

NX_ABOVE
NX_BELOW
NX_OUT

PSosname(int size, char string[])
PSostype(int *type)
PSplacewindow(float x, float y, float width, float height, userobject window)†

3

Warning: Don’t use this function if you’re using the Application Kit.

PSplaysound(const char *soundname, int priority)
PSposteventbycontext(int type, float x, float y, int time, int flags, int window, int subtype, int

misc0, int misc1, int context, boolean *success)
PSreadimage(void)
PSrevealcursor(void)
PSrightbuttondown(int * isdown)
PSrightstilldown(int eventnum, boolean *stilldown)
PSscreenlist(int context, int count, int array[])
PSscreentobase(float sx, float sy, float *bx, float *by)
PSscreentocurrent(float sx, float sy, float *cx, float *cy)
PSsetactiveapp(int context)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetalpha(float coverage)
PSsetautofill(boolean flag, userobject window)
PSsetcursor(float x, float y, float mx, float my)
PSsetdefaultdepthlimit(int depth)
Warning: Don’t use this function if you’re using the Application Kit.

PSseteventmask(int mask, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

See the constants listed under “Event Type Masks” in the section “Types and Constants” for a
list of mask values.

PSsetexposurecolor(void)
PSsetflushexposures(boolean flag)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetframebuffertransfer(void)
PSsetinstance(boolean flag)
PSsetmouse(float x, float y)
PSsetowner(userobject context, userobject window)
PSsetsendexposed(boolean flag, userobject window)†
Warning: Don’t use this function if you’re using the Application Kit.

PSsetshowpageprocedure(int window)

4

Warning: Don’t use this function if you’re using the Application Kit.

PSsettrackingrect(float x, float y, float width, float height, boolean leftbool, boolean rightbool,
boolean insidebool, int userdata, int trectnum, userobject gstate)

Note: Only the Form 1 version of the settrackingrect operator is offered as a C function.

PSsetwaitcursorenabled(boolean flag)
PSsetwindowdepthlimit(int depth, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetwindowdict(userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetwindowlevel(int level, userobject window)
PSsetwindowtype(int type, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetwriteblock(int flag)
PSshow(const char *string)
PSshowcursor(void)
PSsizeimage(float x, float y, float width, float height, int *pixelswide, int *pixelshigh,

int *bits/sample, float matrix[], boolean *multiproc, int *ncolors)
PSstilldown(int eventnum, boolean *stilldown)
PStermwindow(userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSwindow(float x, float y, float width, float height, int type, int *window)
Warning: Don’t use this function if you’re using the Application Kit.

PSwindowdevice(userobject window)
PSwindowdeviceround(userobject window)
PSwindowlist(int context, int count, int subarray[])

5

6

PostScript Operators
Note: This section has not been updated and has not received recent technical review. It is
included in this release to test the linkage between application development tools and on-line
documentation. The information in this section should be considered at best preliminary and
subject to change. An updated version of this file will be included in the next release.

adjustcursor

SYNOPSIS dx dy adjustcursor −

Moves the cursor location by (dx, dy) from its current location. dx and dy are given in the current
coordinate system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentmouse, setmouse

alphaimage

SYNOPSIS pixelswide pixelshigh bits/sample matrix datasrc0 [...datasrcn] multiproc ncolors alphaimage −

Renders an image whose samples include an alpha component. (Most programmers should use
NXImageBitmap() instead of alphaimage.) This operator is similar to the standard colorimage
operator (as documented by Adobe Systems). However, note the following:

• When supplying the data components, alpha is always given last—either as the last data source
(datasrcn) if the data is given in separate vectors, or as the last element in a set of interleaved
data.

• The ncolors operand doesn’t account for alpha—the value of ncolors is the number of color
components only.

ERRORS invalidid , limitcheck, rangecheck, stackunderflow, typecheck, undefined, undefinedresult

1

basetocurrent

SYNOPSIS bx by basetocurrent cx cy

Converts (bx, by) from the current window’s base coordinate system to its current coordinate
system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetoscreen, currenttobase, currenttoscreen, screentobase, screentocurrent

basetoscreen

SYNOPSIS bx by basetoscreen sx sy

Converts (bx, by) from the current window’s base coordinate system to the screen coordinate
system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, currenttobase, currenttoscreen, screentobase, screentocurrent

buttondown

SYNOPSIS − buttondown isdown

Returns true if the left or only mouse button is currently down; otherwise it returns false.

Note: To test whether the mouse button is still down from a mouse-down event, use stilldown
instead of buttondown; buttondown will return true even if the mouse button has been released
and pressed again since the original mouse-down event.

2

ERRORS none

SEE ALSO currentmouse, rightbuttondown, rightstilldown, stilldown

cleartrackingrect

SYNOPSIS trectnum gstate cleartrackingrect −

Clears the tracking rectangle identified by trectnum, as set by settrackingrect, in the device
referred to by gstate (or the current graphics state if gstate is null). If no such rectangle exists, the
invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO settrackingrect

composite

SYNOPSIS srcx srcy width height srcgstate destx desty op composite −

Performs the compositing operation specified by op between pairs of pixels in two images, a
source and a destination. The source pixels are in the window device referred to by the srcgstate
graphics state, and the destination pixels are in the current window. If srcgstate is null , the current
graphics state is assumed. If either graphics state doesn’t refer to a window device, the invalidid
error is executed.

The rectangle specified by srcx, srcy, width, and height defines the source image. The outline of
the rectangle may cross pixel boundaries due to fractional coordinates, scaling, or rotated axes.
The pixels included in the source are all those that the outline of the rectangle encloses or enters.

The destination image has the same size, shape, and orientation as the source; destx and desty give
destination’s location image compared to the source. (Even if the two graphic states have different
orientations, the images will not; composite will not rotate images.)

3

Both images are clipped to the frame rectangles of their respective windows. The destination
image is further clipped to the clipping path of the current graphics state. The result of a
composite operation replaces the destination image.

op specifies the compositing operation. The choices for op and the result of each operation are
given in the following illustration.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO compositerect, setalpha

4

Figure 0-1 . Compositing Operations

Dover

Clear

Sover

Sin

Sout

Dout

Satop

Source image wherever source image is opaque, and destination image elsewhere.

Destination image wherever destination image is opaque, and source image elsewhere.

Source image wherever both images are opaque, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
and transparent elsewhere.

Source image wherever both images are opaque, destination image wherever destination
image is opaque but source image is transparent, and transparent elsewhere.

Transparent.

Destination image wherever destination image is opaque but source image is transparent
and transparent elsewhere.

Operation Destination after

Sum of source and destination images, with color values approaching 1 as a limit.
(PlusL is not implemented for the MegaPixel Display.)

PlusL

PlusD Sum of source and destination images, with color values approaching 0 as a limit.

opaque

Source
Destination

before

opaque

transparent

Din Destination image wherever both images are opaque, and transparent elsewhere.

Copy Source image.

transparent

5

compositerect

SYNOPSIS destx desty width height op compositerect −

In general, this operator is the same as the composite operator except that there’s no real source
image. The destination is in the current graphics state; destx, desty, width, and height describe the
destination image in that graphics state’s current coordinate system. The effect on the destination
is as if there were a source image filled with the color and coverage specified by the graphics
state’s current color parameter. op has the same meaning as the op operand of the composite
operator; however, one additional operation, Highlight, is allowed.

On the MegaPixel Display, Highlight turns every white pixel in the destination rectangle to light
gray and every light gray pixel to white, regardless of the pixel’s coverage value. Repeating the
same operation reverses the effect. (Highlight may act differently on other devices. For example,
on displays that assign just one bit per pixel, it would invert every pixel.)

Note: The Highlight operation doesn’t change the value of a pixel’s coverage component. To
ensure that the pixel’s color and coverage combination remains valid, Highlight operations should
be temporary and should be reversed before any further compositing.

For compositerect, the pixels included in the destination are those that the outline of the specified
rectangle encloses or enters. The destination image is clipped to the frame rectangle and clipping
path of the window in the current graphics state.

If the current graphics state doesn’t refer to a window device, the invalidid error is executed.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO composite, setalpha

copypage

Warning: This standard PostScript operator has no effect in the OPENSTEP implementation of
the Display PostScript system.

6

countframebuffers

SYNOPSIS − countframebuffers count

Returns the number of frame buffers that the Window Server is actually using.

ERRORS stackoverflow

SEE ALSO framebuffer

countscreenlist

SYNOPSIS context countscreenlist count

Returns the number of windows in the screen list that were created by the PostScript context
specified by context. This is in contrast with countwindowlist, which returns the number of
windows created by the context without regard to their inclusion in the screen list.

If context is 0, all windows in the screen list are counted, without regard to the context that created
them.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO countwindowlist, screenlist, windowlist

countwindowlist

SYNOPSIS context countwindowlist count

Returns the number of windows that were created by the PostScript context specified by context.
This is in contrast with countscreenlist, which returns the number of windows in the screen list
that were created by the PostScript context specified by context.

If context is 0, all windows are counted, without regard to the context that created them.

7

ERRORS stackunderflow, typecheck

SEE ALSO countscreenlist, screenlist, windowlist

currentactiveapp

SYNOPSIS − currentactiveapp context

Warning: Don’t use this operator if you’re using the Application Kit.

Returns the active application’s context. This operator is used by the window packages to assist
with wait cursor operation.

ERRORS stackoverflow

SEE ALSO setactiveapp

currentalpha

SYNOPSIS − currentalpha coverage

Returns the coverage parameter of the current graphics state.

ERRORS none

SEE ALSO composite, setalpha

currentdefaultdepthlimit

SYNOPSIS − currentdefaultdepthlimit depth

8

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
defaultDepthLimit class method instead.

Returns the current context’s default depth limit. This value determines a new window’s depth
limit.

ERRORS stackoverflow

SEE ALSO setdefaultdepthlimit, setwindowdepthlimit, currentwindowdepthlimit ,
currentwindowdepth

currentdeviceinfo

SYNOPSIS window currentdeviceinfo min max iscolor

Returns device-related information about the current state of window. min and max are the
smallest and largest number of bits per sample, respectively, and iscolor is a boolean value
indicating whether the device is a color device.

ERRORS invalidid , stackunderflow, typecheck

currenteventmask

SYNOPSIS window currenteventmask mask

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s eventMask
method instead.

Returns the current Window Server-level event mask for the specified window.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO seteventmask

9

currentframebuffertransfer

SYNOPSIS fbnum currentframebuffertransfer redproc greenproc blueproc grayproc

Returns the current transfer functions in effect for the framebuffer indexed by fbnum. fbnum
ranges from 0 to (countframebuffers – 1).

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO setframebuffertransfer, countframebuffers, framebuffer

currentmouse

SYNOPSIS window currentmouse x y

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
getMouseLocation: instead.

Returns the current x and y coordinates of the mouse location in the base coordinate system of the
specified window. If the mouse isn’t inside the specified window, these coordinates may be
outside the coordinate range defined for the window. If window is 0, the current mouse position
is returned relative to the screen coordinate system.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, buttondown, rightbuttondown , rightstilldown , setmouse,
stilldown

currentowner

SYNOPSIS window currentowner context

Returns a number identifying the PostScript context that currently owns the specified window. By
default, this is the PostScript context that created the window.

10

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setowner, termwindow, window

currentshowpageprocedure

SYNOPSIS window currentshowpageprocedure proc

Returns the PostScript procedure that’s executed when the showpage operator is executed while
the specified window is the current device.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setshowpageprocedure

currentrusage

SYNOPSIS − currentrusage ctime utime stime msgsend msgrcv nsignals nvcsw nivcsw

Returns information about the current time of day and about resource usage by the Window Server,
as provided by the system call getrusage(). The items returned, and their types, are as follows:

Name Type Value

ctime float Current time in seconds, modulo 10000

utime float User time for the Server process in seconds

stime float System time for the Server process in seconds

msgsen
d

int Messages sent by the Server to clients

msgrcv int Message received by the Server from clients

nsignal
s

int Number of signals received by the Server process

nvcsw int Number of voluntary context switches

11

currenttobase

SYNOPSIS cx cy currenttobase bx by

Converts (cx,cy) from the current coordinate system of the current window to its base coordinate
system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, currenttoscreen, screentobase, screentocurrent

currenttoscreen

SYNOPSIS cx cy currenttoscreen sx sy

Converts (cx, cy) from the current coordinate system of the current window to the screen
coordinate system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, currenttobase, screentobase, screentocurrent

currentuser

SYNOPSIS − currentuser uid gid

Returns the user id (uid) and the group id (gid) of the user currently logged in on the console of
the machine that’s running the Window Server.

nivcsw int Number of involuntary context switches

Name Type Value

12

ERRORS stackoverflow

currentwaitcursorenabled

SYNOPSIS context currentwaitcursorenabled isenabled

Returns the state of context’s wait cursor flag. If context is 0, returns the state of the global wait
cursor flag.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwaitcursorenabled

currentwindow

SYNOPSIS − currentwindow window

Returns the window number of the current window. Executes the invalidid error if the current
device isn’t a window.

ERRORS invalidid

SEE ALSO windowdeviceround

currentwindowalpha

SYNOPSIS window currentwindowalpha alpha

Returns an integer indicating whether the Window Server is currently storing alpha values for the
specified window. Possible alpha values are:

−2 Window is opaque; alpha values are explicitly allocated.

13

ERRORS invalidid , stackunderflow, typecheck

currentwindowbounds

SYNOPSIS window currentwindowbounds x y width height

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s getFrame:
or Application’s getScreenSize: method instead.

Returns the location and size of the window in screen coordinates. Pass 0 for window to get the
size of the entire workspace (the smallest rectangle that encloses all active screens).

x and y will be in the range [−215, 215 −1]; width and height will be in the range [0, 10000].

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO movewindow, placewindow

currentwindowdepth

SYNOPSIS window currentwindowdepth depth

Warning: Don’t use this operator if you’re using the Application Kit.

Returns window’s current depth. The invalidid error is executed if window doesn't exist.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwindowdepthlimit, currentwindowdepthlimit , setdefaultdepthlimit,
currentdefaultdepthlimit

0 Alpha values are stored explicitly

2 Window is opaque; no explicit alpha

14

currentwindowdepthlimit

SYNOPSIS window currentwindowdepthlimit depth

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s depthLimit
method instead.

Returns the window’s current depth limit, the maximum depth to which the window can be
promoted. Unless altered by the setwindowdepthlimit operator, a window’s depth limit is equal
to its context’s default depth limit. The invalidid error is executed if window doesn’t exist.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwindowdepthlimit, currentwindowdepth, setdefaultdepthlimit, currentdefaultdepthlimit

currentwindowdict

SYNOPSIS window currentwindowdict dict

Warning: Don’t use this operator if you’re using the Application Kit.

Returns the specified window’s dictionary.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwindowdict

currentwindowlevel

SYNOPSIS window currentwindowlevel level

Returns window’s tier. Executes the invalidid error if window doesn't exist.

15

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwindowlevel

currentwriteblock

SYNOPSIS − currentwriteblock doesblock

Returns whether the Window Server delays sending data to a client application whenever the
Server’s output buffer fills. currentwriteblock assumes the current context. If doesblock is true,
the Server waits until the buffer can accept more data. If doesblock is false, the Server discards
data that can’t be accepted immediately.

ERRORS none

SEE ALSO setwriteblock

dissolve

SYNOPSIS srcx srcy width height srcgstate destx desty delta dissolve −

The effect of this operation is a blending of a source and a destination image. The first seven
arguments choose source and destination pixels as they do for composite. The exact fraction of
the blend is specified by delta, which is a floating-point number between 0.0 and 1.0; the resulting
image is:

delta *source + (1− delta)*destination

If srcgstate is null, the current graphics state is assumed. If srcgstate or the current graphics state
does not refer to a window device, this operator executes the invalidid error.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO composite

16

dumpwindow

SYNOPSIS dumplevel window dumpwindow −

Warning: Don’t use this operator if you’re using the Application Kit.

Prints information about window to the standard output file. Only dumplevel 0 is implemented.
The information printed is the position and number of bytes of backing storage for the window.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO dumpwindows

dumpwindows

SYNOPSIS dumplevel context dumpwindows −

Warning: Don’t use this operator if you’re using the Application Kit.

Prints information about all windows owned by context to the standard output file. If context is 0,
it prints information about all windows. Only dumplevel 0 is implemented.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO dumpwindow

erasepage

SYNOPSIS − erasepage −

Warning: This standard operator is different in the OPENSTEP implementation.

Erases the entire window to opaque white.

17

ERRORS invalidid

SEE ALSO copypage, showpage

findwindow

SYNOPSIS x y place otherwindow findwindow x' y' window found

findwindow starts from a given position in the screen list, as explained below, and searches for
the first window below that position that contains the point (x, y). The x and y values are given in
screen coordinates.

The starting position is determined by place and otherwindow. place can be Above or Below, and
otherwindow is the window number of a window in the screen list. If you specify Above 0,
findwindow checks all windows in the screen list.

If a window containing the point is found, findwindow returns true, along with the window
number and the corresponding location in the base coordinate system of the window. Otherwise,
it returns false, and the values of x', y', and window are undefined.

ERRORS rangecheck, stackunderflow, typecheck

flushgraphics

SYNOPSIS − flushgraphics −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
flushWindow method instead.

Flushes to the screen all drawing done in the current buffered window. If the current window is
retained or nonretained, flushgraphics has no effect.

ERRORS invalidid , stackunderflow, typecheck

18

framebuffer

SYNOPSIS index string framebuffer name slot unit romid x y width height maxdepth

Provides information on the active frame buffer specified by index, where index ranges from 0 to
countframebuffers−1. string must be large enough to hold the resulting name of the frame buffer.
slot is the NeXTbus slot the frame buffer is physically occupying. If a board supports multiple
frame buffers, unit uniquely identifies the frame buffer within a slot. The ROM product code is
returned in romid. The bottom left corner of the frame buffer is returned in x and y (relative to the
screen coordinate system). The size of the frame buffer in pixels is returned in width and height.
maxdepth is the maximum depth displayable on this frame buffer (for example,
NSTwentyFourBitRGBDepth).

The limitcheck error is executed if string isn’t large enough to hold name. The rangecheck error
is executed if index is out of bounds.

ERRORS limitcheck, rangecheck, stackunderflow, typecheck

SEE ALSO countframebuffers

frontwindow

SYNOPSIS − frontwindow window

Warning: Don’t use this operator if you’re using the Application Kit.

Returns the window number of the frontmost window on the screen. If there aren’t any windows
on the screen, frontwindow returns 0.

ERRORS none

SEE ALSO orderwindow

19

hidecursor

SYNOPSIS − hidecursor −

Removes the cursor from the screen. It remains in effect until balanced by a call to showcursor.

ERRORS none

SEE ALSO obscurecursor, showcursor

hideinstance

SYNOPSIS x y width height hideinstance −

In the current window, hideinstance removes any instance drawing from the rectangle specified
by x, y, width, and height. x, y, width, and height are given in the window’s current coordinate
system.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO newinstance, setinstance

image

SYNOPSIS dict image –

Allows a window’s graphics state object to be used as a source of sample data. dict must be an
image dictionary in which only those keys listed in the following table are significant:

Key Type Value or Meaning

ImageType integer (Required) Must be 2.

20

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO alphaimage

initgraphics

SYNOPSIS − initgraphics −

Warning: This standard operator has additional effects in the OPENSTEP implementation of the
Display PostScript system.

XOrigin real (Required) X origin of the source rectangle in user
space coordinates as specified by the transformation in
the DataSource entry.

YOrigin real (Required) Y origin of the same.

Width real (Required) Width of the same.

Height real (Required) Height of the same.

ImageMatrix array (Required) The transformation matrix.

DataSource gstate (Required) A graphics state object that contains the
device that will be used as the source of sample data.
This device will also be used to determine the pixel
representation for the source, and the color space to be
used by the image.

Interpolate boolean (Optional) Request for image interpolation.

UnpaintedPath (various) (Return value) If some of the pixels in the source weren’t
available (because of clipping), then the UnpaintedPath
entry contains a userpath in the current (destination)
user space that encloses the area that couldn’t be filled.

PixelCopy boolean (Optional) If true, indicates that the source pixels should
be copied directly, without going through the normal
color conversion, transfer function, or halftoning. The
bits per pixel of the source must match the bits per pixel
of the destination, otherwise a typecheck error will
occur. If false or not present, the pixels will be imaged in
the usual way.

Key Type Value or Meaning

21

In addition to the effects documented by Adobe, this operator sets the coverage parameter in the
current window’s graphics state to 1 (opaque) and turns off instance drawing

ERRORS none

SEE ALSO hideinstance, newinstance, setalpha, setinstance

machportdevice

SYNOPSIS width height bbox matrix hostname portname pixelencoding machportdevice −

Sets up a PostScript device that can provide a generic rendering service for device-control
programs requiring page bitmaps from PostScript documents. For each rendered page,
machportdevice sends a Mach message containing the page bitmap to a port that has been
registered with the name server on the network.

width and height are integers that determine the number of device pixels for the page.

bbox is an array of integers that defines the rectangle (by giving its lower left and upper right
corners) that encompasses the imageable area. The array takes the form

[lowerLeftX lowerLeftY upperRightX upperRightY]

For the common case where the entire raster is imageable, bbox may be expressed as an empty
array. If bbox isn’t in the correct form, or if any portion of the rectangle it expresses falls outside
[0 0 width height], a rangecheck results. The bitmap data is stored in x-axis major indexing order.
The device coordinate of the lower left corner of the first pixel is (0,0), the coordinate of the next
pixel is (1,0) and so on for the entire scanline. Scanlines are long-word aligned.

matrix is the default transformation matrix for the device.

hostname and portname are strings that together identify the port that will receive the Mach
messages. If hostname is empty, the local host is assumed. If it’s “*”, the port is searched for on
all available hosts. If (in any case) the port can’t be found, a rangecheck results.

22

pixelencoding is a dictionary describing the format for the image data rendered by the Window
Server. It should contain these entries:

The value of colorSpace should be one of the following values, predefined in nextdict:

Only the following combinations of colorSpace and bitsPerSample are supported:

Key Type Value

samplesPerPixel integer Must be 1.

bitsPerSample integer Must be 1 or 2.

colorSpace integer Color space specification (see below).

isPlanar boolean true if sample values are stored in separate arrays
(currently must be false).

defaultHalftone dictionary Passed to sethalftone during device creation to set up
device default halftone.

initialTransfer procedure Passed to settransfer during device creation to set up
the initial transfer function for device.

jobTag integer Allows machportdevice to tag rendering jobs. This
value is included in the jobTag field of all printpage
messages generated by this device.

Name Value Description

NSOneIsBlackColorSpaceNumber 0 Monochromatic, high sample value is black.

NSOneIsWhiteColorSpaceNumber 1 Monochromatic, high sample value is white.

NSRGBColorSpaceNumber 2 RGB, (1,1,1) is white.

NSCMYKColorSpaceNumber 5 CMYK, (0,0,0,0) is white.

colorSpace bitsPerSample

NSOneIsBlackColorSpaceNumber 1

NSOneIsWhiteColorSpaceNumber 2

23

e

These read-only pixel-encoding dictionaries are predefined in nextdict:

The pagebuffer data is passed out-of-line, appearing in the receiving application’s address space.
(If the receiver is on the same host, the received pagebuffer references the same physical memory
as the Window Server’s pagebuffer, and is mapped copy-on-write.) The application should use
vm_deallocate() to release the pagebuffer memory when it’s no longer needed. The receiver must
acknowledge receipt of the data by sending a simple msg_header_t (with msg_id ==
NX_PRINTPAGEMSGID) back to the remote_port passed in the print message. The Window
Server will not continue executing the page description until acknowledgement is received.

If more than one copy of the page is needed (through either the copypage or #copies mechanism)
each copy is sent as a separate message. In this case the same pagebuffer will be sent in multipl
messages. The letter, legal, and note page types are gracefully ignored.

Messaging errors cause the invalidaccess error to be executed.

EXAMPLES This example sets up a 400 dpi 8.5 by 11 inch page on a raster with upper left origin (as
with the NeXT 400 dpi Laser Printer) and sends its print page messages to the port named
“nlp-123” on the local host:

Name Description

NeXTLaser-300 NeXT Laser Printer at 300 dpi resolution

NeXTLaser-400 NeXT Laser Printer at 400 dpi resolution

NeXTMegaPixelDisplay MegaPixel Display’s 2 bits-per-pixel gray

24

/dpi 400 def

/width dpi 8.5 mul cvi def

/height dpi 11 mul cvi def

width height % page bitmap dimensions in pixels

[] % use it all

[dpi 72 div 0 0 dpi -72 div 0 height] % device transform

() (nlp-123) % host (local) & port

NeXTLaser-400 % pixel-encoding description

machportdevice

This example sets up an 8 by 10 inch page on the same 8.5 by 11 inch page. It

specifies a 400 dpi raster with 1/4 inch horizontal margins and 1/2 inch vertical

margins:

/dpi 400 def

/width dpi 8.5 mul cvi def

/height dpi 11 mul cvi def

/topdots dpi .5 mul cvi def

/leftdots dpi .25 mul cvi def

width height % page bitmap dimensions in pixels

[

leftdots

topdots

width leftdots sub

height topdots sub

] % imageable area of bounding box

[

dpi 72 div

0

0

dpi -72 div

leftdots

height topdots sub

] % device transform

() (nlp-123) % host (local) & port

NeXTLaser-400 % pixel-encoding description

machportdevice

Note that in this example, the user space origin is at the lower left corner of the imageable area
(leftdots, height-topdots) in the device raster coordinate system. Usually, the imageable area is
meant to correspond with the ultimate destination of the bits. For example, a printer may have a
constant-sized pagebuffer with a fixed orientation in the paper path, but be able to accept various
sizes of paper. In this case, the page bitmap size will always be fixed, but the imageable area and
default device transformation can be adjusted to make the user space origin appear at the lower
left corner of each printed page.

25

ERRORS invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

movewindow

SYNOPSIS x y window movewindow −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s moveTo::
method instead.

Moves the lower left corner of the specified window to the screen coordinates (x, y). No portion
of the repositioned window can have an x or y coordinate with an absolute value greater than
16000. The operands can be integer, real, or radix numbers; however, they are converted to
integers in the Window Server by rounding toward 0.

The window need not be the frontmost window. This operator doesn’t change window’s ordering
in the screen list.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowbounds, placewindow

newinstance

SYNOPSIS − newinstance −

Removes any instance drawing from the current window.

ERRORS invalidid

SEE ALSO hideinstance, setinstance

26

nextrelease

SYNOPSIS − nextrelease string

Returns version information about this release.

ERRORS stackoverflow

SEE ALSO osname, ostype

NextStepEncoding

SYNOPSIS − NextStepEncoding array

Pushes the NextStepEncoding vector on the operand stack. This is a 256-element array, indexed
by character codes, whose values are the character names for those codes.

ERRORS stackoverflow

obscurecursor

SYNOPSIS − obscurecursor −

Removes the cursor image from the screen until the next time the mouse is moved. It’s usually
called in response to typing by the user, so the cursor won’t be in the way. If the cursor has already
been removed due to an obscurecursor call, obscurecursor has no effect.

ERRORS none

SEE ALSO hidecursor, revealcursor

27

orderwindow

SYNOPSIS place otherwindow window orderwindow −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
orderWindow:relativeTo: instead.

Orders window in the screen list as indicated by place and otherwindow. place can be Above,
Below, or Out:

• If place is Above or Below, the window is placed in the screen list immediately above or below
the window specified by otherwindow.

• If place is Above or Below and otherwindow is 0, the window is placed above or below all
windows in its tier.

• If place is Above or Below, otherwindow must be a window in the screen list; otherwise, the
invalidid error is executed.

• If place is Out, otherwindow is ignored, and the window is removed from the screen list, so it
won’t appear anywhere on the screen. Windows that aren’t in the screen list don’t receive user
events.

Note: orderwindow doesn’t change which window is the current window.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO frontwindow

osname

SYNOPSIS − osname string

Returns a string identifying the operating system of the Window Server’s current operating
environment. osname is defined in the statusdict dictionary, a dictionary that defines operators
specific to a particular implementation of the PostScript language. osname can be executed as
follows:

statusdict /osname get exec

28

ERRORS none

SEE ALSO nextrelease, ostype

ostype

SYNOPSIS − ostype int

Returns a number identifying the operating system of the Window Server’s current operating
environment. ostype is defined in the statusdict dictionary, a dictionary that defines operators
specific to a particular implementation of the PostScript language. ostype can be executed as
follows:

statusdict /ostype get exec

ERRORS none

SEE ALSO nextrelease, osname

placewindow

SYNOPSIS x y width height window placewindow −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
placeWindow: method instead.

Repositions and resizes the specified window, effectively allowing it to be resized from any corner
or point. x, y, width, and height are given in the screen coordinate system. No portion of the
repositioned window can have an x or y coordinate with an absolute value greater than 16000;
width and height must be in the range from 0 to 10000. The four operands can be integer or real
numbers; however, they are converted to integers in the Window Server by rounding toward 0.

placewindow places the lower left corner of the window at (x, y) and resizes it to have a width of
width and a height of height. The pixels that are in the intersection of the old and new positions
of the window survive unchanged (see Figure 0-2). Any other areas of the newly positioned
window are filled with the window’s exposure color (see setexposurecolor).

29

Figure 0-2 . placewindow

After moving or resizing a window with placewindow, you must execute the initmatrix and
initclip operators to reestablish the window’s default transformation matrix and default clipping
path.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowbounds, movewindow, setexposurecolor

playsound

SYNOPSIS soundname priority playsound −

Plays the sound soundname. The Window Server searches for a standard soundfile of the name

soundname.snd

The search progresses through the following directories in the order given, stopping when the
sound is located.

~/Library/Sounds
/LocalLibrary/Sounds
/NextLibrary/Sounds

No error occurs if the soundfile isn’t found: The operator has no effect.

The soundfile’s playback is assigned the priority level priority. The playback interrupts any
currently playing sound of the same or lower priority level.

This is what the window
looks like before placewindow
is called. Notice which pixels
survive unchanged after the
call to placeWindow. This
allows a window to be resized
from any corner or point.

width

he
ig

ht

(x, y)

placewindowBefore placewindowAfter

t the window
efore placewindow

Notice which pixels
changed after the
eWindow. This

30

ERRORS stackunderflow, typecheck

posteventbycontext

SYNOPSIS type x y time flags window subtype misc0 misc1 context posteventbycontext success

Posts an event to the specified context. The nine parameters preceding the context parameter
coincide with the NXEvent structure members (see “Types and Constants” for the definition of the
NXEvent structure). The x and y coordinate arguments are passed directly to the receiving context
without undergoing any transformations. window is the Window Server’s global window number.
Returns true if the event was successfully posted to context, and false otherwise.

You use this operator to post an application-defined event to your own application. Use Mach
messaging to communicate between applications.

ERRORS stackunderflow, typecheck

readimage

SYNOPSIS x y width height proc0 [... procn-1] string bool readimage −

Reads the pixels that make up the rectangular image described by x, y, width, and height in the
current window. (Most programmers should use NXReadBitmap() instead of this operator.)

Usually the image is the rectangle that has a lower left corner of (x, y) in the current coordinate
system and a width and height of width and height. If the axes have been rotated so that the sides
of the rectangle are no longer aligned with the edges of the screen, the image is the smallest
screen-aligned rectangle enclosing the given rectangle.

You typically call sizeimage before readimage (sending it the same x, y, width, and height values
you’ll use for readimage) to find out ncolors, the number of color components that readimage
must read. bool is a boolean value that determines whether readimage reads the alpha component
in addition to the color component(s) for each pixel. The total number of components to be read
for each pixel, together with the multiproc value returned by sizeimage, determine n, the number
of procedures that readimage requires. If multiproc is false, n equals 1. Otherwise, n equals the
number of color components plus the alpha component, if present.

31

readimage executes the procedures in order, 0 through n−1, as many times as needed. For each
execution, it pushes on the operand stack a substring of string containing the data from as many
scanlines as possible. The length of the substring is a multiple of

width * bits/sample * (samples/proc) / 8

rounded up to the nearest integer. (The width and bits/sample values are provided by the
sizeimage operator. samples is the number of color components plus 1 for the alpha component,
if present.)

The samples are ordered and packed as they are for the image, colorimage, or alphaimage
operator. For example, the alpha component is last and, if necessary, extra bits fill up the last
character of every scanline. Note that the contents of string are valid only for the duration of one
call to one procedure because the same string is reused on each procedure call. The rangecheck
error is executed if string isn’t long enough for one scanline.

ERRORS rangecheck, stackunderflow, typecheck

SEE ALSO alphaimage, sizeimage

revealcursor

SYNOPSIS − revealcursor −

Redisplays the cursor that was hidden by a call to obscurecursor, assuming that the cursor hasn’t
already been revealed by mouse movement. If the cursor hasn’t been removed from the screen by
a call to obscurecursor, revealcursor has no effect.

ERRORS none

SEE ALSO obscurecursor

rightbuttondown

SYNOPSIS − rightbuttondown isdown

32

Returns true if the right mouse button is currently down; otherwise it returns false.

Note: To test whether the right mouse button is still down from a mouse-down event, use
rightstilldown instead of rightbuttondown ; rightbuttondown will return true even if the mouse
button has been released and pressed again since the original mouse-down event.

ERRORS none

SEE ALSO buttondown, currentmouse, rightstilldown , stilldown

rightstilldown

SYNOPSIS eventnum rightstilldown stilldown

Returns true if the right mouse button is still down from the mouse-down event specified by
eventnum; otherwise it returns false. eventnum should be the number stored in the data
component of the event record for an event of type Rmousedown.

ERRORS stackunderflow, typecheck

SEE ALSO buttondown, currentmouse, rightbuttondown , stilldown

screenlist

SYNOPSIS array context screenlist subarray

Fills the array with the window numbers of all windows in the screen list that are owned by the
PostScript context specified by context. It returns the subarray containing those window numbers,
in order from front to back. If array isn’t large enough to hold them all, this operator will return
the frontmost windows that fit in the array.

If context is 0, all windows in the screen list are returned.

EXAMPLE This example yields an array containing the window numbers of all windows in the screen

list that are owned by the current PostScript context:

33

currentcontext

countscreenlist % find out how many windows

array % create array to hold them

currentcontext screenlist % fill it in

ERRORS invalidaccess, invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO countscreenlist, countwindowlist, windowlist

screentobase

SYNOPSIS sx sy screentobase bx by

Converts (sx, sy) from the screen coordinate system to the current window’s base coordinate
system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, currenttobase, currenttoscreen, screentocurrent

screentocurrent

SYNOPSIS sx sy screentocurrent cx cy

Converts (sx,sy) from the screen coordinate system to the current coordinate system of the current
window. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, currenttobase, currenttoscreen, screentobase

34

setactiveapp

SYNOPSIS context setactiveapp −

Warning: Don’t use this operator if you’re using the Application Kit.

Records the active application’s main (usually only) context. setactiveapp is used by the window
packages to assist with wait cursor operation.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentactiveapp

setalpha

SYNOPSIS coverage setalpha −

Sets the coverage parameter in the current window’s graphics state to coverage. coverage must
be a number between 0 and 1, with 0 corresponding to transparent, 1 corresponding to opaque, and
intermediate values corresponding to partial coverage. This establishes how much background
shows through for purposes of compositing.

ERRORS stackunderflow, typecheck, undefined

SEE ALSO composite, currentalpha

setautofill

SYNOPSIS flag window setautofill −

Applies only to nonretained windows; sets the autofill property of window to the value of flag. If
true, newly exposed areas of the window or areas created by placewindow will automatically be
filled with the window’s exposure color. If false, these areas will not change (typically they will
continue to contain the image of the last window in that area). If the current device is not a
window, this operator executes the invalidid error.

35

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO placewindow, setexposurecolor, setsendexposed

setcursor

SYNOPSIS x y mx my setcursor −

Sets the cursor image and hot spot. Rather than executing this operator directly, you’d normally
use a NXCursor object to define and manage cursors.

A cursor image is derived from a 16-pixel-square image in a window that’s generally placed
off-screen. The x and y operands specify the upper left corner of the image in the window’s current
coordinate system. The mx and my operands specify the relative offset (in units of the current
coordinate system) from (x, y) to the hot spot, the point in the cursor that coincides with the mouse
location. Assuming the current coordinate system is the base coordinate system, mx must be an
integer from 0 to 16, and my must be an integer from 0 to −16. After setcursor is executed, the
image in the window is no longer needed.

The cursor is placed on the screen using Sover compositing. The cursor’s opaque areas (alpha =
1) completely cover the background, while its transparent areas (alpha < 1) allow the background
to show through to a greater extent depending on the alpha values present in the cursor image.

Note: To make the off-screen window transparent, you can use compositerect with Clear.

The rangecheck error is executed if the image doesn’t lie entirely within the specified window or
if the point (mx, my) isn’t inside the image. If the current device isn’t a window, the invalidid error
is executed.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO hidecursor, obscurecursor, setmouse

setdefaultdepthlimit

SYNOPSIS depth setdefaultdepthlimit −

36

Warning: Don’t use this operator if you’re using the Application Kit.

Sets the current context’s default depth limit to depth. The Window Server assigns each new
context a default depth limit equal to the maximum depth supported by the system. When a new
window is created, its depth limit is set to its context’s default depth limit.

These depths are defined in nextdict:

where spp is the number of samples per pixel; bps is the number of bits per sample; and bpp is the
number of bits per pixel, also known as the window’s depth. (The samples-per-pixel value
excludes the alpha sample, if present.) planar and interleaved refer to how the sample data is
configured. If a separate data channel is used for each sample, the configuration is planar. If data
for all samples is stored in a single data channel, the configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar configurations
(4 for NSTwoBitGrayDepth and 16 for NSEightBitGrayDepth). Interleaved configurations
already account for an alpha sample whether or not it’s present; thus, the number of bits per pixel
for NSTwelveBitRGBDepth and NSTwentyFourBitRGBDepth depths remains unchanged.

The constant NSDefaultDepth is also available. If depth is NSDefaultDepth, the context’s default
depth limit is set to the Window Server’s maximum visible depth, which is determined by which
screens are active.

The rangecheck error is executed if depth is invalid.

ERRORS rangecheck, stackunderflow, typecheck

SEE ALSO currentdefaultdepthlimit , setwindowdepthlimit, currentwindowdepthlimit ,
currentwindowdepth

Depth Meaning

NSTwoBitGrayDepth 1 spp, 2bps, 2bpp, planar

NSEightBitGrayDepth 1 spp, 8bps, 8bpp, planar

NSTwelveBitRGBDepth 3 spp, 4bps, 16bpp, interleaved

NSTwentyFourBitRGBDepth 3 spp, 8bps, 32bpp, interleaved

37

seteventmask

SYNOPSIS mask window seteventmask −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
setEventMask: method instead.

Sets the Server-level event mask for the specified window to mask. For windows created by the
window packages, this mask may allow additional event types beyond those requested by the
application. The following operand names are defined for mask:

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currenteventmask

Mask Operand Event Type Allowed

Lmousedownmask Mouse-down, left or only mouse button

Lmouseupmask Mouse-up, left or only mouse button

Rmousedownmask Mouse-down, right mouse button

Rmouseupmask Mouse-up, right mouse button

Mousemovedmask Mouse-moved

Lmousedraggedmask Mouse-dragged, left or only mouse button

Rmousedraggedmask Mouse-dragged, right mouse button

Mouseenteredmask Mouse-entered

Mouseexitedmask Mouse-exited

Keydownmask Key-down

Keyupmask Key-up

Flagschangedmask Flags-changed

Kitdefinedmask Kit-defined

Sysdefinedmask System-defined

Appdefinedmask Application-defined

Allevents All event types

38

setexposurecolor

SYNOPSIS − setexposurecolor −

Applies to nonretained windows only; sets the exposure color to the color specified by the current
color parameter in the current graphics state. The exposure color (white by default) determines
the color of newly exposed areas of the window and of new areas created by placewindow. The
alpha value of these areas is always 1 (opaque). If the current device is not a window, this operator
executes the invalidid error.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO placewindow, setautofill, setsendexposed

setflushexposures

SYNOPSIS flag setflushexposures −

Warning: Don’t use this operator if you’re using the Application Kit.

Sets whether window-exposed and screen-changed subevents are flushed to clients. If flag is false,
no window-exposed or screen-changed events are flushed to the client until setflushexposures is
executed with flag equal to true. By default, window-exposed and screen-changed events are
flushed to clients.

ERRORS invalidid , stackunderflow, typecheck

setframebuffertransfer

SYNOPSIS redproc greenproc blueproc grayproc fbnum setframebuffertransfer −

Warning: This operator should only be used for the development of screen-calibration products.

39

Sets the framebuffer transfer functions in effect for the framebuffer indexed by fbnum. fbnum
ranges from 0 to countframebuffers–1. The framebuffer transfer describes the relationship
between the framebuffer values of the display, and the voltage produced to drive the monitor.

The initial four operands define the transfer procedures: Monochrome devices use grayproc (but
see the Note below), color devices use the others. The procedures must be allocated in shared
virtual memory. In addition, the Window Server assumes that the framebuffer values are directly
proportional to screen brightness. This is important for the accuracy of dithering, compositing,
and similar calculations.

The default transfer for NeXT Color Displays is

{ 1 2.2 div exp } bind dup dup {}

Note: setframebuffertransfer is unsupported on the current generation of NeXT monochrome
displays.

It’s possible to make framebuffer transfer functions persist beyond the lifetime of the Window
Server by storing a property in the NetInfo screens database. In the local NetInfo domain,
/localconfig/screens holds the configuration information for the screens known to the Window
Server (MegaPixel, NeXTdimension, and so on). These specify the layout and activation state of
the screen. The NetInfo defaultTransfer property can contain a string of PostScript code suitable
for execution by the setframebuffertransfer operator (without the fbnum parameter). For example,
the following represents the NetInfo configuration for a NeXTdimension screen with a default
gamma of 2.0:

localhost:1# niutil -read . /localconfig/screens/NeXTdimension

name: NeXTdimension

slot: 2

unit: 0

defaultTransfer: {1 2.0 div exp } dup dup dup

bounds: 0 1120 0 832

active: 1

_writers: *

The defaultTransfer property is used to configure the screen each time the Window Server starts
up. This allows monitor calibration products to save their settings so the next time the Window
Server starts up, the new values will be used. Note that in some cases, the NetInfo configuration
state for a monitor will not have active equal to 1, although the monitor is being used by the
Window Server. If there are no active screens (screens that are explicitly marked as being active),
the Window Server uses a suitable default, however, the other NetInfo properties for that screen
are ignored. Thus, you must be sure that the screen for which you are adding a defaultTransfer
value has active set to 1.

40

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setframebuffertransfer, countframebuffers, framebuffer

setinstance

SYNOPSIS flag setinstance −

Sets the instance-drawing mode in the current graphics state on (if flag is true) or off (if flag is
false).

ERRORS stackunderflow, typecheck

SEE ALSO hideinstance, newinstance

setmouse

SYNOPSIS x y setmouse −

Moves the mouse location (and, correspondingly, the cursor) to (x, y), given in the current
coordinate system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO adjustcursor, basetocurrent, currentmouse, screentocurrent

setowner

SYNOPSIS context window setowner −

Sets the owning PostScript context of window to context. The window is terminated automatically
when context is terminated.

41

e

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentowner, termwindow, window

setsendexposed

SYNOPSIS flag window setsendexposed −

Warning: Don’t use this operator if you’re using the Application Kit.

Controls whether the Window Server generates a window-exposed subevent (of the kit-defined
event) for window under the following circumstances:

• Nonretained window: When an area of the window is exposed, or a new area is created by
placewindow

• Retained or buffered window: When an area of the window that had instance drawing in it is
exposed

By default, window-exposed subevents are generated under these circumstances. In any case, th
window-exposed subevent isn’t flushed to the application until the Window Server receives
another event.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setflushexposures, placewindow, setautofill, setexposurecolor

setshowpageprocedure

SYNOPSIS proc window setshowpageprocedure −

Warning: Don’t use this operator if you’re using the Application Kit.

Sets the PostScript procedure that’s executed, for the specified window, when the showpage
procedure is executed. proc must be allocated in shared virtual memory.

42

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentshowpageprocedure

settrackingrect

SYNOPSIS x y width height leftbool rightbool insidebool userdata trectnum gstate
 settrackingrect −

SYNOPSIS or

SYNOPSIS x y width height optionarray trectnum gstate settrackingrect −

Important: The settrackingrect operator boasts two form, distinguished by the number and
contents of the operands that are passed. The operator itself looks at its operands to
determine how to proceed. The common portion of the two forms is described immediately
below. Attention is then paid to the features that set the forms apart.

Sets a tracking rectangle in the window referred to by gstate to the rectangle specified by x, y,
width, and height (in the coordinate system of that graphics state). If gstate is null , the window
referred to by the current graphics state is used. trectnum is an arbitrary integer that can be any
number except 0. It’s used to identify tracking rectangles; no two tracking rectangles can share
the same trectnum value. Any number of tracking rectangles may be set in a single window.

The tracking rectangle will remain in effect until cleartrackingrect is called, or until another
tracking rectangle with the same trectnum is set.

43

Form 1
SYNOPSIS x y width height leftbool rightbool insidebool userdata trectnum gstate

settrackingrect −

In this form, the application receives mouse-exited and mouse-entered events as the cursor leaves
and reenters the visible portion of the tracking rectangle. In the event record for a mouse-exited
or mouse-entered event, the data component will contain trectnum along with the event number
of the last mouse-down event.

userdata is an arbitrary integer that you assign to the tracking rectangle. Since several tracking
rectangles can share the same userdata value, you can use userdata to identify an object in your
application that will be notified when a mouse-entered or mouse-exited event occurs in any of the
tracking rectangles.

You can specify that mouse-entered and mouse-exited events be generated only if certain mouse
buttons are down. If leftbool is true, the events will be generated only when the left mouse button
is down; likewise for rightbool and the right mouse button. If both leftbool and rightbool are true,
the events will be generated only if both mouse buttons are down. If both leftbool and rightbool
are false, the position of the mouse buttons isn’t taken into account in generating mouse-entered
and mouse-exited events.

settrackingrect causes the Window Server to repeatedly compare the current cursor position to
the previous one to see whether the cursor has moved from inside the tracking rectangle to outside
it or vice versa. insidebool tells settrackingrect whether to consider the initial cursor position to
be inside or outside the tracking rectangle:

• If insidebool is true and the cursor is initially outside the tracking rectangle, a mouse-exited
event is generated.

• If insidebool is false and the cursor is initially inside the tracking rectangle, a mouse-entered
event is generated.

44

Form 2
SYNOPSIS x y width height optionarray trectnum gstate settrackingrect −

In this form, settrackingrect sets special event-gathering attributes of a rectangle (events are not
generated when the boundary is crossed).

optionarray contains key-value pairs that define the attributes that you’re interested in. An empty
option array is meaningless and will raise a rangecheck error. The following keys are currently
defined:

EXAMPLE This example turns pressure on and coalescing off (thereby switching the default

values):

0 0 10 10 [/Pressure true /Coalesce false] 1 null settrackingrect

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO cleartrackingrect

setwaitcursorenabled

SYNOPSIS bool context setwaitcursorenabled −

Allows applications to enable and disable wait cursor operation in the specified context. If context
is 0, setwaitcursorenabled sets the global wait cursor flag, which overrides all per-context
settings. If the global flag is set to false, the wait cursor is disabled for all contexts.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentwaitcursorenabled

Key Type Meaning

Pressure bool Treat non-zero pressure values as a mouse-down (false
by default)

Coalesce bool Coalesce mouse motion events (true by default)

45

setwindowdepthlimit

SYNOPSIS depth window setwindowdepthlimit −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
setDepthLimit: method instead.

Sets the depth limit of window to depth. These depths are defined in nextdict:

where spp is the number of samples per pixel; bps is the number of bits per sample; and bpp is the
number of bits per pixel, also know as the window’s depth. (The samples-per-pixel value excludes
the alpha sample, if present.) planar and interleaved refer to how the sample data is configured.
If a separate data channel is used for each sample, the configuration is planar. If data for all
samples is stored in a single data channel, the configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar configurations
(4 for NSTwoBitGrayDepth and 16 for NSEightBitGrayDepth). Interleaved configurations
already account for an alpha sample whether or not it’s present; thus, the number of bits per pixel
for NSTwelveBitRGBDepth and NSTwentyFourBitRGBDepth depths remains unchanged.

Another constant, NSDefaultDepth, is defined as the default depth limit in the Window Server’s
current context. If depth is NSDefaultDepth, then the window’s depth limit is set to the context’s
default depth limit. If the resulting depth is lower than the window’s current depth, the window’s
data is dithered down to this depth, which may result in the loss of graphic information.

The rangecheck error is executed if depth is invalid. The invalidid error is executed if window
doesn’t exist.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowdepthlimit , setdefaultdepthlimit, currentdefaultdepthlimit ,
currentwindowdepth

Depth Meaning

NSTwoBitGrayDepth 1 spp, 2bps, 2bpp, planar

NSEightBitGrayDepth 1 spp, 8bps, 8bpp, planar

NSTwelveBitRGBDepth 3 spp, 4bps, 16bpp, interleaved

NSTwentyFourBitRGBDepth 3 spp, 8bps, 32bpp, interleaved

46

setwindowdict

SYNOPSIS dict window setwindowdict −

Warning: Don’t use this operator if you’re using the Application Kit.

Sets the dictionary for window to dict.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentwindowdict

setwindowlevel

SYNOPSIS level window setwindowlevel −

Sets the window’s tier to that specified by level. Window tiers constrain the action of the
orderwindow operator; see orderwindow for more information.

You rarely use this operator. To make a panel float above other windows, use the Panel class’s
setFloatingPanel: method.

Attempting to change the level of workspaceWindow executes the invalidaccess error.
(workspaceWindow is a PostScript name whose value is the window number of the workspace
window.)

ERRORS invalidaccess, invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowlevel, orderwindow

setwindowtype

SYNOPSIS type window setwindowtype −

47

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
setBackingType: method instead.

Sets the window’s buffering type to that specified. Currently, the only allowable type conversions
are from Buffered to Retained and from Retained to Buffered. All other possibilities execute the
limitcheck error.

ERRORS invalidaccess, invalidid , limitcheck, stackunderflow, typecheck

SEE ALSO window

setwriteblock

SYNOPSIS bool setwriteblock −

Sets how the Window Server responds when its output buffer to a client application fills. If bool
is true, the Server defers sending data (event records, error messages, and so on) to that application
until there’s once again room in the output buffer. In this way, no output data is lost—this is the
Server’s default behavior. If bool is false, the Server ignores the state of the output buffer: If the
buffer fills and there’s more data to be sent, the new data is lost. setwriteblock operates on the
current context.

Most programmers won’t need to use this operator. If you do use it, make sure that you disable
the Window Server’s default behavior only during the execution of your own PostScript code. If
it’s disabled while Application Kit code is being executed, errors will result.

ERRORS stackoverflow, typecheck

SEE ALSO currentwriteblock

showcursor

SYNOPSIS − showcursor −

48

Restores the cursor to the screen if it’s been hidden with hidecursor, unless an outer
nested hidecursor is still in effect (because it hasn’t yet been balanced by a showcursor). For
example:

% cursor is showing initially

. . .

hidecursor % hides the cursor

. . .

hidecursor % cursor stays hidden

. . .

showcursor % cursor still hidden due to first hidecursor

. . .

showcursor % displays the cursor

ERRORS none

SEE ALSO hidecursor

showpage

SYNOPSIS − showpage −

Warning: This standard operator is different in the OPENSTEP implementation of the Display
PostScript system.

This has no effect if the current device is a window; otherwise, it functions as documented by
Adobe.

ERRORS none

SEE ALSO copypage, erasepage

sizeimage

SYNOPSIS x y width height matrix sizeimage pixelswide pixelshigh bits/sample matrix
multiproc ncolors

49

Returns various parameters required by the readimage operator when reading the image
contained in the rectangle given by x, y, width, and height in the current window. (See readimage
for more information.)

pixelswide and pixelshigh are the width and height of the image in pixels. The operand matrix is
filled with the transformation matrix from user space to the image coordinate system and pushed
back on the operand stack.

The other results of this operator describe the window device and are dependent on the window’s
depth. Each pixel has ncolors color components plus one alpha component; the value of each
component is described by bits/sample bits. If multiproc is true, readimage will need multiple
procedures to read the values of the image’s pixels. Here are the values that sizeimage returns for
windows of various depths:

ERRORS stackunderflow, typecheck

SEE ALSO alphaimage, readimage

stilldown

SYNOPSIS eventnum stilldown stilldown

Returns true if the left or only mouse button is still down from the mouse-down event specified by
eventnum; otherwise it returns false. eventnum should be the number stored in the data
component of the event record for an event of type Lmousedown.

ERRORS stackunderflow, typecheck

SEE ALSO buttondown, currentmouse, rightbuttondown , rightstilldown

Window Depth ncolors bits/sample multiproc

NSTwoBitGrayDepth 1 2 true

NSEightBitGrayDepth 1 8 true

NSTwelveBitRGBDepth 3 4 false

NSTwentyFourBitRGBDepth 3 8 false

50

termwindow

SYNOPSIS window termwindow −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s close
method instead.

Marks window for destruction. If the window is in the screen list, it’s removed from the screen
list and the screen. The given window number will no longer be valid; any attempt to use it will
execute the invalidid error. The window will actually be destroyed and its storage reclaimed only
after the last reference to it from a graphics state is removed. This can be done by resetting the
device in the graphics state to another window or to the null device.

Note: After you use the termwindow operator, if the terminated window had been the current
window, you should use the nulldevice operator to remove references to it.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO window, windowdevice, windowdeviceround

window

SYNOPSIS x y width height type window window

Warning: Don’t use this operator if you’re using the Application Kit. Create a Window object
instead.

Creates a window that has a lower left corner of (x, y) and the indicated width and height. x, y,
width, and height are given in the screen coordinate system. No portion of a window can have an
x or y coordinate with an absolute value greater than 16000; width and height must be in the range
from 0 to 10000. Exceeding these limits executes the rangecheck error. The four operands can
be integer or real numbers; however, they are converted to integers in the Window Server by
rounding toward 0. This operator returns the new window’s window number, a nonzero integer
that’s used to refer to the window.

type specifies the window’s buffering type as Buffered, Retained, or Nonretained.

The new window won’t be in the screen list; you can put it there with the orderwindow operator.
Windows that aren’t in the screen list don’t appear on the screen and don’t receive user events.

51

The window operator also does the following:

• Sets the origin of the window’s base coordinate system to the lower left corner of the window

• Sets the window’s clipping path to the outer edge of the window

• Fills the window with opaque white and sets the window’s exposure color to white

Note: This operator does not make the new window the current window; to do that, use
windowdeviceround or windowdevice.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO setexposurecolor, termwindow, windowdeviceround

windowdevice

SYNOPSIS window windowdevice −

Sets the current device of the current graphics state to the given window device. It also sets the
origin of the window’s default matrix to the lower left corner of the window. One unit in the user
coordinate system is made equal to 1/72 of an inch. The clipping path is reset to a rectangle
surrounding the window. Other elements of the graphics state remain unchanged. This matrix
becomes the default matrix for the window: initmatrix will reestablish this matrix.

windowdevice is rarely used in OPENSTEP since the coordinate system it establishes isn’t
aligned with the pixels on the screen. Use the related operator windowdeviceround to create a
coordinate system that is aligned.

Don’t use this operator lightly, as it creates a new matrix and clipping path. It’s significantly more
expensive than a setgstate operator.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO windowdeviceround

52

windowdeviceround

SYNOPSIS window windowdeviceround −

Sets the current device of the current graphics state to the given window device. It also sets the
origin of the window’s default matrix to the lower left corner of the window. One unit in the user
coordinate system is made equal to the width of one pixel. The clipping path is reset to a rectangle
surrounding the window. Other elements of the graphics state remain unchanged. This matrix
becomes the default matrix for the window: initmatrix will reestablish this matrix.

Don’t use this operator blithely, as it creates a new matrix and clipping path. It’s significantly more
expensive than a setgstate operator.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO windowdevice

windowlist

SYNOPSIS array context windowlist subarray

Fills the array with the window numbers of all windows that are owned by the PostScript context
specified by context. It returns the subarray containing those window numbers, in order from front
to back. If array isn’t large enough to hold them all, this operator returns the frontmost windows
that fit in the array.

EXAMPLE This example yields an array containing the window numbers of all windows that are owned

by the current PostScript context:

currentcontext

countwindowlist % find out how many windows

array % create array to hold them

currentcontext windowlist % fill it in

ERRORS stackunderflow, typecheck

SEE ALSO countscreenlist, countwindowlist, screenlist

53

54

1

 Classes: NSChangeSpelling

NSChangeSpelling

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

This protocol is implemented by objects in the responder chain that can correct a misspelled word. See the
description of the NSSpellChecker class for more information.

Instance Methods

changeSpelling:
– (void)changeSpelling:(id)sender

Implement this method to replace the selected word in the receiver with a corrected version from the
Spelling panel. This message is sent by the NSSpellChecker to the object whose text is being checked. To
get the corrected spelling, ask the sender for the string value of its selected cell (visible to the user as the
text field in the Spelling panel). This method should replace the selected portion of the text with the string
that it gets from the NSSpellChecker.

 Classes: NSColorPickingCustom

NSColorPickingCustom

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

Together with the NSColorPickingDefault protocol, NSColorPickingCustom provides a way to add color
pickers—custom user interfaces for color selection—to an application’s NSColorPanel. The
NSColorPickingDefault protocol provides basic behavior for a color picker. The NSColorPicker class
adopts the NSColorPickingDefault protocol. The easiest way to implement a color picker is to create a
subclass of NSColorPicker and implement the NSColorPickingCustom protocol for this new class.

Note: All of NSColorPickingCustom’s methods must be implemented by the custom color picker.

Here are the standard color picking modes and mode constants (defined in AppKit/NSColorPanel.h):

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

If your color picker includes submodes, you should define a unique value for each submode. As an example,
the slider picker has four values defined in the above list (NSGrayModeColorPanel,

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

1

r

NSRGBModeColorPanel, NSCMYKModeColorPanel, and NSHSBModeColorPanel)—one for each of its
submodes.

Method Types

Setting the Current Color
– setColor:

Getting the Mode
– currentMode
– supportsMode:

Getting the View
– provideNewView:

Instance Methods

currentMode
– (int)currentMode

Returns the color picker’s current mode (or submode, if applicable). The returned value should be unique
to your color picker. See this protocol description’s list of the unique values for the standard color pickers
used by the Application Kit.

See also: – supportsMode:

provideNewView:
– (NSView *)provideNewView:(BOOL)initialRequest

Returns the view containing the color picker’s user interface. This message is sent to the color picker
whenever the color panel attempts to display it. This may be when the panel is first presented, when the use
switches pickers, or when the picker is switched through API. The argument initialRequest is YES only
when this method is first invoked for your color picker. If initialRequest is YES, the method should perform
any initialization required (such as lazily loading a nib file, initializing the view, or performing any other
custom initialization required for your picker). The NSView returned by this method should be set to
automatically resize both its width and height.

2

 Classes: NSColorPickingCustom

setColor:
– (void)setColor:(NSColor *)color

Adjusts the color picker to make color the currently selected color. This method is invoked on the current
color picker each time NSColorPanel’s setColor: method is invoked. If color is actually different from the
color picker’s color (as it would be if, for example, the user dragged a color into NSColorPanel’s color
well), this method could be used to update the color picker’s color to reflect the change.

supportsMode:
– (BOOL)supportsMode:(int)mode

Returns whether or not the receiver supports the specified picking mode. This method is invoked when the
NSColorPanel’s is first initialized: It is used to attempt to restore the user’s previously selected mode. It is
also invoked by NSColorPanel’s setMode: method to find the color picker that supports a particular mode.
See this protocol description’s list of the unique mode values for the standard color pickers used by the
Application Kit.

See also: – currentMode

3

 Classes: NSColorPickingDefault

NSColorPickingDefault

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

The NSColorPickingDefault protocol, together with the NSColorPickingCustom protocol, provides an
interface for adding color pickers—custom user interfaces for color selection—to an application’s
NSColorPanel. The NSColorPickingDefault protocol provides basic behavior for a color picker. The
NSColorPickingCustom protocol provides implementation-specific behavior.

The NSColorPicker class implements the NSColorPickingDefault protocol. The simplest way to implement
your own color picker is to create a subclass of NSColorPicker, implementing the NSColorPickingCustom
protocol for that subclass. However, it’s possible to create a subclass of another class, such as NSView, and
use it as a base upon which to add the methods of both NSColorPickingDefault and
NSColorPickingCustom.

Color Picker Bundles

A class that implements the NSColorPickingDefault and NSColorPickingCustom protocols needs to be
compiled and linked in an application’s object file. However, your application need not explicitly create an
instance of this class. Instead, your application’s file package should include a directory named
ColorPickers; within this directory you should place a directory MyPickerClass.bundle for each custom
color picker your application implements. This bundle should contain all resources required for your color
picker: nib files, TIFF files, and so on.

NSColorPanel will allocate and initialize an instance of each class for which a bundle is found in the
ColorPickers directory. The class name is assumed to be the bundle directory name minus the .bundle
extension.

Color Picker Buttons

NSColorPanel lets the user select a color picker from an NSMatrix of NSButtonCells. This protocol
includes methods for providing and manipulating the image that gets displayed on the button.

Color Mask and Color Modes

The color mask determines which color mode is enabled for NSColorPanel. This mask is set before you
initialize a new instance of NSColorPanel. NSColorPanelAllModesMask represents the logical OR of the

1

other color mask constants: It causes the NSColorPanel to display all standard color pickers. When
initializing a new instance of NSColorPanel, you can logically OR any combination of color mask constants
to restrict the available color modes. The predefined color mask constants are:

When an application’s instance of NSColorPanel is masked for more than one color mode, your program
can set its active mode by invoking the setMode: method with a color mode constant as its argument; the
user can set the mode by clicking buttons on the panel. Here are the standard color modes and mode
constants:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

Red-Green-Blue NSColorPanelRGBModeMask

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

Custom palette
NSColorPanelCustomPaletteMod
eMask

Custom color list
NSColorPanelColorListModeMas
k

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette
NSCustomPaletteModeColorPan
el

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

2

 Classes: NSColorPickingDefault

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

These constants are defined in AppKit/NSColorPanel.h.

Method Types

Initializing a Color Picker
– initWithPickerMask:colorPanel:

Setting the Mode
– setMode:

Using Color Lists
– attachColorList:
– detachColorList:

Adding Button Images
– insertNewButtonImage:in:
– provideNewButtonImage

Showing Opacity Controls
– alphaControlAddedOrRemoved:

Responding to a Resized View
– viewSizeChanged:

Instance Methods

alphaControlAddedOrRemoved:
– (void)alphaControlAddedOrRemoved:(id)sender

Sent by the color panel when the opacity controls have been hidden or displayed. Invoked automatically
when the NSColorPanel’s opacity slider is added or removed; you never invoke this method directly.

If the color picker has its own opacity controls, it should hide or display them, depending on whether the
sender’s showsAlpha method returns NO or YES.

3

attachColorList:
– (void)attachColorList: (NSColorList *)colorList

Tells the color picker to attach the given colorList, if it isn’t already displaying the list. You never invoke
this method; it’s invoked automatically by the NSColorPanel when its attachColorList: method is invoked.
Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented by a
custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything, since
NSColorPanel’s list mode manages NSColorLists.

See also: – detachColorList:

detachColorList:
– (void)detachColorList:(NSColorList *)colorList

Tells the color picker to detach the given colorList, unless the receiver isn’t displaying the list. You never
invoke this method; it’s invoked automatically by the NSColorPanel when its detachColorList: method is
invoked. Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented
by a custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything,
since NSColorPanel’s list mode manages NSColorLists.

See also: – attachColorList:

initWithPickerMask:colorPanel:
– (id)initWithPickerMask: (int)mask

colorPanel:(NSColorPanel *)owningColorPanel

Notifies the color picker of the color panel’s mask and initializes the color picker. This method is sent by
the NSColorPanel to all implementors of the color picking protocols when the application’s color panel is
first initialized. In order for your color picker to receive this message, it must have a bundle in your
application’s “ColorPickers” directory (described in “Color Picker Bundles” in the Protocol Description).

mask is determined by the argument to the NSColorPanel method setPickerMask:. If no mask has been set,
mask is NSColorPanelAllModesMask. If your color picker supports any additional modes, you should
invoke the setPickerMask: method when your application initializes to notify the NSColorPanel class. The
standard mask constants are:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

Red-Green-Blue NSColorPanelRGBModeMask

4

 Classes: NSColorPickingDefault

.

This method should examine the mask and determine whether it supports any of the modes included there
You may also check the value in mask to enable or disable any subpickers or optional controls implemented
by your color picker. Your color picker may also retain owningColorPanel in an instance variable for future
communication with the color panel.

This method is provided to initialize your color picker; however, much of a color picker’s initialization may
be done lazily through the NSColorPickingCustom protocol’s provideNewView: method. If your color
picker responds to any of the modes represented in mask, it should perform its initialization and return self.
Color pickers that do so have their buttons inserted in the color panel and continue to receive messages from
the panel as the user manipulates it. If the color picker doesn’t respond to any of the modes represented in
mask, it should do nothing and return nil .

See also: + setPickerMask: (NSColorPanel class)

insertNewButtonImage:in:
– (void)insertNewButtonImage:(NSImage *)newButtonImage

in: (NSButtonCell *)buttonCell

Sets newButtonImage as buttonCell’s image. buttonCell is the NSButtonCell object that lets the user choose
the picker from the color panel—the color picker’s representation in the NSColorPanel’s picker NSMatrix.
This method should perform application-specific manipulation of the image before it’s inserted and
displayed by the button cell.

See also: – provideNewButtonImage

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

Custom palette NSColorPanelCustomPaletteModeMask

Custom color list NSColorPanelColorListModeMask

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

Mode Color Mask Constant

5

l

provideNewButtonImage
– (NSImage *)provideNewButtonImage

Returns the image for the mode button that the user uses to select this picker in the color panel, that is, the
color picker’s representation in the NSColorPanel’s picker NSMatrix. (This is the same image that the color
panel uses as an argument when sending the insertNewButtonImage:in: message.)

setMode:
– (void)setMode:(int)mode

Sets the color picker’s mode. This method is invoked by NSColorPanel’s setMode: method to ensure that
the color picker reflects the current mode. For example, invoke this method during color picker initialization
to ensure that all color pickers are restored to the mode the user left them in the last time an NSColorPane
was used.

Most color pickers have only one mode, and thus don’t need to do any work in this method. An example of
a color picker that uses this method is the slider picker, which can choose from one of several submodes
depending on the value of mode. The available modes are:

viewSizeChanged:
– (void)viewSizeChanged:(id)sender

Tells the color picker when the NSColorPanel’s view size changes in a way that might affect the color
picker. sender is the NSColorPanel that contains the color picker. Use this method to perform special
preparation when resizing the color picker’s view. Since this method is invoked only as appropriate, it’s

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

6

 Classes: NSColorPickingDefault

better to implement this method than to override the method superviewSizeChanged: for the NSView in
which the color picker’s user interface is contained.

See also: – provideNewView: (NSColorPickingCustom protocol)

7

 Classes: NSComboBoxCellDataSource

s

ta,

NSComboBoxCellDataSource
(Informal Protocol)

Category Of: NSObject

Declared In: AppKit/NSComboBoxCell.h

Category Description

The NSComboBoxCellDataSource category declares the methods that an NSComboBoxCell uses to acces
the contents of its data source object. The combo box cell determines how many items to display by sending
a numberOfItemsInComboBoxCell: message, and accesses individual values with the comboBoxCell:
objectValueForItemAtIndex: method. Incremental searches—performed when a user types into the
combo box’s text field while the pop-up list is displayed—are performed by sending comboBoxCell:
indexOfItemWithStringValue: messages to the combo box cell’s data source.

The NSComboBoxCell treats objects provided by its data source as values to be displayed in the combo
box’s pop-up list. If these objects aren’t of common value classes—such as NSString, NSNumber, and so
on—you’ll need to create a custom NSFormatter to display them. See the NSFormatter class specification
for more information.

When an NSComboBoxCellDataSource is asked to supply a data item, the NSComboBoxCell that sends
the request is provided as a parameter. This allows a single data source object to manage several sets of da
choosing the appropriate set based on the identify of the NSComboBoxCell that sends the message.

Instance Methods

comboBoxCell:indexOfItemWithStringValue:
– (unsigned int)comboBoxCell:(NSComboBoxCell *)aComboBoxCell

indexOfItemWithStringValue: (NSString *)aString

An NSComboBoxCell uses this method to perform incremental—or “smart”—searched when the user
types into the text field with the pop-up list displayed. Your implementation of this method should return
the index for the item which matches aString, or NSNotFound if no item matches. This method is optional;
if you don’t provide an implementation for this method, no searches occur.

1

comboBoxCell:objectValueForItemAtIndex:
– (id)comboBoxCell:(NSComboBoxCell *)aComboBoxCell objectValueForItemAtIndex: (int)index

Implement this method to return the object that corresponds to the item at index in aComboBoxCell. Your
data source must implement this method.

numberOfItemsInComboBoxCell:
– (int)numberOfItemsInComboBoxCell:(NSComboBoxCell *)aComboBoxCell

Implement this method to return the number of items managed for aComboBoxCell by your data source
object. An NSComboBoxCell uses this method to determine how many items it should display in its pop-up
list. Your data source must implement this method.

2

 Classes: NSComboBoxDataSource

t
g

NSComboBoxDataSource
(Informal Protocol)

Category Of: NSObject

Declared In: AppKit/NSComboBox.h

Category Description

The NSComboBoxDataSource category declares the methods that an NSComboBox uses to access the
contents of its data source object. The combo box determines how many items to display by sending a
numberOfItemsInComboBox: message, and accesses individual values with the comboBox:
objectValueForItemAtIndex: method. Incremental searches—performed when a user types into the
combo box’s text field while the pop-up list is displayed—are performed by sending comboBox:
indexOfItemWithStringValue: messages to the combo box’s data source.

The NSComboBox treats objects provided by its data source as values to be displayed in the combo box’s
pop-up list. If these objects aren’t of common value classes—such as NSString, NSNumber, and so on—
you’ll need to create a custom NSFormatter to display them. See the NSFormatter class specification for
more information.

When an NSComboBoxDataSource is asked to supply a data item, the NSComboBox that sends the reques
is provided as a parameter. This allows a single data source object to manage several sets of data, choosin
the appropriate set based on the identify of the NSComboBox that sends the message.

Instance Methods

comboBox:indexOfItemWithStringValue:
– (unsigned int)comboBox:(NSComboBox *)aComboBox indexOfItemWithStringValue:

(NSString *)aString

An NSComboBox uses this method to perform incremental—or “smart”—searched when the user types
into the text field with the pop-up list displayed. Your implementation of this method should return the index
for the item which matches aString, or NSNotFound if no item matches. This method is optional; if you
don’t provide an implementation for this method, no searches occur.

1

comboBox:objectValueForItemAtIndex:
– (id)comboBox:(NSComboBox *)aComboBox objectValueForItemAtIndex: (int)index

Implement this method to return the object that corresponds to the item at index in aComboBox. Your data
source must implement this method.

numberOfItemsInComboBox:
– (int)numberOfItemsInComboBox:(NSComboBox *)aComboBox

Implement this method to return the number of items managed for aComboBox by your data source object.
An NSComboBox uses this method to determine how many items it should display in its pop-up list. Your
data source must implement this method.

2

1

 Classes: NSDPSContextNotification

NSDPSContextNotification

Adopted By: no OpenStep classes

Declared In: AppKit/NSDPSContext.h

Protocol Description

The NSDPSContextNotification protocol supplies information about the execution status of a sequence of
PostScript commands previously sent to the Display PostScript server.

Instance Methods

contextFinishedExecuting:
– (void)contextFinishedExecuting:(NSDPSContext *)context

Notifies the receiver that the context has finished executing a batch of PostScript commands. See
notifyObjectWhenFinishedExecuting: (NSDPSContext).

 Classes: NSDraggingDestination

.

n.

s

,

s

e

NSDraggingDestination
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Description

The NSDraggingDestination informal protocol declares methods that the destination (or recipient) of a
dragged image must implement. The destination automatically receives NSDraggingDestination messages
as an image enters, moves around inside, and then exits or is released within the destination’s boundaries

In the text here and in the other dragging protocol descriptions, the term dragging session is the entire
process during which an image is selected, dragged, released, and absorbed or rejected by the destinatio
A dragging operation is the action that the destination takes in absorbing the image when it’s released. The
dragging source is the object that “owns” the image that’s being dragged. It’s specified as an argument to
the dragImage:at:offset:event:pasteboard:source:slideBack: message, sent to a window or view object,
that instigated the dragging session.

The Dragged Image

The image that’s dragged in an image-dragging session is simply an image that represents data that reside
on the pasteboard. Although a dragging destination can access the image (through the draggedImage
method described in the NSDraggingInfo protocol), its primary concern is with the pasteboard data that the
image represents—the dragging operation that a destination ultimately performs is on the pasteboard data
not on the image itself.

Valid Destinations

Dragging is a visual phenomenon. To be an image-dragging destination, an object must represent a portion
of screen real estate; thus, only window and view objects can be destinations. Furthermore, you must
register the pasteboard types that the object will accept by sending the object a registerForDraggedTypes:
message, defined in both NSWindow and NSView. During a dragging session, a candidate destination only
receives NSDraggingDestination messages if the destination is registered for a pasteboard type that matche
the type of the pasteboard data being dragged. See the NSPasteboard class specification for more
information about pasteboard types.

Although NSDraggingDestination is declared as an informal protocol, the NSWindow and NSView
subclasses that you create to adopt the protocol need only implement those methods that are pertinent. (Th
NSWindow and NSView classes provide private implementations for all of the methods.) Either a window

1

object or its delegate may implement these methods; however, the delegate’s implementation takes
precedence if there are implementations in both places.

The Sender of Destination Messages

Each of the NSDraggingDestination methods sports a single argument: sender, the object that invoked the
method. Within its implementations of the NSDraggingDestination methods, the destination can send
NSDraggingInfo protocol messages to sender to get more information on the current dragging session.

The Order of Destination Messages

The six NSDraggingDestination methods are invoked in a distinct order:

• As the image is dragged into the destination’s boundaries, the destination is sent a draggingEntered:
message

• While the image remains within the destination, a series of draggingUpdated: messages are sent.

• If the image is dragged out of the destination, draggingExited: is sent and the sequence of
NSDraggingDestination messages stops. If it re-enters, the sequence begins again (with a new
draggingEntered: message).

• When the image is released, it either slides back to its source (and breaks the sequence) or a
prepareForDragOperation: message is sent to the destination, depending on the value returned by the
most recent invocation of draggingEntered: or draggingUpdated:.

• If the prepareForDragOperation: message returned YES, a performDragOperation: message is sent.

• Finally, if performDragOperation: returned YES, concludeDragOperation: is sent.

Method Types

Before the image is released
– draggingEntered:
– draggingUpdated:
– draggingExited:

After the image is released
– prepareForDragOperation:
– performDragOperation:
– concludeDragOperation:

2

 Classes: NSDraggingDestination

t

Instance Methods

concludeDragOperation:
– (void)concludeDragOperation:(id <NSDraggingInfo>)sender

Invoked when the dragging operation is complete and the previous performDragOperation: returned
YES. The destination implements this method to perform any tidying up that it needs to do, such as updating
its visual representation now that it has incorporated the dragged data. This is the last message that’s sen
from sender to the destination during a dragging session.

draggingEntered:
– (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender

Invoked when a dragged image enters the destination. Specifically, this method is invoked when the mouse
pointer enters the destination’s bounds rectangle (if it’s a view object) or its frame rectangle (if it’s a window
object).

This method must return a value that indicates which dragging operation the destination will perform when
the image is released. In deciding which dragging operation to return, the method should evaluate the
overlap between both the dragging operations allowed by the source (accessible through the
draggingSourceOperationMask method) and the dragging operations and pasteboard data types that the
destination itself supports. The returned value should be exactly one of the following:

If none of the operations is appropriate, this method should return NSDragOperationNone (this is the
default response if the method isn’t implemented by the destination).

The code below is a simple example of a method that responds distinctly when one of two different types
of data is dragged into the destination view or window. If the dragged data is a color and the source object
permits copying, the return value indicates that the destination will permit copying of the color data on the
pasteboard. If the dragged data is an RTF file and the source object permits linking, the return value

Option Meaning

NSDragOperationCopy The data represented by the image will be copied.

NSDragOperationLink The data will be shared.

NSDragOperationGeneric The operation will be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

3

indicates that the destination will permit linking of the RTF file on the pasteboard. Otherwise the code
returns NSDragOperationNone, indicating that the destination will not permit any dragging operations with
the data on pasteboard.

- (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender

{

NSPasteboard *pboard;

NSDragOperation sourceDragMask;

sourceDragMask = [sender draggingSourceOperationMask];

pboard = [sender draggingPasteboard];

if ([[pboard types] indexOfObject:NSColorPboardType] != NSNotFound) {

if (sourceDragMask & NSDragOperationCopy) {

return NSDragOperationCopy;

}

}

if ([[pboard types] indexOfObject:NSRTFPboardType] != NSNotFound) {

if (sourceDragMask & NSDragOperationLink) {

return NSDragOperationLink;

}

}

return NSDragOperationNone;

}

See also: – draggingUpdated:, – draggingExited:, – prepareForDragOperation:

draggingExited:
– (void)draggingExited:(id <NSDraggingInfo>)sender

Invoked when the dragged image exits the destination’s bounds rectangle (in the case of a view object) or
its frame rectangle (in the case of a window object).

draggingUpdated:
– (unsigned int)draggingUpdated:(id <NSDraggingInfo>)sender

Invoked periodically as the image is held within the destination. The messages continue until the image is
either released or dragged out of the window or view. The return value should be one of the dragging
operation options listed under the draggingEntered: method. The default return value (if this method isn’t
implemented by the destination) is the value returned by the previous draggingEntered: message.

This method provides the destination with an opportunity to modify the dragging operation depending on
the position of the mouse pointer inside of the destination view or window object. For example, you may
have several graphics or areas of text contained within the same view and wish to tailor the dragging

4

 Classes: NSDraggingDestination

operation, or to ignore the drag event completely, depending upon which object is underneath the mouse
pointer at the time when the user releases the dragged image and the performDragOperation: method is
invoked.

You typically examine the contents of the pasteboard in the draggingEntered: method, where this
examination is performed only once, rather than in the draggingUpdated: method, which is invoked
multiple times.

Only one destination at a time receives a sequence of draggingUpdated: messages. If the mouse pointer is
within the bounds of two overlapping views that are both valid destinations, the uppermost view receives
these messages until the image is either released or dragged out.

See also: – draggingExited:, – prepareForDragOperation:

performDragOperation:
– (BOOL)performDragOperation: (id <NSDraggingInfo>)sender

Invoked after the released image has been removed from the screen and the previous
prepareForDragOperation: message has returned YES. The destination should implement this method to
do the real work of importing the pasteboard data represented by the image. If the destination accepts the
data, it returns YES, otherwise it returns NO. The default is to return NO.

See also: – concludeDragOperation:

prepareForDragOperation:
– (BOOL)prepareForDragOperation:(id <NSDraggingInfo>)sender

Invoked when the image is released, if the most recent draggingEntered: or draggingUpdated: message
returned an acceptable drag-operation value. Returns YES if the receiver agrees to perform the drag
operation and NO if not.

See also: – performDragOperation:

5

 Classes: NSDraggingInfo

NSDraggingInfo

Adopted By: no Rhapsody classes

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDraggingInfo protocol declares methods that supply information about a dragging session (see the
NSDraggingDestination protocol for definitions of dragging terms). NSDraggingInfo methods are designed
to be invoked from within a class’s implementation of NSDraggingDestination informal protocol methods.
The Application Kit automatically passes an object that conforms to the NSDraggingInfo protocol as the
argument to each of the methods defined by NSDraggingDestination. NSDraggingInfo messages should be
sent to this object; you never need to create a class that implements the NSDraggingInfo protocol.

Method Types

Dragging-session information
– draggingSource
– draggingSourceOperationMask
– draggingDestinationWindow
– draggingPasteboard
– draggingSequenceNumber
– draggingLocation

Image information
– draggedImage
– draggedImageLocation

Sliding the image
– slideDraggedImageTo:

1

Instance Methods

draggedImage
– (NSImage *)draggedImage

Returns the image being dragged. This image object visually represents the data put on the pasteboard
during the drag operation; however, it is the pasteboard data and not this image that are ultimately utilized
in the dragging operation.

See also: – draggedImageLocation

draggedImageLocation
– (NSPoint)draggedImageLocation

Returns the current location of the dragged image’s origin in the base coordinate system of the destination
object’s window. The image moves along with the mouse pointer (the position of which is given by
draggingLocation) but may be positioned at some offset.

See also: – draggedImage

draggingDestinationWindow
– (NSWindow *)draggingDestinationWindow

Returns the destination window for the dragging operation. Either this window is the destination itself, or
it contains the view object that is the destination.

draggingLocation
– (NSPoint)draggingLocation

Returns the current location of the mouse pointer in the base coordinate system of the destination object’s
window.

See also: – draggedImageLocation

draggingPasteboard
– (NSPasteboard *)draggingPasteboard

Returns the pasteboard object that holds the data being dragged. The dragging operation that is ultimately
performed utilizes this pasteboard data and not the image returned by the draggedImage method.

2

 Classes: NSDraggingInfo

.

draggingSequenceNumber
– (int)draggingSequenceNumber

Returns a number that uniquely identifies the dragging session.

draggingSource
– (id)draggingSource

Returns the source, or owner, of the dragged data or nil if the source isn’t in the same application as the
destination. The dragging source implements methods from the NSDraggingSource informal protocol.

draggingSourceOperationMask
– (unsigned int)draggingSourceOperationMask

Returns the dragging operation mask declared by the dragging source (through its
draggingSourceOperationMaskForLocal: method). If the source permits dragging operations, the
elements in the mask will be one or more of the following, combined using the C bitwise OR operator:

If the source does not permit any dragging operations, then method should return NSDragOperationNone

If the user is holding down a modifier key during the dragging session and the source doesn’t prohibit
modifier keys from affecting the drag operation (through its ignoreModifierKeysWhileDragging method),
then the operating system combines the dragging operation value that corresponds to the modifier key (see
the descriptions below) with the source’s mask using the C bitwise AND operator.

Option Meaning

NSDragOperationCopy The data represented by the image can be copied.

NSDragOperationLink The data can be shared.

NSDragOperationGeneric The operation can be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

3

On Mach the modifier keys are associated with the dragging operation options shown below,

while on Windows the modifier keys are associated with the following dragging operation options.

slideDraggedImageTo:
– (void)slideDraggedImageTo:(NSPoint)aPoint

Slides the image to aPoint, a specified location in the screen coordinate system. This method can be used
to snap the image down to a particular location. It should only be invoked from within the destination’s
implementation of prepareForDragOperation:—in other words, after the user has released the image but
before it’s removed from the screen.

Modifier Key Dragging Option

Control NSDragOperationLink

Alternate NSDragOperationCopy

Command NSDragOperationGeneric

Modifier Key Dragging Option

Control NSDragOperationCopy

Shift-Control NSDragOperationLink

Alternate NSDragOperationCopy

4

 Classes: NSDraggingSource

NSDraggingSource
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Description

The NSDraggingSource informal protocol declares methods that are implemented by the source object in
a dragging session (see the NSDraggingDestination protocol for definitions of dragging terms). The
dragging source is specified as an argument to the dragImage:at:offset:event:pasteboard:source:
slideBack: message, sent to a window or view object to initiate the dragging session.

Of the methods declared below, only draggingSourceOperationMaskForLocal: must be implemented.
The other methods are invoked only if the dragging source implements them. All four methods are invoked
automatically during a dragging session—you never send an NSDraggingSource message directly to an
object.

Method Types

Specifying dragging options
– draggingSourceOperationMaskForLocal:
– ignoreModifierKeysWhileDragging

Responding to dragging sessions
– draggedImage:beganAt:
– draggedImage:endedAt:deposited:

Instance Methods

draggedImage:beganAt:
– (void)draggedImage:(NSImage *)anImage beganAt:(NSPoint)aPoint

Invoked when anImage is displayed but before it starts following the mouse. aPoint is the origin of the
image in screen coordinates. This method provides the source object with an opportunity to respond to the
initiation of a dragging session. For example, you might choose to have the source give a visual indication
to the user that data is being dragged from the source.

See also: – convertScreenToBase: (NSWindow), – convertBaseToScreen: (NSWindow),
– convertPoint:fromView: (NSView), – convertPoint:toView: (NSView)

1

,

draggedImage:endedAt:deposited:
– (void)draggedImage:(NSImage *)anImage

endedAt:(NSPoint)aPoint
deposited:(BOOL)flag

Invoked after anImage has been released and the dragging destination has been given a chance to operate
on the data it represents. aPoint is the location of the image’s origin in the screen coordinate system when
it was released. A YES value for flag indicates that the destination accepted the dragged data, while a NO
value indicates that it was rejected.

This method provides the source object with an opportunity to respond to either a successful or a failed
dragging session. For example, if you are moving data from one location to another, you could use this
method to make the source data disappear from its previous location, if the dragging session is successful
or reset itself to its previous state, in the event of a failure.

See also: – convertScreenToBase: (NSWindow), – convertBaseToScreen: (NSWindow),
– convertPoint:fromView: (NSView), – convertPoint:toView: (NSView)

draggingSourceOperationMaskForLocal:
– (unsigned int)draggingSourceOperationMaskForLocal:(BOOL)flag

This is the only NSDraggingSource method that must be implemented by the source object. It should return
a mask, built by combining the applicable constants listed below using the C bitwise OR operator. You
should use this mask to indicate which types of dragging operations the source object will allow to be
performed on the dragged image’s data. A YES value for flag indicates that the candidate destination object
(the window or view over which the dragged image is currently poised) is in the same application as the
source, while a NO value indicates that the destination object is in a different application.

If the source does not permit any dragging operations, then it should return NSDragOperationNone.

Option Meaning

NSDragOperationCopy The data represented by the image can be copied.

NSDragOperationLink The data can be shared.

NSDragOperationGeneric The operation can be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

2

 Classes: NSDraggingSource

ignoreModifierKeysWhileDragging
– (BOOL)ignoreModifierKeysWhileDragging

Sets whether the use of the modifier keys should have no effect on the type of operation performed. If this
method is not implemented or returns NO, then the user can tailor the drag operation by holding down a
modifier key during the drag. The dragging option that corresponds to the modifier key is combined with
the source’s mask (as set with the draggingSourceOperationMaskForLocal: method) using the C bitwise
AND operator. See the description for the draggingSourceOperationMask method in the
NSDraggingInfo protocol specification for more information about dragging masks and modifier keys.

3

 Classes: NSIgnoreMisspelledWords

NSIgnoreMisspelledWords

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

Implement this protocol to have the Ignore button in the Spelling panel function properly. The Ignore button
allows the user to accept a word that the spelling checker believes is misspelled. In order for this action to
update the “ignored words” list for the document being checked, the NSIgnoreMisspelledWords protocol
must be implemented.

This protocol is necessary because a list of ignored words is useful only if it pertains to the entire document
being checked, but the spelling checker (NSSpellChecker object) does not check the entire document for
spelling at once. The spelling checker returns as soon as it finds a misspelled word. Thus, it checks only a
subset of the document at any one time. The user usually wants to check the entire document, so usually
several spelling checks are run in succession until no misspelled words are found. This protocol allows the
list of ignored words to be maintained per-document, even though the spelling checks are not run
per-document.

The NSIgnoreMisspelledWords protocol specifies a method, ignoreSpelling:, which should be
implemented like this:

- (void)ignoreSpelling:(id)sender

{

[[NSSpellChecker sharedSpellChecker] ignoreWord:[[sender selectedCell]

stringValue] inSpellDocumentWithTag:myDocumentTag];

}

The second argument to the NSSpellChecker method ignoreWord:inSpellDocumentWithTag: is a tag
that the NSSpellChecker can use to distinguish the documents being checked. (See the discussion of
“Matching a List of Ignored Words With the Document It Belongs To” in the description of the
NSSpellChecker class.) Once the NSSpellChecker has a way to distinguish the various documents, it can
append new ignored words to the appropriate list.

To make the ignored words feature useful, the application must store a document’s ignored words list with
the document. See the NSSpellChecker class description for more information.

1

Instance Methods

ignoreSpelling:
– (void)ignoreSpelling:(id)sender

Implement to allow an application to ignore misspelled words on a document-by-document basis. This
message is sent by the NSSpellChecker instance to the object whose text is being checked.

Implement this method by using the code shown in the protocol description.

2

 Classes: NSMenuItem

,

s

NSMenuItem

Adopted By: NSMenuItem

Conforms To: NSCoding,
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSMenuItem.h

Warning: The NSMenuItem protocol will be removed from the Application Kit in the Premier release of
Rhapsody. The NSMenuItem class will solely assume all associated functionality. This change
does not affect binary compatibility between different versions of projects, but might cause
failures in project builds. To adapt your projects to this change, alter all references to the protocol
(for example, “id <NSMenuItem>”) to references to the class (“NSMenuItem”).

Protocol Description

The NSMenuItem protocol declares methods that are used to manipulate command items in menus. The
NSMenuItem class adopts this protocol, implementing all methods the protocol declares, and provides the
basic functionality of command items. With some implementations of the OpenStep specification
(including OPENSTEP), you cannot replace the NSMenuItem class with a different class which conforms
to the NSMenuItem protocol. You may, however, subclass the NSMenuItem class if necessary.

The methods declared by the NSMenuItem protocol allow you to set the titles, actions, targets, tags, images
enabled states, and similar attributes of individual menu items, as well as to obtain the current values of
these attributes. As implemented for the NSMenuItem class, a menu item, whenever one of its attributes
changes, notifies the associated NSMenu via the itemChanged: method. The protocol also allows a
conforming object to set keyboard equivalents and (for Microsoft Windows) mnemonics for menu items.
See the sections below for more on this functionality.

See the NSMenu, NSMenuView, and NSMenuItemCell class specifications and the NSMenuValidation
protocol specification for more information on menus.

Keyboard Equivalents

An object conforming to the NSMenuItem protocol can be assigned a keyboard eqivalent, so that when the
user types a character the menu item’s action is sent. The keyboard eqivalent is defined in two parts. First
is the basic key equivalent, which must be a Unicode character that can be generated by a single key pres
without modifier keys (Shift excepted). It is also possible to use a sequence of Unicode characters so long

1

nt

as the user’s key mapping is able to generate the sequence with a single key press. The basic key equivale
is set using setKeyEquivalent: and returned by keyEquivalent. The second part defines the modifier keys
that must also be pressed. This is set using setKeyEquivalentModifierMask: and returned by
keyEquivalentModifierMask . The modifier mask by default includes NSCommandKeyMask, and may
also include the masks for the Shift, Alternate, or other modifier keys. Specifying keyboard equivalents in
two parts allows you to define a modified keyboard equivalent without having to know which character is
generated by the basic key plus the modifier. For example, you can define the keyboard equivalent
Command-Alt-f without having to know which character is generated by typing Alt-f.

Certain methods in the NSMenuItem protocol can override assigned keyboard equivalents with those the
user has specified in the defaults system. The setUsesUserKeyEquivalents: protocol method turns this
behavior on or off, and usesUserKeyEquivalents returns its status. To determine the user-defined key
equivalent for an NSMenuItem object, invoke the userKeyEquivalent instance method. If user-defined key
equivalents are active and an NSMenuItem object has a user-defined key equivalent, its keyEquivalent
method returns the user-defined key equivalent and not the one set using setKeyEquivalent:.

Mnemonics

On certain platforms, currently including Microsoft Windows, an object conforming to the NSMenuItem
protocol can also be assigned a mnemonic. Mnemonics can be assigned on other platforms as well,
however, they won’t have any effect. Mnemonics are represented by an underlined character in the title of
a menu item. The mnemonic can be any character that can be generated by a single key press without
modifier keys (Shift excepted). When the menu is active, the user can type the underlined character in the
menu item in order to activate that menu item. On Microsoft Windows a user activates the menu by pressing
the Alternate key. A particular mnemonic character should only be used once within the set of menu items
contained either in the same menu as the menu item or in the application’s main menu.

Radio-Style Grouping

By using a few methods of the NSMenuItem protocol, you can implement radio-style groupings of menu
commands. In other words, you can have a grouping of menu commands (usually segregated visually with
separator items) and only one command in the group can be selected; the selected item is marked by an
image, usually a radio-button image, but sometimes a checkmark. If the user selects another command in
the group, the previous command is unmarked and the selected command displays the image. As an
example of a radio-style grouping, a game could have three commands to indicate the level of play:
Beginner, Intermediate, and Advanced.

To implement this feature, first set the images you want to use for the possible command states: “on,” “off,”
and “mixed” (the last is useful for triple-state or indeterminate situations). To set the image, use the
commands setOnStateImage:, setOffStateImage:, and setMixedStateImage:. The default image for the
“on” state is a checkmark (NSMenuCheckmark) and for the “mixed” state the image is a dash
(NSMenuMixedState). The “off” state typically has no image. The radio-button image (which you must set
explicitly) is NSMenuRadio.

2

 Classes: NSMenuItem

In an action method that responds to all commands in the group use setState: to uncheck the menu item
that is currently marked:

[curItem setState:NSOffState];

Then mark the newly selected command:

[sender setState:NSOnState];

Method Types

Creating conforming NSMenuItem objects
– initWithTitle:action:keyEquivalent:

Enabling a menu item
– setEnabled:
– isEnabled

Setting the target and action
– setTarget:
– target
– setAction:
– action

Setting the title
– setTitle:
– title

Setting the tag
– setTag:
– tag

Setting the state
– setState:
– state

Setting the image
– setImage:
– image
– setOnStateImage:
– onStateImage
– setOffStateImage:
– offStateImage
– setMixedStateImage:
– mixedStateImage

3

.

Managing submenus
– setSubmenu:
– submenu
– hasSubmenu

Getting a separator item
+ separatorItem
– isSeparatorItem

Setting the owning menu
– setMenu:
– menu

Managing key equivalents
– setKeyEquivalent:
– keyEquivalent
– setKeyEquivalentModifierMask:
– keyEquivalentModifierMask

Managing mnemonics
– setMnemonicLocation:
– mnemonicLocation
– setTitleWithMnemonic:
– mnemonic

Managing user key equivalents
+ setUsesUserKeyEquivalents:
+ usesUserKeyEquivalents
– userKeyEquivalent

Representing an object
– setRepresentedObject:
– representedObject

Class Methods

separatorItem
+ (id <NSMenuItem>)separatorItem

Returns a menu item that is used to separate logical groups of menu commands. This menu item is disabled
The default separator item is a simple horizontal line.

See also: – isSeparatorItem, – setEnabled:

4

 Classes: NSMenuItem

setUsesUserKeyEquivalents:
+ (void)setUsesUserKeyEquivalents:(BOOL)flag

If flag is YES, menu items conform to user preferences for key equivalents; otherwise, the key equivalents
originally assigned to the menu items are used.

See also: + usesUserKeyEquivalents, – userKeyEquivalent

usesUserKeyEquivalents
+ (BOOL)usesUserKeyEquivalents

Returns YES if menu items conform to user preferences for key equivalents; otherwise, returns NO.

See also: + setUsesUserKeyEquivalents:, – userKeyEquivalent

Instance Methods

action
– (SEL)action

Returns the receiver’s action method.

See also: – target, – setAction:

hasSubmenu
– (BOOL)hasSubmenu

Returns YES if the receiver has a submenu, NO if it doesn’t.

See also: – setSubmenu:forItem:(NSMenu)

image
– (NSImage *)image

Returns the image displayed by the receiver, or nil if it displays no image.

See also: – setImage:

5

u

initWithTitle:action:keyEquivalent:
– (id)initWithTitle: (NSString *)itemName

action:(SEL)anAction
keyEquivalent:(NSString *)charCode

Returns an initialized instance of an object that conforms to the NSMenuItem protocol. The arguments
itemName and charCode must not be nil (if there is no title or key equivalent, specify an empty NSString).
The anAction argument must be a valid selector or NULL For instances of the NSMenItem class, the default
initial state is NSStateOff, the default on-state image is a checkmark, and the default mixed-state image is
a dash.

isEnabled
– (BOOL)isEnabled

Returns YES if the receiver is enabled, NO if not.

See also: – setEnabled:

isSeparatorItem
– (BOOL)isSeparatorItem

Returns whether the receiver is a separator item (that is, a menu item used to visually segregate related men
items).

See also: + separatorItem

keyEquivalent
– (NSString *)keyEquivalent

Returns the receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined. Use
keyEquivalentModifierMask to determine the modifier mask for the key equivalent.

See also: – userKeyEquivalent, – mnemonic, – setKeyEquivalent:

keyEquivalentModifierMask
– (unsigned int)keyEquivalentModifierMask

Returns the receiver’s keyboard equivalent modifier mask.

See also: – setKeyEquivalentModifierMask:

6

 Classes: NSMenuItem

menu
– (NSMenu *)menu

Returns the menu to which the receiver belongs, or nil if no menu has been set.

See also: – setMenu:

mixedStateImage
– (NSImage *)mixedStateImage

Returns the image used to depict a “mixed state.” A mixed state is useful for indicating “off” and “on”
attribute values in a group of selected objects, such as a selection of text containing bold and plain
(non-bolded) worlds.

See also: – setMixedStateImage:

mnemonic
– (NSString *)mnemonic

Returns the character in the menu item title that appears underlined for use as a mnemonic. If there is no
mnemonic character, returns an empty string.

See also: – setTitleWithMnemonic:

mnemonicLocation
– (unsigned int)mnemonicLocation

Returns the position of the underlined character in the menu item title used as a mnemonic. The position is
the zero based index of that character in the title string. If the receiver has no mnemonic character, returns
NSNotFound.

See also: – setMnemonicLocation:

offStateImage
– (NSImage *)offStateImage

Returns the image used to depict the receiver’s “off” state, or nil if the image has not been set.

See also: – setOffStateImage:

7

onStateImage
– (NSImage *)onStateImage

Returns the image used to depict the receiver’s “on” state, or nil if the image has not been set.

See also: – setOnStateImage:

representedObject
– (id)representedObject

Returns the object that the receiving menu item represents. For example, you might have a menu list the
names of views that are swapped into the same panel. The represented objects would be the appropriate
NSView objects. The user would then be able to swtich back and forth between the different views that are
displayed by selecting the various menu items.

See also: – tag, – setRepresentedObject:

setAction:
– (void)setAction:(SEL)aSelector

Sets the receiver’s action method to aSelector.

See also: – setTarget:, – action

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiver is enabled based on flag. If a menu item is disabled, it’s keyboard equivalent and
mnemonic are also disabled. See the NSMenuValidation informal protocol specification for cautions
regarding this method.

See also: – isEnabled

setImage:
– (void)setImage:(NSImage *)menuImage

Set’s the receiver’s image to menuImage. If menuImage is nil , the current image (if any) is removed. This
image is not affected by changes in menu-item state.

See also: – image

8

 Classes: NSMenuItem

setKeyEquivalent:
– (void)setKeyEquivalent:(NSString *)aString

Sets the receiver’s unmodified key equivalent to aString. If you want to remove the key equivalent from a
menu item, pass an empty string (@””) for aString (never pass nil). Use setKeyEquivalentModifierMask:
to set the appropriate mask for the modifier keys for the key equivalent.

See also: – setMnemonicLocation:, – keyEquivalent

setKeyEquivalentModifierMask:
– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the receiver’s keyboard equivalent modifiers (indicating modifiers such as the Shift or Alternate keys)
to those in mask. mask is an integer bit field containing any of these modifier key masks, combined using
the C bitwise OR operator:

NSShiftKeyMask
NSAlternateKeyMask
NSCommandKeyMask

On Mach, you should always set NSCommandKeyMask in mask; on Microsoft Windows, this is not
required.

NSShiftKeyMask is relevant only for function keys; that is, for key events whose modifier flags include
NSFunctionKeyMask. For all other key events NSShiftKeyMask is ignored and characters typed while the
Shift key is pressed are interpreted as the shifted versions of those characters; for example,
Command-Shift-‘c’ is interpreted as Command-‘C’.

See the NSEvent class specification for more information about modifier mask values.

See also: – keyEquivalentModifierMask

setMenu:
– (void)setMenu:(NSMenu *)aMenu

Sets the receiver’s menu to aMenu. This method is invoked by the owning NSMenu when the receiver is
added or removed. You shouldn’t have to invoke this method in your own code, although it can be overriden
to provide specialized behavior.

See also: – menu

9

setMixedStateImage:
– (void)setMixedStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates a”mixed” state, that is, a state neither “on” or “off.” If
itemImage is nil , any current mixed-state image is removed.

See also: – mixedStateImage, – setOffStateImage:, – setOnStateImage:, – setState:

setMnemonicLocation:
– (void)setMnemonicLocation:(unsigned int)location

Sets the character of the menu item title at location that is to be underlined. location must be between 0 and
254. This character identifies the access key on Windows by which users can access the menu item.

See also: – mnemonicLocation

setOffStateImage:
– (void)setOffStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates an “off” state. If itemImage is nil , any current off-state image
is removed.

See also: – offStateImage, – setMixedStateImage:, – setOnStateImage:, – setState:

setOnStateImage:
– (void)setOnStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates an “on” state. If itemImage is nil , any current off-state image
is removed.

See also: – onStateImage, – setMixedStateImage:, – setOffStateImage:, – setState:

setRepresentedObject:
– (void)setRepresentedObject:(id)anObject

Sets the object represented by the receiver to anObject. By setting a represented object for a menu item you
make an association between the menu item and that object. The represented object functions as a more
specific form of tag that allows you to associate any object, not just an int , with the items in a menu.

10

 Classes: NSMenuItem

For example, an NSView object might be associated with a menu item—when the user chooses the menu
item, the represented object is fetched and displayed in a panel. Several menu items might control the
display of multiple views in the same panel.

See also: – setTag:, – representedObject

setState:
– (void)setState:(int)itemState

Sets the state of the receiver to itemState, which should be one of NSOffState, NSOnState, or
NSMixedState. The image associated with the new state is displayed to the left of the menu item.

See also: – state, – setMixedStateImage:, – setOffStateImage:, – setOnStateImage:

setSubmenu:
– (void)setSubmenu:(NSMenu *)aSubmenu

Sets the submenu of the receiver to aSubmenu. The default implementation of the NSMenuItem class raises
an exception if aSubmenu already has a supermenu.

See also: – submenu, – hasSubmenu

setTag:
– (void)setTag:(int)anInt

Sets the receiver’s tag to anInt.

See also: – setRepresentedObject:, – tag

setTarget:
– (void)setTarget:(id)anObject

Sets the receiver’s target to anObject.

See also: – setAction:, – target

11

setTitle:
– (void)setTitle:(NSString *)aString

Sets the receiver’s title to aString.

See also: – title

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)aString

Sets the title of a menu item with a character underlined to denote an access key (Windows only). Use an
ampersand character to mark the character (the one following the ampersand) to be underlined. For
example, the following message causes the ‘c’ in ‘Receive’ to be underlined:

[aMenuItem setTitleWithMnemonic:NSLocalizedString(@"Re&ceive")];

See also: – mnemonic, – setMnemonicLocation:

state
– (int)state

Returns the state of the receiver, which is NSOffState (the default), NSOnState, or NSMixedState.

See also: – setState:

submenu
– (NSMenu *)submenu

Returns the submenu associated with the receiving menu item, or nil if no submenu is associated with it. In
the implementation of the NSMenuItem class, if the receiver responds YES to hasSubmenu, the submenu
is returned.

See also: – hasSubmenu, – setSubmenu:

tag
– (int)tag

Returns the receiver’s tag.

See also: – representedObject, – setTag:

12

 Classes: NSMenuItem

target
– (id)target

Returns the receiver’s target.

See also: – action, – setTarget:

title
– (NSString *)title

Returns the receiver’s title.

See also: – setTitle:

userKeyEquivalent
– (NSString *)userKeyEquivalent

Returns the user-assigned key equivalent for the receiver.

See also: – keyEquivalent

13

 Classes: NSMenuValidation

.

NSMenuValidation
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSMenu.h

Protocol Description

This informal protocol allows your application to update the enabled or disabled status of an NSMenuItem.
It declares only one method, validateMenuItem:. By default, every time a user event occurs, NSMenu
automatically enables and disables each visible menu item based on criteria described in “Automatic
Updating of NSMenuItems,” below. Implement validateMenuItem: in cases where you want to override
NSMenu’s default enabling scheme.

NSMenuItems can be enabled or disabled in two ways: explicitly, by sending the setEnabled: message, or
automatically, as described below. Automatic updating can be turned on and off with NSMenu’s
setAutoenablesItems: message.

Automatic Updating of NSMenuItems

Whenever a user event occurs, the NSMenu object updates the status of every one of its visible menu items
To update the status of a menu item, an NSMenu tries to find the object that responds to the NSMenuItem’s
action message. It searches the following objects in the given order until it finds one that responds to the
action message (note that it doesn’t actually send the action message):

• The NSMenuItem’s target. If the target is non-nil , the search ends here whether the target responds or not.

• The key window’s responder chain, starting with its first responder.

• The key window itself.

• The key window’s delegate.

• The main window’s responder chain, starting with its first responder.

• The main window itself.

• The main window’s delegate.

• The NSApplication object.

• The NSApplication object’s delegate.

If none of these objects responds to the action message, the menu item is disabled. If NSMenu finds an
object that responds to the action message, it then checks to see if that object responds to the
validateMenuItem: method (the method declared in this informal protocol). If validateMenuItem: is not

1

implemented in that object, the menu item is enabled. If it is implemented, the return value of
validateMenuItem: indicates whether the menu item should be enabled or disabled.

Here is an example of using validateMenuItem: to override automatic enabling. If your application has a
Copy menu item that sends the copy: action message to the first responder, that menu item is automatically
enabled any time an object that responds to copy:, such as an NSText object, is the first responder of the
key or main window. If you create a class whose instances might become the first responder, and which
doesn’t support copying of everything it allows the user to select, you should implement
validateMenuItem: in that class. validateMenuItem: will then return NO if items that can’t be copied are
selected (or if no items are selected) and YES if all items in the selection can be copied. By implementing
validateMenuItem:, you can have the Copy menu item disabled even though the target object does
implement the copy: method. If a class never permits copying, then you simply omit an implemention of
copy: in that class, and the Copy menu item is disabled automatically whenever an instance of that class is
the first responder.

If you send a setEnabled: message to enable or disable a menu item when automatic updating is turned on
(with NSMenu’s setAutoEnablesItems:), other objects might undo what you have done after another user
event occurs. Hence you can never be sure that the menu item will remain the way you set it. If your
application must use setEnabled:, turn off the automatic enabling of menu items in order to get predictable
results.

Instance Methods

validateMenuItem:
– (BOOL)validateMenuItem:(NSMenuItem *)aMenuItem

Implemented to override the default action of enabling or disabling aMenuItem. The object implementing
this method must be the target of aMenuItem. It returns YES to enable the aMenuItem, NO to disable it.
You can determine which menu item aMenuItem is by querying it for its title, tag, or action.

The following example beeps and disables the menu item “Next Record” if the selected line in a table view
is the last one; conversely, it beeps and disables the menu item “Prior Record” if the selected row is the first
one in the table view. (countryKeys is an array of names appearing in the table view.)

2

 Classes: NSMenuValidation

- (BOOL)validateMenuItem:(NSMenuItem *)anItem

{

int row = [tableView selectedRow];

if ([[anItem title] isEqualToString:@"Next Record"] &&

(row == [countryKeys indexOfObject:[countryKeys lastObject]])) {

return NO;

}

if ([[anItem title] isEqualToString:@"Prior Record"] && row == 0) {

return NO;

}

return YES;

}

3

 Classes: NSNibAwaking

NSNibAwaking
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSNibLoading.h

Protocol Description

This informal protocol consists of a single method, awakeFromNib. Classes can implement this method to
perform final initialization of state after objects have been loaded from an Interface Builder archive.

Instance Methods

awakeFromNib
– (void)awakeFromNib

Implemented to prepare the receiver for service after it has been loaded from an Interface Builder archive,
or nib file. An awakeFromNib message is sent to each object loaded from the archive, but only if it can
respond to the message, and only after all the objects in the archive have been loaded and initialized. When
an object receives an awakeFromNib message, it’s guaranteed to have all its outlet instance variables set.

Note: This method is also sent during Interface Builder’s test mode to objects instantiated from loaded
palettes, which include executable code for the objects. It isn’t sent to objects defined solely by using
the Classes display of the nib file window in Interface Builder.

When an Interface Builder archive is loaded into an application, each custom object from the archive is first
initialized with an init message, or initWithFrame: if the object is a kind of NSView. It’s then more
specifically initialized with the properties that it was configured with using Interface Builder. This part of
the initialization process uses any setVariable: methods that are available (where variable is the name of an
instance variable whose value was set in Interface Builder). Finally, after all the objects are fully initialized,
each receives an awakeFromNib message.

The order in which objects are loaded from the archive is not guaranteed. Therefore, it’s possible for a
setVariable: message to be sent to an object before its companion objects have been unarchived. For this
reason, setVariable: methods should not send messages to other objects in the archive. However, messages
to other objects can safely be sent from within awakeFromNib—by which time it’s assured that all the
objects are unarchived and initialized (though not necessarily awakened, of course).

Typically, awakeFromNib is implemented for classes whose instances are used as the owners of a loaded
nib file (shown as “File’s Owner” in Interface Builder). Such a class has the express purpose of connecting
the loaded objects with objects in the application, and can thereafter be disposed of, or remain in the

1

capacity of a controller or coordinator for the loaded objects. For example, suppose that a nib file contains
two custom views that must be positioned relative to each other at run time. Trying to position them when
either one of the views is initialized (in initWithCoder: or a setVariable: method) might fail, since the
other views might not be unarchived and initialized yet. However, it can be done in the nib file owner’s
awakeFromNib method (firstView and secondView are outlets of the file’s owner):

- (void)awakeFromNib

{

NSRect viewFrame;

if ([[self superclass] instancesRespondToSelector:@selector(awakeFromNib)]) {

[super awakeFromNib];

}

viewFrame = [firstView frame];

viewFrame.origin.x += viewFrame.size.width;

[secondView setFrame:viewFrame];

return;

}

Note the testing of the superclass before invoking its implementation of awakeFromNib. The Application
Kit declares a prototype for this method, but doesn’t implement it. Because there’s no default
implementation of awakeFromNib, be sure to invoke it only when the object does in fact respond.

See also: + loadNibNamed:owner: (NSBundle Additions),
– awakeAfterUsingCoder (NSObject class of the Foundation Kit),
– initWithCoder: (NSCoding protocol of the Foundation Kit),
+ initialize (NSObject class of the Foundation Kit)

2

 Classes: NSServicesRequests

ted

s
t

NSServicesRequests
 (informal protocol)

Category Of: NSObject

Declared In: AppKit/NSApplication.h

Protocol Description

This informal protocol consists of two methods, writeSelectionToPasteboard:types: and
readSelectionFromPasteboard:. The first is implemented to provide data to a remote service, and the
second to receive any data the remote service might send back. Both respond to messages that are genera
when the user chooses a command from the Services menu.

Instance Methods

readSelectionFromPasteboard:
- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Implemented to replace the current selection (that is, the text or objects that are currently selected) with data
read from the Pasteboard object pboard. The data would have been placed in the pasteboard by another
application in response to a remote message from the Services menu. A readSelectionFromPasteboard:
message is sent to the same object that previously received a writeSelectionToPasteboard:types:
message.

There’s no default readSelectionFromPasteboard: method. The Application Kit declares a prototype for
this method, but doesn’t implement it.

writeSelectionToPasteboard:types:
- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types

Implemented to write the current selection to the Pasteboard object pboard. The selection should be written
as one or more of the data types listed in types. After writing the data, this method should return YES. If for
any reason it can’t write the data, it should return NO.

A writeSelectionToPasteboard:types: message is sent to the first responder when the user chooses a
command from the Services menu, but only if the receiver didn’t return nil to a previous
validRequestorForSendType:returnType: message.

After this method writes the data to the pasteboard, a remote message is sent to the application that provide
the service the user requested. If the service provider supplies return data to replace the selection, the firs
responder will then receive a readSelectionFromPasteboard: message.

1

There’s no default writeSelectionToPasteboard:types: method. The Application Kit declares a prototype
for this method, but doesn’t implement it.

See also: – validRequestorForSendType:returnType: (NSResponder class)

2

 Classes: NSTableDataSource

s

NSTableDataSource
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSTableView.h

Category Description

The NSTableDataSource category declares the methods that an NSTableView uses to access the content
of its data source object. It determines how many rows to display by sending a
numberOfRowsInTableView: message, and accesses individual values with the tableView:
objectValueForTableColumn:row: and tableView:setObjectValue:forTableColumn:row: methods. A
data source must implement the first two methods to work with an NSTableView, but if it doesn’t implement
the third the NSTableView simply provides read-only access to its contents.

The NSTableView treats objects provided by its data source as values to be displayed in NSCell objects. If
these objects aren’t of common value classes—such as NSString, NSNumber, and so on—you’ll need to
create a custom NSFormatter to display them. See the NSFormatter class specification for more
information.

Suppose that an NSTableView’s column identifiers are set up as NSStrings containing the names of
attributes for the column, such as “Last Name”, “City”, and so on, and that the data source stores its records
as an NSMutableArray, called records, of NSMutableDictionary objects using those names as keys. Here’s
a small example, given as an ASCII property list:

(

{

"Last Name" = Anderson;

"First Name" = James;

Abode = apartment;

City = "San Francisco";

},

{

"Last Name" = Beresford;

"First Name" = Keith;

Abode = apartment;

City = "Redwood City";

}

)

With such a record structure, this implementation of tableView:objectValueForTableColumn:row:
suffices to retrieve values for the NSTableView:

1

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id theRecord, theValue;

NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);

theRecord = [records objectAtIndex:rowIndex];

theValue = [theRecord objectForKey:[aTableColumn identifier]];

return theValue;

}

Here’s the corresponding method for setting values:

- (void)tableView:(NSTableView *)aTableView

setObjectValue:anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id theRecord;

NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);

theRecord = [records objectAtIndex:rowIndex];

[theRecord setObject:anObject forKey:[aTableColumn identifier]];

return;

}

Finally, numberOfRowsInTableView: simply returns the count of the NSArray:

- (int)numberOfRowsInTableView:(NSTableView *)aTableView

{

return [records count];

}

In each case, the NSTableView that sends the message is provided as aTableView. A data source object that
manages several sets of data can choose the appropriate set based on which NSTableView sends the
message.

Method Types

Getting values
– numberOfRowsInTableView:
– tableView:objectValueForTableColumn:row:

Setting values
– tableView:setObjectValue:forTableColumn:row:

2

 Classes: NSTableDataSource

Instance Methods

numberOfRowsInTableView:
– (int)numberOfRowsInTableView:(NSTableView *)aTableView

Returns the number of records managed for aTableView by the data source object. An NSTableView uses
this method to determine how many rows it should create and display.

tableView:objectValueForTableColumn:row:
– (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn
row: (int)rowIndex

Returns an attribute value for the record in aTableView at rowIndex. aTableColumn contains the identifier
for the attribute, which you get by using NSTableColumn’s identifier method. For example, if
aTableColumn stands for the city that an employee lives in and rowIndex specifies the record for an
employee who lives in Portland, this method returns an object with a string value of “Portland”. See the
category description for an example.

tableView:setObjectValue:forTableColumn:row:
– (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject
forTableColumn: (NSTableColumn *)aTableColumn
row: (int)rowIndex

Sets an attribute value for the record in aTableView at rowIndex. anObject is the new value, and
aTableColumn contains the identifier for the attribute, which you get by using NSTableColumn’s identifier
method. See the category description for an example.

3

 Classes: NSTextAttachmentCell

NSTextAttachmentCell

Adopted By: NSTextAttachmentCell

Declared In: AppKit/NSTextAttachment.h

Protocol Description

The NSTextAttachmentCell protocol declares the interface for objects that draw text attachment icons and
handle mouse events on their icons. With the exceptions of cellBaselineOffset:, setAttachment: and
attachment, all of these methods are implemented by the NSCell class and described in that class
specification.

See the NSAttributedString and NSTextView class specifications for general information on text
attachments.

Method Types

Drawing
– drawWithFrame:inView:
– highlight:withFrame:inView:

Cell size and position
– cellSize
– cellBaselineOffset

Event handling
– wantsToTrackMouse
– trackMouse:inRect:ofView:untilMouseUp:

Setting the attachment
– setAttachment:
– attachment

1

Instance Methods

attachment
– (NSTextAttachment *)attachment

Returns the text attachment object that owns the receiver.

See also: – setAttachment:

cellBaselineOffset
– (NSPoint)cellBaselineOffset

Returns the position where the attachment cell’s image should be drawn in text, relative to the current point
established in the glyph layout. The image should be drawn so that its lower left corner lies on this point.

See also: – icon (NSFileWrapper)

cellSize
– (NSSize)cellSize

Returns the size of the attachment’s icon.

See also: – icon (NSFileWrapper), – fileWrapper (NSTextAttachment)

drawWithFrame:inView:
– (void)drawWithFrame: (NSRect)cellFrame inView: (NSView *)aView

Draws the receiver’s image within cellFrame in aView, which should be the focus view.

See also: – drawWithFrame:inView: (NSCell), – lockFocus (NSView)

highlight:withFrame:inView:
– (void)highlight: (BOOL)flag

withFrame: (NSRect)cellFrame
inView: (NSView *)aView

Draws the receiver’s image—with highlighting if flag is YES—within cellFrame in aView, which should be
the focus view.

See also: – highlight:withFrame:inView: (NSCell), – lockFocus (NSView)

2

 Classes: NSTextAttachmentCell

g

setAttachment:
– (void)setAttachment:(NSTextAttachment *)anAttachment

Sets the text attachment object that owns the receiver to anAttachment, without retaining it (the text
attachment, as the owner, retains the cell).

See also: – attachment, – setAttachmentCell: (NSTextAttachment)

trackMouse:inRect:ofView:untilMouseUp:
– (BOOL)trackMouse:(NSEvent *)theEvent

inRect:(NSRect)cellFrame
ofView:(NSView *)aTextView
untilMouseUp:(BOOL)flag

Handles a mouse-down event on the receiver’s image. theEvent is the mouse-down event. cellFrame is the
region of aTextView in which further mouse events should be tracked. aTextView is the view which received
the event. It’s assumed to be an NSTextView, and should be the focus view. If flag is YES, the receiver tracks
the mouse until a mouse-up event occurs; if flag is NO, it stops tracking when a mouse-dragged event occurs
outside of cellFrame. Returns YES if the receiver successfully finished tracking the mouse (typically
through a mouse-up event), NO otherwise (such as when the mouse is dragged outside cellFrame).

NSTextAttachmentCell’s implementation of this method calls upon aTextView’s delegate to handle the
event. If theEvent is a mouse-up event for a double click, the text attachment cell sends the delegate a
textView:doubleClickedOnCell:inRect: message and returns YES. Otherwise, depending on whether the
user clicks or drags the cell, it sends the delegate a textView:clickedOnCell:inRect: or a textView:
draggingCell:inRect:event: message and returns YES. NSTextAttachmentCell’s implementation returns
NO only if flag is NO and the mouse is dragged outside of cellFrame. The delegate methods are invoked
only if the delegate responds.

See also: – wantsToTrackMouse, – trackMouse:inRect:ofView:untilMouseUp: (NSCell),
– lockFocus (NSView)

wantsToTrackMouse
– (BOOL)wantsToTrackMouse

Returns YES if the receiver will handle a mouse event occurring over its image (to support dragging, for
example), NO otherwise. NSTextAttachmentCell’s implementation of this method returns YES. The
NSView containing the cell should invoke this method before sending a trackMouse:inRect:ofView:
untilMouseUp: message.

For an attachment in an attributed string, if the attachment cell returns NO its attachment character should
be selected rather than the cell being asked to track the mouse. this results in the attachment icon behavin
as any regular glyph in text.

3

 Classes: NSTextInput

NSTextInput

Adopted By: NSInputManager

Declared In: AppKit/NSInputManager.h

Protocol Description
Note: This class specification is incomplete and has not received a technical review. It is included in this

release to test the linkage between the application development tools and the on-line documentation.
What information it contains should be considered preliminary and subject to change.

The methods of the NSTextInput protocol are implemented by objects—for example, responders—that
handle text input. A client object such as a text view (“the client object”) that speaks this protocol must be
reponsible for the following things:

1. The client object must maintain a “marked region” within which text input and, possibly, character
conversion take place. The marked region may have a length of zero. The client object must maintain an
“insertion point”—typically at the end of the marked region, though it may be within the region. The
“selection” within the client object, if any, is entirely contained within the marked region whenever there
is a marked region.2. The client object is responsible for sending messages to currentInputManager when
the mouse goes down inside the marked region, or when the mouse leaves the marked region. Within the
marked region, this allows the selection to be changed. Out of the marked region, it allows the region to be
“abandoned”. (See below.)

3. When there is a non-zero marked region, the client object is responsible for notifying the input manager
when the selection changes, or when other programmatic changes to the text affect the marked region. It
can do this by sending a message to set the selection, abandon the marked region, etc.

4. When the client object relinquishes first responder, it will typically send markedTextWillBeAbandoned:
to the currentInputManager. It must send markedTextWillBeAbandoned: when its insertion point (or
selection moves outside the marked range. The server will typically respond by simply unmarking the
region, but may remove the marked region's text entirely.

Note: If this protocol is not implemented by a client object that does have a keyDown: method, then in-line
input is not possible for that client object, and will have to be handled externally.

The NSTextInput protocol is implemented by a IM to receive input from the server on behalf of the current
client, and otherwise mediate between the client object and the server. It then forwards the corresponding
messages to the client, or gets information from the client to pass back to the server, as appropriate.

The message passing between NSApp, IM, UIobj, and Server is all synchronous. That is, e.g., when IM
sends a message to Server, any reply comes back and is relayed to UIobj before the original message
returns.

1

A key binding manager splits the stream of keyDown: messages (intercepted by NSResopnder) into
commands and text. If there is an Input Manager in the loop, it will further use any of these NSTextInput
messages to control the marked region.

Method Types

Marking text
– setMarkedText:selectedRange:
– getMarkedText:selectedRange:
– hasMarkedText
– unmarkText

Other
– conversationIdentifier
– doCommandBySelector:
– insertText:

Instance Methods

conversationIdentifier
– (long)conversationIdentifier

Returns a number used to identify the receiver’s input management session to the input server.

<<more information forthcoming>>

doCommandBySelector:
– (void)doCommandBySelector:(SEL)aSelector

Attempts to invoke aSelector or pass the message up the responer chain. This method is invoked by an input
manager in response to an interpretKeyEvents: message.

<<more information forthcoming>>

See also: – interpretKeyEvents: (NSResponder)

2

 Classes: NSTextInput

getMarkedText:selectedRange:
– (void)getMarkedText:(out NSString **)aString selectedRange:(out NSRange *)aRange

Returns by reference in aString the receiver’s marked text, if any, and in aRange the range of the selection
within aString (not in terms of the receiver’s entire text stream).

hasMarkedText
– (BOOL)hasMarkedText

Returns YES if the receiver has text that’s still being interpreted by the input manager, NO if it doesn’t.

<<more information forthcoming>>

insertText:
– (void)insertText:(NSString *)aString

Inserts aString into the receiver’s text stream. This method is invoked by an input manager in response to
an interpretKeyEvents: message.

<<more information forthcoming>>

See also: – interpretKeyEvents: (NSResponder)

setMarkedText:selectedRange:
– (void)setMarkedText:(NSString *)aString selectedRange:(NSRange)selRange

<<forthcoming>>

unmarkText
– (void)unmarkText

Removes any marking from pending input text, and accepts the text in its current state.

<<more information forthcoming>>

3

Defined Types

NSBorderType

DECLARED IN AppKit/NSView.h

SYNOPSIS typedef enum _NSBorderType {
NSNoBorder,
NSLineBorder,
NSBezelBorder,
NSGrooveBorder

} NSBorderType;

DESCRIPTION This type represents the kinds of border that can be drawn around certain NSView subclasses.

NSButtonType

DECLARED IN AppKit/NSButtonCell.h

SYNOPSIS typedef enum _NSButtonType {
NSMomentaryPushButton,
NSPushOnPushOffButton,
NSToggleButton,
NSSwitchButton,
NSRadioButton,
NSMomentaryChangeButton,
NSOnOffButton,
NSMomentaryLight ,

} NSButtonType;

DESCRIPTION This type represents the way NSButtons and NSButtonCells behave when pressed, and the way
they display their state. See NSButton’s and NSButtonCell’s setButtonType: methods for more
information.

1

NSCellAttribute

DECLARED IN AppKit/NSCell.h

SYNOPSIS typedef enum _NSCellAttribute {
NSCellDisabled,
NSCellState,
NSPushInCell,
NSCellEditable,
NSChangeGrayCell,
NSCellHighlighted,
NSCellLightsByContents,
NSCellLightsByGray,
NSChangeBackgroundCell,
NSCellLightsByBackground,
NSCellIsBordered,
NSCellHasOverlappingImage,
NSCellHasImageHorizontal,
NSCellHasImageOnLeftOrBottom,
NSCellChangesContents,
NSCellIsInsetButton,
NSCellAllowsMixedState

} NSCellAttribute ;

DESCRIPTION This is the type of the first argument to the NSCell methods setCellAttribute:to: and
cellAttribute: methods. Some of the values apply not to NSCell but to one of its subclasses.

Often it’s preferable to change cell attributes using more specialized methods like setState: or
setEditable:.

2

NSCellImagePosition

DECLARED IN AppKit/NSCell.h

SYNOPSIS typedef enum _NSCellImagePosition {
NSNoImage,
NSImageOnly,
NSImageLeft,
NSImageRight,
NSImageBelow,
NSImageAbove,
NSImageOverlaps,

} NSCellImagePosition;

DESCRIPTION These constants represent the position of an NSButtonCell’s NSImage relative to its title. See
NSButton’s and NSButtonCell’s setImagePosition: and imagePosition methods for more
information.

NSCellType

DECLARED IN AppKit/NSCell.h

SYNOPSIS typedef enum _NSCellType {
NSNullCellType,
NSTextCellType,
NSImageCellType,

} NSCellType;

DESCRIPTION The values of this type determine what kind of data an NSCell displays. NSCells of type
NSTextCellType and NSImageCellType display text and images, respectively. NSCells of type
NSNullCellType display nothing. See the NSCell methods type and setType: for more
information.

3

NSDataLinkDisposition

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS typedef enum _NSDataLinkDisposition {
NSLinkInDestination ,
NSLinkInSource,
NSLinkBroken

} NSDataLinkDisposition;

DESCRIPTION Returned by NSDataLink’s disposition method to identify a link as a destination link, a source
link, or a broken link. See the NSDataLink class specification for more information on the
dispositions of links.

NSDataLinkNumber

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS typedef int NSDataLinkNumber;

DESCRIPTION The type returned by NSDataLink’s linkNumber method as a persistent identifier of a destination
link.

NSDataLinkUpdateMode

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS typedef enum _NSDataLinkUpdateMode {
NSUpdateContinuously,
NSUpdateWhenSourceSaved,
NSUpdateManually,
NSUpdateNever

} NSDataLinkUpdateMode;

4

DESCRIPTION Used by NSDataLink’s setUpdateMode: and updateMode methods to identify when a link’s
data is to be updated.

NSEventType

DECLARED IN AppKit/NSEvent.h

SYNOPSIS typedef enum _NSEventType {
NSLeftMouseDown,
NSLeftMouseUp,
NSRightMouseDown,
NSRightMouseUp,
NSMouseMoved,
NSLeftMouseDragged,
NSRightMouseDragged,
NSMouseEntered,
NSMouseExited,
NSKeyDown,
NSKeyUp,
NSFlagsChanged,
NSAppKitDefined,
NSSystemDefined,
NSApplicationDefined
NSPeriodic,
NSCursorUpdate

} NSEventType;

DESCRIPTION This type represents various kinds of events. It is the return type of NSEvent’s type method, and
the type of the first argument to NSEvent’s ...EventWithType: methods.

5

NSFontAction

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS typedef enum _NSFontAction {
NSNoFontChangeAction,
NSViaPanelFontAction,
NSAddTraitFontAction ,
NSSizeUpFontAction,
NSSizeDownFontAction,
NSHeavierFontAction,
NSLighterFontAction ,
NSRemoveTraitFontAction

} NSFontAction;

DESCRIPTION Values of this type tag the actions of font menu cells. When a font menu cell sends a message to
NSFontManager, NSFontManager checks the cell for one of these tags.

This type is in the API for explanatory purposes only. You will never use it directly.

NSFontTraitMask

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS typedef unsigned int NSFontTraitMask;

DESCRIPTION An NSFontTraitMask characterizes one or more of a font’s traits. It’s used as an argument type
for NSAttributedString’s applyFontTraits:range: method, NSCStringText’s setSelFontStyle:
method, and several of the methods in the NSFontManager class.

6

NSGlyph

DECLARED IN AppKit/NSFont.h

SYNOPSIS typedef unsigned int NSGlyph;

DESCRIPTION This type is used to specify PostScript glyphs in such NSFont methods as glyphWithName:.

NSGlyphInscription

DECLARED IN AppKit/NSLayoutManager.h

SYNOPSIS typedef enum {
NSGlyphInscribeBase,
NSGlyphInscribeBelow,
NSGlyphInscribeAbove,
NSGlyphInscribeOverstrike,
NSGlyphInscribeOverBelow

} NSGlyphInscription ;

DESCRIPTION The inscribe attribute of an glyph determines how it is laid out relative to the previous glyph.

NSGlyphRelation

DECLARED IN AppKit/NSFont.h

SYNOPSIS typedef enum _NSGlyphRelation {
NSGlyphBelow,
NSGlyphAbove,

} NSGlyphRelation;

DESCRIPTION This type specifies the position of a glyph in relation to the base glyph. Parameters of this type
are used in the second slot of the NSFont method positionOfGlyph:withRelation:
toBaseGlyph:....

7

e

NSGradientType

DECLARED IN AppKit/NSButtonCell.h

SYNOPSIS typedef enum _NSGradientType {
NSGradientNone,
NSGradientConcaveWeak,
NSGradientConcaveStrong,
NSGradientConvexWeak,
NSGradientConvexStrong

} NSGradientType;

DESCRIPTION This type represents the darkness gradient of an NSButtonCell. A concave gradient is darkest in
the top left corner, a convex gradient is darkest in the bottom right corner. A weak gradient has
only weak darkness contrast between opposite corners; a strong gradient has strong contrast. Se
the NSButtonCell methods gradient and setGradient: for more information.

NSImageAlignment

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSImageAlignCenter,
NSImageAlignTop,
NSImageAlignTopLeft,
NSImageAlignTopRight,
NSImageAlignLeft,
NSImageAlignBottom,
NSImageAlignBottomLeft,
NSImageAlignBottomRight,
NSImageAlignRight

} NSImageAlignment;

DESCRIPTION This type defines the ways of aligning an NSImage within an NSImageCell. It is the return type
for NSImageCell’s and NSImageView’s imageAlignment methods, and an argument type for
their setImageAlignment: methods.

8

NSImageFrameStyle

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSImageFrameNone,
NSImageFramePhoto,
NSImageFrameGrayBezel,
NSImageFrameGroove,
NSImageFrameButton

} NSImageFrameStyle;

DESCRIPTION This type defines the kinds of frames that can appear around an NSImageCell. It is the return type
for NSImageCell’s and NSImageView’s imageFrameStyle methods, and an argument type for
their setImageFrameStyle: methods.

NSImageScaling

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSScaleProportionally,
NSScaleToFit,
NSScaleNone

} NSImageScaling;

DESCRIPTION This type defines the ways that an image can be scaled to fit an NSImageCell. The value
NSScaleProportionally means that the image should be scaled in a way that preserves its
proportions. The value NSScaleToFit means that the image should fit the NSView, even if that
means its proportions must be distorted. The value NSScaleNone means that the image’s size
should be preserved, even if it must be clipped to fit the NSView.

9

NSInterfaceStyle

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS typedef enum {
NSNoInterfaceStyle,
NSNextStepInterfaceStyle,
NSWindows95InterfaceStyle,
NSMacintoshInterfaceStyle

} NSInterfaceStyle;

DECLARED IN This type defines the style of an application’s user interface. It is returned by the interfaceStyle
method and taken as an argument by the setInterfaceStyle: method. Both of the these methods
are in the NSInterfaceStyle category of NSResponder.

For more information, see the function NSInterfaceStyleForKey.

NSLineBreakMode

DECLARED IN AppKit/NSParagraphStyle.h

SYNOPSIS typedef enum _NSLineBreakMode {
NSLineBreakByWordWrapping ,
NSLineBreakByCharWrapping ,
NSLineBreakByClipping,
NSLineBreakByTruncatingHead,
NSLineBreakByTruncatingTail ,
NSLineBreakByTruncatingMiddle

} NSLineBreakMode;

DESCRIPTION This type defines the ways that a long paragraph can be broken into lines. The possible values are
described below.

Value Meaning

NSLineBreakByWordWrapping The default value. At the last possible word boundary, the
paragraph wraps to the next line.

10

NSLineMovementDirection

DECLARED IN AppKit/NSTextContainer.h

SYNOPSIS typedef enum {
NSLineDoesntMove,
NSLineMovesLeft,
NSLineMovesRight,
NSLineMovesDown,
NSLineMovesUp

} NSLineMovementDirection;

DESCRIPTION This is an argument type for the NSTextContainer method lineFragmentRectForProposedRect:
sweepDirection:movementDirection:remainingRect:.

NSLineBreakByCharWrapping At the last possible character, the paragraph wraps to the next line.

NSLineBreakByClipping As much of the paragraph appears as will fit on a single line. This
value has the same effect as NSLineBreakByTruncatingTail

NSLineBreakByTruncatingHead As much of the paragraph appears as will fit on a single line.
Characters from the start of the paragraph do not appear.

NSLineBreakByTruncatingTail As much of the paragraph appears as will fit on a single line.
Characters from the end of the paragraph do not appear.

NSLineBreakByTruncatingMiddle As much of the paragraph appears as will fit on a single line.
Characters from the middle of the paragraph do not appear.

Value Meaning

11

NSLineSweepDirection

DECLARED IN AppKit/NSTextContainer.h

SYNOPSIS typedef enum {
NSLineSweepLeft,
NSLineSweepRight,
NSLineSweepDown,
NSLineSweepUp

} NSLineSweepDirection;

DESCRIPTION This is an argument type for the NSTextContainer method lineFragmentRectForProposedRect:
sweepDirection:movementDirection:remainingRect:.

NSMatrixMode

DECLARED IN AppKit/NSMatrix.h

SYNOPSIS typedef enum _NSMatrixMode {
NSRadioModeMatrix,
NSHighlightModeMatrix ,
NSListModeMatrix ,
NSTrackModeMatrix

} NSMatrixMode ;

DESCRIPTION These constants represent the modes of operation of an NSMatrix, as described in the NSMatrix
class specification.

NSModalSession

DECLARED IN AppKit/NSApplication.h

SYNOPSIS typedef struct _NSModalSession *NSModalSession;

12

DESCRIPTION Variables of type NSModalSession point to information used by the system between
beginModalSession:for: and endModalSession: messages.

NSPrinterTableStatus

DECLARED IN AppKit/NSPrinter.h

SYNOPSIS typedef enum _NSPrinterTableStatus {
NSPrinterTableOK ,
NSPrinterTableNotFound,
NSPrinterTableError

} NSPrinterTableStatus;

DESCRIPTION These constants are used to describe the state of a printer-information table stored by an NSPrinter
object. See the NSPrinter method statusForTable: for more information.

NSPrintingOrientation

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS typedef enum _NSPrintingOrientation {
NSPortraitOrientation ,
NSLandscapeOrientation

} NSPrintingOrientation ;

DESCRIPTION These constants represent the way a page is oriented for printing. In NSPortraitOrientation, the
page is taller than it is wide; in NSLandscapeOrientation, the page is wider than it is tall. See the
NSPrintInfo methods orientation and setOrientation: for more information.

13

NSPrintingPageOrder

DECLARED IN AppKit/NSPrintOperation.h

SYNOPSIS typedef enum _NSPrintingPageOrder {
NSDescendingPageOrder,
NSSpecialPageOrder,
NSAscendingPageOrder,
NSUnknownPageOrder

} NSPrintingPageOrder;

DESCRIPTION This type represents the order in which pages are to be printed. The value NSSpecialPageOrder
tells the spooler to not rearrange the pages. The value NSUnknownPageOrder means that no page
order is written out. See the NSPrintOperation methods pageOrder and setPageOrder: for more
information.

NSPrintingPaginationMode

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS typedef enum _NSPrintingPaginationMode {
NSAutoPagination,
NSFitPagination,
NSClipPagination

} NSPrintingPaginationMode;

DESCRIPTION These constants represent the different ways in which an image is divided into pages. The value
NSFitPagination forces the image to fit on one page. The value NSClipPagination allows the
image to be clipped by the page.See the NSPrintInfo class specification for a fuller explanation.

14

NSRulerOrientation

DECLARED IN AppKit/NSRulerView.h

SYNOPSIS typedef enum {
NSHorizontalRuler,
NSVerticalRuler

} NSRulerOrientation;

DESCRIPTION This type defines whether an NSRulerView will be displayed horizontally or vertically. It is the
return type of NSRulerView’s orientation method, and an argument to the NSRulerView
methods setOrientation: and initWithScrollView:orientation: .

NSScrollArrowPosition

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollArrowPosition {
NSScrollerArrowsMaxEnd,
NSScrollerArrowsMinEnd ,
NSScrollerArrowsNone

} NSScrollArrowPosition;

DESCRIPTION These constants are used in NSScroller’s setArrowsPosition: method to set the position of the
arrows within the scroller.

NSScrollerArrow

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollerArrow {
NSScrollerIncrementArrow ,
NSScrollerDecrementArrow

} NSScrollerArrow ;

15

DESCRIPTION This is the type of the first argument to the NSScroller method drawArrow:highlight: . The value
determines which scroll button is drawn.

NSScrollerPart

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollerPart {
NSScrollerNoPart,
NSScrollerDecrementPage,
NSScrollerKnob,
NSScrollerIncrementPage,
NSScrollerDecrementLine,
NSScrollerIncrementLine,
NSScrollerKnobSlot

} NSScrollerPart;

DESCRIPTION These constants are used in Scroller’s hitPart method to identify the part of the Scroller specified
in a mouse event.

NSSelectionAffinity

DECLARED IN AppKit/NSTextView.h

SYNOPSIS typedef enum _NSSelectionAffinity {
NSSelectionAffinityUpstream,
NSSelectionAffinityDownstream

} NSSelectionAffinity;

DESCRIPTION This is the return type of the NSTextView method selectionAffinity, and the type of the second
argument to the NSTextView method setSelectedRange:affinity:stillSelecting:.

16

NSSelectionDirection

DECLARED IN AppKit/NSWindow.h

SYNOPSIS typedef enum _NSSelectionDirection {
NSDirectSelection,
NSSelectingNext,
NSSelectingPrevious

} NSSelectionDirection;

DESCRIPTION This is the return type of the NSWindow method keyViewSelectionDirection.

NSSelectionGranularity

DECLARED IN AppKit/NSTextView.h

SYNOPSIS typedef enum _NSSelectionGranularity {
NSSelectByCharacter,
NSSelectByWord,
NSSelectByParagraph

} NSSelectionGranularity;

DESCRIPTION This is the return type of the NSTextView method selectionGranularity, and the type of arguments
to two other NSTextView methods, setSelectionGranularity: and
selectionRangeForProposedRange:granularity:.

17

NSTextAlignment

DECLARED IN AppKit/NSText.h

SYNOPSIS typedef enum _NSTextAlignment {
NSLeftTextAlignment,
NSRightTextAlignment,
NSCenterTextAlignment,
NSJustifiedTextAlignment,
NSNaturalTextAlignment

} NSTextAlignment;

DESCRIPTION Variables of this type are used as arguments and return values for methods that specify text
alignment.

NSTextTabType

DECLARED IN AppKit/NSParagraphStyle.h

SYNOPSIS typedef enum _NSTextTabType {
NSLeftTabStopType,
NSRightTabStopType,
NSCenterTabStopType,
NSDecimalTabStopType

} NSTextTabType;

DESCRIPTION This is the return type of NSTextTab’s tabStopType method, and an argument to NSTextTab’s
initWithType:location: method.

NSTIFFCompression

SYNOPSIS AppKit/NSBitmapImageRep.h

18

SYNOPSIS typedef enum _NSTIFFCompression {
NSTIFFCompressionNone,
NSTIFFCompressionCCITTFAX3,
NSTIFFCompressionCCITTFAX4,
NSTIFFCompressionLZW,
NSTIFFCompressionJPEG,
NSTIFFCompressionNEXT,
NSTIFFCompressionPackBits,
NSTIFFCompressionOldJPEG

} NSTIFFCompression;

DESCRIPTION These constants represent the various TIFF (tag image file format) data compression schemes. See
the NSBitmapImageRep class specification for their meanings.

NSTitlePosition

DECLARED IN AppKit/NSBox.h

SYNOPSIS typedef enum _NSTitlePosition {
NSNoTitle,
NSAboveTop,
NSAtTop,
NSBelowTop,
NSAboveBottom,
NSAtBottom,
NSBelowBottom

} NSTitlePosition;

DESCRIPTION This type represents the locations where an NSBox’s title can be placed with respect to its border.
Thus, for example, NSAboveTop means the title is above the top of the border, NSAtTop means
the title breaks the top border, and so on. See the NSBox methods titlePosition and
setTitlePosition:.

19

NSTrackingRectTag

DECLARED IN AppKit/NSView.h

SYNOPSIS typedef int NSTrackingRectTag;

DESCRIPTION This type describes the rectangle used to track the mouse. See the NSView methods
addTrackingRect:... and removeTrackingRect:.

NSUsableScrollerParts

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSUsableScrollerParts {
NSNoScrollerParts,
NSOnlyScrollerArrows,
NSAllScrollerParts

} NSUsableScrollerParts;

DESCRIPTION This type defines the usable parts of an NSScroller; see the class specification for more
information.

NSWindowDepth

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS typedef int NSWindowDepth;

DESCRIPTION This type represents the depth, or amount of memory, devoted to a single pixel in a window or
screen.

20

Enumerations

NSApplication—Modal Session Return Values

DECLARED IN AppKit/NSApplication.h

SYNOPSIS enum {
NSRunStoppedResponse,
NSRunAbortedResponse,
NSRunContinuesResponse

};

DESCRIPTION Return values for the NSApplication methods runModalFor: and runModalSession:.

NSAttributedString—Underlining

DECLARED IN AppKit/NSAttributedString.h

SYNOPSIS enum {
NSSingleUnderlineStyle

};

DESCRIPTION This defines the only currently supported value for NSUnderlineStyleAttributeName.

21

NSButtonCell—State Masks

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSNoCellMask,
NSContentsCellMask,
NSPushInCellMask,
NSChangeGrayCellMask,
NSChangeBackgroundCellMask

};

DESCRIPTION These masks are passed to the NSButtonCell methods highlightsBy: and showsStateBy:.

22

NSCell—Action Flags

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSLeftMouseDownMask,
NSLeftMouseUpMask,
NSRightMouseDownMask,
NSRightMouseUpMask,
NSMouseMovedMask,
NSLeftMouseDraggedMask,
NSRightMouseDraggedMask,
NSMouseEnteredMask,
NSMouseExitedMask,
NSKeyDownMask,
NSKeyUpMask,
NSFlagsChangedMask,
NSAppKitDefinedMask,
NSSystemDefinedMask,
NSApplicationDefinedMask,
NSPeriodicMask,
NSCursorUpdateMask,
NSAnyEventMask

};

DESCRIPTION These constants are masks for different kinds of events. You pass them to NSCell’s
sendActionOn: method to indicate when an NSCell should send its action message.

23

NSCell—Data Entry Types

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSAnyType,
NSIntType,
NSPositiveIntType,
NSFloatType,
NSPositiveFloatType,
NSDoubleType,
NSPositiveDoubleType

};

DESCRIPTION These constants represent the numeric data types that a text NSCell can accept. See NSCell’s
setEntryType: method for more information.

NSCell—States

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSStateMixed,
NSStateOff,
NSStateOn

};

DESCRIPTION These constants are suggested parameter values for the NSCell method setState:.

24

NSColorPanel—Modes

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS enum {
NSGrayModeColorPanel,
NSRGBModeColorPanel,
NSCMYKModeColorPanel,
NSHSBModeColorPanel,
NSCustomPaletteModeColorPanel,
NSColorListModeColorPanel,
NSWheelModeColorPanel

};

DESCRIPTION These constants represent the possible modes of an NSColorPanel.

NSColorPanel—Mode Masks

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS enum {
NSColorPanelGrayModeMask,
NSColorPanelRGBModeMask,
NSColorPanelCMYKModeMask,
NSColorPanelHSBModeMask,
NSColorPanelCustomPaletteModeMask,
NSColorPanelColorListModeMask,
NSColorPanelWheelModeMask,
NSColorPanelAllModesMask

};

DESCRIPTION These constants provide masks for the NSColorPanel modes.

25

NSDragging—Operations

DECLARED IN AppKit/NSDragging.h

SYNOPSIS enum {
NSDragOperationNone,
NSDragOperationCopy,
NSDragOperationLink ,
NSDragOperationGeneric,
NSDragOperationPrivate,
NSDragOperationAll

};

DESCRIPTION These constants define the operations that result from a user’s drag. For full descriptions of their
meanings and uses, see the method descriptions for draggingSourceOperationMaskForLocal:
(in the NSDraggingSource protocol), draggingSourceOperationMask (in the NSDraggingInfo
protocol), or draggingEntered: (in the NSDraggingDestination protocol).

NSEvent—Function-Key Unicodes

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSUpArrowFunctionKey = 0xF700,
NSDownArrowFunctionKey = 0xF701,
NSLeftArrowFunctionKey = 0xF702,
NSRightArrowFunctionKey = 0xF703,
NSF1FunctionKey = 0xF704,
NSF2FunctionKey = 0xF705,
NSF3FunctionKey = 0xF706,
NSF4FunctionKey = 0xF707,
NSF5FunctionKey = 0xF708,
NSF6FunctionKey = 0xF709,
NSF7FunctionKey = 0xF70A,
NSF8FunctionKey = 0xF70B,
NSF9FunctionKey = 0xF70C,
NSF10FunctionKey = 0xF70D,

26

NSF11FunctionKey = 0xF70E,
NSF12FunctionKey = 0xF70F,
NSF13FunctionKey = 0xF710,
NSF14FunctionKey = 0xF711,
NSF15FunctionKey = 0xF712,
NSF16FunctionKey = 0xF713,
NSF17FunctionKey = 0xF714,
NSF18FunctionKey = 0xF715,
NSF19FunctionKey = 0xF716,
NSF20FunctionKey = 0xF717,
NSF21FunctionKey = 0xF718,
NSF22FunctionKey = 0xF719,
NSF23FunctionKey = 0xF71A,
NSF24FunctionKey = 0xF71B,
NSF25FunctionKey = 0xF71C,
NSF26FunctionKey = 0xF71D,
NSF27FunctionKey = 0xF71E,
NSF28FunctionKey = 0xF71F,
NSF29FunctionKey = 0xF720,
NSF30FunctionKey = 0xF721,
NSF31FunctionKey = 0xF722,
NSF32FunctionKey = 0xF723,
NSF33FunctionKey = 0xF724,
NSF34FunctionKey = 0xF725,
NSF35FunctionKey = 0xF726,
NSInsertFunctionKey = 0xF727,
NSDeleteFunctionKey = 0xF728,
NSHomeFunctionKey = 0xF729,
NSBeginFunctionKey = 0xF72A,
NSEndFunctionKey = 0xF72B,
NSPageUpFunctionKey = 0xF72C,
NSPageDownFunctionKey = 0xF72D,
NSPrintScreenFunctionKey = 0xF72E,
NSScrollLockFunctionKey = 0xF72F,
NSPauseFunctionKey = 0xF730,
NSSysReqFunctionKey = 0xF731,
NSBreakFunctionKey = 0xF732,
NSResetFunctionKey = 0xF733,
NSStopFunctionKey = 0xF734,
NSMenuFunctionKey = 0xF735,
NSUserFunctionKey = 0xF736,
NSSystemFunctionKey = 0xF737,
NSPrintFunctionKey = 0xF738,

27

NSClearLineFunctionKey = 0xF739,
NSClearDisplayFunctionKey = 0xF73A,
NSInsertLineFunctionKey = 0xF73B,
NSDeleteLineFunctionKey = 0xF73C,
NSInsertCharFunctionKey = 0xF73D,
NSDeleteCharFunctionKey = 0xF73E,
NSPrevFunctionKey = 0xF73F,
NSNextFunctionKey = 0xF740,
NSSelectFunctionKey = 0xF741,
NSExecuteFunctionKey = 0xF742,
NSUndoFunctionKey = 0xF743,
NSRedoFunctionKey = 0xF744,
NSFindFunctionKey = 0xF745,
NSHelpFunctionKey = 0xF746,
NSModeSwitchFunctionKey = 0xF747

};

DESCRIPTION These Unicodes (0xF700-0xF8FF) are reserved for function keys on the keyboard. Combined in
NSStrings, they may be used in the return value of the NSEvent methods characters..., and in
parameters of the NSEvent method keyEventWithType:...characters:....

NSEvent—Modifier Flags

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSAlphaShiftKeyMask,
NSShiftKeyMask,
NSControlKeyMask,
NSAlternateKeyMask,
NSCommandKeyMask,
NSNumericPadKeyMask,
NSHelpKeyMask,
NSFunctionKeyMask

};

DESCRIPTION These are device-independent bits found in event modifier flags.

28

NSEvent—Types Defined by the Application Kit

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSWindowExposedEventType,
NSApplicationActivatedEventType,
NSApplicationDeactivatedEventType,
NSWindowMovedEventType,
NSScreenChangedEventType

};

DESCRIPTION These constants represent the types of events defined by the Application Kit.

NSEvent—Types Defined by the System

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSPowerOffEventType

};

DESCRIPTION This constant means that the user is turning off the computer.

Constant Meaning

NSWindowExposedEventType A nonretained NSWindow has been exposed

NSApplicationActivatedEventType The application has been activated

NSApplicationDeactivatedEventType The application has been deactivated

NSWindowMovedEventType An NSWindow has moved

NSScreenChangedEventType An NSWindow has changed screens

29

NSFont—Traits

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS enum {
NSItalicFontMask,
NSBoldFontMask,
NSUnboldFontMask,
NSNonStandardCharacterSetFontMask,
NSNarrowFontMask,
NSExpandedFontMask,
NSCondensedFontMask,
NSSmallCapsFontMask,
NSPosterFontMask,
NSCompressedFontMask,
NSFixedPitchFontMask,
NSUnitalicFontMask

};

DESCRIPTION These constants are used by the NSFontManager to identify font traits. Some traits are mutually
exclusive, such as NSExpandedFontMask and NSCondensedFontMask.

NSFontPanel—Tags for Subviews

DECLARED IN AppKit/NSFontPanel.h

SYNOPSIS enum {
NSFPPreviewButton,
NSFPRevertButton,
NSFPSetButton,
NSFPPreviewField,
NSFPSizeField,
NSFPSizeTitle,
NSFPCurrentField

};

DESCRIPTION These tags identify the NSViews within an NSFontPanel.

30

NSGlyph—Attributes

DECLARED IN AppKit/NSLayoutManager.h

SYNOPSIS enum _NSGlyphAttribute {
NSGlyphAttributeSoft ,
NSGlyphAttributeElastic ,
NSGlyphAttributeInscribe

};

DESCRIPTION These glyph attributes are used only inside the glyph generation machinery, but must be shared
between components.

NSGlyph—Reserved Glyph Codes

DECLARED IN AppKit/NSFont.h

SYNOPSIS enum {
NSControlGlyph = 0x00FFFFFF,
NSNullGlyph = 0x0

};

DESCRIPTION These two values are reserved for the two named NSGlyphs.

NSImageRep—Display Device Matching

DECLARED IN AppKit/NSImageRep.h

SYNOPSIS enum {
NSImageRepMatchesDevice

};

31

DESCRIPTION This constant is used by NSImageRep to indicate that the value of certain attributes, such as the
number of colors, or bits-per-sample, will change to match the display device. See the
NSImageRep class specification for more information.

NSPageLayoutPanel—Tags for Controls

DECLARED IN AppKit/NSPageLayout.h

SYNOPSIS enum {
NSPLImageButton,
NSPLTitleField,
NSPLPaperNameButton,
NSPLUnitsButton,
NSPLWidthForm ,
NSPLHeightForm,
NSPLOrientationMatrix ,
NSPLCancelButton,
NSPLOKButton

};

DESCRIPTION These constants represent the tag values of the controls displayed by an NSPageLayoutPanel.

NSPanel—Alert Panel Return Values

DECLARED IN AppKit/NSPanel.h

SYNOPSIS enum {
NSAlertDefaultReturn ,
NSAlertAlternateReturn ,
NSAlertOtherReturn ,
NSAlertErrorReturn

};

32

l

DESCRIPTION These constants define values returned by the NSRunAlertPanel function and by the
NSApplication method runModalSession: when the modal session is run with an NSPanel
provided by the NSGetAlertPanel function.

NSPanel—Modal Panel Return Values

DECLARED IN AppKit/NSPanel.h

SYNOPSIS enum {
NSOKButton,
NSCancelButton

};

DESCRIPTION These are the possible return values for such methods as the runModal... methods of
NSOpenPanel, which tells which button (OK or Cancel) the user has clicked on an open panel.
For other uses of these return values, see the class descriptions for NSPageLayout, NSPrintPane
and NSSavePanel.

33

NSPrintPanel—Tags for Subviews

DECLARED IN AppKit/NSPrintPanel.h

SYNOPSIS enum {
NSPPSaveButton,
NSPPPreviewButton,
NSFaxButton,
NSPPTitleField,
NSPPImageButton,
NSPPNameTitle,
NSPPNameField,
NSPPNoteTitle,
NSPPNoteField,
NSPPStatusTitle,
NSPPStatusField,
NSPPCopiesField,
NSPPPageChoiceMatrix,
NSPPPageRangeFrom,
NSPPPageRangeTo,
NSPPScaleField,
NSPPOptionsButton,
NSPPPaperFeedButton,
NSPPLayoutButton

};

DESCRIPTION These constants define tags for identifying the NSViews in a print panel in environments other
than Microsoft Windows. Windows has its own way of handling print panels.

NSRunLoop—Ordering Modes for NSApplication

DECLARED IN AppKit/NSApplication.h

SYNOPSIS enum {
NSUpdateWindowsRunLoopOrdering

};

34

DESCRIPTION This constants is used with NSRunLoop's performSelector:target:argument:order:modes:
method.

NSRunLoop—Ordering Mode for NSDPSServerContext

DECLARED IN AppKit/NSDPSServerContext.h

SYNOPSIS enum {
DPSFlushContextRunLoopOrdering

};

DESCRIPTION This constants is used with NSRunLoop's method performSelector:target:argument:order:
modes:.

NSRunLoop—Ordering Modes for NSWindow

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSDisplayWindowRunLoopOrdering,
NSResetCursorRectsRunLoopOrdering

};

DESCRIPTION These constants are passed to NSRunLoop’s method performSelector:target:argument:order:
modes:.

35

NSSavePanel—Tags for Subviews

DECLARED IN AppKit/NSSavePanel.h

SYNOPSIS enum {
NSFileHandlingPanelImageButton,
NSFileHandlingPanelTitleField,
NSFileHandlingPanelBrowser,
NSFileHandlingPanelCancelButton,
NSFileHandlingPanelOKButton,
NSFileHandlingPanelForm,
NSFileHandlingPanelHomeButton,
NSFileHandlingPanelDiskButton,
NSFileHandlingPanelDiskEjectButton

};

DESCRIPTION These constants define tags for identifying NSViews in an NSSavePanel.

NSTextAttachment—Attachment Character

DECLARED IN AppKit/NSTextAttachment.h

SYNOPSIS enum {
NSAttachmentCharacter = 0xfffc

};

36

DECLARED IN This Unicode indicates the presence of an attachment in an NSAttributedString. For more
information, see the Class Cluster Description of NSAttributedStringAdditions.

NSText—Important Unicodes

DECLARED IN AppKit/NSText.h

SYNOPSIS enum {
NSParagraphSeparatorCharacter = 0x2029,
NSLineSeparatorCharacter = 0x2028,
NSTabCharacter = 0x0009,
NSFormFeedCharacter = 0x000c,
NSNewlineCharacter = 0x000a,
NSCarriageReturnCharacter = 0x000d,
NSEnterCharacter = 0x0003,
NSBackspaceCharacter = 0x0008,
NSBackTabCharacter = 0x0019,
NSDeleteCharacter = 0x007f,

};

DESCRIPTION These constants specify several commonly-used Unicode characters.

37

NSText—Movement Codes

DECLARED IN AppKit/NSText.h

SYNOPSIS enum {
NSIllegalTextMovement,
NSReturnTextMovement,
NSTabTextMovement,
NSBacktabTextMovement,
NSLeftTextMovement,
NSRightTextMovement,
NSUpTextMovement,
NSDownTextMovement

};

DESCRIPTION These constants are the codes for movement between fields. They are the possible int values for
the NSTextMovement key of NSTextDidEndEditingNotification. For more information, see the
“Notifications” section of the NSText class specification.

NSTextStorage—Editing

DECLARED IN AppKit/NSTextStorage.h

SYNOPSIS enum {
NSTextStorageEditedAttributes,
NSTextStorageEditedCharacters

};

DESCRIPTION These values, which may be combined by a bitwise OR, help describe the changes that an editing
session has made to an NSTextStorage object. They are the return values of the NSTextStorage
method editedMask, and the parameter values for the second slot of the NSLayoutManager
method textStorage:edited:....

38

NSView—Resizing

DECLARED IN AppKit/NSView.h

SYNOPSIS enum {
NSViewNotSizable,
NSViewMinXMargin ,
NSViewWidthSizable,
NSViewMaxXMargin ,
NSViewMinYMargin ,
NSViewHeightSizable,
NSViewMaxYMargin

};

DESCRIPTION Used to describe which parts of an NSView (or its margins) are resized when the NSView’s
superNSView is resized. See the NSView class specification for details.

NSWindow—Border Masks

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSBorderlessWindowMask,
NSTitledWindowMask,
NSClosableWindowMask,
NSMiniaturizableWindowMask ,
NSResizableWindowMask

};

DESCRIPTION These determine the presence of a title and various buttons in an NSWindow’s border.

39

NSWindow—Window Levels

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSNormalWindowLevel,
NSFloatingWindowLevel,
NSDockWindowLevel,
NSSubmenuWindowLevel,
NSTornOffMenuWindowLevel ,
NSMainMenuWindowLevel,
NSModalPanelWindowLevel,
NSPopUpMenuWindowLevel

};

DESCRIPTION These constants name the Application Kit’s window levels. The stacking of levels takes
precedence over the stacking of windows within each level. That is, even the bottom window in
a level will obscure even the top window of the next level down.

The constant NSTornOffMenuWindowLevel is preferable to its synonym,
NSSubmenuWindowLevel.

40

Global Variables

Application Kit—Exceptions

DECLARED IN AppKit/NSErrors.h

SYNOPSIS NSString *NSTextLineTooLongException;
NSString *NSTextNoSelectionException;
NSString *NSWordTablesWriteException;
NSString *NSWordTablesReadException;
NSString *NSTextReadException;
NSString *NSTextWriteException;
NSString *NSPasteboardCommunicationException;
NSString *NSPrintingCommunicationException;
NSString *NSAbortModalException;
NSString *NSAbortPrintingException ;
NSString *NSIllegalSelectorException;
NSString *NSAppKitVirtualMemoryException ;
NSString *NSBadRTFDirectiveException;
NSString *NSBadRTFFontTableException;
NSString *NSBadRTFStyleSheetException;
NSString *NSTypedStreamVersionException;
NSString *NSTIFFException;
NSString *NSPrintPackageException;
NSString *NSBadRTFColorTableException;
NSString *NSDraggingException;

41

NSString *NSColorListIOException;
NSString *NSColorListNotEditableException;
NSString *NSBadBitmapParametersException;
NSString *NSWindowServerCommunicationException;
NSString *NSFontUnavailableException;
NSString *NSPPDIncludeNotFoundException;
NSString *NSPPDParseException;
NSString *NSPPDIncludeStackOverflowException;
NSString *NSPPDIncludeStackUnderflowException;
NSString *NSRTFPropertyStackOverflowException;
NSString *NSAppKitIgnoredException;
NSString *NSBadComparisonException;
NSString *NSImageCacheException;
NSString *NSNibLoadingException;
NSString *NSBrowserIllegalDelegateException;

DESCRIPTION These constants name the exceptions that the Application Kit can raise.

Display Device—Descriptions

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSDeviceResolution;
NSString *NSDeviceColorSpaceName;
NSString *NSDeviceBitsPerSample;
NSString *NSDeviceIsScreen;
NSString *NSDeviceIsPrinter;
NSString *NSDeviceSize;

DESCRIPTION These are the keys for device description dictionaries, such as those returned by the
deviceDictionary methods of NSPrinter, NSScreen and NSWindow.

NSDeviceResolution is an NSValue containing an NSSize in dots per inch. NSColorSpaceName
is an NSString describing the color space of the device. NSDeviceBitsPerSample is an NSValue
containing an int. NSDeviceIsScreen and NSDeviceIsPrinter are boolean values that tell whether
the device is a screen or a printer. NSDeviceSize is an NSValue containing an NSSize that
represents the device’s size in points.

42

NSApplication—Notifications

DECLARED IN AppKit/NSApplication.h

SYNOPSIS NSString *NSApplicationDidBecomeActiveNotification;
NSString *NSApplicationDidFinishLaunchingNotification ;
NSString *NSApplicationDidHideNotification ;
NSString *NSApplicationDidResignActiveNotification;
NSString *NSApplicationDidUnhideNotification;
NSString *NSApplicationDidUpdateNotification;
NSString *NSApplicationWillBecomeActiveNotification;
NSString *NSApplicationWillFinishLaunchingNotification ;
NSString *NSApplicationWillHideNotification ;
NSString *NSApplicationWillResignActiveNotification;
NSString *NSApplicationWillUnhideNotification ;
NSString *NSApplicationWillUpdateNotification ;
NSString *NSApplicationWillTerminateNotification ;

DECLARED IN These are the notifications used with the methods of the NSApplicationNotifications category of
NSObject.

NSApplication—Shared Application Object

DECLARED IN AppKit/NSApplication.h

SYNOPSIS id NSApp;

DESCRIPTION This variable designates the shared application object, created by NSApplication’s
sharedApplication method.

43

NSAttributedString—Attributes

DECLARED IN AppKit/NSAttributedString.h

SYNOPSIS NSString *NSFontAttributeName;
NSString *NSParagraphStyleAttributeName;
 NSString *NSForegroundColorAttributeName;
 NSString *NSUnderlineStyleAttributeName;
 NSString *NSSuperscriptAttributeName;
 NSString *NSBackgroundColorAttributeName;
 NSString *NSAttachmentAttributeName;
 NSString *NSLigatureAttributeName ;
 NSString *NSBaselineOffsetAttributeName;
 NSString *NSKernAttributeName ;

DESCRIPTION These strings define the supported attributes of NSAttributedStrings. For more information, see
the “Accessing Attributes” section in the NSAttributedString class cluster specification.

NSComboBox—Notifications

DECLARED IN AppKit/NSComboBox.h

SYNOPSIS NSString *NSComboBoxWillPopUpNotification;
NSString *NSComboBoxWillDismissNotification;
NSString *NSComboBoxSelectionDidChangeNotification;
NSString *NSComboBoxSelectionIsChangingNotification;

DESCRIPTION These notifications are sent by NSComboBoxes.

44

NSColor—Color Space Names

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSCalibratedWhiteColorSpace;
NSString *NSCalibratedBlackColorSpace;
NSString *NSCalibratedRGBColorSpace;
NSString *NSDeviceWhiteColorSpace;
NSString *NSDeviceBlackColorSpace;
NSString *NSDeviceRGBColorSpace;
NSString *NSDeviceCMYKColorSpace;
NSString *NSNamedColorSpace;
NSString *NSCustomColorSpace;

DESCRIPTION These are the predefined names for color spaces. In the two ...WhiteColorSpaces, white
corresponds to a value of 1.0. In the two ...BlackColorSpaces, black corresponds to a value of 1.0.
NSNamedColorSpace is used for “catalog” colors—that is, colors specified by names rather than
coordinates. NSCustomColorSpace indicates a custom color space, which can be useful in
working with images; unlike the other color spaces, NSCustomColorSpace is not used with
NSColors.

NSColor—Grayscale Values

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS const float NSWhite;
const float NSLightGray ;
const float NSDarkGray;
const float NSBlack;

DESCRIPTION These are the standard gray values for the 2-bit deep grayscale color space.

45

NSColor—Notifications

DECLARED IN AppKit/NSColor.h

SYNOPSIS NSString *NSSystemColorsDidChangeNotification;

DESCRIPTION This notification is sent when the system colors have been changed (such as through a system
control panel interface). For more on system colors, see the “System Colors” section of the
NSColor class specification.

NSColorList—Notifications

DECLARED IN AppKit/NSColorList.h

SYNOPSIS NSString *NSColorListDidChangeNotification;

DESCRIPTION When an NSColorList changes, it posts this notification.

NSColorPanel—Notifications

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS NSString *NSColorPanelColorDidChangeNotification;

DESCRIPTION When an NSColorPanel changes, it posts this notification.

46

NSControl—Notifications

DECLARED IN AppKit/NSControl.h

SYNOPSIS NSString *NSControlTextDidBeginEditingNotification ;
NSString *NSControlTextDidEndEditingNotification ;
NSString *NSControlTextDidChangeNotification;

DESCRIPTION NSControls containing editable text can send these notifications. For more information, see the
“Notifications” section of the NSControl class specification.

NSDataLink—Filename Extension

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS NSString *NSDataLinkFilenameExtension;

DESCRIPTION NSDataLinkFilenameExtension is the filename extension used for links saved to files using
NSDataLink’s saveLinkIn: or writeToFile: methods.

47

NSFont—Keys to the AFM Dictionary

DECLARED IN AppKit/NSFont.h

SYNOPSIS NSString *NSAFMFamilyName;
NSString *NSAFMFontName;
NSString *NSAFMFormatVersion;
NSString *NSAFMFullName;
NSString *NSAFMNotice;
NSString *NSAFMVersion;
NSString *NSAFMWeight;
NSString *NSAFMEncodingScheme;
NSString *NSAFMCharacterSet;
NSString *NSAFMCapHeight;
NSString *NSAFMXHeight ;
NSString *NSAFMAscender;
NSString *NSAFMDescender;
NSString *NSAFMUnderlinePosition;
NSString *NSAFMUnderlineThickness;
NSString *NSAFMItalicAngle ;
NSString *NSAFMMappingScheme;

DESCRIPTION These are the keys to the font information dictionary returned by NSFont’s afmDictionary
method. To convert values like NSAFMCapHeight to floats, use NSString's floatValue method.

For other font information, use NSFont’s afmFileContents method.

NSFont—PostScript Transformation Matrix

DECLARED IN AppKit/NSFont.h

SYNOPSIS const float *NSFontIdentityMatrix ;

DESCRIPTION NSFontIdentityMatrix is a PostScript transformation matrix useful as a parameter to the NSFont
method fontWithName:matrix: .

48

NSHelpManager—Notifications

DECLARED IN AppKit/NSHelpManager.h

SYNOPSIS NSString *NSContextHelpModeDidActivateNotification;
NSString *NSContextHelpModeDidDeactivateNotification;

DESCRIPTION These are notifications for the activation and deactivation of the context help mode.

NSImageRep—Notifications

DECLARED IN AppKit/NSImageRep.h

SYNOPSIS NSString *NSImageRepRegistryDidChangeNotification;

DESCRIPTION This notification is sent when the NSImageRep class registry changes.

NSInterfaceStyleDefault

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS NSString *NSInterfaceStyleDefault;

DESCRIPTION NSInterfaceStyleDefault can be used to override the platform’s default interface style. For more
information, see the function NSInterfaceStyleForKey.

49

.

NSPasteboard—Names

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSGeneralPboard;
NSString *NSFontPboard;
NSString *NSRulerPboard;
NSString *NSFindPboard;
NSString *NSDragPboard;

DESCRIPTION Some standard pasteboard names. See the NSPasteboard class specification for more information

NSPasteboard—Type for Data Links

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS NSString *NSDataLinkPboardType;

DESCRIPTION A pasteboard type for copying a data link to the pasteboard. See the NSDataLink class
specification for more information.

NSPasteboard—Type for Selection Descriptions

DECLARED IN AppKit/NSSelection.h

SYNOPSIS NSString *NSSelectionPboardType;

DESCRIPTION A pasteboard type for copying selection descriptions to the pasteboard. See the NSSelection class
specification for more information.

50

NSPasteboard—Types for Standard Data

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSStringPboardType;
NSString *NSFilenamesPboardType;
NSString *NSPostScriptPboardType;
NSString *NSTIFFPboardType;
NSString *NSRTFPboardType;
NSString *NSTabularTextPboardType;
NSString *NSFontPboardType;
NSString *NSRulerPboardType;
NSString *NSFileContentsPboardType;
NSString *NSColorPboardType;
NSString *NSRTFDPboardType;

DESCRIPTION Some standard pasteboard data types. See the NSPasteboard class specification for more
information.

51

NSPrintInfo—Dictionary Keys

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS NSString *NSPrintPaperName;
NSString *NSPrintPaperSize;
NSString *NSPrintFormName;
NSString *NSPrintMustCollate;
NSString *NSPrintOrientation ;
NSString *NSPrintLeftMargin ;
NSString *NSPrintRightMargin ;
NSString *NSPrintTopMargin ;
NSString *NSPrintBottomMargin ;
NSString *NSPrintHorizontallyCentered;
NSString *NSPrintVerticallyCentered;
NSString *NSPrintHorizontalPagination;
NSString *NSPrintVerticalPagination;
NSString *NSPrintScalingFactor;
NSString *NSPrintAllPages;
NSString *NSPrintReversePageOrder;
NSString *NSPrintFirstPage;
NSString *NSPrintLastPage;
NSString *NSPrintCopies;
NSString *NSPrintPagesPerSheet;
NSString *NSPrintJobFeatures;
NSString *NSPrintPaperFeed;
NSString *NSPrintManualFeed;
NSString *NSPrintPrinter ;
NSString *NSPrintJobDisposition;

52

NSString *NSPrintSavePath;
NSString *NSPrintFaxReceiverNames;
NSString *NSPrintFaxReceiverNumbers;
NSString *NSPrintFaxSendTime;
NSString *NSPrintFaxUseCoverSheet;
NSString *NSPrintFaxCoverSheetName;
NSString *NSPrintFaxReturnReceipt;
NSString *NSPrintFaxHighResolution;
NSString *NSPrintFaxTrimPageEnds;
NSString *NSPrintFaxModem;
NSString *NSPrintSpoolJob;
NSString *NSPrintFaxJob;
NSString *NSPrintPreviewJob;
NSString *NSPrintSaveJob;
NSString *NSPrintCancelJob;

DESCRIPTION These are the keys to the NSPrintInfo NSDictionary. For a table explaining them, see the
NSPrintInfo method initWithDictionary: .

NSPopUpButton—Notification

DECLARED IN AppKit/NSPopUpButton.h

SYNOPSIS NSString *NSPopUpButtonWillPopUpNotification;

DESCRIPTION NSPopUpButton sends this notification when an instance of it is about to pop up.

NSPrintOperation—Exception

DECLARED IN AppKit/NSPrintOperation.h

SYNOPSIS NSString *NSPrintOperationExistsException;

DESCRIPTION This exception is raised when there is already a print operation in process. The methods that raise
it are the EPSOperation... and printOperation... methods in NSPrintOperation:

53

NSRunLoop—Modes

DECLARED IN AppKit/NSApplication.h

SYNOPSIS NSString *NSModalPanelRunLoopMode;
NSString *NSEventTrackingRunLoopMode;

DESCRIPTION These are modes passed to NSRunLoop

NSSplitView—Notifications

DECLARED IN AppKit/NSSplitView.h

SYNOPSIS NSString *NSSplitViewDidResizeSubviewsNotification;
NSString *NSSplitViewWillResizeSubviewsNotification;

DESCRIPTION These are the notifications that an NSSplitView can send.

NSTableView—Notifications

DECLARED IN AppKit/NSTableView.h

SYNOPSIS NSString *NSTableViewSelectionDidChangeNotification;
NSString *NSTableViewColumnDidMoveNotification;
NSString *NSTableViewColumnDidResizeNotification;
NSString *NSTableViewSelectionIsChangingNotification;

DESCRIPTION These are the notifications that an NSTableView can send.

54

NSText—Notifications

DECLARED IN AppKit/NSText.h

SYNOPSIS NSString *NSTextDidBeginEditingNotification;
NSString *NSTextDidEndEditingNotification ;
NSString *NSTextDidChangeNotification;

DESCRIPTION These notifications can be sent by an NSText object. For explanations, see the “Notifications”
section of the NSText class specification.

NSTextStorage—Notifications

DECLARED IN AppKit/NSTextStorage.h

SYNOPSIS NSString *NSTextStorageWillProcessEditingNotification;
NSString *NSTextStorageDidProcessEditingNotification;

DESCRIPTION These notifications can be sent by an NSTextStorage object. For explanations, see the
“Notifications” section of the NSTextStorage class specification.

NSTextView—Notifications

DECLARED IN AppKit/NSTextView.h

SYNOPSIS NSString *NSTextViewWillChangeNotifyingTextViewNotification;
NSString *NSTextViewDidChangeSelectionNotification;

DESCRIPTION These notifications can be sent by an NSTextView object. For explanations, see the
“Notifications” section of the NSTextView class specification.

The notifications that NSTextView most often sends are the ones that it inherits from NSText.

55

NSView—Notifications

DECLARED IN AppKit/NSView.h

SYNOPSIS NSString *NSViewFrameDidChangeNotification;
NSString *NSViewFocusDidChangeNotification;
NSString *NSViewBoundsDidChangeNotification;

DESCRIPTION These notifications are sent by NSViews.

The last notification, NSViewBoundsDidChangeNotification, is sent when the view bounds
change but the frame does not. That is, it is sent whenever the view's bounds are translated, scaled
or rotated, but not when the bounds change in response to, say, a setFrameSize: message.

NSWindow—Notifications

DECLARED IN AppKit/NSWindow.h

SYNOPSIS NSString *NSWindowDidBecomeKeyNotification;
NSString *NSWindowDidBecomeMainNotification;
NSString *NSWindowDidChangeScreenNotification;
NSString *NSWindowDidDeminiaturizeNotification;
NSString *NSWindowDidExposeNotification;
NSString *NSWindowDidMiniaturizeNotification ;
NSString *NSWindowDidMoveNotification;
NSString *NSWindowDidResignKeyNotification;
NSString *NSWindowDidResignMainNotification;
NSString *NSWindowDidResizeNotification;
NSString *NSWindowDidUpdateNotification;
NSString *NSWindowWillCloseNotification;
NSString *NSWindowWillMiniaturizeNotification ;
NSString *NSWindowWillMoveNotification ;

DESCRIPTION These are the notifications that can be sent by an NSWindow object. For explanations, see the
“Notifications” section of the NSWindow class specification.

56

NSWindow—Sizes

DECLARED IN AppKit/NSWindow.h

SYNOPSIS NSSize NSIconSize;
NSSize NSTokenSize;

DESCRIPTION On some platforms, a token is a bezeled tile used to represent a docked application or a
miniaturized document, and an icon is the image drawn inside a token.

On platforms that support tokens and icons, these size constants can be used for drawing inside
them. It is more portable, however, to change an icon by using the NSApplication method
setApplicationIconImage: or the NSWindow method setMiniwindowImage:.

NSWorkspace—File Operation Constants

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSWorkspaceMoveOperation;
NSString *NSWorkspaceCopyOperation;
NSString *NSWorkspaceLinkOperation;
NSString *NSWorkspaceCompressOperation;
NSString *NSWorkspaceDecompressOperation;
NSString *NSWorkspaceEncryptOperation;
NSString *NSWorkspaceDecryptOperation;
NSString *NSWorkspaceDestroyOperation;
NSString *NSWorkspaceRecycleOperation;
NSString *NSWorkspaceDuplicateOperation;

DESCRIPTION These constants define possible values for the operation slot in NSWorkspace’s
performFileOperation: ... method.

57

NSWorkspace—File Types

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSPlainFileType;
NSString *NSDirectoryFileType;
NSString *NSApplicationFileType;
NSString *NSFilesystemFileType;
NSString *NSShellCommandFileType;

DESCRIPTION These values are used in the final parameter slot of the NSWorkspace method getInfoForFile:
application:type:.

NSWorkspace—Notifications

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSWorkspaceDidLaunchApplicationNotification;
NSString *NSWorkspaceDidMountNotification;
NSString *NSWorkspaceDidPerformFileOperationNotification;
NSString *NSWorkspaceDidTerminateApplicationNotification;
NSString *NSWorkspaceDidUnmountNotification;
NSString *NSWorkspaceWillLaunchApplicationNotification ;
NSString *NSWorkspaceWillPowerOffNotification;
NSString *NSWorkspaceWillUnmountNotification;

DESCRIPTION These notifications come through the special notification center. For more information, see the
“Notifications” section of the NSWorkspace class specification.

58

Defined Types
Note: This section has not been updated and has not received recent technical review. It is
included in this release to test the linkage between application development tools and on-line
documentation. The information in this section should be considered at best preliminary and
subject to change. An updated version of this file will be included in the next release.

DPSContextRec

DECLARED IN dpsclient/dpsfriends.h

SYNOPSIS typedef struct _t_DPSContextRec {
char *priv ;
DPSSpace space;
DPSProgramEncoding programEncoding;
DPSNameEncoding nameEncoding;
struct _t_DPSProcsRec const * procs;
void (*textProc)();
void (*errorProc)();
DPSResults resultTable;
unsigned int resultTableLength;
struct _t_DPSContextRec *chainParent, *chainChild;
DPSContextType type;

} DPSContextRec, *DPSContext;

DESCRIPTION The DPSContextRec structure represents a Display PostScript context.

1

DPSContextType

DECLARED IN dpsclient/dpsfriends.h

SYNOPSIS typedef enum {
dps_machServer,
dps_fdServer,
dps_stream

} DPSContextType;

DESCRIPTION These represent the context types supported by NeXT’s version of Display PostScript, as used in
the type field of a DPSContextRec structure.

DPSErrorCode

DECLARED IN dpsclient/dpsclient.h

SYNOPSIS typedef enum _DPSErrorCode {
dps_err_ps = DPS_ERROR_BASE,
dps_err_nameTooLong,
dps_err_resultTagCheck,
dps_err_resultTypeCheck,
dps_err_invalidContext,
dps_err_select = DPS_NEXT_ERROR_BASE,
dps_err_connectionClosed,
dps_err_read,
dps_err_write,
dps_err_invalidFD,
dps_err_invalidTE,
dps_err_invalidPort,
dps_err_outOfMemory,
dps_err_cantConnect

} DPSErrorCode;

DESCRIPTION Error codes passed to a DPSErrorProc() function.

2

DPSEventFilterFunc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef int (*DPSEventFilterFunc)(NXEvent *ev);

DESCRIPTION Call-back function used to filter events.

DPSFDProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSFDProc)(int fd, void *userData);

DESCRIPTION Call-back function used when a file descriptor is registered through DPSAddFD().

DPSNumberFormat

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef enum _DPSNumberFormat {
#ifdef __BIG_ENDIAN__

dps_float = 48,
dps_long = 0,
dps_short = 32

#else
dps_float = 48+128,
dps_long = 0+128,
dps_short = 32+128

} DPSNumberFormat;

DESCRIPTION These constants are used by the DPSDoUserPath() function to describe the type of numbers that
are being passed.

3

DPSPingProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSPingProc)
(DPSContext ctxt,
void *userData);

DESCRIPTION Call-back function used by DPSAsynchronousWaitContext().

DPSPortProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSPortProc)
(msg_header_t *msg,
void *userData);

DESCRIPTION Call-back function used when a port is registered through DPSAddPort().

DPSTimedEntry

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef struct __DPSTimedEntry *DPSTimedEntry;

DESCRIPTION The return type for DPSAddTimedEntry().

4

DPSTimedEntryProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSTimedEntryProc)
(DPSTimedEntry timedEntry,
double now,
void *userData);

DESCRIPTION Call-back function used when a timed entry is registered through DPSAddTimedEntry().

DPSUserPathAction

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef enum _DPSUserPathAction {
dps_uappend,
dps_ufill,
dps_ueofill,
dps_ustroke,
dps_ustrokepath,
dps_inufill,
dps_inueofill,
dps_inustroke,
dps_def,
dps_put

} DPSUserPathAction;

DESCRIPTION These constants are convenient representations of some of the PostScript operator indices,
suitable for enrollment in the action array passed to DPSDoUserPath().

5

DPSUserPathOp

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef enum _DPSUserPathOp {
dps_setbbox,
dps_moveto,
dps_rmoveto,
dps_lineto,
dps_rlineto,
dps_curveto,
dps_rcurveto,
dps_arc,
dps_arcn,
dps_arct,
dps_closepath,
dps_ucache

} DPSUserPathOp;

DESCRIPTION These constants represent the PostScript operators that can be passed in DPSDoUserPath()’s
operator array.

NXCoord

DECLARED IN dpsclient/event.h

SYNOPSIS typedef float NXCoord

DESCRIPTION Used to represent a single coordinate in a Cartesian coordinate system.

6

NXEvent

DECLARED IN dpsclient/event.h

SYNOPSIS typedef struct _NXEvent {
int type;
NXPoint location;
long time;
int flags;
unsigned int window;
NXEventData data;
DPSContext ctxt;

} NXEvent, *NXEventPtr ;

DESCRIPTION Represents a single event; this structure is also known as the event record. The fields are:

type The type of event (see “Event Types,” below)

location The event’s location in the base coordinate system of its window

time The time of the event (in hardware-dependent units) since system
startup

flags Mouse-button and modifier-key flags (see “Event Flags,” below)

window The window number of the window associated with the event

data Additional type-specific data (see “NXEventData,” below)

ctxt The PostScript context of the event

7

NXEventData

DECLARED IN dpsclient/event.h

SYNOPSIS typedef union {
struct {

short eventNum;
int click;
unsigned char pressure;

} mouse;
struct {

short repeat;
unsigned short charSet;
unsigned short charCode;
unsigned short keyCode;
short keyData;

} key;
struct {

short eventNum;
int trackingNum ;
int userData;

} tracking ;
struct {

short subtype;
union {

float F[2];
long L [2];
short S[4];
char C[8];

} misc;
} compound;

} NXEventData;

DESCRIPTION This structure supplies type-specific information for an event. It’s a union of four structures,
where the type of the event determines which structure is pertinent:

• mouse is used for mouse events.
• key is used for keyboard events.
• tracking is for tracking-rectangle events.
• compound is for system-, kit-, and application-defined events.

8

NXPoint

DECLARED IN dpsclient/event.h

SYNOPSIS typedef struct _NXPoint {
NXCoord x;
NXCoord y;

} NXPoint;

DESCRIPTION Represents a point in a Cartesian coordinate system.

NXSize

DECLARED IN dpsclient/event.h

SYNOPSIS typedef struct _NXSize {
NXCoord width ;
NXCoord height;

} NXSize;

DESCRIPTION Represents a two-dimensional size.

9

Symbolic Constants

All Contexts

DECLARED IN dpsclient/NSDPSContext.h

SYNOPSIS DPS_ALLCONTEXTS

DESCRIPTION This constant represents all extant contexts.

Alpha Constants

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_DATA
NX_ONES

DESCRIPTION These constants represent alpha values.

Character Set Values

DECLARED IN dpsclient/event.h

SYNOPSIS NX_ASCIISET
NX_SYMBOLSET
NX_DINGBATSSET

DESCRIPTION These constants represent the values that may occur in the data.key.charSet field of an NXEvent
structure.

10

Compositing Operations

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_CLEAR
NX_COPY
NX_SOVER
NX_SIN
NX_SOUT
NX_SATOP
NX_DOVER
NX_DIN
NX_DOUT
NX_DATOP
NX_XOR
NX_PLUSD
NX_HIGHLIGHT
NX_PLUSL

DESCRIPTION These represent the compositing operations used by PScomposite() and the NXImage class.

Error Code Bases

DECLARED IN dpsclient/dpsclient.h

SYNOPSIS DPS_ERROR_BASE
DPS_NEXT_ERROR_BASE

DESCRIPTION These constants represent the lowest values for Display PostScript error codes.

11

Event Types

DECLARED IN dpsclient/event.h

Type Meaning

NX_NULLEVENT A non-event

NX_LMOUSEDOWN Left mouse-down

NX_LMOUSEUP Left mouse-up

NX_LMOUSEDRAGGED left mouse-dragged

NX_MOUSEDOWN Same as NX_LMOUSEDOWN

NX_MOUSEUP Same as NX_LMOUSEUP

NX_MOUSEDRAGGED Same as NX_LMOUSEDRAGGED

NX_RMOUSEDOWN Right mouse-down

NX_RMOUSEUP Right mouse-up

NX_RMOUSEDRAGGED Right mouse-dragged

NX_MOUSEMOVED Mouse-moved

NX_MOUSEENTERED Mouse-entered

NX_MOUSEEXITED Mouse-exited

NX_KEYDOWN Key-down

NX_KEYUP Key-up event

NX_FLAGSCHANGED Flags-changed

NX_KITDEFINED Application Kit-defined

NX_SYSDEFINED System-defined

NX_APPDEFINED Application-defined

NX_TIMER Timer used for tracking

NX_CURSORUPDATE Cursor tracking

NX_JOURNALEVENT Event used by journaling

NX_FIRSTEVENT The smallest-valued event constant

NX_LASTEVENT The greatest-valued event constant

NX_ALLEVENTS A value that includes all event types

12

DESCRIPTION These constants represent event types. They’re passed as the type field of the NXEvent structure
that’s created when an event occurs.

Event Type Masks

DECLARED IN dpsclient/event.h

SYNOPSIS NX_NULLEVENTMASK
NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_KITDEFINEDMASK
NX_APPDEFINEDMASK
NX_SYSDEFINEDMASK
NX_TIMERMASK
NX_CURSORUPDATEMASK
NX_MOUSEDOWNMASK
NX_MOUSEUPMASK
NX_MOUSEDRAGGEDMASK
NX_JOURNALEVENTMASK

DESCRIPTION These masks correspond to the event types defined immediately above. They let you query the
type field of an NXEvent structure for the existence of a particular event type.

13

Forever

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_FOREVER

DESCRIPTION A long, long time. Typically used as the timeout argument to DPSGetEvent().

14

Keyboard State Flags Masks

DECLARED IN dpsclient/event.h

DESCRIPTION These masks correspond to keyboard states that might be included in an NXEvent structure’s
flags mask. The masks are grouped as device-independent (NX_ALPHASHIFTMASK through
NX_HELPMASK) and device-dependent (all others).

Type Meaning

NX_ALPHASHIFTMASK Shift lock

NX_SHIFTMASK Shift key

NX_CONTROLMASK Control key

NX_ALTERNATEMASK Alt key

NX_COMMANDMASK Command key

NX_NUMERICPADMASK Number pad key

NX_HELPMASK Help key

NX_NEXTCTRLKEYMASK Control key

NX_NEXTLSHIFTKEYMASK Left shift key

NX_NEXTRSHIFTKEYMASK Right shift key

NX_NEXTLCMDKEYMASK Left command key

NX_NEXTRCMDKEYMASK Right command key

NX_NEXTLALTKEYMASK Left alt key

NX_NEXTRALTKEYMASK Right alt key

15

Miscellaneous Event Flags Masks

DECLARED IN dpsclient/event.h

DESCRIPTION These masks correspond to miscellaneous states that might be included in an NXEvent structure’s
flags mask.

Window Backing Types

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_RETAINED
NX_NONRETAINED
NX_BUFFERED

DESCRIPTION These represent the three backing types provided by window devices (and used by the Application
Kit’s Window objects).

Window Screen List Placement

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_ABOVE
NX_BELOW
NX_OUT

DESCRIPTION These represent the placement of a window device in the screen list.

Type Meaning

NX_STYLUSPROXIMITYMASK Stylus is in proximity (for tablets)

NX_NONCOALSESCEDMASK Event coalescing disabled

16

Functions
This section describes functions and function-like macros available in the Application Kit library.

NSApplicationMain

SUMMARY This function is called by the main function to create and run the application.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS int NSApplicationMain(int argc, const char *argv[])

DESCRIPTION The NSApplicationMain function creates the application, loads the main nib file from the
application’s main bundle, and runs the application. You typically only call this function once,
from your application’s main function, which is usually generated automatically.

NSAvailableWindowDepths

SUMMARY This function returns the available NSWindowDepth values.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS const NSWindowDepth *NSAvailableWindowDepths(void)

DESCRIPTION NSAvailableWindowDepths returns a null-terminated array of NSWindowDepth values that
specify which window depths are currently available. Window depth values are defined by the
constants NSTwoBitGrayDepth, NSEightBitGrayDepth, and so on.

1

n

NSBeep

SUMMARY This function plays the system beep.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSBeep(void)

DESCRIPTION This function plays the system beep. Users can select a sound to be played as the system beep. O
a Macintosh, for example, you can change sounds with the Sound control panel.

NSBestDepth

SUMMARY This function attempts to return a window depth adequate for the specified parameters.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSWindowDepth NSBestDepth(NSString *colorSpace, int bps, int bpp, BOOL planar, BOOL
*exactMatch)

DESCRIPTION NSBestDepth returns a window depth deep enough for the given number of colors in colorSpace,
bits per sample specified by bps, bits per pixel specified by bpp, and whether planar as specified
by planar. Upon return, the variable pointed to by exactMatch is YES if the window depth can
accommodate all of the values specified by the parameters, NO if it can’t.

NSBitsPerPixelFromDepth

SUMMARY This function returns the bits per pixel for the specified window depth.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS int NSBitsPerPixelFromDepth(NSWindowDepth depth)

2

DESCRIPTION NSBitsPerPixelFromDepth returns the number of bits per pixel for the window depth specified
by depth.

SEE ALSO NSBitsPerSampleFromDepth

NSBitsPerSampleFromDepth

SUMMARY This function returns the bits per sample for the specified window depth.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS int NSBitsPerSampleFromDepth(NSWindowDepth depth)

DESCRIPTION NSBitsPerSampleFromDepth returns the number of bits per sample (bits per pixel in each color
component) for the window depth specified by depth.

SEE ALSO NSBitsPerPixelFromDepth

NSColorSpaceFromDepth

SUMMARY This function returns the name of the color space corresponding to the passed window depth.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSColorSpaceFromDepth(NSWindowDepth depth)

DESCRIPTION Returns the color space name for the specified depth. For example, the returned color space name
can be NSCalibratedRGBColorSpace, NSDeviceCMYKColorSpace, or so on.

3

NSConvertGlobalToWindowNumber

SUMMARY This function converts a global window number to a local window number.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSConvertGlobalToWindowNumber(int globalNum, unsigned int *winNum)

DESCRIPTION In rare cases, two or more applications may need to refer to the same window. To pass a window
number to another application, an application uses the global window number, which has been
automatically assigned by the Window Server, rather than the local window number, which is
assigned by the application.

An application uses the NSConvertGlobalToWindowNumber function to convert a window
number from global to local. Given a global window number in globalNum, it returns the
corresponding local window number in the location specified by winNum.

SEE ALSO NSConvertWindowNumberToGlobal

NSConvertGlyphsToPackedGlyphs

SUMMARY This function prepares a set of glyphs for processing by character-based routines.

DECLARED IN AppKit/NSFont.h

SYNOPSIS int NSConvertGlyphsToPackedGlyphs(NSGlyph *glBuf, int count,
NSMultibyteGlyphPacking packing, char *packedGlyphs)

DESCRIPTION This function takes a buffer of glyphs, specified in the glBuf parameter, and packs them into a
condensed character array. The character array is returned in the packedGlyphs parameter, which
should have enough space for at least ((4 * count) + 1) bytes to guarantee that the packed glyphs
fit. The count parameter specifies the number of glyphs in glBuf. The packing parameter specifies
how the glyphs are currently packed.

4

NSConvertWindowNumberToGlobal

SUMMARY This function converts a local window number to a global window number.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSConvertWindowNumberToGlobal(int winNum, unsigned int *globalNum)

DESCRIPTION In rare cases, two or more applications may need to refer to the same window. To pass a window
number to another application, an application uses the global window number, which has been
automatically assigned by the Window Server, rather than the local window number, which is
assigned by the application.

NSConvertWindowNumberToGlobal takes the local window number and places the
corresponding global window number in the variable specified by globalNum. This global number
can then be passed to other applications that need access to the window.

SEE ALSO NSConvertGlobalToWindowNumber

NSCopyBitmapFromGState

SUMMARY This function copies a bitmap image to a destination rectangle.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSCopyBitmapFromGState(int srcGState, NSRect srcRect, NSRect destRect)

DESCRIPTION This function copies the pixels in the rectangle srcRect to the rectangle destRect. The source
rectangle is defined in the graphics state designated by srcGState. The destination is defined in the
current graphics state.

SEE ALSO NSCopyBits

5

NSCopyBits

SUMMARY This function copies a bitmap image to the location specified by a destination point.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSCopyBits(int srcGState, NSRect srcRect, NSPoint destPoint)

DESCRIPTION This function copies the pixels in the rectangle specified by srcRect to the location specified by
destPoint. The source rectangle is defined in the graphics state designated by srcGState. If
srcGState is NSNullObject, the current graphics state is assumed. The destPoint destination is
defined in the current graphics state.

SEE ALSO NSCopyBitmapFromGState

NSCountWindows

SUMMARY This function counts the number of on-screen windows belonging to an application.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSCountWindows(int *count)

DESCRIPTION NSCountWindows counts the number of on-screen windows belonging to the application; it
returns the number by reference in the count parameter.

SEE ALSO NSWindowList

6

NSCreateFileContentsPboardType

SUMMARY This function returns a pasteboard type based on the passed file type.

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSCreateFileContentsPboardType(NSString *fileType)

DESCRIPTION NSCreateFileContentsPboardType returns an NSString to a pasteboard type representing a
file’s contents based on the supplied string fileType. fileType should generally be the extension part
of a file name. The conversion from a named file type to a pasteboard type is simple; no mapping
to standard pasteboard types is attempted.

SEE ALSO NSCreateFilenamePboardType, NSGetFileType, NSGetFileTypes

NSCreateFilenamePboardType

SUMMARY This function returns a pasteboard type based on the passed file type.

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSCreateFilenamePboardType(NSString *fileType)

DESCRIPTION NSCreateFilenamePboardType returns an NSString to a pasteboard type representing a file
name based on the supplied string fileType.

SEE ALSO NSCreateFileContentsPboardType, NSGetFileType, NSGetFileTypes

7

NSDottedFrameRect

SUMMARY << Description forthcoming >>

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDottedFrameRect(NSRect aRect)

DESCRIPTION << Description forthcoming >>

NSDrawBitmap

SUMMARY This function draws a bitmap image.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDrawBitmap(const NSRect rect, int pixelsWide, int pixelsHigh, int bitsPerSample,
int samplesPerPixel, int bitsPerPixel, int bytesPerRow, BOOL isPlanar, BOOL hasAlpha,
NSColorSpace colorSpace, const unsigned char *const data[5])

Warning: This function is marginally obsolete. Most applications are better served using the
NSBitmapImageRep class to read and display bitmap images.

DESCRIPTION The NSDrawBitmap function renders an image from a bitmap, binary data that describes the
pixel values for the image (this function replaces NSImageBitmap).

NSDrawBitmap renders a bitmap image using an appropriate PostScript operator—image,
colorimage, or alphaimage. It puts the image in the rectangular area specified by its first
argument, rect; the rectangle is specified in the current coordinate system and is located in the
current window. The next two arguments, pixelsWide and pixelsHigh, give the width and height of
the image in pixels. If either of these dimensions is larger or smaller than the corresponding
dimension of the destination rectangle, the image will be scaled to fit.

The remaining arguments to NSDrawBitmap describe the bitmap data, as explained in the
following paragraphs.

bitsPerSample is the number of bits per sample for each pixel and samplesPerPixel is the number
of samples per pixel. bitsPerPixel is based on samplesPerPixel and the configuration of the

8

,

e

bitmap: if the configuration is planar, then the value of bitsPerPixel should equal the value of
bitsPerSample; if the configuration isn’t planar (is meshed instead), bitsPerPixel should equal
bitsPerSample * samplesPerPixel.

bytesPerRow is calculated in one of two ways, depending on the configuration of the image data
(data configuration is described below). If the data is planar, bytesPerRow is (7 + (pixelsWide *
bitsPerSample)) / 8. If the data is meshed, bytesPerRow is (7 + (pixelsWide * bitsPerSample *
samplesPerPixel)) / 8.

A sample is data that describes one component of a pixel. In an RGB color system, the red, green,
and blue components of a color are specified as separate samples, as are the cyan, magenta, yellow
and black components in a CMYK system. Color values in a gray scale are a single sample. Alpha
values that determine transparency and opaqueness are specified as a coverage sample separat
from color. In bitmap images with alpha, the color (or gray) components have to be premultiplied
with the alpha. This is the way images with alpha are displayed, this is the way they are read back,
and this is the way they are stored in TIFFs.

isPlanar refers to the way data is configured in the bitmap. This flag should be set YES if a separate
data channel is used for each sample. The function provides for up to five channels, data1, data2,
data3, data4, and data5. It should be set NO if sample values are interwoven in a single channel
(meshed); all values for one pixel are specified before values for the next pixel.

Figure 1 illustrates these two ways of configuring data.

Figure 1 . Planar and Meshed Configurations

r r r r r r r r r r r r r r r r

g g g g g g g g g g g g g g gg

b b b b b b b b b b b b b bb

Meshed

Planar

αααααααααααααα

b

α α

r αg b αg br αg br αg br

9

As shown in the illustration, color samples (rgb) precede the coverage sample (α) in
both configurations.

Gray-scale windows store pixel data in planar configuration; color windows store it in meshed
configuration. NSDrawBitmap can render meshed data in a planar window, or planar data in a
meshed window. However, it’s more efficient if the image has a depth (bitsPerSample) and
configuration (isPlanar) that matches the window.

hasAlpha indicates whether the image contains alpha. If it does, the number of samples should be
1 greater than the number of color components in the model (e.g., 4 for RGB).

colorSpace can be NS_CustomColorSpace, indicating that the image data is to be interpreted
according to the current color space in the PostScript graphics state. This allows for imaging using
custom color spaces. The image parameters supplied as the other arguments should match what
the color space is expecting.

If the image data is planar, data[0] through data[samplesPerPixel-1] point to the planes; if the data
is meshed, only data[0] needs to be set.

NSDrawButton, NSDrawGrayBezel, NSDrawGroove, NSDrawTiledRects,
NSDrawWhiteBezel, NSFrameRect, NSFrameRectWithWidth

SUMMARY Draw a bordered rectangle

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDrawButton(const NSRect aRect, const NSRect clipRect)
void NSDrawGrayBezel(const NSRect aRect, const NSRect clipRect)
void NSDrawGroove(const NSRect aRect, const NSRect clipRect)
void NSDrawWhiteBezel(const NSRect aRect, const NSRect clipRect)
NSRect NSDrawTiledRects(NSRect aRect, const NSRect clipRect, const NSRectEdge *sides,

const float *grays, int count)
void NSFrameRect(const NSRect aRect)
void NSFrameRectWithWidth(const NSRect aRect, NSCoord frameWidth)

DESCRIPTION These functions draw rectangles with borders. NSDrawButton draws the rectangle used to signify
a user-interface button, NSDrawTiledRects is a generic function that can be used to draw
different types of borders, and the other functions provide ready-made bezeled, grooved, or line

10

borders. These borders can be used to outline an area or to give rectangles the effect of being
recessed from or elevated above the surface of the screen, as shown in Figure 2.

Figure 2 . Rectangle Borders

Each function’s first argument specifies the rectangle within which the border is to be drawn in the
current coordinate system. Since these functions are often used to draw the border of a View, this
rectangle will typically be that View’s bounds rectangle. Some of the functions also take a clipping
rectangle; only those parts of aRect that lie within the clipping rectangle will be drawn.

As its name suggests, NSDrawWhiteBezel fills in its rectangle with white; NSDrawButton,
NSDrawGrayBezel, and NSDrawGroove use light gray. These functions are designed for
rectangles that are defined in unscaled, unrotated coordinate systems (that is, where the y-axis is
vertical, the x-axis is horizontal, and a unit along either axis is equal to one screen pixel). The
coordinate system can be either flipped or unflipped. The sides of the rectangle should lie on pixel
boundaries.

NSFrameRect and NSFrameRectWithWidth draw a frame around the inside of a rectangle in
the current color. NSFrameRect draws a frame with a width equal to 1.0 in the current coordinate
system; NSFrameRectWithWidth allows you to set the width of the frame. Since the frame is
drawn inside the rectangle, it will be visible even if drawing is clipped to the rectangle (as it would
be if the rectangle were a View object). These functions work best if the sides of the rectangle lie
on pixel boundaries.

In addition to its aRect and clipRect arguments, NSDrawTiledRects takes three more arguments,
which determine how thick the border is and what gray levels are used to form it.
NSDrawTiledRects works through the Foundation framework’s NSDivideRect function to take
successive 1.0–unit-wide slices from the sides of the rectangle specified by the sides argument.
Each slice is then drawn using the corresponding gray level from grays. NSDrawTiledRects

NXFrameRect() NXDrawButton() NXDrawWhiteBezel()

NXFrameRectWithWidth() NXDrawGroove() NXDrawGrayBezel()

11

makes and draws these slices count number of times. NSDivideRect returns a pointer to the
rectangle after the slice has been removed; therefore, if a side is used more than once, the second
slice is made inside the first. This also makes it easy to fill in the rectangle inside of the border.

In the following example, NSDrawTiledRects draws a bezeled border consisting of a
1.0–unit-wide white line at the top and on the left side, and a 1.0–unit-wide dark-gray line inside
a 1.0–unit-wide black line on the other two sides. The rectangle inside this border is filled in using
light gray.

int mySides[] = {NX_YMIN, NX_XMAX, NX_YMAX, NX_XMIN,

_YMIN, NX_XMAX};

float myGrays[] = {NS_BLACK, NS_BLACK, NS_WHITE, NS_WHITE,

NS_DARKGRAY, NS_DARKGRAY};

NSRect *aRect;

NSDrawTiledRects(aRect, (NSRect *)0, mySides, myGrays, 6);

PSsetgray(NS_LIGHTGRAY);

PSrectfill(aRect->origin.x, aRect->origin.y,

aRect->size.width, aRect->size.height);

As shown, mySides is an array that specifies sides of a rectangle; for example, NX_YMIN selects
the side parallel to the x-axis with the smallest y-coordinate value. myGrays is an array that
specifies the successive gray levels to be used in drawing parts of the border.

NSDrawTiledRects returns a pointer to the rectangle that lies within the border.

NSDrawColorTiledRects

SUMMARY << Description forthcoming >>

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSRect NSDrawColorTiledRects(NSRect boundsRect, NSRect clipRect, const NSRectEdge
*sides, NSColor **colors, int count)

DESCRIPTION << Description forthcoming >>

12

NSDrawDarkBezel

SUMMARY << Description forthcoming >>

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDrawDarkBezel(NSRect aRect, NSRect clipRect)

DESCRIPTION << Description forthcoming >>

NSDrawLightBezel

SUMMARY << Description forthcoming >>

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSDrawLightBezel(NSRect aRect, NSRect clipRect)

DESCRIPTION << Description forthcoming >>

NSEraseRect

SUMMARY This function erases the passed rect by filling it with white.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSEraseRect(const NSRect aRect)

DESCRIPTION As its name suggests, NSEraseRect erases the rectangle referred to by its argument, filling it with
white. It does not alter the current color.

SEE ALSO NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

13

NSEventMaskFromType

SUMMARY This function returns the event mask for the specified type.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS unsigned int NSEventMaskFromType(NSEventType type)

DESCRIPTION NSEventMaskFromType returns the event mask corresponding to the specified type (an
enumerated constant). The returned mask is equal to 1 left-shifted by type bits.

NSFrameLinkRect

SUMMARY This function draws a distinctive outline around linked data.

DECLARED IN AppKit/NSDataLinkManager.h

SYNOPSIS void NSFrameLinkRect(NSRect aRect, BOOL isDestination)

DESCRIPTION NSFrameLinkRect draws a distinctive link outline just outside the rectangle specified by aRect.
To draw an outline around a destination link, isDestination should be YES, otherwise it should be
NO.

SEE ALSO NSLinkFrameThickness

NSGetAlertPanel

SUMMARY This function returns an alert panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS id NSGetAlertPanel(NSString *title, NSString *msg, NSString *defaultButton, NSString
*alternateButton, NSString *otherButton, ...)

14

DESCRIPTION NSGetAlertPanel returns an NSAlert panel that can be used to set up a modal session. A modal
session is useful for allowing the user to interrupt the program. During a modal session, you can
perform activities while the panel is displayed and check at various points in your program
whether the user has clicked one of the panel’s buttons. The arguments for this function are the
same as those for the NSRunAlertPanel function, but unlike that function, no button is displayed
if defaultButton is nil .

To set up a modal session, send the Application object a beginModalSession:for: message with
the panel returned by NSGetAlertPanel as its second argument. When you want to check if the
user has clicked one of the panel’s buttons, use runModalSession:. To end the modal session, use
endModalSession:. When you’re finished with the panel created by NSGetAlertPanel, you must
free it by passing it to NSReleaseAlertPanel.

SEE ALSO NSGetCriticalAlertPanel, NSGetInformationalAlertPanel, NSReleaseAlertPanel,
NSRunAlertPanel, NSRunCriticalAlertPanel, NSRunInformationalAlertPanel

NSGetCriticalAlertPanel

SUMMARY This function returns an alert panel to display a critical message.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS id NSGetCriticalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton,
NSString *alternateButton, NSString *otherButton, ...)

DESCRIPTION NSGetCriticalAlertPanel returns an NSAlert panel that can be used to set up a modal session.
Unlike the NSRunCriticalAlertPanel function, no button is displayed if defaultButton is nil .
When you’re finished with the panel created by NSGetCriticalAlertPanel, you must free it by
passing it to NSReleaseAlertPanel.

The arguments for this function are the same as those for the NSRunAlertPanel function. For
more information on using a panel in a modal session, see NSGetAlertPanel.

SEE ALSO NSGetAlertPanel, NSGetInformationalAlertPanel, NSReleaseAlertPanel,
NSRunAlertPanel, NSRunCriticalAlertPanel, NSRunInformationalAlertPanel

15

NSGetFileType

SUMMARY This function returns a file type based on the passed pasteboard type.

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSGetFileType(NSArray *pboardType)

DESCRIPTION NSGetFileType is the inverse of both NSCreateFileContentsPboardType and
NSCreateFilenamePboardType. When passed a pasteboard type as returned by those functions,
it returns the extension or file name from which the type was derived. It returns nil if pboardType
isn’t a pasteboard type created by those functions.

SEE ALSO NSCreateFileContentsPboardType, NSCreateFilenamePboardType, NSGetFileTypes

NSGetFileTypes

SUMMARY This function returns an array of file type based on the passed pasteboard types.

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSArray *NSGetFileTypes(NSArray *pboardType)

DESCRIPTION NSGetFileTypes accepts a null-terminated array of pointers to pasteboard types and returns a
null-terminated array of the unique extensions and file names from the file-content and file-name
types found in the input array. It returns nil if the input array contains no file-content or file-name
types. The returned array is allocated and must be freed by the caller. The pointers in the return
array point into strings passed in the input array.

SEE ALSO NSCreateFileContentsPboardType, NSCreateFilenamePboardType, NSGetFileType

16

NSGetInformationalAlertPanel

SUMMARY This function returns an alert panel to display an informational message.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS id NSGetInformationalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton,
NSString *alternateButton, NSString *otherButton, ...)

DESCRIPTION NSGetInformationalAlertPanel returns an NSAlert panel that can be used to set up a modal
session. Unlike the NSRunInformationalAlertPanel function, no button is displayed if
defaultButton is nil . When you’re finished with the panel created by
NSGetInformationalAlertPanel, you must free it by passing it to NSReleaseAlertPanel.

The arguments for this function are the same as those for the NSRunAlertPanel function. For
more information on using a panel in a modal session, see NSGetAlertPanel.

SEE ALSO NSGetAlertPanel, NSGetCriticalAlertPanel, NSReleaseAlertPanel, NSRunAlertPanel,
NSRunCriticalAlertPanel, NSRunInformationalAlertPanel

NSGetWindowServerMemory

SUMMARY This function returns the amount of memory being used by a context.

DECLARED IN AppKit/Application.h

SYNOPSIS int NSGetWindowServerMemory(DPSContext context, int *virtualMemory,
int *windowBackingMemory, NSString **windowDumpStream)

DESCRIPTION NSGetWindowServerMemory calculates the amount of Window Server memory being used at
the moment by the given Window Server context. If nil is passed for the context, the current
context is used. The amount of PostScript virtual memory used by the current context is returned
in the int pointed to by virtualMemory; the amount of window backing store used by windows
owned by the current context is returned in the int pointed to by windowBackingMemory. The sum
of these two numbers is the amount of the Window Server’s memory that this context is
responsible for.

17

To calculate these numbers, NSGetWindowServerMemory uses the PostScript language
operators dumpwindows and vmstatus. It takes some time to execute; thus, calling this function
in normal operation is not recommended.

If a non–nil value is passed in for windowDumpStream, the information returned from the
dumpwindows operator is echoed to the specified stream. This can be useful for finding out more
about which windows are using up your storage.

Normally, NSGetWindowServerMemory returns 0. If nil is passed for context and there’s no
current DPS context, this function returns –1.

NSHighlightRect

SUMMARY This function highlights the passed rect by filling it with white.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSHighlightRect(const NSRect aRect)

DESCRIPTION NSHighlightRect uses the compositerect operator to highlight the rectangle referred to by its
argument. Light gray becomes white, and white becomes light gray. This function must be called
twice, once to highlight the rectangle and once to unhighlight it; the rectangle should not be left
in its highlighted state. When not drawing on the screen, the compositing operation is replaced by
one that fills the rectangle with light gray.

SEE ALSO NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSInterfaceStyleForKey

SUMMARY This function returns an interface style value for the specified key and responder.

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS NSInterfaceStyle NSInterfaceStyleForKey(NSString *key, NSResponder *responder)

18

DESCRIPTION You call the NSInterfaceStyleForKey function to determine an interface style based on a key and
a responder, either of which may be nil . An NSInterfaceStyle value specifies the style in which an
interface item, such as a button or a scrollbar, should be drawn. For example, a value of
NSMacintoshInterfaceStyle indicates an item should be drawn in the Macintosh style. The enum
values defined for NSInterfaceStyle are NSNoInterfaceStyle, NSNextStepInterfaceStyle,
NSWindows95InterfaceStyle, and NSMacintoshInterfaceStyle. Note that
NSInterfaceStyleForKey never returns NSNoInterfaceStyle.

The interface style value returned by NSInterfaceStyleForKey depends on several factors. If
responder is not nil and if responder specifies an interface style other than NSNoInterfaceStyle,
NSInterfaceStyleForKey returns the responder’s style, and key is ignored.

Otherwise, if key is not nil and there is an interface style for key specified by the defaults system,
NSInterfaceStyleForKey returns the interface style for key from the defaults system.

Finally, if key is nil , or if there is no interface style for key specified by the defaults system,
NSInterfaceStyleForKey returns the global interface style specified by the defaults system.

The defaults system allows an application to customize its behavior to match a user’s
preferences.You can read about the defaults system in the documentation for NSUserDefaults.

NSLinkFrameThickness

SUMMARY This function returns the thickness of the outline around linked data.

DECLARED IN AppKit/NSDataLinkManager.h

SYNOPSIS float NSLinkFrameThickness(void)

DESCRIPTION NSLinkFrameThickness returns the thickness of the link outline around linked data so that the
outline can be properly erased by the application, or for other purposes.

SEE ALSO NSFrameLinkRect

19

NSNumberOfColorComponents

SUMMARY This function returns the number of color components in the specified color space.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS int NSNumberOfColorComponents(NSString *colorSpaceName)

DESCRIPTION NSNumberOfColorComponents returns the number of color components in the color space
whose name is provided by colorSpaceName.

NSPerformService

SUMMARY This function programmatically invokes a Services menu service.

DECLARED IN AppKit/Listener.h

SYNOPSIS BOOL NSPerformService(NSString *itemName, NSPasteboard *pboard)

DESCRIPTION NSPerformService allows an application to programmatically invoke a service found in its
services menu. itemName is a Services menu item, in any language. If the requested service is
from a submenu of the Services menu, itemName must contain a slash (for example,
“Mail/Selection”). The Pasteboard pboard must contain the data required by the service, and when
the function returns, pboard will contain the data supplied by the service provider.

NSPerformService returns YES if the service is successfully performed, NO otherwise.

20

NSPlanarFromDepth

SUMMARY This function returns whether the specified window depth is planar.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS BOOL NSPlanarFromDepth(NSWindowDepth depth)

DESCRIPTION NSPlanarFromDepth returns YES if the specified window depth is planar and NO if it is not.

NSReadPixel

SUMMARY This function reads a pixel value at the specified location.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSColor *NSReadPixel(NSPoint passedPoint)

DESCRIPTION NSReadPixel returns the color of the pixel at the given location. The location argument is taken
in the current coordinate system—in other words, you must lock focus on the View that contains
the pixel that you wish to query, and then pass the coordinate for the pixel in the View’s coordinate
system.

NSRectClip

SUMMARY This function modifies the current clipping path by intersecting it with the passed rect.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectClip(NSRect aRect)

21

DESCRIPTION NSRectClip intersects the current clipping path with the rectangle referred to by its argument,
aRect, to determine a new clipping path. This function works through the rectclip operator. After
computing the new clipping path, the current path is reset to empty.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectClipList

SUMMARY This function modifies the current clipping path by intersecting it with the passed rect.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectClipList(const NSRect *rects, int count)

DESCRIPTION NSRectClipList takes an array of count number of rectangles, constructs a path that’s the graphic
union of those rectangles, and intersects that path with the current clipping path. This function
works through the rectclip operator. After computing the new clipping path, the current path is
reset to empty.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectFill

SUMMARY This function fills the passed rect with the current color.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectFillList(const NSRect aRect)

22

DESCRIPTION NSRectFill fills the rectangle referred to by its argument with the current color. It works through
the rectfill operator.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectClipList, NSRectFillList,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectFillList

SUMMARY This function fills the rectangles in the passed list with the current color.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectFillList(const NSRect *rects, int count)

DESCRIPTION NSRectFillList fills a list of count rectangles with the current color. It works through the rectfill
operator.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill,
NSRectFillListWithColors, NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectFillListWithColors

SUMMARY This function fills the rectangles in the passed list with the current color.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectFillListWithColors(const NSRect *rects, NSColor **colors, int count)

DESCRIPTION NSRectFillListWithColors takes a list of count rectangles and a matching list of count color
values. The first rectangle is filled with the first color, the second rectangle with the second color,
and so on. There must be an equal number of rectangles and color values. The rectangles should

23

not overlap; the order in which they’ll be filled can’t be guaranteed. This function alters the current
color of the current graphics state, setting it unpredictably to one of the values passed in colors.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithGrays, NSUnionRect (Foundation Kit)

NSRectFillListWithGrays

SUMMARY This function fills the rectangles in the passed list with the current color.

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSRectFillListWithGrays(const NSRect *rects, const float *grays, int count)

DESCRIPTION NSRectFillListWithGrays takes a list of count rectangles and a matching list of count gray
values. The first rectangle is filled with the first gray, the second rectangle with the second gray,
and so on. There must be an equal number of rectangles and gray values. The rectangles should
not overlap; the order in which they’ll be filled can’t be guaranteed. This function alters the current
color of the current graphics state, setting it unpredictably to one of the values passed in grays.

SEE ALSO NSEraseRect, NSHighlightRect, NSRectClip, NSRectClipList, NSRectFill, NSRectFillList,
NSRectFillListWithColors, NSUnionRect (Foundation Kit)

NSRegisterServicesProvider

SUMMARY This function registers a service provider.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS void NSRegisterServicesProvider(id provider, NSString *name)

DESCRIPTION NSRegisterServicesProvider registers provider as a service provider and associates it with the
specified name. name should be unique; it is the name by which the service is advertised to service
requestors.

24

NSApplications shouldn’t use this function. Instead, they should use NSApplication’s
setServicesProvider: method, passing a non-nil argument.

SEE ALSO NSSetShowsServicesMenuItem, NSShowsServicesMenuItem,
NSUnRegisterServicesProvider,

NSReleaseAlertPanel

SUMMARY This function releases an attention panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS void NSReleaseAlertPanel(id alertPanel)

DESCRIPTION When you’re finished with a panel created by a function such as NSGetAlertPanel,
NSGetCriticalAlertPanel, or NSGetInformationalAlertPanel, you must free it by passing it to
NSReleaseAlertPanel.

SEE ALSO NSGetAlertPanel, NSRunAlertPanel, NSRunCriticalAlertPanel

NSRunAlertPanel

SUMMARY This function creates an attention panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS int NSRunAlertPanel(NSString *title, NSString *msg, NSString *defaultButton, NSString
*alternateButton, NSString *otherButton, ...)

DESCRIPTION NSRunAlertPanel creates an attention panel that alerts the user to some consequence of a
requested action; the panel may also let the user cancel or modify the action. NSRunAlertPanel
runs the panel in a modal event loop.

The first argument is the title of the panel, which should be at most a few words long. The default
title is “Alert”. The next argument is the message that’s displayed in the panel. It can use

25

r

printf -style formatting characters; any necessary arguments should be listed at the end of the
function’s argument list (after the otherButton argument). For more information on formatting
characters, see the Rhapsody man page for printf .

There are arguments to supply titles for up to three buttons, which will be displayed in a row across
the bottom of the panel. The panel created by NSRunAlertPanel must have at least one button,
which will have the symbol for the Return key; if you pass a nil title to the other two buttons, they
won’t be created. If nil is passed as the defaultButton, “OK” will be used as its title.

NSRunAlertPanel not only creates the panel, it puts the panel on screen and runs it using the
runModalFor: method defined in the Application class. This method sets up a modal event loop
that causes the panel to remain on screen until the user clicks one of its buttons.
NSRunAlertPanel then removes the panel from the screen list and returns a value that indicates
which of the three buttons the user clicked: NS_ALERTDEFAULT, NS_ALERTALTERNATE, or
NS_ALERTOTHER. (If an error occurred while creating the panel, NS_ALERTERROR is
returned.) For efficiency, NSRunAlertPanel creates the panel the first time it’s called and reuses
it on subsequent calls, reconfiguring it if necessary.

SEE ALSO NSGetAlertPanel, NSGetCriticalAlertPanel, NSGetInformationalAlertPanel,
NSReleaseAlertPanel, NSRunCriticalAlertPanel, NSRunInformationalAlertPanel

NSRunCriticalAlertPanel

SUMMARY This function creates and runs a critical attention panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS int NSRunCriticalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton,
NSString *alternateButton, NSString *otherButton, ...)

DESCRIPTION NSRunCriticalAlertPanel creates an attention panel that alerts the user to some critical
consequence of a requested action; the panel lets the user cancel the action and may allow the use
to modify the action. It then runs the panel in a modal event loop.

The arguments for this function are the same as those for the NSRunAlertPanel function.

SEE ALSO NSGetAlertPanel, NSGetCriticalAlertPanel, NSGetInformationalAlertPanel,
NSReleaseAlertPanel, NSRunAlertPanel, NSRunInformationalAlertPanel

26

NSRunInformationalAlertPanel

SUMMARY This function creates and runs an informational attention panel.

DECLARED IN AppKit/NSPanel.h

SYNOPSIS int NSRunInformationalAlertPanel(NSString *title, NSString *msg, NSString *defaultButton,
NSString *alternateButton, NSString *otherButton, ...)

DESCRIPTION NSRunInformationalAlertPanel creates an informational attention panel that provides
information related to a requested action. It then runs the panel in a modal event loop.

The arguments for this function are the same as those for the NSRunAlertPanel function.

SEE ALSO NSGetAlertPanel, NSGetCriticalAlertPanel, NSGetInformationalAlertPanel,
NSReleaseAlertPanel, NSRunAlertPanel, NSRunCriticalAlertPanel

NSSetShowsServicesMenuItem

SUMMARY This function specifies whether an item should be included in Services menus.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS int NSSetShowsServicesMenuItem(NSString * itemName, BOOL enabled)

DESCRIPTION NSSetShowsServicesMenuItem is used by a service-providing application to specify whether
the Services menus of other applications will contain the itemName command; if so, users of those
applications will be able to request services through that command. If enabled is YES, the
Application Kit will build Services menus for other applications that include the itemName
command. If enabled is NO, item won’t appear in any application’s Services menu. itemName
should be the same, language-independent character string entered in the “Menu Item:” field of
the services file.

Service-providing applications should let users decide whether the Services menus of other
applications they use should include the itemName command.

27

NSSetShowsServicesMenuItem returns 0 if it’s successful in enabling or disabling the itemName
command, and a number other than 0 if not.

SEE ALSO NSRegisterServicesProvider, NSShowsServicesMenuItem, NSUnRegisterServicesProvider,

NSShowsServicesMenuItem

SUMMARY This function specifies whether a Services menu item is currently enabled.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS BOOL NSShowsServicesMenuItem(NSString * itemName)

DESCRIPTION NSShowsServicesMenuItem returns YES if itemName is currently enabled, and NO if it’s not.
itemName should be the same, language-independent character string entered in the “Menu Item:
” field of the services file.

SEE ALSO NSRegisterServicesProvider, NSSetShowsServicesMenuItem,
NSUnRegisterServicesProvider,

NSUnRegisterServicesProvider

SUMMARY This function unregisters a service provider.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS void NSUnRegisterServicesProvider(NSString *name)

DESCRIPTION NSUnRegisterServicesProvider unregisters the object named by name as a service provider.

NSApplications shouldn’t use this function. Instead, they should use NSApplication’s
setServicesProvider: method, passing a nil argument.

SEE ALSO NSRegisterServicesProvider, NSSetShowsServicesMenuItem, NSShowsServicesMenuItem

28

NSUpdateDynamicServices

SUMMARY This function causes the services information for the system to be updated.

DECLARED IN AppKit/NSApplication.h

SYNOPSIS void NSUpdateDynamicServices(void)

DESCRIPTION NSUpdateDynamicServices is used by a service-providing application to re-register the services
it’s willing to provide. To do this, you create a file with the extension “.service” and place it in the
application’s path or ~/Library/Services. The content of the file is identical to a normal service
file (see the “Other Features” section for a description of service file format). You then call this
function.

It is only necessary to call NSUpdateDynamicServices if your program adds dynamic services
to the system.

NSWindowList

SUMMARY Get information about an application’s windows

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS void NSWindowList(int size, int list[])

DESCRIPTION NSWindowList provides an ordered list of the application’s on-screen windows. It fills the list
array with up to size window numbers; the order of windows in the array is the same as their order
in the Window Server’s screen list (their front-to-back order on the screen). Use the count obtained
by NSCountWindows to specify the size of the array for NSWindowList.

SEE ALSO NSCountWindows

29

Client Library Functions
Note: This section has not been updated and has not received recent technical review. It is included
in this release to test the linkage between application development tools and on-line
documentation. The information in this section should be considered at best preliminary and
subject to change. An updated version of this file will be included in the next release.

DPSAddFD

SUMMARY Monitor a file descriptor

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddFD(int fd, DPSFDProc handler, void *userData, int priority)

DESCRIPTION DPSAddFD registers the function handler to be called each time there is activity with the file
specified by file descriptor fd. The function is called provided the following are true:

• The file descriptor fd must be valid and open; typically fd is generated through a call to open.
There needn’t be any data waiting to be read on fd.

• priority, an integer from 0 to 30, must be equal to or greater than the application’s current
priority threshold. See DPSAddTimedEntry for a further explanation.

DPSFDProc, handler’s defined type, takes the form

void *handler (int fd , void * userData)

where fd is the file descriptor that prompted the function call and userData is the same pointer that
was passed as the third argument to DPSAddFD. The userData pointer is provided as a
convenience, allowing you to pass arbitrary data to handler.

Typically, DPSAddFD is used to listen to a socket or pipe; it’s rarely used to monitor a common
file.

SEE ALSO DPSAddPort, DPSAddTimedEntry, DPSRemoveFD

1

DPSAddNotifyPortProc

SUMMARY Set the handler function for the notify port

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddNotifyPortProc(DPSPortProc handler, void *userData)

DESCRIPTION DPSAddNotifyPortProc registers handler as the function that’s called when a message arrives
on the notify port, the unique port, created through the task_notify Mach function, on which
notifications (such as port death) are sent. You don’t need to create the notify port yourself;
DPSAddNotifyPortProc creates it for you if it doesn’t already exist.

DPSPortProc, handler’s defined type, takes the form

void ∗ handler (msg_header_t * msg, void * userData)

where msg is a pointer to the message that was received at the port and userData is the
same pointer that was passed as the second argument to DPSAddNotifyPortProc. The userData
pointer is provided as a convenience, allowing you to pass arbitrary data to handler.

The notify port can have only one handler at a time; adding a handler removes the current one. You
can remove the port’s handler without specifying a new one with the DPSRemoveNotifyPortProc
function. The function’s argument must match the notify port’s current handler.

SEE ALSO DPSAddPort, DPSAddTimedEntry, DPSRemoveNotifyPortProc

DPSAddPort

SUMMARY Monitor a Mach port

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAddPort(port_t port, DPSPortProc handler, int maxMsgSize, void *userData,
int priority)

DESCRIPTION DPSAddPort registers the function handler to be called each time your application asks for an
event or peeks at the event queue. The function is called provided the following are true:

2

• The Mach port port must be valid and it must hold a message waiting to be read.

• priority, an integer from 0 to 30, must be equal to or greater than the application’s current
priority threshold. See DPSAddTimedEntry for a further explanation.

DPSPortProc, handler’s defined type, takes the form

void *handler (msg_header_t * msg, void * userData)

where msg is a pointer to the message that was received at the port and userData is the same
pointer that was passed as the fourth argument to DPSAddPort. The userData pointer is provided
as a convenience, allowing you to pass arbitrary data to handler.

If, within handler, you want to call msg_receive to receive further messages at the port, you must
first call DPSRemovePort to remove the port from the system’s port set. (This is because your
application can’t receive messages from a port that’s in a port set.) After your application is
finished receiving messages directly from the port, it can call DPSAddPort to have the system
continue to monitor the port.

The contents of the message buffer msg, as received by handler, are invalid after the function
returns. If you need to save any of the information that you find.

The maxMsgSize argument is an integer that gives the size, in bytes, of the largest message you
expect to receive.

SEE ALSO DPSAddFD, DPSAddTimedEntry, DPSRemovePort

DPSAddTimedEntry

SUMMARY Create a timed entry

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSTimedEntry DPSAddTimedEntry(double period, DPSTimedEntryProc handler,
void *userData, int priority)

DESCRIPTION DPSAddTimedEntry registers handler as a “timed entry,” a function that’s called repeatedly at a
given time interval. period determines the number of seconds between calls to the timed entry.
Whenever an application based on the Application Kit attempts to retrieve events from the event

3

queue, it also checks (depending on priority) to determine whether any timed entries are due to be
called. userData is a pointer that you can use to pass some data to the timed entry.

The function registered as handler has the form:

void *handler (DPSTimedEntry tag , double now, void * userData)

where tag is the timed entry identifier returned by DPSAddTimedEntry, now is the number of
seconds since some arbitrary point in the past, and userData is the pointer DPSAddTimedEntry
received when this timed entry was installed.

An application’s priority threshold can be set explicitly as an integer from 0 to 31 through a call
to DPSGetEvent or DPSPeekEvent. It’s against this threshold that priority is measured (note that
priority can be no greater than 30—the additional threshold level, 31, is provided to disallow all
inter-event function calls). However, if you’re using the Application Kit, you should access the
event queue through Application class methods such as getNextEvent:. Although some of these
methods let you set the priority threshold explicitly, you typically invoke the methods that set it
automatically. Such methods use only three priority levels:

When applicable, you should use these constants as the value for priority. For example, if you want
handler to be called during normal execution, but not if an attention panel or a modal loop is
running, then you would set priority to NX_BASETHRESHOLD.

RETURN DPSAddTimedEntry returns a number identifying the timed entry or −1 to indicate an error.

SEE ALSO DPSRemoveTimedEntry

Constant Meaning

NX_BASETHRESHOLD Normal execution

NX_RUNMODALTHRESHOLD An attention panel is being run

NX_MODALRESPTHRESHOLD A modal event loop is being run

4

DPSAsynchronousWaitContext

SUMMARY Proceed asynchronously while PostScript code is executed

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSAsynchronousWaitContext(DPSContext context, DPSPingProc handler,
void *userData)

DESCRIPTION This function is similar to the more familiar DPSWaitContext functions, except that rather than
wait for all PostScript code to execute, it returns immediately, allowing your application to
proceed while the PostScript code is executed in the background. The DPSPingProc function
handler is called (with context and userData as its two arguments) when all the PostScript code
has been executed. The DPSPingProc function takes the form

void * handler (DPSContext context , void * userData);

Warning: Be careful when you use this function; you must not send more PostScript code while
waiting for the handler to be called. In general, it’s best to not make any demands on the
Application Kit or the Client Library if you’re waiting for an asynchronous handler to return.

DPSCreateContext

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc)

DESCRIPTION DPSCreateContext establishes a connection with the Window Server and creates a PostScript
execution context in it. The new context becomes the current context. The first argument,
hostName, identifies the machine that’s running the Window Server; the second argument,
serverName, identifies the Window Server that’s running on that machine. With these two
arguments and the help of the Mach network server nmserver, the Mach port for the Window
Server can be identified. If hostName is NULL, the network server on the local machine is queried

5

for the Window Server’s port. If serverName is NULL, a default name for the Window Server is
used.

The last two arguments, textProc and errorProc, refer to call-back functions (defined in the Client
Library specification) that handle text returned from the Window Server and errors generated on
either side of the connection.

For an application that’s based on the Application Kit, you could create an additional context by
making this call:

DPSContext c;

c = DPSCreateContext(NXGetDefaultValue([NXApp appName], "NXHost"),

XGetDefaultValue([NXApp appName], "NXPSName"),

NULL,

NULL);

This example queries the application’s default values for the identity of the host machine and the
Window Server. By doing this, the new context is created in the correct Window Server even if
that Server is not on the same machine as the application process.

The context that DPSCreateContext creates allocates memory from the default allocation zone.
Also, when there’s difficulty creating the context, DPSCreateContext waits up to 60 seconds
before raising an exception. If you want to change either of these parameters, use
DPSCreateContextWithTimeoutFromZone. Its two additional arguments let you specify the
zone for the context to use when allocating context-specific data and a timeout value in
milliseconds.

This function returns the newly created DPSContext structure.

EXCEPTIONS DPSCreateContext raises a dps_err_outOfMemory exception if it encounters difficulty
allocating ports or other resources for the new context. It raises a dps_err_cantConnect exception
if it can’t return a context within the timeout period.

SEE ALSO DPSCreateContextWithTimeoutFromZone, DPSCreateNonsecureContext,
DPSCreateStreamContext

6

DPSCreateContextWithTimeoutFromZone

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateContextWithTimeoutFromZone(const char *hostName,
const char *serverName, DPSTextProc textProc, DPSErrorProc errorProc, int timeout,
NSZone *zone)

DESCRIPTION DPSCreateContextWithTimeoutFromZone is identical to DPSCreateContext except that it
accepts two additional arguments that let you specify the zone to use when allocating
context-specific data and a timeout value other than the default value of 60 seconds. Specify the
new timeout value in milliseconds,

This function returns the newly created DPSContext structure.

EXCEPTIONS DPSCreateContextWithTimeoutFromZone raises a dps_err_outOfMemory exception if it
encounters difficulty allocating ports or other resources for the new context. It raises a
dps_err_cantConnect exception if it can’t return a context within the timeout period.

SEE ALSO DPSCreateContext, DPSCreateNonsecureContext, DPSCreateStreamContext

DPSCreateNonsecureContext

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateNonsecureContext(const char *hostName, const char *serverName,
DPSTextProc textProc, DPSErrorProc errorProc, int timeout, NSZone *zone)

DESCRIPTION DPSCreateNonsecureContext creates a “nonsecure” context in which you can use PostScript
operators that are normally disallowed. The most significant of these are operators that let you
write files.

7

Few programmers will need to call this function directly: The Application Kit manages contexts
for programs based on the Kit. For example, when an application is launched, its Application
object calls DPSCreateContext to create a context in the Window Server. Similarly, to print a
View the Kit calls DPSCreateStreamContext to temporarily redirect PostScript code from the
View to a stream.

This function returns the newly created DPSContext structure.

SEE ALSO DPSCreateContext, DPSCreateContextWithTimeoutFromZone, DPSCreateStreamContext

DPSCreateStreamContext

SUMMARY Create a PostScript execution context

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSContext DPSCreateStreamContext(NXStream *stream, int debugging,
DPSProgramEncoding progEnc, DPSNameEncoding nameEnc, DPSErrorProc errorProc)

DESCRIPTION DPSCreateStreamContext is similar to DPSCreateContext, except that the new context is
actually a connection from the client application to a stream. This connection becomes the current
context. PostScript code that the application generates is sent to the stream rather than to the
Window Server. The first argument, stream, is a pointer to an NXStream structure, as created by
NXOpenFile or NXMapFile . The debugging argument is intended for debugging purposes but is
not currently implemented. progEnc and nameEnc specify the type of program and user-name
encodings to be used for output to the stream. The last argument, errorProc, identifies the
procedure that’s called when errors are generated.

Few programmers will need to call this function directly: The Application Kit manages contexts
for programs based on the Kit. For example, when an application is launched, its Application
object calls DPSCreateContext to create a context in the Window Server. Similarly, to print a
View the Kit calls DPSCreateStreamContext to temporarily redirect PostScript code from the
View to a stream.

This function returns the newly created DPSContext structure.

SEE ALSO DPSCreateContext, DPSCreateContextWithTimeoutFromZone,
DPSCreateNonsecureContext

8

DPSDefineUserObject

SUMMARY Create a user object

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSDefineUserObject(int index)

DESCRIPTION DPSDefineUserObject associates index with the PostScript object that’s on the top of the operand
stack, thereby creating a user object (as defined by the PostScript language). If index is 0, the
object is assigned the next available index number. The function returns the new index, which can
then be passed to a pswrap-generated function that takes a user object.

Warning: To avoid coming into conflict with user objects defined by the Client Library or
Application Kit, use DPSDefineUserObject rather than the PostScript operator defineuserobject
or the single-operator functions DPSdefineuserobject and PSdefineuserobject.

RETURN DPSDefineUserObject, if successful in assigning an index, returns the index that the object was
assigned. If unsuccessful, it returns 0.

SEE ALSO DPSUndefineUserObject

DPSDiscardEvents

SUMMARY Discard events from the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSDiscardEvents(DPSContext context, int mask)

DESCRIPTION DPSDiscardEvents’s two parameters, context and mask, are the same as those for DPSGetEvent
and DPSPeekEvent. DPSDiscardEvents removes from the application’s event queue those
records whose event types match mask and whose context matches context.

9

,

RETURN DPSGetEvent and DPSPeekEvent return 1 if they are successful in accessing an event record and
0 if they aren’t.

SEE ALSO DPSGetEvent, DPSPeekEvent, DPSAddFD, DPSAddPort, DPSAddTimedEntry,
DPSPostEvent

DPSDoUserPath

SUMMARY Send an encoded PostScript path to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSDoUserPath(void *coords, int numCoords, DPSNumberFormat numType,
unsigned char *ops, int numOps, void *bbox, int action)

DESCRIPTION DPSDoUserPath sends an encoded user path to the Window Server and then executes, upon that
path, the operator specified by action. The use of this function, rather than the analogous
step-by-step path construction, is encouraged; rendering an encoded path is much more efficient
than executing the individual PostScript operators that would otherwise be needed.

An encoded user path consists of an array of coordinate values, a sequence of PostScript operators
and a bounding box specification. The values in the coordinate array are used as operands to the
operators; the operands are distributed to the operators in the order that they’re given. The resulting
path must fit within the bounding box.

The coordinates, operators, and bounding box are given by the function’s first five arguments:

• The array of coordinate values is given by coords.

• numCoords is the number of elements in coords.

• numType specifies the data type of the coordinates, as described below. All the values in coords
must be of the same type.

• ops is the sequence of PostScript operators, represented by constants as listed below.

• The bounding box is defined by the four coordinate values that you pass as an array in the bbox
argument. These are passed as operands to the setbbox operator. (If you don’t supply a setbbox
as part of the ops sequence, one is inserted for you.)

10

The following integer constants represent the data types that you can pass as the
numType argument:

ConstantMeaning
dps_float single-precision floating-point number
dps_long 32-bit integer
dps_short 8-bit integer

You can also specify 16- and 32-bit fixed-point real numbers. For 16-bit fixed-point numbers, use
dps_short plus the number of bits in the fractional portion. For 32-bit fixed-point numbers, use
dps_long plus the number of bits in the fractional portion.

These constants are provided for ops:

dps_setbbox
dps_moveto
dps_rmoveto
dps_lineto
dps_rlineto
dps_curveto
dps_rcurveto
dps_arc
dps_arcn
dps_arct
dps_closepath
dps_ucache

Once the user path has been constructed, the operator specified by action is executed. The value
of action is an index into Display PostScript’s encoded system names; the following constants,
provided as a convenience, represent the most commonly used actions:

dps_uappend
dps_ufill
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill
dps_inueofill
dps_inustroke
dps_def
dps_put

11

,

The following program fragment demonstrates the use of DPSDoUserPath as it creates and
strokes a user path (an isosceles triangle) within a bounding rectangle whose lower left corner is
located at (0, 0) and whose width and height are 200.

short coords[6] = {0, 0, 200, 0, 100, 200};

char ops[4] = {dps_moveto, dps_lineto,dps_lineto, dps_closepath};

short bbox[4] = {0, 0, 200, 200};

DPSDoUserPath(coords, 6, dps_short, ops, 4, bbox, dps_ustroke);

Note: If an application calls DPSDoUserPath with large values (~10,000-20,000) of numCoords
and/or numOps, it may generate a Display PostScript error.

SEE ALSO DPSDoUserPathWithMatrix

DPSDoUserPathWithMatrix

SUMMARY Send an encoded PostScript path to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSDoUserPathWithMatrix(void *coords, int numCoords, DPSNumberFormat numType,
unsigned char *ops, int numOps, void *bbox, int action, float matrix[6])

DESCRIPTION DPSDoUserPathWithMatrix sends an encoded user path to the Window Server and then
executes, upon that path, the operator specified by action. The use of this function, rather than the
analogous step-by-step path construction, is encouraged; rendering an encoded path is much more
efficient than executing the individual PostScript operators that would otherwise be needed.

An encoded user path consists of an array of coordinate values, a sequence of PostScript operators
and a bounding box specification. The values in the coordinate array are used as operands to the
operators; the operands are distributed to the operators in the order that they’re given. The resulting
path must fit within the bounding box.

The coordinates, operators, and bounding box are given by the function’s first five arguments:

• The array of coordinate values is given by coords.

• numCoords is the number of elements in coords.

12

• numType specifies the data type of the coordinates, as described below. All the values in coords
must be of the same type.

• ops is the sequence of PostScript operators, represented by constants as listed below.

• The bounding box is defined by the four coordinate values that you pass as an array in the bbox
argument. These are passed as operands to the setbbox operator. (If you don’t supply a setbbox
as part of the ops sequence, one is inserted for you.)

The following integer constants represent the data types that you can pass as the
numType argument:

ConstantMeaning
dps_float single-precision floating-point number
dps_long 32-bit integer
dps_short 8-bit integer

You can also specify 16- and 32-bit fixed-point real numbers. For 16-bit fixed-point numbers, use
dps_short plus the number of bits in the fractional portion. For 32-bit fixed-point numbers, use
dps_long plus the number of bits in the fractional portion.

These constants are provided for ops:

dps_setbbox
dps_moveto
dps_rmoveto
dps_lineto
dps_rlineto
dps_curveto
dps_rcurveto
dps_arc
dps_arcn
dps_arct
dps_closepath
dps_ucache

13

Once the user path has been constructed, the operator specified by action is executed. The value
of action is an index into Display PostScript’s encoded system names; the following constants,
provided as a convenience, represent the most commonly used actions:

dps_uappend
dps_ufill
dps_ueofill
dps_ustroke
dps_ustrokepath
dps_inufill
dps_inueofill
dps_inustroke
dps_def
dps_put

DPSDoUserPathWithMatrix’s matrix argument represents the transformation matrix operand
used by the ustroke, inustroke, and ustrokepath operators. If matrix is NULL, the argument is
ignored.

DPSFlush

SUMMARY Send PostScript data to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSFlush

DESCRIPTION DPSFlush flushes the application’s output buffer, forcing any buffered PostScript code or data to
the Window Server.

SEE ALSO DPSSendEOF

14

DPSGetEvent

SUMMARY Access events from the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSGetEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

DESCRIPTION DPSGetEvent and DPSPeekEvent are macros that access event records in an application’s event
queue. These routines are provided primarily for programs that don’t use the Application Kit. An
application based on the Kit should use the corresponding Application class methods (such as
getNextEvent: and peekNextEvent:into:) so that it can be journaled. DPSDiscardEvents
removes all event records of a specified type from the queue.

DPSGetEvent and DPSPeekEvent differ only in how they treat the accessed event record.
DPSGetEvent removes the record from the queue after making its data available to the
application; DPSPeekEvent leaves the record in the queue.

DPSGetEvent and DPSPeekEvent take the same parameters. The first, context, represents a
PostScript execution context within the Window Server. Virtually all applications have only one
execution context, which can be returned using DPSGetCurrentContext. Applications having
more than one execution context can use the constant DPS_ALLCONTEXTS to access events
from all contexts belonging to them.

The second argument, anEvent, is a pointer to an event record. If DPSGetEvent or
DPSPeekEvent is successful in accessing an event record, the record’s data is copied into the
storage referred to by anEvent.

mask determines the types of events sought. See the section “Types and Constants” for a list of the
constants that represent the event type masks. To check for more than one type of event, you
combine individual constants using the bitwise OR operator.

If an event matching the event mask isn’t available in the queue, DPSGetEvent or DPSPeekEvent
waits until one arrives or until timeout seconds have elapsed, whichever occurs first. The value of
timeout can be in the range of 0.0 to NX_FOREVER. If timeout is 0.0, the routine returns an event
only if one is waiting in the queue when the routine asks for it. If timeout is NX_ FOREVER, the
routine waits until an appropriate event arrives before returning.

The last argument, threshold, is an integer in the range 0 through 31 that determines which other
services may be provided during a call to DPSGetEvent or DPSPeekEvent.

15

Requests for services are registered by the functions DPSAddTimedEntry, DPSAddPort, and
DPSAddFD. Each of these functions takes an argument specifying a priority level. If this level is
equal to or greater than threshold, the service is provided before DPSGetEvent or DPSPeekEvent
returns.

RETURN DPSGetEvent returns 1 if it is successful in accessing an event record and 0 if it isn’t.

SEE ALSO DPSPeekEvent, DPSDiscardEvents, DPSAddFD, DPSAddPort, DPSAddTimedEntry,
DPSPostEvent

DPSInterruptContext

Warning: This function is unimplemented in the NEXTSTEP version of the Client Library.

DPSNameFromTypeAndIndex

SUMMARY Access the system and user name tables

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS const char *DPSNameFromTypeAndIndex(short type, int index)

DESCRIPTION DPSNameFromTypeAndIndex returns the text associated with index from the system or user
name table. If type is −1, the text is returned from the system name table; if type is 0, it’s returned
from the user name table.

The name tables are used primarily by the Client Library and pswrap; few programmers will
access them directly.

RETURN This function returns a read-only character string.

16

DPSPeekEvent

SUMMARY Access events from the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSPeekEvent(DPSContext context, NXEvent *anEvent, int mask, double timeout,
int threshold)

DESCRIPTION DPSGetEvent and DPSPeekEvent are macros that access event records in an application’s event
queue. These routines are provided primarily for programs that don’t use the Application Kit. An
application based on the Kit should use the corresponding Application class methods (such as
getNextEvent: and peekNextEvent:into:) so that it can be journaled. DPSDiscardEvents
removes all event records of a specified type from the queue.

DPSGetEvent and DPSPeekEvent differ only in how they treat the accessed event record.
DPSGetEvent removes the record from the queue after making its data available to the
application; DPSPeekEvent leaves the record in the queue.

DPSGetEvent and DPSPeekEvent take the same parameters. The first, context, represents a
PostScript execution context within the Window Server. Virtually all applications have only one
execution context, which can be returned using DPSGetCurrentContext. Applications having
more than one execution context can use the constant DPS_ALLCONTEXTS to access events
from all contexts belonging to them.

The second argument, anEvent, is a pointer to an event record. If DPSGetEvent or
DPSPeekEvent is successful in accessing an event record, the record’s data is copied into the
storage referred to by anEvent.

mask determines the types of events sought. See the section “Types and Constants” for a list of the
constants that represent the event type masks. To check for more than one type of event, you
combine individual constants using the bitwise OR operator.

If an event matching the event mask isn’t available in the queue, DPSGetEvent or DPSPeekEvent
waits until one arrives or until timeout seconds have elapsed, whichever occurs first. The value of
timeout can be in the range of 0.0 to NX_FOREVER. If timeout is 0.0, the routine returns an event
only if one is waiting in the queue when the routine asks for it. If timeout is NX_ FOREVER, the
routine waits until an appropriate event arrives before returning.

The last argument, threshold, is an integer in the range 0 through 31 that determines which other
services may be provided during a call to DPSGetEvent or DPSPeekEvent.

17

Requests for services are registered by the functions DPSAddTimedEntry, DPSAddPort, and
DPSAddFD. Each of these functions takes an argument specifying a priority level. If this level is
equal to or greater than threshold, the service is provided before DPSGetEvent or DPSPeekEvent
returns.

RETURN DPSPeekEvent returns 1 if it is successful in accessing an event record and 0 if it isn’t.

SEE ALSO DPSGetEvent, DPSDiscardEvents, DPSAddFD, DPSAddPort, DPSAddTimedEntry,
DPSPostEvent

DPSPostEvent

SUMMARY Create an event

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSPostEvent(NXEvent *anEvent, int atStart)

DESCRIPTION DPSPostEvent lets you add an event record to your application’s event queue without involving
the Window Server. anEvent is a pointer to the event record to be added. atStart specifies where
the new record will be placed in relation to any other records in the queue. If atStart is TRUE, the
event is posted in front of all others and so will be the next one your application receives. If atStart
is FALSE, the event is posted behind all others and so won’t be returned until events that precede
it are processed.

You can free, reuse, or otherwise mangle anEvent after you’ve posted it without fear of corrupting
the posted record. DPSEvent copies the record it receives and posts the copy.

Note that event records you post using DPSPostEvent aren’t filtered by an event filter function set
with DPSSetEventFunc.

RETURN DPSPostEvent returns 0 if successful in posting the event record; it returns −1 if unsuccessful in
posting the record because the event queue is full.

SEE ALSO DPSSetEventFunc

18

DPSPrintError

SUMMARY Print error messages

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSPrintError(FILE *fp, const DPSBinObjSeq error)

DESCRIPTION DPSPrintError and DPSPrintErrorToStream format and print error messages received from a
PostScript execution context in the Window Server. The error message is extracted from the binary
object sequence error. DPSPrintError prints the error message to the file identified by fp;
DPSPrintErrorToStream prints the error message to stream.

You rarely need to call this function directly. However, if you reset the error handler for a
PostScript execution context, the new handler you install could use this function to process errors
that it receives.

SEE ALSO DPSPrintErrorToStream

DPSPrintErrorToStream

SUMMARY Print error messages

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSPrintErrorToStream(NXStream *stream, const DPSBinObjSeq error)

DESCRIPTION DPSPrintError and DPSPrintErrorToStream format and print error messages received from a
PostScript execution context in the Window Server. The error message is extracted from the binary
object sequence error. DPSPrintError prints the error message to the file identified by fp;
DPSPrintErrorToStream prints the error message to stream.

You rarely need to call this function directly. However, if you reset the error handler for a
PostScript execution context, the new handler you install could use this function to process errors
that it receives.

SEE ALSO DPSPrintError

19

DPSRemoveFD

SUMMARY Stop monitoring a file descriptor

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSRemoveFD(int fd)

DESCRIPTION DPSRemoveFD removes the specified file descriptor from the list of those that the application
will check.

SEE ALSO DPSAddFD

DPSRemoveNotifyPortProc

SUMMARY Removes the handler function for the notify port

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSRemoveNotifyPortProc(DPSPortProc handler)

DESCRIPTION Removes the notify port’s handler without specifying a new one. The handler argument must
match the notify port’s current handler.

SEE ALSO DPSAddNotifyPortProc

DPSRemovePort

SUMMARY Remove the Mach port being monitored.

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSRemovePort(port_t port)

20

DESCRIPTION DPSRemovePort removes the specified Mach port from the list of those that the application will
check.

SEE ALSO DPSAddPort

DPSRemoveTimedEntry

SUMMARY Create a timed entry

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSRemoveTimedEntry(DPSTimedEntry tag)

DESCRIPTION DPSRemoveTimedEntry removes a previously registered timed entry.

SEE ALSO DPSAddTimedEntry

DPSResetContext

Warning: This function is unimplemented in the NEXTSTEP version of the Client Library.

DPSSendEOF

SUMMARY Send PostScript data to the Window Server

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSSendEOF(DPSContext context)

21

DESCRIPTION DPSSendEOF sends a PostScript end-of-file marker to the given context. The connection to the
context isn’t closed or disturbed in any way by this function.

SEE ALSO DPSFlush

DPSSetDeadKeysEnabled

SUMMARY Allow dead key processing for a context’s events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSSetDeadKeysEnabled(DPSContext context, int flag)

DESCRIPTION DPSSetDeadKeysEnabled turns dead key processing on or off for context. If flag is 0, dead key
processing is turned off; otherwise, it’s turned on (the default).

Dead key processing is a technique for extending the range of characters that can be entered from
the keyboard. In NEXTSTEP, it provides one way for users to enter accented characters. For
example, a user can type Alternate-e followed by the letter “e” to produce the letter “é”. The first
keyboard input, Alternate-e, seems to have no effect—it’s the “dead key”. However, it signals
Client Library routines that it and the following character should be analyzed as a pair. If, within
NEXTSTEP, the pair of characters has been associated with a third character, a keyboard event
record representing the third character is placed in the application’s event queue, and the first two
event records are discarded. If there is no such association between the two characters, the two
event records are added to the event queue.

DPSSetEventFunc

SUMMARY Set the function that filters events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS DPSEventFilterFunc DPSSetEventFunc(DPSContext context, DPSEventFilterFunc func)

22

DESCRIPTION DPSSetEventFunc establishes the function func as the function to be called when an event record
is returned from the PostScript context context in the Window Server. The registered function is
called before the event record is put in the event queue. If the registered function returns 0, the
record is discarded. If the registered function returns 1, the record is passed on for further
processing.

Only event records coming from the Window Server are filtered by the registered function.
Records that you post to the event queue using DPSPostEvent aren’t affected.

A DPSEventFilterFunc function takes the following form:

int * func (NXEvent * anEvent)

RETURN DPSSetEventFunc returns a pointer to the previously registered event function. This lets you
chain together the current and previous event functions.

SEE ALSO DPSPostEvent

DPSSetTracking

SUMMARY Coalesce mouse events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSSetTracking(int flag)

DESCRIPTION DPSSetTracking turns mouse event-coalescing on or off for the current context. If flag is 0,
coalescing is turned off; otherwise, it’s turned on (the default).

Event coalescing is an optimization that’s useful when tracking the mouse. When the mouse is
moved, numerous events flow into the event queue. To reduce the number of events awaiting
removal by the application, adjacent mouse-moved events are replaced by the most recent event
of the contiguous group. The same is done for left and right mouse-dragged events, with the
addition that a mouse-up event replaces mouse-dragged events that come before it in the queue.

RETURN DPSSetTracking returns the previous state of the event-coalescing switch.

23

DPSStartWaitCursorTimer

SUMMARY Initiate a count down for the wait cursor

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSStartWaitCursorTimer

DESCRIPTION DPSStartWaitCursorTimer triggers the mechanism that displays a wait cursor when an
application is busy and can’t respond to user input. In most cases, wait cursor support is automatic:
You’ll only need to call this function if your application starts a time-consuming operation that’s
not initiated by a user-generated event.

Client Library routines and the Window Server cooperate to display the wait cursor whenever
more than a preset amount of time elapses between the time an application takes an event record
from the event queue and the time the application is again ready to consume events. However,
when an application starts an operation that isn’t initiated by an event—such as one caused by
receiving a Mach message or by processing data from a file (see DPSAddPort and
DPSAddFD)—the wait cursor mechanism is bypassed. To ensure proper wait cursor behavior in
these cases, call DPSStartWaitCursorTimer before beginning the time-consuming operation.

SEE ALSO DPSAddFD, DPSAddPort

DPSSynchronizeContext

SUMMARY Synchronize a context with your application

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSSynchronizeContext(DPSContext context, int flag)

DESCRIPTION DPSSynchronizeContext causes DPSWaitContext to be called after each pswrap function is
called, thus synchronizing the PostScript context with your application.

24

DPSTraceContext

SUMMARY Trace data and events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS int DPSTraceContext(DPSContext context, int flag)

DESCRIPTION DPSTraceContext controls the tracing of data between a PostScript execution context (or
contexts) in the Window Server and an application process.

The first argument, context, specifies the context to be traced. An application’s single context can
be returned with DPSGetCurrentContext. Applications having more than one execution context
can use the constant DPS_ALLCONTEXTS to trace all contexts belonging to them.

The second argument, flag, determines whether tracing is enabled. When data tracing is enabled,
a copy of the PostScript code generated by an application and the values returned to it by the
Window Server is sent to standard error. Values returned to the application are marked by the
prepended string:

% value returned ==>

For applications based on the Application Kit, there are two preferable methods for turning on data
tracing: You can use the NXShowPS command-line switch when you launch an application from
Terminal. Alternatively, when you run the application under GDB, you can use the showps and
shownops commands to control tracing output.

Only one tracing context can be created for the supplied context. If you attempt to create additional
tracing contexts for a context that’s already being traced, no new context is created and
DPSTraceContext returns −1.

RETURN DPSTraceContext returns 0 if successful in creating a tracing context, or −1 if not.

SEE ALSO DPSTraceEvents

25

DPSTraceEvents

SUMMARY Trace data and events

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSTraceEvents(DPSContext context, int flag)

DESCRIPTION DPSTraceEvents controls the tracing of events between a PostScript execution context (or
contexts) in the Window Server and an application process.

The first argument, context, specifies the context to be traced. An application’s single context can
be returned with DPSGetCurrentContext. Applications having more than one execution context
can use the constant DPS_ALLCONTEXTS to trace all contexts belonging to them.

The second argument, flag, determines whether tracing is enabled. When event tracing is enabled,
information about each event that the application receives is sent to standard error. For example,
for a left mouse-down event the listing might look like this:

Receiving: LMouseDown at: 343.0,69.0 time: 1271899

flags: 0x0 win: 6 ctxt: 76128 data: 1111,1

The listing displays the fields of the event record: type, location, time, flags, local window number,
PostScript execution context, and data. The contents of the data field listing depends on the event
type; for instance, in the preceding example the event number and the click count were displayed.

To enable event tracing, you can use the NXTraceEvents command-line switch when you launch
an application from Terminal. Alternatively, when you run the application under GDB, you can
use the traceevents and tracenoevents commands to control event-tracing output.

SEE ALSO DPSTraceContext

26

DPSUndefineUserObject

SUMMARY Remove a user object

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS void DPSUndefineUserObject(int index)

DESCRIPTION DPSUndefineUserObject removes the association between index and the PostScript object it
refers to, thus destroying the user object. By destroying a user object that’s no longer needed, you
can let the garbage collector reclaim the previously associated PostScript object.

SEE ALSO DPSDefineUserObject

NX_EVENTCODEMASK

SUMMARY Generate an event mask for an event type

DECLARED IN dpsclient/event.h

SYNOPSIS int NX_EVENTCODEMASK(int type)

DESCRIPTION This handy utility macro returns an event mask that corresponds to the given (single) event type.

27

28

Single-Operator Functions

Note: This section has not been updated and has not received recent technical review. It is
included in this release to test the linkage between application development tools and on-line
documentation. The information in this section should be considered at best preliminary and
subject to change. An updated version of this file will be included in the next release.

PSadjustcursor(float dx, float dy)
PSalphaimage(void)
PSbasetocurrent(float bx, float by, float *cx, float *cy)
PSbasetoscreen(float bx, float by, float *sx, float *sy)
PSbuttondown(boolean *isdown)
PScleartrackingrect(int trectnum, userobject gstate)
PScomposite(float srcx, float srcy, float width, float height, userobject srcgstate, float destx, float

desty, int op)

The value passed as op should be one of the following:

PScompositerect(float destx, float desty, float width, float height, int op)

The value passed as op should be one of the constants listed under PScomposite, plus
NX_HIGHLIGHT.

PScountframebuffers(int *count)
PScountscreenlist(int context, int *count)
PScountwindowlist(int context, int *count)
PScurrentactiveapp(int *context)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentalpha(float *coverage)
PScurrentdefaultdepthlimit(int *depth)

NX_CLEAR NX_SIN NX_SATOP

NX_COPY NX_DIN NX_DATOP

NX_SOVER NX_SOUT NX_PLUSD

NX_DOVER NX_DOUT NX_PLUSL

NX_XOR

1

Warning: Don’t use this function if you’re using the Application Kit.

PScurrentdeviceinfo(userobject window, int *min, int *max, boolean *iscolor)
PScurrenteventmask(userobject window, int *mask)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentframebuffertransfer(void)
PScurrentmouse(userobject window, float *x, float *y)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentowner(userobject window, int *context)
PScurrentshowpageprocedure(void)
PScurrentrusage(float *ctime, float *utime, float *stime, int *msgsend, int *msgrcv, int

*nsignals, int *nvcsw, int *nivcsw)
PScurrenttobase(float cx, float cy, float *bx, float *by)
PScurrenttoscreen(float cx, float cx, float *sx, float *sy)
PScurrentuser(int *uiId, int *gid)
PScurrentwaitcursorenabled(boolean *isenabled)
PScurrentwindow(userobject *window)
PScurrentwindowalpha(userobject window, int *alpha)
PScurrentwindowbounds(userobject window, float *x, float *y, float *width, float *height)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowdepth(userobject window, int *depth)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowdepthlimit(userobject window, int *depth)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowdict(userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PScurrentwindowlevel(userobject window, int *level)
PScurrentwriteblock(bool *doesblock)
PSdissolve(float srcx, float srcy, float sourceWidth, float width, userobject srcgstate, float destx,

float desty, float delta)
PSdumpwindow(int dumplevel, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSdumpwindows(int dumplevel, userobject context)

2

Warning: Don’t use this function if you’re using the Application Kit.

PSfindwindow(float x, float y, int place, userobject otherwindow, float *x', float *y',
userobject *window, boolean *found)

The value passed as place should be one of the following:

NX_ABOVE
NX_BELOW

PSflushgraphics(void)
Warning: Don’t use this function if you’re using the Application Kit.

PSframebuffer(int index, int stringlen, char string[], int *slot, int *unit, int *romid, int *x, int *y,
int *width, int *height, int *maxdepth)

PSfrontwindow(int *window)
Warning: Don’t use this function if you’re using the Application Kit.

PShidecursor(void)
PShideinstance(float x, float y, float width, float height)
PSmachportdevice(int width, int height, const int bbox[], int bboxSize, const float matrix[], const

char *hostname, const char *portname, const char *pixelencoding)
PSmovewindow(float x, float y, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSnewinstance(void)
PSnextrelease(int size, char string[])
PSobscurecursor(void)
PSorderwindow(int place, userobject otherwindow, int window)
Warning: Don’t use this function if you’re using the Application Kit.

The value passed as place should be one of the following:

NX_ABOVE
NX_BELOW
NX_OUT

PSosname(int size, char string[])
PSostype(int *type)
PSplacewindow(float x, float y, float width, float height, userobject window)†

3

Warning: Don’t use this function if you’re using the Application Kit.

PSplaysound(const char *soundname, int priority)
PSposteventbycontext(int type, float x, float y, int time, int flags, int window, int subtype, int

misc0, int misc1, int context, boolean *success)
PSreadimage(void)
PSrevealcursor(void)
PSrightbuttondown(int * isdown)
PSrightstilldown(int eventnum, boolean *stilldown)
PSscreenlist(int context, int count, int array[])
PSscreentobase(float sx, float sy, float *bx, float *by)
PSscreentocurrent(float sx, float sy, float *cx, float *cy)
PSsetactiveapp(int context)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetalpha(float coverage)
PSsetautofill(boolean flag, userobject window)
PSsetcursor(float x, float y, float mx, float my)
PSsetdefaultdepthlimit(int depth)
Warning: Don’t use this function if you’re using the Application Kit.

PSseteventmask(int mask, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

See the constants listed under “Event Type Masks” in the section “Types and Constants” for a
list of mask values.

PSsetexposurecolor(void)
PSsetflushexposures(boolean flag)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetframebuffertransfer(void)
PSsetinstance(boolean flag)
PSsetmouse(float x, float y)
PSsetowner(userobject context, userobject window)
PSsetsendexposed(boolean flag, userobject window)†
Warning: Don’t use this function if you’re using the Application Kit.

PSsetshowpageprocedure(int window)

4

Warning: Don’t use this function if you’re using the Application Kit.

PSsettrackingrect(float x, float y, float width, float height, boolean leftbool, boolean rightbool,
boolean insidebool, int userdata, int trectnum, userobject gstate)

Note: Only the Form 1 version of the settrackingrect operator is offered as a C function.

PSsetwaitcursorenabled(boolean flag)
PSsetwindowdepthlimit(int depth, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetwindowdict(userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetwindowlevel(int level, userobject window)
PSsetwindowtype(int type, userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSsetwriteblock(int flag)
PSshow(const char *string)
PSshowcursor(void)
PSsizeimage(float x, float y, float width, float height, int *pixelswide, int *pixelshigh,

int *bits/sample, float matrix[], boolean *multiproc, int *ncolors)
PSstilldown(int eventnum, boolean *stilldown)
PStermwindow(userobject window)
Warning: Don’t use this function if you’re using the Application Kit.

PSwindow(float x, float y, float width, float height, int type, int *window)
Warning: Don’t use this function if you’re using the Application Kit.

PSwindowdevice(userobject window)
PSwindowdeviceround(userobject window)
PSwindowlist(int context, int count, int subarray[])

5

6

PostScript Operators
Note: This section has not been updated and has not received recent technical review. It is
included in this release to test the linkage between application development tools and on-line
documentation. The information in this section should be considered at best preliminary and
subject to change. An updated version of this file will be included in the next release.

adjustcursor

SYNOPSIS dx dy adjustcursor −

Moves the cursor location by (dx, dy) from its current location. dx and dy are given in the current
coordinate system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentmouse, setmouse

alphaimage

SYNOPSIS pixelswide pixelshigh bits/sample matrix datasrc0 [...datasrcn] multiproc ncolors alphaimage −

Renders an image whose samples include an alpha component. (Most programmers should use
NXImageBitmap() instead of alphaimage.) This operator is similar to the standard colorimage
operator (as documented by Adobe Systems). However, note the following:

• When supplying the data components, alpha is always given last—either as the last data source
(datasrcn) if the data is given in separate vectors, or as the last element in a set of interleaved
data.

• The ncolors operand doesn’t account for alpha—the value of ncolors is the number of color
components only.

ERRORS invalidid , limitcheck, rangecheck, stackunderflow, typecheck, undefined, undefinedresult

1

basetocurrent

SYNOPSIS bx by basetocurrent cx cy

Converts (bx, by) from the current window’s base coordinate system to its current coordinate
system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetoscreen, currenttobase, currenttoscreen, screentobase, screentocurrent

basetoscreen

SYNOPSIS bx by basetoscreen sx sy

Converts (bx, by) from the current window’s base coordinate system to the screen coordinate
system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, currenttobase, currenttoscreen, screentobase, screentocurrent

buttondown

SYNOPSIS − buttondown isdown

Returns true if the left or only mouse button is currently down; otherwise it returns false.

Note: To test whether the mouse button is still down from a mouse-down event, use stilldown
instead of buttondown; buttondown will return true even if the mouse button has been released
and pressed again since the original mouse-down event.

2

ERRORS none

SEE ALSO currentmouse, rightbuttondown, rightstilldown, stilldown

cleartrackingrect

SYNOPSIS trectnum gstate cleartrackingrect −

Clears the tracking rectangle identified by trectnum, as set by settrackingrect, in the device
referred to by gstate (or the current graphics state if gstate is null). If no such rectangle exists, the
invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO settrackingrect

composite

SYNOPSIS srcx srcy width height srcgstate destx desty op composite −

Performs the compositing operation specified by op between pairs of pixels in two images, a
source and a destination. The source pixels are in the window device referred to by the srcgstate
graphics state, and the destination pixels are in the current window. If srcgstate is null , the current
graphics state is assumed. If either graphics state doesn’t refer to a window device, the invalidid
error is executed.

The rectangle specified by srcx, srcy, width, and height defines the source image. The outline of
the rectangle may cross pixel boundaries due to fractional coordinates, scaling, or rotated axes.
The pixels included in the source are all those that the outline of the rectangle encloses or enters.

The destination image has the same size, shape, and orientation as the source; destx and desty give
destination’s location image compared to the source. (Even if the two graphic states have different
orientations, the images will not; composite will not rotate images.)

3

Both images are clipped to the frame rectangles of their respective windows. The destination
image is further clipped to the clipping path of the current graphics state. The result of a
composite operation replaces the destination image.

op specifies the compositing operation. The choices for op and the result of each operation are
given in the following illustration.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO compositerect, setalpha

4

Figure 0-1 . Compositing Operations

Dover

Clear

Sover

Sin

Sout

Dout

Satop

Source image wherever source image is opaque, and destination image elsewhere.

Destination image wherever destination image is opaque, and source image elsewhere.

Source image wherever both images are opaque, and transparent elsewhere.

Source image wherever source image is opaque but destination image is transparent,
and transparent elsewhere.

Source image wherever both images are opaque, destination image wherever destination
image is opaque but source image is transparent, and transparent elsewhere.

Transparent.

Destination image wherever destination image is opaque but source image is transparent
and transparent elsewhere.

Operation Destination after

Sum of source and destination images, with color values approaching 1 as a limit.
(PlusL is not implemented for the MegaPixel Display.)

PlusL

PlusD Sum of source and destination images, with color values approaching 0 as a limit.

opaque

Source
Destination

before

opaque

transparent

Din Destination image wherever both images are opaque, and transparent elsewhere.

Copy Source image.

transparent

5

compositerect

SYNOPSIS destx desty width height op compositerect −

In general, this operator is the same as the composite operator except that there’s no real source
image. The destination is in the current graphics state; destx, desty, width, and height describe the
destination image in that graphics state’s current coordinate system. The effect on the destination
is as if there were a source image filled with the color and coverage specified by the graphics
state’s current color parameter. op has the same meaning as the op operand of the composite
operator; however, one additional operation, Highlight, is allowed.

On the MegaPixel Display, Highlight turns every white pixel in the destination rectangle to light
gray and every light gray pixel to white, regardless of the pixel’s coverage value. Repeating the
same operation reverses the effect. (Highlight may act differently on other devices. For example,
on displays that assign just one bit per pixel, it would invert every pixel.)

Note: The Highlight operation doesn’t change the value of a pixel’s coverage component. To
ensure that the pixel’s color and coverage combination remains valid, Highlight operations should
be temporary and should be reversed before any further compositing.

For compositerect, the pixels included in the destination are those that the outline of the specified
rectangle encloses or enters. The destination image is clipped to the frame rectangle and clipping
path of the window in the current graphics state.

If the current graphics state doesn’t refer to a window device, the invalidid error is executed.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO composite, setalpha

copypage

Warning: This standard PostScript operator has no effect in the OPENSTEP implementation of
the Display PostScript system.

6

countframebuffers

SYNOPSIS − countframebuffers count

Returns the number of frame buffers that the Window Server is actually using.

ERRORS stackoverflow

SEE ALSO framebuffer

countscreenlist

SYNOPSIS context countscreenlist count

Returns the number of windows in the screen list that were created by the PostScript context
specified by context. This is in contrast with countwindowlist, which returns the number of
windows created by the context without regard to their inclusion in the screen list.

If context is 0, all windows in the screen list are counted, without regard to the context that created
them.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO countwindowlist, screenlist, windowlist

countwindowlist

SYNOPSIS context countwindowlist count

Returns the number of windows that were created by the PostScript context specified by context.
This is in contrast with countscreenlist, which returns the number of windows in the screen list
that were created by the PostScript context specified by context.

If context is 0, all windows are counted, without regard to the context that created them.

7

ERRORS stackunderflow, typecheck

SEE ALSO countscreenlist, screenlist, windowlist

currentactiveapp

SYNOPSIS − currentactiveapp context

Warning: Don’t use this operator if you’re using the Application Kit.

Returns the active application’s context. This operator is used by the window packages to assist
with wait cursor operation.

ERRORS stackoverflow

SEE ALSO setactiveapp

currentalpha

SYNOPSIS − currentalpha coverage

Returns the coverage parameter of the current graphics state.

ERRORS none

SEE ALSO composite, setalpha

currentdefaultdepthlimit

SYNOPSIS − currentdefaultdepthlimit depth

8

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
defaultDepthLimit class method instead.

Returns the current context’s default depth limit. This value determines a new window’s depth
limit.

ERRORS stackoverflow

SEE ALSO setdefaultdepthlimit, setwindowdepthlimit, currentwindowdepthlimit ,
currentwindowdepth

currentdeviceinfo

SYNOPSIS window currentdeviceinfo min max iscolor

Returns device-related information about the current state of window. min and max are the
smallest and largest number of bits per sample, respectively, and iscolor is a boolean value
indicating whether the device is a color device.

ERRORS invalidid , stackunderflow, typecheck

currenteventmask

SYNOPSIS window currenteventmask mask

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s eventMask
method instead.

Returns the current Window Server-level event mask for the specified window.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO seteventmask

9

currentframebuffertransfer

SYNOPSIS fbnum currentframebuffertransfer redproc greenproc blueproc grayproc

Returns the current transfer functions in effect for the framebuffer indexed by fbnum. fbnum
ranges from 0 to (countframebuffers – 1).

ERRORS invalidid, stackunderflow, typecheck

SEE ALSO setframebuffertransfer, countframebuffers, framebuffer

currentmouse

SYNOPSIS window currentmouse x y

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
getMouseLocation: instead.

Returns the current x and y coordinates of the mouse location in the base coordinate system of the
specified window. If the mouse isn’t inside the specified window, these coordinates may be
outside the coordinate range defined for the window. If window is 0, the current mouse position
is returned relative to the screen coordinate system.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, buttondown, rightbuttondown , rightstilldown , setmouse,
stilldown

currentowner

SYNOPSIS window currentowner context

Returns a number identifying the PostScript context that currently owns the specified window. By
default, this is the PostScript context that created the window.

10

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setowner, termwindow, window

currentshowpageprocedure

SYNOPSIS window currentshowpageprocedure proc

Returns the PostScript procedure that’s executed when the showpage operator is executed while
the specified window is the current device.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setshowpageprocedure

currentrusage

SYNOPSIS − currentrusage ctime utime stime msgsend msgrcv nsignals nvcsw nivcsw

Returns information about the current time of day and about resource usage by the Window Server,
as provided by the system call getrusage(). The items returned, and their types, are as follows:

Name Type Value

ctime float Current time in seconds, modulo 10000

utime float User time for the Server process in seconds

stime float System time for the Server process in seconds

msgsen
d

int Messages sent by the Server to clients

msgrcv int Message received by the Server from clients

nsignal
s

int Number of signals received by the Server process

nvcsw int Number of voluntary context switches

11

currenttobase

SYNOPSIS cx cy currenttobase bx by

Converts (cx,cy) from the current coordinate system of the current window to its base coordinate
system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, currenttoscreen, screentobase, screentocurrent

currenttoscreen

SYNOPSIS cx cy currenttoscreen sx sy

Converts (cx, cy) from the current coordinate system of the current window to the screen
coordinate system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, currenttobase, screentobase, screentocurrent

currentuser

SYNOPSIS − currentuser uid gid

Returns the user id (uid) and the group id (gid) of the user currently logged in on the console of
the machine that’s running the Window Server.

nivcsw int Number of involuntary context switches

Name Type Value

12

ERRORS stackoverflow

currentwaitcursorenabled

SYNOPSIS context currentwaitcursorenabled isenabled

Returns the state of context’s wait cursor flag. If context is 0, returns the state of the global wait
cursor flag.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwaitcursorenabled

currentwindow

SYNOPSIS − currentwindow window

Returns the window number of the current window. Executes the invalidid error if the current
device isn’t a window.

ERRORS invalidid

SEE ALSO windowdeviceround

currentwindowalpha

SYNOPSIS window currentwindowalpha alpha

Returns an integer indicating whether the Window Server is currently storing alpha values for the
specified window. Possible alpha values are:

−2 Window is opaque; alpha values are explicitly allocated.

13

ERRORS invalidid , stackunderflow, typecheck

currentwindowbounds

SYNOPSIS window currentwindowbounds x y width height

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s getFrame:
or Application’s getScreenSize: method instead.

Returns the location and size of the window in screen coordinates. Pass 0 for window to get the
size of the entire workspace (the smallest rectangle that encloses all active screens).

x and y will be in the range [−215, 215 −1]; width and height will be in the range [0, 10000].

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO movewindow, placewindow

currentwindowdepth

SYNOPSIS window currentwindowdepth depth

Warning: Don’t use this operator if you’re using the Application Kit.

Returns window’s current depth. The invalidid error is executed if window doesn't exist.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwindowdepthlimit, currentwindowdepthlimit , setdefaultdepthlimit,
currentdefaultdepthlimit

0 Alpha values are stored explicitly

2 Window is opaque; no explicit alpha

14

currentwindowdepthlimit

SYNOPSIS window currentwindowdepthlimit depth

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s depthLimit
method instead.

Returns the window’s current depth limit, the maximum depth to which the window can be
promoted. Unless altered by the setwindowdepthlimit operator, a window’s depth limit is equal
to its context’s default depth limit. The invalidid error is executed if window doesn’t exist.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwindowdepthlimit, currentwindowdepth, setdefaultdepthlimit, currentdefaultdepthlimit

currentwindowdict

SYNOPSIS window currentwindowdict dict

Warning: Don’t use this operator if you’re using the Application Kit.

Returns the specified window’s dictionary.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwindowdict

currentwindowlevel

SYNOPSIS window currentwindowlevel level

Returns window’s tier. Executes the invalidid error if window doesn't exist.

15

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setwindowlevel

currentwriteblock

SYNOPSIS − currentwriteblock doesblock

Returns whether the Window Server delays sending data to a client application whenever the
Server’s output buffer fills. currentwriteblock assumes the current context. If doesblock is true,
the Server waits until the buffer can accept more data. If doesblock is false, the Server discards
data that can’t be accepted immediately.

ERRORS none

SEE ALSO setwriteblock

dissolve

SYNOPSIS srcx srcy width height srcgstate destx desty delta dissolve −

The effect of this operation is a blending of a source and a destination image. The first seven
arguments choose source and destination pixels as they do for composite. The exact fraction of
the blend is specified by delta, which is a floating-point number between 0.0 and 1.0; the resulting
image is:

delta *source + (1− delta)*destination

If srcgstate is null, the current graphics state is assumed. If srcgstate or the current graphics state
does not refer to a window device, this operator executes the invalidid error.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO composite

16

dumpwindow

SYNOPSIS dumplevel window dumpwindow −

Warning: Don’t use this operator if you’re using the Application Kit.

Prints information about window to the standard output file. Only dumplevel 0 is implemented.
The information printed is the position and number of bytes of backing storage for the window.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO dumpwindows

dumpwindows

SYNOPSIS dumplevel context dumpwindows −

Warning: Don’t use this operator if you’re using the Application Kit.

Prints information about all windows owned by context to the standard output file. If context is 0,
it prints information about all windows. Only dumplevel 0 is implemented.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO dumpwindow

erasepage

SYNOPSIS − erasepage −

Warning: This standard operator is different in the OPENSTEP implementation.

Erases the entire window to opaque white.

17

ERRORS invalidid

SEE ALSO copypage, showpage

findwindow

SYNOPSIS x y place otherwindow findwindow x' y' window found

findwindow starts from a given position in the screen list, as explained below, and searches for
the first window below that position that contains the point (x, y). The x and y values are given in
screen coordinates.

The starting position is determined by place and otherwindow. place can be Above or Below, and
otherwindow is the window number of a window in the screen list. If you specify Above 0,
findwindow checks all windows in the screen list.

If a window containing the point is found, findwindow returns true, along with the window
number and the corresponding location in the base coordinate system of the window. Otherwise,
it returns false, and the values of x', y', and window are undefined.

ERRORS rangecheck, stackunderflow, typecheck

flushgraphics

SYNOPSIS − flushgraphics −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
flushWindow method instead.

Flushes to the screen all drawing done in the current buffered window. If the current window is
retained or nonretained, flushgraphics has no effect.

ERRORS invalidid , stackunderflow, typecheck

18

framebuffer

SYNOPSIS index string framebuffer name slot unit romid x y width height maxdepth

Provides information on the active frame buffer specified by index, where index ranges from 0 to
countframebuffers−1. string must be large enough to hold the resulting name of the frame buffer.
slot is the NeXTbus slot the frame buffer is physically occupying. If a board supports multiple
frame buffers, unit uniquely identifies the frame buffer within a slot. The ROM product code is
returned in romid. The bottom left corner of the frame buffer is returned in x and y (relative to the
screen coordinate system). The size of the frame buffer in pixels is returned in width and height.
maxdepth is the maximum depth displayable on this frame buffer (for example,
NSTwentyFourBitRGBDepth).

The limitcheck error is executed if string isn’t large enough to hold name. The rangecheck error
is executed if index is out of bounds.

ERRORS limitcheck, rangecheck, stackunderflow, typecheck

SEE ALSO countframebuffers

frontwindow

SYNOPSIS − frontwindow window

Warning: Don’t use this operator if you’re using the Application Kit.

Returns the window number of the frontmost window on the screen. If there aren’t any windows
on the screen, frontwindow returns 0.

ERRORS none

SEE ALSO orderwindow

19

hidecursor

SYNOPSIS − hidecursor −

Removes the cursor from the screen. It remains in effect until balanced by a call to showcursor.

ERRORS none

SEE ALSO obscurecursor, showcursor

hideinstance

SYNOPSIS x y width height hideinstance −

In the current window, hideinstance removes any instance drawing from the rectangle specified
by x, y, width, and height. x, y, width, and height are given in the window’s current coordinate
system.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO newinstance, setinstance

image

SYNOPSIS dict image –

Allows a window’s graphics state object to be used as a source of sample data. dict must be an
image dictionary in which only those keys listed in the following table are significant:

Key Type Value or Meaning

ImageType integer (Required) Must be 2.

20

ERRORS invalidid, rangecheck, stackunderflow, typecheck

SEE ALSO alphaimage

initgraphics

SYNOPSIS − initgraphics −

Warning: This standard operator has additional effects in the OPENSTEP implementation of the
Display PostScript system.

XOrigin real (Required) X origin of the source rectangle in user
space coordinates as specified by the transformation in
the DataSource entry.

YOrigin real (Required) Y origin of the same.

Width real (Required) Width of the same.

Height real (Required) Height of the same.

ImageMatrix array (Required) The transformation matrix.

DataSource gstate (Required) A graphics state object that contains the
device that will be used as the source of sample data.
This device will also be used to determine the pixel
representation for the source, and the color space to be
used by the image.

Interpolate boolean (Optional) Request for image interpolation.

UnpaintedPath (various) (Return value) If some of the pixels in the source weren’t
available (because of clipping), then the UnpaintedPath
entry contains a userpath in the current (destination)
user space that encloses the area that couldn’t be filled.

PixelCopy boolean (Optional) If true, indicates that the source pixels should
be copied directly, without going through the normal
color conversion, transfer function, or halftoning. The
bits per pixel of the source must match the bits per pixel
of the destination, otherwise a typecheck error will
occur. If false or not present, the pixels will be imaged in
the usual way.

Key Type Value or Meaning

21

In addition to the effects documented by Adobe, this operator sets the coverage parameter in the
current window’s graphics state to 1 (opaque) and turns off instance drawing

ERRORS none

SEE ALSO hideinstance, newinstance, setalpha, setinstance

machportdevice

SYNOPSIS width height bbox matrix hostname portname pixelencoding machportdevice −

Sets up a PostScript device that can provide a generic rendering service for device-control
programs requiring page bitmaps from PostScript documents. For each rendered page,
machportdevice sends a Mach message containing the page bitmap to a port that has been
registered with the name server on the network.

width and height are integers that determine the number of device pixels for the page.

bbox is an array of integers that defines the rectangle (by giving its lower left and upper right
corners) that encompasses the imageable area. The array takes the form

[lowerLeftX lowerLeftY upperRightX upperRightY]

For the common case where the entire raster is imageable, bbox may be expressed as an empty
array. If bbox isn’t in the correct form, or if any portion of the rectangle it expresses falls outside
[0 0 width height], a rangecheck results. The bitmap data is stored in x-axis major indexing order.
The device coordinate of the lower left corner of the first pixel is (0,0), the coordinate of the next
pixel is (1,0) and so on for the entire scanline. Scanlines are long-word aligned.

matrix is the default transformation matrix for the device.

hostname and portname are strings that together identify the port that will receive the Mach
messages. If hostname is empty, the local host is assumed. If it’s “*”, the port is searched for on
all available hosts. If (in any case) the port can’t be found, a rangecheck results.

22

pixelencoding is a dictionary describing the format for the image data rendered by the Window
Server. It should contain these entries:

The value of colorSpace should be one of the following values, predefined in nextdict:

Only the following combinations of colorSpace and bitsPerSample are supported:

Key Type Value

samplesPerPixel integer Must be 1.

bitsPerSample integer Must be 1 or 2.

colorSpace integer Color space specification (see below).

isPlanar boolean true if sample values are stored in separate arrays
(currently must be false).

defaultHalftone dictionary Passed to sethalftone during device creation to set up
device default halftone.

initialTransfer procedure Passed to settransfer during device creation to set up
the initial transfer function for device.

jobTag integer Allows machportdevice to tag rendering jobs. This
value is included in the jobTag field of all printpage
messages generated by this device.

Name Value Description

NSOneIsBlackColorSpaceNumber 0 Monochromatic, high sample value is black.

NSOneIsWhiteColorSpaceNumber 1 Monochromatic, high sample value is white.

NSRGBColorSpaceNumber 2 RGB, (1,1,1) is white.

NSCMYKColorSpaceNumber 5 CMYK, (0,0,0,0) is white.

colorSpace bitsPerSample

NSOneIsBlackColorSpaceNumber 1

NSOneIsWhiteColorSpaceNumber 2

23

e

These read-only pixel-encoding dictionaries are predefined in nextdict:

The pagebuffer data is passed out-of-line, appearing in the receiving application’s address space.
(If the receiver is on the same host, the received pagebuffer references the same physical memory
as the Window Server’s pagebuffer, and is mapped copy-on-write.) The application should use
vm_deallocate() to release the pagebuffer memory when it’s no longer needed. The receiver must
acknowledge receipt of the data by sending a simple msg_header_t (with msg_id ==
NX_PRINTPAGEMSGID) back to the remote_port passed in the print message. The Window
Server will not continue executing the page description until acknowledgement is received.

If more than one copy of the page is needed (through either the copypage or #copies mechanism)
each copy is sent as a separate message. In this case the same pagebuffer will be sent in multipl
messages. The letter, legal, and note page types are gracefully ignored.

Messaging errors cause the invalidaccess error to be executed.

EXAMPLES This example sets up a 400 dpi 8.5 by 11 inch page on a raster with upper left origin (as
with the NeXT 400 dpi Laser Printer) and sends its print page messages to the port named
“nlp-123” on the local host:

Name Description

NeXTLaser-300 NeXT Laser Printer at 300 dpi resolution

NeXTLaser-400 NeXT Laser Printer at 400 dpi resolution

NeXTMegaPixelDisplay MegaPixel Display’s 2 bits-per-pixel gray

24

/dpi 400 def

/width dpi 8.5 mul cvi def

/height dpi 11 mul cvi def

width height % page bitmap dimensions in pixels

[] % use it all

[dpi 72 div 0 0 dpi -72 div 0 height] % device transform

() (nlp-123) % host (local) & port

NeXTLaser-400 % pixel-encoding description

machportdevice

This example sets up an 8 by 10 inch page on the same 8.5 by 11 inch page. It

specifies a 400 dpi raster with 1/4 inch horizontal margins and 1/2 inch vertical

margins:

/dpi 400 def

/width dpi 8.5 mul cvi def

/height dpi 11 mul cvi def

/topdots dpi .5 mul cvi def

/leftdots dpi .25 mul cvi def

width height % page bitmap dimensions in pixels

[

leftdots

topdots

width leftdots sub

height topdots sub

] % imageable area of bounding box

[

dpi 72 div

0

0

dpi -72 div

leftdots

height topdots sub

] % device transform

() (nlp-123) % host (local) & port

NeXTLaser-400 % pixel-encoding description

machportdevice

Note that in this example, the user space origin is at the lower left corner of the imageable area
(leftdots, height-topdots) in the device raster coordinate system. Usually, the imageable area is
meant to correspond with the ultimate destination of the bits. For example, a printer may have a
constant-sized pagebuffer with a fixed orientation in the paper path, but be able to accept various
sizes of paper. In this case, the page bitmap size will always be fixed, but the imageable area and
default device transformation can be adjusted to make the user space origin appear at the lower
left corner of each printed page.

25

ERRORS invalidaccess, limitcheck, rangecheck, stackunderflow, typecheck

movewindow

SYNOPSIS x y window movewindow −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s moveTo::
method instead.

Moves the lower left corner of the specified window to the screen coordinates (x, y). No portion
of the repositioned window can have an x or y coordinate with an absolute value greater than
16000. The operands can be integer, real, or radix numbers; however, they are converted to
integers in the Window Server by rounding toward 0.

The window need not be the frontmost window. This operator doesn’t change window’s ordering
in the screen list.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowbounds, placewindow

newinstance

SYNOPSIS − newinstance −

Removes any instance drawing from the current window.

ERRORS invalidid

SEE ALSO hideinstance, setinstance

26

nextrelease

SYNOPSIS − nextrelease string

Returns version information about this release.

ERRORS stackoverflow

SEE ALSO osname, ostype

NextStepEncoding

SYNOPSIS − NextStepEncoding array

Pushes the NextStepEncoding vector on the operand stack. This is a 256-element array, indexed
by character codes, whose values are the character names for those codes.

ERRORS stackoverflow

obscurecursor

SYNOPSIS − obscurecursor −

Removes the cursor image from the screen until the next time the mouse is moved. It’s usually
called in response to typing by the user, so the cursor won’t be in the way. If the cursor has already
been removed due to an obscurecursor call, obscurecursor has no effect.

ERRORS none

SEE ALSO hidecursor, revealcursor

27

orderwindow

SYNOPSIS place otherwindow window orderwindow −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
orderWindow:relativeTo: instead.

Orders window in the screen list as indicated by place and otherwindow. place can be Above,
Below, or Out:

• If place is Above or Below, the window is placed in the screen list immediately above or below
the window specified by otherwindow.

• If place is Above or Below and otherwindow is 0, the window is placed above or below all
windows in its tier.

• If place is Above or Below, otherwindow must be a window in the screen list; otherwise, the
invalidid error is executed.

• If place is Out, otherwindow is ignored, and the window is removed from the screen list, so it
won’t appear anywhere on the screen. Windows that aren’t in the screen list don’t receive user
events.

Note: orderwindow doesn’t change which window is the current window.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO frontwindow

osname

SYNOPSIS − osname string

Returns a string identifying the operating system of the Window Server’s current operating
environment. osname is defined in the statusdict dictionary, a dictionary that defines operators
specific to a particular implementation of the PostScript language. osname can be executed as
follows:

statusdict /osname get exec

28

ERRORS none

SEE ALSO nextrelease, ostype

ostype

SYNOPSIS − ostype int

Returns a number identifying the operating system of the Window Server’s current operating
environment. ostype is defined in the statusdict dictionary, a dictionary that defines operators
specific to a particular implementation of the PostScript language. ostype can be executed as
follows:

statusdict /ostype get exec

ERRORS none

SEE ALSO nextrelease, osname

placewindow

SYNOPSIS x y width height window placewindow −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
placeWindow: method instead.

Repositions and resizes the specified window, effectively allowing it to be resized from any corner
or point. x, y, width, and height are given in the screen coordinate system. No portion of the
repositioned window can have an x or y coordinate with an absolute value greater than 16000;
width and height must be in the range from 0 to 10000. The four operands can be integer or real
numbers; however, they are converted to integers in the Window Server by rounding toward 0.

placewindow places the lower left corner of the window at (x, y) and resizes it to have a width of
width and a height of height. The pixels that are in the intersection of the old and new positions
of the window survive unchanged (see Figure 0-2). Any other areas of the newly positioned
window are filled with the window’s exposure color (see setexposurecolor).

29

Figure 0-2 . placewindow

After moving or resizing a window with placewindow, you must execute the initmatrix and
initclip operators to reestablish the window’s default transformation matrix and default clipping
path.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowbounds, movewindow, setexposurecolor

playsound

SYNOPSIS soundname priority playsound −

Plays the sound soundname. The Window Server searches for a standard soundfile of the name

soundname.snd

The search progresses through the following directories in the order given, stopping when the
sound is located.

~/Library/Sounds
/LocalLibrary/Sounds
/NextLibrary/Sounds

No error occurs if the soundfile isn’t found: The operator has no effect.

The soundfile’s playback is assigned the priority level priority. The playback interrupts any
currently playing sound of the same or lower priority level.

This is what the window
looks like before placewindow
is called. Notice which pixels
survive unchanged after the
call to placeWindow. This
allows a window to be resized
from any corner or point.

width

he
ig

ht

(x, y)

placewindowBefore placewindowAfter

t the window
efore placewindow

Notice which pixels
changed after the
eWindow. This

30

ERRORS stackunderflow, typecheck

posteventbycontext

SYNOPSIS type x y time flags window subtype misc0 misc1 context posteventbycontext success

Posts an event to the specified context. The nine parameters preceding the context parameter
coincide with the NXEvent structure members (see “Types and Constants” for the definition of the
NXEvent structure). The x and y coordinate arguments are passed directly to the receiving context
without undergoing any transformations. window is the Window Server’s global window number.
Returns true if the event was successfully posted to context, and false otherwise.

You use this operator to post an application-defined event to your own application. Use Mach
messaging to communicate between applications.

ERRORS stackunderflow, typecheck

readimage

SYNOPSIS x y width height proc0 [... procn-1] string bool readimage −

Reads the pixels that make up the rectangular image described by x, y, width, and height in the
current window. (Most programmers should use NXReadBitmap() instead of this operator.)

Usually the image is the rectangle that has a lower left corner of (x, y) in the current coordinate
system and a width and height of width and height. If the axes have been rotated so that the sides
of the rectangle are no longer aligned with the edges of the screen, the image is the smallest
screen-aligned rectangle enclosing the given rectangle.

You typically call sizeimage before readimage (sending it the same x, y, width, and height values
you’ll use for readimage) to find out ncolors, the number of color components that readimage
must read. bool is a boolean value that determines whether readimage reads the alpha component
in addition to the color component(s) for each pixel. The total number of components to be read
for each pixel, together with the multiproc value returned by sizeimage, determine n, the number
of procedures that readimage requires. If multiproc is false, n equals 1. Otherwise, n equals the
number of color components plus the alpha component, if present.

31

readimage executes the procedures in order, 0 through n−1, as many times as needed. For each
execution, it pushes on the operand stack a substring of string containing the data from as many
scanlines as possible. The length of the substring is a multiple of

width * bits/sample * (samples/proc) / 8

rounded up to the nearest integer. (The width and bits/sample values are provided by the
sizeimage operator. samples is the number of color components plus 1 for the alpha component,
if present.)

The samples are ordered and packed as they are for the image, colorimage, or alphaimage
operator. For example, the alpha component is last and, if necessary, extra bits fill up the last
character of every scanline. Note that the contents of string are valid only for the duration of one
call to one procedure because the same string is reused on each procedure call. The rangecheck
error is executed if string isn’t long enough for one scanline.

ERRORS rangecheck, stackunderflow, typecheck

SEE ALSO alphaimage, sizeimage

revealcursor

SYNOPSIS − revealcursor −

Redisplays the cursor that was hidden by a call to obscurecursor, assuming that the cursor hasn’t
already been revealed by mouse movement. If the cursor hasn’t been removed from the screen by
a call to obscurecursor, revealcursor has no effect.

ERRORS none

SEE ALSO obscurecursor

rightbuttondown

SYNOPSIS − rightbuttondown isdown

32

Returns true if the right mouse button is currently down; otherwise it returns false.

Note: To test whether the right mouse button is still down from a mouse-down event, use
rightstilldown instead of rightbuttondown ; rightbuttondown will return true even if the mouse
button has been released and pressed again since the original mouse-down event.

ERRORS none

SEE ALSO buttondown, currentmouse, rightstilldown , stilldown

rightstilldown

SYNOPSIS eventnum rightstilldown stilldown

Returns true if the right mouse button is still down from the mouse-down event specified by
eventnum; otherwise it returns false. eventnum should be the number stored in the data
component of the event record for an event of type Rmousedown.

ERRORS stackunderflow, typecheck

SEE ALSO buttondown, currentmouse, rightbuttondown , stilldown

screenlist

SYNOPSIS array context screenlist subarray

Fills the array with the window numbers of all windows in the screen list that are owned by the
PostScript context specified by context. It returns the subarray containing those window numbers,
in order from front to back. If array isn’t large enough to hold them all, this operator will return
the frontmost windows that fit in the array.

If context is 0, all windows in the screen list are returned.

EXAMPLE This example yields an array containing the window numbers of all windows in the screen

list that are owned by the current PostScript context:

33

currentcontext

countscreenlist % find out how many windows

array % create array to hold them

currentcontext screenlist % fill it in

ERRORS invalidaccess, invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO countscreenlist, countwindowlist, windowlist

screentobase

SYNOPSIS sx sy screentobase bx by

Converts (sx, sy) from the screen coordinate system to the current window’s base coordinate
system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, currenttobase, currenttoscreen, screentocurrent

screentocurrent

SYNOPSIS sx sy screentocurrent cx cy

Converts (sx,sy) from the screen coordinate system to the current coordinate system of the current
window. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO basetocurrent, basetoscreen, currenttobase, currenttoscreen, screentobase

34

setactiveapp

SYNOPSIS context setactiveapp −

Warning: Don’t use this operator if you’re using the Application Kit.

Records the active application’s main (usually only) context. setactiveapp is used by the window
packages to assist with wait cursor operation.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentactiveapp

setalpha

SYNOPSIS coverage setalpha −

Sets the coverage parameter in the current window’s graphics state to coverage. coverage must
be a number between 0 and 1, with 0 corresponding to transparent, 1 corresponding to opaque, and
intermediate values corresponding to partial coverage. This establishes how much background
shows through for purposes of compositing.

ERRORS stackunderflow, typecheck, undefined

SEE ALSO composite, currentalpha

setautofill

SYNOPSIS flag window setautofill −

Applies only to nonretained windows; sets the autofill property of window to the value of flag. If
true, newly exposed areas of the window or areas created by placewindow will automatically be
filled with the window’s exposure color. If false, these areas will not change (typically they will
continue to contain the image of the last window in that area). If the current device is not a
window, this operator executes the invalidid error.

35

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO placewindow, setexposurecolor, setsendexposed

setcursor

SYNOPSIS x y mx my setcursor −

Sets the cursor image and hot spot. Rather than executing this operator directly, you’d normally
use a NXCursor object to define and manage cursors.

A cursor image is derived from a 16-pixel-square image in a window that’s generally placed
off-screen. The x and y operands specify the upper left corner of the image in the window’s current
coordinate system. The mx and my operands specify the relative offset (in units of the current
coordinate system) from (x, y) to the hot spot, the point in the cursor that coincides with the mouse
location. Assuming the current coordinate system is the base coordinate system, mx must be an
integer from 0 to 16, and my must be an integer from 0 to −16. After setcursor is executed, the
image in the window is no longer needed.

The cursor is placed on the screen using Sover compositing. The cursor’s opaque areas (alpha =
1) completely cover the background, while its transparent areas (alpha < 1) allow the background
to show through to a greater extent depending on the alpha values present in the cursor image.

Note: To make the off-screen window transparent, you can use compositerect with Clear.

The rangecheck error is executed if the image doesn’t lie entirely within the specified window or
if the point (mx, my) isn’t inside the image. If the current device isn’t a window, the invalidid error
is executed.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO hidecursor, obscurecursor, setmouse

setdefaultdepthlimit

SYNOPSIS depth setdefaultdepthlimit −

36

Warning: Don’t use this operator if you’re using the Application Kit.

Sets the current context’s default depth limit to depth. The Window Server assigns each new
context a default depth limit equal to the maximum depth supported by the system. When a new
window is created, its depth limit is set to its context’s default depth limit.

These depths are defined in nextdict:

where spp is the number of samples per pixel; bps is the number of bits per sample; and bpp is the
number of bits per pixel, also known as the window’s depth. (The samples-per-pixel value
excludes the alpha sample, if present.) planar and interleaved refer to how the sample data is
configured. If a separate data channel is used for each sample, the configuration is planar. If data
for all samples is stored in a single data channel, the configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar configurations
(4 for NSTwoBitGrayDepth and 16 for NSEightBitGrayDepth). Interleaved configurations
already account for an alpha sample whether or not it’s present; thus, the number of bits per pixel
for NSTwelveBitRGBDepth and NSTwentyFourBitRGBDepth depths remains unchanged.

The constant NSDefaultDepth is also available. If depth is NSDefaultDepth, the context’s default
depth limit is set to the Window Server’s maximum visible depth, which is determined by which
screens are active.

The rangecheck error is executed if depth is invalid.

ERRORS rangecheck, stackunderflow, typecheck

SEE ALSO currentdefaultdepthlimit , setwindowdepthlimit, currentwindowdepthlimit ,
currentwindowdepth

Depth Meaning

NSTwoBitGrayDepth 1 spp, 2bps, 2bpp, planar

NSEightBitGrayDepth 1 spp, 8bps, 8bpp, planar

NSTwelveBitRGBDepth 3 spp, 4bps, 16bpp, interleaved

NSTwentyFourBitRGBDepth 3 spp, 8bps, 32bpp, interleaved

37

seteventmask

SYNOPSIS mask window seteventmask −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
setEventMask: method instead.

Sets the Server-level event mask for the specified window to mask. For windows created by the
window packages, this mask may allow additional event types beyond those requested by the
application. The following operand names are defined for mask:

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currenteventmask

Mask Operand Event Type Allowed

Lmousedownmask Mouse-down, left or only mouse button

Lmouseupmask Mouse-up, left or only mouse button

Rmousedownmask Mouse-down, right mouse button

Rmouseupmask Mouse-up, right mouse button

Mousemovedmask Mouse-moved

Lmousedraggedmask Mouse-dragged, left or only mouse button

Rmousedraggedmask Mouse-dragged, right mouse button

Mouseenteredmask Mouse-entered

Mouseexitedmask Mouse-exited

Keydownmask Key-down

Keyupmask Key-up

Flagschangedmask Flags-changed

Kitdefinedmask Kit-defined

Sysdefinedmask System-defined

Appdefinedmask Application-defined

Allevents All event types

38

setexposurecolor

SYNOPSIS − setexposurecolor −

Applies to nonretained windows only; sets the exposure color to the color specified by the current
color parameter in the current graphics state. The exposure color (white by default) determines
the color of newly exposed areas of the window and of new areas created by placewindow. The
alpha value of these areas is always 1 (opaque). If the current device is not a window, this operator
executes the invalidid error.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO placewindow, setautofill, setsendexposed

setflushexposures

SYNOPSIS flag setflushexposures −

Warning: Don’t use this operator if you’re using the Application Kit.

Sets whether window-exposed and screen-changed subevents are flushed to clients. If flag is false,
no window-exposed or screen-changed events are flushed to the client until setflushexposures is
executed with flag equal to true. By default, window-exposed and screen-changed events are
flushed to clients.

ERRORS invalidid , stackunderflow, typecheck

setframebuffertransfer

SYNOPSIS redproc greenproc blueproc grayproc fbnum setframebuffertransfer −

Warning: This operator should only be used for the development of screen-calibration products.

39

Sets the framebuffer transfer functions in effect for the framebuffer indexed by fbnum. fbnum
ranges from 0 to countframebuffers–1. The framebuffer transfer describes the relationship
between the framebuffer values of the display, and the voltage produced to drive the monitor.

The initial four operands define the transfer procedures: Monochrome devices use grayproc (but
see the Note below), color devices use the others. The procedures must be allocated in shared
virtual memory. In addition, the Window Server assumes that the framebuffer values are directly
proportional to screen brightness. This is important for the accuracy of dithering, compositing,
and similar calculations.

The default transfer for NeXT Color Displays is

{ 1 2.2 div exp } bind dup dup {}

Note: setframebuffertransfer is unsupported on the current generation of NeXT monochrome
displays.

It’s possible to make framebuffer transfer functions persist beyond the lifetime of the Window
Server by storing a property in the NetInfo screens database. In the local NetInfo domain,
/localconfig/screens holds the configuration information for the screens known to the Window
Server (MegaPixel, NeXTdimension, and so on). These specify the layout and activation state of
the screen. The NetInfo defaultTransfer property can contain a string of PostScript code suitable
for execution by the setframebuffertransfer operator (without the fbnum parameter). For example,
the following represents the NetInfo configuration for a NeXTdimension screen with a default
gamma of 2.0:

localhost:1# niutil -read . /localconfig/screens/NeXTdimension

name: NeXTdimension

slot: 2

unit: 0

defaultTransfer: {1 2.0 div exp } dup dup dup

bounds: 0 1120 0 832

active: 1

_writers: *

The defaultTransfer property is used to configure the screen each time the Window Server starts
up. This allows monitor calibration products to save their settings so the next time the Window
Server starts up, the new values will be used. Note that in some cases, the NetInfo configuration
state for a monitor will not have active equal to 1, although the monitor is being used by the
Window Server. If there are no active screens (screens that are explicitly marked as being active),
the Window Server uses a suitable default, however, the other NetInfo properties for that screen
are ignored. Thus, you must be sure that the screen for which you are adding a defaultTransfer
value has active set to 1.

40

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setframebuffertransfer, countframebuffers, framebuffer

setinstance

SYNOPSIS flag setinstance −

Sets the instance-drawing mode in the current graphics state on (if flag is true) or off (if flag is
false).

ERRORS stackunderflow, typecheck

SEE ALSO hideinstance, newinstance

setmouse

SYNOPSIS x y setmouse −

Moves the mouse location (and, correspondingly, the cursor) to (x, y), given in the current
coordinate system. If the current device isn’t a window, the invalidid error is executed.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO adjustcursor, basetocurrent, currentmouse, screentocurrent

setowner

SYNOPSIS context window setowner −

Sets the owning PostScript context of window to context. The window is terminated automatically
when context is terminated.

41

e

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentowner, termwindow, window

setsendexposed

SYNOPSIS flag window setsendexposed −

Warning: Don’t use this operator if you’re using the Application Kit.

Controls whether the Window Server generates a window-exposed subevent (of the kit-defined
event) for window under the following circumstances:

• Nonretained window: When an area of the window is exposed, or a new area is created by
placewindow

• Retained or buffered window: When an area of the window that had instance drawing in it is
exposed

By default, window-exposed subevents are generated under these circumstances. In any case, th
window-exposed subevent isn’t flushed to the application until the Window Server receives
another event.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO setflushexposures, placewindow, setautofill, setexposurecolor

setshowpageprocedure

SYNOPSIS proc window setshowpageprocedure −

Warning: Don’t use this operator if you’re using the Application Kit.

Sets the PostScript procedure that’s executed, for the specified window, when the showpage
procedure is executed. proc must be allocated in shared virtual memory.

42

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentshowpageprocedure

settrackingrect

SYNOPSIS x y width height leftbool rightbool insidebool userdata trectnum gstate
 settrackingrect −

SYNOPSIS or

SYNOPSIS x y width height optionarray trectnum gstate settrackingrect −

Important: The settrackingrect operator boasts two form, distinguished by the number and
contents of the operands that are passed. The operator itself looks at its operands to
determine how to proceed. The common portion of the two forms is described immediately
below. Attention is then paid to the features that set the forms apart.

Sets a tracking rectangle in the window referred to by gstate to the rectangle specified by x, y,
width, and height (in the coordinate system of that graphics state). If gstate is null , the window
referred to by the current graphics state is used. trectnum is an arbitrary integer that can be any
number except 0. It’s used to identify tracking rectangles; no two tracking rectangles can share
the same trectnum value. Any number of tracking rectangles may be set in a single window.

The tracking rectangle will remain in effect until cleartrackingrect is called, or until another
tracking rectangle with the same trectnum is set.

43

Form 1
SYNOPSIS x y width height leftbool rightbool insidebool userdata trectnum gstate

settrackingrect −

In this form, the application receives mouse-exited and mouse-entered events as the cursor leaves
and reenters the visible portion of the tracking rectangle. In the event record for a mouse-exited
or mouse-entered event, the data component will contain trectnum along with the event number
of the last mouse-down event.

userdata is an arbitrary integer that you assign to the tracking rectangle. Since several tracking
rectangles can share the same userdata value, you can use userdata to identify an object in your
application that will be notified when a mouse-entered or mouse-exited event occurs in any of the
tracking rectangles.

You can specify that mouse-entered and mouse-exited events be generated only if certain mouse
buttons are down. If leftbool is true, the events will be generated only when the left mouse button
is down; likewise for rightbool and the right mouse button. If both leftbool and rightbool are true,
the events will be generated only if both mouse buttons are down. If both leftbool and rightbool
are false, the position of the mouse buttons isn’t taken into account in generating mouse-entered
and mouse-exited events.

settrackingrect causes the Window Server to repeatedly compare the current cursor position to
the previous one to see whether the cursor has moved from inside the tracking rectangle to outside
it or vice versa. insidebool tells settrackingrect whether to consider the initial cursor position to
be inside or outside the tracking rectangle:

• If insidebool is true and the cursor is initially outside the tracking rectangle, a mouse-exited
event is generated.

• If insidebool is false and the cursor is initially inside the tracking rectangle, a mouse-entered
event is generated.

44

Form 2
SYNOPSIS x y width height optionarray trectnum gstate settrackingrect −

In this form, settrackingrect sets special event-gathering attributes of a rectangle (events are not
generated when the boundary is crossed).

optionarray contains key-value pairs that define the attributes that you’re interested in. An empty
option array is meaningless and will raise a rangecheck error. The following keys are currently
defined:

EXAMPLE This example turns pressure on and coalescing off (thereby switching the default

values):

0 0 10 10 [/Pressure true /Coalesce false] 1 null settrackingrect

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO cleartrackingrect

setwaitcursorenabled

SYNOPSIS bool context setwaitcursorenabled −

Allows applications to enable and disable wait cursor operation in the specified context. If context
is 0, setwaitcursorenabled sets the global wait cursor flag, which overrides all per-context
settings. If the global flag is set to false, the wait cursor is disabled for all contexts.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentwaitcursorenabled

Key Type Meaning

Pressure bool Treat non-zero pressure values as a mouse-down (false
by default)

Coalesce bool Coalesce mouse motion events (true by default)

45

setwindowdepthlimit

SYNOPSIS depth window setwindowdepthlimit −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
setDepthLimit: method instead.

Sets the depth limit of window to depth. These depths are defined in nextdict:

where spp is the number of samples per pixel; bps is the number of bits per sample; and bpp is the
number of bits per pixel, also know as the window’s depth. (The samples-per-pixel value excludes
the alpha sample, if present.) planar and interleaved refer to how the sample data is configured.
If a separate data channel is used for each sample, the configuration is planar. If data for all
samples is stored in a single data channel, the configuration is interleaved.

When an alpha sample is present, the number of bits per pixel doubles for planar configurations
(4 for NSTwoBitGrayDepth and 16 for NSEightBitGrayDepth). Interleaved configurations
already account for an alpha sample whether or not it’s present; thus, the number of bits per pixel
for NSTwelveBitRGBDepth and NSTwentyFourBitRGBDepth depths remains unchanged.

Another constant, NSDefaultDepth, is defined as the default depth limit in the Window Server’s
current context. If depth is NSDefaultDepth, then the window’s depth limit is set to the context’s
default depth limit. If the resulting depth is lower than the window’s current depth, the window’s
data is dithered down to this depth, which may result in the loss of graphic information.

The rangecheck error is executed if depth is invalid. The invalidid error is executed if window
doesn’t exist.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowdepthlimit , setdefaultdepthlimit, currentdefaultdepthlimit ,
currentwindowdepth

Depth Meaning

NSTwoBitGrayDepth 1 spp, 2bps, 2bpp, planar

NSEightBitGrayDepth 1 spp, 8bps, 8bpp, planar

NSTwelveBitRGBDepth 3 spp, 4bps, 16bpp, interleaved

NSTwentyFourBitRGBDepth 3 spp, 8bps, 32bpp, interleaved

46

setwindowdict

SYNOPSIS dict window setwindowdict −

Warning: Don’t use this operator if you’re using the Application Kit.

Sets the dictionary for window to dict.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO currentwindowdict

setwindowlevel

SYNOPSIS level window setwindowlevel −

Sets the window’s tier to that specified by level. Window tiers constrain the action of the
orderwindow operator; see orderwindow for more information.

You rarely use this operator. To make a panel float above other windows, use the Panel class’s
setFloatingPanel: method.

Attempting to change the level of workspaceWindow executes the invalidaccess error.
(workspaceWindow is a PostScript name whose value is the window number of the workspace
window.)

ERRORS invalidaccess, invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO currentwindowlevel, orderwindow

setwindowtype

SYNOPSIS type window setwindowtype −

47

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s
setBackingType: method instead.

Sets the window’s buffering type to that specified. Currently, the only allowable type conversions
are from Buffered to Retained and from Retained to Buffered. All other possibilities execute the
limitcheck error.

ERRORS invalidaccess, invalidid , limitcheck, stackunderflow, typecheck

SEE ALSO window

setwriteblock

SYNOPSIS bool setwriteblock −

Sets how the Window Server responds when its output buffer to a client application fills. If bool
is true, the Server defers sending data (event records, error messages, and so on) to that application
until there’s once again room in the output buffer. In this way, no output data is lost—this is the
Server’s default behavior. If bool is false, the Server ignores the state of the output buffer: If the
buffer fills and there’s more data to be sent, the new data is lost. setwriteblock operates on the
current context.

Most programmers won’t need to use this operator. If you do use it, make sure that you disable
the Window Server’s default behavior only during the execution of your own PostScript code. If
it’s disabled while Application Kit code is being executed, errors will result.

ERRORS stackoverflow, typecheck

SEE ALSO currentwriteblock

showcursor

SYNOPSIS − showcursor −

48

Restores the cursor to the screen if it’s been hidden with hidecursor, unless an outer
nested hidecursor is still in effect (because it hasn’t yet been balanced by a showcursor). For
example:

% cursor is showing initially

. . .

hidecursor % hides the cursor

. . .

hidecursor % cursor stays hidden

. . .

showcursor % cursor still hidden due to first hidecursor

. . .

showcursor % displays the cursor

ERRORS none

SEE ALSO hidecursor

showpage

SYNOPSIS − showpage −

Warning: This standard operator is different in the OPENSTEP implementation of the Display
PostScript system.

This has no effect if the current device is a window; otherwise, it functions as documented by
Adobe.

ERRORS none

SEE ALSO copypage, erasepage

sizeimage

SYNOPSIS x y width height matrix sizeimage pixelswide pixelshigh bits/sample matrix
multiproc ncolors

49

Returns various parameters required by the readimage operator when reading the image
contained in the rectangle given by x, y, width, and height in the current window. (See readimage
for more information.)

pixelswide and pixelshigh are the width and height of the image in pixels. The operand matrix is
filled with the transformation matrix from user space to the image coordinate system and pushed
back on the operand stack.

The other results of this operator describe the window device and are dependent on the window’s
depth. Each pixel has ncolors color components plus one alpha component; the value of each
component is described by bits/sample bits. If multiproc is true, readimage will need multiple
procedures to read the values of the image’s pixels. Here are the values that sizeimage returns for
windows of various depths:

ERRORS stackunderflow, typecheck

SEE ALSO alphaimage, readimage

stilldown

SYNOPSIS eventnum stilldown stilldown

Returns true if the left or only mouse button is still down from the mouse-down event specified by
eventnum; otherwise it returns false. eventnum should be the number stored in the data
component of the event record for an event of type Lmousedown.

ERRORS stackunderflow, typecheck

SEE ALSO buttondown, currentmouse, rightbuttondown , rightstilldown

Window Depth ncolors bits/sample multiproc

NSTwoBitGrayDepth 1 2 true

NSEightBitGrayDepth 1 8 true

NSTwelveBitRGBDepth 3 4 false

NSTwentyFourBitRGBDepth 3 8 false

50

termwindow

SYNOPSIS window termwindow −

Warning: Don’t use this operator if you’re using the Application Kit. Use Window’s close
method instead.

Marks window for destruction. If the window is in the screen list, it’s removed from the screen
list and the screen. The given window number will no longer be valid; any attempt to use it will
execute the invalidid error. The window will actually be destroyed and its storage reclaimed only
after the last reference to it from a graphics state is removed. This can be done by resetting the
device in the graphics state to another window or to the null device.

Note: After you use the termwindow operator, if the terminated window had been the current
window, you should use the nulldevice operator to remove references to it.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO window, windowdevice, windowdeviceround

window

SYNOPSIS x y width height type window window

Warning: Don’t use this operator if you’re using the Application Kit. Create a Window object
instead.

Creates a window that has a lower left corner of (x, y) and the indicated width and height. x, y,
width, and height are given in the screen coordinate system. No portion of a window can have an
x or y coordinate with an absolute value greater than 16000; width and height must be in the range
from 0 to 10000. Exceeding these limits executes the rangecheck error. The four operands can
be integer or real numbers; however, they are converted to integers in the Window Server by
rounding toward 0. This operator returns the new window’s window number, a nonzero integer
that’s used to refer to the window.

type specifies the window’s buffering type as Buffered, Retained, or Nonretained.

The new window won’t be in the screen list; you can put it there with the orderwindow operator.
Windows that aren’t in the screen list don’t appear on the screen and don’t receive user events.

51

The window operator also does the following:

• Sets the origin of the window’s base coordinate system to the lower left corner of the window

• Sets the window’s clipping path to the outer edge of the window

• Fills the window with opaque white and sets the window’s exposure color to white

Note: This operator does not make the new window the current window; to do that, use
windowdeviceround or windowdevice.

ERRORS invalidid , rangecheck, stackunderflow, typecheck

SEE ALSO setexposurecolor, termwindow, windowdeviceround

windowdevice

SYNOPSIS window windowdevice −

Sets the current device of the current graphics state to the given window device. It also sets the
origin of the window’s default matrix to the lower left corner of the window. One unit in the user
coordinate system is made equal to 1/72 of an inch. The clipping path is reset to a rectangle
surrounding the window. Other elements of the graphics state remain unchanged. This matrix
becomes the default matrix for the window: initmatrix will reestablish this matrix.

windowdevice is rarely used in OPENSTEP since the coordinate system it establishes isn’t
aligned with the pixels on the screen. Use the related operator windowdeviceround to create a
coordinate system that is aligned.

Don’t use this operator lightly, as it creates a new matrix and clipping path. It’s significantly more
expensive than a setgstate operator.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO windowdeviceround

52

windowdeviceround

SYNOPSIS window windowdeviceround −

Sets the current device of the current graphics state to the given window device. It also sets the
origin of the window’s default matrix to the lower left corner of the window. One unit in the user
coordinate system is made equal to the width of one pixel. The clipping path is reset to a rectangle
surrounding the window. Other elements of the graphics state remain unchanged. This matrix
becomes the default matrix for the window: initmatrix will reestablish this matrix.

Don’t use this operator blithely, as it creates a new matrix and clipping path. It’s significantly more
expensive than a setgstate operator.

ERRORS invalidid , stackunderflow, typecheck

SEE ALSO windowdevice

windowlist

SYNOPSIS array context windowlist subarray

Fills the array with the window numbers of all windows that are owned by the PostScript context
specified by context. It returns the subarray containing those window numbers, in order from front
to back. If array isn’t large enough to hold them all, this operator returns the frontmost windows
that fit in the array.

EXAMPLE This example yields an array containing the window numbers of all windows that are owned

by the current PostScript context:

currentcontext

countwindowlist % find out how many windows

array % create array to hold them

currentcontext windowlist % fill it in

ERRORS stackunderflow, typecheck

SEE ALSO countscreenlist, countwindowlist, screenlist

53

54

1

 Classes: NSChangeSpelling

NSChangeSpelling

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

This protocol is implemented by objects in the responder chain that can correct a misspelled word. See the
description of the NSSpellChecker class for more information.

Instance Methods

changeSpelling:
– (void)changeSpelling:(id)sender

Implement this method to replace the selected word in the receiver with a corrected version from the
Spelling panel. This message is sent by the NSSpellChecker to the object whose text is being checked. To
get the corrected spelling, ask the sender for the string value of its selected cell (visible to the user as the
text field in the Spelling panel). This method should replace the selected portion of the text with the string
that it gets from the NSSpellChecker.

 Classes: NSColorPickingCustom

NSColorPickingCustom

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

Together with the NSColorPickingDefault protocol, NSColorPickingCustom provides a way to add color
pickers—custom user interfaces for color selection—to an application’s NSColorPanel. The
NSColorPickingDefault protocol provides basic behavior for a color picker. The NSColorPicker class
adopts the NSColorPickingDefault protocol. The easiest way to implement a color picker is to create a
subclass of NSColorPicker and implement the NSColorPickingCustom protocol for this new class.

Note: All of NSColorPickingCustom’s methods must be implemented by the custom color picker.

Here are the standard color picking modes and mode constants (defined in AppKit/NSColorPanel.h):

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

If your color picker includes submodes, you should define a unique value for each submode. As an example,
the slider picker has four values defined in the above list (NSGrayModeColorPanel,

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

1

r

NSRGBModeColorPanel, NSCMYKModeColorPanel, and NSHSBModeColorPanel)—one for each of its
submodes.

Method Types

Setting the Current Color
– setColor:

Getting the Mode
– currentMode
– supportsMode:

Getting the View
– provideNewView:

Instance Methods

currentMode
– (int)currentMode

Returns the color picker’s current mode (or submode, if applicable). The returned value should be unique
to your color picker. See this protocol description’s list of the unique values for the standard color pickers
used by the Application Kit.

See also: – supportsMode:

provideNewView:
– (NSView *)provideNewView:(BOOL)initialRequest

Returns the view containing the color picker’s user interface. This message is sent to the color picker
whenever the color panel attempts to display it. This may be when the panel is first presented, when the use
switches pickers, or when the picker is switched through API. The argument initialRequest is YES only
when this method is first invoked for your color picker. If initialRequest is YES, the method should perform
any initialization required (such as lazily loading a nib file, initializing the view, or performing any other
custom initialization required for your picker). The NSView returned by this method should be set to
automatically resize both its width and height.

2

 Classes: NSColorPickingCustom

setColor:
– (void)setColor:(NSColor *)color

Adjusts the color picker to make color the currently selected color. This method is invoked on the current
color picker each time NSColorPanel’s setColor: method is invoked. If color is actually different from the
color picker’s color (as it would be if, for example, the user dragged a color into NSColorPanel’s color
well), this method could be used to update the color picker’s color to reflect the change.

supportsMode:
– (BOOL)supportsMode:(int)mode

Returns whether or not the receiver supports the specified picking mode. This method is invoked when the
NSColorPanel’s is first initialized: It is used to attempt to restore the user’s previously selected mode. It is
also invoked by NSColorPanel’s setMode: method to find the color picker that supports a particular mode.
See this protocol description’s list of the unique mode values for the standard color pickers used by the
Application Kit.

See also: – currentMode

3

 Classes: NSColorPickingDefault

NSColorPickingDefault

Adopted By: NSColorPicker

Declared In: AppKit/NSColorPicking.h

Protocol Description

The NSColorPickingDefault protocol, together with the NSColorPickingCustom protocol, provides an
interface for adding color pickers—custom user interfaces for color selection—to an application’s
NSColorPanel. The NSColorPickingDefault protocol provides basic behavior for a color picker. The
NSColorPickingCustom protocol provides implementation-specific behavior.

The NSColorPicker class implements the NSColorPickingDefault protocol. The simplest way to implement
your own color picker is to create a subclass of NSColorPicker, implementing the NSColorPickingCustom
protocol for that subclass. However, it’s possible to create a subclass of another class, such as NSView, and
use it as a base upon which to add the methods of both NSColorPickingDefault and
NSColorPickingCustom.

Color Picker Bundles

A class that implements the NSColorPickingDefault and NSColorPickingCustom protocols needs to be
compiled and linked in an application’s object file. However, your application need not explicitly create an
instance of this class. Instead, your application’s file package should include a directory named
ColorPickers; within this directory you should place a directory MyPickerClass.bundle for each custom
color picker your application implements. This bundle should contain all resources required for your color
picker: nib files, TIFF files, and so on.

NSColorPanel will allocate and initialize an instance of each class for which a bundle is found in the
ColorPickers directory. The class name is assumed to be the bundle directory name minus the .bundle
extension.

Color Picker Buttons

NSColorPanel lets the user select a color picker from an NSMatrix of NSButtonCells. This protocol
includes methods for providing and manipulating the image that gets displayed on the button.

Color Mask and Color Modes

The color mask determines which color mode is enabled for NSColorPanel. This mask is set before you
initialize a new instance of NSColorPanel. NSColorPanelAllModesMask represents the logical OR of the

1

other color mask constants: It causes the NSColorPanel to display all standard color pickers. When
initializing a new instance of NSColorPanel, you can logically OR any combination of color mask constants
to restrict the available color modes. The predefined color mask constants are:

When an application’s instance of NSColorPanel is masked for more than one color mode, your program
can set its active mode by invoking the setMode: method with a color mode constant as its argument; the
user can set the mode by clicking buttons on the panel. Here are the standard color modes and mode
constants:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

Red-Green-Blue NSColorPanelRGBModeMask

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

Custom palette
NSColorPanelCustomPaletteMod
eMask

Custom color list
NSColorPanelColorListModeMas
k

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette
NSCustomPaletteModeColorPan
el

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

2

 Classes: NSColorPickingDefault

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

These constants are defined in AppKit/NSColorPanel.h.

Method Types

Initializing a Color Picker
– initWithPickerMask:colorPanel:

Setting the Mode
– setMode:

Using Color Lists
– attachColorList:
– detachColorList:

Adding Button Images
– insertNewButtonImage:in:
– provideNewButtonImage

Showing Opacity Controls
– alphaControlAddedOrRemoved:

Responding to a Resized View
– viewSizeChanged:

Instance Methods

alphaControlAddedOrRemoved:
– (void)alphaControlAddedOrRemoved:(id)sender

Sent by the color panel when the opacity controls have been hidden or displayed. Invoked automatically
when the NSColorPanel’s opacity slider is added or removed; you never invoke this method directly.

If the color picker has its own opacity controls, it should hide or display them, depending on whether the
sender’s showsAlpha method returns NO or YES.

3

attachColorList:
– (void)attachColorList: (NSColorList *)colorList

Tells the color picker to attach the given colorList, if it isn’t already displaying the list. You never invoke
this method; it’s invoked automatically by the NSColorPanel when its attachColorList: method is invoked.
Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented by a
custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything, since
NSColorPanel’s list mode manages NSColorLists.

See also: – detachColorList:

detachColorList:
– (void)detachColorList:(NSColorList *)colorList

Tells the color picker to detach the given colorList, unless the receiver isn’t displaying the list. You never
invoke this method; it’s invoked automatically by the NSColorPanel when its detachColorList: method is
invoked. Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented
by a custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything,
since NSColorPanel’s list mode manages NSColorLists.

See also: – attachColorList:

initWithPickerMask:colorPanel:
– (id)initWithPickerMask: (int)mask

colorPanel:(NSColorPanel *)owningColorPanel

Notifies the color picker of the color panel’s mask and initializes the color picker. This method is sent by
the NSColorPanel to all implementors of the color picking protocols when the application’s color panel is
first initialized. In order for your color picker to receive this message, it must have a bundle in your
application’s “ColorPickers” directory (described in “Color Picker Bundles” in the Protocol Description).

mask is determined by the argument to the NSColorPanel method setPickerMask:. If no mask has been set,
mask is NSColorPanelAllModesMask. If your color picker supports any additional modes, you should
invoke the setPickerMask: method when your application initializes to notify the NSColorPanel class. The
standard mask constants are:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

Red-Green-Blue NSColorPanelRGBModeMask

4

 Classes: NSColorPickingDefault

.

This method should examine the mask and determine whether it supports any of the modes included there
You may also check the value in mask to enable or disable any subpickers or optional controls implemented
by your color picker. Your color picker may also retain owningColorPanel in an instance variable for future
communication with the color panel.

This method is provided to initialize your color picker; however, much of a color picker’s initialization may
be done lazily through the NSColorPickingCustom protocol’s provideNewView: method. If your color
picker responds to any of the modes represented in mask, it should perform its initialization and return self.
Color pickers that do so have their buttons inserted in the color panel and continue to receive messages from
the panel as the user manipulates it. If the color picker doesn’t respond to any of the modes represented in
mask, it should do nothing and return nil .

See also: + setPickerMask: (NSColorPanel class)

insertNewButtonImage:in:
– (void)insertNewButtonImage:(NSImage *)newButtonImage

in: (NSButtonCell *)buttonCell

Sets newButtonImage as buttonCell’s image. buttonCell is the NSButtonCell object that lets the user choose
the picker from the color panel—the color picker’s representation in the NSColorPanel’s picker NSMatrix.
This method should perform application-specific manipulation of the image before it’s inserted and
displayed by the button cell.

See also: – provideNewButtonImage

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

Custom palette NSColorPanelCustomPaletteModeMask

Custom color list NSColorPanelColorListModeMask

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

Mode Color Mask Constant

5

l

provideNewButtonImage
– (NSImage *)provideNewButtonImage

Returns the image for the mode button that the user uses to select this picker in the color panel, that is, the
color picker’s representation in the NSColorPanel’s picker NSMatrix. (This is the same image that the color
panel uses as an argument when sending the insertNewButtonImage:in: message.)

setMode:
– (void)setMode:(int)mode

Sets the color picker’s mode. This method is invoked by NSColorPanel’s setMode: method to ensure that
the color picker reflects the current mode. For example, invoke this method during color picker initialization
to ensure that all color pickers are restored to the mode the user left them in the last time an NSColorPane
was used.

Most color pickers have only one mode, and thus don’t need to do any work in this method. An example of
a color picker that uses this method is the slider picker, which can choose from one of several submodes
depending on the value of mode. The available modes are:

viewSizeChanged:
– (void)viewSizeChanged:(id)sender

Tells the color picker when the NSColorPanel’s view size changes in a way that might affect the color
picker. sender is the NSColorPanel that contains the color picker. Use this method to perform special
preparation when resizing the color picker’s view. Since this method is invoked only as appropriate, it’s

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

6

 Classes: NSColorPickingDefault

better to implement this method than to override the method superviewSizeChanged: for the NSView in
which the color picker’s user interface is contained.

See also: – provideNewView: (NSColorPickingCustom protocol)

7

 Classes: NSComboBoxCellDataSource

s

ta,

NSComboBoxCellDataSource
(Informal Protocol)

Category Of: NSObject

Declared In: AppKit/NSComboBoxCell.h

Category Description

The NSComboBoxCellDataSource category declares the methods that an NSComboBoxCell uses to acces
the contents of its data source object. The combo box cell determines how many items to display by sending
a numberOfItemsInComboBoxCell: message, and accesses individual values with the comboBoxCell:
objectValueForItemAtIndex: method. Incremental searches—performed when a user types into the
combo box’s text field while the pop-up list is displayed—are performed by sending comboBoxCell:
indexOfItemWithStringValue: messages to the combo box cell’s data source.

The NSComboBoxCell treats objects provided by its data source as values to be displayed in the combo
box’s pop-up list. If these objects aren’t of common value classes—such as NSString, NSNumber, and so
on—you’ll need to create a custom NSFormatter to display them. See the NSFormatter class specification
for more information.

When an NSComboBoxCellDataSource is asked to supply a data item, the NSComboBoxCell that sends
the request is provided as a parameter. This allows a single data source object to manage several sets of da
choosing the appropriate set based on the identify of the NSComboBoxCell that sends the message.

Instance Methods

comboBoxCell:indexOfItemWithStringValue:
– (unsigned int)comboBoxCell:(NSComboBoxCell *)aComboBoxCell

indexOfItemWithStringValue: (NSString *)aString

An NSComboBoxCell uses this method to perform incremental—or “smart”—searched when the user
types into the text field with the pop-up list displayed. Your implementation of this method should return
the index for the item which matches aString, or NSNotFound if no item matches. This method is optional;
if you don’t provide an implementation for this method, no searches occur.

1

comboBoxCell:objectValueForItemAtIndex:
– (id)comboBoxCell:(NSComboBoxCell *)aComboBoxCell objectValueForItemAtIndex: (int)index

Implement this method to return the object that corresponds to the item at index in aComboBoxCell. Your
data source must implement this method.

numberOfItemsInComboBoxCell:
– (int)numberOfItemsInComboBoxCell:(NSComboBoxCell *)aComboBoxCell

Implement this method to return the number of items managed for aComboBoxCell by your data source
object. An NSComboBoxCell uses this method to determine how many items it should display in its pop-up
list. Your data source must implement this method.

2

 Classes: NSComboBoxDataSource

t
g

NSComboBoxDataSource
(Informal Protocol)

Category Of: NSObject

Declared In: AppKit/NSComboBox.h

Category Description

The NSComboBoxDataSource category declares the methods that an NSComboBox uses to access the
contents of its data source object. The combo box determines how many items to display by sending a
numberOfItemsInComboBox: message, and accesses individual values with the comboBox:
objectValueForItemAtIndex: method. Incremental searches—performed when a user types into the
combo box’s text field while the pop-up list is displayed—are performed by sending comboBox:
indexOfItemWithStringValue: messages to the combo box’s data source.

The NSComboBox treats objects provided by its data source as values to be displayed in the combo box’s
pop-up list. If these objects aren’t of common value classes—such as NSString, NSNumber, and so on—
you’ll need to create a custom NSFormatter to display them. See the NSFormatter class specification for
more information.

When an NSComboBoxDataSource is asked to supply a data item, the NSComboBox that sends the reques
is provided as a parameter. This allows a single data source object to manage several sets of data, choosin
the appropriate set based on the identify of the NSComboBox that sends the message.

Instance Methods

comboBox:indexOfItemWithStringValue:
– (unsigned int)comboBox:(NSComboBox *)aComboBox indexOfItemWithStringValue:

(NSString *)aString

An NSComboBox uses this method to perform incremental—or “smart”—searched when the user types
into the text field with the pop-up list displayed. Your implementation of this method should return the index
for the item which matches aString, or NSNotFound if no item matches. This method is optional; if you
don’t provide an implementation for this method, no searches occur.

1

comboBox:objectValueForItemAtIndex:
– (id)comboBox:(NSComboBox *)aComboBox objectValueForItemAtIndex: (int)index

Implement this method to return the object that corresponds to the item at index in aComboBox. Your data
source must implement this method.

numberOfItemsInComboBox:
– (int)numberOfItemsInComboBox:(NSComboBox *)aComboBox

Implement this method to return the number of items managed for aComboBox by your data source object.
An NSComboBox uses this method to determine how many items it should display in its pop-up list. Your
data source must implement this method.

2

1

 Classes: NSDPSContextNotification

NSDPSContextNotification

Adopted By: no OpenStep classes

Declared In: AppKit/NSDPSContext.h

Protocol Description

The NSDPSContextNotification protocol supplies information about the execution status of a sequence of
PostScript commands previously sent to the Display PostScript server.

Instance Methods

contextFinishedExecuting:
– (void)contextFinishedExecuting:(NSDPSContext *)context

Notifies the receiver that the context has finished executing a batch of PostScript commands. See
notifyObjectWhenFinishedExecuting: (NSDPSContext).

 Classes: NSDraggingDestination

.

n.

s

,

s

e

NSDraggingDestination
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Description

The NSDraggingDestination informal protocol declares methods that the destination (or recipient) of a
dragged image must implement. The destination automatically receives NSDraggingDestination messages
as an image enters, moves around inside, and then exits or is released within the destination’s boundaries

In the text here and in the other dragging protocol descriptions, the term dragging session is the entire
process during which an image is selected, dragged, released, and absorbed or rejected by the destinatio
A dragging operation is the action that the destination takes in absorbing the image when it’s released. The
dragging source is the object that “owns” the image that’s being dragged. It’s specified as an argument to
the dragImage:at:offset:event:pasteboard:source:slideBack: message, sent to a window or view object,
that instigated the dragging session.

The Dragged Image

The image that’s dragged in an image-dragging session is simply an image that represents data that reside
on the pasteboard. Although a dragging destination can access the image (through the draggedImage
method described in the NSDraggingInfo protocol), its primary concern is with the pasteboard data that the
image represents—the dragging operation that a destination ultimately performs is on the pasteboard data
not on the image itself.

Valid Destinations

Dragging is a visual phenomenon. To be an image-dragging destination, an object must represent a portion
of screen real estate; thus, only window and view objects can be destinations. Furthermore, you must
register the pasteboard types that the object will accept by sending the object a registerForDraggedTypes:
message, defined in both NSWindow and NSView. During a dragging session, a candidate destination only
receives NSDraggingDestination messages if the destination is registered for a pasteboard type that matche
the type of the pasteboard data being dragged. See the NSPasteboard class specification for more
information about pasteboard types.

Although NSDraggingDestination is declared as an informal protocol, the NSWindow and NSView
subclasses that you create to adopt the protocol need only implement those methods that are pertinent. (Th
NSWindow and NSView classes provide private implementations for all of the methods.) Either a window

1

object or its delegate may implement these methods; however, the delegate’s implementation takes
precedence if there are implementations in both places.

The Sender of Destination Messages

Each of the NSDraggingDestination methods sports a single argument: sender, the object that invoked the
method. Within its implementations of the NSDraggingDestination methods, the destination can send
NSDraggingInfo protocol messages to sender to get more information on the current dragging session.

The Order of Destination Messages

The six NSDraggingDestination methods are invoked in a distinct order:

• As the image is dragged into the destination’s boundaries, the destination is sent a draggingEntered:
message

• While the image remains within the destination, a series of draggingUpdated: messages are sent.

• If the image is dragged out of the destination, draggingExited: is sent and the sequence of
NSDraggingDestination messages stops. If it re-enters, the sequence begins again (with a new
draggingEntered: message).

• When the image is released, it either slides back to its source (and breaks the sequence) or a
prepareForDragOperation: message is sent to the destination, depending on the value returned by the
most recent invocation of draggingEntered: or draggingUpdated:.

• If the prepareForDragOperation: message returned YES, a performDragOperation: message is sent.

• Finally, if performDragOperation: returned YES, concludeDragOperation: is sent.

Method Types

Before the image is released
– draggingEntered:
– draggingUpdated:
– draggingExited:

After the image is released
– prepareForDragOperation:
– performDragOperation:
– concludeDragOperation:

2

 Classes: NSDraggingDestination

t

Instance Methods

concludeDragOperation:
– (void)concludeDragOperation:(id <NSDraggingInfo>)sender

Invoked when the dragging operation is complete and the previous performDragOperation: returned
YES. The destination implements this method to perform any tidying up that it needs to do, such as updating
its visual representation now that it has incorporated the dragged data. This is the last message that’s sen
from sender to the destination during a dragging session.

draggingEntered:
– (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender

Invoked when a dragged image enters the destination. Specifically, this method is invoked when the mouse
pointer enters the destination’s bounds rectangle (if it’s a view object) or its frame rectangle (if it’s a window
object).

This method must return a value that indicates which dragging operation the destination will perform when
the image is released. In deciding which dragging operation to return, the method should evaluate the
overlap between both the dragging operations allowed by the source (accessible through the
draggingSourceOperationMask method) and the dragging operations and pasteboard data types that the
destination itself supports. The returned value should be exactly one of the following:

If none of the operations is appropriate, this method should return NSDragOperationNone (this is the
default response if the method isn’t implemented by the destination).

The code below is a simple example of a method that responds distinctly when one of two different types
of data is dragged into the destination view or window. If the dragged data is a color and the source object
permits copying, the return value indicates that the destination will permit copying of the color data on the
pasteboard. If the dragged data is an RTF file and the source object permits linking, the return value

Option Meaning

NSDragOperationCopy The data represented by the image will be copied.

NSDragOperationLink The data will be shared.

NSDragOperationGeneric The operation will be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

3

indicates that the destination will permit linking of the RTF file on the pasteboard. Otherwise the code
returns NSDragOperationNone, indicating that the destination will not permit any dragging operations with
the data on pasteboard.

- (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender

{

NSPasteboard *pboard;

NSDragOperation sourceDragMask;

sourceDragMask = [sender draggingSourceOperationMask];

pboard = [sender draggingPasteboard];

if ([[pboard types] indexOfObject:NSColorPboardType] != NSNotFound) {

if (sourceDragMask & NSDragOperationCopy) {

return NSDragOperationCopy;

}

}

if ([[pboard types] indexOfObject:NSRTFPboardType] != NSNotFound) {

if (sourceDragMask & NSDragOperationLink) {

return NSDragOperationLink;

}

}

return NSDragOperationNone;

}

See also: – draggingUpdated:, – draggingExited:, – prepareForDragOperation:

draggingExited:
– (void)draggingExited:(id <NSDraggingInfo>)sender

Invoked when the dragged image exits the destination’s bounds rectangle (in the case of a view object) or
its frame rectangle (in the case of a window object).

draggingUpdated:
– (unsigned int)draggingUpdated:(id <NSDraggingInfo>)sender

Invoked periodically as the image is held within the destination. The messages continue until the image is
either released or dragged out of the window or view. The return value should be one of the dragging
operation options listed under the draggingEntered: method. The default return value (if this method isn’t
implemented by the destination) is the value returned by the previous draggingEntered: message.

This method provides the destination with an opportunity to modify the dragging operation depending on
the position of the mouse pointer inside of the destination view or window object. For example, you may
have several graphics or areas of text contained within the same view and wish to tailor the dragging

4

 Classes: NSDraggingDestination

operation, or to ignore the drag event completely, depending upon which object is underneath the mouse
pointer at the time when the user releases the dragged image and the performDragOperation: method is
invoked.

You typically examine the contents of the pasteboard in the draggingEntered: method, where this
examination is performed only once, rather than in the draggingUpdated: method, which is invoked
multiple times.

Only one destination at a time receives a sequence of draggingUpdated: messages. If the mouse pointer is
within the bounds of two overlapping views that are both valid destinations, the uppermost view receives
these messages until the image is either released or dragged out.

See also: – draggingExited:, – prepareForDragOperation:

performDragOperation:
– (BOOL)performDragOperation: (id <NSDraggingInfo>)sender

Invoked after the released image has been removed from the screen and the previous
prepareForDragOperation: message has returned YES. The destination should implement this method to
do the real work of importing the pasteboard data represented by the image. If the destination accepts the
data, it returns YES, otherwise it returns NO. The default is to return NO.

See also: – concludeDragOperation:

prepareForDragOperation:
– (BOOL)prepareForDragOperation:(id <NSDraggingInfo>)sender

Invoked when the image is released, if the most recent draggingEntered: or draggingUpdated: message
returned an acceptable drag-operation value. Returns YES if the receiver agrees to perform the drag
operation and NO if not.

See also: – performDragOperation:

5

 Classes: NSDraggingInfo

NSDraggingInfo

Adopted By: no Rhapsody classes

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDraggingInfo protocol declares methods that supply information about a dragging session (see the
NSDraggingDestination protocol for definitions of dragging terms). NSDraggingInfo methods are designed
to be invoked from within a class’s implementation of NSDraggingDestination informal protocol methods.
The Application Kit automatically passes an object that conforms to the NSDraggingInfo protocol as the
argument to each of the methods defined by NSDraggingDestination. NSDraggingInfo messages should be
sent to this object; you never need to create a class that implements the NSDraggingInfo protocol.

Method Types

Dragging-session information
– draggingSource
– draggingSourceOperationMask
– draggingDestinationWindow
– draggingPasteboard
– draggingSequenceNumber
– draggingLocation

Image information
– draggedImage
– draggedImageLocation

Sliding the image
– slideDraggedImageTo:

1

Instance Methods

draggedImage
– (NSImage *)draggedImage

Returns the image being dragged. This image object visually represents the data put on the pasteboard
during the drag operation; however, it is the pasteboard data and not this image that are ultimately utilized
in the dragging operation.

See also: – draggedImageLocation

draggedImageLocation
– (NSPoint)draggedImageLocation

Returns the current location of the dragged image’s origin in the base coordinate system of the destination
object’s window. The image moves along with the mouse pointer (the position of which is given by
draggingLocation) but may be positioned at some offset.

See also: – draggedImage

draggingDestinationWindow
– (NSWindow *)draggingDestinationWindow

Returns the destination window for the dragging operation. Either this window is the destination itself, or
it contains the view object that is the destination.

draggingLocation
– (NSPoint)draggingLocation

Returns the current location of the mouse pointer in the base coordinate system of the destination object’s
window.

See also: – draggedImageLocation

draggingPasteboard
– (NSPasteboard *)draggingPasteboard

Returns the pasteboard object that holds the data being dragged. The dragging operation that is ultimately
performed utilizes this pasteboard data and not the image returned by the draggedImage method.

2

 Classes: NSDraggingInfo

.

draggingSequenceNumber
– (int)draggingSequenceNumber

Returns a number that uniquely identifies the dragging session.

draggingSource
– (id)draggingSource

Returns the source, or owner, of the dragged data or nil if the source isn’t in the same application as the
destination. The dragging source implements methods from the NSDraggingSource informal protocol.

draggingSourceOperationMask
– (unsigned int)draggingSourceOperationMask

Returns the dragging operation mask declared by the dragging source (through its
draggingSourceOperationMaskForLocal: method). If the source permits dragging operations, the
elements in the mask will be one or more of the following, combined using the C bitwise OR operator:

If the source does not permit any dragging operations, then method should return NSDragOperationNone

If the user is holding down a modifier key during the dragging session and the source doesn’t prohibit
modifier keys from affecting the drag operation (through its ignoreModifierKeysWhileDragging method),
then the operating system combines the dragging operation value that corresponds to the modifier key (see
the descriptions below) with the source’s mask using the C bitwise AND operator.

Option Meaning

NSDragOperationCopy The data represented by the image can be copied.

NSDragOperationLink The data can be shared.

NSDragOperationGeneric The operation can be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

3

On Mach the modifier keys are associated with the dragging operation options shown below,

while on Windows the modifier keys are associated with the following dragging operation options.

slideDraggedImageTo:
– (void)slideDraggedImageTo:(NSPoint)aPoint

Slides the image to aPoint, a specified location in the screen coordinate system. This method can be used
to snap the image down to a particular location. It should only be invoked from within the destination’s
implementation of prepareForDragOperation:—in other words, after the user has released the image but
before it’s removed from the screen.

Modifier Key Dragging Option

Control NSDragOperationLink

Alternate NSDragOperationCopy

Command NSDragOperationGeneric

Modifier Key Dragging Option

Control NSDragOperationCopy

Shift-Control NSDragOperationLink

Alternate NSDragOperationCopy

4

 Classes: NSDraggingSource

NSDraggingSource
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Description

The NSDraggingSource informal protocol declares methods that are implemented by the source object in
a dragging session (see the NSDraggingDestination protocol for definitions of dragging terms). The
dragging source is specified as an argument to the dragImage:at:offset:event:pasteboard:source:
slideBack: message, sent to a window or view object to initiate the dragging session.

Of the methods declared below, only draggingSourceOperationMaskForLocal: must be implemented.
The other methods are invoked only if the dragging source implements them. All four methods are invoked
automatically during a dragging session—you never send an NSDraggingSource message directly to an
object.

Method Types

Specifying dragging options
– draggingSourceOperationMaskForLocal:
– ignoreModifierKeysWhileDragging

Responding to dragging sessions
– draggedImage:beganAt:
– draggedImage:endedAt:deposited:

Instance Methods

draggedImage:beganAt:
– (void)draggedImage:(NSImage *)anImage beganAt:(NSPoint)aPoint

Invoked when anImage is displayed but before it starts following the mouse. aPoint is the origin of the
image in screen coordinates. This method provides the source object with an opportunity to respond to the
initiation of a dragging session. For example, you might choose to have the source give a visual indication
to the user that data is being dragged from the source.

See also: – convertScreenToBase: (NSWindow), – convertBaseToScreen: (NSWindow),
– convertPoint:fromView: (NSView), – convertPoint:toView: (NSView)

1

,

draggedImage:endedAt:deposited:
– (void)draggedImage:(NSImage *)anImage

endedAt:(NSPoint)aPoint
deposited:(BOOL)flag

Invoked after anImage has been released and the dragging destination has been given a chance to operate
on the data it represents. aPoint is the location of the image’s origin in the screen coordinate system when
it was released. A YES value for flag indicates that the destination accepted the dragged data, while a NO
value indicates that it was rejected.

This method provides the source object with an opportunity to respond to either a successful or a failed
dragging session. For example, if you are moving data from one location to another, you could use this
method to make the source data disappear from its previous location, if the dragging session is successful
or reset itself to its previous state, in the event of a failure.

See also: – convertScreenToBase: (NSWindow), – convertBaseToScreen: (NSWindow),
– convertPoint:fromView: (NSView), – convertPoint:toView: (NSView)

draggingSourceOperationMaskForLocal:
– (unsigned int)draggingSourceOperationMaskForLocal:(BOOL)flag

This is the only NSDraggingSource method that must be implemented by the source object. It should return
a mask, built by combining the applicable constants listed below using the C bitwise OR operator. You
should use this mask to indicate which types of dragging operations the source object will allow to be
performed on the dragged image’s data. A YES value for flag indicates that the candidate destination object
(the window or view over which the dragged image is currently poised) is in the same application as the
source, while a NO value indicates that the destination object is in a different application.

If the source does not permit any dragging operations, then it should return NSDragOperationNone.

Option Meaning

NSDragOperationCopy The data represented by the image can be copied.

NSDragOperationLink The data can be shared.

NSDragOperationGeneric The operation can be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

2

 Classes: NSDraggingSource

ignoreModifierKeysWhileDragging
– (BOOL)ignoreModifierKeysWhileDragging

Sets whether the use of the modifier keys should have no effect on the type of operation performed. If this
method is not implemented or returns NO, then the user can tailor the drag operation by holding down a
modifier key during the drag. The dragging option that corresponds to the modifier key is combined with
the source’s mask (as set with the draggingSourceOperationMaskForLocal: method) using the C bitwise
AND operator. See the description for the draggingSourceOperationMask method in the
NSDraggingInfo protocol specification for more information about dragging masks and modifier keys.

3

 Classes: NSIgnoreMisspelledWords

NSIgnoreMisspelledWords

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

Implement this protocol to have the Ignore button in the Spelling panel function properly. The Ignore button
allows the user to accept a word that the spelling checker believes is misspelled. In order for this action to
update the “ignored words” list for the document being checked, the NSIgnoreMisspelledWords protocol
must be implemented.

This protocol is necessary because a list of ignored words is useful only if it pertains to the entire document
being checked, but the spelling checker (NSSpellChecker object) does not check the entire document for
spelling at once. The spelling checker returns as soon as it finds a misspelled word. Thus, it checks only a
subset of the document at any one time. The user usually wants to check the entire document, so usually
several spelling checks are run in succession until no misspelled words are found. This protocol allows the
list of ignored words to be maintained per-document, even though the spelling checks are not run
per-document.

The NSIgnoreMisspelledWords protocol specifies a method, ignoreSpelling:, which should be
implemented like this:

- (void)ignoreSpelling:(id)sender

{

[[NSSpellChecker sharedSpellChecker] ignoreWord:[[sender selectedCell]

stringValue] inSpellDocumentWithTag:myDocumentTag];

}

The second argument to the NSSpellChecker method ignoreWord:inSpellDocumentWithTag: is a tag
that the NSSpellChecker can use to distinguish the documents being checked. (See the discussion of
“Matching a List of Ignored Words With the Document It Belongs To” in the description of the
NSSpellChecker class.) Once the NSSpellChecker has a way to distinguish the various documents, it can
append new ignored words to the appropriate list.

To make the ignored words feature useful, the application must store a document’s ignored words list with
the document. See the NSSpellChecker class description for more information.

1

Instance Methods

ignoreSpelling:
– (void)ignoreSpelling:(id)sender

Implement to allow an application to ignore misspelled words on a document-by-document basis. This
message is sent by the NSSpellChecker instance to the object whose text is being checked.

Implement this method by using the code shown in the protocol description.

2

 Classes: NSMenuItem

,

s

NSMenuItem

Adopted By: NSMenuItem

Conforms To: NSCoding,
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSMenuItem.h

Warning: The NSMenuItem protocol will be removed from the Application Kit in the Premier release of
Rhapsody. The NSMenuItem class will solely assume all associated functionality. This change
does not affect binary compatibility between different versions of projects, but might cause
failures in project builds. To adapt your projects to this change, alter all references to the protocol
(for example, “id <NSMenuItem>”) to references to the class (“NSMenuItem”).

Protocol Description

The NSMenuItem protocol declares methods that are used to manipulate command items in menus. The
NSMenuItem class adopts this protocol, implementing all methods the protocol declares, and provides the
basic functionality of command items. With some implementations of the OpenStep specification
(including OPENSTEP), you cannot replace the NSMenuItem class with a different class which conforms
to the NSMenuItem protocol. You may, however, subclass the NSMenuItem class if necessary.

The methods declared by the NSMenuItem protocol allow you to set the titles, actions, targets, tags, images
enabled states, and similar attributes of individual menu items, as well as to obtain the current values of
these attributes. As implemented for the NSMenuItem class, a menu item, whenever one of its attributes
changes, notifies the associated NSMenu via the itemChanged: method. The protocol also allows a
conforming object to set keyboard equivalents and (for Microsoft Windows) mnemonics for menu items.
See the sections below for more on this functionality.

See the NSMenu, NSMenuView, and NSMenuItemCell class specifications and the NSMenuValidation
protocol specification for more information on menus.

Keyboard Equivalents

An object conforming to the NSMenuItem protocol can be assigned a keyboard eqivalent, so that when the
user types a character the menu item’s action is sent. The keyboard eqivalent is defined in two parts. First
is the basic key equivalent, which must be a Unicode character that can be generated by a single key pres
without modifier keys (Shift excepted). It is also possible to use a sequence of Unicode characters so long

1

nt

as the user’s key mapping is able to generate the sequence with a single key press. The basic key equivale
is set using setKeyEquivalent: and returned by keyEquivalent. The second part defines the modifier keys
that must also be pressed. This is set using setKeyEquivalentModifierMask: and returned by
keyEquivalentModifierMask . The modifier mask by default includes NSCommandKeyMask, and may
also include the masks for the Shift, Alternate, or other modifier keys. Specifying keyboard equivalents in
two parts allows you to define a modified keyboard equivalent without having to know which character is
generated by the basic key plus the modifier. For example, you can define the keyboard equivalent
Command-Alt-f without having to know which character is generated by typing Alt-f.

Certain methods in the NSMenuItem protocol can override assigned keyboard equivalents with those the
user has specified in the defaults system. The setUsesUserKeyEquivalents: protocol method turns this
behavior on or off, and usesUserKeyEquivalents returns its status. To determine the user-defined key
equivalent for an NSMenuItem object, invoke the userKeyEquivalent instance method. If user-defined key
equivalents are active and an NSMenuItem object has a user-defined key equivalent, its keyEquivalent
method returns the user-defined key equivalent and not the one set using setKeyEquivalent:.

Mnemonics

On certain platforms, currently including Microsoft Windows, an object conforming to the NSMenuItem
protocol can also be assigned a mnemonic. Mnemonics can be assigned on other platforms as well,
however, they won’t have any effect. Mnemonics are represented by an underlined character in the title of
a menu item. The mnemonic can be any character that can be generated by a single key press without
modifier keys (Shift excepted). When the menu is active, the user can type the underlined character in the
menu item in order to activate that menu item. On Microsoft Windows a user activates the menu by pressing
the Alternate key. A particular mnemonic character should only be used once within the set of menu items
contained either in the same menu as the menu item or in the application’s main menu.

Radio-Style Grouping

By using a few methods of the NSMenuItem protocol, you can implement radio-style groupings of menu
commands. In other words, you can have a grouping of menu commands (usually segregated visually with
separator items) and only one command in the group can be selected; the selected item is marked by an
image, usually a radio-button image, but sometimes a checkmark. If the user selects another command in
the group, the previous command is unmarked and the selected command displays the image. As an
example of a radio-style grouping, a game could have three commands to indicate the level of play:
Beginner, Intermediate, and Advanced.

To implement this feature, first set the images you want to use for the possible command states: “on,” “off,”
and “mixed” (the last is useful for triple-state or indeterminate situations). To set the image, use the
commands setOnStateImage:, setOffStateImage:, and setMixedStateImage:. The default image for the
“on” state is a checkmark (NSMenuCheckmark) and for the “mixed” state the image is a dash
(NSMenuMixedState). The “off” state typically has no image. The radio-button image (which you must set
explicitly) is NSMenuRadio.

2

 Classes: NSMenuItem

In an action method that responds to all commands in the group use setState: to uncheck the menu item
that is currently marked:

[curItem setState:NSOffState];

Then mark the newly selected command:

[sender setState:NSOnState];

Method Types

Creating conforming NSMenuItem objects
– initWithTitle:action:keyEquivalent:

Enabling a menu item
– setEnabled:
– isEnabled

Setting the target and action
– setTarget:
– target
– setAction:
– action

Setting the title
– setTitle:
– title

Setting the tag
– setTag:
– tag

Setting the state
– setState:
– state

Setting the image
– setImage:
– image
– setOnStateImage:
– onStateImage
– setOffStateImage:
– offStateImage
– setMixedStateImage:
– mixedStateImage

3

.

Managing submenus
– setSubmenu:
– submenu
– hasSubmenu

Getting a separator item
+ separatorItem
– isSeparatorItem

Setting the owning menu
– setMenu:
– menu

Managing key equivalents
– setKeyEquivalent:
– keyEquivalent
– setKeyEquivalentModifierMask:
– keyEquivalentModifierMask

Managing mnemonics
– setMnemonicLocation:
– mnemonicLocation
– setTitleWithMnemonic:
– mnemonic

Managing user key equivalents
+ setUsesUserKeyEquivalents:
+ usesUserKeyEquivalents
– userKeyEquivalent

Representing an object
– setRepresentedObject:
– representedObject

Class Methods

separatorItem
+ (id <NSMenuItem>)separatorItem

Returns a menu item that is used to separate logical groups of menu commands. This menu item is disabled
The default separator item is a simple horizontal line.

See also: – isSeparatorItem, – setEnabled:

4

 Classes: NSMenuItem

setUsesUserKeyEquivalents:
+ (void)setUsesUserKeyEquivalents:(BOOL)flag

If flag is YES, menu items conform to user preferences for key equivalents; otherwise, the key equivalents
originally assigned to the menu items are used.

See also: + usesUserKeyEquivalents, – userKeyEquivalent

usesUserKeyEquivalents
+ (BOOL)usesUserKeyEquivalents

Returns YES if menu items conform to user preferences for key equivalents; otherwise, returns NO.

See also: + setUsesUserKeyEquivalents:, – userKeyEquivalent

Instance Methods

action
– (SEL)action

Returns the receiver’s action method.

See also: – target, – setAction:

hasSubmenu
– (BOOL)hasSubmenu

Returns YES if the receiver has a submenu, NO if it doesn’t.

See also: – setSubmenu:forItem:(NSMenu)

image
– (NSImage *)image

Returns the image displayed by the receiver, or nil if it displays no image.

See also: – setImage:

5

u

initWithTitle:action:keyEquivalent:
– (id)initWithTitle: (NSString *)itemName

action:(SEL)anAction
keyEquivalent:(NSString *)charCode

Returns an initialized instance of an object that conforms to the NSMenuItem protocol. The arguments
itemName and charCode must not be nil (if there is no title or key equivalent, specify an empty NSString).
The anAction argument must be a valid selector or NULL For instances of the NSMenItem class, the default
initial state is NSStateOff, the default on-state image is a checkmark, and the default mixed-state image is
a dash.

isEnabled
– (BOOL)isEnabled

Returns YES if the receiver is enabled, NO if not.

See also: – setEnabled:

isSeparatorItem
– (BOOL)isSeparatorItem

Returns whether the receiver is a separator item (that is, a menu item used to visually segregate related men
items).

See also: + separatorItem

keyEquivalent
– (NSString *)keyEquivalent

Returns the receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined. Use
keyEquivalentModifierMask to determine the modifier mask for the key equivalent.

See also: – userKeyEquivalent, – mnemonic, – setKeyEquivalent:

keyEquivalentModifierMask
– (unsigned int)keyEquivalentModifierMask

Returns the receiver’s keyboard equivalent modifier mask.

See also: – setKeyEquivalentModifierMask:

6

 Classes: NSMenuItem

menu
– (NSMenu *)menu

Returns the menu to which the receiver belongs, or nil if no menu has been set.

See also: – setMenu:

mixedStateImage
– (NSImage *)mixedStateImage

Returns the image used to depict a “mixed state.” A mixed state is useful for indicating “off” and “on”
attribute values in a group of selected objects, such as a selection of text containing bold and plain
(non-bolded) worlds.

See also: – setMixedStateImage:

mnemonic
– (NSString *)mnemonic

Returns the character in the menu item title that appears underlined for use as a mnemonic. If there is no
mnemonic character, returns an empty string.

See also: – setTitleWithMnemonic:

mnemonicLocation
– (unsigned int)mnemonicLocation

Returns the position of the underlined character in the menu item title used as a mnemonic. The position is
the zero based index of that character in the title string. If the receiver has no mnemonic character, returns
NSNotFound.

See also: – setMnemonicLocation:

offStateImage
– (NSImage *)offStateImage

Returns the image used to depict the receiver’s “off” state, or nil if the image has not been set.

See also: – setOffStateImage:

7

onStateImage
– (NSImage *)onStateImage

Returns the image used to depict the receiver’s “on” state, or nil if the image has not been set.

See also: – setOnStateImage:

representedObject
– (id)representedObject

Returns the object that the receiving menu item represents. For example, you might have a menu list the
names of views that are swapped into the same panel. The represented objects would be the appropriate
NSView objects. The user would then be able to swtich back and forth between the different views that are
displayed by selecting the various menu items.

See also: – tag, – setRepresentedObject:

setAction:
– (void)setAction:(SEL)aSelector

Sets the receiver’s action method to aSelector.

See also: – setTarget:, – action

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiver is enabled based on flag. If a menu item is disabled, it’s keyboard equivalent and
mnemonic are also disabled. See the NSMenuValidation informal protocol specification for cautions
regarding this method.

See also: – isEnabled

setImage:
– (void)setImage:(NSImage *)menuImage

Set’s the receiver’s image to menuImage. If menuImage is nil , the current image (if any) is removed. This
image is not affected by changes in menu-item state.

See also: – image

8

 Classes: NSMenuItem

setKeyEquivalent:
– (void)setKeyEquivalent:(NSString *)aString

Sets the receiver’s unmodified key equivalent to aString. If you want to remove the key equivalent from a
menu item, pass an empty string (@””) for aString (never pass nil). Use setKeyEquivalentModifierMask:
to set the appropriate mask for the modifier keys for the key equivalent.

See also: – setMnemonicLocation:, – keyEquivalent

setKeyEquivalentModifierMask:
– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the receiver’s keyboard equivalent modifiers (indicating modifiers such as the Shift or Alternate keys)
to those in mask. mask is an integer bit field containing any of these modifier key masks, combined using
the C bitwise OR operator:

NSShiftKeyMask
NSAlternateKeyMask
NSCommandKeyMask

On Mach, you should always set NSCommandKeyMask in mask; on Microsoft Windows, this is not
required.

NSShiftKeyMask is relevant only for function keys; that is, for key events whose modifier flags include
NSFunctionKeyMask. For all other key events NSShiftKeyMask is ignored and characters typed while the
Shift key is pressed are interpreted as the shifted versions of those characters; for example,
Command-Shift-‘c’ is interpreted as Command-‘C’.

See the NSEvent class specification for more information about modifier mask values.

See also: – keyEquivalentModifierMask

setMenu:
– (void)setMenu:(NSMenu *)aMenu

Sets the receiver’s menu to aMenu. This method is invoked by the owning NSMenu when the receiver is
added or removed. You shouldn’t have to invoke this method in your own code, although it can be overriden
to provide specialized behavior.

See also: – menu

9

setMixedStateImage:
– (void)setMixedStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates a”mixed” state, that is, a state neither “on” or “off.” If
itemImage is nil , any current mixed-state image is removed.

See also: – mixedStateImage, – setOffStateImage:, – setOnStateImage:, – setState:

setMnemonicLocation:
– (void)setMnemonicLocation:(unsigned int)location

Sets the character of the menu item title at location that is to be underlined. location must be between 0 and
254. This character identifies the access key on Windows by which users can access the menu item.

See also: – mnemonicLocation

setOffStateImage:
– (void)setOffStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates an “off” state. If itemImage is nil , any current off-state image
is removed.

See also: – offStateImage, – setMixedStateImage:, – setOnStateImage:, – setState:

setOnStateImage:
– (void)setOnStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates an “on” state. If itemImage is nil , any current off-state image
is removed.

See also: – onStateImage, – setMixedStateImage:, – setOffStateImage:, – setState:

setRepresentedObject:
– (void)setRepresentedObject:(id)anObject

Sets the object represented by the receiver to anObject. By setting a represented object for a menu item you
make an association between the menu item and that object. The represented object functions as a more
specific form of tag that allows you to associate any object, not just an int , with the items in a menu.

10

 Classes: NSMenuItem

For example, an NSView object might be associated with a menu item—when the user chooses the menu
item, the represented object is fetched and displayed in a panel. Several menu items might control the
display of multiple views in the same panel.

See also: – setTag:, – representedObject

setState:
– (void)setState:(int)itemState

Sets the state of the receiver to itemState, which should be one of NSOffState, NSOnState, or
NSMixedState. The image associated with the new state is displayed to the left of the menu item.

See also: – state, – setMixedStateImage:, – setOffStateImage:, – setOnStateImage:

setSubmenu:
– (void)setSubmenu:(NSMenu *)aSubmenu

Sets the submenu of the receiver to aSubmenu. The default implementation of the NSMenuItem class raises
an exception if aSubmenu already has a supermenu.

See also: – submenu, – hasSubmenu

setTag:
– (void)setTag:(int)anInt

Sets the receiver’s tag to anInt.

See also: – setRepresentedObject:, – tag

setTarget:
– (void)setTarget:(id)anObject

Sets the receiver’s target to anObject.

See also: – setAction:, – target

11

setTitle:
– (void)setTitle:(NSString *)aString

Sets the receiver’s title to aString.

See also: – title

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)aString

Sets the title of a menu item with a character underlined to denote an access key (Windows only). Use an
ampersand character to mark the character (the one following the ampersand) to be underlined. For
example, the following message causes the ‘c’ in ‘Receive’ to be underlined:

[aMenuItem setTitleWithMnemonic:NSLocalizedString(@"Re&ceive")];

See also: – mnemonic, – setMnemonicLocation:

state
– (int)state

Returns the state of the receiver, which is NSOffState (the default), NSOnState, or NSMixedState.

See also: – setState:

submenu
– (NSMenu *)submenu

Returns the submenu associated with the receiving menu item, or nil if no submenu is associated with it. In
the implementation of the NSMenuItem class, if the receiver responds YES to hasSubmenu, the submenu
is returned.

See also: – hasSubmenu, – setSubmenu:

tag
– (int)tag

Returns the receiver’s tag.

See also: – representedObject, – setTag:

12

 Classes: NSMenuItem

target
– (id)target

Returns the receiver’s target.

See also: – action, – setTarget:

title
– (NSString *)title

Returns the receiver’s title.

See also: – setTitle:

userKeyEquivalent
– (NSString *)userKeyEquivalent

Returns the user-assigned key equivalent for the receiver.

See also: – keyEquivalent

13

 Classes: NSMenuValidation

.

NSMenuValidation
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSMenu.h

Protocol Description

This informal protocol allows your application to update the enabled or disabled status of an NSMenuItem.
It declares only one method, validateMenuItem:. By default, every time a user event occurs, NSMenu
automatically enables and disables each visible menu item based on criteria described in “Automatic
Updating of NSMenuItems,” below. Implement validateMenuItem: in cases where you want to override
NSMenu’s default enabling scheme.

NSMenuItems can be enabled or disabled in two ways: explicitly, by sending the setEnabled: message, or
automatically, as described below. Automatic updating can be turned on and off with NSMenu’s
setAutoenablesItems: message.

Automatic Updating of NSMenuItems

Whenever a user event occurs, the NSMenu object updates the status of every one of its visible menu items
To update the status of a menu item, an NSMenu tries to find the object that responds to the NSMenuItem’s
action message. It searches the following objects in the given order until it finds one that responds to the
action message (note that it doesn’t actually send the action message):

• The NSMenuItem’s target. If the target is non-nil , the search ends here whether the target responds or not.

• The key window’s responder chain, starting with its first responder.

• The key window itself.

• The key window’s delegate.

• The main window’s responder chain, starting with its first responder.

• The main window itself.

• The main window’s delegate.

• The NSApplication object.

• The NSApplication object’s delegate.

If none of these objects responds to the action message, the menu item is disabled. If NSMenu finds an
object that responds to the action message, it then checks to see if that object responds to the
validateMenuItem: method (the method declared in this informal protocol). If validateMenuItem: is not

1

implemented in that object, the menu item is enabled. If it is implemented, the return value of
validateMenuItem: indicates whether the menu item should be enabled or disabled.

Here is an example of using validateMenuItem: to override automatic enabling. If your application has a
Copy menu item that sends the copy: action message to the first responder, that menu item is automatically
enabled any time an object that responds to copy:, such as an NSText object, is the first responder of the
key or main window. If you create a class whose instances might become the first responder, and which
doesn’t support copying of everything it allows the user to select, you should implement
validateMenuItem: in that class. validateMenuItem: will then return NO if items that can’t be copied are
selected (or if no items are selected) and YES if all items in the selection can be copied. By implementing
validateMenuItem:, you can have the Copy menu item disabled even though the target object does
implement the copy: method. If a class never permits copying, then you simply omit an implemention of
copy: in that class, and the Copy menu item is disabled automatically whenever an instance of that class is
the first responder.

If you send a setEnabled: message to enable or disable a menu item when automatic updating is turned on
(with NSMenu’s setAutoEnablesItems:), other objects might undo what you have done after another user
event occurs. Hence you can never be sure that the menu item will remain the way you set it. If your
application must use setEnabled:, turn off the automatic enabling of menu items in order to get predictable
results.

Instance Methods

validateMenuItem:
– (BOOL)validateMenuItem:(NSMenuItem *)aMenuItem

Implemented to override the default action of enabling or disabling aMenuItem. The object implementing
this method must be the target of aMenuItem. It returns YES to enable the aMenuItem, NO to disable it.
You can determine which menu item aMenuItem is by querying it for its title, tag, or action.

The following example beeps and disables the menu item “Next Record” if the selected line in a table view
is the last one; conversely, it beeps and disables the menu item “Prior Record” if the selected row is the first
one in the table view. (countryKeys is an array of names appearing in the table view.)

2

 Classes: NSMenuValidation

- (BOOL)validateMenuItem:(NSMenuItem *)anItem

{

int row = [tableView selectedRow];

if ([[anItem title] isEqualToString:@"Next Record"] &&

(row == [countryKeys indexOfObject:[countryKeys lastObject]])) {

return NO;

}

if ([[anItem title] isEqualToString:@"Prior Record"] && row == 0) {

return NO;

}

return YES;

}

3

 Classes: NSNibAwaking

NSNibAwaking
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSNibLoading.h

Protocol Description

This informal protocol consists of a single method, awakeFromNib. Classes can implement this method to
perform final initialization of state after objects have been loaded from an Interface Builder archive.

Instance Methods

awakeFromNib
– (void)awakeFromNib

Implemented to prepare the receiver for service after it has been loaded from an Interface Builder archive,
or nib file. An awakeFromNib message is sent to each object loaded from the archive, but only if it can
respond to the message, and only after all the objects in the archive have been loaded and initialized. When
an object receives an awakeFromNib message, it’s guaranteed to have all its outlet instance variables set.

Note: This method is also sent during Interface Builder’s test mode to objects instantiated from loaded
palettes, which include executable code for the objects. It isn’t sent to objects defined solely by using
the Classes display of the nib file window in Interface Builder.

When an Interface Builder archive is loaded into an application, each custom object from the archive is first
initialized with an init message, or initWithFrame: if the object is a kind of NSView. It’s then more
specifically initialized with the properties that it was configured with using Interface Builder. This part of
the initialization process uses any setVariable: methods that are available (where variable is the name of an
instance variable whose value was set in Interface Builder). Finally, after all the objects are fully initialized,
each receives an awakeFromNib message.

The order in which objects are loaded from the archive is not guaranteed. Therefore, it’s possible for a
setVariable: message to be sent to an object before its companion objects have been unarchived. For this
reason, setVariable: methods should not send messages to other objects in the archive. However, messages
to other objects can safely be sent from within awakeFromNib—by which time it’s assured that all the
objects are unarchived and initialized (though not necessarily awakened, of course).

Typically, awakeFromNib is implemented for classes whose instances are used as the owners of a loaded
nib file (shown as “File’s Owner” in Interface Builder). Such a class has the express purpose of connecting
the loaded objects with objects in the application, and can thereafter be disposed of, or remain in the

1

capacity of a controller or coordinator for the loaded objects. For example, suppose that a nib file contains
two custom views that must be positioned relative to each other at run time. Trying to position them when
either one of the views is initialized (in initWithCoder: or a setVariable: method) might fail, since the
other views might not be unarchived and initialized yet. However, it can be done in the nib file owner’s
awakeFromNib method (firstView and secondView are outlets of the file’s owner):

- (void)awakeFromNib

{

NSRect viewFrame;

if ([[self superclass] instancesRespondToSelector:@selector(awakeFromNib)]) {

[super awakeFromNib];

}

viewFrame = [firstView frame];

viewFrame.origin.x += viewFrame.size.width;

[secondView setFrame:viewFrame];

return;

}

Note the testing of the superclass before invoking its implementation of awakeFromNib. The Application
Kit declares a prototype for this method, but doesn’t implement it. Because there’s no default
implementation of awakeFromNib, be sure to invoke it only when the object does in fact respond.

See also: + loadNibNamed:owner: (NSBundle Additions),
– awakeAfterUsingCoder (NSObject class of the Foundation Kit),
– initWithCoder: (NSCoding protocol of the Foundation Kit),
+ initialize (NSObject class of the Foundation Kit)

2

 Classes: NSServicesRequests

ted

s
t

NSServicesRequests
 (informal protocol)

Category Of: NSObject

Declared In: AppKit/NSApplication.h

Protocol Description

This informal protocol consists of two methods, writeSelectionToPasteboard:types: and
readSelectionFromPasteboard:. The first is implemented to provide data to a remote service, and the
second to receive any data the remote service might send back. Both respond to messages that are genera
when the user chooses a command from the Services menu.

Instance Methods

readSelectionFromPasteboard:
- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Implemented to replace the current selection (that is, the text or objects that are currently selected) with data
read from the Pasteboard object pboard. The data would have been placed in the pasteboard by another
application in response to a remote message from the Services menu. A readSelectionFromPasteboard:
message is sent to the same object that previously received a writeSelectionToPasteboard:types:
message.

There’s no default readSelectionFromPasteboard: method. The Application Kit declares a prototype for
this method, but doesn’t implement it.

writeSelectionToPasteboard:types:
- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types

Implemented to write the current selection to the Pasteboard object pboard. The selection should be written
as one or more of the data types listed in types. After writing the data, this method should return YES. If for
any reason it can’t write the data, it should return NO.

A writeSelectionToPasteboard:types: message is sent to the first responder when the user chooses a
command from the Services menu, but only if the receiver didn’t return nil to a previous
validRequestorForSendType:returnType: message.

After this method writes the data to the pasteboard, a remote message is sent to the application that provide
the service the user requested. If the service provider supplies return data to replace the selection, the firs
responder will then receive a readSelectionFromPasteboard: message.

1

There’s no default writeSelectionToPasteboard:types: method. The Application Kit declares a prototype
for this method, but doesn’t implement it.

See also: – validRequestorForSendType:returnType: (NSResponder class)

2

 Classes: NSTableDataSource

s

NSTableDataSource
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSTableView.h

Category Description

The NSTableDataSource category declares the methods that an NSTableView uses to access the content
of its data source object. It determines how many rows to display by sending a
numberOfRowsInTableView: message, and accesses individual values with the tableView:
objectValueForTableColumn:row: and tableView:setObjectValue:forTableColumn:row: methods. A
data source must implement the first two methods to work with an NSTableView, but if it doesn’t implement
the third the NSTableView simply provides read-only access to its contents.

The NSTableView treats objects provided by its data source as values to be displayed in NSCell objects. If
these objects aren’t of common value classes—such as NSString, NSNumber, and so on—you’ll need to
create a custom NSFormatter to display them. See the NSFormatter class specification for more
information.

Suppose that an NSTableView’s column identifiers are set up as NSStrings containing the names of
attributes for the column, such as “Last Name”, “City”, and so on, and that the data source stores its records
as an NSMutableArray, called records, of NSMutableDictionary objects using those names as keys. Here’s
a small example, given as an ASCII property list:

(

{

"Last Name" = Anderson;

"First Name" = James;

Abode = apartment;

City = "San Francisco";

},

{

"Last Name" = Beresford;

"First Name" = Keith;

Abode = apartment;

City = "Redwood City";

}

)

With such a record structure, this implementation of tableView:objectValueForTableColumn:row:
suffices to retrieve values for the NSTableView:

1

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id theRecord, theValue;

NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);

theRecord = [records objectAtIndex:rowIndex];

theValue = [theRecord objectForKey:[aTableColumn identifier]];

return theValue;

}

Here’s the corresponding method for setting values:

- (void)tableView:(NSTableView *)aTableView

setObjectValue:anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id theRecord;

NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);

theRecord = [records objectAtIndex:rowIndex];

[theRecord setObject:anObject forKey:[aTableColumn identifier]];

return;

}

Finally, numberOfRowsInTableView: simply returns the count of the NSArray:

- (int)numberOfRowsInTableView:(NSTableView *)aTableView

{

return [records count];

}

In each case, the NSTableView that sends the message is provided as aTableView. A data source object that
manages several sets of data can choose the appropriate set based on which NSTableView sends the
message.

Method Types

Getting values
– numberOfRowsInTableView:
– tableView:objectValueForTableColumn:row:

Setting values
– tableView:setObjectValue:forTableColumn:row:

2

 Classes: NSTableDataSource

Instance Methods

numberOfRowsInTableView:
– (int)numberOfRowsInTableView:(NSTableView *)aTableView

Returns the number of records managed for aTableView by the data source object. An NSTableView uses
this method to determine how many rows it should create and display.

tableView:objectValueForTableColumn:row:
– (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn
row: (int)rowIndex

Returns an attribute value for the record in aTableView at rowIndex. aTableColumn contains the identifier
for the attribute, which you get by using NSTableColumn’s identifier method. For example, if
aTableColumn stands for the city that an employee lives in and rowIndex specifies the record for an
employee who lives in Portland, this method returns an object with a string value of “Portland”. See the
category description for an example.

tableView:setObjectValue:forTableColumn:row:
– (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject
forTableColumn: (NSTableColumn *)aTableColumn
row: (int)rowIndex

Sets an attribute value for the record in aTableView at rowIndex. anObject is the new value, and
aTableColumn contains the identifier for the attribute, which you get by using NSTableColumn’s identifier
method. See the category description for an example.

3

 Classes: NSTextAttachmentCell

NSTextAttachmentCell

Adopted By: NSTextAttachmentCell

Declared In: AppKit/NSTextAttachment.h

Protocol Description

The NSTextAttachmentCell protocol declares the interface for objects that draw text attachment icons and
handle mouse events on their icons. With the exceptions of cellBaselineOffset:, setAttachment: and
attachment, all of these methods are implemented by the NSCell class and described in that class
specification.

See the NSAttributedString and NSTextView class specifications for general information on text
attachments.

Method Types

Drawing
– drawWithFrame:inView:
– highlight:withFrame:inView:

Cell size and position
– cellSize
– cellBaselineOffset

Event handling
– wantsToTrackMouse
– trackMouse:inRect:ofView:untilMouseUp:

Setting the attachment
– setAttachment:
– attachment

1

Instance Methods

attachment
– (NSTextAttachment *)attachment

Returns the text attachment object that owns the receiver.

See also: – setAttachment:

cellBaselineOffset
– (NSPoint)cellBaselineOffset

Returns the position where the attachment cell’s image should be drawn in text, relative to the current point
established in the glyph layout. The image should be drawn so that its lower left corner lies on this point.

See also: – icon (NSFileWrapper)

cellSize
– (NSSize)cellSize

Returns the size of the attachment’s icon.

See also: – icon (NSFileWrapper), – fileWrapper (NSTextAttachment)

drawWithFrame:inView:
– (void)drawWithFrame: (NSRect)cellFrame inView: (NSView *)aView

Draws the receiver’s image within cellFrame in aView, which should be the focus view.

See also: – drawWithFrame:inView: (NSCell), – lockFocus (NSView)

highlight:withFrame:inView:
– (void)highlight: (BOOL)flag

withFrame: (NSRect)cellFrame
inView: (NSView *)aView

Draws the receiver’s image—with highlighting if flag is YES—within cellFrame in aView, which should be
the focus view.

See also: – highlight:withFrame:inView: (NSCell), – lockFocus (NSView)

2

 Classes: NSTextAttachmentCell

g

setAttachment:
– (void)setAttachment:(NSTextAttachment *)anAttachment

Sets the text attachment object that owns the receiver to anAttachment, without retaining it (the text
attachment, as the owner, retains the cell).

See also: – attachment, – setAttachmentCell: (NSTextAttachment)

trackMouse:inRect:ofView:untilMouseUp:
– (BOOL)trackMouse:(NSEvent *)theEvent

inRect:(NSRect)cellFrame
ofView:(NSView *)aTextView
untilMouseUp:(BOOL)flag

Handles a mouse-down event on the receiver’s image. theEvent is the mouse-down event. cellFrame is the
region of aTextView in which further mouse events should be tracked. aTextView is the view which received
the event. It’s assumed to be an NSTextView, and should be the focus view. If flag is YES, the receiver tracks
the mouse until a mouse-up event occurs; if flag is NO, it stops tracking when a mouse-dragged event occurs
outside of cellFrame. Returns YES if the receiver successfully finished tracking the mouse (typically
through a mouse-up event), NO otherwise (such as when the mouse is dragged outside cellFrame).

NSTextAttachmentCell’s implementation of this method calls upon aTextView’s delegate to handle the
event. If theEvent is a mouse-up event for a double click, the text attachment cell sends the delegate a
textView:doubleClickedOnCell:inRect: message and returns YES. Otherwise, depending on whether the
user clicks or drags the cell, it sends the delegate a textView:clickedOnCell:inRect: or a textView:
draggingCell:inRect:event: message and returns YES. NSTextAttachmentCell’s implementation returns
NO only if flag is NO and the mouse is dragged outside of cellFrame. The delegate methods are invoked
only if the delegate responds.

See also: – wantsToTrackMouse, – trackMouse:inRect:ofView:untilMouseUp: (NSCell),
– lockFocus (NSView)

wantsToTrackMouse
– (BOOL)wantsToTrackMouse

Returns YES if the receiver will handle a mouse event occurring over its image (to support dragging, for
example), NO otherwise. NSTextAttachmentCell’s implementation of this method returns YES. The
NSView containing the cell should invoke this method before sending a trackMouse:inRect:ofView:
untilMouseUp: message.

For an attachment in an attributed string, if the attachment cell returns NO its attachment character should
be selected rather than the cell being asked to track the mouse. this results in the attachment icon behavin
as any regular glyph in text.

3

 Classes: NSTextInput

NSTextInput

Adopted By: NSInputManager

Declared In: AppKit/NSInputManager.h

Protocol Description
Note: This class specification is incomplete and has not received a technical review. It is included in this

release to test the linkage between the application development tools and the on-line documentation.
What information it contains should be considered preliminary and subject to change.

The methods of the NSTextInput protocol are implemented by objects—for example, responders—that
handle text input. A client object such as a text view (“the client object”) that speaks this protocol must be
reponsible for the following things:

1. The client object must maintain a “marked region” within which text input and, possibly, character
conversion take place. The marked region may have a length of zero. The client object must maintain an
“insertion point”—typically at the end of the marked region, though it may be within the region. The
“selection” within the client object, if any, is entirely contained within the marked region whenever there
is a marked region.2. The client object is responsible for sending messages to currentInputManager when
the mouse goes down inside the marked region, or when the mouse leaves the marked region. Within the
marked region, this allows the selection to be changed. Out of the marked region, it allows the region to be
“abandoned”. (See below.)

3. When there is a non-zero marked region, the client object is responsible for notifying the input manager
when the selection changes, or when other programmatic changes to the text affect the marked region. It
can do this by sending a message to set the selection, abandon the marked region, etc.

4. When the client object relinquishes first responder, it will typically send markedTextWillBeAbandoned:
to the currentInputManager. It must send markedTextWillBeAbandoned: when its insertion point (or
selection moves outside the marked range. The server will typically respond by simply unmarking the
region, but may remove the marked region's text entirely.

Note: If this protocol is not implemented by a client object that does have a keyDown: method, then in-line
input is not possible for that client object, and will have to be handled externally.

The NSTextInput protocol is implemented by a IM to receive input from the server on behalf of the current
client, and otherwise mediate between the client object and the server. It then forwards the corresponding
messages to the client, or gets information from the client to pass back to the server, as appropriate.

The message passing between NSApp, IM, UIobj, and Server is all synchronous. That is, e.g., when IM
sends a message to Server, any reply comes back and is relayed to UIobj before the original message
returns.

1

A key binding manager splits the stream of keyDown: messages (intercepted by NSResopnder) into
commands and text. If there is an Input Manager in the loop, it will further use any of these NSTextInput
messages to control the marked region.

Method Types

Marking text
– setMarkedText:selectedRange:
– getMarkedText:selectedRange:
– hasMarkedText
– unmarkText

Other
– conversationIdentifier
– doCommandBySelector:
– insertText:

Instance Methods

conversationIdentifier
– (long)conversationIdentifier

Returns a number used to identify the receiver’s input management session to the input server.

<<more information forthcoming>>

doCommandBySelector:
– (void)doCommandBySelector:(SEL)aSelector

Attempts to invoke aSelector or pass the message up the responer chain. This method is invoked by an input
manager in response to an interpretKeyEvents: message.

<<more information forthcoming>>

See also: – interpretKeyEvents: (NSResponder)

2

 Classes: NSTextInput

getMarkedText:selectedRange:
– (void)getMarkedText:(out NSString **)aString selectedRange:(out NSRange *)aRange

Returns by reference in aString the receiver’s marked text, if any, and in aRange the range of the selection
within aString (not in terms of the receiver’s entire text stream).

hasMarkedText
– (BOOL)hasMarkedText

Returns YES if the receiver has text that’s still being interpreted by the input manager, NO if it doesn’t.

<<more information forthcoming>>

insertText:
– (void)insertText:(NSString *)aString

Inserts aString into the receiver’s text stream. This method is invoked by an input manager in response to
an interpretKeyEvents: message.

<<more information forthcoming>>

See also: – interpretKeyEvents: (NSResponder)

setMarkedText:selectedRange:
– (void)setMarkedText:(NSString *)aString selectedRange:(NSRange)selRange

<<forthcoming>>

unmarkText
– (void)unmarkText

Removes any marking from pending input text, and accepts the text in its current state.

<<more information forthcoming>>

3

Defined Types

NSBorderType

DECLARED IN AppKit/NSView.h

SYNOPSIS typedef enum _NSBorderType {
NSNoBorder,
NSLineBorder,
NSBezelBorder,
NSGrooveBorder

} NSBorderType;

DESCRIPTION This type represents the kinds of border that can be drawn around certain NSView subclasses.

NSButtonType

DECLARED IN AppKit/NSButtonCell.h

SYNOPSIS typedef enum _NSButtonType {
NSMomentaryPushButton,
NSPushOnPushOffButton,
NSToggleButton,
NSSwitchButton,
NSRadioButton,
NSMomentaryChangeButton,
NSOnOffButton,
NSMomentaryLight ,

} NSButtonType;

DESCRIPTION This type represents the way NSButtons and NSButtonCells behave when pressed, and the way
they display their state. See NSButton’s and NSButtonCell’s setButtonType: methods for more
information.

1

NSCellAttribute

DECLARED IN AppKit/NSCell.h

SYNOPSIS typedef enum _NSCellAttribute {
NSCellDisabled,
NSCellState,
NSPushInCell,
NSCellEditable,
NSChangeGrayCell,
NSCellHighlighted,
NSCellLightsByContents,
NSCellLightsByGray,
NSChangeBackgroundCell,
NSCellLightsByBackground,
NSCellIsBordered,
NSCellHasOverlappingImage,
NSCellHasImageHorizontal,
NSCellHasImageOnLeftOrBottom,
NSCellChangesContents,
NSCellIsInsetButton,
NSCellAllowsMixedState

} NSCellAttribute ;

DESCRIPTION This is the type of the first argument to the NSCell methods setCellAttribute:to: and
cellAttribute: methods. Some of the values apply not to NSCell but to one of its subclasses.

Often it’s preferable to change cell attributes using more specialized methods like setState: or
setEditable:.

2

NSCellImagePosition

DECLARED IN AppKit/NSCell.h

SYNOPSIS typedef enum _NSCellImagePosition {
NSNoImage,
NSImageOnly,
NSImageLeft,
NSImageRight,
NSImageBelow,
NSImageAbove,
NSImageOverlaps,

} NSCellImagePosition;

DESCRIPTION These constants represent the position of an NSButtonCell’s NSImage relative to its title. See
NSButton’s and NSButtonCell’s setImagePosition: and imagePosition methods for more
information.

NSCellType

DECLARED IN AppKit/NSCell.h

SYNOPSIS typedef enum _NSCellType {
NSNullCellType,
NSTextCellType,
NSImageCellType,

} NSCellType;

DESCRIPTION The values of this type determine what kind of data an NSCell displays. NSCells of type
NSTextCellType and NSImageCellType display text and images, respectively. NSCells of type
NSNullCellType display nothing. See the NSCell methods type and setType: for more
information.

3

NSDataLinkDisposition

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS typedef enum _NSDataLinkDisposition {
NSLinkInDestination ,
NSLinkInSource,
NSLinkBroken

} NSDataLinkDisposition;

DESCRIPTION Returned by NSDataLink’s disposition method to identify a link as a destination link, a source
link, or a broken link. See the NSDataLink class specification for more information on the
dispositions of links.

NSDataLinkNumber

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS typedef int NSDataLinkNumber;

DESCRIPTION The type returned by NSDataLink’s linkNumber method as a persistent identifier of a destination
link.

NSDataLinkUpdateMode

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS typedef enum _NSDataLinkUpdateMode {
NSUpdateContinuously,
NSUpdateWhenSourceSaved,
NSUpdateManually,
NSUpdateNever

} NSDataLinkUpdateMode;

4

DESCRIPTION Used by NSDataLink’s setUpdateMode: and updateMode methods to identify when a link’s
data is to be updated.

NSEventType

DECLARED IN AppKit/NSEvent.h

SYNOPSIS typedef enum _NSEventType {
NSLeftMouseDown,
NSLeftMouseUp,
NSRightMouseDown,
NSRightMouseUp,
NSMouseMoved,
NSLeftMouseDragged,
NSRightMouseDragged,
NSMouseEntered,
NSMouseExited,
NSKeyDown,
NSKeyUp,
NSFlagsChanged,
NSAppKitDefined,
NSSystemDefined,
NSApplicationDefined
NSPeriodic,
NSCursorUpdate

} NSEventType;

DESCRIPTION This type represents various kinds of events. It is the return type of NSEvent’s type method, and
the type of the first argument to NSEvent’s ...EventWithType: methods.

5

NSFontAction

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS typedef enum _NSFontAction {
NSNoFontChangeAction,
NSViaPanelFontAction,
NSAddTraitFontAction ,
NSSizeUpFontAction,
NSSizeDownFontAction,
NSHeavierFontAction,
NSLighterFontAction ,
NSRemoveTraitFontAction

} NSFontAction;

DESCRIPTION Values of this type tag the actions of font menu cells. When a font menu cell sends a message to
NSFontManager, NSFontManager checks the cell for one of these tags.

This type is in the API for explanatory purposes only. You will never use it directly.

NSFontTraitMask

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS typedef unsigned int NSFontTraitMask;

DESCRIPTION An NSFontTraitMask characterizes one or more of a font’s traits. It’s used as an argument type
for NSAttributedString’s applyFontTraits:range: method, NSCStringText’s setSelFontStyle:
method, and several of the methods in the NSFontManager class.

6

NSGlyph

DECLARED IN AppKit/NSFont.h

SYNOPSIS typedef unsigned int NSGlyph;

DESCRIPTION This type is used to specify PostScript glyphs in such NSFont methods as glyphWithName:.

NSGlyphInscription

DECLARED IN AppKit/NSLayoutManager.h

SYNOPSIS typedef enum {
NSGlyphInscribeBase,
NSGlyphInscribeBelow,
NSGlyphInscribeAbove,
NSGlyphInscribeOverstrike,
NSGlyphInscribeOverBelow

} NSGlyphInscription ;

DESCRIPTION The inscribe attribute of an glyph determines how it is laid out relative to the previous glyph.

NSGlyphRelation

DECLARED IN AppKit/NSFont.h

SYNOPSIS typedef enum _NSGlyphRelation {
NSGlyphBelow,
NSGlyphAbove,

} NSGlyphRelation;

DESCRIPTION This type specifies the position of a glyph in relation to the base glyph. Parameters of this type
are used in the second slot of the NSFont method positionOfGlyph:withRelation:
toBaseGlyph:....

7

e

NSGradientType

DECLARED IN AppKit/NSButtonCell.h

SYNOPSIS typedef enum _NSGradientType {
NSGradientNone,
NSGradientConcaveWeak,
NSGradientConcaveStrong,
NSGradientConvexWeak,
NSGradientConvexStrong

} NSGradientType;

DESCRIPTION This type represents the darkness gradient of an NSButtonCell. A concave gradient is darkest in
the top left corner, a convex gradient is darkest in the bottom right corner. A weak gradient has
only weak darkness contrast between opposite corners; a strong gradient has strong contrast. Se
the NSButtonCell methods gradient and setGradient: for more information.

NSImageAlignment

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSImageAlignCenter,
NSImageAlignTop,
NSImageAlignTopLeft,
NSImageAlignTopRight,
NSImageAlignLeft,
NSImageAlignBottom,
NSImageAlignBottomLeft,
NSImageAlignBottomRight,
NSImageAlignRight

} NSImageAlignment;

DESCRIPTION This type defines the ways of aligning an NSImage within an NSImageCell. It is the return type
for NSImageCell’s and NSImageView’s imageAlignment methods, and an argument type for
their setImageAlignment: methods.

8

NSImageFrameStyle

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSImageFrameNone,
NSImageFramePhoto,
NSImageFrameGrayBezel,
NSImageFrameGroove,
NSImageFrameButton

} NSImageFrameStyle;

DESCRIPTION This type defines the kinds of frames that can appear around an NSImageCell. It is the return type
for NSImageCell’s and NSImageView’s imageFrameStyle methods, and an argument type for
their setImageFrameStyle: methods.

NSImageScaling

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSScaleProportionally,
NSScaleToFit,
NSScaleNone

} NSImageScaling;

DESCRIPTION This type defines the ways that an image can be scaled to fit an NSImageCell. The value
NSScaleProportionally means that the image should be scaled in a way that preserves its
proportions. The value NSScaleToFit means that the image should fit the NSView, even if that
means its proportions must be distorted. The value NSScaleNone means that the image’s size
should be preserved, even if it must be clipped to fit the NSView.

9

NSInterfaceStyle

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS typedef enum {
NSNoInterfaceStyle,
NSNextStepInterfaceStyle,
NSWindows95InterfaceStyle,
NSMacintoshInterfaceStyle

} NSInterfaceStyle;

DECLARED IN This type defines the style of an application’s user interface. It is returned by the interfaceStyle
method and taken as an argument by the setInterfaceStyle: method. Both of the these methods
are in the NSInterfaceStyle category of NSResponder.

For more information, see the function NSInterfaceStyleForKey.

NSLineBreakMode

DECLARED IN AppKit/NSParagraphStyle.h

SYNOPSIS typedef enum _NSLineBreakMode {
NSLineBreakByWordWrapping ,
NSLineBreakByCharWrapping ,
NSLineBreakByClipping,
NSLineBreakByTruncatingHead,
NSLineBreakByTruncatingTail ,
NSLineBreakByTruncatingMiddle

} NSLineBreakMode;

DESCRIPTION This type defines the ways that a long paragraph can be broken into lines. The possible values are
described below.

Value Meaning

NSLineBreakByWordWrapping The default value. At the last possible word boundary, the
paragraph wraps to the next line.

10

NSLineMovementDirection

DECLARED IN AppKit/NSTextContainer.h

SYNOPSIS typedef enum {
NSLineDoesntMove,
NSLineMovesLeft,
NSLineMovesRight,
NSLineMovesDown,
NSLineMovesUp

} NSLineMovementDirection;

DESCRIPTION This is an argument type for the NSTextContainer method lineFragmentRectForProposedRect:
sweepDirection:movementDirection:remainingRect:.

NSLineBreakByCharWrapping At the last possible character, the paragraph wraps to the next line.

NSLineBreakByClipping As much of the paragraph appears as will fit on a single line. This
value has the same effect as NSLineBreakByTruncatingTail

NSLineBreakByTruncatingHead As much of the paragraph appears as will fit on a single line.
Characters from the start of the paragraph do not appear.

NSLineBreakByTruncatingTail As much of the paragraph appears as will fit on a single line.
Characters from the end of the paragraph do not appear.

NSLineBreakByTruncatingMiddle As much of the paragraph appears as will fit on a single line.
Characters from the middle of the paragraph do not appear.

Value Meaning

11

NSLineSweepDirection

DECLARED IN AppKit/NSTextContainer.h

SYNOPSIS typedef enum {
NSLineSweepLeft,
NSLineSweepRight,
NSLineSweepDown,
NSLineSweepUp

} NSLineSweepDirection;

DESCRIPTION This is an argument type for the NSTextContainer method lineFragmentRectForProposedRect:
sweepDirection:movementDirection:remainingRect:.

NSMatrixMode

DECLARED IN AppKit/NSMatrix.h

SYNOPSIS typedef enum _NSMatrixMode {
NSRadioModeMatrix,
NSHighlightModeMatrix ,
NSListModeMatrix ,
NSTrackModeMatrix

} NSMatrixMode ;

DESCRIPTION These constants represent the modes of operation of an NSMatrix, as described in the NSMatrix
class specification.

NSModalSession

DECLARED IN AppKit/NSApplication.h

SYNOPSIS typedef struct _NSModalSession *NSModalSession;

12

DESCRIPTION Variables of type NSModalSession point to information used by the system between
beginModalSession:for: and endModalSession: messages.

NSPrinterTableStatus

DECLARED IN AppKit/NSPrinter.h

SYNOPSIS typedef enum _NSPrinterTableStatus {
NSPrinterTableOK ,
NSPrinterTableNotFound,
NSPrinterTableError

} NSPrinterTableStatus;

DESCRIPTION These constants are used to describe the state of a printer-information table stored by an NSPrinter
object. See the NSPrinter method statusForTable: for more information.

NSPrintingOrientation

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS typedef enum _NSPrintingOrientation {
NSPortraitOrientation ,
NSLandscapeOrientation

} NSPrintingOrientation ;

DESCRIPTION These constants represent the way a page is oriented for printing. In NSPortraitOrientation, the
page is taller than it is wide; in NSLandscapeOrientation, the page is wider than it is tall. See the
NSPrintInfo methods orientation and setOrientation: for more information.

13

NSPrintingPageOrder

DECLARED IN AppKit/NSPrintOperation.h

SYNOPSIS typedef enum _NSPrintingPageOrder {
NSDescendingPageOrder,
NSSpecialPageOrder,
NSAscendingPageOrder,
NSUnknownPageOrder

} NSPrintingPageOrder;

DESCRIPTION This type represents the order in which pages are to be printed. The value NSSpecialPageOrder
tells the spooler to not rearrange the pages. The value NSUnknownPageOrder means that no page
order is written out. See the NSPrintOperation methods pageOrder and setPageOrder: for more
information.

NSPrintingPaginationMode

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS typedef enum _NSPrintingPaginationMode {
NSAutoPagination,
NSFitPagination,
NSClipPagination

} NSPrintingPaginationMode;

DESCRIPTION These constants represent the different ways in which an image is divided into pages. The value
NSFitPagination forces the image to fit on one page. The value NSClipPagination allows the
image to be clipped by the page.See the NSPrintInfo class specification for a fuller explanation.

14

NSRulerOrientation

DECLARED IN AppKit/NSRulerView.h

SYNOPSIS typedef enum {
NSHorizontalRuler,
NSVerticalRuler

} NSRulerOrientation;

DESCRIPTION This type defines whether an NSRulerView will be displayed horizontally or vertically. It is the
return type of NSRulerView’s orientation method, and an argument to the NSRulerView
methods setOrientation: and initWithScrollView:orientation: .

NSScrollArrowPosition

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollArrowPosition {
NSScrollerArrowsMaxEnd,
NSScrollerArrowsMinEnd ,
NSScrollerArrowsNone

} NSScrollArrowPosition;

DESCRIPTION These constants are used in NSScroller’s setArrowsPosition: method to set the position of the
arrows within the scroller.

NSScrollerArrow

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollerArrow {
NSScrollerIncrementArrow ,
NSScrollerDecrementArrow

} NSScrollerArrow ;

15

DESCRIPTION This is the type of the first argument to the NSScroller method drawArrow:highlight: . The value
determines which scroll button is drawn.

NSScrollerPart

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollerPart {
NSScrollerNoPart,
NSScrollerDecrementPage,
NSScrollerKnob,
NSScrollerIncrementPage,
NSScrollerDecrementLine,
NSScrollerIncrementLine,
NSScrollerKnobSlot

} NSScrollerPart;

DESCRIPTION These constants are used in Scroller’s hitPart method to identify the part of the Scroller specified
in a mouse event.

NSSelectionAffinity

DECLARED IN AppKit/NSTextView.h

SYNOPSIS typedef enum _NSSelectionAffinity {
NSSelectionAffinityUpstream,
NSSelectionAffinityDownstream

} NSSelectionAffinity;

DESCRIPTION This is the return type of the NSTextView method selectionAffinity, and the type of the second
argument to the NSTextView method setSelectedRange:affinity:stillSelecting:.

16

NSSelectionDirection

DECLARED IN AppKit/NSWindow.h

SYNOPSIS typedef enum _NSSelectionDirection {
NSDirectSelection,
NSSelectingNext,
NSSelectingPrevious

} NSSelectionDirection;

DESCRIPTION This is the return type of the NSWindow method keyViewSelectionDirection.

NSSelectionGranularity

DECLARED IN AppKit/NSTextView.h

SYNOPSIS typedef enum _NSSelectionGranularity {
NSSelectByCharacter,
NSSelectByWord,
NSSelectByParagraph

} NSSelectionGranularity;

DESCRIPTION This is the return type of the NSTextView method selectionGranularity, and the type of arguments
to two other NSTextView methods, setSelectionGranularity: and
selectionRangeForProposedRange:granularity:.

17

NSTextAlignment

DECLARED IN AppKit/NSText.h

SYNOPSIS typedef enum _NSTextAlignment {
NSLeftTextAlignment,
NSRightTextAlignment,
NSCenterTextAlignment,
NSJustifiedTextAlignment,
NSNaturalTextAlignment

} NSTextAlignment;

DESCRIPTION Variables of this type are used as arguments and return values for methods that specify text
alignment.

NSTextTabType

DECLARED IN AppKit/NSParagraphStyle.h

SYNOPSIS typedef enum _NSTextTabType {
NSLeftTabStopType,
NSRightTabStopType,
NSCenterTabStopType,
NSDecimalTabStopType

} NSTextTabType;

DESCRIPTION This is the return type of NSTextTab’s tabStopType method, and an argument to NSTextTab’s
initWithType:location: method.

NSTIFFCompression

SYNOPSIS AppKit/NSBitmapImageRep.h

18

SYNOPSIS typedef enum _NSTIFFCompression {
NSTIFFCompressionNone,
NSTIFFCompressionCCITTFAX3,
NSTIFFCompressionCCITTFAX4,
NSTIFFCompressionLZW,
NSTIFFCompressionJPEG,
NSTIFFCompressionNEXT,
NSTIFFCompressionPackBits,
NSTIFFCompressionOldJPEG

} NSTIFFCompression;

DESCRIPTION These constants represent the various TIFF (tag image file format) data compression schemes. See
the NSBitmapImageRep class specification for their meanings.

NSTitlePosition

DECLARED IN AppKit/NSBox.h

SYNOPSIS typedef enum _NSTitlePosition {
NSNoTitle,
NSAboveTop,
NSAtTop,
NSBelowTop,
NSAboveBottom,
NSAtBottom,
NSBelowBottom

} NSTitlePosition;

DESCRIPTION This type represents the locations where an NSBox’s title can be placed with respect to its border.
Thus, for example, NSAboveTop means the title is above the top of the border, NSAtTop means
the title breaks the top border, and so on. See the NSBox methods titlePosition and
setTitlePosition:.

19

NSTrackingRectTag

DECLARED IN AppKit/NSView.h

SYNOPSIS typedef int NSTrackingRectTag;

DESCRIPTION This type describes the rectangle used to track the mouse. See the NSView methods
addTrackingRect:... and removeTrackingRect:.

NSUsableScrollerParts

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSUsableScrollerParts {
NSNoScrollerParts,
NSOnlyScrollerArrows,
NSAllScrollerParts

} NSUsableScrollerParts;

DESCRIPTION This type defines the usable parts of an NSScroller; see the class specification for more
information.

NSWindowDepth

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS typedef int NSWindowDepth;

DESCRIPTION This type represents the depth, or amount of memory, devoted to a single pixel in a window or
screen.

20

Enumerations

NSApplication—Modal Session Return Values

DECLARED IN AppKit/NSApplication.h

SYNOPSIS enum {
NSRunStoppedResponse,
NSRunAbortedResponse,
NSRunContinuesResponse

};

DESCRIPTION Return values for the NSApplication methods runModalFor: and runModalSession:.

NSAttributedString—Underlining

DECLARED IN AppKit/NSAttributedString.h

SYNOPSIS enum {
NSSingleUnderlineStyle

};

DESCRIPTION This defines the only currently supported value for NSUnderlineStyleAttributeName.

21

NSButtonCell—State Masks

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSNoCellMask,
NSContentsCellMask,
NSPushInCellMask,
NSChangeGrayCellMask,
NSChangeBackgroundCellMask

};

DESCRIPTION These masks are passed to the NSButtonCell methods highlightsBy: and showsStateBy:.

22

NSCell—Action Flags

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSLeftMouseDownMask,
NSLeftMouseUpMask,
NSRightMouseDownMask,
NSRightMouseUpMask,
NSMouseMovedMask,
NSLeftMouseDraggedMask,
NSRightMouseDraggedMask,
NSMouseEnteredMask,
NSMouseExitedMask,
NSKeyDownMask,
NSKeyUpMask,
NSFlagsChangedMask,
NSAppKitDefinedMask,
NSSystemDefinedMask,
NSApplicationDefinedMask,
NSPeriodicMask,
NSCursorUpdateMask,
NSAnyEventMask

};

DESCRIPTION These constants are masks for different kinds of events. You pass them to NSCell’s
sendActionOn: method to indicate when an NSCell should send its action message.

23

NSCell—Data Entry Types

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSAnyType,
NSIntType,
NSPositiveIntType,
NSFloatType,
NSPositiveFloatType,
NSDoubleType,
NSPositiveDoubleType

};

DESCRIPTION These constants represent the numeric data types that a text NSCell can accept. See NSCell’s
setEntryType: method for more information.

NSCell—States

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSStateMixed,
NSStateOff,
NSStateOn

};

DESCRIPTION These constants are suggested parameter values for the NSCell method setState:.

24

NSColorPanel—Modes

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS enum {
NSGrayModeColorPanel,
NSRGBModeColorPanel,
NSCMYKModeColorPanel,
NSHSBModeColorPanel,
NSCustomPaletteModeColorPanel,
NSColorListModeColorPanel,
NSWheelModeColorPanel

};

DESCRIPTION These constants represent the possible modes of an NSColorPanel.

NSColorPanel—Mode Masks

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS enum {
NSColorPanelGrayModeMask,
NSColorPanelRGBModeMask,
NSColorPanelCMYKModeMask,
NSColorPanelHSBModeMask,
NSColorPanelCustomPaletteModeMask,
NSColorPanelColorListModeMask,
NSColorPanelWheelModeMask,
NSColorPanelAllModesMask

};

DESCRIPTION These constants provide masks for the NSColorPanel modes.

25

NSDragging—Operations

DECLARED IN AppKit/NSDragging.h

SYNOPSIS enum {
NSDragOperationNone,
NSDragOperationCopy,
NSDragOperationLink ,
NSDragOperationGeneric,
NSDragOperationPrivate,
NSDragOperationAll

};

DESCRIPTION These constants define the operations that result from a user’s drag. For full descriptions of their
meanings and uses, see the method descriptions for draggingSourceOperationMaskForLocal:
(in the NSDraggingSource protocol), draggingSourceOperationMask (in the NSDraggingInfo
protocol), or draggingEntered: (in the NSDraggingDestination protocol).

NSEvent—Function-Key Unicodes

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSUpArrowFunctionKey = 0xF700,
NSDownArrowFunctionKey = 0xF701,
NSLeftArrowFunctionKey = 0xF702,
NSRightArrowFunctionKey = 0xF703,
NSF1FunctionKey = 0xF704,
NSF2FunctionKey = 0xF705,
NSF3FunctionKey = 0xF706,
NSF4FunctionKey = 0xF707,
NSF5FunctionKey = 0xF708,
NSF6FunctionKey = 0xF709,
NSF7FunctionKey = 0xF70A,
NSF8FunctionKey = 0xF70B,
NSF9FunctionKey = 0xF70C,
NSF10FunctionKey = 0xF70D,

26

NSF11FunctionKey = 0xF70E,
NSF12FunctionKey = 0xF70F,
NSF13FunctionKey = 0xF710,
NSF14FunctionKey = 0xF711,
NSF15FunctionKey = 0xF712,
NSF16FunctionKey = 0xF713,
NSF17FunctionKey = 0xF714,
NSF18FunctionKey = 0xF715,
NSF19FunctionKey = 0xF716,
NSF20FunctionKey = 0xF717,
NSF21FunctionKey = 0xF718,
NSF22FunctionKey = 0xF719,
NSF23FunctionKey = 0xF71A,
NSF24FunctionKey = 0xF71B,
NSF25FunctionKey = 0xF71C,
NSF26FunctionKey = 0xF71D,
NSF27FunctionKey = 0xF71E,
NSF28FunctionKey = 0xF71F,
NSF29FunctionKey = 0xF720,
NSF30FunctionKey = 0xF721,
NSF31FunctionKey = 0xF722,
NSF32FunctionKey = 0xF723,
NSF33FunctionKey = 0xF724,
NSF34FunctionKey = 0xF725,
NSF35FunctionKey = 0xF726,
NSInsertFunctionKey = 0xF727,
NSDeleteFunctionKey = 0xF728,
NSHomeFunctionKey = 0xF729,
NSBeginFunctionKey = 0xF72A,
NSEndFunctionKey = 0xF72B,
NSPageUpFunctionKey = 0xF72C,
NSPageDownFunctionKey = 0xF72D,
NSPrintScreenFunctionKey = 0xF72E,
NSScrollLockFunctionKey = 0xF72F,
NSPauseFunctionKey = 0xF730,
NSSysReqFunctionKey = 0xF731,
NSBreakFunctionKey = 0xF732,
NSResetFunctionKey = 0xF733,
NSStopFunctionKey = 0xF734,
NSMenuFunctionKey = 0xF735,
NSUserFunctionKey = 0xF736,
NSSystemFunctionKey = 0xF737,
NSPrintFunctionKey = 0xF738,

27

NSClearLineFunctionKey = 0xF739,
NSClearDisplayFunctionKey = 0xF73A,
NSInsertLineFunctionKey = 0xF73B,
NSDeleteLineFunctionKey = 0xF73C,
NSInsertCharFunctionKey = 0xF73D,
NSDeleteCharFunctionKey = 0xF73E,
NSPrevFunctionKey = 0xF73F,
NSNextFunctionKey = 0xF740,
NSSelectFunctionKey = 0xF741,
NSExecuteFunctionKey = 0xF742,
NSUndoFunctionKey = 0xF743,
NSRedoFunctionKey = 0xF744,
NSFindFunctionKey = 0xF745,
NSHelpFunctionKey = 0xF746,
NSModeSwitchFunctionKey = 0xF747

};

DESCRIPTION These Unicodes (0xF700-0xF8FF) are reserved for function keys on the keyboard. Combined in
NSStrings, they may be used in the return value of the NSEvent methods characters..., and in
parameters of the NSEvent method keyEventWithType:...characters:....

NSEvent—Modifier Flags

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSAlphaShiftKeyMask,
NSShiftKeyMask,
NSControlKeyMask,
NSAlternateKeyMask,
NSCommandKeyMask,
NSNumericPadKeyMask,
NSHelpKeyMask,
NSFunctionKeyMask

};

DESCRIPTION These are device-independent bits found in event modifier flags.

28

NSEvent—Types Defined by the Application Kit

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSWindowExposedEventType,
NSApplicationActivatedEventType,
NSApplicationDeactivatedEventType,
NSWindowMovedEventType,
NSScreenChangedEventType

};

DESCRIPTION These constants represent the types of events defined by the Application Kit.

NSEvent—Types Defined by the System

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSPowerOffEventType

};

DESCRIPTION This constant means that the user is turning off the computer.

Constant Meaning

NSWindowExposedEventType A nonretained NSWindow has been exposed

NSApplicationActivatedEventType The application has been activated

NSApplicationDeactivatedEventType The application has been deactivated

NSWindowMovedEventType An NSWindow has moved

NSScreenChangedEventType An NSWindow has changed screens

29

NSFont—Traits

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS enum {
NSItalicFontMask,
NSBoldFontMask,
NSUnboldFontMask,
NSNonStandardCharacterSetFontMask,
NSNarrowFontMask,
NSExpandedFontMask,
NSCondensedFontMask,
NSSmallCapsFontMask,
NSPosterFontMask,
NSCompressedFontMask,
NSFixedPitchFontMask,
NSUnitalicFontMask

};

DESCRIPTION These constants are used by the NSFontManager to identify font traits. Some traits are mutually
exclusive, such as NSExpandedFontMask and NSCondensedFontMask.

NSFontPanel—Tags for Subviews

DECLARED IN AppKit/NSFontPanel.h

SYNOPSIS enum {
NSFPPreviewButton,
NSFPRevertButton,
NSFPSetButton,
NSFPPreviewField,
NSFPSizeField,
NSFPSizeTitle,
NSFPCurrentField

};

DESCRIPTION These tags identify the NSViews within an NSFontPanel.

30

NSGlyph—Attributes

DECLARED IN AppKit/NSLayoutManager.h

SYNOPSIS enum _NSGlyphAttribute {
NSGlyphAttributeSoft ,
NSGlyphAttributeElastic ,
NSGlyphAttributeInscribe

};

DESCRIPTION These glyph attributes are used only inside the glyph generation machinery, but must be shared
between components.

NSGlyph—Reserved Glyph Codes

DECLARED IN AppKit/NSFont.h

SYNOPSIS enum {
NSControlGlyph = 0x00FFFFFF,
NSNullGlyph = 0x0

};

DESCRIPTION These two values are reserved for the two named NSGlyphs.

NSImageRep—Display Device Matching

DECLARED IN AppKit/NSImageRep.h

SYNOPSIS enum {
NSImageRepMatchesDevice

};

31

DESCRIPTION This constant is used by NSImageRep to indicate that the value of certain attributes, such as the
number of colors, or bits-per-sample, will change to match the display device. See the
NSImageRep class specification for more information.

NSPageLayoutPanel—Tags for Controls

DECLARED IN AppKit/NSPageLayout.h

SYNOPSIS enum {
NSPLImageButton,
NSPLTitleField,
NSPLPaperNameButton,
NSPLUnitsButton,
NSPLWidthForm ,
NSPLHeightForm,
NSPLOrientationMatrix ,
NSPLCancelButton,
NSPLOKButton

};

DESCRIPTION These constants represent the tag values of the controls displayed by an NSPageLayoutPanel.

NSPanel—Alert Panel Return Values

DECLARED IN AppKit/NSPanel.h

SYNOPSIS enum {
NSAlertDefaultReturn ,
NSAlertAlternateReturn ,
NSAlertOtherReturn ,
NSAlertErrorReturn

};

32

l

DESCRIPTION These constants define values returned by the NSRunAlertPanel function and by the
NSApplication method runModalSession: when the modal session is run with an NSPanel
provided by the NSGetAlertPanel function.

NSPanel—Modal Panel Return Values

DECLARED IN AppKit/NSPanel.h

SYNOPSIS enum {
NSOKButton,
NSCancelButton

};

DESCRIPTION These are the possible return values for such methods as the runModal... methods of
NSOpenPanel, which tells which button (OK or Cancel) the user has clicked on an open panel.
For other uses of these return values, see the class descriptions for NSPageLayout, NSPrintPane
and NSSavePanel.

33

NSPrintPanel—Tags for Subviews

DECLARED IN AppKit/NSPrintPanel.h

SYNOPSIS enum {
NSPPSaveButton,
NSPPPreviewButton,
NSFaxButton,
NSPPTitleField,
NSPPImageButton,
NSPPNameTitle,
NSPPNameField,
NSPPNoteTitle,
NSPPNoteField,
NSPPStatusTitle,
NSPPStatusField,
NSPPCopiesField,
NSPPPageChoiceMatrix,
NSPPPageRangeFrom,
NSPPPageRangeTo,
NSPPScaleField,
NSPPOptionsButton,
NSPPPaperFeedButton,
NSPPLayoutButton

};

DESCRIPTION These constants define tags for identifying the NSViews in a print panel in environments other
than Microsoft Windows. Windows has its own way of handling print panels.

NSRunLoop—Ordering Modes for NSApplication

DECLARED IN AppKit/NSApplication.h

SYNOPSIS enum {
NSUpdateWindowsRunLoopOrdering

};

34

DESCRIPTION This constants is used with NSRunLoop's performSelector:target:argument:order:modes:
method.

NSRunLoop—Ordering Mode for NSDPSServerContext

DECLARED IN AppKit/NSDPSServerContext.h

SYNOPSIS enum {
DPSFlushContextRunLoopOrdering

};

DESCRIPTION This constants is used with NSRunLoop's method performSelector:target:argument:order:
modes:.

NSRunLoop—Ordering Modes for NSWindow

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSDisplayWindowRunLoopOrdering,
NSResetCursorRectsRunLoopOrdering

};

DESCRIPTION These constants are passed to NSRunLoop’s method performSelector:target:argument:order:
modes:.

35

NSSavePanel—Tags for Subviews

DECLARED IN AppKit/NSSavePanel.h

SYNOPSIS enum {
NSFileHandlingPanelImageButton,
NSFileHandlingPanelTitleField,
NSFileHandlingPanelBrowser,
NSFileHandlingPanelCancelButton,
NSFileHandlingPanelOKButton,
NSFileHandlingPanelForm,
NSFileHandlingPanelHomeButton,
NSFileHandlingPanelDiskButton,
NSFileHandlingPanelDiskEjectButton

};

DESCRIPTION These constants define tags for identifying NSViews in an NSSavePanel.

NSTextAttachment—Attachment Character

DECLARED IN AppKit/NSTextAttachment.h

SYNOPSIS enum {
NSAttachmentCharacter = 0xfffc

};

36

DECLARED IN This Unicode indicates the presence of an attachment in an NSAttributedString. For more
information, see the Class Cluster Description of NSAttributedStringAdditions.

NSText—Important Unicodes

DECLARED IN AppKit/NSText.h

SYNOPSIS enum {
NSParagraphSeparatorCharacter = 0x2029,
NSLineSeparatorCharacter = 0x2028,
NSTabCharacter = 0x0009,
NSFormFeedCharacter = 0x000c,
NSNewlineCharacter = 0x000a,
NSCarriageReturnCharacter = 0x000d,
NSEnterCharacter = 0x0003,
NSBackspaceCharacter = 0x0008,
NSBackTabCharacter = 0x0019,
NSDeleteCharacter = 0x007f,

};

DESCRIPTION These constants specify several commonly-used Unicode characters.

37

NSText—Movement Codes

DECLARED IN AppKit/NSText.h

SYNOPSIS enum {
NSIllegalTextMovement,
NSReturnTextMovement,
NSTabTextMovement,
NSBacktabTextMovement,
NSLeftTextMovement,
NSRightTextMovement,
NSUpTextMovement,
NSDownTextMovement

};

DESCRIPTION These constants are the codes for movement between fields. They are the possible int values for
the NSTextMovement key of NSTextDidEndEditingNotification. For more information, see the
“Notifications” section of the NSText class specification.

NSTextStorage—Editing

DECLARED IN AppKit/NSTextStorage.h

SYNOPSIS enum {
NSTextStorageEditedAttributes,
NSTextStorageEditedCharacters

};

DESCRIPTION These values, which may be combined by a bitwise OR, help describe the changes that an editing
session has made to an NSTextStorage object. They are the return values of the NSTextStorage
method editedMask, and the parameter values for the second slot of the NSLayoutManager
method textStorage:edited:....

38

NSView—Resizing

DECLARED IN AppKit/NSView.h

SYNOPSIS enum {
NSViewNotSizable,
NSViewMinXMargin ,
NSViewWidthSizable,
NSViewMaxXMargin ,
NSViewMinYMargin ,
NSViewHeightSizable,
NSViewMaxYMargin

};

DESCRIPTION Used to describe which parts of an NSView (or its margins) are resized when the NSView’s
superNSView is resized. See the NSView class specification for details.

NSWindow—Border Masks

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSBorderlessWindowMask,
NSTitledWindowMask,
NSClosableWindowMask,
NSMiniaturizableWindowMask ,
NSResizableWindowMask

};

DESCRIPTION These determine the presence of a title and various buttons in an NSWindow’s border.

39

NSWindow—Window Levels

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSNormalWindowLevel,
NSFloatingWindowLevel,
NSDockWindowLevel,
NSSubmenuWindowLevel,
NSTornOffMenuWindowLevel ,
NSMainMenuWindowLevel,
NSModalPanelWindowLevel,
NSPopUpMenuWindowLevel

};

DESCRIPTION These constants name the Application Kit’s window levels. The stacking of levels takes
precedence over the stacking of windows within each level. That is, even the bottom window in
a level will obscure even the top window of the next level down.

The constant NSTornOffMenuWindowLevel is preferable to its synonym,
NSSubmenuWindowLevel.

40

Global Variables

Application Kit—Exceptions

DECLARED IN AppKit/NSErrors.h

SYNOPSIS NSString *NSTextLineTooLongException;
NSString *NSTextNoSelectionException;
NSString *NSWordTablesWriteException;
NSString *NSWordTablesReadException;
NSString *NSTextReadException;
NSString *NSTextWriteException;
NSString *NSPasteboardCommunicationException;
NSString *NSPrintingCommunicationException;
NSString *NSAbortModalException;
NSString *NSAbortPrintingException ;
NSString *NSIllegalSelectorException;
NSString *NSAppKitVirtualMemoryException ;
NSString *NSBadRTFDirectiveException;
NSString *NSBadRTFFontTableException;
NSString *NSBadRTFStyleSheetException;
NSString *NSTypedStreamVersionException;
NSString *NSTIFFException;
NSString *NSPrintPackageException;
NSString *NSBadRTFColorTableException;
NSString *NSDraggingException;

41

NSString *NSColorListIOException;
NSString *NSColorListNotEditableException;
NSString *NSBadBitmapParametersException;
NSString *NSWindowServerCommunicationException;
NSString *NSFontUnavailableException;
NSString *NSPPDIncludeNotFoundException;
NSString *NSPPDParseException;
NSString *NSPPDIncludeStackOverflowException;
NSString *NSPPDIncludeStackUnderflowException;
NSString *NSRTFPropertyStackOverflowException;
NSString *NSAppKitIgnoredException;
NSString *NSBadComparisonException;
NSString *NSImageCacheException;
NSString *NSNibLoadingException;
NSString *NSBrowserIllegalDelegateException;

DESCRIPTION These constants name the exceptions that the Application Kit can raise.

Display Device—Descriptions

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSDeviceResolution;
NSString *NSDeviceColorSpaceName;
NSString *NSDeviceBitsPerSample;
NSString *NSDeviceIsScreen;
NSString *NSDeviceIsPrinter;
NSString *NSDeviceSize;

DESCRIPTION These are the keys for device description dictionaries, such as those returned by the
deviceDictionary methods of NSPrinter, NSScreen and NSWindow.

NSDeviceResolution is an NSValue containing an NSSize in dots per inch. NSColorSpaceName
is an NSString describing the color space of the device. NSDeviceBitsPerSample is an NSValue
containing an int. NSDeviceIsScreen and NSDeviceIsPrinter are boolean values that tell whether
the device is a screen or a printer. NSDeviceSize is an NSValue containing an NSSize that
represents the device’s size in points.

42

NSApplication—Notifications

DECLARED IN AppKit/NSApplication.h

SYNOPSIS NSString *NSApplicationDidBecomeActiveNotification;
NSString *NSApplicationDidFinishLaunchingNotification ;
NSString *NSApplicationDidHideNotification ;
NSString *NSApplicationDidResignActiveNotification;
NSString *NSApplicationDidUnhideNotification;
NSString *NSApplicationDidUpdateNotification;
NSString *NSApplicationWillBecomeActiveNotification;
NSString *NSApplicationWillFinishLaunchingNotification ;
NSString *NSApplicationWillHideNotification ;
NSString *NSApplicationWillResignActiveNotification;
NSString *NSApplicationWillUnhideNotification ;
NSString *NSApplicationWillUpdateNotification ;
NSString *NSApplicationWillTerminateNotification ;

DECLARED IN These are the notifications used with the methods of the NSApplicationNotifications category of
NSObject.

NSApplication—Shared Application Object

DECLARED IN AppKit/NSApplication.h

SYNOPSIS id NSApp;

DESCRIPTION This variable designates the shared application object, created by NSApplication’s
sharedApplication method.

43

NSAttributedString—Attributes

DECLARED IN AppKit/NSAttributedString.h

SYNOPSIS NSString *NSFontAttributeName;
NSString *NSParagraphStyleAttributeName;
 NSString *NSForegroundColorAttributeName;
 NSString *NSUnderlineStyleAttributeName;
 NSString *NSSuperscriptAttributeName;
 NSString *NSBackgroundColorAttributeName;
 NSString *NSAttachmentAttributeName;
 NSString *NSLigatureAttributeName ;
 NSString *NSBaselineOffsetAttributeName;
 NSString *NSKernAttributeName ;

DESCRIPTION These strings define the supported attributes of NSAttributedStrings. For more information, see
the “Accessing Attributes” section in the NSAttributedString class cluster specification.

NSComboBox—Notifications

DECLARED IN AppKit/NSComboBox.h

SYNOPSIS NSString *NSComboBoxWillPopUpNotification;
NSString *NSComboBoxWillDismissNotification;
NSString *NSComboBoxSelectionDidChangeNotification;
NSString *NSComboBoxSelectionIsChangingNotification;

DESCRIPTION These notifications are sent by NSComboBoxes.

44

NSColor—Color Space Names

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSCalibratedWhiteColorSpace;
NSString *NSCalibratedBlackColorSpace;
NSString *NSCalibratedRGBColorSpace;
NSString *NSDeviceWhiteColorSpace;
NSString *NSDeviceBlackColorSpace;
NSString *NSDeviceRGBColorSpace;
NSString *NSDeviceCMYKColorSpace;
NSString *NSNamedColorSpace;
NSString *NSCustomColorSpace;

DESCRIPTION These are the predefined names for color spaces. In the two ...WhiteColorSpaces, white
corresponds to a value of 1.0. In the two ...BlackColorSpaces, black corresponds to a value of 1.0.
NSNamedColorSpace is used for “catalog” colors—that is, colors specified by names rather than
coordinates. NSCustomColorSpace indicates a custom color space, which can be useful in
working with images; unlike the other color spaces, NSCustomColorSpace is not used with
NSColors.

NSColor—Grayscale Values

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS const float NSWhite;
const float NSLightGray ;
const float NSDarkGray;
const float NSBlack;

DESCRIPTION These are the standard gray values for the 2-bit deep grayscale color space.

45

NSColor—Notifications

DECLARED IN AppKit/NSColor.h

SYNOPSIS NSString *NSSystemColorsDidChangeNotification;

DESCRIPTION This notification is sent when the system colors have been changed (such as through a system
control panel interface). For more on system colors, see the “System Colors” section of the
NSColor class specification.

NSColorList—Notifications

DECLARED IN AppKit/NSColorList.h

SYNOPSIS NSString *NSColorListDidChangeNotification;

DESCRIPTION When an NSColorList changes, it posts this notification.

NSColorPanel—Notifications

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS NSString *NSColorPanelColorDidChangeNotification;

DESCRIPTION When an NSColorPanel changes, it posts this notification.

46

NSControl—Notifications

DECLARED IN AppKit/NSControl.h

SYNOPSIS NSString *NSControlTextDidBeginEditingNotification ;
NSString *NSControlTextDidEndEditingNotification ;
NSString *NSControlTextDidChangeNotification;

DESCRIPTION NSControls containing editable text can send these notifications. For more information, see the
“Notifications” section of the NSControl class specification.

NSDataLink—Filename Extension

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS NSString *NSDataLinkFilenameExtension;

DESCRIPTION NSDataLinkFilenameExtension is the filename extension used for links saved to files using
NSDataLink’s saveLinkIn: or writeToFile: methods.

47

NSFont—Keys to the AFM Dictionary

DECLARED IN AppKit/NSFont.h

SYNOPSIS NSString *NSAFMFamilyName;
NSString *NSAFMFontName;
NSString *NSAFMFormatVersion;
NSString *NSAFMFullName;
NSString *NSAFMNotice;
NSString *NSAFMVersion;
NSString *NSAFMWeight;
NSString *NSAFMEncodingScheme;
NSString *NSAFMCharacterSet;
NSString *NSAFMCapHeight;
NSString *NSAFMXHeight ;
NSString *NSAFMAscender;
NSString *NSAFMDescender;
NSString *NSAFMUnderlinePosition;
NSString *NSAFMUnderlineThickness;
NSString *NSAFMItalicAngle ;
NSString *NSAFMMappingScheme;

DESCRIPTION These are the keys to the font information dictionary returned by NSFont’s afmDictionary
method. To convert values like NSAFMCapHeight to floats, use NSString's floatValue method.

For other font information, use NSFont’s afmFileContents method.

NSFont—PostScript Transformation Matrix

DECLARED IN AppKit/NSFont.h

SYNOPSIS const float *NSFontIdentityMatrix ;

DESCRIPTION NSFontIdentityMatrix is a PostScript transformation matrix useful as a parameter to the NSFont
method fontWithName:matrix: .

48

NSHelpManager—Notifications

DECLARED IN AppKit/NSHelpManager.h

SYNOPSIS NSString *NSContextHelpModeDidActivateNotification;
NSString *NSContextHelpModeDidDeactivateNotification;

DESCRIPTION These are notifications for the activation and deactivation of the context help mode.

NSImageRep—Notifications

DECLARED IN AppKit/NSImageRep.h

SYNOPSIS NSString *NSImageRepRegistryDidChangeNotification;

DESCRIPTION This notification is sent when the NSImageRep class registry changes.

NSInterfaceStyleDefault

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS NSString *NSInterfaceStyleDefault;

DESCRIPTION NSInterfaceStyleDefault can be used to override the platform’s default interface style. For more
information, see the function NSInterfaceStyleForKey.

49

.

NSPasteboard—Names

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSGeneralPboard;
NSString *NSFontPboard;
NSString *NSRulerPboard;
NSString *NSFindPboard;
NSString *NSDragPboard;

DESCRIPTION Some standard pasteboard names. See the NSPasteboard class specification for more information

NSPasteboard—Type for Data Links

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS NSString *NSDataLinkPboardType;

DESCRIPTION A pasteboard type for copying a data link to the pasteboard. See the NSDataLink class
specification for more information.

NSPasteboard—Type for Selection Descriptions

DECLARED IN AppKit/NSSelection.h

SYNOPSIS NSString *NSSelectionPboardType;

DESCRIPTION A pasteboard type for copying selection descriptions to the pasteboard. See the NSSelection class
specification for more information.

50

NSPasteboard—Types for Standard Data

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSStringPboardType;
NSString *NSFilenamesPboardType;
NSString *NSPostScriptPboardType;
NSString *NSTIFFPboardType;
NSString *NSRTFPboardType;
NSString *NSTabularTextPboardType;
NSString *NSFontPboardType;
NSString *NSRulerPboardType;
NSString *NSFileContentsPboardType;
NSString *NSColorPboardType;
NSString *NSRTFDPboardType;

DESCRIPTION Some standard pasteboard data types. See the NSPasteboard class specification for more
information.

51

NSPrintInfo—Dictionary Keys

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS NSString *NSPrintPaperName;
NSString *NSPrintPaperSize;
NSString *NSPrintFormName;
NSString *NSPrintMustCollate;
NSString *NSPrintOrientation ;
NSString *NSPrintLeftMargin ;
NSString *NSPrintRightMargin ;
NSString *NSPrintTopMargin ;
NSString *NSPrintBottomMargin ;
NSString *NSPrintHorizontallyCentered;
NSString *NSPrintVerticallyCentered;
NSString *NSPrintHorizontalPagination;
NSString *NSPrintVerticalPagination;
NSString *NSPrintScalingFactor;
NSString *NSPrintAllPages;
NSString *NSPrintReversePageOrder;
NSString *NSPrintFirstPage;
NSString *NSPrintLastPage;
NSString *NSPrintCopies;
NSString *NSPrintPagesPerSheet;
NSString *NSPrintJobFeatures;
NSString *NSPrintPaperFeed;
NSString *NSPrintManualFeed;
NSString *NSPrintPrinter ;
NSString *NSPrintJobDisposition;

52

NSString *NSPrintSavePath;
NSString *NSPrintFaxReceiverNames;
NSString *NSPrintFaxReceiverNumbers;
NSString *NSPrintFaxSendTime;
NSString *NSPrintFaxUseCoverSheet;
NSString *NSPrintFaxCoverSheetName;
NSString *NSPrintFaxReturnReceipt;
NSString *NSPrintFaxHighResolution;
NSString *NSPrintFaxTrimPageEnds;
NSString *NSPrintFaxModem;
NSString *NSPrintSpoolJob;
NSString *NSPrintFaxJob;
NSString *NSPrintPreviewJob;
NSString *NSPrintSaveJob;
NSString *NSPrintCancelJob;

DESCRIPTION These are the keys to the NSPrintInfo NSDictionary. For a table explaining them, see the
NSPrintInfo method initWithDictionary: .

NSPopUpButton—Notification

DECLARED IN AppKit/NSPopUpButton.h

SYNOPSIS NSString *NSPopUpButtonWillPopUpNotification;

DESCRIPTION NSPopUpButton sends this notification when an instance of it is about to pop up.

NSPrintOperation—Exception

DECLARED IN AppKit/NSPrintOperation.h

SYNOPSIS NSString *NSPrintOperationExistsException;

DESCRIPTION This exception is raised when there is already a print operation in process. The methods that raise
it are the EPSOperation... and printOperation... methods in NSPrintOperation:

53

NSRunLoop—Modes

DECLARED IN AppKit/NSApplication.h

SYNOPSIS NSString *NSModalPanelRunLoopMode;
NSString *NSEventTrackingRunLoopMode;

DESCRIPTION These are modes passed to NSRunLoop

NSSplitView—Notifications

DECLARED IN AppKit/NSSplitView.h

SYNOPSIS NSString *NSSplitViewDidResizeSubviewsNotification;
NSString *NSSplitViewWillResizeSubviewsNotification;

DESCRIPTION These are the notifications that an NSSplitView can send.

NSTableView—Notifications

DECLARED IN AppKit/NSTableView.h

SYNOPSIS NSString *NSTableViewSelectionDidChangeNotification;
NSString *NSTableViewColumnDidMoveNotification;
NSString *NSTableViewColumnDidResizeNotification;
NSString *NSTableViewSelectionIsChangingNotification;

DESCRIPTION These are the notifications that an NSTableView can send.

54

NSText—Notifications

DECLARED IN AppKit/NSText.h

SYNOPSIS NSString *NSTextDidBeginEditingNotification;
NSString *NSTextDidEndEditingNotification ;
NSString *NSTextDidChangeNotification;

DESCRIPTION These notifications can be sent by an NSText object. For explanations, see the “Notifications”
section of the NSText class specification.

NSTextStorage—Notifications

DECLARED IN AppKit/NSTextStorage.h

SYNOPSIS NSString *NSTextStorageWillProcessEditingNotification;
NSString *NSTextStorageDidProcessEditingNotification;

DESCRIPTION These notifications can be sent by an NSTextStorage object. For explanations, see the
“Notifications” section of the NSTextStorage class specification.

NSTextView—Notifications

DECLARED IN AppKit/NSTextView.h

SYNOPSIS NSString *NSTextViewWillChangeNotifyingTextViewNotification;
NSString *NSTextViewDidChangeSelectionNotification;

DESCRIPTION These notifications can be sent by an NSTextView object. For explanations, see the
“Notifications” section of the NSTextView class specification.

The notifications that NSTextView most often sends are the ones that it inherits from NSText.

55

NSView—Notifications

DECLARED IN AppKit/NSView.h

SYNOPSIS NSString *NSViewFrameDidChangeNotification;
NSString *NSViewFocusDidChangeNotification;
NSString *NSViewBoundsDidChangeNotification;

DESCRIPTION These notifications are sent by NSViews.

The last notification, NSViewBoundsDidChangeNotification, is sent when the view bounds
change but the frame does not. That is, it is sent whenever the view's bounds are translated, scaled
or rotated, but not when the bounds change in response to, say, a setFrameSize: message.

NSWindow—Notifications

DECLARED IN AppKit/NSWindow.h

SYNOPSIS NSString *NSWindowDidBecomeKeyNotification;
NSString *NSWindowDidBecomeMainNotification;
NSString *NSWindowDidChangeScreenNotification;
NSString *NSWindowDidDeminiaturizeNotification;
NSString *NSWindowDidExposeNotification;
NSString *NSWindowDidMiniaturizeNotification ;
NSString *NSWindowDidMoveNotification;
NSString *NSWindowDidResignKeyNotification;
NSString *NSWindowDidResignMainNotification;
NSString *NSWindowDidResizeNotification;
NSString *NSWindowDidUpdateNotification;
NSString *NSWindowWillCloseNotification;
NSString *NSWindowWillMiniaturizeNotification ;
NSString *NSWindowWillMoveNotification ;

DESCRIPTION These are the notifications that can be sent by an NSWindow object. For explanations, see the
“Notifications” section of the NSWindow class specification.

56

NSWindow—Sizes

DECLARED IN AppKit/NSWindow.h

SYNOPSIS NSSize NSIconSize;
NSSize NSTokenSize;

DESCRIPTION On some platforms, a token is a bezeled tile used to represent a docked application or a
miniaturized document, and an icon is the image drawn inside a token.

On platforms that support tokens and icons, these size constants can be used for drawing inside
them. It is more portable, however, to change an icon by using the NSApplication method
setApplicationIconImage: or the NSWindow method setMiniwindowImage:.

NSWorkspace—File Operation Constants

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSWorkspaceMoveOperation;
NSString *NSWorkspaceCopyOperation;
NSString *NSWorkspaceLinkOperation;
NSString *NSWorkspaceCompressOperation;
NSString *NSWorkspaceDecompressOperation;
NSString *NSWorkspaceEncryptOperation;
NSString *NSWorkspaceDecryptOperation;
NSString *NSWorkspaceDestroyOperation;
NSString *NSWorkspaceRecycleOperation;
NSString *NSWorkspaceDuplicateOperation;

DESCRIPTION These constants define possible values for the operation slot in NSWorkspace’s
performFileOperation: ... method.

57

NSWorkspace—File Types

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSPlainFileType;
NSString *NSDirectoryFileType;
NSString *NSApplicationFileType;
NSString *NSFilesystemFileType;
NSString *NSShellCommandFileType;

DESCRIPTION These values are used in the final parameter slot of the NSWorkspace method getInfoForFile:
application:type:.

NSWorkspace—Notifications

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSWorkspaceDidLaunchApplicationNotification;
NSString *NSWorkspaceDidMountNotification;
NSString *NSWorkspaceDidPerformFileOperationNotification;
NSString *NSWorkspaceDidTerminateApplicationNotification;
NSString *NSWorkspaceDidUnmountNotification;
NSString *NSWorkspaceWillLaunchApplicationNotification ;
NSString *NSWorkspaceWillPowerOffNotification;
NSString *NSWorkspaceWillUnmountNotification;

DESCRIPTION These notifications come through the special notification center. For more information, see the
“Notifications” section of the NSWorkspace class specification.

58

1

Defined Types

NSBorderType

DECLARED IN

AppKit/NSView.h

SYNOPSIS

typedef enum _NSBorderType {

NSNoBorder

,

NSLineBorder

,

NSBezelBorder

,

NSGrooveBorder

}

NSBorderType

;

DESCRIPTION

This type represents the kinds of border that can be drawn around certain NSView subclasses.

NSButtonType

DECLARED IN

AppKit/NSButtonCell.h

SYNOPSIS

typedef enum _NSButtonType {

NSMomentaryPushButton

,

NSPushOnPushOffButton

,

NSToggleButton

,

NSSwitchButton

,

NSRadioButton

,

NSMomentaryChangeButton

,

NSOnOffButton

,

NSMomentaryLight

,
}

NSButtonType

;

DESCRIPTION

This type represents the way NSButtons and NSButtonCells behave when pressed, and the way
they display their state. See NSButton’s and NSButtonCell’s

setButtonType:

 methods for more
information.

2

NSCellAttribute

DECLARED IN

AppKit/NSCell.h

SYNOPSIS

typedef enum _NSCellAttribute {

NSCellDisabled

,

NSCellState

,

NSPushInCell

,

NSCellEditable

,

NSChangeGrayCell

,

NSCellHighlighted

,

NSCellLightsByContents

,

NSCellLightsByGray

,

NSChangeBackgroundCell

,

NSCellLightsByBackground

,

NSCellIsBordered

,

NSCellHasOverlappingImage

,

NSCellHasImageHorizontal

,

NSCellHasImageOnLeftOrBottom

,

NSCellChangesContents

,

NSCellIsInsetButton

,

NSCellAllowsMixedState

}

NSCellAttribute

;

DESCRIPTION

This is the type of the first argument to the NSCell methods

setCellAttribute:to:

 and

cellAttribute:

 methods. Some of the values apply not to NSCell but to one of its subclasses.

Often it’s preferable to change cell attributes using more specialized methods like

setState:

 or

setEditable:

.

3

NSCellImagePosition

DECLARED IN

AppKit/NSCell.h

SYNOPSIS

typedef enum _NSCellImagePosition {

NSNoImage

,

NSImageOnly

,

NSImageLeft

,

NSImageRight

,

NSImageBelow

,

NSImageAbove

,

NSImageOverlaps

,
}

NSCellImagePosition

;

DESCRIPTION

These constants represent the position of an NSButtonCell’s NSImage relative to its title. See
NSButton’s and NSButtonCell’s

setImagePosition:

 and

imagePosition

 methods for more
information.

NSCellType

DECLARED IN

AppKit/NSCell.h

SYNOPSIS

typedef enum _NSCellType {

NSNullCellType

,

NSTextCellType

,

NSImageCellType

,
}

NSCellType

;

DESCRIPTION

The values of this type determine what kind of data an NSCell displays. NSCells of type
NSTextCellType and NSImageCellType display text and images, respectively. NSCells of type
NSNullCellType display nothing. See the NSCell methods

type

 and

setType:

 for more
information.

4

NSDataLinkDisposition

DECLARED IN

AppKit/NSDataLink.h

SYNOPSIS

typedef enum _NSDataLinkDisposition {

NSLinkInDestination

,

NSLinkInSource

,

NSLinkBroken

}

NSDataLinkDisposition

;

DESCRIPTION

Returned by NSDataLink’s

disposition

 method to identify a link as a destination link, a source
link, or a broken link. See the NSDataLink class specification for more information on the
dispositions of links.

NSDataLinkNumber

DECLARED IN

AppKit/NSDataLink.h

SYNOPSIS

typedef int

NSDataLinkNumber

;

DESCRIPTION

The type returned by NSDataLink’s

linkNumber

 method as a persistent identifier of a destination
link.

NSDataLinkUpdateMode

DECLARED IN

AppKit/NSDataLink.h

SYNOPSIS

typedef enum _NSDataLinkUpdateMode {

NSUpdateContinuously

,

NSUpdateWhenSourceSaved

,

NSUpdateManually

,

NSUpdateNever

}

NSDataLinkUpdateMode

;

5

DESCRIPTION

Used by NSDataLink’s

setUpdateMode:

 and

updateMode

 methods to identify when a link’s
data is to be updated.

NSEventType

DECLARED IN

AppKit/NSEvent.h

SYNOPSIS

typedef enum _NSEventType {

NSLeftMouseDown

,

NSLeftMouseUp

,
NSRightMouseDown,
NSRightMouseUp,
NSMouseMoved,
NSLeftMouseDragged,
NSRightMouseDragged,
NSMouseEntered,
NSMouseExited,
NSKeyDown,
NSKeyUp,
NSFlagsChanged,
NSAppKitDefined,
NSSystemDefined,
NSApplicationDefined
NSPeriodic,
NSCursorUpdate

} NSEventType;

DESCRIPTION This type represents various kinds of events. It is the return type of NSEvent’s type method, and
the type of the first argument to NSEvent’s ...EventWithType: methods.

6

NSFontAction

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS typedef enum _NSFontAction {
NSNoFontChangeAction,
NSViaPanelFontAction,
NSAddTraitFontAction ,
NSSizeUpFontAction,
NSSizeDownFontAction,
NSHeavierFontAction,
NSLighterFontAction ,
NSRemoveTraitFontAction

} NSFontAction;

DESCRIPTION Values of this type tag the actions of font menu cells. When a font menu cell sends a message to
NSFontManager, NSFontManager checks the cell for one of these tags.

This type is in the API for explanatory purposes only. You will never use it directly.

NSFontTraitMask

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS typedef unsigned int NSFontTraitMask;

DESCRIPTION An NSFontTraitMask characterizes one or more of a font’s traits. It’s used as an argument type
for NSAttributedString’s applyFontTraits:range: method, NSCStringText’s setSelFontStyle:
method, and several of the methods in the NSFontManager class.

7

NSGlyph

DECLARED IN AppKit/NSFont.h

SYNOPSIS typedef unsigned int NSGlyph;

DESCRIPTION This type is used to specify PostScript glyphs in such NSFont methods as glyphWithName:.

NSGlyphInscription

DECLARED IN AppKit/NSLayoutManager.h

SYNOPSIS typedef enum {
NSGlyphInscribeBase,
NSGlyphInscribeBelow,
NSGlyphInscribeAbove,
NSGlyphInscribeOverstrike,
NSGlyphInscribeOverBelow

} NSGlyphInscription ;

DESCRIPTION The inscribe attribute of an glyph determines how it is laid out relative to the previous glyph.

NSGlyphRelation

DECLARED IN AppKit/NSFont.h

SYNOPSIS typedef enum _NSGlyphRelation {
NSGlyphBelow,
NSGlyphAbove,

} NSGlyphRelation;

DESCRIPTION This type specifies the position of a glyph in relation to the base glyph. Parameters of this type
are used in the second slot of the NSFont method positionOfGlyph:withRelation:
toBaseGlyph:....

8

NSGradientType

DECLARED IN AppKit/NSButtonCell.h

SYNOPSIS typedef enum _NSGradientType {
NSGradientNone,
NSGradientConcaveWeak,
NSGradientConcaveStrong,
NSGradientConvexWeak,
NSGradientConvexStrong

} NSGradientType;

DESCRIPTION This type represents the darkness gradient of an NSButtonCell. A concave gradient is darkest in
the top left corner, a convex gradient is darkest in the bottom right corner. A weak gradient has
only weak darkness contrast between opposite corners; a strong gradient has strong contrast. See
the NSButtonCell methods gradient and setGradient: for more information.

NSImageAlignment

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSImageAlignCenter,
NSImageAlignTop,
NSImageAlignTopLeft,
NSImageAlignTopRight,
NSImageAlignLeft,
NSImageAlignBottom,
NSImageAlignBottomLeft,
NSImageAlignBottomRight,
NSImageAlignRight

} NSImageAlignment;

DESCRIPTION This type defines the ways of aligning an NSImage within an NSImageCell. It is the return type
for NSImageCell’s and NSImageView’s imageAlignment methods, and an argument type for
their setImageAlignment: methods.

9

NSImageFrameStyle

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSImageFrameNone,
NSImageFramePhoto,
NSImageFrameGrayBezel,
NSImageFrameGroove,
NSImageFrameButton

} NSImageFrameStyle;

DESCRIPTION This type defines the kinds of frames that can appear around an NSImageCell. It is the return type
for NSImageCell’s and NSImageView’s imageFrameStyle methods, and an argument type for
their setImageFrameStyle: methods.

NSImageScaling

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSScaleProportionally,
NSScaleToFit,
NSScaleNone

} NSImageScaling;

DESCRIPTION This type defines the ways that an image can be scaled to fit an NSImageCell. The value
NSScaleProportionally means that the image should be scaled in a way that preserves its
proportions. The value NSScaleToFit means that the image should fit the NSView, even if that
means its proportions must be distorted. The value NSScaleNone means that the image’s size
should be preserved, even if it must be clipped to fit the NSView.

10

NSInterfaceStyle

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS typedef enum {
NSNoInterfaceStyle,
NSNextStepInterfaceStyle,
NSWindows95InterfaceStyle,
NSMacintoshInterfaceStyle

} NSInterfaceStyle;

DECLARED IN This type defines the style of an application’s user interface. It is returned by the interfaceStyle
method and taken as an argument by the setInterfaceStyle: method. Both of the these methods
are in the NSInterfaceStyle category of NSResponder.

For more information, see the function NSInterfaceStyleForKey.

NSLineBreakMode

DECLARED IN AppKit/NSParagraphStyle.h

SYNOPSIS typedef enum _NSLineBreakMode {
NSLineBreakByWordWrapping ,
NSLineBreakByCharWrapping ,
NSLineBreakByClipping,
NSLineBreakByTruncatingHead,
NSLineBreakByTruncatingTail ,
NSLineBreakByTruncatingMiddle

} NSLineBreakMode;

DESCRIPTION This type defines the ways that a long paragraph can be broken into lines. The possible values are
described below.

Value Meaning

NSLineBreakByWordWrapping The default value. At the last possible word boundary, the
paragraph wraps to the next line.

11

NSLineMovementDirection

DECLARED IN AppKit/NSTextContainer.h

SYNOPSIS typedef enum {
NSLineDoesntMove,
NSLineMovesLeft,
NSLineMovesRight,
NSLineMovesDown,
NSLineMovesUp

} NSLineMovementDirection;

DESCRIPTION This is an argument type for the NSTextContainer method
lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:.

NSLineBreakByCharWrapping At the last possible character, the paragraph wraps to the
next line.

NSLineBreakByClipping As much of the paragraph appears as will fit on a single
line. This value has the same effect as
NSLineBreakByTruncatingTail

NSLineBreakByTruncatingHead As much of the paragraph appears as will fit on a single
line. Characters from the start of the paragraph do not
appear.

NSLineBreakByTruncatingTail As much of the paragraph appears as will fit on a single
line. Characters from the end of the paragraph do not
appear.

NSLineBreakByTruncatingMiddle As much of the paragraph appears as will fit on a single
line. Characters from the middle of the paragraph do not
appear.

Value Meaning

12

NSLineSweepDirection

DECLARED IN AppKit/NSTextContainer.h

SYNOPSIS typedef enum {
NSLineSweepLeft,
NSLineSweepRight,
NSLineSweepDown,
NSLineSweepUp

} NSLineSweepDirection;

DESCRIPTION This is an argument type for the NSTextContainer method
lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:.

NSMatrixMode

DECLARED IN AppKit/NSMatrix.h

SYNOPSIS typedef enum _NSMatrixMode {
NSRadioModeMatrix,
NSHighlightModeMatrix ,
NSListModeMatrix ,
NSTrackModeMatrix

} NSMatrixMode ;

DESCRIPTION These constants represent the modes of operation of an NSMatrix, as described in the NSMatrix
class specification.

NSModalSession

DECLARED IN AppKit/NSApplication.h

SYNOPSIS typedef struct _NSModalSession *NSModalSession;

13

DESCRIPTION Variables of type NSModalSession point to information used by the system between
beginModalSession:for: and endModalSession: messages.

NSPrinterTableStatus

DECLARED IN AppKit/NSPrinter.h

SYNOPSIS typedef enum _NSPrinterTableStatus {
NSPrinterTableOK ,
NSPrinterTableNotFound,
NSPrinterTableError

} NSPrinterTableStatus;

DESCRIPTION These constants are used to describe the state of a printer-information table stored by an
NSPrinter object. See the NSPrinter method statusForTable: for more information.

NSPrintingOrientation

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS typedef enum _NSPrintingOrientation {
NSPortraitOrientation ,
NSLandscapeOrientation

} NSPrintingOrientation ;

DESCRIPTION These constants represent the way a page is oriented for printing. In NSPortraitOrientation, the
page is taller than it is wide; in NSLandscapeOrientation, the page is wider than it is tall. See the
NSPrintInfo methods orientation and setOrientation: for more information.

14

NSPrintingPageOrder

DECLARED IN AppKit/NSPrintOperation.h

SYNOPSIS typedef enum _NSPrintingPageOrder {
NSDescendingPageOrder,
NSSpecialPageOrder,
NSAscendingPageOrder,
NSUnknownPageOrder

} NSPrintingPageOrder;

DESCRIPTION This type represents the order in which pages are to be printed. The value NSSpecialPageOrder
tells the spooler to not rearrange the pages. The value NSUnknownPageOrder means that no page
order is written out. See the NSPrintOperation methods pageOrder and setPageOrder: for more
information.

NSPrintingPaginationMode

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS typedef enum _NSPrintingPaginationMode {
NSAutoPagination,
NSFitPagination,
NSClipPagination

} NSPrintingPaginationMode;

DESCRIPTION These constants represent the different ways in which an image is divided into pages. The value
NSFitPagination forces the image to fit on one page. The value NSClipPagination allows the
image to be clipped by the page.See the NSPrintInfo class specification for a fuller explanation.

15

NSRulerOrientation

DECLARED IN AppKit/NSRulerView.h

SYNOPSIS typedef enum {
NSHorizontalRuler,
NSVerticalRuler

} NSRulerOrientation;

DESCRIPTION This type defines whether an NSRulerView will be displayed horizontally or vertically. It is the
return type of NSRulerView’s orientation method, and an argument to the NSRulerView
methods setOrientation: and initWithScrollView:orientation: .

NSScrollArrowPosition

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollArrowPosition {
NSScrollerArrowsMaxEnd,
NSScrollerArrowsMinEnd ,
NSScrollerArrowsNone

} NSScrollArrowPosition;

DESCRIPTION These constants are used in NSScroller’s setArrowsPosition: method to set the position of the
arrows within the scroller.

NSScrollerArrow

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollerArrow {
NSScrollerIncrementArrow ,
NSScrollerDecrementArrow

} NSScrollerArrow ;

16

DESCRIPTION This is the type of the first argument to the NSScroller method drawArrow:highlight: . The value
determines which scroll button is drawn.

NSScrollerPart

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollerPart {
NSScrollerNoPart,
NSScrollerDecrementPage,
NSScrollerKnob,
NSScrollerIncrementPage,
NSScrollerDecrementLine,
NSScrollerIncrementLine,
NSScrollerKnobSlot

} NSScrollerPart;

DESCRIPTION These constants are used in Scroller’s hitPart method to identify the part of the Scroller specified
in a mouse event.

NSSelectionAffinity

DECLARED IN AppKit/NSTextView.h

SYNOPSIS typedef enum _NSSelectionAffinity {
NSSelectionAffinityUpstream,
NSSelectionAffinityDownstream

} NSSelectionAffinity;

DESCRIPTION This is the return type of the NSTextView method selectionAffinity, and the type of the second
argument to the NSTextView method setSelectedRange:affinity:stillSelecting:.

17

NSSelectionDirection

DECLARED IN AppKit/NSWindow.h

SYNOPSIS typedef enum _NSSelectionDirection {
NSDirectSelection,
NSSelectingNext,
NSSelectingPrevious

} NSSelectionDirection;

DESCRIPTION This is the return type of the NSWindow method keyViewSelectionDirection.

NSSelectionGranularity

DECLARED IN AppKit/NSTextView.h

SYNOPSIS typedef enum _NSSelectionGranularity {
NSSelectByCharacter,
NSSelectByWord,
NSSelectByParagraph

} NSSelectionGranularity;

DESCRIPTION This is the return type of the NSTextView method selectionGranularity, and the type of arguments
to two other NSTextView methods, setSelectionGranularity: and
selectionRangeForProposedRange:granularity:.

18

NSTextAlignment

DECLARED IN AppKit/NSText.h

SYNOPSIS typedef enum _NSTextAlignment {
NSLeftTextAlignment,
NSRightTextAlignment,
NSCenterTextAlignment,
NSJustifiedTextAlignment,
NSNaturalTextAlignment

} NSTextAlignment;

DESCRIPTION Variables of this type are used as arguments and return values for methods that specify text
alignment.

NSTextTabType

DECLARED IN AppKit/NSParagraphStyle.h

SYNOPSIS typedef enum _NSTextTabType {
NSLeftTabStopType,
NSRightTabStopType,
NSCenterTabStopType,
NSDecimalTabStopType

} NSTextTabType;

DESCRIPTION This is the return type of NSTextTab’s tabStopType method, and an argument to NSTextTab’s
initWithType:location: method.

NSTIFFCompression

SYNOPSIS AppKit/NSBitmapImageRep.h

19

SYNOPSIS typedef enum _NSTIFFCompression {
NSTIFFCompressionNone,
NSTIFFCompressionCCITTFAX3,
NSTIFFCompressionCCITTFAX4,
NSTIFFCompressionLZW,
NSTIFFCompressionJPEG,
NSTIFFCompressionNEXT,
NSTIFFCompressionPackBits,
NSTIFFCompressionOldJPEG

} NSTIFFCompression;

DESCRIPTION These constants represent the various TIFF (tag image file format) data compression schemes.
See the NSBitmapImageRep class specification for their meanings.

NSTitlePosition

DECLARED IN AppKit/NSBox.h

SYNOPSIS typedef enum _NSTitlePosition {
NSNoTitle,
NSAboveTop,
NSAtTop,
NSBelowTop,
NSAboveBottom,
NSAtBottom,
NSBelowBottom

} NSTitlePosition;

DESCRIPTION This type represents the locations where an NSBox’s title can be placed with respect to its border.
Thus, for example, NSAboveTop means the title is above the top of the border, NSAtTop means
the title breaks the top border, and so on. See the NSBox methods titlePosition and
setTitlePosition:.

20

NSTrackingRectTag

DECLARED IN AppKit/NSView.h

SYNOPSIS typedef int NSTrackingRectTag;

DESCRIPTION This type describes the rectangle used to track the mouse. See the NSView methods
addTrackingRect:... and removeTrackingRect:.

NSUsableScrollerParts

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSUsableScrollerParts {
NSNoScrollerParts,
NSOnlyScrollerArrows,
NSAllScrollerParts

} NSUsableScrollerParts;

DESCRIPTION This type defines the usable parts of an NSScroller; see the class specification for more
information.

NSWindowDepth

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS typedef int NSWindowDepth;

DESCRIPTION This type represents the depth, or amount of memory, devoted to a single pixel in a window or
screen.

21

Enumerations

NSApplication—Modal Session Return Values

DECLARED IN AppKit/NSApplication.h

SYNOPSIS enum {
NSRunStoppedResponse,
NSRunAbortedResponse,
NSRunContinuesResponse

};

DESCRIPTION Return values for the NSApplication methods runModalFor: and runModalSession:.

NSAttributedString—Underlining

DECLARED IN AppKit/NSAttributedString.h

SYNOPSIS enum {
NSSingleUnderlineStyle

};

DESCRIPTION This defines the only currently supported value for NSUnderlineStyleAttributeName.

22

NSButtonCell—State Masks

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSNoCellMask,
NSContentsCellMask,
NSPushInCellMask,
NSChangeGrayCellMask,
NSChangeBackgroundCellMask

};

DESCRIPTION These masks are passed to the NSButtonCell methods highlightsBy: and showsStateBy:.

23

NSCell—Action Flags

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSLeftMouseDownMask,
NSLeftMouseUpMask,
NSRightMouseDownMask,
NSRightMouseUpMask,
NSMouseMovedMask,
NSLeftMouseDraggedMask,
NSRightMouseDraggedMask,
NSMouseEnteredMask,
NSMouseExitedMask,
NSKeyDownMask,
NSKeyUpMask,
NSFlagsChangedMask,
NSAppKitDefinedMask,
NSSystemDefinedMask,
NSApplicationDefinedMask,
NSPeriodicMask,
NSCursorUpdateMask,
NSAnyEventMask

};

DESCRIPTION These constants are masks for different kinds of events. You pass them to NSCell’s
sendActionOn: method to indicate when an NSCell should send its action message.

24

NSCell—Data Entry Types

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSAnyType,
NSIntType,
NSPositiveIntType,
NSFloatType,
NSPositiveFloatType,
NSDoubleType,
NSPositiveDoubleType

};

DESCRIPTION These constants represent the numeric data types that a text NSCell can accept. See NSCell’s
setEntryType: method for more information.

NSCell—States

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSStateMixed,
NSStateOff,
NSStateOn

};

DESCRIPTION These constants are suggested parameter values for the NSCell method setState:.

25

NSColorPanel—Modes

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS enum {
NSGrayModeColorPanel,
NSRGBModeColorPanel,
NSCMYKModeColorPanel,
NSHSBModeColorPanel,
NSCustomPaletteModeColorPanel,
NSColorListModeColorPanel,
NSWheelModeColorPanel

};

DESCRIPTION These constants represent the possible modes of an NSColorPanel.

NSColorPanel—Mode Masks

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS enum {
NSColorPanelGrayModeMask,
NSColorPanelRGBModeMask,
NSColorPanelCMYKModeMask,
NSColorPanelHSBModeMask,
NSColorPanelCustomPaletteModeMask,
NSColorPanelColorListModeMask,
NSColorPanelWheelModeMask,
NSColorPanelAllModesMask

};

DESCRIPTION These constants provide masks for the NSColorPanel modes.

26

NSDragging—Operations

DECLARED IN AppKit/NSDragging.h

SYNOPSIS enum {
NSDragOperationNone,
NSDragOperationCopy,
NSDragOperationLink ,
NSDragOperationGeneric,
NSDragOperationPrivate,
NSDragOperationAll

};

DESCRIPTION These constants define the operations that result from a user’s drag. For full descriptions of their
meanings and uses, see the method descriptions for draggingSourceOperationMaskForLocal:
(in the NSDraggingSource protocol), draggingSourceOperationMask (in the NSDraggingInfo
protocol), or draggingEntered: (in the NSDraggingDestination protocol).

NSEvent—Function-Key Unicodes

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSUpArrowFunctionKey = 0xF700,
NSDownArrowFunctionKey = 0xF701,
NSLeftArrowFunctionKey = 0xF702,
NSRightArrowFunctionKey = 0xF703,
NSF1FunctionKey = 0xF704,
NSF2FunctionKey = 0xF705,
NSF3FunctionKey = 0xF706,
NSF4FunctionKey = 0xF707,
NSF5FunctionKey = 0xF708,
NSF6FunctionKey = 0xF709,
NSF7FunctionKey = 0xF70A,
NSF8FunctionKey = 0xF70B,
NSF9FunctionKey = 0xF70C,
NSF10FunctionKey = 0xF70D,

27

NSF11FunctionKey = 0xF70E,
NSF12FunctionKey = 0xF70F,
NSF13FunctionKey = 0xF710,
NSF14FunctionKey = 0xF711,
NSF15FunctionKey = 0xF712,
NSF16FunctionKey = 0xF713,
NSF17FunctionKey = 0xF714,
NSF18FunctionKey = 0xF715,
NSF19FunctionKey = 0xF716,
NSF20FunctionKey = 0xF717,
NSF21FunctionKey = 0xF718,
NSF22FunctionKey = 0xF719,
NSF23FunctionKey = 0xF71A,
NSF24FunctionKey = 0xF71B,
NSF25FunctionKey = 0xF71C,
NSF26FunctionKey = 0xF71D,
NSF27FunctionKey = 0xF71E,
NSF28FunctionKey = 0xF71F,
NSF29FunctionKey = 0xF720,
NSF30FunctionKey = 0xF721,
NSF31FunctionKey = 0xF722,
NSF32FunctionKey = 0xF723,
NSF33FunctionKey = 0xF724,
NSF34FunctionKey = 0xF725,
NSF35FunctionKey = 0xF726,
NSInsertFunctionKey = 0xF727,
NSDeleteFunctionKey = 0xF728,
NSHomeFunctionKey = 0xF729,
NSBeginFunctionKey = 0xF72A,
NSEndFunctionKey = 0xF72B,
NSPageUpFunctionKey = 0xF72C,
NSPageDownFunctionKey = 0xF72D,
NSPrintScreenFunctionKey = 0xF72E,
NSScrollLockFunctionKey = 0xF72F,
NSPauseFunctionKey = 0xF730,
NSSysReqFunctionKey = 0xF731,
NSBreakFunctionKey = 0xF732,
NSResetFunctionKey = 0xF733,
NSStopFunctionKey = 0xF734,
NSMenuFunctionKey = 0xF735,
NSUserFunctionKey = 0xF736,
NSSystemFunctionKey = 0xF737,
NSPrintFunctionKey = 0xF738,

28

NSClearLineFunctionKey = 0xF739,
NSClearDisplayFunctionKey = 0xF73A,
NSInsertLineFunctionKey = 0xF73B,
NSDeleteLineFunctionKey = 0xF73C,
NSInsertCharFunctionKey = 0xF73D,
NSDeleteCharFunctionKey = 0xF73E,
NSPrevFunctionKey = 0xF73F,
NSNextFunctionKey = 0xF740,
NSSelectFunctionKey = 0xF741,
NSExecuteFunctionKey = 0xF742,
NSUndoFunctionKey = 0xF743,
NSRedoFunctionKey = 0xF744,
NSFindFunctionKey = 0xF745,
NSHelpFunctionKey = 0xF746,
NSModeSwitchFunctionKey = 0xF747

};

DESCRIPTION These Unicodes (0xF700-0xF8FF) are reserved for function keys on the keyboard. Combined in
NSStrings, they may be used in the return value of the NSEvent methods characters..., and in
parameters of the NSEvent method keyEventWithType:...characters:....

NSEvent—Modifier Flags

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSAlphaShiftKeyMask,
NSShiftKeyMask,
NSControlKeyMask,
NSAlternateKeyMask,
NSCommandKeyMask,
NSNumericPadKeyMask,
NSHelpKeyMask,
NSFunctionKeyMask

};

DESCRIPTION These are device-independent bits found in event modifier flags.

29

NSEvent—Types Defined by the Application Kit

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSWindowExposedEventType,
NSApplicationActivatedEventType,
NSApplicationDeactivatedEventType,
NSWindowMovedEventType,
NSScreenChangedEventType

};

DESCRIPTION These constants represent the types of events defined by the Application Kit.

NSEvent—Types Defined by the System

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSPowerOffEventType

};

DESCRIPTION This constant means that the user is turning off the computer.

Constant Meaning

NSWindowExposedEventType A nonretained NSWindow has been exposed

NSApplicationActivatedEventType The application has been activated

NSApplicationDeactivatedEventType The application has been deactivated

NSWindowMovedEventType An NSWindow has moved

NSScreenChangedEventType An NSWindow has changed screens

30

NSFont—Traits

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS enum {
NSItalicFontMask,
NSBoldFontMask,
NSUnboldFontMask,
NSNonStandardCharacterSetFontMask,
NSNarrowFontMask,
NSExpandedFontMask,
NSCondensedFontMask,
NSSmallCapsFontMask,
NSPosterFontMask,
NSCompressedFontMask,
NSFixedPitchFontMask,
NSUnitalicFontMask

};

DESCRIPTION These constants are used by the NSFontManager to identify font traits. Some traits are mutually
exclusive, such as NSExpandedFontMask and NSCondensedFontMask.

NSFontPanel—Tags for Subviews

DECLARED IN AppKit/NSFontPanel.h

SYNOPSIS enum {
NSFPPreviewButton,
NSFPRevertButton,
NSFPSetButton,
NSFPPreviewField,
NSFPSizeField,
NSFPSizeTitle,
NSFPCurrentField

};

DESCRIPTION These tags identify the NSViews within an NSFontPanel.

31

NSGlyph—Attributes

DECLARED IN AppKit/NSLayoutManager.h

SYNOPSIS enum _NSGlyphAttribute {
NSGlyphAttributeSoft ,
NSGlyphAttributeElastic ,
NSGlyphAttributeInscribe

};

DESCRIPTION These glyph attributes are used only inside the glyph generation machinery, but must be shared
between components.

NSGlyph—Reserved Glyph Codes

DECLARED IN AppKit/NSFont.h

SYNOPSIS enum {
NSControlGlyph = 0x00FFFFFF,
NSNullGlyph = 0x0

};

DESCRIPTION These two values are reserved for the two named NSGlyphs.

NSImageRep—Display Device Matching

DECLARED IN AppKit/NSImageRep.h

SYNOPSIS enum {
NSImageRepMatchesDevice

};

32

DESCRIPTION This constant is used by NSImageRep to indicate that the value of certain attributes, such as the
number of colors, or bits-per-sample, will change to match the display device. See the
NSImageRep class specification for more information.

NSPageLayoutPanel—Tags for Controls

DECLARED IN AppKit/NSPageLayout.h

SYNOPSIS enum {
NSPLImageButton,
NSPLTitleField,
NSPLPaperNameButton,
NSPLUnitsButton,
NSPLWidthForm ,
NSPLHeightForm,
NSPLOrientationMatrix ,
NSPLCancelButton,
NSPLOKButton

};

DESCRIPTION These constants represent the tag values of the controls displayed by an NSPageLayoutPanel.

NSPanel—Alert Panel Return Values

DECLARED IN AppKit/NSPanel.h

SYNOPSIS enum {
NSAlertDefaultReturn ,
NSAlertAlternateReturn ,
NSAlertOtherReturn ,
NSAlertErrorReturn

};

33

DESCRIPTION These constants define values returned by the NSRunAlertPanel function and by the
NSApplication method runModalSession: when the modal session is run with an NSPanel
provided by the NSGetAlertPanel function.

NSPanel—Modal Panel Return Values

DECLARED IN AppKit/NSPanel.h

SYNOPSIS enum {
NSOKButton,
NSCancelButton

};

DESCRIPTION These are the possible return values for such methods as the runModal... methods of
NSOpenPanel, which tells which button (OK or Cancel) the user has clicked on an open panel.
For other uses of these return values, see the class descriptions for NSPageLayout, NSPrintPanel
and NSSavePanel.

34

NSPrintPanel—Tags for Subviews

DECLARED IN AppKit/NSPrintPanel.h

SYNOPSIS enum {
NSPPSaveButton,
NSPPPreviewButton,
NSFaxButton,
NSPPTitleField,
NSPPImageButton,
NSPPNameTitle,
NSPPNameField,
NSPPNoteTitle,
NSPPNoteField,
NSPPStatusTitle,
NSPPStatusField,
NSPPCopiesField,
NSPPPageChoiceMatrix,
NSPPPageRangeFrom,
NSPPPageRangeTo,
NSPPScaleField,
NSPPOptionsButton,
NSPPPaperFeedButton,
NSPPLayoutButton

};

DESCRIPTION These constants define tags for identifying the NSViews in a print panel in environments other
than Microsoft Windows. Windows has its own way of handling print panels.

NSRunLoop—Ordering Modes for NSApplication

DECLARED IN AppKit/NSApplication.h

SYNOPSIS enum {
NSUpdateWindowsRunLoopOrdering

};

35

DESCRIPTION This constants is used with NSRunLoop's performSelector:target:argument:order:modes:
method.

NSRunLoop—Ordering Mode for NSDPSServerContext

DECLARED IN AppKit/NSDPSServerContext.h

SYNOPSIS enum {
DPSFlushContextRunLoopOrdering

};

DESCRIPTION This constants is used with NSRunLoop's method performSelector:target:argument:order:
modes:.

NSRunLoop—Ordering Modes for NSWindow

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSDisplayWindowRunLoopOrdering,
NSResetCursorRectsRunLoopOrdering

};

DESCRIPTION These constants are passed to NSRunLoop’s method performSelector:target:argument:order:
modes:.

36

NSSavePanel—Tags for Subviews

DECLARED IN AppKit/NSSavePanel.h

SYNOPSIS enum {
NSFileHandlingPanelImageButton,
NSFileHandlingPanelTitleField,
NSFileHandlingPanelBrowser,
NSFileHandlingPanelCancelButton,
NSFileHandlingPanelOKButton,
NSFileHandlingPanelForm,
NSFileHandlingPanelHomeButton,
NSFileHandlingPanelDiskButton,
NSFileHandlingPanelDiskEjectButton

};

DESCRIPTION These constants define tags for identifying NSViews in an NSSavePanel.

NSTextAttachment—Attachment Character

DECLARED IN AppKit/NSTextAttachment.h

SYNOPSIS enum {
NSAttachmentCharacter = 0xfffc

};

37

DECLARED IN This Unicode indicates the presence of an attachment in an NSAttributedString. For more
information, see the Class Cluster Description of NSAttributedStringAdditions.

NSText—Important Unicodes

DECLARED IN AppKit/NSText.h

SYNOPSIS enum {
NSParagraphSeparatorCharacter = 0x2029,
NSLineSeparatorCharacter = 0x2028,
NSTabCharacter = 0x0009,
NSFormFeedCharacter = 0x000c,
NSNewlineCharacter = 0x000a,
NSCarriageReturnCharacter = 0x000d,
NSEnterCharacter = 0x0003,
NSBackspaceCharacter = 0x0008,
NSBackTabCharacter = 0x0019,
NSDeleteCharacter = 0x007f,

};

DESCRIPTION These constants specify several commonly-used Unicode characters.

38

NSText—Movement Codes

DECLARED IN AppKit/NSText.h

SYNOPSIS enum {
NSIllegalTextMovement,
NSReturnTextMovement,
NSTabTextMovement,
NSBacktabTextMovement,
NSLeftTextMovement,
NSRightTextMovement,
NSUpTextMovement,
NSDownTextMovement

};

DESCRIPTION These constants are the codes for movement between fields. They are the possible int values for
the NSTextMovement key of NSTextDidEndEditingNotification. For more information, see the
“Notifications” section of the NSText class specification.

NSTextStorage—Editing

DECLARED IN AppKit/NSTextStorage.h

SYNOPSIS enum {
NSTextStorageEditedAttributes,
NSTextStorageEditedCharacters

};

DESCRIPTION These values, which may be combined by a bitwise OR, help describe the changes that an editing
session has made to an NSTextStorage object. They are the return values of the NSTextStorage
method editedMask, and the parameter values for the second slot of the NSLayoutManager
method textStorage:edited:....

39

NSView—Resizing

DECLARED IN AppKit/NSView.h

SYNOPSIS enum {
NSViewNotSizable,
NSViewMinXMargin ,
NSViewWidthSizable,
NSViewMaxXMargin ,
NSViewMinYMargin ,
NSViewHeightSizable,
NSViewMaxYMargin

};

DESCRIPTION Used to describe which parts of an NSView (or its margins) are resized when the NSView’s
superNSView is resized. See the NSView class specification for details.

NSWindow—Border Masks

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSBorderlessWindowMask,
NSTitledWindowMask,
NSClosableWindowMask,
NSMiniaturizableWindowMask ,
NSResizableWindowMask

};

DESCRIPTION These determine the presence of a title and various buttons in an NSWindow’s border.

40

NSWindow—Window Levels

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSNormalWindowLevel,
NSFloatingWindowLevel,
NSDockWindowLevel,
NSSubmenuWindowLevel,
NSTornOffMenuWindowLevel ,
NSMainMenuWindowLevel,
NSModalPanelWindowLevel,
NSPopUpMenuWindowLevel

};

DESCRIPTION These constants name the Application Kit’s window levels. The stacking of levels takes
precedence over the stacking of windows within each level. That is, even the bottom window in
a level will obscure even the top window of the next level down.

The constant NSTornOffMenuWindowLevel is preferable to its synonym,
NSSubmenuWindowLevel.

41

Global Variables

Application Kit—Exceptions

DECLARED IN AppKit/NSErrors.h

SYNOPSIS NSString *NSTextLineTooLongException;
NSString *NSTextNoSelectionException;
NSString *NSWordTablesWriteException;
NSString *NSWordTablesReadException;
NSString *NSTextReadException;
NSString *NSTextWriteException;
NSString *NSPasteboardCommunicationException;
NSString *NSPrintingCommunicationException;
NSString *NSAbortModalException;
NSString *NSAbortPrintingException ;
NSString *NSIllegalSelectorException;
NSString *NSAppKitVirtualMemoryException ;
NSString *NSBadRTFDirectiveException;
NSString *NSBadRTFFontTableException;
NSString *NSBadRTFStyleSheetException;
NSString *NSTypedStreamVersionException;
NSString *NSTIFFException;
NSString *NSPrintPackageException;
NSString *NSBadRTFColorTableException;
NSString *NSDraggingException;

42

NSString *NSColorListIOException;
NSString *NSColorListNotEditableException;
NSString *NSBadBitmapParametersException;
NSString *NSWindowServerCommunicationException;
NSString *NSFontUnavailableException;
NSString *NSPPDIncludeNotFoundException;
NSString *NSPPDParseException;
NSString *NSPPDIncludeStackOverflowException;
NSString *NSPPDIncludeStackUnderflowException;
NSString *NSRTFPropertyStackOverflowException;
NSString *NSAppKitIgnoredException;
NSString *NSBadComparisonException;
NSString *NSImageCacheException;
NSString *NSNibLoadingException;
NSString *NSBrowserIllegalDelegateException;

DESCRIPTION These constants name the exceptions that the Application Kit can raise.

Display Device—Descriptions

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSDeviceResolution;
NSString *NSDeviceColorSpaceName;
NSString *NSDeviceBitsPerSample;
NSString *NSDeviceIsScreen;
NSString *NSDeviceIsPrinter;
NSString *NSDeviceSize;

DESCRIPTION These are the keys for device description dictionaries, such as those returned by the
deviceDictionary methods of NSPrinter, NSScreen and NSWindow.

NSDeviceResolution is an NSValue containing an NSSize in dots per inch. NSColorSpaceName
is an NSString describing the color space of the device. NSDeviceBitsPerSample is an NSValue
containing an int. NSDeviceIsScreen and NSDeviceIsPrinter are boolean values that tell whether
the device is a screen or a printer. NSDeviceSize is an NSValue containing an NSSize that
represents the device’s size in points.

43

NSApplication—Notifications

DECLARED IN AppKit/NSApplication.h

SYNOPSIS NSString *NSApplicationDidBecomeActiveNotification;
NSString *NSApplicationDidFinishLaunchingNotification ;
NSString *NSApplicationDidHideNotification ;
NSString *NSApplicationDidResignActiveNotification;
NSString *NSApplicationDidUnhideNotification;
NSString *NSApplicationDidUpdateNotification;
NSString *NSApplicationWillBecomeActiveNotification;
NSString *NSApplicationWillFinishLaunchingNotification ;
NSString *NSApplicationWillHideNotification ;
NSString *NSApplicationWillResignActiveNotification;
NSString *NSApplicationWillUnhideNotification ;
NSString *NSApplicationWillUpdateNotification ;
NSString *NSApplicationWillTerminateNotification ;

DECLARED IN These are the notifications used with the methods of the NSApplicationNotifications category of
NSObject.

NSApplication—Shared Application Object

DECLARED IN AppKit/NSApplication.h

SYNOPSIS id NSApp;

DESCRIPTION This variable designates the shared application object, created by NSApplication’s
sharedApplication method.

44

NSAttributedString—Attributes

DECLARED IN AppKit/NSAttributedString.h

SYNOPSIS NSString *NSFontAttributeName;
NSString *NSParagraphStyleAttributeName;
 NSString *NSForegroundColorAttributeName;
 NSString *NSUnderlineStyleAttributeName;
 NSString *NSSuperscriptAttributeName;
 NSString *NSBackgroundColorAttributeName;
 NSString *NSAttachmentAttributeName;
 NSString *NSLigatureAttributeName ;
 NSString *NSBaselineOffsetAttributeName;
 NSString *NSKernAttributeName ;

DESCRIPTION These strings define the supported attributes of NSAttributedStrings. For more information, see
the “Accessing Attributes” section in the NSAttributedString class cluster specification.

NSComboBox—Notifications

DECLARED IN AppKit/NSComboBox.h

SYNOPSIS NSString *NSComboBoxWillPopUpNotification;
NSString *NSComboBoxWillDismissNotification;
NSString *NSComboBoxSelectionDidChangeNotification;
NSString *NSComboBoxSelectionIsChangingNotification;

DESCRIPTION These notifications are sent by NSComboBoxes.

45

NSColor—Color Space Names

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSCalibratedWhiteColorSpace;
NSString *NSCalibratedBlackColorSpace;
NSString *NSCalibratedRGBColorSpace;
NSString *NSDeviceWhiteColorSpace;
NSString *NSDeviceBlackColorSpace;
NSString *NSDeviceRGBColorSpace;
NSString *NSDeviceCMYKColorSpace;
NSString *NSNamedColorSpace;
NSString *NSCustomColorSpace;

DESCRIPTION These are the predefined names for color spaces. In the two ...WhiteColorSpaces, white
corresponds to a value of 1.0. In the two ...BlackColorSpaces, black corresponds to a value of 1.0.
NSNamedColorSpace is used for “catalog” colors—that is, colors specified by names rather than
coordinates. NSCustomColorSpace indicates a custom color space, which can be useful in
working with images; unlike the other color spaces, NSCustomColorSpace is not used with
NSColors.

NSColor—Grayscale Values

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS const float NSWhite;
const float NSLightGray ;
const float NSDarkGray;
const float NSBlack;

DESCRIPTION These are the standard gray values for the 2-bit deep grayscale color space.

46

NSColor—Notifications

DECLARED IN AppKit/NSColor.h

SYNOPSIS NSString *NSSystemColorsDidChangeNotification;

DESCRIPTION This notification is sent when the system colors have been changed (such as through a system
control panel interface). For more on system colors, see the “System Colors” section of the
NSColor class specification.

NSColorList—Notifications

DECLARED IN AppKit/NSColorList.h

SYNOPSIS NSString *NSColorListDidChangeNotification;

DESCRIPTION When an NSColorList changes, it posts this notification.

NSColorPanel—Notifications

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS NSString *NSColorPanelColorDidChangeNotification;

DESCRIPTION When an NSColorPanel changes, it posts this notification.

47

NSControl—Notifications

DECLARED IN AppKit/NSControl.h

SYNOPSIS NSString *NSControlTextDidBeginEditingNotification ;
NSString *NSControlTextDidEndEditingNotification ;
NSString *NSControlTextDidChangeNotification;

DESCRIPTION NSControls containing editable text can send these notifications. For more information, see the
“Notifications” section of the NSControl class specification.

NSDataLink—Filename Extension

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS NSString *NSDataLinkFilenameExtension;

DESCRIPTION NSDataLinkFilenameExtension is the filename extension used for links saved to files using
NSDataLink’s saveLinkIn: or writeToFile: methods.

48

NSFont—Keys to the AFM Dictionary

DECLARED IN AppKit/NSFont.h

SYNOPSIS NSString *NSAFMFamilyName;
NSString *NSAFMFontName;
NSString *NSAFMFormatVersion;
NSString *NSAFMFullName;
NSString *NSAFMNotice;
NSString *NSAFMVersion;
NSString *NSAFMWeight;
NSString *NSAFMEncodingScheme;
NSString *NSAFMCharacterSet;
NSString *NSAFMCapHeight;
NSString *NSAFMXHeight ;
NSString *NSAFMAscender;
NSString *NSAFMDescender;
NSString *NSAFMUnderlinePosition;
NSString *NSAFMUnderlineThickness;
NSString *NSAFMItalicAngle ;
NSString *NSAFMMappingScheme;

DESCRIPTION These are the keys to the font information dictionary returned by NSFont’s afmDictionary
method. To convert values like NSAFMCapHeight to floats, use NSString's floatValue method.

For other font information, use NSFont’s afmFileContents method.

NSFont—PostScript Transformation Matrix

DECLARED IN AppKit/NSFont.h

SYNOPSIS const float *NSFontIdentityMatrix ;

DESCRIPTION NSFontIdentityMatrix is a PostScript transformation matrix useful as a parameter to the NSFont
method fontWithName:matrix: .

49

NSHelpManager—Notifications

DECLARED IN AppKit/NSHelpManager.h

SYNOPSIS NSString *NSContextHelpModeDidActivateNotification;
NSString *NSContextHelpModeDidDeactivateNotification;

DESCRIPTION These are notifications for the activation and deactivation of the context help mode.

NSImageRep—Notifications

DECLARED IN AppKit/NSImageRep.h

SYNOPSIS NSString *NSImageRepRegistryDidChangeNotification;

DESCRIPTION This notification is sent when the NSImageRep class registry changes.

NSInterfaceStyleDefault

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS NSString *NSInterfaceStyleDefault;

DESCRIPTION NSInterfaceStyleDefault can be used to override the platform’s default interface style. For more
information, see the function NSInterfaceStyleForKey.

50

NSPasteboard—Names

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSGeneralPboard;
NSString *NSFontPboard;
NSString *NSRulerPboard;
NSString *NSFindPboard;
NSString *NSDragPboard;

DESCRIPTION Some standard pasteboard names. See the NSPasteboard class specification for more information.

NSPasteboard—Type for Data Links

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS NSString *NSDataLinkPboardType;

DESCRIPTION A pasteboard type for copying a data link to the pasteboard. See the NSDataLink class
specification for more information.

NSPasteboard—Type for Selection Descriptions

DECLARED IN AppKit/NSSelection.h

SYNOPSIS NSString *NSSelectionPboardType;

DESCRIPTION A pasteboard type for copying selection descriptions to the pasteboard. See the NSSelection class
specification for more information.

51

NSPasteboard—Types for Standard Data

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSStringPboardType;
NSString *NSFilenamesPboardType;
NSString *NSPostScriptPboardType;
NSString *NSTIFFPboardType;
NSString *NSRTFPboardType;
NSString *NSTabularTextPboardType;
NSString *NSFontPboardType;
NSString *NSRulerPboardType;
NSString *NSFileContentsPboardType;
NSString *NSColorPboardType;
NSString *NSRTFDPboardType;

DESCRIPTION Some standard pasteboard data types. See the NSPasteboard class specification for more
information.

52

NSPrintInfo—Dictionary Keys

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS NSString *NSPrintPaperName;
NSString *NSPrintPaperSize;
NSString *NSPrintFormName;
NSString *NSPrintMustCollate;
NSString *NSPrintOrientation ;
NSString *NSPrintLeftMargin ;
NSString *NSPrintRightMargin ;
NSString *NSPrintTopMargin ;
NSString *NSPrintBottomMargin ;
NSString *NSPrintHorizontallyCentered;
NSString *NSPrintVerticallyCentered;
NSString *NSPrintHorizontalPagination;
NSString *NSPrintVerticalPagination;
NSString *NSPrintScalingFactor;
NSString *NSPrintAllPages;
NSString *NSPrintReversePageOrder;
NSString *NSPrintFirstPage;
NSString *NSPrintLastPage;
NSString *NSPrintCopies;
NSString *NSPrintPagesPerSheet;
NSString *NSPrintJobFeatures;
NSString *NSPrintPaperFeed;
NSString *NSPrintManualFeed;
NSString *NSPrintPrinter ;
NSString *NSPrintJobDisposition;

53

NSString *NSPrintSavePath;
NSString *NSPrintFaxReceiverNames;
NSString *NSPrintFaxReceiverNumbers;
NSString *NSPrintFaxSendTime;
NSString *NSPrintFaxUseCoverSheet;
NSString *NSPrintFaxCoverSheetName;
NSString *NSPrintFaxReturnReceipt;
NSString *NSPrintFaxHighResolution;
NSString *NSPrintFaxTrimPageEnds;
NSString *NSPrintFaxModem;
NSString *NSPrintSpoolJob;
NSString *NSPrintFaxJob;
NSString *NSPrintPreviewJob;
NSString *NSPrintSaveJob;
NSString *NSPrintCancelJob;

DESCRIPTION These are the keys to the NSPrintInfo NSDictionary. For a table explaining them, see the
NSPrintInfo method initWithDictionary: .

NSPopUpButton—Notification

DECLARED IN AppKit/NSPopUpButton.h

SYNOPSIS NSString *NSPopUpButtonWillPopUpNotification;

DESCRIPTION NSPopUpButton sends this notification when an instance of it is about to pop up.

NSPrintOperation—Exception

DECLARED IN AppKit/NSPrintOperation.h

SYNOPSIS NSString *NSPrintOperationExistsException;

DESCRIPTION This exception is raised when there is already a print operation in process. The methods that raise
it are the EPSOperation... and printOperation... methods in NSPrintOperation:

54

NSRunLoop—Modes

DECLARED IN AppKit/NSApplication.h

SYNOPSIS NSString *NSModalPanelRunLoopMode;
NSString *NSEventTrackingRunLoopMode;

DESCRIPTION These are modes passed to NSRunLoop

NSSplitView—Notifications

DECLARED IN AppKit/NSSplitView.h

SYNOPSIS NSString *NSSplitViewDidResizeSubviewsNotification;
NSString *NSSplitViewWillResizeSubviewsNotification;

DESCRIPTION These are the notifications that an NSSplitView can send.

NSTableView—Notifications

DECLARED IN AppKit/NSTableView.h

SYNOPSIS NSString *NSTableViewSelectionDidChangeNotification;
NSString *NSTableViewColumnDidMoveNotification;
NSString *NSTableViewColumnDidResizeNotification;
NSString *NSTableViewSelectionIsChangingNotification;

DESCRIPTION These are the notifications that an NSTableView can send.

55

NSText—Notifications

DECLARED IN AppKit/NSText.h

SYNOPSIS NSString *NSTextDidBeginEditingNotification;
NSString *NSTextDidEndEditingNotification ;
NSString *NSTextDidChangeNotification;

DESCRIPTION These notifications can be sent by an NSText object. For explanations, see the “Notifications”
section of the NSText class specification.

NSTextStorage—Notifications

DECLARED IN AppKit/NSTextStorage.h

SYNOPSIS NSString *NSTextStorageWillProcessEditingNotification;
NSString *NSTextStorageDidProcessEditingNotification;

DESCRIPTION These notifications can be sent by an NSTextStorage object. For explanations, see the
“Notifications” section of the NSTextStorage class specification.

NSTextView—Notifications

DECLARED IN AppKit/NSTextView.h

SYNOPSIS NSString *NSTextViewWillChangeNotifyingTextViewNotification;
NSString *NSTextViewDidChangeSelectionNotification;

DESCRIPTION These notifications can be sent by an NSTextView object. For explanations, see the
“Notifications” section of the NSTextView class specification.

The notifications that NSTextView most often sends are the ones that it inherits from NSText.

56

NSView—Notifications

DECLARED IN AppKit/NSView.h

SYNOPSIS NSString *NSViewFrameDidChangeNotification;
NSString *NSViewFocusDidChangeNotification;
NSString *NSViewBoundsDidChangeNotification;

DESCRIPTION These notifications are sent by NSViews.

The last notification, NSViewBoundsDidChangeNotification, is sent when the view bounds
change but the frame does not. That is, it is sent whenever the view's bounds are translated, scaled
or rotated, but not when the bounds change in response to, say, a setFrameSize: message.

NSWindow—Notifications

DECLARED IN AppKit/NSWindow.h

SYNOPSIS NSString *NSWindowDidBecomeKeyNotification;
NSString *NSWindowDidBecomeMainNotification;
NSString *NSWindowDidChangeScreenNotification;
NSString *NSWindowDidDeminiaturizeNotification;
NSString *NSWindowDidExposeNotification;
NSString *NSWindowDidMiniaturizeNotification ;
NSString *NSWindowDidMoveNotification;
NSString *NSWindowDidResignKeyNotification;
NSString *NSWindowDidResignMainNotification;
NSString *NSWindowDidResizeNotification;
NSString *NSWindowDidUpdateNotification;
NSString *NSWindowWillCloseNotification;
NSString *NSWindowWillMiniaturizeNotification ;
NSString *NSWindowWillMoveNotification ;

DESCRIPTION These are the notifications that can be sent by an NSWindow object. For explanations, see the
“Notifications” section of the NSWindow class specification.

57

NSWindow—Sizes

DECLARED IN AppKit/NSWindow.h

SYNOPSIS NSSize NSIconSize;
NSSize NSTokenSize;

DESCRIPTION On some platforms, a token is a bezeled tile used to represent a docked application or a
miniaturized document, and an icon is the image drawn inside a token.

On platforms that support tokens and icons, these size constants can be used for drawing inside
them. It is more portable, however, to change an icon by using the NSApplication method
setApplicationIconImage: or the NSWindow method setMiniwindowImage:.

NSWorkspace—File Operation Constants

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSWorkspaceMoveOperation;
NSString *NSWorkspaceCopyOperation;
NSString *NSWorkspaceLinkOperation;
NSString *NSWorkspaceCompressOperation;
NSString *NSWorkspaceDecompressOperation;
NSString *NSWorkspaceEncryptOperation;
NSString *NSWorkspaceDecryptOperation;
NSString *NSWorkspaceDestroyOperation;
NSString *NSWorkspaceRecycleOperation;
NSString *NSWorkspaceDuplicateOperation;

DESCRIPTION These constants define possible values for the operation slot in NSWorkspace’s
performFileOperation: ... method.

58

NSWorkspace—File Types

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSPlainFileType;
NSString *NSDirectoryFileType;
NSString *NSApplicationFileType;
NSString *NSFilesystemFileType;
NSString *NSShellCommandFileType;

DESCRIPTION These values are used in the final parameter slot of the NSWorkspace method getInfoForFile:
application:type:.

NSWorkspace—Notifications

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSWorkspaceDidLaunchApplicationNotification;
NSString *NSWorkspaceDidMountNotification;
NSString *NSWorkspaceDidPerformFileOperationNotification;
NSString *NSWorkspaceDidTerminateApplicationNotification;
NSString *NSWorkspaceDidUnmountNotification;
NSString *NSWorkspaceWillLaunchApplicationNotification ;
NSString *NSWorkspaceWillPowerOffNotification;
NSString *NSWorkspaceWillUnmountNotification;

DESCRIPTION These notifications come through the special notification center. For more information, see the
“Notifications” section of the NSWorkspace class specification.

1

 Protocol: NSChangeSpelling

NSChangeSpelling

Adopted By:

NSText

Declared In:

AppKit/NSSpellProtocol.h

Protocol Description

This protocol is implemented by objects in the responder chain that can correct a misspelled word. See the
description of the NSSpellChecker class for more information.

Instance Methods

changeSpelling:

– (void)

changeSpelling:

(id)

sender

Implement this method to replace the selected word in the receiver with a corrected version from the
Spelling panel. This message is sent by the NSSpellChecker to the object whose text is being checked. To
get the corrected spelling, ask the sender for the string value of its selected cell (visible to the user as the
text field in the Spelling panel). This method should replace the selected portion of the text with the string
that it gets from the NSSpellChecker.

1

 Protocol: NSColorPickingCustom

NSColorPickingCustom

Adopted By:

NSColorPicker

Declared In:

AppKit/NSColorPicking.h

Protocol Description

Together with the NSColorPickingDefault protocol, NSColorPickingCustom provides a way to add color
pickers—custom user interfaces for color selection—to an application’s NSColorPanel. The
NSColorPickingDefault protocol provides basic behavior for a color picker. The NSColorPicker class
adopts the NSColorPickingDefault protocol. The easiest way to implement a color picker is to create a
subclass of NSColorPicker and implement the NSColorPickingCustom protocol for this new class.

Note:

All of NSColorPickingCustom’s methods must be implemented by the custom color picker.

Here are the standard color picking modes and mode constants (defined in

AppKit/NSColorPanel.h

):

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

If your color picker includes submodes, you should define a unique value for each submode. As an example,
the slider picker has four values defined in the above list (NSGrayModeColorPanel,

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

2

NSRGBModeColorPanel, NSCMYKModeColorPanel, and NSHSBModeColorPanel)—one for each of its
submodes.

Method Types

Setting the Current Color
– setColor:

Getting the Mode
– currentMode
– supportsMode:

Getting the View
– provideNewView:

Instance Methods

currentMode

– (int)

currentMode

Returns the color picker’s current mode (or submode, if applicable). The returned value should be unique
to your color picker. See this protocol description’s list of the unique values for the standard color pickers
used by the Application Kit.

See also:

– supportsMode:

provideNewView:

– (NSView *)

provideNewView:

(BOOL)

initialRequest

Returns the view containing the color picker’s user interface. This message is sent to the color picker
whenever the color panel attempts to display it. This may be when the panel is first presented, when the user
switches pickers, or when the picker is switched through API. The argument

initialRequest

 is YES only
when this method is first invoked for your color picker. If

initialRequest

 is YES, the method should perform
any initialization required (such as lazily loading a nib file, initializing the view, or performing any other
custom initialization required for your picker). The NSView returned by this method should be set to
automatically resize both its width and height.

3

 Protocol: NSColorPickingCustom

setColor:

– (void)

setColor:

(NSColor *)

color

Adjusts the color picker to make

color

 the currently selected color. This method is invoked on the current
color picker each time NSColorPanel’s

setColor:

 method is invoked. If

color

 is actually different from the
color picker’s color (as it would be if, for example, the user dragged a color into NSColorPanel’s color
well), this method could be used to update the color picker’s color to reflect the change.

supportsMode:

– (BOOL)

supportsMode:

(int)

mode

Returns whether or not the receiver supports the specified picking mode. This method is invoked when the
NSColorPanel’s is first initialized: It is used to attempt to restore the user’s previously selected mode. It is
also invoked by NSColorPanel’s

setMode:

 method to find the color picker that supports a particular mode.
See this protocol description’s list of the unique mode values for the standard color pickers used by the
Application Kit.

See also:

– currentMode

1

 Protocol: NSColorPickingDefault

NSColorPickingDefault

Adopted By:

NSColorPicker

Declared In:

AppKit/NSColorPicking.h

Protocol Description

The NSColorPickingDefault protocol, together with the NSColorPickingCustom protocol, provides an
interface for adding color pickers—custom user interfaces for color selection—to an application’s
NSColorPanel. The NSColorPickingDefault protocol provides basic behavior for a color picker. The
NSColorPickingCustom protocol provides implementation-specific behavior.

The NSColorPicker class implements the NSColorPickingDefault protocol. The simplest way to implement
your own color picker is to create a subclass of NSColorPicker, implementing the NSColorPickingCustom
protocol for that subclass. However, it’s possible to create a subclass of another class, such as NSView, and
use it as a base upon which to add the methods of both NSColorPickingDefault and
NSColorPickingCustom.

Color Picker Bundles

A class that implements the NSColorPickingDefault and NSColorPickingCustom protocols needs to be
compiled and linked in an application’s object file. However, your application need not explicitly create an
instance of this class. Instead, your application’s file package should include a directory named

ColorPickers

; within this directory you should place a directory

MyPickerClass

.bundle

 for each custom
color picker your application implements. This bundle should contain all resources required for your color
picker: nib files, TIFF files, and so on.

NSColorPanel will allocate and initialize an instance of each class for which a bundle is found in the

ColorPickers

 directory. The class name is assumed to be the bundle directory name minus the

.bundle

extension.

Color Picker Buttons

NSColorPanel lets the user select a color picker from an NSMatrix of NSButtonCells. This protocol
includes methods for providing and manipulating the image that gets displayed on the button.

Color Mask and Color Modes

The color mask determines which color mode is enabled for NSColorPanel. This mask is set before you
initialize a new instance of NSColorPanel. NSColorPanelAllModesMask represents the logical OR of the

2

other color mask constants: It causes the NSColorPanel to display all standard color pickers. When
initializing a new instance of NSColorPanel, you can logically OR any combination of color mask constants
to restrict the available color modes. The predefined color mask constants are:

When an application’s instance of NSColorPanel is masked for more than one color mode, your program
can set its active mode by invoking the

setMode:

 method with a color mode constant as its argument; the
user can set the mode by clicking buttons on the panel. Here are the standard color modes and mode
constants:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

Red-Green-Blue NSColorPanelRGBModeMask

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

Custom palette
NSColorPanelCustomPaletteMod
eMask

Custom color list
NSColorPanelColorListModeMas
k

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette
NSCustomPaletteModeColorPan
el

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

3

 Protocol: NSColorPickingDefault

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

These constants are defined in

AppKit/NSColorPanel.h

.

Method Types

Initializing a Color Picker
– initWithPickerMask:colorPanel:

Setting the Mode
– setMode:

Using Color Lists
– attachColorList:
– detachColorList:

Adding Button Images
– insertNewButtonImage:in:
– provideNewButtonImage

Showing Opacity Controls
– alphaControlAddedOrRemoved:

Responding to a Resized View
– viewSizeChanged:

Instance Methods

alphaControlAddedOrRemoved:

– (void)

alphaControlAddedOrRemoved:

(id)

sender

Sent by the color panel

when the opacity controls have been hidden or displayed. Invoked automatically
when the NSColorPanel’s opacity slider is added or removed; you never invoke this method directly.

If the color picker

has its own opacity controls, it should hide or display them, depending on whether the
sender’s

showsAlpha

method returns NO or YES.

4

attachColorList:

– (void)

attachColorList:

(NSColorList *)

colorList

Tells the color picker to attach the given

colorList

, if it isn’t already displaying the list. You never invoke
this method; it’s invoked automatically by the NSColorPanel when its

attachColorList:

 method is invoked.
Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented by a
custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything, since
NSColorPanel’s list mode manages NSColorLists.

See also:

– detachColorList:

detachColorList:

– (void)

detachColorList:

(NSColorList *)

colorList

Tells the color picker to detach the given

colorList

, unless the receiver isn’t displaying the list. You never
invoke this method; it’s invoked automatically by the NSColorPanel when its

detachColorList:

 method is
invoked. Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented
by a custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything,
since NSColorPanel’s list mode manages NSColorLists.

See also:

– attachColorList:

initWithPickerMask:colorPanel:

– (id)

initWithPickerMask:

(int)

mask

colorPanel:

(NSColorPanel *)

owningColorPanel

Notifies the color picker of the color panel’s mask and initializes the color picker. This method is sent by
the NSColorPanel to all implementors of the color picking protocols when the application’s color panel is
first initialized. In order for your color picker to receive this message, it must have a bundle in your
application’s “ColorPickers” directory (described in “Color Picker Bundles” in the Protocol Description).

mask

 is determined by the argument to the NSColorPanel method

setPickerMask:

. If no mask has been set,

mask

 is NSColorPanelAllModesMask. If your color picker supports any additional modes, you should
invoke the

setPickerMask:

 method when your application initializes to notify the NSColorPanel class. The
standard mask constants are:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

Red-Green-Blue NSColorPanelRGBModeMask

5

 Protocol: NSColorPickingDefault

This method should examine the mask and determine whether it supports any of the modes included there.
You may also check the value in

mask

 to enable or disable any subpickers or optional controls implemented
by your color picker. Your color picker may also retain

owningColorPanel

 in an instance variable for future
communication with the color panel.

This method is provided to initialize your color picker; however, much of a color picker’s initialization may
be done lazily through the NSColorPickingCustom protocol’s

provideNewView:

 method. If your color
picker responds to any of the modes represented in

mask

, it should perform its initialization and return

self

.
Color pickers that do so have their buttons inserted in the color panel and continue to receive messages from
the panel as the user manipulates it. If the color picker doesn’t respond to any of the modes represented in
mask, it should do nothing and return

nil

.

See also:

+ setPickerMask:

 (NSColorPanel class)

insertNewButtonImage:in:

– (void)

insertNewButtonImage:

(NSImage *)

newButtonImage

in:

(NSButtonCell *)

buttonCell

Sets

newButtonImage

 as

buttonCell

’s image.

buttonCell

 is the NSButtonCell object that lets the user choose
the picker from the color panel—the color picker’s representation in the NSColorPanel’s picker NSMatrix.
This method should perform application-specific manipulation of the image before it’s inserted and
displayed by the button cell.

See also:

– provideNewButtonImage

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

Custom palette NSColorPanelCustomPaletteModeMask

Custom color list NSColorPanelColorListModeMask

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

Mode Color Mask Constant

6

provideNewButtonImage

– (NSImage *)

provideNewButtonImage

Returns the image for the mode button that the user uses to select this picker in the color panel, that is, the
color picker’s representation in the NSColorPanel’s picker NSMatrix. (This is the same image that the color
panel uses as an argument when sending the

insertNewButtonImage:in:

message.)

setMode:
– (void)setMode:(int)mode

Sets the color picker’s mode. This method is invoked by NSColorPanel’s setMode: method to ensure that
the color picker reflects the current mode. For example, invoke this method during color picker initialization
to ensure that all color pickers are restored to the mode the user left them in the last time an NSColorPanel
was used.

Most color pickers have only one mode, and thus don’t need to do any work in this method. An example of
a color picker that uses this method is the slider picker, which can choose from one of several submodes
depending on the value of mode. The available modes are:

viewSizeChanged:
– (void)viewSizeChanged:(id)sender

Tells the color picker when the NSColorPanel’s view size changes in a way that might affect the color
picker. sender is the NSColorPanel that contains the color picker. Use this method to perform special
preparation when resizing the color picker’s view. Since this method is invoked only as appropriate, it’s

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

7

 Protocol: NSColorPickingDefault

better to implement this method than to override the method superviewSizeChanged: for the NSView in
which the color picker’s user interface is contained.

See also: – provideNewView: (NSColorPickingCustom protocol)

1

 Protocol:

NSComboBoxCellDataSource
(Informal Protocol)

Category Of: NSObject

Declared In: AppKit/NSComboBoxCell.h

Category Description

The NSComboBoxCellDataSource category declares the methods that an NSComboBoxCell uses to access
the contents of its data source object. The combo box cell determines how many items to display by sending
a numberOfItemsInComboBoxCell: message, and accesses individual values with the comboBoxCell:
objectValueForItemAtIndex: method. Incremental searches—performed when a user types into the
combo box’s text field while the pop-up list is displayed—are performed by sending comboBoxCell:
indexOfItemWithStringValue: messages to the combo box cell’s data source.

The NSComboBoxCell treats objects provided by its data source as values to be displayed in the combo
box’s pop-up list. If these objects aren’t of common value classes—such as NSString, NSNumber, and so
on—you’ll need to create a custom NSFormatter to display them. See the NSFormatter class specification
for more information.

When an NSComboBoxCellDataSource is asked to supply a data item, the NSComboBoxCell that sends
the request is provided as a parameter. This allows a single data source object to manage several sets of data,
choosing the appropriate set based on the identify of the NSComboBoxCell that sends the message.

Instance Methods

comboBoxCell:indexOfItemWithStringValue:
– (unsigned int)comboBoxCell:(NSComboBoxCell *)aComboBoxCell

indexOfItemWithStringValue: (NSString *)aString

An NSComboBoxCell uses this method to perform incremental—or “smart”—searched when the user
types into the text field with the pop-up list displayed. Your implementation of this method should return
the index for the item which matches aString, or NSNotFound if no item matches. This method is optional;
if you don’t provide an implementation for this method, no searches occur.

2

comboBoxCell:objectValueForItemAtIndex:
– (id)comboBoxCell:(NSComboBoxCell *)aComboBoxCell objectValueForItemAtIndex: (int)index

Implement this method to return the object that corresponds to the item at index in aComboBoxCell. Your
data source must implement this method.

numberOfItemsInComboBoxCell:
– (int)numberOfItemsInComboBoxCell:(NSComboBoxCell *)aComboBoxCell

Implement this method to return the number of items managed for aComboBoxCell by your data source
object. An NSComboBoxCell uses this method to determine how many items it should display in its pop-up
list. Your data source must implement this method.

1

 Protocol: NSComboBoxDataSource

NSComboBoxDataSource
(Informal Protocol)

Category Of: NSObject

Declared In: AppKit/NSComboBox.h

Category Description

The NSComboBoxDataSource category declares the methods that an NSComboBox uses to access the
contents of its data source object. The combo box determines how many items to display by sending a
numberOfItemsInComboBox: message, and accesses individual values with the comboBox:
objectValueForItemAtIndex: method. Incremental searches—performed when a user types into the
combo box’s text field while the pop-up list is displayed—are performed by sending comboBox:
indexOfItemWithStringValue: messages to the combo box’s data source.

The NSComboBox treats objects provided by its data source as values to be displayed in the combo box’s
pop-up list. If these objects aren’t of common value classes—such as NSString, NSNumber, and so on—
you’ll need to create a custom NSFormatter to display them. See the NSFormatter class specification for
more information.

When an NSComboBoxDataSource is asked to supply a data item, the NSComboBox that sends the request
is provided as a parameter. This allows a single data source object to manage several sets of data, choosing
the appropriate set based on the identify of the NSComboBox that sends the message.

Instance Methods

comboBox:indexOfItemWithStringValue:
– (unsigned int)comboBox:(NSComboBox *)aComboBox indexOfItemWithStringValue:

(NSString *)aString

An NSComboBox uses this method to perform incremental—or “smart”—searched when the user types
into the text field with the pop-up list displayed. Your implementation of this method should return the index
for the item which matches aString, or NSNotFound if no item matches. This method is optional; if you
don’t provide an implementation for this method, no searches occur.

2

comboBox:objectValueForItemAtIndex:
– (id)comboBox:(NSComboBox *)aComboBox objectValueForItemAtIndex: (int)index

Implement this method to return the object that corresponds to the item at index in aComboBox. Your data
source must implement this method.

numberOfItemsInComboBox:
– (int)numberOfItemsInComboBox:(NSComboBox *)aComboBox

Implement this method to return the number of items managed for aComboBox by your data source object.
An NSComboBox uses this method to determine how many items it should display in its pop-up list. Your
data source must implement this method.

1

 Protocol: NSDPSContextNotification

NSDPSContextNotification

Adopted By: no OpenStep classes

Declared In: AppKit/NSDPSContext.h

Protocol Description

The NSDPSContextNotification protocol supplies information about the execution status of a sequence of
PostScript commands previously sent to the Display PostScript server.

Instance Methods

contextFinishedExecuting:
– (void)contextFinishedExecuting:(NSDPSContext *)context

Notifies the receiver that the context has finished executing a batch of PostScript commands. See
notifyObjectWhenFinishedExecuting: (NSDPSContext).

1

 Protocol: NSDraggingDestination

NSDraggingDestination
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Description

The NSDraggingDestination informal protocol declares methods that the destination (or recipient) of a
dragged image must implement. The destination automatically receives NSDraggingDestination messages
as an image enters, moves around inside, and then exits or is released within the destination’s boundaries.

In the text here and in the other dragging protocol descriptions, the term dragging session is the entire
process during which an image is selected, dragged, released, and absorbed or rejected by the destination.
A dragging operation is the action that the destination takes in absorbing the image when it’s released. The
dragging source is the object that “owns” the image that’s being dragged. It’s specified as an argument to
the dragImage:at:offset:event:pasteboard:source:slideBack: message, sent to a window or view object,
that instigated the dragging session.

The Dragged Image

The image that’s dragged in an image-dragging session is simply an image that represents data that resides
on the pasteboard. Although a dragging destination can access the image (through the draggedImage
method described in the NSDraggingInfo protocol), its primary concern is with the pasteboard data that the
image represents—the dragging operation that a destination ultimately performs is on the pasteboard data,
not on the image itself.

Valid Destinations

Dragging is a visual phenomenon. To be an image-dragging destination, an object must represent a portion
of screen real estate; thus, only window and view objects can be destinations. Furthermore, you must
register the pasteboard types that the object will accept by sending the object a registerForDraggedTypes:
message, defined in both NSWindow and NSView. During a dragging session, a candidate destination only
receives NSDraggingDestination messages if the destination is registered for a pasteboard type that
matches the type of the pasteboard data being dragged. See the NSPasteboard class specification for more
information about pasteboard types.

Although NSDraggingDestination is declared as an informal protocol, the NSWindow and NSView
subclasses that you create to adopt the protocol need only implement those methods that are pertinent. (The
NSWindow and NSView classes provide private implementations for all of the methods.) Either a window

2

object or its delegate may implement these methods; however, the delegate’s implementation takes
precedence if there are implementations in both places.

The Sender of Destination Messages

Each of the NSDraggingDestination methods sports a single argument: sender, the object that invoked the
method. Within its implementations of the NSDraggingDestination methods, the destination can send
NSDraggingInfo protocol messages to sender to get more information on the current dragging session.

The Order of Destination Messages

The six NSDraggingDestination methods are invoked in a distinct order:

• As the image is dragged into the destination’s boundaries, the destination is sent a draggingEntered:
message

• While the image remains within the destination, a series of draggingUpdated: messages are sent.

• If the image is dragged out of the destination, draggingExited: is sent and the sequence of
NSDraggingDestination messages stops. If it re-enters, the sequence begins again (with a new
draggingEntered: message).

• When the image is released, it either slides back to its source (and breaks the sequence) or a
prepareForDragOperation: message is sent to the destination, depending on the value returned by the
most recent invocation of draggingEntered: or draggingUpdated:.

• If the prepareForDragOperation: message returned YES, a performDragOperation: message is sent.

• Finally, if performDragOperation: returned YES, concludeDragOperation: is sent.

Method Types

Before the image is released
– draggingEntered:
– draggingUpdated:
– draggingExited:

After the image is released
– prepareForDragOperation:
– performDragOperation:
– concludeDragOperation:

3

 Protocol: NSDraggingDestination

Instance Methods

concludeDragOperation:
– (void)concludeDragOperation:(id <NSDraggingInfo>)sender

Invoked when the dragging operation is complete and the previous performDragOperation: returned
YES. The destination implements this method to perform any tidying up that it needs to do, such as
updating its visual representation now that it has incorporated the dragged data. This is the last message
that’s sent from sender to the destination during a dragging session.

draggingEntered:
– (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender

Invoked when a dragged image enters the destination. Specifically, this method is invoked when the mouse
pointer enters the destination’s bounds rectangle (if it’s a view object) or its frame rectangle (if it’s a window
object).

This method must return a value that indicates which dragging operation the destination will perform when
the image is released. In deciding which dragging operation to return, the method should evaluate the
overlap between both the dragging operations allowed by the source (accessible through the
draggingSourceOperationMask method) and the dragging operations and pasteboard data types that the
destination itself supports. The returned value should be exactly one of the following:

If none of the operations is appropriate, this method should return NSDragOperationNone (this is the
default response if the method isn’t implemented by the destination).

The code below is a simple example of a method that responds distinctly when one of two different types
of data is dragged into the destination view or window. If the dragged data is a color and the source object
permits copying, the return value indicates that the destination will permit copying of the color data on the
pasteboard. If the dragged data is an RTF file and the source object permits linking, the return value

Option Meaning

NSDragOperationCopy The data represented by the image will be copied.

NSDragOperationLink The data will be shared.

NSDragOperationGeneric The operation will be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

4

indicates that the destination will permit linking of the RTF file on the pasteboard. Otherwise the code
returns NSDragOperationNone, indicating that the destination will not permit any dragging operations with
the data on pasteboard.

- (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender

{

NSPasteboard *pboard;

NSDragOperation sourceDragMask;

sourceDragMask = [sender draggingSourceOperationMask];

pboard = [sender draggingPasteboard];

if ([[pboard types] indexOfObject:NSColorPboardType] != NSNotFound) {

if (sourceDragMask & NSDragOperationCopy) {

return NSDragOperationCopy;

}

}

if ([[pboard types] indexOfObject:NSRTFPboardType] != NSNotFound) {

if (sourceDragMask & NSDragOperationLink) {

return NSDragOperationLink;

}

}

return NSDragOperationNone;

}

See also: – draggingUpdated:, – draggingExited:, – prepareForDragOperation:

draggingExited:
– (void)draggingExited:(id <NSDraggingInfo>)sender

Invoked when the dragged image exits the destination’s bounds rectangle (in the case of a view object) or
its frame rectangle (in the case of a window object).

draggingUpdated:
– (unsigned int)draggingUpdated:(id <NSDraggingInfo>)sender

Invoked periodically as the image is held within the destination. The messages continue until the image is
either released or dragged out of the window or view. The return value should be one of the dragging
operation options listed under the draggingEntered: method. The default return value (if this method isn’t
implemented by the destination) is the value returned by the previous draggingEntered: message.

This method provides the destination with an opportunity to modify the dragging operation depending on
the position of the mouse pointer inside of the destination view or window object. For example, you may
have several graphics or areas of text contained within the same view and wish to tailor the dragging

5

 Protocol: NSDraggingDestination

operation, or to ignore the drag event completely, depending upon which object is underneath the mouse
pointer at the time when the user releases the dragged image and the performDragOperation: method is
invoked.

You typically examine the contents of the pasteboard in the draggingEntered: method, where this
examination is performed only once, rather than in the draggingUpdated: method, which is invoked
multiple times.

Only one destination at a time receives a sequence of draggingUpdated: messages. If the mouse pointer
is within the bounds of two overlapping views that are both valid destinations, the uppermost view receives
these messages until the image is either released or dragged out.

See also: – draggingExited:, – prepareForDragOperation:

performDragOperation:
– (BOOL)performDragOperation: (id <NSDraggingInfo>)sender

Invoked after the released image has been removed from the screen and the previous
prepareForDragOperation: message has returned YES. The destination should implement this method to
do the real work of importing the pasteboard data represented by the image. If the destination accepts the
data, it returns YES, otherwise it returns NO. The default is to return NO.

See also: – concludeDragOperation:

prepareForDragOperation:
– (BOOL)prepareForDragOperation:(id <NSDraggingInfo>)sender

Invoked when the image is released, if the most recent draggingEntered: or draggingUpdated: message
returned an acceptable drag-operation value. Returns YES if the receiver agrees to perform the drag
operation and NO if not.

See also: – performDragOperation:

1

 Protocol: NSDraggingInfo

NSDraggingInfo

Adopted By: no Rhapsody classes

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDraggingInfo protocol declares methods that supply information about a dragging session (see the
NSDraggingDestination protocol for definitions of dragging terms). NSDraggingInfo methods are
designed to be invoked from within a class’s implementation of NSDraggingDestination informal protocol
methods. The Application Kit automatically passes an object that conforms to the NSDraggingInfo protocol
as the argument to each of the methods defined by NSDraggingDestination. NSDraggingInfo messages
should be sent to this object; you never need to create a class that implements the NSDraggingInfo protocol.

Method Types

Dragging-session information
– draggingSource
– draggingSourceOperationMask
– draggingDestinationWindow
– draggingPasteboard
– draggingSequenceNumber
– draggingLocation

Image information
– draggedImage
– draggedImageLocation

Sliding the image
– slideDraggedImageTo:

2

Instance Methods

draggedImage
– (NSImage *)draggedImage

Returns the image being dragged. This image object visually represents the data put on the pasteboard
during the drag operation; however, it is the pasteboard data and not this image that are ultimately utilized
in the dragging operation.

See also: – draggedImageLocation

draggedImageLocation
– (NSPoint)draggedImageLocation

Returns the current location of the dragged image’s origin in the base coordinate system of the destination
object’s window. The image moves along with the mouse pointer (the position of which is given by
draggingLocation) but may be positioned at some offset.

See also: – draggedImage

draggingDestinationWindow
– (NSWindow *)draggingDestinationWindow

Returns the destination window for the dragging operation. Either this window is the destination itself, or
it contains the view object that is the destination.

draggingLocation
– (NSPoint)draggingLocation

Returns the current location of the mouse pointer in the base coordinate system of the destination object’s
window.

See also: – draggedImageLocation

draggingPasteboard
– (NSPasteboard *)draggingPasteboard

Returns the pasteboard object that holds the data being dragged. The dragging operation that is ultimately
performed utilizes this pasteboard data and not the image returned by the draggedImage method.

3

 Protocol: NSDraggingInfo

draggingSequenceNumber
– (int)draggingSequenceNumber

Returns a number that uniquely identifies the dragging session.

draggingSource
– (id)draggingSource

Returns the source, or owner, of the dragged data or nil if the source isn’t in the same application as the
destination. The dragging source implements methods from the NSDraggingSource informal protocol.

draggingSourceOperationMask
– (unsigned int)draggingSourceOperationMask

Returns the dragging operation mask declared by the dragging source (through its
draggingSourceOperationMaskForLocal: method). If the source permits dragging operations, the
elements in the mask will be one or more of the following, combined using the C bitwise OR operator:

If the source does not permit any dragging operations, then method should return NSDragOperationNone.

If the user is holding down a modifier key during the dragging session and the source doesn’t prohibit
modifier keys from affecting the drag operation (through its ignoreModifierKeysWhileDragging
method), then the operating system combines the dragging operation value that corresponds to the modifier
key (see the descriptions below) with the source’s mask using the C bitwise AND operator.

Option Meaning

NSDragOperationCopy The data represented by the image can be copied.

NSDragOperationLink The data can be shared.

NSDragOperationGeneric The operation can be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

4

On Mach the modifier keys are associated with the dragging operation options shown below,

while on Windows the modifier keys are associated with the following dragging operation options.

slideDraggedImageTo:
– (void)slideDraggedImageTo:(NSPoint)aPoint

Slides the image to aPoint, a specified location in the screen coordinate system. This method can be used
to snap the image down to a particular location. It should only be invoked from within the destination’s
implementation of prepareForDragOperation:—in other words, after the user has released the image but
before it’s removed from the screen.

Modifier Key Dragging Option

Control NSDragOperationLink

Alternate NSDragOperationCopy

Command NSDragOperationGeneric

Modifier Key Dragging Option

Control NSDragOperationCopy

Shift-Control NSDragOperationLink

Alternate NSDragOperationCopy

1

 Protocol: NSDraggingSource

NSDraggingSource
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Description

The NSDraggingSource informal protocol declares methods that are implemented by the source object in
a dragging session (see the NSDraggingDestination protocol for definitions of dragging terms). The
dragging source is specified as an argument to the dragImage:at:offset:event:pasteboard:source:
slideBack: message, sent to a window or view object to initiate the dragging session.

Of the methods declared below, only draggingSourceOperationMaskForLocal: must be implemented.
The other methods are invoked only if the dragging source implements them. All four methods are invoked
automatically during a dragging session—you never send an NSDraggingSource message directly to an
object.

Method Types

Specifying dragging options
– draggingSourceOperationMaskForLocal:
– ignoreModifierKeysWhileDragging

Responding to dragging sessions
– draggedImage:beganAt:
– draggedImage:endedAt:deposited:

Instance Methods

draggedImage:beganAt:
– (void)draggedImage:(NSImage *)anImage beganAt:(NSPoint)aPoint

Invoked when anImage is displayed but before it starts following the mouse. aPoint is the origin of the
image in screen coordinates. This method provides the source object with an opportunity to respond to the
initiation of a dragging session. For example, you might choose to have the source give a visual indication
to the user that data is being dragged from the source.

See also: – convertScreenToBase: (NSWindow), – convertBaseToScreen: (NSWindow),
– convertPoint:fromView: (NSView), – convertPoint:toView: (NSView)

2

draggedImage:endedAt:deposited:
– (void)draggedImage:(NSImage *)anImage

endedAt:(NSPoint)aPoint
deposited:(BOOL)flag

Invoked after anImage has been released and the dragging destination has been given a chance to operate
on the data it represents. aPoint is the location of the image’s origin in the screen coordinate system when
it was released. A YES value for flag indicates that the destination accepted the dragged data, while a NO
value indicates that it was rejected.

This method provides the source object with an opportunity to respond to either a successful or a failed
dragging session. For example, if you are moving data from one location to another, you could use this
method to make the source data disappear from its previous location, if the dragging session is successful,
or reset itself to its previous state, in the event of a failure.

See also: – convertScreenToBase: (NSWindow), – convertBaseToScreen: (NSWindow),
– convertPoint:fromView: (NSView), – convertPoint:toView: (NSView)

draggingSourceOperationMaskForLocal:
– (unsigned int)draggingSourceOperationMaskForLocal:(BOOL)flag

This is the only NSDraggingSource method that must be implemented by the source object. It should return
a mask, built by combining the applicable constants listed below using the C bitwise OR operator. You
should use this mask to indicate which types of dragging operations the source object will allow to be
performed on the dragged image’s data. A YES value for flag indicates that the candidate destination object
(the window or view over which the dragged image is currently poised) is in the same application as the
source, while a NO value indicates that the destination object is in a different application.

If the source does not permit any dragging operations, then it should return NSDragOperationNone.

Option Meaning

NSDragOperationCopy The data represented by the image can be copied.

NSDragOperationLink The data can be shared.

NSDragOperationGeneric The operation can be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

3

 Protocol: NSDraggingSource

ignoreModifierKeysWhileDragging
– (BOOL)ignoreModifierKeysWhileDragging

Sets whether the use of the modifier keys should have no effect on the type of operation performed. If this
method is not implemented or returns NO, then the user can tailor the drag operation by holding down a
modifier key during the drag. The dragging option that corresponds to the modifier key is combined with
the source’s mask (as set with the draggingSourceOperationMaskForLocal: method) using the C bitwise
AND operator. See the description for the draggingSourceOperationMask method in the
NSDraggingInfo protocol specification for more information about dragging masks and modifier keys.

1

 Protocol: NSIgnoreMisspelledWords

NSIgnoreMisspelledWords

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

Implement this protocol to have the Ignore button in the Spelling panel function properly. The Ignore button
allows the user to accept a word that the spelling checker believes is misspelled. In order for this action to
update the “ignored words” list for the document being checked, the NSIgnoreMisspelledWords protocol
must be implemented.

This protocol is necessary because a list of ignored words is useful only if it pertains to the entire document
being checked, but the spelling checker (NSSpellChecker object) does not check the entire document for
spelling at once. The spelling checker returns as soon as it finds a misspelled word. Thus, it checks only a
subset of the document at any one time. The user usually wants to check the entire document, so usually
several spelling checks are run in succession until no misspelled words are found. This protocol allows the
list of ignored words to be maintained per-document, even though the spelling checks are not run
per-document.

The NSIgnoreMisspelledWords protocol specifies a method, ignoreSpelling:, which should be
implemented like this:

- (void)ignoreSpelling:(id)sender

{

[[NSSpellChecker sharedSpellChecker] ignoreWord:[[sender selectedCell]

stringValue] inSpellDocumentWithTag:myDocumentTag];

}

The second argument to the NSSpellChecker method ignoreWord:inSpellDocumentWithTag: is a tag
that the NSSpellChecker can use to distinguish the documents being checked. (See the discussion of
“Matching a List of Ignored Words With the Document It Belongs To” in the description of the
NSSpellChecker class.) Once the NSSpellChecker has a way to distinguish the various documents, it can
append new ignored words to the appropriate list.

To make the ignored words feature useful, the application must store a document’s ignored words list with
the document. See the NSSpellChecker class description for more information.

2

Instance Methods

ignoreSpelling:
– (void)ignoreSpelling:(id)sender

Implement to allow an application to ignore misspelled words on a document-by-document basis. This
message is sent by the NSSpellChecker instance to the object whose text is being checked.

Implement this method by using the code shown in the protocol description.

1

 Protocol: NSMenuItem

NSMenuItem

Adopted By: NSMenuItem

Conforms To: NSCoding,
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSMenuItem.h

Warning: The NSMenuItem protocol will be removed from the Application Kit in the Premier release of
Rhapsody. The NSMenuItem class will solely assume all associated functionality. This change
does not affect binary compatibility between different versions of projects, but might cause
failures in project builds. To adapt your projects to this change, alter all references to the protocol
(for example, “id <NSMenuItem>”) to references to the class (“NSMenuItem”).

Protocol Description

The NSMenuItem protocol declares methods that are used to manipulate command items in menus. The
NSMenuItem class adopts this protocol, implementing all methods the protocol declares, and provides the
basic functionality of command items. With some implementations of the OpenStep specification
(including OPENSTEP), you cannot replace the NSMenuItem class with a different class which conforms
to the NSMenuItem protocol. You may, however, subclass the NSMenuItem class if necessary.

The methods declared by the NSMenuItem protocol allow you to set the titles, actions, targets, tags, images,
enabled states, and similar attributes of individual menu items, as well as to obtain the current values of
these attributes. As implemented for the NSMenuItem class, a menu item, whenever one of its attributes
changes, notifies the associated NSMenu via the itemChanged: method. The protocol also allows a
conforming object to set keyboard equivalents and (for Microsoft Windows) mnemonics for menu items.
See the sections below for more on this functionality.

See the NSMenu, NSMenuView, and NSMenuItemCell class specifications and the NSMenuValidation
protocol specification for more information on menus.

Keyboard Equivalents

An object conforming to the NSMenuItem protocol can be assigned a keyboard eqivalent, so that when the
user types a character the menu item’s action is sent. The keyboard eqivalent is defined in two parts. First
is the basic key equivalent, which must be a Unicode character that can be generated by a single key press
without modifier keys (Shift excepted). It is also possible to use a sequence of Unicode characters so long

2

as the user’s key mapping is able to generate the sequence with a single key press. The basic key equivalent
is set using setKeyEquivalent: and returned by keyEquivalent. The second part defines the modifier keys
that must also be pressed. This is set using setKeyEquivalentModifierMask: and returned by
keyEquivalentModifierMask . The modifier mask by default includes NSCommandKeyMask, and may
also include the masks for the Shift, Alternate, or other modifier keys. Specifying keyboard equivalents in
two parts allows you to define a modified keyboard equivalent without having to know which character is
generated by the basic key plus the modifier. For example, you can define the keyboard equivalent
Command-Alt-f without having to know which character is generated by typing Alt-f.

Certain methods in the NSMenuItem protocol can override assigned keyboard equivalents with those the
user has specified in the defaults system. The setUsesUserKeyEquivalents: protocol method turns this
behavior on or off, and usesUserKeyEquivalents returns its status. To determine the user-defined key
equivalent for an NSMenuItem object, invoke the userKeyEquivalent instance method. If user-defined key
equivalents are active and an NSMenuItem object has a user-defined key equivalent, its keyEquivalent
method returns the user-defined key equivalent and not the one set using setKeyEquivalent:.

Mnemonics

On certain platforms, currently including Microsoft Windows, an object conforming to the NSMenuItem
protocol can also be assigned a mnemonic. Mnemonics can be assigned on other platforms as well,
however, they won’t have any effect. Mnemonics are represented by an underlined character in the title of
a menu item. The mnemonic can be any character that can be generated by a single key press without
modifier keys (Shift excepted). When the menu is active, the user can type the underlined character in the
menu item in order to activate that menu item. On Microsoft Windows a user activates the menu by pressing
the Alternate key. A particular mnemonic character should only be used once within the set of menu items
contained either in the same menu as the menu item or in the application’s main menu.

Radio-Style Grouping

By using a few methods of the NSMenuItem protocol, you can implement radio-style groupings of menu
commands. In other words, you can have a grouping of menu commands (usually segregated visually with
separator items) and only one command in the group can be selected; the selected item is marked by an
image, usually a radio-button image, but sometimes a checkmark. If the user selects another command in
the group, the previous command is unmarked and the selected command displays the image. As an
example of a radio-style grouping, a game could have three commands to indicate the level of play:
Beginner, Intermediate, and Advanced.

To implement this feature, first set the images you want to use for the possible command states: “on,” “off,”
and “mixed” (the last is useful for triple-state or indeterminate situations). To set the image, use the
commands setOnStateImage:, setOffStateImage:, and setMixedStateImage:. The default image for the
“on” state is a checkmark (NSMenuCheckmark) and for the “mixed” state the image is a dash
(NSMenuMixedState). The “off” state typically has no image. The radio-button image (which you must set
explicitly) is NSMenuRadio.

3

 Protocol: NSMenuItem

In an action method that responds to all commands in the group use setState: to uncheck the menu item
that is currently marked:

[curItem setState:NSOffState];

Then mark the newly selected command:

[sender setState:NSOnState];

Method Types

Creating conforming NSMenuItem objects
– initWithTitle:action:keyEquivalent:

Enabling a menu item
– setEnabled:
– isEnabled

Setting the target and action
– setTarget:
– target
– setAction:
– action

Setting the title
– setTitle:
– title

Setting the tag
– setTag:
– tag

Setting the state
– setState:
– state

Setting the image
– setImage:
– image
– setOnStateImage:
– onStateImage
– setOffStateImage:
– offStateImage
– setMixedStateImage:
– mixedStateImage

4

Managing submenus
– setSubmenu:
– submenu
– hasSubmenu

Getting a separator item
+ separatorItem
– isSeparatorItem

Setting the owning menu
– setMenu:
– menu

Managing key equivalents
– setKeyEquivalent:
– keyEquivalent
– setKeyEquivalentModifierMask:
– keyEquivalentModifierMask

Managing mnemonics
– setMnemonicLocation:
– mnemonicLocation
– setTitleWithMnemonic:
– mnemonic

Managing user key equivalents
+ setUsesUserKeyEquivalents:
+ usesUserKeyEquivalents
– userKeyEquivalent

Representing an object
– setRepresentedObject:
– representedObject

Class Methods

separatorItem
+ (id <NSMenuItem>)separatorItem

Returns a menu item that is used to separate logical groups of menu commands. This menu item is disabled.
The default separator item is a simple horizontal line.

See also: – isSeparatorItem, – setEnabled:

5

 Protocol: NSMenuItem

setUsesUserKeyEquivalents:
+ (void)setUsesUserKeyEquivalents:(BOOL)flag

If flag is YES, menu items conform to user preferences for key equivalents; otherwise, the key equivalents
originally assigned to the menu items are used.

See also: + usesUserKeyEquivalents, – userKeyEquivalent

usesUserKeyEquivalents
+ (BOOL)usesUserKeyEquivalents

Returns YES if menu items conform to user preferences for key equivalents; otherwise, returns NO.

See also: + setUsesUserKeyEquivalents:, – userKeyEquivalent

Instance Methods

action
– (SEL)action

Returns the receiver’s action method.

See also: – target, – setAction:

hasSubmenu
– (BOOL)hasSubmenu

Returns YES if the receiver has a submenu, NO if it doesn’t.

See also: – setSubmenu:forItem:(NSMenu)

image
– (NSImage *)image

Returns the image displayed by the receiver, or nil if it displays no image.

See also: – setImage:

6

initWithTitle:action:keyEquivalent:
– (id)initWithTitle: (NSString *)itemName

action:(SEL)anAction
keyEquivalent:(NSString *)charCode

Returns an initialized instance of an object that conforms to the NSMenuItem protocol. The arguments
itemName and charCode must not be nil (if there is no title or key equivalent, specify an empty NSString).
The anAction argument must be a valid selector or NULL For instances of the NSMenItem class, the default
initial state is NSStateOff, the default on-state image is a checkmark, and the default mixed-state image is
a dash.

isEnabled
– (BOOL)isEnabled

Returns YES if the receiver is enabled, NO if not.

See also: – setEnabled:

isSeparatorItem
– (BOOL)isSeparatorItem

Returns whether the receiver is a separator item (that is, a menu item used to visually segregate related menu
items).

See also: + separatorItem

keyEquivalent
– (NSString *)keyEquivalent

Returns the receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined. Use
keyEquivalentModifierMask to determine the modifier mask for the key equivalent.

See also: – userKeyEquivalent, – mnemonic, – setKeyEquivalent:

keyEquivalentModifierMask
– (unsigned int)keyEquivalentModifierMask

Returns the receiver’s keyboard equivalent modifier mask.

See also: – setKeyEquivalentModifierMask:

7

 Protocol: NSMenuItem

menu
– (NSMenu *)menu

Returns the menu to which the receiver belongs, or nil if no menu has been set.

See also: – setMenu:

mixedStateImage
– (NSImage *)mixedStateImage

Returns the image used to depict a “mixed state.” A mixed state is useful for indicating “off” and “on”
attribute values in a group of selected objects, such as a selection of text containing bold and plain
(non-bolded) worlds.

See also: – setMixedStateImage:

mnemonic
– (NSString *)mnemonic

Returns the character in the menu item title that appears underlined for use as a mnemonic. If there is no
mnemonic character, returns an empty string.

See also: – setTitleWithMnemonic:

mnemonicLocation
– (unsigned int)mnemonicLocation

Returns the position of the underlined character in the menu item title used as a mnemonic. The position is
the zero based index of that character in the title string. If the receiver has no mnemonic character, returns
NSNotFound.

See also: – setMnemonicLocation:

offStateImage
– (NSImage *)offStateImage

Returns the image used to depict the receiver’s “off” state, or nil if the image has not been set.

See also: – setOffStateImage:

8

onStateImage
– (NSImage *)onStateImage

Returns the image used to depict the receiver’s “on” state, or nil if the image has not been set.

See also: – setOnStateImage:

representedObject
– (id)representedObject

Returns the object that the receiving menu item represents. For example, you might have a menu list the
names of views that are swapped into the same panel. The represented objects would be the appropriate
NSView objects. The user would then be able to swtich back and forth between the different views that are
displayed by selecting the various menu items.

See also: – tag, – setRepresentedObject:

setAction:
– (void)setAction:(SEL)aSelector

Sets the receiver’s action method to aSelector.

See also: – setTarget:, – action

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiver is enabled based on flag. If a menu item is disabled, it’s keyboard equivalent and
mnemonic are also disabled. See the NSMenuValidation informal protocol specification for cautions
regarding this method.

See also: – isEnabled

setImage:
– (void)setImage:(NSImage *)menuImage

Set’s the receiver’s image to menuImage. If menuImage is nil , the current image (if any) is removed. This
image is not affected by changes in menu-item state.

See also: – image

9

 Protocol: NSMenuItem

setKeyEquivalent:
– (void)setKeyEquivalent:(NSString *)aString

Sets the receiver’s unmodified key equivalent to aString. If you want to remove the key equivalent from a
menu item, pass an empty string (@””) for aString (never pass nil). Use
setKeyEquivalentModifierMask: to set the appropriate mask for the modifier keys for the key equivalent.

See also: – setMnemonicLocation:, – keyEquivalent

setKeyEquivalentModifierMask:
– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the receiver’s keyboard equivalent modifiers (indicating modifiers such as the Shift or Alternate keys)
to those in mask. mask is an integer bit field containing any of these modifier key masks, combined using
the C bitwise OR operator:

NSShiftKeyMask
NSAlternateKeyMask
NSCommandKeyMask

On Mach, you should always set NSCommandKeyMask in mask; on Microsoft Windows, this is not
required.

NSShiftKeyMask is relevant only for function keys; that is, for key events whose modifier flags include
NSFunctionKeyMask. For all other key events NSShiftKeyMask is ignored and characters typed while the
Shift key is pressed are interpreted as the shifted versions of those characters; for example,
Command-Shift-‘c’ is interpreted as Command-‘C’.

See the NSEvent class specification for more information about modifier mask values.

See also: – keyEquivalentModifierMask

setMenu:
– (void)setMenu:(NSMenu *)aMenu

Sets the receiver’s menu to aMenu. This method is invoked by the owning NSMenu when the receiver is
added or removed. You shouldn’t have to invoke this method in your own code, although it can be overriden
to provide specialized behavior.

See also: – menu

10

setMixedStateImage:
– (void)setMixedStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates a”mixed” state, that is, a state neither “on” or “off.” If
itemImage is nil , any current mixed-state image is removed.

See also: – mixedStateImage, – setOffStateImage:, – setOnStateImage:, – setState:

setMnemonicLocation:
– (void)setMnemonicLocation:(unsigned int)location

Sets the character of the menu item title at location that is to be underlined. location must be between 0 and
254. This character identifies the access key on Windows by which users can access the menu item.

See also: – mnemonicLocation

setOffStateImage:
– (void)setOffStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates an “off” state. If itemImage is nil , any current off-state image
is removed.

See also: – offStateImage, – setMixedStateImage:, – setOnStateImage:, – setState:

setOnStateImage:
– (void)setOnStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates an “on” state. If itemImage is nil , any current off-state image
is removed.

See also: – onStateImage, – setMixedStateImage:, – setOffStateImage:, – setState:

setRepresentedObject:
– (void)setRepresentedObject:(id)anObject

Sets the object represented by the receiver to anObject. By setting a represented object for a menu item you
make an association between the menu item and that object. The represented object functions as a more
specific form of tag that allows you to associate any object, not just an int , with the items in a menu.

11

 Protocol: NSMenuItem

For example, an NSView object might be associated with a menu item—when the user chooses the menu
item, the represented object is fetched and displayed in a panel. Several menu items might control the
display of multiple views in the same panel.

See also: – setTag:, – representedObject

setState:
– (void)setState:(int)itemState

Sets the state of the receiver to itemState, which should be one of NSOffState, NSOnState, or
NSMixedState. The image associated with the new state is displayed to the left of the menu item.

See also: – state, – setMixedStateImage:, – setOffStateImage:, – setOnStateImage:

setSubmenu:
– (void)setSubmenu:(NSMenu *)aSubmenu

Sets the submenu of the receiver to aSubmenu. The default implementation of the NSMenuItem class raises
an exception if aSubmenu already has a supermenu.

See also: – submenu, – hasSubmenu

setTag:
– (void)setTag:(int)anInt

Sets the receiver’s tag to anInt.

See also: – setRepresentedObject:, – tag

setTarget:
– (void)setTarget:(id)anObject

Sets the receiver’s target to anObject.

See also: – setAction:, – target

12

setTitle:
– (void)setTitle:(NSString *)aString

Sets the receiver’s title to aString.

See also: – title

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)aString

Sets the title of a menu item with a character underlined to denote an access key (Windows only). Use an
ampersand character to mark the character (the one following the ampersand) to be underlined. For
example, the following message causes the ‘c’ in ‘Receive’ to be underlined:

[aMenuItem setTitleWithMnemonic:NSLocalizedString(@"Re&ceive")];

See also: – mnemonic, – setMnemonicLocation:

state
– (int)state

Returns the state of the receiver, which is NSOffState (the default), NSOnState, or NSMixedState.

See also: – setState:

submenu
– (NSMenu *)submenu

Returns the submenu associated with the receiving menu item, or nil if no submenu is associated with it. In
the implementation of the NSMenuItem class, if the receiver responds YES to hasSubmenu, the submenu
is returned.

See also: – hasSubmenu, – setSubmenu:

tag
– (int)tag

Returns the receiver’s tag.

See also: – representedObject, – setTag:

13

 Protocol: NSMenuItem

target
– (id)target

Returns the receiver’s target.

See also: – action, – setTarget:

title
– (NSString *)title

Returns the receiver’s title.

See also: – setTitle:

userKeyEquivalent
– (NSString *)userKeyEquivalent

Returns the user-assigned key equivalent for the receiver.

See also: – keyEquivalent

1

 Protocol: NSMenuValidation

NSMenuValidation
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSMenu.h

Protocol Description

This informal protocol allows your application to update the enabled or disabled status of an NSMenuItem.
It declares only one method, validateMenuItem:. By default, every time a user event occurs, NSMenu
automatically enables and disables each visible menu item based on criteria described in “Automatic
Updating of NSMenuItems,” below. Implement validateMenuItem: in cases where you want to override
NSMenu’s default enabling scheme.

NSMenuItems can be enabled or disabled in two ways: explicitly, by sending the setEnabled: message, or
automatically, as described below. Automatic updating can be turned on and off with NSMenu’s
setAutoenablesItems: message.

Automatic Updating of NSMenuItems

Whenever a user event occurs, the NSMenu object updates the status of every one of its visible menu items.
To update the status of a menu item, an NSMenu tries to find the object that responds to the NSMenuItem’s
action message. It searches the following objects in the given order until it finds one that responds to the
action message (note that it doesn’t actually send the action message):

• The NSMenuItem’s target. If the target is non-nil , the search ends here whether the target responds or not.

• The key window’s responder chain, starting with its first responder.

• The key window itself.

• The key window’s delegate.

• The main window’s responder chain, starting with its first responder.

• The main window itself.

• The main window’s delegate.

• The NSApplication object.

• The NSApplication object’s delegate.

If none of these objects responds to the action message, the menu item is disabled. If NSMenu finds an
object that responds to the action message, it then checks to see if that object responds to the
validateMenuItem: method (the method declared in this informal protocol). If validateMenuItem: is not

2

implemented in that object, the menu item is enabled. If it is implemented, the return value of
validateMenuItem: indicates whether the menu item should be enabled or disabled.

Here is an example of using validateMenuItem: to override automatic enabling. If your application has a
Copy menu item that sends the copy: action message to the first responder, that menu item is automatically
enabled any time an object that responds to copy:, such as an NSText object, is the first responder of the
key or main window. If you create a class whose instances might become the first responder, and which
doesn’t support copying of everything it allows the user to select, you should implement
validateMenuItem: in that class. validateMenuItem: will then return NO if items that can’t be copied are
selected (or if no items are selected) and YES if all items in the selection can be copied. By implementing
validateMenuItem:, you can have the Copy menu item disabled even though the target object does
implement the copy: method. If a class never permits copying, then you simply omit an implemention of
copy: in that class, and the Copy menu item is disabled automatically whenever an instance of that class is
the first responder.

If you send a setEnabled: message to enable or disable a menu item when automatic updating is turned on
(with NSMenu’s setAutoEnablesItems:), other objects might undo what you have done after another user
event occurs. Hence you can never be sure that the menu item will remain the way you set it. If your
application must use setEnabled:, turn off the automatic enabling of menu items in order to get predictable
results.

Instance Methods

validateMenuItem:
– (BOOL)validateMenuItem:(NSMenuItem *)aMenuItem

Implemented to override the default action of enabling or disabling aMenuItem. The object implementing
this method must be the target of aMenuItem. It returns YES to enable the aMenuItem, NO to disable it.
You can determine which menu item aMenuItem is by querying it for its title, tag, or action.

The following example beeps and disables the menu item “Next Record” if the selected line in a table view
is the last one; conversely, it beeps and disables the menu item “Prior Record” if the selected row is the first
one in the table view. (countryKeys is an array of names appearing in the table view.)

3

 Protocol: NSMenuValidation

- (BOOL)validateMenuItem:(NSMenuItem *)anItem

{

int row = [tableView selectedRow];

if ([[anItem title] isEqualToString:@"Next Record"] &&

(row == [countryKeys indexOfObject:[countryKeys lastObject]])) {

return NO;

}

if ([[anItem title] isEqualToString:@"Prior Record"] && row == 0) {

return NO;

}

return YES;

}

1

 Protocol: NSNibAwaking

NSNibAwaking
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSNibLoading.h

Protocol Description

This informal protocol consists of a single method, awakeFromNib. Classes can implement this method
to perform final initialization of state after objects have been loaded from an Interface Builder archive.

Instance Methods

awakeFromNib
– (void)awakeFromNib

Implemented to prepare the receiver for service after it has been loaded from an Interface Builder archive,
or nib file. An awakeFromNib message is sent to each object loaded from the archive, but only if it can
respond to the message, and only after all the objects in the archive have been loaded and initialized. When
an object receives an awakeFromNib message, it’s guaranteed to have all its outlet instance variables set.

Note: This method is also sent during Interface Builder’s test mode to objects instantiated from loaded
palettes, which include executable code for the objects. It isn’t sent to objects defined solely by using
the Classes display of the nib file window in Interface Builder.

When an Interface Builder archive is loaded into an application, each custom object from the archive is first
initialized with an init message, or initWithFrame: if the object is a kind of NSView. It’s then more
specifically initialized with the properties that it was configured with using Interface Builder. This part of
the initialization process uses any setVariable: methods that are available (where variable is the name of
an instance variable whose value was set in Interface Builder). Finally, after all the objects are fully
initialized, each receives an awakeFromNib message.

The order in which objects are loaded from the archive is not guaranteed. Therefore, it’s possible for a
setVariable: message to be sent to an object before its companion objects have been unarchived. For this
reason, setVariable: methods should not send messages to other objects in the archive. However, messages
to other objects can safely be sent from within awakeFromNib—by which time it’s assured that all the
objects are unarchived and initialized (though not necessarily awakened, of course).

Typically, awakeFromNib is implemented for classes whose instances are used as the owners of a loaded
nib file (shown as “File’s Owner” in Interface Builder). Such a class has the express purpose of connecting
the loaded objects with objects in the application, and can thereafter be disposed of, or remain in the

2

capacity of a controller or coordinator for the loaded objects. For example, suppose that a nib file contains
two custom views that must be positioned relative to each other at run time. Trying to position them when
either one of the views is initialized (in initWithCoder: or a setVariable: method) might fail, since the
other views might not be unarchived and initialized yet. However, it can be done in the nib file owner’s
awakeFromNib method (firstView and secondView are outlets of the file’s owner):

- (void)awakeFromNib

{

NSRect viewFrame;

if ([[self superclass] instancesRespondToSelector:@selector(awakeFromNib)]) {

[super awakeFromNib];

}

viewFrame = [firstView frame];

viewFrame.origin.x += viewFrame.size.width;

[secondView setFrame:viewFrame];

return;

}

Note the testing of the superclass before invoking its implementation of awakeFromNib. The Application
Kit declares a prototype for this method, but doesn’t implement it. Because there’s no default
implementation of awakeFromNib, be sure to invoke it only when the object does in fact respond.

See also: + loadNibNamed:owner: (NSBundle Additions),
– awakeAfterUsingCoder (NSObject class of the Foundation Kit),
– initWithCoder: (NSCoding protocol of the Foundation Kit),
+ initialize (NSObject class of the Foundation Kit)

1

 Protocol: NSServicesRequests

NSServicesRequests
 (informal protocol)

Category Of: NSObject

Declared In: AppKit/NSApplication.h

Protocol Description

This informal protocol consists of two methods, writeSelectionToPasteboard:types: and
readSelectionFromPasteboard:. The first is implemented to provide data to a remote service, and the
second to receive any data the remote service might send back. Both respond to messages that are generated
when the user chooses a command from the Services menu.

Instance Methods

readSelectionFromPasteboard:
- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Implemented to replace the current selection (that is, the text or objects that are currently selected) with data
read from the Pasteboard object pboard. The data would have been placed in the pasteboard by another
application in response to a remote message from the Services menu. A readSelectionFromPasteboard:
message is sent to the same object that previously received a writeSelectionToPasteboard:types:
message.

There’s no default readSelectionFromPasteboard: method. The Application Kit declares a prototype for
this method, but doesn’t implement it.

writeSelectionToPasteboard:types:
- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types

Implemented to write the current selection to the Pasteboard object pboard. The selection should be written
as one or more of the data types listed in types. After writing the data, this method should return YES. If for
any reason it can’t write the data, it should return NO.

A writeSelectionToPasteboard:types: message is sent to the first responder when the user chooses a
command from the Services menu, but only if the receiver didn’t return nil to a previous
validRequestorForSendType:returnType: message.

After this method writes the data to the pasteboard, a remote message is sent to the application that provides
the service the user requested. If the service provider supplies return data to replace the selection, the first
responder will then receive a readSelectionFromPasteboard: message.

2

There’s no default writeSelectionToPasteboard:types: method. The Application Kit declares a prototype
for this method, but doesn’t implement it.

See also: – validRequestorForSendType:returnType: (NSResponder class)

1

 Protocol: NSTableDataSource

NSTableDataSource
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSTableView.h

Category Description

The NSTableDataSource category declares the methods that an NSTableView uses to access the contents
of its data source object. It determines how many rows to display by sending a
numberOfRowsInTableView: message, and accesses individual values with the tableView:
objectValueForTableColumn:row: and tableView:setObjectValue:forTableColumn:row: methods. A
data source must implement the first two methods to work with an NSTableView, but if it doesn’t implement
the third the NSTableView simply provides read-only access to its contents.

The NSTableView treats objects provided by its data source as values to be displayed in NSCell objects. If
these objects aren’t of common value classes—such as NSString, NSNumber, and so on—you’ll need to
create a custom NSFormatter to display them. See the NSFormatter class specification for more
information.

Suppose that an NSTableView’s column identifiers are set up as NSStrings containing the names of
attributes for the column, such as “Last Name”, “City”, and so on, and that the data source stores its records
as an NSMutableArray, called records, of NSMutableDictionary objects using those names as keys. Here’s
a small example, given as an ASCII property list:

(

{

"Last Name" = Anderson;

"First Name" = James;

Abode = apartment;

City = "San Francisco";

},

{

"Last Name" = Beresford;

"First Name" = Keith;

Abode = apartment;

City = "Redwood City";

}

)

With such a record structure, this implementation of tableView:objectValueForTableColumn:row:
suffices to retrieve values for the NSTableView:

2

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id theRecord, theValue;

NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);

theRecord = [records objectAtIndex:rowIndex];

theValue = [theRecord objectForKey:[aTableColumn identifier]];

return theValue;

}

Here’s the corresponding method for setting values:

- (void)tableView:(NSTableView *)aTableView

setObjectValue:anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id theRecord;

NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);

theRecord = [records objectAtIndex:rowIndex];

[theRecord setObject:anObject forKey:[aTableColumn identifier]];

return;

}

Finally, numberOfRowsInTableView: simply returns the count of the NSArray:

- (int)numberOfRowsInTableView:(NSTableView *)aTableView

{

return [records count];

}

In each case, the NSTableView that sends the message is provided as aTableView. A data source object that
manages several sets of data can choose the appropriate set based on which NSTableView sends the
message.

Method Types

Getting values
– numberOfRowsInTableView:
– tableView:objectValueForTableColumn:row:

Setting values
– tableView:setObjectValue:forTableColumn:row:

3

 Protocol: NSTableDataSource

Instance Methods

numberOfRowsInTableView:
– (int)numberOfRowsInTableView:(NSTableView *)aTableView

Returns the number of records managed for aTableView by the data source object. An NSTableView uses
this method to determine how many rows it should create and display.

tableView:objectValueForTableColumn:row:
– (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn
row: (int)rowIndex

Returns an attribute value for the record in aTableView at rowIndex. aTableColumn contains the identifier
for the attribute, which you get by using NSTableColumn’s identifier method. For example, if
aTableColumn stands for the city that an employee lives in and rowIndex specifies the record for an
employee who lives in Portland, this method returns an object with a string value of “Portland”. See the
category description for an example.

tableView:setObjectValue:forTableColumn:row:
– (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject
forTableColumn: (NSTableColumn *)aTableColumn
row: (int)rowIndex

Sets an attribute value for the record in aTableView at rowIndex. anObject is the new value, and
aTableColumn contains the identifier for the attribute, which you get by using NSTableColumn’s identifier
method. See the category description for an example.

1

 Protocol: NSTextAttachmentCell

NSTextAttachmentCell

Adopted By: NSTextAttachmentCell

Declared In: AppKit/NSTextAttachment.h

Protocol Description

The NSTextAttachmentCell protocol declares the interface for objects that draw text attachment icons and
handle mouse events on their icons. With the exceptions of cellBaselineOffset:, setAttachment: and
attachment, all of these methods are implemented by the NSCell class and described in that class
specification.

See the NSAttributedString and NSTextView class specifications for general information on text
attachments.

Method Types

Drawing
– drawWithFrame:inView:
– highlight:withFrame:inView:

Cell size and position
– cellSize
– cellBaselineOffset

Event handling
– wantsToTrackMouse
– trackMouse:inRect:ofView:untilMouseUp:

Setting the attachment
– setAttachment:
– attachment

2

Instance Methods

attachment
– (NSTextAttachment *)attachment

Returns the text attachment object that owns the receiver.

See also: – setAttachment:

cellBaselineOffset
– (NSPoint)cellBaselineOffset

Returns the position where the attachment cell’s image should be drawn in text, relative to the current point
established in the glyph layout. The image should be drawn so that its lower left corner lies on this point.

See also: – icon (NSFileWrapper)

cellSize
– (NSSize)cellSize

Returns the size of the attachment’s icon.

See also: – icon (NSFileWrapper), – fileWrapper (NSTextAttachment)

drawWithFrame:inView:
– (void)drawWithFrame: (NSRect)cellFrame inView: (NSView *)aView

Draws the receiver’s image within cellFrame in aView, which should be the focus view.

See also: – drawWithFrame:inView: (NSCell), – lockFocus (NSView)

highlight:withFrame:inView:
– (void)highlight: (BOOL)flag

withFrame: (NSRect)cellFrame
inView: (NSView *)aView

Draws the receiver’s image—with highlighting if flag is YES—within cellFrame in aView, which should be
the focus view.

See also: – highlight:withFrame:inView: (NSCell), – lockFocus (NSView)

3

 Protocol: NSTextAttachmentCell

setAttachment:
– (void)setAttachment:(NSTextAttachment *)anAttachment

Sets the text attachment object that owns the receiver to anAttachment, without retaining it (the text
attachment, as the owner, retains the cell).

See also: – attachment, – setAttachmentCell: (NSTextAttachment)

trackMouse:inRect:ofView:untilMouseUp:
– (BOOL)trackMouse:(NSEvent *)theEvent

inRect:(NSRect)cellFrame
ofView:(NSView *)aTextView
untilMouseUp:(BOOL)flag

Handles a mouse-down event on the receiver’s image. theEvent is the mouse-down event. cellFrame is the
region of aTextView in which further mouse events should be tracked. aTextView is the view which received
the event. It’s assumed to be an NSTextView, and should be the focus view. If flag is YES, the receiver tracks
the mouse until a mouse-up event occurs; if flag is NO, it stops tracking when a mouse-dragged event occurs
outside of cellFrame. Returns YES if the receiver successfully finished tracking the mouse (typically
through a mouse-up event), NO otherwise (such as when the mouse is dragged outside cellFrame).

NSTextAttachmentCell’s implementation of this method calls upon aTextView’s delegate to handle the
event. If theEvent is a mouse-up event for a double click, the text attachment cell sends the delegate a
textView:doubleClickedOnCell:inRect: message and returns YES. Otherwise, depending on whether the
user clicks or drags the cell, it sends the delegate a textView:clickedOnCell:inRect: or a textView:
draggingCell:inRect:event: message and returns YES. NSTextAttachmentCell’s implementation returns
NO only if flag is NO and the mouse is dragged outside of cellFrame. The delegate methods are invoked
only if the delegate responds.

See also: – wantsToTrackMouse, – trackMouse:inRect:ofView:untilMouseUp: (NSCell),
– lockFocus (NSView)

wantsToTrackMouse
– (BOOL)wantsToTrackMouse

Returns YES if the receiver will handle a mouse event occurring over its image (to support dragging, for
example), NO otherwise. NSTextAttachmentCell’s implementation of this method returns YES. The
NSView containing the cell should invoke this method before sending a trackMouse:inRect:ofView:
untilMouseUp: message.

For an attachment in an attributed string, if the attachment cell returns NO its attachment character should
be selected rather than the cell being asked to track the mouse. this results in the attachment icon behaving
as any regular glyph in text.

1

 Protocol: NSTextInput

NSTextInput

Adopted By: NSInputManager

Declared In: AppKit/NSInputManager.h

Protocol Description
Note: This class specification is incomplete and has not received a technical review. It is included in this

release to test the linkage between the application development tools and the on-line documentation.
What information it contains should be considered preliminary and subject to change.

The methods of the NSTextInput protocol are implemented by objects—for example, responders—that
handle text input. A client object such as a text view (“the client object”) that speaks this protocol must be
reponsible for the following things:

1. The client object must maintain a “marked region” within which text input and, possibly, character
conversion take place. The marked region may have a length of zero. The client object must maintain an
“insertion point”—typically at the end of the marked region, though it may be within the region. The
“selection” within the client object, if any, is entirely contained within the marked region whenever there
is a marked region.2. The client object is responsible for sending messages to currentInputManager when
the mouse goes down inside the marked region, or when the mouse leaves the marked region. Within the
marked region, this allows the selection to be changed. Out of the marked region, it allows the region to be
“abandoned”. (See below.)

3. When there is a non-zero marked region, the client object is responsible for notifying the input manager
when the selection changes, or when other programmatic changes to the text affect the marked region. It
can do this by sending a message to set the selection, abandon the marked region, etc.

4. When the client object relinquishes first responder, it will typically send markedTextWillBeAbandoned:
to the currentInputManager. It must send markedTextWillBeAbandoned: when its insertion point (or
selection moves outside the marked range. The server will typically respond by simply unmarking the
region, but may remove the marked region's text entirely.

Note: If this protocol is not implemented by a client object that does have a keyDown: method, then in-line
input is not possible for that client object, and will have to be handled externally.

The NSTextInput protocol is implemented by a IM to receive input from the server on behalf of the current
client, and otherwise mediate between the client object and the server. It then forwards the corresponding
messages to the client, or gets information from the client to pass back to the server, as appropriate.

The message passing between NSApp, IM, UIobj, and Server is all synchronous. That is, e.g., when IM
sends a message to Server, any reply comes back and is relayed to UIobj before the original message
returns.

2

A key binding manager splits the stream of keyDown: messages (intercepted by NSResopnder) into
commands and text. If there is an Input Manager in the loop, it will further use any of these NSTextInput
messages to control the marked region.

Method Types

Marking text
– setMarkedText:selectedRange:
– getMarkedText:selectedRange:
– hasMarkedText
– unmarkText

Other
– conversationIdentifier
– doCommandBySelector:
– insertText:

Instance Methods

conversationIdentifier
– (long)conversationIdentifier

Returns a number used to identify the receiver’s input management session to the input server.

<<more information forthcoming>>

doCommandBySelector:
– (void)doCommandBySelector:(SEL)aSelector

Attempts to invoke aSelector or pass the message up the responer chain. This method is invoked by an input
manager in response to an interpretKeyEvents: message.

<<more information forthcoming>>

See also: – interpretKeyEvents: (NSResponder)

3

 Protocol: NSTextInput

getMarkedText:selectedRange:
– (void)getMarkedText:(out NSString **)aString selectedRange:(out NSRange *)aRange

Returns by reference in aString the receiver’s marked text, if any, and in aRange the range of the selection
within aString (not in terms of the receiver’s entire text stream).

hasMarkedText
– (BOOL)hasMarkedText

Returns YES if the receiver has text that’s still being interpreted by the input manager, NO if it doesn’t.

<<more information forthcoming>>

insertText:
– (void)insertText:(NSString *)aString

Inserts aString into the receiver’s text stream. This method is invoked by an input manager in response to
an interpretKeyEvents: message.

<<more information forthcoming>>

See also: – interpretKeyEvents: (NSResponder)

setMarkedText:selectedRange:
– (void)setMarkedText:(NSString *)aString selectedRange:(NSRange)selRange

<<forthcoming>>

unmarkText
– (void)unmarkText

Removes any marking from pending input text, and accepts the text in its current state.

<<more information forthcoming>>

1

Defined Types

NSBorderType

DECLARED IN

AppKit/NSView.h

SYNOPSIS

typedef enum _NSBorderType {

NSNoBorder

,

NSLineBorder

,

NSBezelBorder

,

NSGrooveBorder

}

NSBorderType

;

DESCRIPTION

This type represents the kinds of border that can be drawn around certain NSView subclasses.

NSButtonType

DECLARED IN

AppKit/NSButtonCell.h

SYNOPSIS

typedef enum _NSButtonType {

NSMomentaryPushButton

,

NSPushOnPushOffButton

,

NSToggleButton

,

NSSwitchButton

,

NSRadioButton

,

NSMomentaryChangeButton

,

NSOnOffButton

,

NSMomentaryLight

,
}

NSButtonType

;

DESCRIPTION

This type represents the way NSButtons and NSButtonCells behave when pressed, and the way
they display their state. See NSButton’s and NSButtonCell’s

setButtonType:

 methods for more
information.

2

NSCellAttribute

DECLARED IN

AppKit/NSCell.h

SYNOPSIS

typedef enum _NSCellAttribute {

NSCellDisabled

,

NSCellState

,

NSPushInCell

,

NSCellEditable

,

NSChangeGrayCell

,

NSCellHighlighted

,

NSCellLightsByContents

,

NSCellLightsByGray

,

NSChangeBackgroundCell

,

NSCellLightsByBackground

,

NSCellIsBordered

,

NSCellHasOverlappingImage

,

NSCellHasImageHorizontal

,

NSCellHasImageOnLeftOrBottom

,

NSCellChangesContents

,

NSCellIsInsetButton

,

NSCellAllowsMixedState

}

NSCellAttribute

;

DESCRIPTION

This is the type of the first argument to the NSCell methods

setCellAttribute:to:

 and

cellAttribute:

 methods. Some of the values apply not to NSCell but to one of its subclasses.

Often it’s preferable to change cell attributes using more specialized methods like

setState:

 or

setEditable:

.

3

NSCellImagePosition

DECLARED IN

AppKit/NSCell.h

SYNOPSIS

typedef enum _NSCellImagePosition {

NSNoImage

,

NSImageOnly

,

NSImageLeft

,

NSImageRight

,

NSImageBelow

,

NSImageAbove

,

NSImageOverlaps

,
}

NSCellImagePosition

;

DESCRIPTION

These constants represent the position of an NSButtonCell’s NSImage relative to its title. See
NSButton’s and NSButtonCell’s

setImagePosition:

 and

imagePosition

 methods for more
information.

NSCellType

DECLARED IN

AppKit/NSCell.h

SYNOPSIS

typedef enum _NSCellType {

NSNullCellType

,

NSTextCellType

,

NSImageCellType

,
}

NSCellType

;

DESCRIPTION

The values of this type determine what kind of data an NSCell displays. NSCells of type
NSTextCellType and NSImageCellType display text and images, respectively. NSCells of type
NSNullCellType display nothing. See the NSCell methods

type

 and

setType:

 for more
information.

4

NSDataLinkDisposition

DECLARED IN

AppKit/NSDataLink.h

SYNOPSIS

typedef enum _NSDataLinkDisposition {

NSLinkInDestination

,

NSLinkInSource

,

NSLinkBroken

}

NSDataLinkDisposition

;

DESCRIPTION

Returned by NSDataLink’s

disposition

 method to identify a link as a destination link, a source
link, or a broken link. See the NSDataLink class specification for more information on the
dispositions of links.

NSDataLinkNumber

DECLARED IN

AppKit/NSDataLink.h

SYNOPSIS

typedef int

NSDataLinkNumber

;

DESCRIPTION

The type returned by NSDataLink’s

linkNumber

 method as a persistent identifier of a destination
link.

NSDataLinkUpdateMode

DECLARED IN

AppKit/NSDataLink.h

SYNOPSIS

typedef enum _NSDataLinkUpdateMode {

NSUpdateContinuously

,

NSUpdateWhenSourceSaved

,

NSUpdateManually

,

NSUpdateNever

}

NSDataLinkUpdateMode

;

5

DESCRIPTION

Used by NSDataLink’s

setUpdateMode:

 and

updateMode

 methods to identify when a link’s
data is to be updated.

NSEventType

DECLARED IN

AppKit/NSEvent.h

SYNOPSIS

typedef enum _NSEventType {

NSLeftMouseDown

,

NSLeftMouseUp,
NSRightMouseDown,
NSRightMouseUp,
NSMouseMoved,
NSLeftMouseDragged,
NSRightMouseDragged,
NSMouseEntered,
NSMouseExited,
NSKeyDown,
NSKeyUp,
NSFlagsChanged,
NSAppKitDefined,
NSSystemDefined,
NSApplicationDefined
NSPeriodic,
NSCursorUpdate

} NSEventType;

DESCRIPTION This type represents various kinds of events. It is the return type of NSEvent’s type method, and
the type of the first argument to NSEvent’s ...EventWithType: methods.

6

NSFontAction

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS typedef enum _NSFontAction {
NSNoFontChangeAction,
NSViaPanelFontAction,
NSAddTraitFontAction ,
NSSizeUpFontAction,
NSSizeDownFontAction,
NSHeavierFontAction,
NSLighterFontAction ,
NSRemoveTraitFontAction

} NSFontAction;

DESCRIPTION Values of this type tag the actions of font menu cells. When a font menu cell sends a message to
NSFontManager, NSFontManager checks the cell for one of these tags.

This type is in the API for explanatory purposes only. You will never use it directly.

NSFontTraitMask

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS typedef unsigned int NSFontTraitMask;

DESCRIPTION An NSFontTraitMask characterizes one or more of a font’s traits. It’s used as an argument type
for NSAttributedString’s applyFontTraits:range: method, NSCStringText’s setSelFontStyle:
method, and several of the methods in the NSFontManager class.

7

NSGlyph

DECLARED IN AppKit/NSFont.h

SYNOPSIS typedef unsigned int NSGlyph;

DESCRIPTION This type is used to specify PostScript glyphs in such NSFont methods as glyphWithName:.

NSGlyphInscription

DECLARED IN AppKit/NSLayoutManager.h

SYNOPSIS typedef enum {
NSGlyphInscribeBase,
NSGlyphInscribeBelow,
NSGlyphInscribeAbove,
NSGlyphInscribeOverstrike,
NSGlyphInscribeOverBelow

} NSGlyphInscription ;

DESCRIPTION The inscribe attribute of an glyph determines how it is laid out relative to the previous glyph.

NSGlyphRelation

DECLARED IN AppKit/NSFont.h

SYNOPSIS typedef enum _NSGlyphRelation {
NSGlyphBelow,
NSGlyphAbove,

} NSGlyphRelation;

DESCRIPTION This type specifies the position of a glyph in relation to the base glyph. Parameters of this type
are used in the second slot of the NSFont method positionOfGlyph:withRelation:
toBaseGlyph:....

8

NSGradientType

DECLARED IN AppKit/NSButtonCell.h

SYNOPSIS typedef enum _NSGradientType {
NSGradientNone,
NSGradientConcaveWeak,
NSGradientConcaveStrong,
NSGradientConvexWeak,
NSGradientConvexStrong

} NSGradientType;

DESCRIPTION This type represents the darkness gradient of an NSButtonCell. A concave gradient is darkest in
the top left corner, a convex gradient is darkest in the bottom right corner. A weak gradient has
only weak darkness contrast between opposite corners; a strong gradient has strong contrast. See
the NSButtonCell methods gradient and setGradient: for more information.

NSImageAlignment

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSImageAlignCenter,
NSImageAlignTop,
NSImageAlignTopLeft,
NSImageAlignTopRight,
NSImageAlignLeft,
NSImageAlignBottom,
NSImageAlignBottomLeft,
NSImageAlignBottomRight,
NSImageAlignRight

} NSImageAlignment;

DESCRIPTION This type defines the ways of aligning an NSImage within an NSImageCell. It is the return type
for NSImageCell’s and NSImageView’s imageAlignment methods, and an argument type for
their setImageAlignment: methods.

9

NSImageFrameStyle

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSImageFrameNone,
NSImageFramePhoto,
NSImageFrameGrayBezel,
NSImageFrameGroove,
NSImageFrameButton

} NSImageFrameStyle;

DESCRIPTION This type defines the kinds of frames that can appear around an NSImageCell. It is the return type
for NSImageCell’s and NSImageView’s imageFrameStyle methods, and an argument type for
their setImageFrameStyle: methods.

NSImageScaling

DECLARED IN AppKit/NSImageCell.h

SYNOPSIS typedef enum {
NSScaleProportionally,
NSScaleToFit,
NSScaleNone

} NSImageScaling;

DESCRIPTION This type defines the ways that an image can be scaled to fit an NSImageCell. The value
NSScaleProportionally means that the image should be scaled in a way that preserves its
proportions. The value NSScaleToFit means that the image should fit the NSView, even if that
means its proportions must be distorted. The value NSScaleNone means that the image’s size
should be preserved, even if it must be clipped to fit the NSView.

10

NSInterfaceStyle

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS typedef enum {
NSNoInterfaceStyle,
NSNextStepInterfaceStyle,
NSWindows95InterfaceStyle,
NSMacintoshInterfaceStyle

} NSInterfaceStyle;

DECLARED IN This type defines the style of an application’s user interface. It is returned by the interfaceStyle
method and taken as an argument by the setInterfaceStyle: method. Both of the these methods
are in the NSInterfaceStyle category of NSResponder.

For more information, see the function NSInterfaceStyleForKey.

NSLineBreakMode

DECLARED IN AppKit/NSParagraphStyle.h

SYNOPSIS typedef enum _NSLineBreakMode {
NSLineBreakByWordWrapping ,
NSLineBreakByCharWrapping ,
NSLineBreakByClipping,
NSLineBreakByTruncatingHead,
NSLineBreakByTruncatingTail ,
NSLineBreakByTruncatingMiddle

} NSLineBreakMode;

DESCRIPTION This type defines the ways that a long paragraph can be broken into lines. The possible values are
described below.

Value Meaning

NSLineBreakByWordWrapping The default value. At the last possible word boundary, the
paragraph wraps to the next line.

11

NSLineMovementDirection

DECLARED IN AppKit/NSTextContainer.h

SYNOPSIS typedef enum {
NSLineDoesntMove,
NSLineMovesLeft,
NSLineMovesRight,
NSLineMovesDown,
NSLineMovesUp

} NSLineMovementDirection;

DESCRIPTION This is an argument type for the NSTextContainer method
lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:.

NSLineBreakByCharWrapping At the last possible character, the paragraph wraps to the
next line.

NSLineBreakByClipping As much of the paragraph appears as will fit on a single
line. This value has the same effect as
NSLineBreakByTruncatingTail

NSLineBreakByTruncatingHead As much of the paragraph appears as will fit on a single
line. Characters from the start of the paragraph do not
appear.

NSLineBreakByTruncatingTail As much of the paragraph appears as will fit on a single
line. Characters from the end of the paragraph do not
appear.

NSLineBreakByTruncatingMiddle As much of the paragraph appears as will fit on a single
line. Characters from the middle of the paragraph do not
appear.

Value Meaning

12

NSLineSweepDirection

DECLARED IN AppKit/NSTextContainer.h

SYNOPSIS typedef enum {
NSLineSweepLeft,
NSLineSweepRight,
NSLineSweepDown,
NSLineSweepUp

} NSLineSweepDirection;

DESCRIPTION This is an argument type for the NSTextContainer method
lineFragmentRectForProposedRect:sweepDirection:movementDirection:remainingRect:.

NSMatrixMode

DECLARED IN AppKit/NSMatrix.h

SYNOPSIS typedef enum _NSMatrixMode {
NSRadioModeMatrix,
NSHighlightModeMatrix ,
NSListModeMatrix ,
NSTrackModeMatrix

} NSMatrixMode ;

DESCRIPTION These constants represent the modes of operation of an NSMatrix, as described in the NSMatrix
class specification.

NSModalSession

DECLARED IN AppKit/NSApplication.h

SYNOPSIS typedef struct _NSModalSession *NSModalSession;

13

DESCRIPTION Variables of type NSModalSession point to information used by the system between
beginModalSession:for: and endModalSession: messages.

NSPrinterTableStatus

DECLARED IN AppKit/NSPrinter.h

SYNOPSIS typedef enum _NSPrinterTableStatus {
NSPrinterTableOK ,
NSPrinterTableNotFound,
NSPrinterTableError

} NSPrinterTableStatus;

DESCRIPTION These constants are used to describe the state of a printer-information table stored by an
NSPrinter object. See the NSPrinter method statusForTable: for more information.

NSPrintingOrientation

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS typedef enum _NSPrintingOrientation {
NSPortraitOrientation ,
NSLandscapeOrientation

} NSPrintingOrientation ;

DESCRIPTION These constants represent the way a page is oriented for printing. In NSPortraitOrientation, the
page is taller than it is wide; in NSLandscapeOrientation, the page is wider than it is tall. See the
NSPrintInfo methods orientation and setOrientation: for more information.

14

NSPrintingPageOrder

DECLARED IN AppKit/NSPrintOperation.h

SYNOPSIS typedef enum _NSPrintingPageOrder {
NSDescendingPageOrder,
NSSpecialPageOrder,
NSAscendingPageOrder,
NSUnknownPageOrder

} NSPrintingPageOrder;

DESCRIPTION This type represents the order in which pages are to be printed. The value NSSpecialPageOrder
tells the spooler to not rearrange the pages. The value NSUnknownPageOrder means that no page
order is written out. See the NSPrintOperation methods pageOrder and setPageOrder: for more
information.

NSPrintingPaginationMode

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS typedef enum _NSPrintingPaginationMode {
NSAutoPagination,
NSFitPagination,
NSClipPagination

} NSPrintingPaginationMode;

DESCRIPTION These constants represent the different ways in which an image is divided into pages. The value
NSFitPagination forces the image to fit on one page. The value NSClipPagination allows the
image to be clipped by the page.See the NSPrintInfo class specification for a fuller explanation.

15

NSRulerOrientation

DECLARED IN AppKit/NSRulerView.h

SYNOPSIS typedef enum {
NSHorizontalRuler,
NSVerticalRuler

} NSRulerOrientation;

DESCRIPTION This type defines whether an NSRulerView will be displayed horizontally or vertically. It is the
return type of NSRulerView’s orientation method, and an argument to the NSRulerView
methods setOrientation: and initWithScrollView:orientation: .

NSScrollArrowPosition

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollArrowPosition {
NSScrollerArrowsMaxEnd,
NSScrollerArrowsMinEnd ,
NSScrollerArrowsNone

} NSScrollArrowPosition;

DESCRIPTION These constants are used in NSScroller’s setArrowsPosition: method to set the position of the
arrows within the scroller.

NSScrollerArrow

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollerArrow {
NSScrollerIncrementArrow ,
NSScrollerDecrementArrow

} NSScrollerArrow ;

16

DESCRIPTION This is the type of the first argument to the NSScroller method drawArrow:highlight: . The value
determines which scroll button is drawn.

NSScrollerPart

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSScrollerPart {
NSScrollerNoPart,
NSScrollerDecrementPage,
NSScrollerKnob,
NSScrollerIncrementPage,
NSScrollerDecrementLine,
NSScrollerIncrementLine,
NSScrollerKnobSlot

} NSScrollerPart;

DESCRIPTION These constants are used in Scroller’s hitPart method to identify the part of the Scroller specified
in a mouse event.

NSSelectionAffinity

DECLARED IN AppKit/NSTextView.h

SYNOPSIS typedef enum _NSSelectionAffinity {
NSSelectionAffinityUpstream,
NSSelectionAffinityDownstream

} NSSelectionAffinity;

DESCRIPTION This is the return type of the NSTextView method selectionAffinity, and the type of the second
argument to the NSTextView method setSelectedRange:affinity:stillSelecting:.

17

NSSelectionDirection

DECLARED IN AppKit/NSWindow.h

SYNOPSIS typedef enum _NSSelectionDirection {
NSDirectSelection,
NSSelectingNext,
NSSelectingPrevious

} NSSelectionDirection;

DESCRIPTION This is the return type of the NSWindow method keyViewSelectionDirection.

NSSelectionGranularity

DECLARED IN AppKit/NSTextView.h

SYNOPSIS typedef enum _NSSelectionGranularity {
NSSelectByCharacter,
NSSelectByWord,
NSSelectByParagraph

} NSSelectionGranularity;

DESCRIPTION This is the return type of the NSTextView method selectionGranularity, and the type of arguments
to two other NSTextView methods, setSelectionGranularity: and
selectionRangeForProposedRange:granularity:.

18

NSTextAlignment

DECLARED IN AppKit/NSText.h

SYNOPSIS typedef enum _NSTextAlignment {
NSLeftTextAlignment,
NSRightTextAlignment,
NSCenterTextAlignment,
NSJustifiedTextAlignment,
NSNaturalTextAlignment

} NSTextAlignment;

DESCRIPTION Variables of this type are used as arguments and return values for methods that specify text
alignment.

NSTextTabType

DECLARED IN AppKit/NSParagraphStyle.h

SYNOPSIS typedef enum _NSTextTabType {
NSLeftTabStopType,
NSRightTabStopType,
NSCenterTabStopType,
NSDecimalTabStopType

} NSTextTabType;

DESCRIPTION This is the return type of NSTextTab’s tabStopType method, and an argument to NSTextTab’s
initWithType:location: method.

NSTIFFCompression

SYNOPSIS AppKit/NSBitmapImageRep.h

19

SYNOPSIS typedef enum _NSTIFFCompression {
NSTIFFCompressionNone,
NSTIFFCompressionCCITTFAX3,
NSTIFFCompressionCCITTFAX4,
NSTIFFCompressionLZW,
NSTIFFCompressionJPEG,
NSTIFFCompressionNEXT,
NSTIFFCompressionPackBits,
NSTIFFCompressionOldJPEG

} NSTIFFCompression;

DESCRIPTION These constants represent the various TIFF (tag image file format) data compression schemes.
See the NSBitmapImageRep class specification for their meanings.

NSTitlePosition

DECLARED IN AppKit/NSBox.h

SYNOPSIS typedef enum _NSTitlePosition {
NSNoTitle,
NSAboveTop,
NSAtTop,
NSBelowTop,
NSAboveBottom,
NSAtBottom,
NSBelowBottom

} NSTitlePosition;

DESCRIPTION This type represents the locations where an NSBox’s title can be placed with respect to its border.
Thus, for example, NSAboveTop means the title is above the top of the border, NSAtTop means
the title breaks the top border, and so on. See the NSBox methods titlePosition and
setTitlePosition:.

20

NSTrackingRectTag

DECLARED IN AppKit/NSView.h

SYNOPSIS typedef int NSTrackingRectTag;

DESCRIPTION This type describes the rectangle used to track the mouse. See the NSView methods
addTrackingRect:... and removeTrackingRect:.

NSUsableScrollerParts

DECLARED IN AppKit/NSScroller.h

SYNOPSIS typedef enum _NSUsableScrollerParts {
NSNoScrollerParts,
NSOnlyScrollerArrows,
NSAllScrollerParts

} NSUsableScrollerParts;

DESCRIPTION This type defines the usable parts of an NSScroller; see the class specification for more
information.

NSWindowDepth

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS typedef int NSWindowDepth;

DESCRIPTION This type represents the depth, or amount of memory, devoted to a single pixel in a window or
screen.

21

Enumerations

NSApplication—Modal Session Return Values

DECLARED IN AppKit/NSApplication.h

SYNOPSIS enum {
NSRunStoppedResponse,
NSRunAbortedResponse,
NSRunContinuesResponse

};

DESCRIPTION Return values for the NSApplication methods runModalFor: and runModalSession:.

NSAttributedString—Underlining

DECLARED IN AppKit/NSAttributedString.h

SYNOPSIS enum {
NSSingleUnderlineStyle

};

DESCRIPTION This defines the only currently supported value for NSUnderlineStyleAttributeName.

22

NSButtonCell—State Masks

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSNoCellMask,
NSContentsCellMask,
NSPushInCellMask,
NSChangeGrayCellMask,
NSChangeBackgroundCellMask

};

DESCRIPTION These masks are passed to the NSButtonCell methods highlightsBy: and showsStateBy:.

23

NSCell—Action Flags

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSLeftMouseDownMask,
NSLeftMouseUpMask,
NSRightMouseDownMask,
NSRightMouseUpMask,
NSMouseMovedMask,
NSLeftMouseDraggedMask,
NSRightMouseDraggedMask,
NSMouseEnteredMask,
NSMouseExitedMask,
NSKeyDownMask,
NSKeyUpMask,
NSFlagsChangedMask,
NSAppKitDefinedMask,
NSSystemDefinedMask,
NSApplicationDefinedMask,
NSPeriodicMask,
NSCursorUpdateMask,
NSAnyEventMask

};

DESCRIPTION These constants are masks for different kinds of events. You pass them to NSCell’s
sendActionOn: method to indicate when an NSCell should send its action message.

24

NSCell—Data Entry Types

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSAnyType,
NSIntType,
NSPositiveIntType,
NSFloatType,
NSPositiveFloatType,
NSDoubleType,
NSPositiveDoubleType

};

DESCRIPTION These constants represent the numeric data types that a text NSCell can accept. See NSCell’s
setEntryType: method for more information.

NSCell—States

DECLARED IN AppKit/NSCell.h

SYNOPSIS enum {
NSStateMixed,
NSStateOff,
NSStateOn

};

DESCRIPTION These constants are suggested parameter values for the NSCell method setState:.

25

NSColorPanel—Modes

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS enum {
NSGrayModeColorPanel,
NSRGBModeColorPanel,
NSCMYKModeColorPanel,
NSHSBModeColorPanel,
NSCustomPaletteModeColorPanel,
NSColorListModeColorPanel,
NSWheelModeColorPanel

};

DESCRIPTION These constants represent the possible modes of an NSColorPanel.

NSColorPanel—Mode Masks

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS enum {
NSColorPanelGrayModeMask,
NSColorPanelRGBModeMask,
NSColorPanelCMYKModeMask,
NSColorPanelHSBModeMask,
NSColorPanelCustomPaletteModeMask,
NSColorPanelColorListModeMask,
NSColorPanelWheelModeMask,
NSColorPanelAllModesMask

};

DESCRIPTION These constants provide masks for the NSColorPanel modes.

26

NSDragging—Operations

DECLARED IN AppKit/NSDragging.h

SYNOPSIS enum {
NSDragOperationNone,
NSDragOperationCopy,
NSDragOperationLink ,
NSDragOperationGeneric,
NSDragOperationPrivate,
NSDragOperationAll

};

DESCRIPTION These constants define the operations that result from a user’s drag. For full descriptions of their
meanings and uses, see the method descriptions for draggingSourceOperationMaskForLocal:
(in the NSDraggingSource protocol), draggingSourceOperationMask (in the NSDraggingInfo
protocol), or draggingEntered: (in the NSDraggingDestination protocol).

NSEvent—Function-Key Unicodes

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSUpArrowFunctionKey = 0xF700,
NSDownArrowFunctionKey = 0xF701,
NSLeftArrowFunctionKey = 0xF702,
NSRightArrowFunctionKey = 0xF703,
NSF1FunctionKey = 0xF704,
NSF2FunctionKey = 0xF705,
NSF3FunctionKey = 0xF706,
NSF4FunctionKey = 0xF707,
NSF5FunctionKey = 0xF708,
NSF6FunctionKey = 0xF709,
NSF7FunctionKey = 0xF70A,
NSF8FunctionKey = 0xF70B,
NSF9FunctionKey = 0xF70C,
NSF10FunctionKey = 0xF70D,

27

NSF11FunctionKey = 0xF70E,
NSF12FunctionKey = 0xF70F,
NSF13FunctionKey = 0xF710,
NSF14FunctionKey = 0xF711,
NSF15FunctionKey = 0xF712,
NSF16FunctionKey = 0xF713,
NSF17FunctionKey = 0xF714,
NSF18FunctionKey = 0xF715,
NSF19FunctionKey = 0xF716,
NSF20FunctionKey = 0xF717,
NSF21FunctionKey = 0xF718,
NSF22FunctionKey = 0xF719,
NSF23FunctionKey = 0xF71A,
NSF24FunctionKey = 0xF71B,
NSF25FunctionKey = 0xF71C,
NSF26FunctionKey = 0xF71D,
NSF27FunctionKey = 0xF71E,
NSF28FunctionKey = 0xF71F,
NSF29FunctionKey = 0xF720,
NSF30FunctionKey = 0xF721,
NSF31FunctionKey = 0xF722,
NSF32FunctionKey = 0xF723,
NSF33FunctionKey = 0xF724,
NSF34FunctionKey = 0xF725,
NSF35FunctionKey = 0xF726,
NSInsertFunctionKey = 0xF727,
NSDeleteFunctionKey = 0xF728,
NSHomeFunctionKey = 0xF729,
NSBeginFunctionKey = 0xF72A,
NSEndFunctionKey = 0xF72B,
NSPageUpFunctionKey = 0xF72C,
NSPageDownFunctionKey = 0xF72D,
NSPrintScreenFunctionKey = 0xF72E,
NSScrollLockFunctionKey = 0xF72F,
NSPauseFunctionKey = 0xF730,
NSSysReqFunctionKey = 0xF731,
NSBreakFunctionKey = 0xF732,
NSResetFunctionKey = 0xF733,
NSStopFunctionKey = 0xF734,
NSMenuFunctionKey = 0xF735,
NSUserFunctionKey = 0xF736,
NSSystemFunctionKey = 0xF737,
NSPrintFunctionKey = 0xF738,

28

NSClearLineFunctionKey = 0xF739,
NSClearDisplayFunctionKey = 0xF73A,
NSInsertLineFunctionKey = 0xF73B,
NSDeleteLineFunctionKey = 0xF73C,
NSInsertCharFunctionKey = 0xF73D,
NSDeleteCharFunctionKey = 0xF73E,
NSPrevFunctionKey = 0xF73F,
NSNextFunctionKey = 0xF740,
NSSelectFunctionKey = 0xF741,
NSExecuteFunctionKey = 0xF742,
NSUndoFunctionKey = 0xF743,
NSRedoFunctionKey = 0xF744,
NSFindFunctionKey = 0xF745,
NSHelpFunctionKey = 0xF746,
NSModeSwitchFunctionKey = 0xF747

};

DESCRIPTION These Unicodes (0xF700-0xF8FF) are reserved for function keys on the keyboard. Combined in
NSStrings, they may be used in the return value of the NSEvent methods characters..., and in
parameters of the NSEvent method keyEventWithType:...characters:....

NSEvent—Modifier Flags

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSAlphaShiftKeyMask,
NSShiftKeyMask,
NSControlKeyMask,
NSAlternateKeyMask,
NSCommandKeyMask,
NSNumericPadKeyMask,
NSHelpKeyMask,
NSFunctionKeyMask

};

DESCRIPTION These are device-independent bits found in event modifier flags.

29

NSEvent—Types Defined by the Application Kit

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSWindowExposedEventType,
NSApplicationActivatedEventType,
NSApplicationDeactivatedEventType,
NSWindowMovedEventType,
NSScreenChangedEventType

};

DESCRIPTION These constants represent the types of events defined by the Application Kit.

NSEvent—Types Defined by the System

DECLARED IN AppKit/NSEvent.h

SYNOPSIS enum {
NSPowerOffEventType

};

DESCRIPTION This constant means that the user is turning off the computer.

Constant Meaning

NSWindowExposedEventType A nonretained NSWindow has been exposed

NSApplicationActivatedEventType The application has been activated

NSApplicationDeactivatedEventType The application has been deactivated

NSWindowMovedEventType An NSWindow has moved

NSScreenChangedEventType An NSWindow has changed screens

30

NSFont—Traits

DECLARED IN AppKit/NSFontManager.h

SYNOPSIS enum {
NSItalicFontMask,
NSBoldFontMask,
NSUnboldFontMask,
NSNonStandardCharacterSetFontMask,
NSNarrowFontMask,
NSExpandedFontMask,
NSCondensedFontMask,
NSSmallCapsFontMask,
NSPosterFontMask,
NSCompressedFontMask,
NSFixedPitchFontMask,
NSUnitalicFontMask

};

DESCRIPTION These constants are used by the NSFontManager to identify font traits. Some traits are mutually
exclusive, such as NSExpandedFontMask and NSCondensedFontMask.

NSFontPanel—Tags for Subviews

DECLARED IN AppKit/NSFontPanel.h

SYNOPSIS enum {
NSFPPreviewButton,
NSFPRevertButton,
NSFPSetButton,
NSFPPreviewField,
NSFPSizeField,
NSFPSizeTitle,
NSFPCurrentField

};

DESCRIPTION These tags identify the NSViews within an NSFontPanel.

31

NSGlyph—Attributes

DECLARED IN AppKit/NSLayoutManager.h

SYNOPSIS enum _NSGlyphAttribute {
NSGlyphAttributeSoft ,
NSGlyphAttributeElastic ,
NSGlyphAttributeInscribe

};

DESCRIPTION These glyph attributes are used only inside the glyph generation machinery, but must be shared
between components.

NSGlyph—Reserved Glyph Codes

DECLARED IN AppKit/NSFont.h

SYNOPSIS enum {
NSControlGlyph = 0x00FFFFFF,
NSNullGlyph = 0x0

};

DESCRIPTION These two values are reserved for the two named NSGlyphs.

NSImageRep—Display Device Matching

DECLARED IN AppKit/NSImageRep.h

SYNOPSIS enum {
NSImageRepMatchesDevice

};

32

DESCRIPTION This constant is used by NSImageRep to indicate that the value of certain attributes, such as the
number of colors, or bits-per-sample, will change to match the display device. See the
NSImageRep class specification for more information.

NSPageLayoutPanel—Tags for Controls

DECLARED IN AppKit/NSPageLayout.h

SYNOPSIS enum {
NSPLImageButton,
NSPLTitleField,
NSPLPaperNameButton,
NSPLUnitsButton,
NSPLWidthForm ,
NSPLHeightForm,
NSPLOrientationMatrix ,
NSPLCancelButton,
NSPLOKButton

};

DESCRIPTION These constants represent the tag values of the controls displayed by an NSPageLayoutPanel.

NSPanel—Alert Panel Return Values

DECLARED IN AppKit/NSPanel.h

SYNOPSIS enum {
NSAlertDefaultReturn ,
NSAlertAlternateReturn ,
NSAlertOtherReturn ,
NSAlertErrorReturn

};

33

DESCRIPTION These constants define values returned by the NSRunAlertPanel function and by the
NSApplication method runModalSession: when the modal session is run with an NSPanel
provided by the NSGetAlertPanel function.

NSPanel—Modal Panel Return Values

DECLARED IN AppKit/NSPanel.h

SYNOPSIS enum {
NSOKButton,
NSCancelButton

};

DESCRIPTION These are the possible return values for such methods as the runModal... methods of
NSOpenPanel, which tells which button (OK or Cancel) the user has clicked on an open panel.
For other uses of these return values, see the class descriptions for NSPageLayout, NSPrintPanel
and NSSavePanel.

34

NSPrintPanel—Tags for Subviews

DECLARED IN AppKit/NSPrintPanel.h

SYNOPSIS enum {
NSPPSaveButton,
NSPPPreviewButton,
NSFaxButton,
NSPPTitleField,
NSPPImageButton,
NSPPNameTitle,
NSPPNameField,
NSPPNoteTitle,
NSPPNoteField,
NSPPStatusTitle,
NSPPStatusField,
NSPPCopiesField,
NSPPPageChoiceMatrix,
NSPPPageRangeFrom,
NSPPPageRangeTo,
NSPPScaleField,
NSPPOptionsButton,
NSPPPaperFeedButton,
NSPPLayoutButton

};

DESCRIPTION These constants define tags for identifying the NSViews in a print panel in environments other
than Microsoft Windows. Windows has its own way of handling print panels.

NSRunLoop—Ordering Modes for NSApplication

DECLARED IN AppKit/NSApplication.h

SYNOPSIS enum {
NSUpdateWindowsRunLoopOrdering

};

35

DESCRIPTION This constants is used with NSRunLoop's performSelector:target:argument:order:modes:
method.

NSRunLoop—Ordering Mode for NSDPSServerContext

DECLARED IN AppKit/NSDPSServerContext.h

SYNOPSIS enum {
DPSFlushContextRunLoopOrdering

};

DESCRIPTION This constants is used with NSRunLoop's method performSelector:target:argument:order:
modes:.

NSRunLoop—Ordering Modes for NSWindow

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSDisplayWindowRunLoopOrdering,
NSResetCursorRectsRunLoopOrdering

};

DESCRIPTION These constants are passed to NSRunLoop’s method performSelector:target:argument:order:
modes:.

36

NSSavePanel—Tags for Subviews

DECLARED IN AppKit/NSSavePanel.h

SYNOPSIS enum {
NSFileHandlingPanelImageButton,
NSFileHandlingPanelTitleField,
NSFileHandlingPanelBrowser,
NSFileHandlingPanelCancelButton,
NSFileHandlingPanelOKButton,
NSFileHandlingPanelForm,
NSFileHandlingPanelHomeButton,
NSFileHandlingPanelDiskButton,
NSFileHandlingPanelDiskEjectButton

};

DESCRIPTION These constants define tags for identifying NSViews in an NSSavePanel.

NSTextAttachment—Attachment Character

DECLARED IN AppKit/NSTextAttachment.h

SYNOPSIS enum {
NSAttachmentCharacter = 0xfffc

};

37

DECLARED IN This Unicode indicates the presence of an attachment in an NSAttributedString. For more
information, see the Class Cluster Description of NSAttributedStringAdditions.

NSText—Important Unicodes

DECLARED IN AppKit/NSText.h

SYNOPSIS enum {
NSParagraphSeparatorCharacter = 0x2029,
NSLineSeparatorCharacter = 0x2028,
NSTabCharacter = 0x0009,
NSFormFeedCharacter = 0x000c,
NSNewlineCharacter = 0x000a,
NSCarriageReturnCharacter = 0x000d,
NSEnterCharacter = 0x0003,
NSBackspaceCharacter = 0x0008,
NSBackTabCharacter = 0x0019,
NSDeleteCharacter = 0x007f,

};

DESCRIPTION These constants specify several commonly-used Unicode characters.

38

NSText—Movement Codes

DECLARED IN AppKit/NSText.h

SYNOPSIS enum {
NSIllegalTextMovement,
NSReturnTextMovement,
NSTabTextMovement,
NSBacktabTextMovement,
NSLeftTextMovement,
NSRightTextMovement,
NSUpTextMovement,
NSDownTextMovement

};

DESCRIPTION These constants are the codes for movement between fields. They are the possible int values for
the NSTextMovement key of NSTextDidEndEditingNotification. For more information, see the
“Notifications” section of the NSText class specification.

NSTextStorage—Editing

DECLARED IN AppKit/NSTextStorage.h

SYNOPSIS enum {
NSTextStorageEditedAttributes,
NSTextStorageEditedCharacters

};

DESCRIPTION These values, which may be combined by a bitwise OR, help describe the changes that an editing
session has made to an NSTextStorage object. They are the return values of the NSTextStorage
method editedMask, and the parameter values for the second slot of the NSLayoutManager
method textStorage:edited:....

39

NSView—Resizing

DECLARED IN AppKit/NSView.h

SYNOPSIS enum {
NSViewNotSizable,
NSViewMinXMargin ,
NSViewWidthSizable,
NSViewMaxXMargin ,
NSViewMinYMargin ,
NSViewHeightSizable,
NSViewMaxYMargin

};

DESCRIPTION Used to describe which parts of an NSView (or its margins) are resized when the NSView’s
superNSView is resized. See the NSView class specification for details.

NSWindow—Border Masks

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSBorderlessWindowMask,
NSTitledWindowMask,
NSClosableWindowMask,
NSMiniaturizableWindowMask ,
NSResizableWindowMask

};

DESCRIPTION These determine the presence of a title and various buttons in an NSWindow’s border.

40

NSWindow—Window Levels

DECLARED IN AppKit/NSWindow.h

SYNOPSIS enum {
NSNormalWindowLevel,
NSFloatingWindowLevel,
NSDockWindowLevel,
NSSubmenuWindowLevel,
NSTornOffMenuWindowLevel ,
NSMainMenuWindowLevel,
NSModalPanelWindowLevel,
NSPopUpMenuWindowLevel

};

DESCRIPTION These constants name the Application Kit’s window levels. The stacking of levels takes
precedence over the stacking of windows within each level. That is, even the bottom window in
a level will obscure even the top window of the next level down.

The constant NSTornOffMenuWindowLevel is preferable to its synonym,
NSSubmenuWindowLevel.

41

Global Variables

Application Kit—Exceptions

DECLARED IN AppKit/NSErrors.h

SYNOPSIS NSString *NSTextLineTooLongException;
NSString *NSTextNoSelectionException;
NSString *NSWordTablesWriteException;
NSString *NSWordTablesReadException;
NSString *NSTextReadException;
NSString *NSTextWriteException;
NSString *NSPasteboardCommunicationException;
NSString *NSPrintingCommunicationException;
NSString *NSAbortModalException;
NSString *NSAbortPrintingException ;
NSString *NSIllegalSelectorException;
NSString *NSAppKitVirtualMemoryException ;
NSString *NSBadRTFDirectiveException;
NSString *NSBadRTFFontTableException;
NSString *NSBadRTFStyleSheetException;
NSString *NSTypedStreamVersionException;
NSString *NSTIFFException;
NSString *NSPrintPackageException;
NSString *NSBadRTFColorTableException;
NSString *NSDraggingException;

42

NSString *NSColorListIOException;
NSString *NSColorListNotEditableException;
NSString *NSBadBitmapParametersException;
NSString *NSWindowServerCommunicationException;
NSString *NSFontUnavailableException;
NSString *NSPPDIncludeNotFoundException;
NSString *NSPPDParseException;
NSString *NSPPDIncludeStackOverflowException;
NSString *NSPPDIncludeStackUnderflowException;
NSString *NSRTFPropertyStackOverflowException;
NSString *NSAppKitIgnoredException;
NSString *NSBadComparisonException;
NSString *NSImageCacheException;
NSString *NSNibLoadingException;
NSString *NSBrowserIllegalDelegateException;

DESCRIPTION These constants name the exceptions that the Application Kit can raise.

Display Device—Descriptions

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSDeviceResolution;
NSString *NSDeviceColorSpaceName;
NSString *NSDeviceBitsPerSample;
NSString *NSDeviceIsScreen;
NSString *NSDeviceIsPrinter;
NSString *NSDeviceSize;

DESCRIPTION These are the keys for device description dictionaries, such as those returned by the
deviceDictionary methods of NSPrinter, NSScreen and NSWindow.

NSDeviceResolution is an NSValue containing an NSSize in dots per inch. NSColorSpaceName
is an NSString describing the color space of the device. NSDeviceBitsPerSample is an NSValue
containing an int. NSDeviceIsScreen and NSDeviceIsPrinter are boolean values that tell whether
the device is a screen or a printer. NSDeviceSize is an NSValue containing an NSSize that
represents the device’s size in points.

43

NSApplication—Notifications

DECLARED IN AppKit/NSApplication.h

SYNOPSIS NSString *NSApplicationDidBecomeActiveNotification;
NSString *NSApplicationDidFinishLaunchingNotification ;
NSString *NSApplicationDidHideNotification ;
NSString *NSApplicationDidResignActiveNotification;
NSString *NSApplicationDidUnhideNotification;
NSString *NSApplicationDidUpdateNotification;
NSString *NSApplicationWillBecomeActiveNotification;
NSString *NSApplicationWillFinishLaunchingNotification ;
NSString *NSApplicationWillHideNotification ;
NSString *NSApplicationWillResignActiveNotification;
NSString *NSApplicationWillUnhideNotification ;
NSString *NSApplicationWillUpdateNotification ;
NSString *NSApplicationWillTerminateNotification ;

DECLARED IN These are the notifications used with the methods of the NSApplicationNotifications category of
NSObject.

NSApplication—Shared Application Object

DECLARED IN AppKit/NSApplication.h

SYNOPSIS id NSApp;

DESCRIPTION This variable designates the shared application object, created by NSApplication’s
sharedApplication method.

44

NSAttributedString—Attributes

DECLARED IN AppKit/NSAttributedString.h

SYNOPSIS NSString *NSFontAttributeName;
NSString *NSParagraphStyleAttributeName;
 NSString *NSForegroundColorAttributeName;
 NSString *NSUnderlineStyleAttributeName;
 NSString *NSSuperscriptAttributeName;
 NSString *NSBackgroundColorAttributeName;
 NSString *NSAttachmentAttributeName;
 NSString *NSLigatureAttributeName ;
 NSString *NSBaselineOffsetAttributeName;
 NSString *NSKernAttributeName ;

DESCRIPTION These strings define the supported attributes of NSAttributedStrings. For more information, see
the “Accessing Attributes” section in the NSAttributedString class cluster specification.

NSComboBox—Notifications

DECLARED IN AppKit/NSComboBox.h

SYNOPSIS NSString *NSComboBoxWillPopUpNotification;
NSString *NSComboBoxWillDismissNotification;
NSString *NSComboBoxSelectionDidChangeNotification;
NSString *NSComboBoxSelectionIsChangingNotification;

DESCRIPTION These notifications are sent by NSComboBoxes.

45

NSColor—Color Space Names

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS NSString *NSCalibratedWhiteColorSpace;
NSString *NSCalibratedBlackColorSpace;
NSString *NSCalibratedRGBColorSpace;
NSString *NSDeviceWhiteColorSpace;
NSString *NSDeviceBlackColorSpace;
NSString *NSDeviceRGBColorSpace;
NSString *NSDeviceCMYKColorSpace;
NSString *NSNamedColorSpace;
NSString *NSCustomColorSpace;

DESCRIPTION These are the predefined names for color spaces. In the two ...WhiteColorSpaces, white
corresponds to a value of 1.0. In the two ...BlackColorSpaces, black corresponds to a value of 1.0.
NSNamedColorSpace is used for “catalog” colors—that is, colors specified by names rather than
coordinates. NSCustomColorSpace indicates a custom color space, which can be useful in
working with images; unlike the other color spaces, NSCustomColorSpace is not used with
NSColors.

NSColor—Grayscale Values

DECLARED IN AppKit/NSGraphics.h

SYNOPSIS const float NSWhite;
const float NSLightGray ;
const float NSDarkGray;
const float NSBlack;

DESCRIPTION These are the standard gray values for the 2-bit deep grayscale color space.

46

NSColor—Notifications

DECLARED IN AppKit/NSColor.h

SYNOPSIS NSString *NSSystemColorsDidChangeNotification;

DESCRIPTION This notification is sent when the system colors have been changed (such as through a system
control panel interface). For more on system colors, see the “System Colors” section of the
NSColor class specification.

NSColorList—Notifications

DECLARED IN AppKit/NSColorList.h

SYNOPSIS NSString *NSColorListDidChangeNotification;

DESCRIPTION When an NSColorList changes, it posts this notification.

NSColorPanel—Notifications

DECLARED IN AppKit/NSColorPanel.h

SYNOPSIS NSString *NSColorPanelColorDidChangeNotification;

DESCRIPTION When an NSColorPanel changes, it posts this notification.

47

NSControl—Notifications

DECLARED IN AppKit/NSControl.h

SYNOPSIS NSString *NSControlTextDidBeginEditingNotification ;
NSString *NSControlTextDidEndEditingNotification ;
NSString *NSControlTextDidChangeNotification;

DESCRIPTION NSControls containing editable text can send these notifications. For more information, see the
“Notifications” section of the NSControl class specification.

NSDataLink—Filename Extension

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS NSString *NSDataLinkFilenameExtension;

DESCRIPTION NSDataLinkFilenameExtension is the filename extension used for links saved to files using
NSDataLink’s saveLinkIn: or writeToFile: methods.

48

NSFont—Keys to the AFM Dictionary

DECLARED IN AppKit/NSFont.h

SYNOPSIS NSString *NSAFMFamilyName;
NSString *NSAFMFontName;
NSString *NSAFMFormatVersion;
NSString *NSAFMFullName;
NSString *NSAFMNotice;
NSString *NSAFMVersion;
NSString *NSAFMWeight;
NSString *NSAFMEncodingScheme;
NSString *NSAFMCharacterSet;
NSString *NSAFMCapHeight;
NSString *NSAFMXHeight ;
NSString *NSAFMAscender;
NSString *NSAFMDescender;
NSString *NSAFMUnderlinePosition;
NSString *NSAFMUnderlineThickness;
NSString *NSAFMItalicAngle ;
NSString *NSAFMMappingScheme;

DESCRIPTION These are the keys to the font information dictionary returned by NSFont’s afmDictionary
method. To convert values like NSAFMCapHeight to floats, use NSString's floatValue method.

For other font information, use NSFont’s afmFileContents method.

NSFont—PostScript Transformation Matrix

DECLARED IN AppKit/NSFont.h

SYNOPSIS const float *NSFontIdentityMatrix ;

DESCRIPTION NSFontIdentityMatrix is a PostScript transformation matrix useful as a parameter to the NSFont
method fontWithName:matrix: .

49

NSHelpManager—Notifications

DECLARED IN AppKit/NSHelpManager.h

SYNOPSIS NSString *NSContextHelpModeDidActivateNotification;
NSString *NSContextHelpModeDidDeactivateNotification;

DESCRIPTION These are notifications for the activation and deactivation of the context help mode.

NSImageRep—Notifications

DECLARED IN AppKit/NSImageRep.h

SYNOPSIS NSString *NSImageRepRegistryDidChangeNotification;

DESCRIPTION This notification is sent when the NSImageRep class registry changes.

NSInterfaceStyleDefault

DECLARED IN AppKit/NSInterfaceStyle.h

SYNOPSIS NSString *NSInterfaceStyleDefault;

DESCRIPTION NSInterfaceStyleDefault can be used to override the platform’s default interface style. For more
information, see the function NSInterfaceStyleForKey.

50

NSPasteboard—Names

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSGeneralPboard;
NSString *NSFontPboard;
NSString *NSRulerPboard;
NSString *NSFindPboard;
NSString *NSDragPboard;

DESCRIPTION Some standard pasteboard names. See the NSPasteboard class specification for more information.

NSPasteboard—Type for Data Links

DECLARED IN AppKit/NSDataLink.h

SYNOPSIS NSString *NSDataLinkPboardType;

DESCRIPTION A pasteboard type for copying a data link to the pasteboard. See the NSDataLink class
specification for more information.

NSPasteboard—Type for Selection Descriptions

DECLARED IN AppKit/NSSelection.h

SYNOPSIS NSString *NSSelectionPboardType;

DESCRIPTION A pasteboard type for copying selection descriptions to the pasteboard. See the NSSelection class
specification for more information.

51

NSPasteboard—Types for Standard Data

DECLARED IN AppKit/NSPasteboard.h

SYNOPSIS NSString *NSStringPboardType;
NSString *NSFilenamesPboardType;
NSString *NSPostScriptPboardType;
NSString *NSTIFFPboardType;
NSString *NSRTFPboardType;
NSString *NSTabularTextPboardType;
NSString *NSFontPboardType;
NSString *NSRulerPboardType;
NSString *NSFileContentsPboardType;
NSString *NSColorPboardType;
NSString *NSRTFDPboardType;

DESCRIPTION Some standard pasteboard data types. See the NSPasteboard class specification for more
information.

52

NSPrintInfo—Dictionary Keys

DECLARED IN AppKit/NSPrintInfo.h

SYNOPSIS NSString *NSPrintPaperName;
NSString *NSPrintPaperSize;
NSString *NSPrintFormName;
NSString *NSPrintMustCollate;
NSString *NSPrintOrientation ;
NSString *NSPrintLeftMargin ;
NSString *NSPrintRightMargin ;
NSString *NSPrintTopMargin ;
NSString *NSPrintBottomMargin ;
NSString *NSPrintHorizontallyCentered;
NSString *NSPrintVerticallyCentered;
NSString *NSPrintHorizontalPagination;
NSString *NSPrintVerticalPagination;
NSString *NSPrintScalingFactor;
NSString *NSPrintAllPages;
NSString *NSPrintReversePageOrder;
NSString *NSPrintFirstPage;
NSString *NSPrintLastPage;
NSString *NSPrintCopies;
NSString *NSPrintPagesPerSheet;
NSString *NSPrintJobFeatures;
NSString *NSPrintPaperFeed;
NSString *NSPrintManualFeed;
NSString *NSPrintPrinter ;
NSString *NSPrintJobDisposition;

53

NSString *NSPrintSavePath;
NSString *NSPrintFaxReceiverNames;
NSString *NSPrintFaxReceiverNumbers;
NSString *NSPrintFaxSendTime;
NSString *NSPrintFaxUseCoverSheet;
NSString *NSPrintFaxCoverSheetName;
NSString *NSPrintFaxReturnReceipt;
NSString *NSPrintFaxHighResolution;
NSString *NSPrintFaxTrimPageEnds;
NSString *NSPrintFaxModem;
NSString *NSPrintSpoolJob;
NSString *NSPrintFaxJob;
NSString *NSPrintPreviewJob;
NSString *NSPrintSaveJob;
NSString *NSPrintCancelJob;

DESCRIPTION These are the keys to the NSPrintInfo NSDictionary. For a table explaining them, see the
NSPrintInfo method initWithDictionary: .

NSPopUpButton—Notification

DECLARED IN AppKit/NSPopUpButton.h

SYNOPSIS NSString *NSPopUpButtonWillPopUpNotification;

DESCRIPTION NSPopUpButton sends this notification when an instance of it is about to pop up.

NSPrintOperation—Exception

DECLARED IN AppKit/NSPrintOperation.h

SYNOPSIS NSString *NSPrintOperationExistsException;

DESCRIPTION This exception is raised when there is already a print operation in process. The methods that raise
it are the EPSOperation... and printOperation... methods in NSPrintOperation:

54

NSRunLoop—Modes

DECLARED IN AppKit/NSApplication.h

SYNOPSIS NSString *NSModalPanelRunLoopMode;
NSString *NSEventTrackingRunLoopMode;

DESCRIPTION These are modes passed to NSRunLoop

NSSplitView—Notifications

DECLARED IN AppKit/NSSplitView.h

SYNOPSIS NSString *NSSplitViewDidResizeSubviewsNotification;
NSString *NSSplitViewWillResizeSubviewsNotification;

DESCRIPTION These are the notifications that an NSSplitView can send.

NSTableView—Notifications

DECLARED IN AppKit/NSTableView.h

SYNOPSIS NSString *NSTableViewSelectionDidChangeNotification;
NSString *NSTableViewColumnDidMoveNotification;
NSString *NSTableViewColumnDidResizeNotification;
NSString *NSTableViewSelectionIsChangingNotification;

DESCRIPTION These are the notifications that an NSTableView can send.

55

NSText—Notifications

DECLARED IN AppKit/NSText.h

SYNOPSIS NSString *NSTextDidBeginEditingNotification;
NSString *NSTextDidEndEditingNotification ;
NSString *NSTextDidChangeNotification;

DESCRIPTION These notifications can be sent by an NSText object. For explanations, see the “Notifications”
section of the NSText class specification.

NSTextStorage—Notifications

DECLARED IN AppKit/NSTextStorage.h

SYNOPSIS NSString *NSTextStorageWillProcessEditingNotification;
NSString *NSTextStorageDidProcessEditingNotification;

DESCRIPTION These notifications can be sent by an NSTextStorage object. For explanations, see the
“Notifications” section of the NSTextStorage class specification.

NSTextView—Notifications

DECLARED IN AppKit/NSTextView.h

SYNOPSIS NSString *NSTextViewWillChangeNotifyingTextViewNotification;
NSString *NSTextViewDidChangeSelectionNotification;

DESCRIPTION These notifications can be sent by an NSTextView object. For explanations, see the
“Notifications” section of the NSTextView class specification.

The notifications that NSTextView most often sends are the ones that it inherits from NSText.

56

NSView—Notifications

DECLARED IN AppKit/NSView.h

SYNOPSIS NSString *NSViewFrameDidChangeNotification;
NSString *NSViewFocusDidChangeNotification;
NSString *NSViewBoundsDidChangeNotification;

DESCRIPTION These notifications are sent by NSViews.

The last notification, NSViewBoundsDidChangeNotification, is sent when the view bounds
change but the frame does not. That is, it is sent whenever the view's bounds are translated, scaled
or rotated, but not when the bounds change in response to, say, a setFrameSize: message.

NSWindow—Notifications

DECLARED IN AppKit/NSWindow.h

SYNOPSIS NSString *NSWindowDidBecomeKeyNotification;
NSString *NSWindowDidBecomeMainNotification;
NSString *NSWindowDidChangeScreenNotification;
NSString *NSWindowDidDeminiaturizeNotification;
NSString *NSWindowDidExposeNotification;
NSString *NSWindowDidMiniaturizeNotification ;
NSString *NSWindowDidMoveNotification;
NSString *NSWindowDidResignKeyNotification;
NSString *NSWindowDidResignMainNotification;
NSString *NSWindowDidResizeNotification;
NSString *NSWindowDidUpdateNotification;
NSString *NSWindowWillCloseNotification;
NSString *NSWindowWillMiniaturizeNotification ;
NSString *NSWindowWillMoveNotification ;

DESCRIPTION These are the notifications that can be sent by an NSWindow object. For explanations, see the
“Notifications” section of the NSWindow class specification.

57

NSWindow—Sizes

DECLARED IN AppKit/NSWindow.h

SYNOPSIS NSSize NSIconSize;
NSSize NSTokenSize;

DESCRIPTION On some platforms, a token is a bezeled tile used to represent a docked application or a
miniaturized document, and an icon is the image drawn inside a token.

On platforms that support tokens and icons, these size constants can be used for drawing inside
them. It is more portable, however, to change an icon by using the NSApplication method
setApplicationIconImage: or the NSWindow method setMiniwindowImage:.

NSWorkspace—File Operation Constants

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSWorkspaceMoveOperation;
NSString *NSWorkspaceCopyOperation;
NSString *NSWorkspaceLinkOperation;
NSString *NSWorkspaceCompressOperation;
NSString *NSWorkspaceDecompressOperation;
NSString *NSWorkspaceEncryptOperation;
NSString *NSWorkspaceDecryptOperation;
NSString *NSWorkspaceDestroyOperation;
NSString *NSWorkspaceRecycleOperation;
NSString *NSWorkspaceDuplicateOperation;

DESCRIPTION These constants define possible values for the operation slot in NSWorkspace’s
performFileOperation: ... method.

58

NSWorkspace—File Types

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSPlainFileType;
NSString *NSDirectoryFileType;
NSString *NSApplicationFileType;
NSString *NSFilesystemFileType;
NSString *NSShellCommandFileType;

DESCRIPTION These values are used in the final parameter slot of the NSWorkspace method getInfoForFile:
application:type:.

NSWorkspace—Notifications

DECLARED IN AppKit/NSWorkspace.h

SYNOPSIS NSString *NSWorkspaceDidLaunchApplicationNotification;
NSString *NSWorkspaceDidMountNotification;
NSString *NSWorkspaceDidPerformFileOperationNotification;
NSString *NSWorkspaceDidTerminateApplicationNotification;
NSString *NSWorkspaceDidUnmountNotification;
NSString *NSWorkspaceWillLaunchApplicationNotification ;
NSString *NSWorkspaceWillPowerOffNotification;
NSString *NSWorkspaceWillUnmountNotification;

DESCRIPTION These notifications come through the special notification center. For more information, see the
“Notifications” section of the NSWorkspace class specification.

1

Protocol: NSChangeSpelling

NSChangeSpelling

Adopted By:

NSText

Declared In:

AppKit/NSSpellProtocol.h

Protocol Description

This protocol is implemented by objects in the responder chain that can correct a misspelled word. See the
description of the NSSpellChecker class for more information.

nstance Methods

changeSpelling:

– (void)

changeSpelling:

(id)

sender

Implement this method to replace the selected word in the receiver with a corrected version from the
Spelling panel. This message is sent by the NSSpellChecker to the object whose text is being checked. To
get the corrected spelling, ask the sender for the string value of its selected cell (visible to the user as the
text field in the Spelling panel). This method should replace the selected portion of the text with the string
that it gets from the NSSpellChecker.

1

Protocol: NSColorPickingCustom

NSColorPickingCustom

Adopted By:

NSColorPicker

Declared In:

AppKit/NSColorPicking.h

Protocol Description

Together with the NSColorPickingDefault protocol, NSColorPickingCustom provides a way to add color
pickers—custom user interfaces for color selection—to an application’s NSColorPanel. The
NSColorPickingDefault protocol provides basic behavior for a color picker. The NSColorPicker class
adopts the NSColorPickingDefault protocol. The easiest way to implement a color picker is to create a
subclass of NSColorPicker and implement the NSColorPickingCustom protocol for this new class.

Note:

All of NSColorPickingCustom’s methods must be implemented by the custom color picker.

Here are the standard color picking modes and mode constants (defined in

AppKit/NSColorPanel.h

):

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

If your color picker includes submodes, you should define a unique value for each submode. As an example,
the slider picker has four values defined in the above list (NSGrayModeColorPanel,

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

2

NSRGBModeColorPanel, NSCMYKModeColorPanel, and NSHSBModeColorPanel)—one for each of its
submodes.

Method Types

Setting the Current Color
– setColor:

Getting the Mode
– currentMode
– supportsMode:

Getting the View
– provideNewView:

nstance Methods

currentMode

– (int)

currentMode

Returns the color picker’s current mode (or submode, if applicable). The returned value should be unique
to your color picker. See this protocol description’s list of the unique values for the standard color pickers
used by the Application Kit.

See also:

– supportsMode:

provideNewView:

– (NSView *)

provideNewView:

(BOOL)

initialRequest

Returns the view containing the color picker’s user interface. This message is sent to the color picker
whenever the color panel attempts to display it. This may be when the panel is first presented, when the user
switches pickers, or when the picker is switched through API. The argument

initialRequest

 is YES only
when this method is first invoked for your color picker. If

initialRequest

 is YES, the method should perform
any initialization required (such as lazily loading a nib file, initializing the view, or performing any other
custom initialization required for your picker). The NSView returned by this method should be set to
automatically resize both its width and height.

3

Protocol: NSColorPickingCustom

setColor:

– (void)

setColor:

(NSColor *)

color

Adjusts the color picker to make

color

 the currently selected color. This method is invoked on the current
color picker each time NSColorPanel’s

setColor:

 method is invoked. If

color

 is actually different from the
color picker’s color (as it would be if, for example, the user dragged a color into NSColorPanel’s color
well), this method could be used to update the color picker’s color to reflect the change.

supportsMode:

– (BOOL)

supportsMode:

(int)

mode

Returns whether or not the receiver supports the specified picking mode. This method is invoked when the
NSColorPanel’s is first initialized: It is used to attempt to restore the user’s previously selected mode. It is
also invoked by NSColorPanel’s

setMode:

 method to find the color picker that supports a particular mode.
See this protocol description’s list of the unique mode values for the standard color pickers used by the
Application Kit.

See also:

– currentMode

1

Protocol: NSColorPickingDefault

NSColorPickingDefault

Adopted By:

NSColorPicker

Declared In:

AppKit/NSColorPicking.h

Protocol Description

The NSColorPickingDefault protocol, together with the NSColorPickingCustom protocol, provides an
interface for adding color pickers—custom user interfaces for color selection—to an application’s
NSColorPanel. The NSColorPickingDefault protocol provides basic behavior for a color picker. The
NSColorPickingCustom protocol provides implementation-specific behavior.

The NSColorPicker class implements the NSColorPickingDefault protocol. The simplest way to implement
your own color picker is to create a subclass of NSColorPicker, implementing the NSColorPickingCustom
protocol for that subclass. However, it’s possible to create a subclass of another class, such as NSView, and
use it as a base upon which to add the methods of both NSColorPickingDefault and
NSColorPickingCustom.

Color Picker Bundles

A class that implements the NSColorPickingDefault and NSColorPickingCustom protocols needs to be
compiled and linked in an application’s object file. However, your application need not explicitly create an
instance of this class. Instead, your application’s file package should include a directory named

ColorPickers

; within this directory you should place a directory

MyPickerClass

.bundle

 for each custom
color picker your application implements. This bundle should contain all resources required for your color
picker: nib files, TIFF files, and so on.

NSColorPanel will allocate and initialize an instance of each class for which a bundle is found in the

ColorPickers

 directory. The class name is assumed to be the bundle directory name minus the

.bundle

extension.

Color Picker Buttons

NSColorPanel lets the user select a color picker from an NSMatrix of NSButtonCells. This protocol
includes methods for providing and manipulating the image that gets displayed on the button.

Color Mask and Color Modes

The color mask determines which color mode is enabled for NSColorPanel. This mask is set before you
initialize a new instance of NSColorPanel. NSColorPanelAllModesMask represents the logical OR of the

2

other color mask constants: It causes the NSColorPanel to display all standard color pickers. When
initializing a new instance of NSColorPanel, you can logically OR any combination of color mask constants
to restrict the available color modes. The predefined color mask constants are:

When an application’s instance of NSColorPanel is masked for more than one color mode, your program
can set its active mode by invoking the

setMode:

 method with a color mode constant as its argument; the
user can set the mode by clicking buttons on the panel. Here are the standard color modes and mode
constants:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

Red-Green-Blue NSColorPanelRGBModeMask

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

Custom palette
NSColorPanelCustomPaletteMod
eMask

Custom color list
NSColorPanelColorListModeMas
k

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette
NSCustomPaletteModeColorPan
el

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

3

Protocol: NSColorPickingDefault

In grayscale-alpha, red-green-blue, cyan-magenta-yellow-black, and hue-saturation-brightness modes, the
user adjusts colors by manipulating sliders. In the custom palette mode, the user can load an NSImage file
(TIFF or EPS) into the NSColorPanel, then select colors from the image. In custom color list mode, the user
can create and load lists of named colors. The two custom modes provide NSPopUpLists for loading and
saving files. Finally, color wheel mode provides a simplified control for selecting colors.

These constants are defined in

AppKit/NSColorPanel.h

.

Method Types

Initializing a Color Picker
– initWithPickerMask:colorPanel:

Setting the Mode
– setMode:

Using Color Lists
– attachColorList:
– detachColorList:

Adding Button Images
– insertNewButtonImage:in:
– provideNewButtonImage

Showing Opacity Controls
– alphaControlAddedOrRemoved:

Responding to a Resized View
– viewSizeChanged:

nstance Methods

alphaControlAddedOrRemoved:

– (void)

alphaControlAddedOrRemoved:

(id)

sender

Sent by the color panel

when the opacity controls have been hidden or displayed. Invoked automatically
when the NSColorPanel’s opacity slider is added or removed; you never invoke this method directly.

If the color picker

has its own opacity controls, it should hide or display them, depending on whether the
sender’s

showsAlpha

method returns NO or YES.

4

attachColorList:

– (void)

attachColorList:

(NSColorList *)

colorList

Tells the color picker to attach the given

colorList

, if it isn’t already displaying the list. You never invoke
this method; it’s invoked automatically by the NSColorPanel when its

attachColorList:

 method is invoked.
Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented by a
custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything, since
NSColorPanel’s list mode manages NSColorLists.

See also:

– detachColorList:

detachColorList:

– (void)

detachColorList:

(NSColorList *)

colorList

Tells the color picker to detach the given

colorList

, unless the receiver isn’t displaying the list. You never
invoke this method; it’s invoked automatically by the NSColorPanel when its

detachColorList:

 method is
invoked. Since NSColorPanel’s list mode manages NSColorLists, this method need only be implemented
by a custom color picker that manages NSColorLists itself. This method ordinarily doesn’t do anything,
since NSColorPanel’s list mode manages NSColorLists.

See also:

– attachColorList:

initWithPickerMask:colorPanel:

– (id)

initWithPickerMask:

(int)

mask

colorPanel:

(NSColorPanel *)

owningColorPanel

Notifies the color picker of the color panel’s mask and initializes the color picker. This method is sent by
the NSColorPanel to all implementors of the color picking protocols when the application’s color panel is
first initialized. In order for your color picker to receive this message, it must have a bundle in your
application’s “ColorPickers” directory (described in “Color Picker Bundles” in the Protocol Description).

mask

 is determined by the argument to the NSColorPanel method

setPickerMask:

. If no mask has been set,

mask

 is NSColorPanelAllModesMask. If your color picker supports any additional modes, you should
invoke the

setPickerMask:

 method when your application initializes to notify the NSColorPanel class. The
standard mask constants are:

Mode Color Mask Constant

Grayscale-Alpha NSColorPanelGrayModeMask

Red-Green-Blue NSColorPanelRGBModeMask

5

Protocol: NSColorPickingDefault

This method should examine the mask and determine whether it supports any of the modes included there.
You may also check the value in

mask

 to enable or disable any subpickers or optional controls implemented
by your color picker. Your color picker may also retain

owningColorPanel

 in an instance variable for future
communication with the color panel.

This method is provided to initialize your color picker; however, much of a color picker’s initialization may
be done lazily through the NSColorPickingCustom protocol’s

provideNewView:

 method. If your color
picker responds to any of the modes represented in

mask

, it should perform its initialization and return

self

.
Color pickers that do so have their buttons inserted in the color panel and continue to receive messages from
the panel as the user manipulates it. If the color picker doesn’t respond to any of the modes represented in
mask, it should do nothing and return

nil

.

See also:

+ setPickerMask:

 (NSColorPanel class)

insertNewButtonImage:in:

– (void)

insertNewButtonImage:

(NSImage *)

newButtonImage

in:

(NSButtonCell *)

buttonCell

Sets

newButtonImage

 as

buttonCell

’s image.

buttonCell

 is the NSButtonCell object that lets the user choose
the picker from the color panel—the color picker’s representation in the NSColorPanel’s picker NSMatrix.
This method should perform application-specific manipulation of the image before it’s inserted and
displayed by the button cell.

See also: – provideNewButtonImage

Cyan-Yellow-Magenta-Black NSColorPanelCMYKModeMask

Hue-Saturation-Brightness NSColorPanelHSBModeMask

Custom palette NSColorPanelCustomPaletteModeMask

Custom color list NSColorPanelColorListModeMask

Color wheel NSColorPanelWheelModeMask

All of the above NSColorPanelAllModesMask

Mode Color Mask Constant

6

provideNewButtonImage
– (NSImage *)provideNewButtonImage

Returns the image for the mode button that the user uses to select this picker in the color panel, that is, the
color picker’s representation in the NSColorPanel’s picker NSMatrix. (This is the same image that the color
panel uses as an argument when sending the insertNewButtonImage:in: message.)

setMode:
– (void)setMode:(int)mode

Sets the color picker’s mode. This method is invoked by NSColorPanel’s setMode: method to ensure that
the color picker reflects the current mode. For example, invoke this method during color picker initialization
to ensure that all color pickers are restored to the mode the user left them in the last time an NSColorPanel
was used.

Most color pickers have only one mode, and thus don’t need to do any work in this method. An example of
a color picker that uses this method is the slider picker, which can choose from one of several submodes
depending on the value of mode. The available modes are:

viewSizeChanged:
– (void)viewSizeChanged:(id)sender

Tells the color picker when the NSColorPanel’s view size changes in a way that might affect the color
picker. sender is the NSColorPanel that contains the color picker. Use this method to perform special
preparation when resizing the color picker’s view. Since this method is invoked only as appropriate, it’s

Mode Color Mode Constant

Grayscale-Alpha NSGrayModeColorPanel

Red-Green-Blue NSRGBModeColorPanel

Cyan-Yellow-Magenta-Black NSCMYKModeColorPanel

Hue-Saturation-Brightness NSHSBModeColorPanel

Custom palette NSCustomPaletteModeColorPanel

Custom color list NSColorListModeColorPanel

Color wheel NSWheelModeColorPanel

7

Protocol: NSColorPickingDefault

better to implement this method than to override the method superviewSizeChanged: for the NSView in
which the color picker’s user interface is contained.

See also: – provideNewView: (NSColorPickingCustom protocol)

1

Protocol:

NSComboBoxCellDataSource
(Informal Protocol)

Category Of: NSObject

Declared In: AppKit/NSComboBoxCell.h

Category Description

The NSComboBoxCellDataSource category declares the methods that an NSComboBoxCell uses to access
the contents of its data source object. The combo box cell determines how many items to display by sending
a numberOfItemsInComboBoxCell: message, and accesses individual values with the comboBoxCell:
objectValueForItemAtIndex: method. Incremental searches—performed when a user types into the
combo box’s text field while the pop-up list is displayed—are performed by sending comboBoxCell:
indexOfItemWithStringValue: messages to the combo box cell’s data source.

The NSComboBoxCell treats objects provided by its data source as values to be displayed in the combo
box’s pop-up list. If these objects aren’t of common value classes—such as NSString, NSNumber, and so
on—you’ll need to create a custom NSFormatter to display them. See the NSFormatter class specification
for more information.

When an NSComboBoxCellDataSource is asked to supply a data item, the NSComboBoxCell that sends
the request is provided as a parameter. This allows a single data source object to manage several sets of data,
choosing the appropriate set based on the identify of the NSComboBoxCell that sends the message.

nstance Methods

comboBoxCell:indexOfItemWithStringValue:
– (unsigned int)comboBoxCell:(NSComboBoxCell *)aComboBoxCell

indexOfItemWithStringValue: (NSString *)aString

An NSComboBoxCell uses this method to perform incremental—or “smart”—searched when the user
types into the text field with the pop-up list displayed. Your implementation of this method should return
the index for the item which matches aString, or NSNotFound if no item matches. This method is optional;
if you don’t provide an implementation for this method, no searches occur.

2

comboBoxCell:objectValueForItemAtIndex:
– (id)comboBoxCell:(NSComboBoxCell *)aComboBoxCell objectValueForItemAtIndex: (int)index

Implement this method to return the object that corresponds to the item at index in aComboBoxCell. Your
data source must implement this method.

numberOfItemsInComboBoxCell:
– (int)numberOfItemsInComboBoxCell:(NSComboBoxCell *)aComboBoxCell

Implement this method to return the number of items managed for aComboBoxCell by your data source
object. An NSComboBoxCell uses this method to determine how many items it should display in its pop-up
list. Your data source must implement this method.

1

Protocol: NSComboBoxDataSource

NSComboBoxDataSource
(Informal Protocol)

Category Of: NSObject

Declared In: AppKit/NSComboBox.h

Category Description

The NSComboBoxDataSource category declares the methods that an NSComboBox uses to access the
contents of its data source object. The combo box determines how many items to display by sending a
numberOfItemsInComboBox: message, and accesses individual values with the comboBox:
objectValueForItemAtIndex: method. Incremental searches—performed when a user types into the
combo box’s text field while the pop-up list is displayed—are performed by sending comboBox:
indexOfItemWithStringValue: messages to the combo box’s data source.

The NSComboBox treats objects provided by its data source as values to be displayed in the combo box’s
pop-up list. If these objects aren’t of common value classes—such as NSString, NSNumber, and so on—
you’ll need to create a custom NSFormatter to display them. See the NSFormatter class specification for
more information.

When an NSComboBoxDataSource is asked to supply a data item, the NSComboBox that sends the request
is provided as a parameter. This allows a single data source object to manage several sets of data, choosing
the appropriate set based on the identify of the NSComboBox that sends the message.

nstance Methods

comboBox:indexOfItemWithStringValue:
– (unsigned int)comboBox:(NSComboBox *)aComboBox indexOfItemWithStringValue:

(NSString *)aString

An NSComboBox uses this method to perform incremental—or “smart”—searched when the user types
into the text field with the pop-up list displayed. Your implementation of this method should return the index
for the item which matches aString, or NSNotFound if no item matches. This method is optional; if you
don’t provide an implementation for this method, no searches occur.

2

comboBox:objectValueForItemAtIndex:
– (id)comboBox:(NSComboBox *)aComboBox objectValueForItemAtIndex: (int)index

Implement this method to return the object that corresponds to the item at index in aComboBox. Your data
source must implement this method.

numberOfItemsInComboBox:
– (int)numberOfItemsInComboBox:(NSComboBox *)aComboBox

Implement this method to return the number of items managed for aComboBox by your data source object.
An NSComboBox uses this method to determine how many items it should display in its pop-up list. Your
data source must implement this method.

1

Protocol: NSDPSContextNotification

NSDPSContextNotification

Adopted By: no OpenStep classes

Declared In: AppKit/NSDPSContext.h

Protocol Description

The NSDPSContextNotification protocol supplies information about the execution status of a sequence of
PostScript commands previously sent to the Display PostScript server.

nstance Methods

contextFinishedExecuting:
– (void)contextFinishedExecuting:(NSDPSContext *)context

Notifies the receiver that the context has finished executing a batch of PostScript commands. See
notifyObjectWhenFinishedExecuting: (NSDPSContext).

1

Protocol: NSDraggingDestination

NSDraggingDestination
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Description

The NSDraggingDestination informal protocol declares methods that the destination (or recipient) of a
dragged image must implement. The destination automatically receives NSDraggingDestination messages
as an image enters, moves around inside, and then exits or is released within the destination’s boundaries.

In the text here and in the other dragging protocol descriptions, the term dragging session is the entire
process during which an image is selected, dragged, released, and absorbed or rejected by the destination.
A dragging operation is the action that the destination takes in absorbing the image when it’s released. The
dragging source is the object that “owns” the image that’s being dragged. It’s specified as an argument to
the dragImage:at:offset:event:pasteboard:source:slideBack: message, sent to a window or view object,
that instigated the dragging session.

The Dragged Image

The image that’s dragged in an image-dragging session is simply an image that represents data that resides
on the pasteboard. Although a dragging destination can access the image (through the draggedImage
method described in the NSDraggingInfo protocol), its primary concern is with the pasteboard data that the
image represents—the dragging operation that a destination ultimately performs is on the pasteboard data,
not on the image itself.

Valid Destinations

Dragging is a visual phenomenon. To be an image-dragging destination, an object must represent a portion
of screen real estate; thus, only window and view objects can be destinations. Furthermore, you must
register the pasteboard types that the object will accept by sending the object a registerForDraggedTypes:
message, defined in both NSWindow and NSView. During a dragging session, a candidate destination only
receives NSDraggingDestination messages if the destination is registered for a pasteboard type that
matches the type of the pasteboard data being dragged. See the NSPasteboard class specification for more
information about pasteboard types.

Although NSDraggingDestination is declared as an informal protocol, the NSWindow and NSView
subclasses that you create to adopt the protocol need only implement those methods that are pertinent. (The
NSWindow and NSView classes provide private implementations for all of the methods.) Either a window

2

object or its delegate may implement these methods; however, the delegate’s implementation takes
precedence if there are implementations in both places.

The Sender of Destination Messages

Each of the NSDraggingDestination methods sports a single argument: sender, the object that invoked the
method. Within its implementations of the NSDraggingDestination methods, the destination can send
NSDraggingInfo protocol messages to sender to get more information on the current dragging session.

The Order of Destination Messages

The six NSDraggingDestination methods are invoked in a distinct order:

• As the image is dragged into the destination’s boundaries, the destination is sent a draggingEntered:
message

• While the image remains within the destination, a series of draggingUpdated: messages are sent.

• If the image is dragged out of the destination, draggingExited: is sent and the sequence of
NSDraggingDestination messages stops. If it re-enters, the sequence begins again (with a new
draggingEntered: message).

• When the image is released, it either slides back to its source (and breaks the sequence) or a
prepareForDragOperation: message is sent to the destination, depending on the value returned by the
most recent invocation of draggingEntered: or draggingUpdated:.

• If the prepareForDragOperation: message returned YES, a performDragOperation: message is sent.

• Finally, if performDragOperation: returned YES, concludeDragOperation: is sent.

Method Types

Before the image is released
– draggingEntered:
– draggingUpdated:
– draggingExited:

After the image is released
– prepareForDragOperation:
– performDragOperation:
– concludeDragOperation:

3

Protocol: NSDraggingDestination

nstance Methods

concludeDragOperation:
– (void)concludeDragOperation:(id <NSDraggingInfo>)sender

Invoked when the dragging operation is complete and the previous performDragOperation: returned
YES. The destination implements this method to perform any tidying up that it needs to do, such as
updating its visual representation now that it has incorporated the dragged data. This is the last message
that’s sent from sender to the destination during a dragging session.

draggingEntered:
– (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender

Invoked when a dragged image enters the destination. Specifically, this method is invoked when the mouse
pointer enters the destination’s bounds rectangle (if it’s a view object) or its frame rectangle (if it’s a window
object).

This method must return a value that indicates which dragging operation the destination will perform when
the image is released. In deciding which dragging operation to return, the method should evaluate the
overlap between both the dragging operations allowed by the source (accessible through the
draggingSourceOperationMask method) and the dragging operations and pasteboard data types that the
destination itself supports. The returned value should be exactly one of the following:

If none of the operations is appropriate, this method should return NSDragOperationNone (this is the
default response if the method isn’t implemented by the destination).

The code below is a simple example of a method that responds distinctly when one of two different types
of data is dragged into the destination view or window. If the dragged data is a color and the source object
permits copying, the return value indicates that the destination will permit copying of the color data on the
pasteboard. If the dragged data is an RTF file and the source object permits linking, the return value

Option Meaning

NSDragOperationCopy The data represented by the image will be copied.

NSDragOperationLink The data will be shared.

NSDragOperationGeneric The operation will be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

4

indicates that the destination will permit linking of the RTF file on the pasteboard. Otherwise the code
returns NSDragOperationNone, indicating that the destination will not permit any dragging operations with
the data on pasteboard.

- (unsigned int)draggingEntered:(id <NSDraggingInfo>)sender

{

NSPasteboard *pboard;

NSDragOperation sourceDragMask;

sourceDragMask = [sender draggingSourceOperationMask];

pboard = [sender draggingPasteboard];

if ([[pboard types] indexOfObject:NSColorPboardType] != NSNotFound) {

if (sourceDragMask & NSDragOperationCopy) {

return NSDragOperationCopy;

}

}

if ([[pboard types] indexOfObject:NSRTFPboardType] != NSNotFound) {

if (sourceDragMask & NSDragOperationLink) {

return NSDragOperationLink;

}

}

return NSDragOperationNone;

}

See also: – draggingUpdated:, – draggingExited:, – prepareForDragOperation:

draggingExited:
– (void)draggingExited:(id <NSDraggingInfo>)sender

Invoked when the dragged image exits the destination’s bounds rectangle (in the case of a view object) or
its frame rectangle (in the case of a window object).

draggingUpdated:
– (unsigned int)draggingUpdated:(id <NSDraggingInfo>)sender

Invoked periodically as the image is held within the destination. The messages continue until the image is
either released or dragged out of the window or view. The return value should be one of the dragging
operation options listed under the draggingEntered: method. The default return value (if this method isn’t
implemented by the destination) is the value returned by the previous draggingEntered: message.

This method provides the destination with an opportunity to modify the dragging operation depending on
the position of the mouse pointer inside of the destination view or window object. For example, you may
have several graphics or areas of text contained within the same view and wish to tailor the dragging

5

Protocol: NSDraggingDestination

operation, or to ignore the drag event completely, depending upon which object is underneath the mouse
pointer at the time when the user releases the dragged image and the performDragOperation: method is
invoked.

You typically examine the contents of the pasteboard in the draggingEntered: method, where this
examination is performed only once, rather than in the draggingUpdated: method, which is invoked
multiple times.

Only one destination at a time receives a sequence of draggingUpdated: messages. If the mouse pointer
is within the bounds of two overlapping views that are both valid destinations, the uppermost view receives
these messages until the image is either released or dragged out.

See also: – draggingExited:, – prepareForDragOperation:

performDragOperation:
– (BOOL)performDragOperation: (id <NSDraggingInfo>)sender

Invoked after the released image has been removed from the screen and the previous
prepareForDragOperation: message has returned YES. The destination should implement this method to
do the real work of importing the pasteboard data represented by the image. If the destination accepts the
data, it returns YES, otherwise it returns NO. The default is to return NO.

See also: – concludeDragOperation:

prepareForDragOperation:
– (BOOL)prepareForDragOperation:(id <NSDraggingInfo>)sender

Invoked when the image is released, if the most recent draggingEntered: or draggingUpdated: message
returned an acceptable drag-operation value. Returns YES if the receiver agrees to perform the drag
operation and NO if not.

See also: – performDragOperation:

1

Protocol: NSDraggingInfo

NSDraggingInfo

Adopted By: no Rhapsody classes

Declared In: AppKit/NSDragging.h

Protocol Description

The NSDraggingInfo protocol declares methods that supply information about a dragging session (see the
NSDraggingDestination protocol for definitions of dragging terms). NSDraggingInfo methods are
designed to be invoked from within a class’s implementation of NSDraggingDestination informal protocol
methods. The Application Kit automatically passes an object that conforms to the NSDraggingInfo protocol
as the argument to each of the methods defined by NSDraggingDestination. NSDraggingInfo messages
should be sent to this object; you never need to create a class that implements the NSDraggingInfo protocol.

Method Types

Dragging-session information
– draggingSource
– draggingSourceOperationMask
– draggingDestinationWindow
– draggingPasteboard
– draggingSequenceNumber
– draggingLocation

Image information
– draggedImage
– draggedImageLocation

Sliding the image
– slideDraggedImageTo:

2

nstance Methods

draggedImage
– (NSImage *)draggedImage

Returns the image being dragged. This image object visually represents the data put on the pasteboard
during the drag operation; however, it is the pasteboard data and not this image that are ultimately utilized
in the dragging operation.

See also: – draggedImageLocation

draggedImageLocation
– (NSPoint)draggedImageLocation

Returns the current location of the dragged image’s origin in the base coordinate system of the destination
object’s window. The image moves along with the mouse pointer (the position of which is given by
draggingLocation) but may be positioned at some offset.

See also: – draggedImage

draggingDestinationWindow
– (NSWindow *)draggingDestinationWindow

Returns the destination window for the dragging operation. Either this window is the destination itself, or
it contains the view object that is the destination.

draggingLocation
– (NSPoint)draggingLocation

Returns the current location of the mouse pointer in the base coordinate system of the destination object’s
window.

See also: – draggedImageLocation

draggingPasteboard
– (NSPasteboard *)draggingPasteboard

Returns the pasteboard object that holds the data being dragged. The dragging operation that is ultimately
performed utilizes this pasteboard data and not the image returned by the draggedImage method.

3

Protocol: NSDraggingInfo

draggingSequenceNumber
– (int)draggingSequenceNumber

Returns a number that uniquely identifies the dragging session.

draggingSource
– (id)draggingSource

Returns the source, or owner, of the dragged data or nil if the source isn’t in the same application as the
destination. The dragging source implements methods from the NSDraggingSource informal protocol.

draggingSourceOperationMask
– (unsigned int)draggingSourceOperationMask

Returns the dragging operation mask declared by the dragging source (through its
draggingSourceOperationMaskForLocal: method). If the source permits dragging operations, the
elements in the mask will be one or more of the following, combined using the C bitwise OR operator:

If the source does not permit any dragging operations, then method should return NSDragOperationNone.

If the user is holding down a modifier key during the dragging session and the source doesn’t prohibit
modifier keys from affecting the drag operation (through its ignoreModifierKeysWhileDragging
method), then the operating system combines the dragging operation value that corresponds to the modifier
key (see the descriptions below) with the source’s mask using the C bitwise AND operator.

Option Meaning

NSDragOperationCopy The data represented by the image can be copied.

NSDragOperationLink The data can be shared.

NSDragOperationGeneric The operation can be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

4

On Mach the modifier keys are associated with the dragging operation options shown below,

while on Windows the modifier keys are associated with the following dragging operation options.

slideDraggedImageTo:
– (void)slideDraggedImageTo:(NSPoint)aPoint

Slides the image to aPoint, a specified location in the screen coordinate system. This method can be used
to snap the image down to a particular location. It should only be invoked from within the destination’s
implementation of prepareForDragOperation:—in other words, after the user has released the image but
before it’s removed from the screen.

Modifier Key Dragging Option

Control NSDragOperationLink

Alternate NSDragOperationCopy

Command NSDragOperationGeneric

Modifier Key Dragging Option

Control NSDragOperationCopy

Shift-Control NSDragOperationLink

Alternate NSDragOperationCopy

1

Protocol: NSDraggingSource

NSDraggingSource
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSDragging.h

Description

The NSDraggingSource informal protocol declares methods that are implemented by the source object in
a dragging session (see the NSDraggingDestination protocol for definitions of dragging terms). The
dragging source is specified as an argument to the dragImage:at:offset:event:pasteboard:source:
slideBack: message, sent to a window or view object to initiate the dragging session.

Of the methods declared below, only draggingSourceOperationMaskForLocal: must be implemented.
The other methods are invoked only if the dragging source implements them. All four methods are invoked
automatically during a dragging session—you never send an NSDraggingSource message directly to an
object.

Method Types

Specifying dragging options
– draggingSourceOperationMaskForLocal:
– ignoreModifierKeysWhileDragging

Responding to dragging sessions
– draggedImage:beganAt:
– draggedImage:endedAt:deposited:

nstance Methods

draggedImage:beganAt:
– (void)draggedImage:(NSImage *)anImage beganAt:(NSPoint)aPoint

Invoked when anImage is displayed but before it starts following the mouse. aPoint is the origin of the
image in screen coordinates. This method provides the source object with an opportunity to respond to the
initiation of a dragging session. For example, you might choose to have the source give a visual indication
to the user that data is being dragged from the source.

See also: – convertScreenToBase: (NSWindow), – convertBaseToScreen: (NSWindow),
– convertPoint:fromView: (NSView), – convertPoint:toView: (NSView)

2

draggedImage:endedAt:deposited:
– (void)draggedImage:(NSImage *)anImage

endedAt:(NSPoint)aPoint
deposited:(BOOL)flag

Invoked after anImage has been released and the dragging destination has been given a chance to operate
on the data it represents. aPoint is the location of the image’s origin in the screen coordinate system when
it was released. A YES value for flag indicates that the destination accepted the dragged data, while a NO
value indicates that it was rejected.

This method provides the source object with an opportunity to respond to either a successful or a failed
dragging session. For example, if you are moving data from one location to another, you could use this
method to make the source data disappear from its previous location, if the dragging session is successful,
or reset itself to its previous state, in the event of a failure.

See also: – convertScreenToBase: (NSWindow), – convertBaseToScreen: (NSWindow),
– convertPoint:fromView: (NSView), – convertPoint:toView: (NSView)

draggingSourceOperationMaskForLocal:
– (unsigned int)draggingSourceOperationMaskForLocal:(BOOL)flag

This is the only NSDraggingSource method that must be implemented by the source object. It should return
a mask, built by combining the applicable constants listed below using the C bitwise OR operator. You
should use this mask to indicate which types of dragging operations the source object will allow to be
performed on the dragged image’s data. A YES value for flag indicates that the candidate destination object
(the window or view over which the dragged image is currently poised) is in the same application as the
source, while a NO value indicates that the destination object is in a different application.

If the source does not permit any dragging operations, then it should return NSDragOperationNone.

Option Meaning

NSDragOperationCopy The data represented by the image can be copied.

NSDragOperationLink The data can be shared.

NSDragOperationGeneric The operation can be defined by the destination.

NSDragOperationPrivate
The operation is negotiated privately between the source and the
destination.

NSDragOperationAll Combines all the above.

3

Protocol: NSDraggingSource

ignoreModifierKeysWhileDragging
– (BOOL)ignoreModifierKeysWhileDragging

Sets whether the use of the modifier keys should have no effect on the type of operation performed. If this
method is not implemented or returns NO, then the user can tailor the drag operation by holding down a
modifier key during the drag. The dragging option that corresponds to the modifier key is combined with
the source’s mask (as set with the draggingSourceOperationMaskForLocal: method) using the C bitwise
AND operator. See the description for the draggingSourceOperationMask method in the
NSDraggingInfo protocol specification for more information about dragging masks and modifier keys.

1

Protocol: NSIgnoreMisspelledWords

NSIgnoreMisspelledWords

Adopted By: NSText

Declared In: AppKit/NSSpellProtocol.h

Protocol Description

Implement this protocol to have the Ignore button in the Spelling panel function properly. The Ignore button
allows the user to accept a word that the spelling checker believes is misspelled. In order for this action to
update the “ignored words” list for the document being checked, the NSIgnoreMisspelledWords protocol
must be implemented.

This protocol is necessary because a list of ignored words is useful only if it pertains to the entire document
being checked, but the spelling checker (NSSpellChecker object) does not check the entire document for
spelling at once. The spelling checker returns as soon as it finds a misspelled word. Thus, it checks only a
subset of the document at any one time. The user usually wants to check the entire document, so usually
several spelling checks are run in succession until no misspelled words are found. This protocol allows the
list of ignored words to be maintained per-document, even though the spelling checks are not run
per-document.

The NSIgnoreMisspelledWords protocol specifies a method, ignoreSpelling:, which should be
implemented like this:

- (void)ignoreSpelling:(id)sender

{

[[NSSpellChecker sharedSpellChecker] ignoreWord:[[sender selectedCell]

stringValue] inSpellDocumentWithTag:myDocumentTag];

}

The second argument to the NSSpellChecker method ignoreWord:inSpellDocumentWithTag: is a tag
that the NSSpellChecker can use to distinguish the documents being checked. (See the discussion of
“Matching a List of Ignored Words With the Document It Belongs To” in the description of the
NSSpellChecker class.) Once the NSSpellChecker has a way to distinguish the various documents, it can
append new ignored words to the appropriate list.

To make the ignored words feature useful, the application must store a document’s ignored words list with
the document. See the NSSpellChecker class description for more information.

2

nstance Methods

ignoreSpelling:
– (void)ignoreSpelling:(id)sender

Implement to allow an application to ignore misspelled words on a document-by-document basis. This
message is sent by the NSSpellChecker instance to the object whose text is being checked.

Implement this method by using the code shown in the protocol description.

1

Protocol: NSMenuItem

NSMenuItem

Adopted By: NSMenuItem

Conforms To: NSCoding,
NSCopying
NSObject (NSObject)

Declared In: AppKit/NSMenuItem.h

Warning: The NSMenuItem protocol will be removed from the Application Kit in the Premier release of
Rhapsody. The NSMenuItem class will solely assume all associated functionality. This change
does not affect binary compatibility between different versions of projects, but might cause
failures in project builds. To adapt your projects to this change, alter all references to the protocol
(for example, “id <NSMenuItem>”) to references to the class (“NSMenuItem”).

Protocol Description

The NSMenuItem protocol declares methods that are used to manipulate command items in menus. The
NSMenuItem class adopts this protocol, implementing all methods the protocol declares, and provides the
basic functionality of command items. With some implementations of the OpenStep specification
(including OPENSTEP), you cannot replace the NSMenuItem class with a different class which conforms
to the NSMenuItem protocol. You may, however, subclass the NSMenuItem class if necessary.

The methods declared by the NSMenuItem protocol allow you to set the titles, actions, targets, tags, images,
enabled states, and similar attributes of individual menu items, as well as to obtain the current values of
these attributes. As implemented for the NSMenuItem class, a menu item, whenever one of its attributes
changes, notifies the associated NSMenu via the itemChanged: method. The protocol also allows a
conforming object to set keyboard equivalents and (for Microsoft Windows) mnemonics for menu items.
See the sections below for more on this functionality.

See the NSMenu, NSMenuView, and NSMenuItemCell class specifications and the NSMenuValidation
protocol specification for more information on menus.

Keyboard Equivalents

An object conforming to the NSMenuItem protocol can be assigned a keyboard eqivalent, so that when the
user types a character the menu item’s action is sent. The keyboard eqivalent is defined in two parts. First
is the basic key equivalent, which must be a Unicode character that can be generated by a single key press
without modifier keys (Shift excepted). It is also possible to use a sequence of Unicode characters so long

2

as the user’s key mapping is able to generate the sequence with a single key press. The basic key equivalent
is set using setKeyEquivalent: and returned by keyEquivalent. The second part defines the modifier keys
that must also be pressed. This is set using setKeyEquivalentModifierMask: and returned by
keyEquivalentModifierMask . The modifier mask by default includes NSCommandKeyMask, and may
also include the masks for the Shift, Alternate, or other modifier keys. Specifying keyboard equivalents in
two parts allows you to define a modified keyboard equivalent without having to know which character is
generated by the basic key plus the modifier. For example, you can define the keyboard equivalent
Command-Alt-f without having to know which character is generated by typing Alt-f.

Certain methods in the NSMenuItem protocol can override assigned keyboard equivalents with those the
user has specified in the defaults system. The setUsesUserKeyEquivalents: protocol method turns this
behavior on or off, and usesUserKeyEquivalents returns its status. To determine the user-defined key
equivalent for an NSMenuItem object, invoke the userKeyEquivalent instance method. If user-defined key
equivalents are active and an NSMenuItem object has a user-defined key equivalent, its keyEquivalent
method returns the user-defined key equivalent and not the one set using setKeyEquivalent:.

Mnemonics

On certain platforms, currently including Microsoft Windows, an object conforming to the NSMenuItem
protocol can also be assigned a mnemonic. Mnemonics can be assigned on other platforms as well,
however, they won’t have any effect. Mnemonics are represented by an underlined character in the title of
a menu item. The mnemonic can be any character that can be generated by a single key press without
modifier keys (Shift excepted). When the menu is active, the user can type the underlined character in the
menu item in order to activate that menu item. On Microsoft Windows a user activates the menu by pressing
the Alternate key. A particular mnemonic character should only be used once within the set of menu items
contained either in the same menu as the menu item or in the application’s main menu.

Radio-Style Grouping

By using a few methods of the NSMenuItem protocol, you can implement radio-style groupings of menu
commands. In other words, you can have a grouping of menu commands (usually segregated visually with
separator items) and only one command in the group can be selected; the selected item is marked by an
image, usually a radio-button image, but sometimes a checkmark. If the user selects another command in
the group, the previous command is unmarked and the selected command displays the image. As an
example of a radio-style grouping, a game could have three commands to indicate the level of play:
Beginner, Intermediate, and Advanced.

To implement this feature, first set the images you want to use for the possible command states: “on,” “off,”
and “mixed” (the last is useful for triple-state or indeterminate situations). To set the image, use the
commands setOnStateImage:, setOffStateImage:, and setMixedStateImage:. The default image for the
“on” state is a checkmark (NSMenuCheckmark) and for the “mixed” state the image is a dash
(NSMenuMixedState). The “off” state typically has no image. The radio-button image (which you must set
explicitly) is NSMenuRadio.

3

Protocol: NSMenuItem

In an action method that responds to all commands in the group use setState: to uncheck the menu item
that is currently marked:

[curItem setState:NSOffState];

Then mark the newly selected command:

[sender setState:NSOnState];

Method Types

Creating conforming NSMenuItem objects
– initWithTitle:action:keyEquivalent:

Enabling a menu item
– setEnabled:
– isEnabled

Setting the target and action
– setTarget:
– target
– setAction:
– action

Setting the title
– setTitle:
– title

Setting the tag
– setTag:
– tag

Setting the state
– setState:
– state

Setting the image
– setImage:
– image
– setOnStateImage:
– onStateImage
– setOffStateImage:
– offStateImage
– setMixedStateImage:
– mixedStateImage

4

Managing submenus
– setSubmenu:
– submenu
– hasSubmenu

Getting a separator item
+ separatorItem
– isSeparatorItem

Setting the owning menu
– setMenu:
– menu

Managing key equivalents
– setKeyEquivalent:
– keyEquivalent
– setKeyEquivalentModifierMask:
– keyEquivalentModifierMask

Managing mnemonics
– setMnemonicLocation:
– mnemonicLocation
– setTitleWithMnemonic:
– mnemonic

Managing user key equivalents
+ setUsesUserKeyEquivalents:
+ usesUserKeyEquivalents
– userKeyEquivalent

Representing an object
– setRepresentedObject:
– representedObject

Class Methods

separatorItem
+ (id <NSMenuItem>)separatorItem

Returns a menu item that is used to separate logical groups of menu commands. This menu item is disabled.
The default separator item is a simple horizontal line.

See also: – isSeparatorItem, – setEnabled:

5

Protocol: NSMenuItem

setUsesUserKeyEquivalents:
+ (void)setUsesUserKeyEquivalents:(BOOL)flag

If flag is YES, menu items conform to user preferences for key equivalents; otherwise, the key equivalents
originally assigned to the menu items are used.

See also: + usesUserKeyEquivalents, – userKeyEquivalent

usesUserKeyEquivalents
+ (BOOL)usesUserKeyEquivalents

Returns YES if menu items conform to user preferences for key equivalents; otherwise, returns NO.

See also: + setUsesUserKeyEquivalents:, – userKeyEquivalent

nstance Methods

action
– (SEL)action

Returns the receiver’s action method.

See also: – target, – setAction:

hasSubmenu
– (BOOL)hasSubmenu

Returns YES if the receiver has a submenu, NO if it doesn’t.

See also: – setSubmenu:forItem:(NSMenu)

image
– (NSImage *)image

Returns the image displayed by the receiver, or nil if it displays no image.

See also: – setImage:

6

initWithTitle:action:keyEquivalent:
– (id)initWithTitle: (NSString *)itemName

action:(SEL)anAction
keyEquivalent:(NSString *)charCode

Returns an initialized instance of an object that conforms to the NSMenuItem protocol. The arguments
itemName and charCode must not be nil (if there is no title or key equivalent, specify an empty NSString).
The anAction argument must be a valid selector or NULL For instances of the NSMenItem class, the default
initial state is NSStateOff, the default on-state image is a checkmark, and the default mixed-state image is
a dash.

isEnabled
– (BOOL)isEnabled

Returns YES if the receiver is enabled, NO if not.

See also: – setEnabled:

isSeparatorItem
– (BOOL)isSeparatorItem

Returns whether the receiver is a separator item (that is, a menu item used to visually segregate related menu
items).

See also: + separatorItem

keyEquivalent
– (NSString *)keyEquivalent

Returns the receiver’s unmodified keyboard equivalent, or the empty string if one hasn’t been defined. Use
keyEquivalentModifierMask to determine the modifier mask for the key equivalent.

See also: – userKeyEquivalent, – mnemonic, – setKeyEquivalent:

keyEquivalentModifierMask
– (unsigned int)keyEquivalentModifierMask

Returns the receiver’s keyboard equivalent modifier mask.

See also: – setKeyEquivalentModifierMask:

7

Protocol: NSMenuItem

menu
– (NSMenu *)menu

Returns the menu to which the receiver belongs, or nil if no menu has been set.

See also: – setMenu:

mixedStateImage
– (NSImage *)mixedStateImage

Returns the image used to depict a “mixed state.” A mixed state is useful for indicating “off” and “on”
attribute values in a group of selected objects, such as a selection of text containing bold and plain
(non-bolded) worlds.

See also: – setMixedStateImage:

mnemonic
– (NSString *)mnemonic

Returns the character in the menu item title that appears underlined for use as a mnemonic. If there is no
mnemonic character, returns an empty string.

See also: – setTitleWithMnemonic:

mnemonicLocation
– (unsigned int)mnemonicLocation

Returns the position of the underlined character in the menu item title used as a mnemonic. The position is
the zero based index of that character in the title string. If the receiver has no mnemonic character, returns
NSNotFound.

See also: – setMnemonicLocation:

offStateImage
– (NSImage *)offStateImage

Returns the image used to depict the receiver’s “off” state, or nil if the image has not been set.

See also: – setOffStateImage:

8

onStateImage
– (NSImage *)onStateImage

Returns the image used to depict the receiver’s “on” state, or nil if the image has not been set.

See also: – setOnStateImage:

representedObject
– (id)representedObject

Returns the object that the receiving menu item represents. For example, you might have a menu list the
names of views that are swapped into the same panel. The represented objects would be the appropriate
NSView objects. The user would then be able to swtich back and forth between the different views that are
displayed by selecting the various menu items.

See also: – tag, – setRepresentedObject:

setAction:
– (void)setAction:(SEL)aSelector

Sets the receiver’s action method to aSelector.

See also: – setTarget:, – action

setEnabled:
– (void)setEnabled:(BOOL)flag

Sets whether the receiver is enabled based on flag. If a menu item is disabled, it’s keyboard equivalent and
mnemonic are also disabled. See the NSMenuValidation informal protocol specification for cautions
regarding this method.

See also: – isEnabled

setImage:
– (void)setImage:(NSImage *)menuImage

Set’s the receiver’s image to menuImage. If menuImage is nil , the current image (if any) is removed. This
image is not affected by changes in menu-item state.

See also: – image

9

Protocol: NSMenuItem

setKeyEquivalent:
– (void)setKeyEquivalent:(NSString *)aString

Sets the receiver’s unmodified key equivalent to aString. If you want to remove the key equivalent from a
menu item, pass an empty string (@””) for aString (never pass nil). Use
setKeyEquivalentModifierMask: to set the appropriate mask for the modifier keys for the key equivalent.

See also: – setMnemonicLocation:, – keyEquivalent

setKeyEquivalentModifierMask:
– (void)setKeyEquivalentModifierMask:(unsigned int)mask

Sets the receiver’s keyboard equivalent modifiers (indicating modifiers such as the Shift or Alternate keys)
to those in mask. mask is an integer bit field containing any of these modifier key masks, combined using
the C bitwise OR operator:

NSShiftKeyMask
NSAlternateKeyMask
NSCommandKeyMask

On Mach, you should always set NSCommandKeyMask in mask; on Microsoft Windows, this is not
required.

NSShiftKeyMask is relevant only for function keys; that is, for key events whose modifier flags include
NSFunctionKeyMask. For all other key events NSShiftKeyMask is ignored and characters typed while the
Shift key is pressed are interpreted as the shifted versions of those characters; for example,
Command-Shift-‘c’ is interpreted as Command-‘C’.

See the NSEvent class specification for more information about modifier mask values.

See also: – keyEquivalentModifierMask

setMenu:
– (void)setMenu:(NSMenu *)aMenu

Sets the receiver’s menu to aMenu. This method is invoked by the owning NSMenu when the receiver is
added or removed. You shouldn’t have to invoke this method in your own code, although it can be overriden
to provide specialized behavior.

See also: – menu

10

setMixedStateImage:
– (void)setMixedStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates a”mixed” state, that is, a state neither “on” or “off.” If
itemImage is nil , any current mixed-state image is removed.

See also: – mixedStateImage, – setOffStateImage:, – setOnStateImage:, – setState:

setMnemonicLocation:
– (void)setMnemonicLocation:(unsigned int)location

Sets the character of the menu item title at location that is to be underlined. location must be between 0 and
254. This character identifies the access key on Windows by which users can access the menu item.

See also: – mnemonicLocation

setOffStateImage:
– (void)setOffStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates an “off” state. If itemImage is nil , any current off-state image
is removed.

See also: – offStateImage, – setMixedStateImage:, – setOnStateImage:, – setState:

setOnStateImage:
– (void)setOnStateImage:(NSImage *)itemImage

Sets the image of the receiver that indicates an “on” state. If itemImage is nil , any current off-state image
is removed.

See also: – onStateImage, – setMixedStateImage:, – setOffStateImage:, – setState:

setRepresentedObject:
– (void)setRepresentedObject:(id)anObject

Sets the object represented by the receiver to anObject. By setting a represented object for a menu item you
make an association between the menu item and that object. The represented object functions as a more
specific form of tag that allows you to associate any object, not just an int , with the items in a menu.

11

Protocol: NSMenuItem

For example, an NSView object might be associated with a menu item—when the user chooses the menu
item, the represented object is fetched and displayed in a panel. Several menu items might control the
display of multiple views in the same panel.

See also: – setTag:, – representedObject

setState:
– (void)setState:(int)itemState

Sets the state of the receiver to itemState, which should be one of NSOffState, NSOnState, or
NSMixedState. The image associated with the new state is displayed to the left of the menu item.

See also: – state, – setMixedStateImage:, – setOffStateImage:, – setOnStateImage:

setSubmenu:
– (void)setSubmenu:(NSMenu *)aSubmenu

Sets the submenu of the receiver to aSubmenu. The default implementation of the NSMenuItem class raises
an exception if aSubmenu already has a supermenu.

See also: – submenu, – hasSubmenu

setTag:
– (void)setTag:(int)anInt

Sets the receiver’s tag to anInt.

See also: – setRepresentedObject:, – tag

setTarget:
– (void)setTarget:(id)anObject

Sets the receiver’s target to anObject.

See also: – setAction:, – target

12

setTitle:
– (void)setTitle:(NSString *)aString

Sets the receiver’s title to aString.

See also: – title

setTitleWithMnemonic:
– (void)setTitleWithMnemonic: (NSString *)aString

Sets the title of a menu item with a character underlined to denote an access key (Windows only). Use an
ampersand character to mark the character (the one following the ampersand) to be underlined. For
example, the following message causes the ‘c’ in ‘Receive’ to be underlined:

[aMenuItem setTitleWithMnemonic:NSLocalizedString(@"Re&ceive")];

See also: – mnemonic, – setMnemonicLocation:

state
– (int)state

Returns the state of the receiver, which is NSOffState (the default), NSOnState, or NSMixedState.

See also: – setState:

submenu
– (NSMenu *)submenu

Returns the submenu associated with the receiving menu item, or nil if no submenu is associated with it. In
the implementation of the NSMenuItem class, if the receiver responds YES to hasSubmenu, the submenu
is returned.

See also: – hasSubmenu, – setSubmenu:

tag
– (int)tag

Returns the receiver’s tag.

See also: – representedObject, – setTag:

13

Protocol: NSMenuItem

target
– (id)target

Returns the receiver’s target.

See also: – action, – setTarget:

title
– (NSString *)title

Returns the receiver’s title.

See also: – setTitle:

userKeyEquivalent
– (NSString *)userKeyEquivalent

Returns the user-assigned key equivalent for the receiver.

See also: – keyEquivalent

1

Protocol: NSMenuValidation

NSMenuValidation
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSMenu.h

Protocol Description

This informal protocol allows your application to update the enabled or disabled status of an NSMenuItem.
It declares only one method, validateMenuItem:. By default, every time a user event occurs, NSMenu
automatically enables and disables each visible menu item based on criteria described in “Automatic
Updating of NSMenuItems,” below. Implement validateMenuItem: in cases where you want to override
NSMenu’s default enabling scheme.

NSMenuItems can be enabled or disabled in two ways: explicitly, by sending the setEnabled: message, or
automatically, as described below. Automatic updating can be turned on and off with NSMenu’s
setAutoenablesItems: message.

Automatic Updating of NSMenuItems

Whenever a user event occurs, the NSMenu object updates the status of every one of its visible menu items.
To update the status of a menu item, an NSMenu tries to find the object that responds to the NSMenuItem’s
action message. It searches the following objects in the given order until it finds one that responds to the
action message (note that it doesn’t actually send the action message):

• The NSMenuItem’s target. If the target is non-nil , the search ends here whether the target responds or not.

• The key window’s responder chain, starting with its first responder.

• The key window itself.

• The key window’s delegate.

• The main window’s responder chain, starting with its first responder.

• The main window itself.

• The main window’s delegate.

• The NSApplication object.

• The NSApplication object’s delegate.

If none of these objects responds to the action message, the menu item is disabled. If NSMenu finds an
object that responds to the action message, it then checks to see if that object responds to the
validateMenuItem: method (the method declared in this informal protocol). If validateMenuItem: is not

2

implemented in that object, the menu item is enabled. If it is implemented, the return value of
validateMenuItem: indicates whether the menu item should be enabled or disabled.

Here is an example of using validateMenuItem: to override automatic enabling. If your application has a
Copy menu item that sends the copy: action message to the first responder, that menu item is automatically
enabled any time an object that responds to copy:, such as an NSText object, is the first responder of the
key or main window. If you create a class whose instances might become the first responder, and which
doesn’t support copying of everything it allows the user to select, you should implement
validateMenuItem: in that class. validateMenuItem: will then return NO if items that can’t be copied are
selected (or if no items are selected) and YES if all items in the selection can be copied. By implementing
validateMenuItem:, you can have the Copy menu item disabled even though the target object does
implement the copy: method. If a class never permits copying, then you simply omit an implemention of
copy: in that class, and the Copy menu item is disabled automatically whenever an instance of that class is
the first responder.

If you send a setEnabled: message to enable or disable a menu item when automatic updating is turned on
(with NSMenu’s setAutoEnablesItems:), other objects might undo what you have done after another user
event occurs. Hence you can never be sure that the menu item will remain the way you set it. If your
application must use setEnabled:, turn off the automatic enabling of menu items in order to get predictable
results.

nstance Methods

validateMenuItem:
– (BOOL)validateMenuItem:(NSMenuItem *)aMenuItem

Implemented to override the default action of enabling or disabling aMenuItem. The object implementing
this method must be the target of aMenuItem. It returns YES to enable the aMenuItem, NO to disable it.
You can determine which menu item aMenuItem is by querying it for its title, tag, or action.

The following example beeps and disables the menu item “Next Record” if the selected line in a table view
is the last one; conversely, it beeps and disables the menu item “Prior Record” if the selected row is the first
one in the table view. (countryKeys is an array of names appearing in the table view.)

3

Protocol: NSMenuValidation

- (BOOL)validateMenuItem:(NSMenuItem *)anItem

{

int row = [tableView selectedRow];

if ([[anItem title] isEqualToString:@"Next Record"] &&

(row == [countryKeys indexOfObject:[countryKeys lastObject]])) {

return NO;

}

if ([[anItem title] isEqualToString:@"Prior Record"] && row == 0) {

return NO;

}

return YES;

}

1

Protocol: NSNibAwaking

NSNibAwaking
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSNibLoading.h

Protocol Description

This informal protocol consists of a single method, awakeFromNib. Classes can implement this method
to perform final initialization of state after objects have been loaded from an Interface Builder archive.

nstance Methods

awakeFromNib
– (void)awakeFromNib

Implemented to prepare the receiver for service after it has been loaded from an Interface Builder archive,
or nib file. An awakeFromNib message is sent to each object loaded from the archive, but only if it can
respond to the message, and only after all the objects in the archive have been loaded and initialized. When
an object receives an awakeFromNib message, it’s guaranteed to have all its outlet instance variables set.

Note: This method is also sent during Interface Builder’s test mode to objects instantiated from loaded
palettes, which include executable code for the objects. It isn’t sent to objects defined solely by using
the Classes display of the nib file window in Interface Builder.

When an Interface Builder archive is loaded into an application, each custom object from the archive is first
initialized with an init message, or initWithFrame: if the object is a kind of NSView. It’s then more
specifically initialized with the properties that it was configured with using Interface Builder. This part of
the initialization process uses any setVariable: methods that are available (where variable is the name of
an instance variable whose value was set in Interface Builder). Finally, after all the objects are fully
initialized, each receives an awakeFromNib message.

The order in which objects are loaded from the archive is not guaranteed. Therefore, it’s possible for a
setVariable: message to be sent to an object before its companion objects have been unarchived. For this
reason, setVariable: methods should not send messages to other objects in the archive. However, messages
to other objects can safely be sent from within awakeFromNib—by which time it’s assured that all the
objects are unarchived and initialized (though not necessarily awakened, of course).

Typically, awakeFromNib is implemented for classes whose instances are used as the owners of a loaded
nib file (shown as “File’s Owner” in Interface Builder). Such a class has the express purpose of connecting
the loaded objects with objects in the application, and can thereafter be disposed of, or remain in the

2

capacity of a controller or coordinator for the loaded objects. For example, suppose that a nib file contains
two custom views that must be positioned relative to each other at run time. Trying to position them when
either one of the views is initialized (in initWithCoder: or a setVariable: method) might fail, since the
other views might not be unarchived and initialized yet. However, it can be done in the nib file owner’s
awakeFromNib method (firstView and secondView are outlets of the file’s owner):

- (void)awakeFromNib

{

NSRect viewFrame;

if ([[self superclass] instancesRespondToSelector:@selector(awakeFromNib)]) {

[super awakeFromNib];

}

viewFrame = [firstView frame];

viewFrame.origin.x += viewFrame.size.width;

[secondView setFrame:viewFrame];

return;

}

Note the testing of the superclass before invoking its implementation of awakeFromNib. The Application
Kit declares a prototype for this method, but doesn’t implement it. Because there’s no default
implementation of awakeFromNib, be sure to invoke it only when the object does in fact respond.

See also: + loadNibNamed:owner: (NSBundle Additions),
– awakeAfterUsingCoder (NSObject class of the Foundation Kit),
– initWithCoder: (NSCoding protocol of the Foundation Kit),
+ initialize (NSObject class of the Foundation Kit)

1

Protocol: NSServicesRequests

NSServicesRequests
 (informal protocol)

Category Of: NSObject

Declared In: AppKit/NSApplication.h

Protocol Description

This informal protocol consists of two methods, writeSelectionToPasteboard:types: and
readSelectionFromPasteboard:. The first is implemented to provide data to a remote service, and the
second to receive any data the remote service might send back. Both respond to messages that are generated
when the user chooses a command from the Services menu.

nstance Methods

readSelectionFromPasteboard:
- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard

Implemented to replace the current selection (that is, the text or objects that are currently selected) with data
read from the Pasteboard object pboard. The data would have been placed in the pasteboard by another
application in response to a remote message from the Services menu. A readSelectionFromPasteboard:
message is sent to the same object that previously received a writeSelectionToPasteboard:types:
message.

There’s no default readSelectionFromPasteboard: method. The Application Kit declares a prototype for
this method, but doesn’t implement it.

writeSelectionToPasteboard:types:
- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard types:(NSArray *)types

Implemented to write the current selection to the Pasteboard object pboard. The selection should be written
as one or more of the data types listed in types. After writing the data, this method should return YES. If for
any reason it can’t write the data, it should return NO.

A writeSelectionToPasteboard:types: message is sent to the first responder when the user chooses a
command from the Services menu, but only if the receiver didn’t return nil to a previous
validRequestorForSendType:returnType: message.

After this method writes the data to the pasteboard, a remote message is sent to the application that provides
the service the user requested. If the service provider supplies return data to replace the selection, the first
responder will then receive a readSelectionFromPasteboard: message.

2

There’s no default writeSelectionToPasteboard:types: method. The Application Kit declares a prototype
for this method, but doesn’t implement it.

See also: – validRequestorForSendType:returnType: (NSResponder class)

1

Protocol: NSTableDataSource

NSTableDataSource
(informal protocol)

Category Of: NSObject

Declared In: AppKit/NSTableView.h

Category Description

The NSTableDataSource category declares the methods that an NSTableView uses to access the contents
of its data source object. It determines how many rows to display by sending a
numberOfRowsInTableView: message, and accesses individual values with the tableView:
objectValueForTableColumn:row: and tableView:setObjectValue:forTableColumn:row: methods. A
data source must implement the first two methods to work with an NSTableView, but if it doesn’t implement
the third the NSTableView simply provides read-only access to its contents.

The NSTableView treats objects provided by its data source as values to be displayed in NSCell objects. If
these objects aren’t of common value classes—such as NSString, NSNumber, and so on—you’ll need to
create a custom NSFormatter to display them. See the NSFormatter class specification for more
information.

Suppose that an NSTableView’s column identifiers are set up as NSStrings containing the names of
attributes for the column, such as “Last Name”, “City”, and so on, and that the data source stores its records
as an NSMutableArray, called records, of NSMutableDictionary objects using those names as keys. Here’s
a small example, given as an ASCII property list:

(

{

"Last Name" = Anderson;

"First Name" = James;

Abode = apartment;

City = "San Francisco";

},

{

"Last Name" = Beresford;

"First Name" = Keith;

Abode = apartment;

City = "Redwood City";

}

)

With such a record structure, this implementation of tableView:objectValueForTableColumn:row:
suffices to retrieve values for the NSTableView:

2

- (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id theRecord, theValue;

NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);

theRecord = [records objectAtIndex:rowIndex];

theValue = [theRecord objectForKey:[aTableColumn identifier]];

return theValue;

}

Here’s the corresponding method for setting values:

- (void)tableView:(NSTableView *)aTableView

setObjectValue:anObject

forTableColumn:(NSTableColumn *)aTableColumn

row:(int)rowIndex

{

id theRecord;

NSParameterAssert(rowIndex >= 0 && rowIndex < [records count]);

theRecord = [records objectAtIndex:rowIndex];

[theRecord setObject:anObject forKey:[aTableColumn identifier]];

return;

}

Finally, numberOfRowsInTableView: simply returns the count of the NSArray:

- (int)numberOfRowsInTableView:(NSTableView *)aTableView

{

return [records count];

}

In each case, the NSTableView that sends the message is provided as aTableView. A data source object that
manages several sets of data can choose the appropriate set based on which NSTableView sends the
message.

Method Types

Getting values
– numberOfRowsInTableView:
– tableView:objectValueForTableColumn:row:

Setting values
– tableView:setObjectValue:forTableColumn:row:

3

Protocol: NSTableDataSource

nstance Methods

numberOfRowsInTableView:
– (int)numberOfRowsInTableView:(NSTableView *)aTableView

Returns the number of records managed for aTableView by the data source object. An NSTableView uses
this method to determine how many rows it should create and display.

tableView:objectValueForTableColumn:row:
– (id)tableView:(NSTableView *)aTableView

objectValueForTableColumn:(NSTableColumn *)aTableColumn
row: (int)rowIndex

Returns an attribute value for the record in aTableView at rowIndex. aTableColumn contains the identifier
for the attribute, which you get by using NSTableColumn’s identifier method. For example, if
aTableColumn stands for the city that an employee lives in and rowIndex specifies the record for an
employee who lives in Portland, this method returns an object with a string value of “Portland”. See the
category description for an example.

tableView:setObjectValue:forTableColumn:row:
– (void)tableView:(NSTableView *)aTableView

setObjectValue:(id)anObject
forTableColumn: (NSTableColumn *)aTableColumn
row: (int)rowIndex

Sets an attribute value for the record in aTableView at rowIndex. anObject is the new value, and
aTableColumn contains the identifier for the attribute, which you get by using NSTableColumn’s identifier
method. See the category description for an example.

1

Protocol: NSTextAttachmentCell

NSTextAttachmentCell

Adopted By: NSTextAttachmentCell

Declared In: AppKit/NSTextAttachment.h

Protocol Description

The NSTextAttachmentCell protocol declares the interface for objects that draw text attachment icons and
handle mouse events on their icons. With the exceptions of cellBaselineOffset:, setAttachment: and
attachment, all of these methods are implemented by the NSCell class and described in that class
specification.

See the NSAttributedString and NSTextView class specifications for general information on text
attachments.

Method Types

Drawing
– drawWithFrame:inView:
– highlight:withFrame:inView:

Cell size and position
– cellSize
– cellBaselineOffset

Event handling
– wantsToTrackMouse
– trackMouse:inRect:ofView:untilMouseUp:

Setting the attachment
– setAttachment:
– attachment

2

nstance Methods

attachment
– (NSTextAttachment *)attachment

Returns the text attachment object that owns the receiver.

See also: – setAttachment:

cellBaselineOffset
– (NSPoint)cellBaselineOffset

Returns the position where the attachment cell’s image should be drawn in text, relative to the current point
established in the glyph layout. The image should be drawn so that its lower left corner lies on this point.

See also: – icon (NSFileWrapper)

cellSize
– (NSSize)cellSize

Returns the size of the attachment’s icon.

See also: – icon (NSFileWrapper), – fileWrapper (NSTextAttachment)

drawWithFrame:inView:
– (void)drawWithFrame: (NSRect)cellFrame inView: (NSView *)aView

Draws the receiver’s image within cellFrame in aView, which should be the focus view.

See also: – drawWithFrame:inView: (NSCell), – lockFocus (NSView)

highlight:withFrame:inView:
– (void)highlight: (BOOL)flag

withFrame: (NSRect)cellFrame
inView: (NSView *)aView

Draws the receiver’s image—with highlighting if flag is YES—within cellFrame in aView, which should be
the focus view.

See also: – highlight:withFrame:inView: (NSCell), – lockFocus (NSView)

3

Protocol: NSTextAttachmentCell

setAttachment:
– (void)setAttachment:(NSTextAttachment *)anAttachment

Sets the text attachment object that owns the receiver to anAttachment, without retaining it (the text
attachment, as the owner, retains the cell).

See also: – attachment, – setAttachmentCell: (NSTextAttachment)

trackMouse:inRect:ofView:untilMouseUp:
– (BOOL)trackMouse:(NSEvent *)theEvent

inRect:(NSRect)cellFrame
ofView:(NSView *)aTextView
untilMouseUp:(BOOL)flag

Handles a mouse-down event on the receiver’s image. theEvent is the mouse-down event. cellFrame is the
region of aTextView in which further mouse events should be tracked. aTextView is the view which received
the event. It’s assumed to be an NSTextView, and should be the focus view. If flag is YES, the receiver tracks
the mouse until a mouse-up event occurs; if flag is NO, it stops tracking when a mouse-dragged event occurs
outside of cellFrame. Returns YES if the receiver successfully finished tracking the mouse (typically
through a mouse-up event), NO otherwise (such as when the mouse is dragged outside cellFrame).

NSTextAttachmentCell’s implementation of this method calls upon aTextView’s delegate to handle the
event. If theEvent is a mouse-up event for a double click, the text attachment cell sends the delegate a
textView:doubleClickedOnCell:inRect: message and returns YES. Otherwise, depending on whether the
user clicks or drags the cell, it sends the delegate a textView:clickedOnCell:inRect: or a textView:
draggingCell:inRect:event: message and returns YES. NSTextAttachmentCell’s implementation returns
NO only if flag is NO and the mouse is dragged outside of cellFrame. The delegate methods are invoked
only if the delegate responds.

See also: – wantsToTrackMouse, – trackMouse:inRect:ofView:untilMouseUp: (NSCell),
– lockFocus (NSView)

wantsToTrackMouse
– (BOOL)wantsToTrackMouse

Returns YES if the receiver will handle a mouse event occurring over its image (to support dragging, for
example), NO otherwise. NSTextAttachmentCell’s implementation of this method returns YES. The
NSView containing the cell should invoke this method before sending a trackMouse:inRect:ofView:
untilMouseUp: message.

For an attachment in an attributed string, if the attachment cell returns NO its attachment character should
be selected rather than the cell being asked to track the mouse. this results in the attachment icon behaving
as any regular glyph in text.

1

Protocol: NSTextInput

NSTextInput

Adopted By: NSInputManager

Declared In: AppKit/NSInputManager.h

Protocol Description
Note: This class specification is incomplete and has not received a technical review. It is included in this

release to test the linkage between the application development tools and the on-line documentation.
What information it contains should be considered preliminary and subject to change.

The methods of the NSTextInput protocol are implemented by objects—for example, responders—that
handle text input. A client object such as a text view (“the client object”) that speaks this protocol must be
reponsible for the following things:

1. The client object must maintain a “marked region” within which text input and, possibly, character
conversion take place. The marked region may have a length of zero. The client object must maintain an
“insertion point”—typically at the end of the marked region, though it may be within the region. The
“selection” within the client object, if any, is entirely contained within the marked region whenever there
is a marked region.2. The client object is responsible for sending messages to currentInputManager when
the mouse goes down inside the marked region, or when the mouse leaves the marked region. Within the
marked region, this allows the selection to be changed. Out of the marked region, it allows the region to be
“abandoned”. (See below.)

3. When there is a non-zero marked region, the client object is responsible for notifying the input manager
when the selection changes, or when other programmatic changes to the text affect the marked region. It
can do this by sending a message to set the selection, abandon the marked region, etc.

4. When the client object relinquishes first responder, it will typically send markedTextWillBeAbandoned:
to the currentInputManager. It must send markedTextWillBeAbandoned: when its insertion point (or
selection moves outside the marked range. The server will typically respond by simply unmarking the
region, but may remove the marked region's text entirely.

Note: If this protocol is not implemented by a client object that does have a keyDown: method, then in-line
input is not possible for that client object, and will have to be handled externally.

The NSTextInput protocol is implemented by a IM to receive input from the server on behalf of the current
client, and otherwise mediate between the client object and the server. It then forwards the corresponding
messages to the client, or gets information from the client to pass back to the server, as appropriate.

The message passing between NSApp, IM, UIobj, and Server is all synchronous. That is, e.g., when IM
sends a message to Server, any reply comes back and is relayed to UIobj before the original message
returns.

2

A key binding manager splits the stream of keyDown: messages (intercepted by NSResopnder) into
commands and text. If there is an Input Manager in the loop, it will further use any of these NSTextInput
messages to control the marked region.

Method Types

Marking text
– setMarkedText:selectedRange:
– getMarkedText:selectedRange:
– hasMarkedText
– unmarkText

Other
– conversationIdentifier
– doCommandBySelector:
– insertText:

nstance Methods

conversationIdentifier
– (long)conversationIdentifier

Returns a number used to identify the receiver’s input management session to the input server.

<<more information forthcoming>>

doCommandBySelector:
– (void)doCommandBySelector:(SEL)aSelector

Attempts to invoke aSelector or pass the message up the responer chain. This method is invoked by an input
manager in response to an interpretKeyEvents: message.

<<more information forthcoming>>

See also: – interpretKeyEvents: (NSResponder)

3

Protocol: NSTextInput

getMarkedText:selectedRange:
– (void)getMarkedText:(out NSString **)aString selectedRange:(out NSRange *)aRange

Returns by reference in aString the receiver’s marked text, if any, and in aRange the range of the selection
within aString (not in terms of the receiver’s entire text stream).

hasMarkedText
– (BOOL)hasMarkedText

Returns YES if the receiver has text that’s still being interpreted by the input manager, NO if it doesn’t.

<<more information forthcoming>>

insertText:
– (void)insertText:(NSString *)aString

Inserts aString into the receiver’s text stream. This method is invoked by an input manager in response to
an interpretKeyEvents: message.

<<more information forthcoming>>

See also: – interpretKeyEvents: (NSResponder)

setMarkedText:selectedRange:
– (void)setMarkedText:(NSString *)aString selectedRange:(NSRange)selRange

<<forthcoming>>

unmarkText
– (void)unmarkText

Removes any marking from pending input text, and accepts the text in its current state.

<<more information forthcoming>>

Defined Types
Note: This section has not been updated and has not received recent technical review. It is
included in this release to test the linkage between application development tools and on-line
documentation. The information in this section should be considered at best preliminary and
subject to change. An updated version of this file will be included in the next release.

DPSContextRec

DECLARED IN dpsclient/dpsfriends.h

SYNOPSIS typedef struct _t_DPSContextRec {
char *priv ;
DPSSpace space;
DPSProgramEncoding programEncoding;
DPSNameEncoding nameEncoding;
struct _t_DPSProcsRec const * procs;
void (*textProc)();
void (*errorProc)();
DPSResults resultTable;
unsigned int resultTableLength;
struct _t_DPSContextRec *chainParent, *chainChild;
DPSContextType type;

} DPSContextRec, *DPSContext;

DESCRIPTION The DPSContextRec structure represents a Display PostScript context.

1

DPSContextType

DECLARED IN dpsclient/dpsfriends.h

SYNOPSIS typedef enum {
dps_machServer,
dps_fdServer,
dps_stream

} DPSContextType;

DESCRIPTION These represent the context types supported by NeXT’s version of Display PostScript, as used in
the type field of a DPSContextRec structure.

DPSErrorCode

DECLARED IN dpsclient/dpsclient.h

SYNOPSIS typedef enum _DPSErrorCode {
dps_err_ps = DPS_ERROR_BASE,
dps_err_nameTooLong,
dps_err_resultTagCheck,
dps_err_resultTypeCheck,
dps_err_invalidContext,
dps_err_select = DPS_NEXT_ERROR_BASE,
dps_err_connectionClosed,
dps_err_read,
dps_err_write,
dps_err_invalidFD,
dps_err_invalidTE,
dps_err_invalidPort,
dps_err_outOfMemory,
dps_err_cantConnect

} DPSErrorCode;

DESCRIPTION Error codes passed to a DPSErrorProc() function.

2

DPSEventFilterFunc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef int (*DPSEventFilterFunc)(NXEvent *ev);

DESCRIPTION Call-back function used to filter events.

DPSFDProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSFDProc)(int fd, void *userData);

DESCRIPTION Call-back function used when a file descriptor is registered through DPSAddFD().

DPSNumberFormat

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef enum _DPSNumberFormat {
#ifdef __BIG_ENDIAN__

dps_float = 48,
dps_long = 0,
dps_short = 32

#else
dps_float = 48+128,
dps_long = 0+128,
dps_short = 32+128

} DPSNumberFormat;

DESCRIPTION These constants are used by the DPSDoUserPath() function to describe the type of numbers that
are being passed.

3

DPSPingProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSPingProc)
(DPSContext ctxt,
void *userData);

DESCRIPTION Call-back function used by DPSAsynchronousWaitContext().

DPSPortProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSPortProc)
(msg_header_t *msg,
void *userData);

DESCRIPTION Call-back function used when a port is registered through DPSAddPort().

DPSTimedEntry

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef struct __DPSTimedEntry *DPSTimedEntry;

DESCRIPTION The return type for DPSAddTimedEntry().

4

DPSTimedEntryProc

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef void (*DPSTimedEntryProc)
(DPSTimedEntry timedEntry,
double now,
void *userData);

DESCRIPTION Call-back function used when a timed entry is registered through DPSAddTimedEntry().

DPSUserPathAction

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef enum _DPSUserPathAction {
dps_uappend,
dps_ufill,
dps_ueofill,
dps_ustroke,
dps_ustrokepath,
dps_inufill,
dps_inueofill,
dps_inustroke,
dps_def,
dps_put

} DPSUserPathAction;

DESCRIPTION These constants are convenient representations of some of the PostScript operator indices,
suitable for enrollment in the action array passed to DPSDoUserPath().

5

DPSUserPathOp

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS typedef enum _DPSUserPathOp {
dps_setbbox,
dps_moveto,
dps_rmoveto,
dps_lineto,
dps_rlineto,
dps_curveto,
dps_rcurveto,
dps_arc,
dps_arcn,
dps_arct,
dps_closepath,
dps_ucache

} DPSUserPathOp;

DESCRIPTION These constants represent the PostScript operators that can be passed in DPSDoUserPath()’s
operator array.

NXCoord

DECLARED IN dpsclient/event.h

SYNOPSIS typedef float NXCoord

DESCRIPTION Used to represent a single coordinate in a Cartesian coordinate system.

6

NXEvent

DECLARED IN dpsclient/event.h

SYNOPSIS typedef struct _NXEvent {
int type;
NXPoint location;
long time;
int flags;
unsigned int window;
NXEventData data;
DPSContext ctxt;

} NXEvent, *NXEventPtr ;

DESCRIPTION Represents a single event; this structure is also known as the event record. The fields are:

type The type of event (see “Event Types,” below)

location The event’s location in the base coordinate system of its window

time The time of the event (in hardware-dependent units) since system
startup

flags Mouse-button and modifier-key flags (see “Event Flags,” below)

window The window number of the window associated with the event

data Additional type-specific data (see “NXEventData,” below)

ctxt The PostScript context of the event

7

NXEventData

DECLARED IN dpsclient/event.h

SYNOPSIS typedef union {
struct {

short eventNum;
int click;
unsigned char pressure;

} mouse;
struct {

short repeat;
unsigned short charSet;
unsigned short charCode;
unsigned short keyCode;
short keyData;

} key;
struct {

short eventNum;
int trackingNum ;
int userData;

} tracking ;
struct {

short subtype;
union {

float F[2];
long L [2];
short S[4];
char C[8];

} misc;
} compound;

} NXEventData;

DESCRIPTION This structure supplies type-specific information for an event. It’s a union of four structures,
where the type of the event determines which structure is pertinent:

• mouse is used for mouse events.
• key is used for keyboard events.
• tracking is for tracking-rectangle events.
• compound is for system-, kit-, and application-defined events.

8

NXPoint

DECLARED IN dpsclient/event.h

SYNOPSIS typedef struct _NXPoint {
NXCoord x;
NXCoord y;

} NXPoint;

DESCRIPTION Represents a point in a Cartesian coordinate system.

NXSize

DECLARED IN dpsclient/event.h

SYNOPSIS typedef struct _NXSize {
NXCoord width ;
NXCoord height;

} NXSize;

DESCRIPTION Represents a two-dimensional size.

9

Symbolic Constants

All Contexts

DECLARED IN dpsclient/NSDPSContext.h

SYNOPSIS DPS_ALLCONTEXTS

DESCRIPTION This constant represents all extant contexts.

Alpha Constants

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_DATA
NX_ONES

DESCRIPTION These constants represent alpha values.

Character Set Values

DECLARED IN dpsclient/event.h

SYNOPSIS NX_ASCIISET
NX_SYMBOLSET
NX_DINGBATSSET

DESCRIPTION These constants represent the values that may occur in the data.key.charSet field of an NXEvent
structure.

10

Compositing Operations

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_CLEAR
NX_COPY
NX_SOVER
NX_SIN
NX_SOUT
NX_SATOP
NX_DOVER
NX_DIN
NX_DOUT
NX_DATOP
NX_XOR
NX_PLUSD
NX_HIGHLIGHT
NX_PLUSL

DESCRIPTION These represent the compositing operations used by PScomposite() and the NXImage class.

Error Code Bases

DECLARED IN dpsclient/dpsclient.h

SYNOPSIS DPS_ERROR_BASE
DPS_NEXT_ERROR_BASE

DESCRIPTION These constants represent the lowest values for Display PostScript error codes.

11

Event Types

DECLARED IN dpsclient/event.h

Type Meaning

NX_NULLEVENT A non-event

NX_LMOUSEDOWN Left mouse-down

NX_LMOUSEUP Left mouse-up

NX_LMOUSEDRAGGED left mouse-dragged

NX_MOUSEDOWN Same as NX_LMOUSEDOWN

NX_MOUSEUP Same as NX_LMOUSEUP

NX_MOUSEDRAGGED Same as NX_LMOUSEDRAGGED

NX_RMOUSEDOWN Right mouse-down

NX_RMOUSEUP Right mouse-up

NX_RMOUSEDRAGGED Right mouse-dragged

NX_MOUSEMOVED Mouse-moved

NX_MOUSEENTERED Mouse-entered

NX_MOUSEEXITED Mouse-exited

NX_KEYDOWN Key-down

NX_KEYUP Key-up event

NX_FLAGSCHANGED Flags-changed

NX_KITDEFINED Application Kit-defined

NX_SYSDEFINED System-defined

NX_APPDEFINED Application-defined

NX_TIMER Timer used for tracking

NX_CURSORUPDATE Cursor tracking

NX_JOURNALEVENT Event used by journaling

NX_FIRSTEVENT The smallest-valued event constant

NX_LASTEVENT The greatest-valued event constant

NX_ALLEVENTS A value that includes all event types

12

DESCRIPTION These constants represent event types. They’re passed as the type field of the NXEvent structure
that’s created when an event occurs.

Event Type Masks

DECLARED IN dpsclient/event.h

SYNOPSIS NX_NULLEVENTMASK
NX_LMOUSEDOWNMASK
NX_LMOUSEUPMASK
NX_RMOUSEDOWNMASK
NX_RMOUSEUPMASK
NX_MOUSEMOVEDMASK
NX_LMOUSEDRAGGEDMASK
NX_RMOUSEDRAGGEDMASK
NX_MOUSEENTEREDMASK
NX_MOUSEEXITEDMASK
NX_KEYDOWNMASK
NX_KEYUPMASK
NX_FLAGSCHANGEDMASK
NX_KITDEFINEDMASK
NX_APPDEFINEDMASK
NX_SYSDEFINEDMASK
NX_TIMERMASK
NX_CURSORUPDATEMASK
NX_MOUSEDOWNMASK
NX_MOUSEUPMASK
NX_MOUSEDRAGGEDMASK
NX_JOURNALEVENTMASK

DESCRIPTION These masks correspond to the event types defined immediately above. They let you query the
type field of an NXEvent structure for the existence of a particular event type.

13

Forever

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_FOREVER

DESCRIPTION A long, long time. Typically used as the timeout argument to DPSGetEvent().

14

Keyboard State Flags Masks

DECLARED IN dpsclient/event.h

DESCRIPTION These masks correspond to keyboard states that might be included in an NXEvent structure’s
flags mask. The masks are grouped as device-independent (NX_ALPHASHIFTMASK through
NX_HELPMASK) and device-dependent (all others).

Type Meaning

NX_ALPHASHIFTMASK Shift lock

NX_SHIFTMASK Shift key

NX_CONTROLMASK Control key

NX_ALTERNATEMASK Alt key

NX_COMMANDMASK Command key

NX_NUMERICPADMASK Number pad key

NX_HELPMASK Help key

NX_NEXTCTRLKEYMASK Control key

NX_NEXTLSHIFTKEYMASK Left shift key

NX_NEXTRSHIFTKEYMASK Right shift key

NX_NEXTLCMDKEYMASK Left command key

NX_NEXTRCMDKEYMASK Right command key

NX_NEXTLALTKEYMASK Left alt key

NX_NEXTRALTKEYMASK Right alt key

15

Miscellaneous Event Flags Masks

DECLARED IN dpsclient/event.h

DESCRIPTION These masks correspond to miscellaneous states that might be included in an NXEvent structure’s
flags mask.

Window Backing Types

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_RETAINED
NX_NONRETAINED
NX_BUFFERED

DESCRIPTION These represent the three backing types provided by window devices (and used by the Application
Kit’s Window objects).

Window Screen List Placement

DECLARED IN dpsclient/dpsNeXT.h

SYNOPSIS NX_ABOVE
NX_BELOW
NX_OUT

DESCRIPTION These represent the placement of a window device in the screen list.

Type Meaning

NX_STYLUSPROXIMITYMASK Stylus is in proximity (for tablets)

NX_NONCOALSESCEDMASK Event coalescing disabled

16

		Application Kit Intro

		Classes

		NSActionCell

		NSAffineTransform

		NSApplication

		NSAttributedString Class Cluster Additions

		NSBezierPath

		NSBitmapImageRep

		NSBox

		NSBrowser

		NSBrowserCell

		NSBundle Additions

		NSButton

		NSButtonCell

		NSCachedImageRep

		NSCell

		NSClipView

		NSCoderAdditions

		NSColor

		NSColorList

		NSColorPanel

		NSColorPicker

		NSColorWell

		NSComboBox

		NSComboBoxCell

		NSControl

		NSCursor

		NSCustomImageRep

		NSDocument

		NSDocumentController

		NSDPSContext

		NSEPSImageRep

		NSEvent

		NSFileWrapper

		NSFont

		NSFontManager

		NSFontPanel

		NSForm

		NSFormCell

		NSHelpManager

		NSImage

		NSImageCell

		NSImageRep

		NSImageView

		NSInputManager

		NSInputServer

		NSLayoutManager

		NSMatrix

		NSMenu

		NSMenuItem

		NSMutableParagraphStyle

		NSOpenPanel

		NSOutlineView

		NSPageLayout

		NSPanel

		NSParagraphStyle

		NSPasteboard

		NSPICTImageRep

		NSPopUpButton

		NSPrinter

		NSPrintInfo

		NSPrintOperation

		NSPrintPanel

		NSProgressIndicator

		NSResponder

		NSRulerMarker

		NSRulerView

		NSSavePanel

		NSScreen

		NSScroller

		NSScrollView

		NSSecureTextField

		NSSecureTextFieldCell

		NSSlider

		NSSliderCell

		NSSpellChecker

		NSSpellServer

		NSSplitView

		NSString Additions

		NSTableColumn

		NSTableHeaderCell

		NSTableHeaderView

		NSTableView

		NSTabView

		NSTabViewItem

		NSText

		NSTextAttachment

		NSTextAttachmentCell

		NSTextContainer

		NSTextField

		NSTextFieldCell

		NSTextStorage

		NSTextTab

		NSTextView

		NSView

		NSWindow

		NSWindowController

		NSWorkspace

		Functions

		AppKitFunctions

		NSApplicationMain

		NSAvailableWindowDepths

		NSBeep

		NSBestDepth

		NSBitsPerPixelFromDepth

		NSBitsPerSampleFromDepth

		NSColorSpaceFromDepth

		NSConvertGlobalToWindowNumber

		NSConvertGlyphsToPackedGlyphs

		NSConvertWindowNumberToGlobal

		NSCopyBitmapFromGState

		NSCopyBits

		NSCountWindows

		NSCreateFileContentsPboardType

		NSCreateFilenamePboardType

		NSDottedFrameRect

		NSDrawBitmap

		NSDrawButton, NSDrawGrayBezel, NSDrawGroove, NSDrawTiledRects, NSDrawWhiteBezel, NSFrameRect, NSF...

		NSDrawColorTiledRects

		NSDrawDarkBezel

		NSDrawLightBezel

		NSEraseRect

		NSEventMaskFromType

		NSFrameLinkRect

		NSGetAlertPanel

		NSGetCriticalAlertPanel

		NSGetFileType

		NSGetFileTypes

		NSGetInformationalAlertPanel

		NSGetWindowServerMemory

		NSHighlightRect

		NSInterfaceStyleForKey

		NSLinkFrameThickness

		NSNumberOfColorComponents

		NSPerformService

		NSPlanarFromDepth

		NSReadPixel

		NSRectClip

		NSRectClipList

		NSRectFill

		NSRectFillList

		NSRectFillListWithColors

		NSRectFillListWithGrays

		NSRegisterServicesProvider

		NSReleaseAlertPanel

		NSRunAlertPanel

		NSRunCriticalAlertPanel

		NSRunInformationalAlertPanel

		NSSetShowsServicesMenuItem

		NSShowsServicesMenuItem

		NSUnRegisterServicesProvider

		NSUpdateDynamicServices

		NSWindowList

		Client Library Functions

		DPSAddFD

		DPSAddNotifyPortProc

		DPSAddPort

		DPSAddTimedEntry

		DPSAsynchronousWaitContext

		DPSCreateContext

		DPSCreateContextWithTimeoutFromZone

		DPSCreateNonsecureContext

		DPSCreateStreamContext

		DPSDefineUserObject

		DPSDiscardEvents

		DPSDoUserPath

		DPSDoUserPathWithMatrix

		DPSFlush

		DPSGetEvent

		DPSInterruptContext

		DPSNameFromTypeAndIndex

		DPSPeekEvent

		DPSPostEvent

		DPSPrintError

		DPSPrintErrorToStream

		DPSRemoveFD

		DPSRemoveNotifyPortProc

		DPSRemovePort

		DPSRemoveTimedEntry

		DPSResetContext

		DPSSendEOF

		DPSSetDeadKeysEnabled

		DPSSetEventFunc

		DPSSetTracking

		DPSStartWaitCursorTimer

		DPSSynchronizeContext

		DPSTraceContext

		DPSTraceEvents

		DPSUndefineUserObject

		NX_EVENTCODEMASK

		Single-Operator Functions

		PostScript Operators

		adjustcursor

		alphaimage

		basetocurrent

		basetoscreen

		buttondown

		cleartrackingrect

		composite

		compositerect

		copypage

		countframebuffers

		countscreenlist

		countwindowlist

		currentactiveapp

		currentalpha

		currentdefaultdepthlimit

		currentdeviceinfo

		currenteventmask

		currentframebuffertransfer

		currentmouse

		currentowner

		currentshowpageprocedure

		currentrusage

		currenttobase

		currenttoscreen

		currentuser

		currentwaitcursorenabled

		currentwindow

		currentwindowalpha

		currentwindowbounds

		currentwindowdepth

		currentwindowdepthlimit

		currentwindowdict

		currentwindowlevel

		currentwriteblock

		dissolve

		dumpwindow

		dumpwindows

		erasepage

		findwindow

		flushgraphics

		framebuffer

		frontwindow

		hidecursor

		hideinstance

		image

		initgraphics

		machportdevice

		movewindow

		newinstance

		nextrelease

		NextStepEncoding

		obscurecursor

		orderwindow

		osname

		ostype

		placewindow

		playsound

		posteventbycontext

		readimage

		revealcursor

		rightbuttondown

		rightstilldown

		screenlist

		screentobase

		screentocurrent

		setactiveapp

		setalpha

		setautofill

		setcursor

		setdefaultdepthlimit

		seteventmask

		setexposurecolor

		setflushexposures

		setframebuffertransfer

		setinstance

		setmouse

		setowner

		setsendexposed

		setshowpageprocedure

		settrackingrect

		Form 1

		Form 2

		setwaitcursorenabled

		setwindowdepthlimit

		setwindowdict

		setwindowlevel

		setwindowtype

		setwriteblock

		showcursor

		showpage

		sizeimage

		stilldown

		termwindow

		window

		windowdevice

		windowdeviceround

		windowlist

		Protocols

		NSChangeSpelling

		NSColorPickingCustom

		NSColorPickingDefault

		NSComboBoxCellDataSource

		NSComboBoxDataSource

		NSDPSContextNotification

		NSDraggingDestination

		NSDraggingInfo

		NSDraggingSource

		NSIgnoreMisspelledWords

		NSMenuItem

		NSMenuValidation

		NSNibAwaking

		NSServicesRequests

		NSTableDataSource

		NSTextAttachmentCell

		NSTextInput

		TypesAndConstants

		AppKitTypes

		Defined Types

		NSBorderType

		NSButtonType

		NSCellAttribute

		NSCellImagePosition

		NSCellType

		NSDataLinkDisposition

		NSDataLinkNumber

		NSDataLinkUpdateMode

		NSEventType

		NSFontAction

		NSFontTraitMask

		NSGlyph

		NSGlyphInscription

		NSGlyphRelation

		NSGradientType

		NSImageAlignment

		NSImageFrameStyle

		NSImageScaling

		NSInterfaceStyle

		NSLineBreakMode

		NSLineMovementDirection

		NSLineSweepDirection

		NSMatrixMode

		NSModalSession

		NSPrinterTableStatus

		NSPrintingOrientation

		NSPrintingPageOrder

		NSPrintingPaginationMode

		NSRulerOrientation

		NSScrollArrowPosition

		NSScrollerArrow

		NSScrollerPart

		NSSelectionAffinity

		NSSelectionDirection

		NSSelectionGranularity

		NSTextAlignment

		NSTextTabType

		NSTIFFCompression

		NSTitlePosition

		NSTrackingRectTag

		NSUsableScrollerParts

		NSWindowDepth

		Enumerations

		NSApplication—Modal Session Return Values

		NSAttributedString—Underlining

		NSButtonCell—State Masks

		NSCell—Action Flags

		NSCell—Data Entry Types

		NSCell—States

		NSColorPanel—Modes

		NSColorPanel—Mode Masks

		NSDragging—Operations

		NSEvent—Function-Key Unicodes

		NSEvent—Modifier Flags

		NSEvent—Types Defined by the Application Kit

		NSEvent—Types Defined by the System

		NSFont—Traits

		NSFontPanel—Tags for Subviews

		NSGlyph—Attributes

		NSGlyph—Reserved Glyph Codes

		NSImageRep—Display Device Matching

		NSPageLayoutPanel—Tags for Controls

		NSPanel—Alert Panel Return Values

		NSPanel—Modal Panel Return Values

		NSPrintPanel—Tags for Subviews

		NSRunLoop—Ordering Modes for NSApplication

		NSRunLoop—Ordering Mode for NSDPSServerContext

		NSRunLoop—Ordering Modes for NSWindow

		NSSavePanel—Tags for Subviews

		NSTextAttachment—Attachment Character

		NSText—Important Unicodes

		NSText—Movement Codes

		NSTextStorage—Editing

		NSView—Resizing

		NSWindow—Border Masks

		NSWindow—Window Levels

		Global Variables

		Application Kit—Exceptions

		Display Device—Descriptions

		NSApplication—Notifications

		NSApplication—Shared Application Object

		NSAttributedString—Attributes

		NSComboBox—Notifications

		NSColor—Color Space Names

		NSColor—Grayscale Values

		NSColor—Notifications

		NSColorList—Notifications

		NSColorPanel—Notifications

		NSControl—Notifications

		NSDataLink—Filename Extension

		NSFont—Keys to the AFM Dictionary

		NSFont—PostScript Transformation Matrix

		NSHelpManager—Notifications

		NSImageRep—Notifications

		NSInterfaceStyleDefault

		NSPasteboard—Names

		NSPasteboard—Type for Data Links

		NSPasteboard—Type for Selection Descriptions

		NSPasteboard—Types for Standard Data

		NSPrintInfo—Dictionary Keys

		NSPopUpButton—Notification

		NSPrintOperation—Exception

		NSRunLoop—Modes

		NSSplitView—Notifications

		NSTableView—Notifications

		NSText—Notifications

		NSTextStorage—Notifications

		NSTextView—Notifications

		NSView—Notifications

		NSWindow—Notifications

		NSWindow—Sizes

		NSWorkspace—File Operation Constants

		NSWorkspace—File Types

		NSWorkspace—Notifications

		DPS Types

		Deﬁned Types

		DPSContextRec

		DPSContextType

		DPSErrorCode

		DPSEventFilterFunc

		DPSFDProc

		DPSNumberFormat

		DPSPingProc

		DPSPortProc

		DPSTimedEntry

		DPSTimedEntryProc

		DPSUserPathAction

		DPSUserPathOp

		NXCoord

		NXEvent

		NXEventData

		NXPoint

		NXSize

		Symbolic Constants

		All Contexts

		Alpha Constants

		Character Set Values

		Compositing Operations

		Error Code Bases

		Event Types

		Event Type Masks

		Forever

		Keyboard State Flags Masks

		Miscellaneous Event Flags Masks

		Window Backing Types

		Window Screen List Placement

