

Currency Converter Tutorial Chapter 2

18

What You’ll Learn

Creating a simple graphical
user interface

Creating a custom subclass

Connecting objects in the
application

Sending a message to an object

Responding to a message

Building a project

Getting help

2

You can find the Currency Converter project in the

AppKit

 subdirectory of

/System/Developer/Examples

.

19

Chapter 2

A Simple Application

The application that you are going to create in this tutorial is called Currency Converter.

It is a simple application, yet it exemplifies much of what software development

with OpenStep is about. As you’ll discover, Currency Converter is amazingly easy to

create, but it’s equally amazing how many features you get “for free”— as with all

OpenStep applications.

Currency Converter converts a dollar amount to an amount in another currency,

given the rate of that currency relative to the dollar. You type a rate and an amount into

text fields and then click a button to see the result. Instead of clicking the button,

you can also press the Return key. You can double-click the converted amount, copy it

(with the Edit menu’s Copy command) and paste it in another application that takes

text. You can tab between the first two fields. You can do many other things common to

OpenStep applications.

By following the steps of this chapter, you will become familiar with the two most

important OpenStep applications for program development: Interface Builder and

Project Builder.

Chapter 2

A Simple Application

Currency Converter’s Design, the Development Process, and a Design Paradigm

An object-oriented application should be based on a design that identifies
the objects of the application and clearly defines their roles and
responsibilities. You normally work on a design before you write a line of
code. You don’t need any fancy tools for designing many applications; a
pencil and a pad of paper will do.

Currency Converter is an extremely simple application, but there’s still a
design behind it. This design is based upon the Model-View-Controller
paradigm, a model behind many designs for object-oriented programs (see
next page). This design paradigm aids in the development of maintainable,
extensible, and understandable systems. But first, you might want to read
‘‘Why an Object Looks Like a Jelly Donut’’ on page 29 to understand the
symbol used in the design diagram.

This design for Currency Converter is intended to illustrate a few points,
and so may be overly designed for something so simple. It is quite possible
to have the application’s controller class, ConverterController, do the
computation and do without the Converter class.

You can divide responsibility within Currency Converter among two custom
objects and the user interface, taken as a collection of ready-made
Application Kit objects. The Converter object is responsible for computing a
currency amount and returning that value. Between the user interface and
the Converter object is a controller object, ConverterController.
ConverterController coordinates the activity between the Converter object
and the UI objects.

The ConverterController class assumes a central role. Like all controller
objects, it communicates with the interface and with model objects, and
it handles tasks specific to the application. ConverterController gets the
values that users enter into fields, passes these values to the Converter
object, gets the result back from Converter, and puts this result in a field in
the interface.

Convert ConverterController
(Controller object)

Converter
(Model Object)
20
The Converter class merely computes a value from two arguments passed
into it and returns the result. As with any model object, it could also hold
data as well as provide computational services. Thus, objects that
represent customer records (for example) are akin to Converter. By
insulating the Converter class from application-specific details, the design
for Currency Converter makes it more reusable, as you’ll see in the Travel
Advisor tutorial.

Typical Development Workflow

This chapter introduces the typical flow of work involved in developing an
OpenStep application

.

1

2

3

4

5

6

7

Designing the
Application

Creating the Project
(Project Builder)

Creating the Interface
(Interface Builder)

Defining the Class
(Interface Builder)

Implementing the Classes
(Project Builder)

Building the Project
(Project Builder)

Running and Testing
the Application

fix errors or
change design

Note: Although this diagram shows the design phase at the beginning of the
workflow process, application design can take place any time in the early stages
of the project. It is often recommended as the first stage, however, and it is a
good idea to review the design occasionally and modify it if necessary.

The Model-View-Controller Paradigm

A common and useful paradigm for object-oriented applications,
particularly business applications, is Model-View-Controller (MVC). Derived
from Smalltalk-80, MVC proposes three types of objects in an application,
separated by abstract boundaries and communicating with each other
across those boundaries.

Model Objects

This type of object represents special knowledge and expertise. Model
objects hold a company’s data and define the logic that manipulates that
data. For example, a Customer object, common in business applications, is
a Model object. It holds data describing the salient facts of a customer and
has access to algorithms that access and calculate new data from those
facts. A more specialized Model class might be one in a meteorological
system called Front; objects of this class would contain the data and
intelligence to represent weather fronts. Model objects are not directly
displayed. They often are reusable, distributed, persistent, and portable to
a variety of platforms.

View Objects

 A View object in the paradigm represents something visible on the user
interface (a window, for example, or a button). A View object is “ignorant”
of the data it displays. The Application Kit usually provides all the View
objects you need: windows, text fields, scroll views, buttons, browsers, and
so on. But you might want to create your own View objects to show or
represent your data in a novel way (for example, a graph view). You can also
group View objects within a window in novel ways specific to an

View

Controller

Model
application. View objects, especially those in kits, tend to be very reusable
and so provide consistency between applications.

Controller Object

Acting as a mediator between Model objects and View objects in an
application is a Controller object. There is usually one per application or
window. A Controller object communicates data back and forth between the
Model objects and the View objects. It also performs all the application-
specific chores, such as loading nib files and acting as window and
application delegate. Since what a Controller does is very specific to an
application, it is generally not reusable even though it often comprises
much of an application’s code. (This last statement does not mean,
however, that Controller objects cannot be reused; with a good design, they
can.)

Because of the Controller’s central, mediating role, Model objects need not
know about the state and events of the user interface, and View objects
need not know about the programmatic interfaces of the Model objects. You
can make your View and Model objects available to others from a palette in
Interface Builder.

Hybrid Models

MVC, strictly observed, is not advisable in all circumstances. Sometimes
it’s best to combine roles. For instance, in a graphics-intensive application,
such as an arcade game, you might have several View objects that merge
the roles of View and Model. In some applications, especially simple ones,
you can combine the roles of Controller and Model; these objects join the
special data structures and logic of Model objects with the Controller’s
hooks to the interface.

A Note on Terminology

The Application Kit and Enterprise Objects Framework reserve special
meanings for “view object” and “model.” A view object in the Application
Kit denotes a user-interface object that inherits from NSView. In the
Enterprise Objects Framework, a model establishes and maintains a
correspondence between an enterprise object class and data stored in a
relational database. This book uses “model object” only within the context
of the Model-View-Controller paradigm.
21

Chapter 2

A Simple Application

Creating the Currency Converter Project

Every Rhapsody application starts out as a project. A project is a repository for all
the elements that go into the application, such as source code files, makefiles,
frameworks, libraries, the application’s user interface, sounds, and images. You use
the Project Builder application to create and manage projects.

When Project Builder starts up, it displays the New Project panel. The New
Project panel lets you specify a new project’s name, location, and type.

Project Builder creates a project directory named after the project—in this case
CurrencyConverter—and populates this directory with an assortment of ready-
made files and directories. It then displays its main window.

Project Builder is located at
/System/Developer/Apps/ProjectBuilder.app.

1 Launch Project Builder.

Locate the Project Builder application
(icon at right).

Double-click the icon to start the
application.

Often projects are kept in a common directory.

Make sure Application is the project type.

The name specified here becomes the name of the
project directory and the default name of the
application itself.

1 Make a new project.

Choose New from the Project menu
(Project mNew).

In the New Project panel, choose the
Application project type from the pop-
up list.

Using the file browser, go to the
directory you want the project to be in.

Type “CurrencyConverter” in the
Name field.

Click OK to create the project.
22

Creating the Currency Converter Project

Go ahead and click an item in the left column of the project browser (a
grouping of project resources sometimes called a “suitcase”); see what some
of these suitcases contain already:

• Other Sources: This suitcase contains CurrencyConverter_main.m, the main() routine
that loads the initial set of resources and runs the application. (You
shouldn’t have to modify this file.)

• Interfaces: This suitcase contains the nib files (extension“.nib”) which
specify the application’s user interface. More on nib files in the next step.

• Supporting Files: This suitcase contains the project’s default makefiles and
template source-code files. You can modify the preamble and postamble
makefiles, but you must leave Makefile unchanged.

• Frameworks: This suitcase contains the frameworks (which are similar to
libraries) which the application imports.

Command panel: Build, Project
Find, Class Browser, Project
Inspector, Launcher/ Debugger,
Context Help.

Project browser: Each
“suitcase” is a project
resource category.

Code editor.

Loaded files browser.

Project Indexing

When you create or open a project, after some
seconds you may notice triangular “branch”
buttons appearing after source code files in the
browser. Project Builder has indexed these files.

During indexing Project Builder stores all symbols
of the project (classes, methods, globals, etc.) in
virtual memory. This allows Project Builder to
access project-wide information quickly. Indexing is
indispensable to such features as name completion
and Project Find. (More on these features later.)

Usually indexing happens automatically when you
create or open a project. You can turn off this option
if you wish. Choose Preferences from the Tools menu
and then choose the Indexing display. Turn off the
“Index when project is opened” switch.

You can also index a project at any time by choosing
Tools m Indexer m Index Subproject. If you want to
do without indexing (maybe you have memory
constraints), choose Tools m Indexer m Purge
Indices.
23

Chapter 2

A Simple Application

Creating the Currency Converter Interface

When you create an application project, Project Builder puts the main nib file in
the Interfaces suitcase. A nib file is primarily a description of a user interface (or
part of a user interface). The main nib file contains the main menu and any
windows and panels you want to appear when your application starts up; at start-
up time, each application loads the main nib file.

Customizing the Application’s Window
At the beginning of a project, the main nib file is like a blank canvas, ready for you
to craft the interface. Look in the Interfaces suitcase for nib files.

By default, a blank window entitled “My Window” will appear when the
application is launched.

1 Open the main nib file.

Locate CurrencyConverter.nib in the
project browser.

Double-click to open.

To open, double-click the nib file name Palette window.

When you first open the application's main nib file,
Interface Builder displays a blank window.

Nib file window

...or double-click the icon

Main menu window.
24

Creating the Currency Converter Interface

25

Archived Objects Custom Class Info Connection Info Images

MyClass = {
 ACTIONS = {
 dothis;
 };
 OUTLETS = {
 textField;
 };
 SUPERCLASS =
 NSObject;

dothis:

textField

Every application has at least one nib file. The main nib file contains the
application menu and often a window and other objects. An application can
have other nib files as well. Each nib file contains:

Archived Objects

Encoded information on OPENSTEP objects, including
their size, location, and position in the object hierarchy (for view objects,
determined by superview/subview relationship). At the top of the hierarchy
of archived objects is the File’s Owner object, a proxy object that points to
the actual object that owns the nib file.

Images

Image files that you drag and drop over the nib file window or
over an object that can accept them (such as a button or image view).

Class References

Interface Builder can store the details of OPENSTEP
objects and objects that you palettize (static palettes), but it does not know
how to archive instances of your custom classes since it doesn’t have
access to the code. For these classes, Interface Builder stores a proxy object
to which it attaches class information.

Connection Information

Information about how objects within the
object hierarchy are interconnected. Connector objects special to Interface
Builder store this information. When you save the document, connector
objects are archived in the nib file along with the objects they connect.

When You Load a Nib File

In your code, you can load a nib file by sending the NSBundle class

loadNibNamed:owner:

 or

loadNibFile:externalNameTable:withZone:

.
messages. When you do this, the run-time system does the following:

• It unarchives the objects from the object hierarchy, sending each object
an

initWithCoder:

 message after allocating memory for it.

• It unarchives each proxy object and queries it to determine the identity
of the class that the proxy represents. Then it creates an instance of this
custom class (

alloc

 and

init

) and frees the proxy.

• It unarchives the connector objects and allows them to establish
connections, including connections to File’s Owner.

• It sends

awakeFromNib

 to all objects that were derived from
information in the nib file, signalling that the loading process is
complete.

Connections and Accessor Methods

When OpenStep establishes connections during the course of loading a nib
file, it sets the values of the source object’s outlets. It first tries to set an
outlet through the “set” accessor method if the source object implements
it. For example, if the source object has an outlet named “contraption,” the
system first sees if that object responds to “setContraption:” and, if it does,
it invokes the accessor method. If the source object doesn’t implement the
accessor method, the system sets the outlet directly.

Problems naturally ensue if a “set” accessor method does something other
than directly set the outlet. One common example is an accessor method
that sets the

string value

 of an outlet referring to a text field
(

setStringValue:

). After loading, the value of the outlet is

nil

 because the
“set” accessor method did not directly assign the value.

What’s in a Nib File

Chapter 2

A Simple Application

Most objects on an interface have attributes that you can set in the Inspector
panel’s Attributes display.

Note: You can also bring up the Attributes display of the inspector by typing
Control-1.

Make the window smaller by dragging
a corner of the window inward.

1 Resize the window.

1 Set the window’s title and attributes.

Click the window to select it.

Choose Tools m Inspector.

Select the Attributes display from the
pop-up list.

Enter the window title.

Turn off the resize bar.

The title of the major window in an application is often
the application name.

When this option is turned off, the windows's resize bar
disappears.
26

Creating the Currency Converter Interface

27

A Window in OpenStep

A window in OpenStep looks very similar to windows in other user
environments such as Windows or Mac OS. It is a rectangular area on the
screen in which an application displays controls, fields, text, and graphics.
Windows can be moved around the screen and stacked on top of each other
like pieces of paper. A typical OpenStep window has a title bar, a content
area, and several control objects.

Many user-interface objects other than the

standard window

 depicted
above are windows. Menus, pop-up lists, and pull-down lists are primarily
windows, as are all varieties of panels: attention panels, inspectors, and
tool palettes, to name a few. In fact,

anything

 drawn on the screen must
appear in a window.

NSWindow and the Window Server

Two interacting systems create and manage OpenStep windows. On the one
hand, a window is created by the Window Server. The Window Server is a
process integrating the Window System and Display Postscript. The Window
Server draws, resizes, hides, and moves windows using Postscript
primitives. The Window Server also detects user events (such as mouse
clicks) and forwards them to applications.

The window that the Window Server creates is paired with an object
supplied by the Application Kit: an instance of the NSWindow class. Each
physical window in an object-oriented program is managed by an instance
of NSWindow (or subclass).

When you create an NSWindow object, the Window Server creates the
physical window that the NSWindow object will manage. The Window Server
references the window by its window number, the NSWindow by its own
identifier.

Application, Window, View

In a running OpenStep application, NSWindow objects occupy a middle
position between an instance of NSApplication and the views of the
application. (A view is an object that can draw itself and detect user
events.) The NSApplication object keeps a list of its windows and tracks the
current status of each. Each window, on the other hand, manages a
hierarchy of views in addition to its PostScript window.

At the “top” of this hierarchy is the

content view

, which fits just within the
window’s content rectangle. The content view encloses all other view (its

subviews

), which come below it in the hierarchy. The NSWindow distributes
events to views in the hierarchy and regulates coordinate transformations
among them.

Another rectangle, the

frame rectangle

, defines the outer boundary of the
window and includes the title bar and the window’s controls. The lower-left
corner of the frame rectangle defines the window’s location relative to the
screen’s coordinate system and establishes the base coordinate system for
the views of the window. Views draw themselves in coordinate systems
transformed from (and relative to) this base coordinate system.

See page 153 for more on the view hierarchy.

Key and Main Windows

Windows have numerous characteristics. They can be on-screen or off-
screen. On-screen windows are “layered” on the screen in tiers managed by
the Window Server. On-screen windows also can carry a status:

key

 or

main

.

Key windows respond to key presses for an application and are the primary
recipient of action messages from menus and panels. Usually a window is
made key when the user clicks it. Key windows have black title bars. Each
application can have only one key window.

An application has one main window, which can often have key status as
well. The main window is the principal focus of user actions for an
application. Often user actions in a modal key window (typically a panel
such as the Font panel or an inspector) have a direct effect on the main
window. In this case, the title bar of the main window (when it is not key) is
a dark gray.

Title bar

Close button

Resize bar

Windowshade
Maximize

NSApp Window

Content
View

View A View B

View C View D

NSApp =
application object

Chapter 2

A Simple Application

Fields and Buttons
Fields and buttons are the most common types of objects found on interfaces. Put
these and other palette objects on the window using the “drag and drop”
technique.

You must get rid of the word “Text” in this field; otherwise, that’s what the field
will show when the nib file is loaded.

The text field should be longer so it can hold more digits (you’re dealing with
millions here):

Currency Converter needs two more text fields, both the same size as the first. You
have two options: you can drag another object from the palette and make it the
same size, or you can duplicate the first object.

1 Put a text field on the interface and
resize and initialize it.

Select the Views palette.

Drag a text field from the palette onto
the window.

Click this icon to select the Views palette.
This palette contains an assortment of
commonly used Application Kit objects.

Drag a text field and drop it (that is,
release the mouse button) over the
“surface” of the window.

Move an object by dragging it around
the surface of the window.

To initialize the text field, double-click
“Text” and press Delete.

Lengthen the text field.

Drag a resize handle in the direction
you want the object to grow.
28

Creating the Currency Converter Interface

.

Get the third field from the palette and make it the same size as the first field.

You’re not done yet with these text fields. The bottom text field displays the
result of the computation. It should not be editable and therefore should, by
convention, have a non-white background.

The new text field appears slightly
offset from the original field. Reposition
it below the first text field.

1 Duplicate an object.

Select the text field.

Choose Edit m Copy.

Choose Edit m Paste.

1 Make objects the same size.

Drag a text field onto the window.

Delete “Text” from the text field.

Select the first text field.

Shift-click to select the new text field.

Choose Format m Size m Same Size

The first object you select should have
the dimensions you want the other
objects in the selection to take.

Shift-click multiple objects to include
them in the selection.

Why an Object Looks Like a Jelly Donut

Or a lifesaver. Or a slashed tire. Or segmented unity. This book depicts
objects as this symbol:

Why this unlikely shape?

This symbol illustrates data encapsulation, the essential characteristic of
objects. An object consists of both data and procedures for manipulating
that data. Other objects or external code cannot access that data directly,
but must send messages to the object requesting its data.

An object’s procedures (called methods) respond to the message and may
return data to the requesting object. As the symbol suggests, an object’s
methods do the encapsulating, in effect mediating access to the object’s
data. An object’s methods are also its interface, articulating the ways in
which the object communicates with the world outside it.

The donut symbol also helps to convey the modularity of objects. Because
an object encapsulates a defined set of data and logic, you can easily
assign it to particular duties within a program. Conceptually, it is like a
functional unit—for instance, “Customer Record”—that you can move
around on a design board; you can then plot communication paths to and
from other objects based on their interfaces.

See the appendix “Object Oriented Programming,” for a fuller description
of data encapsulation, messages, methods, and other things pertaining to
objects.

method

met
ho

d m
ethod

data
29

Chapter 2

A Simple Application

The Views palette provides a “Title” object that you can easily adapt to be a text-
field label. (The title object is actually a text field, set to have a gray background
and no border, and to be non-editable and non-selectable.) Text in the title object
is centered by default, but labels are often aligned from the right.

The size of the text is rather large for a label, so change it. You set font family,
typeface, and size with the standard OpenStep Font panel.

Drag the gray color into the well to apply the
color to the selected object.

This color blends the text field into the
window background.

With the Editable attribute turned off, users
cannot alter the contents of the text field.

Keep Selectable as an option so users can
copy and paste the contents to other
applications.Keep Selectable as an option so
users can copy and paste the contents to
other applications.

1 Change the attributes of a text field.

Select the third text field.

Choose Tools m Colors.

Select the grayscale palette of the
Color panel.

Select the color that is the same as the
window background.

Choose Tools m Inspector.

Select the Inspector panel’s Attributes
display.

Drag the gray color from the Color
panel into the Background Color well.

Turn off the Editable and Scrollable
options.

The text is highlighted when it is selected.

1 Assign labels to the fields.

Drag a “Title” object onto the window.

Double-click to select the text.

Choose Inspector from the Tools menu.

Select the Attributes display.

Click the middle button under
Alignment to align the text with the
right edge of the text field.
30

Creating the Currency Converter Interface

When you cut and paste objects that contain text, like these labels, the object
should be selected and not the text the object contains; if the text is selected,
de-select it by clicking outside the text, then click the object again to select it.

The font of the “Title” object is 18 points Helvetica.
Click here and then click the Set button to set the
font size to 16 points.

You should select the font that users request for
applications in case the font you select is not available on
the user’s system.

Make sure the object’s text is selected.

Choose Format m Font m Font Panel.

Set the label text to 16 points.

Make two copies of the label.

Position all labels to the left of their
text fields.

Type the text of each label.

Double-click to select “Title,” then type the
text of the label in place of the selection.

1 Add a button to the interface and
initialize it.

Drag the button object from the Views
palette and put it on the lower-right
corner of the window.

Make the button the same size as a
text field.

Change the title of the button to
“Convert”.

You can resize buttons the same way you
resize text fields or any other object on a
window.

Double-click the title of the button to
select the text.
31

Chapter 2

A Simple Application

Some Finishing Touches
Currency Converter’s interface is almost complete. You’ve probably noticed that
the final interface for Currency Converter (shown on the first page of this chapter)
has a decorative line between the text fields and the button. This line is easy to
make.

Another finishing touch you might make is to align the text fields and labels in
neat rows and columns. Interface Builder gives you several ways to align selected
objects precisely on a window:

• Pressing arrow keys (with the grid off, the selected objects move one pixel)
• Using a reference object to put selected objects in rows and columns
• Specifying origin points in the Size display of the Inspector panel
• Using a grid (see side bar below)

Drag upward until
the lines merge
into one line.

For a black line
(instead of white)
click here.

1 Create a horizontal decorative line.

Drag a box object from the Views
palette onto the interface.

Bring up the Attributes display for the
box (Control-1), select No Title, and set
the Vertical Offset to zero.

Drag the bottom-middle resize handle
of the box upward until the horizontal
lines meet.

Position the line above the button.

Drag the end points of the line until the
line extends across the window.
32

Creating the Currency Converter Interface

For Currency Converter, use the columns-and-rows technique.

The final step in composing the Currency Converter interface has more to do
with behavior than appearance. You want the user to be able to tab from the
first editable field to the second, and back again to the first.

How does this happen? Objects such as windows and views can acquire a
temporary status called first responder. The first responder is the object on the
window that is the current focus of keyboard events. All objects inheriting

1 Align the text fields and labels in rows
and columns.

Select the three text fields and choose
Format m Align m Make Column.

Select the first text field and its label
and choose Format m Align m Make
Row.

Repeat the last step for the second
and third text fields and their labels.

COLUMNS

First select the object whose vertical position
the other objects should adopt (the reference
object).

Shift-click the other objects to include them
in the selection. Making a column evens the
spacing between objects in the selection.

ROWS

When you make a row, the selected objects
rest on a common horizontal baseline.

Aligning on a Grid

You can align objects on a window by imposing a
grid on the window. When you move objects in this
grid, they “snap” to the nearest grid intersection
like nails to a magnet. You set the edges of
alignment and the spacing of the grid (in pixels) in
the Alignment panel. Choose Format mAlign m
Alignment to display this panel.

Be sure the grid is turned on before you move
objects (Format mAlign m Turn Grid On).

You can move selected user-interface objects in
Interface Builder by pressing an arrow key. When
the grid is turned on, the unit of movement is

whatever the grid is set to (in pixels). When the grid
is turned off, the unit of movement is one pixel.
33

Chapter 2 A Simple Application
from NSWindow have an outlet named initialFirstResponder for designating the first
responder when the window is first opened.

Modifier keys (such as Control) may vary by platform. You can customize some key bindings
to suit your habits. See the on-line Programming Topics for more on custom key bindings.

When you make a visual connection such as this, Interface Builder brings up the
Connections display of the Inspector panel:

When you press Control and drag the
mouse from an object, a connection line is
drawn.

When a line encloses the destination
object, release the mouse button.

1 Enable tabbing between text fields.

Select the window icon in the nib file
window.

Control-drag a connection line from
the icon to the first text field
(“Exchange Rate per $1”).

Select this outlet (the dimple indicates an outlet that has
been connected).

When you make a connection the title of this button toggles to
“Disconnect.”

In the Connections display of the
Window inspector (which appears
automatically), select
initialFirstResponder.

Click Connect.
34

Creating the Currency Converter Interface
View objects on Interface Builder’s palettes have an outlet named nextKeyView
for designating the next object to become first responder. If the object is a text
field, and the Send Action on Enter attribute is checked in Interface Builder,
the field receives keyboard events when users press the Tab key. Since the
default tabbing order follows the position in the view hierarchy, if you want a
different order you must connect fields through the nextKeyView variable.

Don’t connect the nextKeyView outlet of the “Amount in Other Currency” field;
this field is not supposed to be editable.

The initialFirstResponder and nextKeyView variables are outlets. An outlet is the identifier of
an object that another object stores as an instance variable. Outlets enable
communication between objects. See page 40 for more information on outlets.

The CurrencyConverter interface is now complete. Interface Builder lets you
test an interface without having to write one line of code.

Select the first text field.

In the Attributes display of the
inspector, check the Send Action on
Enter switch.

Control-drag a connection line from it
to the second text field.

In the Inspector panel (Connections
display) select nextKeyView and click
Connect.

Repeat the same procedure, going
from the second text field to button.

Repeat again, this time going from the
button to the first text field.

1 Test the interface.

Choose Document m Save to save the
interface to the nib file.

Choose Document m Test Interface.

Try various operations in the interface
(see suggestions on the following
page).

When finished, choose Exit from the
File menu.
35

Chapter 2 A Simple Application

36

An OpenStep Application — What You Get “For Free”

The simplest OpenStep application, even one without a line of code added
to it, includes a wealth of features that you get “for free.” You do not have
to program these features yourself. You can see this when you test an
interface in Interface Builder.

To enter test mode, choose Test Interface from the Document menu.
Interface Builder simulates how your application (in this case, Currency
Converter) would run, minus the behavior added by custom classes. Go
ahead and try things out: move your windows, type in fields, click buttons.

Application and Window Behavior

In test mode Currency Converter behaves almost like any other application
on the screen. Click elsewhere on the screen, and Currency Converter is
deactivated, becoming totally or partially obscured by the windows of other
applications.

.

Reactivate Currency Converter by clicking on its window or by double-
clicking its icon (the default terminal icon) in the workspace. Then move the
window around by its title bar. Here are some other tests you can make:

• Click the Edit menu. Its items appear and disappear when you release
the mouse button, as with any application menu.

• Click the miniaturize button or choose the Hide command. Double-click
the icon to get the application back.

• Click the close button, and the Currency Converter window disappears.
(Choose Quit from the main menu and re-enter test mode to get the
window back.)

If we had configured Currency Converter’s window in Interface Builder to
retain the resize bar, we could also resize it now. We could also have set the
auto-resizing attributes of the window and its views so that the window’s
objects would resize proportionally to the resized window or would retain
their initial size (see Interface Builder Help for details on auto-resizing).

Controls and Text

The buttons and text fields of Currency Converter come with many built-in
behaviors. Click the Convert button. Notice how the button is highlighted
momentarily.

.

If you had buttons of a different style, such as option buttons, they would
also respond in characteristic ways to mouse clicks.

Now click in one of the text fields. See how the cursor blinks in place. Type
some text and select it. Use the commands in the Edit menu to copy it and
paste it in the other text field.

Do you recall the nextKeyView connections you made between Currency
Converter’s text fields? Insert the cursor in a text field, press the Tab key and
watch the cursor jump from field to field.

When You Add Menu Commands

Interface Builder gives every new application a default main menu that
includes the Info, Edit, Window, and Services menus. Some of these menus,
such as Info, contain ready-made sets of commands. For example, with the
Services menu (whose items are added by other applications at run time)
you can communicate with other OpenStep applications, and with the
Windows menu you can manage your application’s windows.

Currency Converter needs only a few commands: the Quit and Hide
commands and the Edit menu’s Copy, Cut, and Paste commands. You can
delete the unwanted commands if you wish. However, you could also add
new ones and get “free” behavior. An application designed in Interface
Builder can acquire extra functionality with the simple addition of a menu
or menu command, without the need for compilation. For example:

• The Font submenu adds behavior for applying fonts to text in NSText
objects, like the one in the scroll view object in the DataViews palette.
Your application gets the Font panel and a font manager “for free.”

• The Text submenu allows you to align text anywhere there is editable
text, and to display a ruler in the NSText object for tabbing, indentation,
and alignment.

Many objects that display text or images can print their contents as
PostScript data. Later you’ll learn how to add the Print menu command and
have it invoke this capability.

See page 72 for an example of customizing OpenStep menus.

Creating the Currency Converter Interface

37

An OpenStep Application — The Possibilities

An OpenStep application can do an impressive range of things without a
formidable programming effort on your part.

Document Management

Many applications create and manage repeatable, semi-autonomous
objects called documents. Documents contain discrete sets of information
and support the entry and maintenance of that information. A word-
processing document is a typical example. The application coordinates
with the user and communicates with its documents to create, open, save,
close, and otherwise manage them.

The final tutorial in this book describes how to create an application based
on a multi-document architecture.

File Management

An application can use the Open panel, which is created and managed by
the Application Kit, to help the user locate files in the file system and open
them. It can also use the Save panel to save information in files. OpenStep
also provides classes for managing files in the file system (creating,
comparing, copying, moving, and so forth) and for managing user defaults.

Communicating With Other Applications

OpenStep gives an application several ways to exchange information with
other applications:

• Pasteboard: The pasteboard is a global facility for sharing information
among applications. Applications can use the pasteboard to hold data
that the user has cut or copied and may paste into another application.

• Services: Any application can access the services provided by another
application, based on the type of selected data (such as text). An
application can also provide services to other applications such as
encryption, language translation, or record-fetching.

• Drag-and-drop: If your application implements the proper protocol,
users can drag objects to and from the interfaces of other applications.

Custom Drawing and Animation

OpenStep lets you create your own custom views that draw their own
content and respond to user actions. To assist you in this, OpenStep
provides image-compositing and event-handling API as well as PostScript
operators, operator functions, and client library functions.

Localization

OpenStep provides API and tool support for localizing the strings, images,
sounds, and nib files that are part of an application

Editing Support

You can get several panels (and associated functionality) when you add
certain menus to your application’s menu bar in Interface Builder. These
“add-ons” include the Font panel (and font management), the Color panel
(and color management), and, although it’s not a panel, the text ruler and
the tabbing and indentation capabilities the Text menu brings with it.

Formatter classes enable your application to format numbers, dates, and
other types of field values. Support for validating the contents of fields is also
available.

Printing

With just a simple Interface Builder procedure, OpenStep automates simple
printing of views that contain text or graphics. When a user clicks the
control, an appropriate panel helps to configure the print process. The
output is WYSIWYG.

Several Application Kit classes give you greater control over the printing of
documents and forms, including features such as pagination and page orientation.

Help

You can create context-sensitive help for your application using Interface
Builder, Project Builder, and an RTF text editor (such as TextEdit). If the user
clicks an object on the application’s interface while pressing a Help key, a
small window containing concise information on the object is displayed.
Your application can also incorporate Tool Tips—short descriptions that
appear when the mouse pointer hovers over an object on the interface—
and comprehensive Help in any format (for example, HTML).

Plug and Play

You can design some applications so that users can incorporate new
modules later on. For example, a drawing program could have a tools
palette: pencil, brush, eraser, and so on. You could create a new tool and
have users install it. When the application is next started, this tool appears
in the palette.

Chapter 2 A Simple Application
Defining the Classes of Currency Converter

Interface Builder is a versatile tool for application developers. It enables you not
only to compose the application’s graphical user interface, but it gives you a way
to define much of the programmatic interface of the application’s classes and to
connect the objects eventually created from those classes.

You must go to the Classes display of the nib file window to define a class. Once
there, the first thing you must do is select the superclass, the class your new subclass
will inherit from. Let’s start with the ConverterController class.

After you choose the Subclass command, “MyNSObject” appears under
“NSObject” highlighted.

Now your class is established in the hierarchy of classes within the nib file. Next,
specify the paths for messages travelling between the ConverterController object
and other objects. In Interface Builder you specify these paths as outlets and
actions.

Click to select the Classes display.

NSObject, the root class, is the class that
ConverterController will inherit from.

1 Specify a subclass.

Go to the Classes display of the nib file
window.

Select NSObject, the superclass of your
custom classes.

Choose Classes m Subclass.

Enter the name of the subclass:
“ConverterController.”

Press Return.
38

Defining the Classes of Currency Converter
Before You Go On

Here’s some basic terminology:

Outlet An object held as an instance variable and typed as id. Objects in
applications often hold outlets as part of their data so they can send messages to
the objects referenced by the outlets. An outlet helps your program to track or
manipulate something in the interface.

id The generic (or dynamic) type of objects (technically the address of an
object).

Action Refers both to a message sent to an object when the user clicks a button or
manipulates some other control object and to the method that is invoked.

Control object A user-interface object (a device) with which users can interact to
affect events in the application. Control objects include buttons, text fields,
forms, sliders, and browsers. All control objects inherit from NSControl.

See Paths for Object Communication: Outlets, Targets, and Actions on page 40. for a more detailed
description of outlets and actions. See page 107 for more on control objects and their relation
to cells and formatters.

Class Versus Object

To newcomers to the subject, explanations of object-oriented programming
might seem to use the terms “object” and “class” interchangeably. Are an
object and a class the same thing? And if not, how are they different? How
are they related?

An object and a class are both programmatic units. They are closely related,
but serve quite different purposes in a program.

First, classes provide a taxonomy of objects, a useful way of categorizing
them. Just as you can say a particular tree is a pine tree, you can identify a
particular object by its class. You can thereby know its purpose and what
messages you can send it. In other words, a class describes the type of an
object.

Second, you use classes to generate instances —or objects. Classes define
the data structures and behavior of their instances, and at run time create
and initialize these instances. In a sense, a class is like a factory, stamping
out instances of itself when requested.

What especially differentiates a class from its instance is data. An instance
has its own unique set of data but its class, strictly speaking, does not. The
class defines the structure of the data its instances will have, but only
instances can hold data.

A class, on the other hand, implements the behavior of all of its instances
in a running program. The donut symbol used to represent objects is a bit
misleading here, because it suggests that each object contains its own
copy of code. This is fortunately not the case; instead of being duplicated,
this code is shared among all current instances in the program.

Implicit in the notion of a taxonomy is inheritance, a key property of classes.
Classes exist in a hierarchical relationship to one another, with a subclass
inheriting behavior and data structures from its superclass, which in turn
inherits from its superclass.

See the appendix, “Object-Oriented Programming,” for more on these and
other aspects of classes.
39

Chapter 2 A Simple Application

40

Paths for Object Communication: Outlets, Targets, and Actions

Outlets

An outlet is an instance variable that identifies an object.

You can communicate with other objects in an application by sending
messages to outlets.

An outlet can reference any object in an application: user-interface objects
such as text fields and buttons, windows and panels, instances of custom
classes, and even the application object itself.

Outlets are declared as:

id variableName;

You can use id as the type for any object; objects with id as their type are
dynamically typed, meaning that the class of the object is determined at
run time. You can statically type an object as a pointer to a class name, and
you can declare these objects as instance variables. But statically typed
objects are typically not outlets. What distinguishes outlets is their
relationship to Interface Builder.

Interface Builder can “recognize” outlets in code by their declarations, and
it can initialize outlets. You usually set an outlet’s value in Interface Builder
by drawing connection lines between objects. There are ways other than
outlets to reference objects in an application, but outlets and Interface
Builder’s facility for initializing them are a great convenience.

outlet

A B

controller
aField

When You Make a Connection in Interface Builder

As with any instance variable, outlets must be initialized at run time to
some reasonable value—in this case, an object’s identifier (id value).
Because of Interface Builder, an application can initialize outlets when it
loads a nib file.

When you make a connection in Interface Builder, a special connector
object holds information on the source and destination objects of the
connection. (The source object is the object with the outlet.) This connector
object is then stored in the nib file. When a nib file is loaded, the
application uses the connector object to set the source object’s outlet to
the id value of the destination object.

It might help to understand connections by imagining an electrical outlet
(as used in the Classes display of the nib file window) embedded in the
destination object. Also picture an electrical cord extending from the outlet
in the source object. Before the connection is made the cord is unplugged
and the value of the outlet is undefined; after the connection is made (the
cord is plugged in), the id value of the destination object is assigned to the
source object’s outlet

.

Defining the Classes of Currency Converter

41

As you’ll soon find out, you can view (and complete) target/action
connections in Interface Builder’s Connections inspector. This inspector is
easy to use, but the relation of target and action in it might not be apparent.
First, target is an outlet of a cell object that identifies the recipient of an
action message. Well (you say) what’s a cell object and what does it have
to do with a button?

One or more cell objects are always associated with a control object (that
is, an object inheriting from NSControl, such as a button). Control objects
“drive” the invocation of action methods, but they get the target and action
from a cell. NSActionCell defines the target and action outlets, and most
kinds of cells in the Application Kit inherit these outlets

.

For example, when a user clicks the Convert button of Currency Converter,
the button gets the required information from its cell and sends the
message convert: to the target outlet, which is an instance of your custom
class ConverterController.

In the Actions column of the Connections inspector are all action methods
defined by the class of the target object and known by Interface Builder.
Interface Builder identifies action methods because their declarations
follow the syntax:

- (void)doThis:(id)sender;

It looks in particular for the argument sender.

Instance variables:
 NSActionCell

inherits

SEL _action;

id _target

Which Direction to Connect?

Usually the outlets and actions that you connect belong to a custom
subclass of NSObject. For these occasions, you need only follow a couple
simple rules to know which way to draw a connection line in Interface
Builder:

• To make an action connection, draw a line to the custom instance from
a control object in the user interface, such as a button or a text field.

• To make an outlet connection, draw a line from the custom instance to
another object in the application.

Another way to clarify connections is to consider who needs to find whom.
With outlets, the custom object needs to find some other object, so the
connection is from the custom object to the other object. With actions, the
control object needs to find the custom object, so the connection is from the
control object.

These are only rules of thumb for the common case, and do not apply in all
circumstances. For instance, many OpenStep objects have a delegate
outlet; to connect these, you draw a connection line from the OpenStep
object to your custom object.

.

myController

myController

action

outlet

Target/Action in Interface Builder—What’s Going On

Chapter 2 A Simple Application
1 Define your class’s outlets.

In the nib file window, click the
electrical-outlet icon to the right of the
class.

Choose Classes m Add Outlet.

Type the name of the outlet in place of
the selected “myOutlet.” Name the
first outlet rateField.

Press Return.

Repeat the last three steps to define
two other outlets:

 dollarField
 totalField
42

Defining the Classes of Currency Converter
ConverterController has one action method, convert:. When the user clicks the
Convert button, a convert: message is sent to the target, ConverterController.

Before You Go On

Exercise: ConverterController needs to access the text fields of the interface,
so you’ve just provided outlets for that purpose. But ConverterController
must also communicate with the Converter class (yet to be defined). To
enable this communication, add an outlet named converter to
ConverterController.

1 Define your class’s actions.

In the Classes display of the nib file
window, click the crosshairs icon.

Choose Classes m Add Action.

Type the name of the action method,
convert:.

Press Return.
43

Chapter 2 A Simple Application
Connecting ConverterController to the Interface
As the final step of defining a class in Interface Builder, you create an instance of
your class and connect its outlets and actions.

Note: The Instantiate command does not generate a true instance of
ConverterController but creates a stand-in object used for establishing
connections. When the nib file’s contents are unarchived, Interface Builder will
create true instances of these classes and use the proxy objects to establish the
outlet and action connections.

When you instantiate a class (that is, create an instance of it), Interface Builder
switches to the Instances display and highlights the new instance, which is named
after the class.

Now you can connect this ConverterController object to the user interface. By
connecting it to specific objects in the interface, you initialize your outlets.
ConverterController will use these outlets to get and set values in the interface.

Click any other class name to collapse the outlets
and actions of the subclass you’re working on. If they
are already collapsed, make sure your subclass is
selected.

1 Generate an instance of the class.

In the Classes display, select the
ConverterController class.

Choose the Classes m Instantiate.
44

Defining the Classes of Currency Converter
45

Interface Builder brings up the Connections display of the Inspector panel. This
display shows the outlets you have defined for ConverterController.

To receive action messages from the user interface—to be notified, for example,
when users click a button—you must connect the control objects that emit those
messages to CurrencyConverter. The procedure for connecting actions is similar
to that for outlets, but with one major difference. When you connect an action,
always start the connection line from a control object (such as a button, text field, or

Control-drag from an object with defined outlets
(often an instance of a custom class).

When a black line encloses an object, it will
be selected as the destination object of the
connection if you release the mouse button.

1 Connect the custom class to the
interface via its outlets.

In the Instances display of the nib file
window, Control-drag a connection
line from the ConverterController
instance to the first text field.

When the field is outlined in black,
release the mouse button.

Outlets of the destination object appear in
this column of the Connections display.

When you click Connect the connection appears
here, including the class of the destination object.

In the Connections display, select the
outlet that corresponds to the first field
(rateField).

Click the Connect button.

Following the same steps, connect
ConverterController’s dollarField and
totalField outlets to the appropriate
text fields.

Chapter 2 A Simple Application
form) that sends an action message; you usually end the connection at an instance
of your custom class. That instance is the target outlet of the control object.

The Connections display of the Inspector panel shows the action methods you
have specified for ConverterController.

You’ve finished defining the classes of Currency Converter—almost.

The source object of an action connection must
be a control object.

When a black line encloses an object, it will be
selected as the destination object of the
connection if you release the mouse button.

1 Connect the interface’s controls to
the custom object through the
defined actions.

Control-drag a connection line from
the Convert button to the
ConverterController instance in the nib
file window.

When the instance is outlined in black,
release the mouse button.

If you had defined other actions for Converter Controller,
they would have appeared in this column.

Interface Builder allows you to set these outlets directly
for buttons.

Make sure that you click here to establish the connection.

In the Connections display, make sure
target in the Outlets column is
selected.

Select convert: in the Actions column.

Click the Connect button.

Save the CurrencyConverter nib file
(Document m Save).
46

Defining the Classes of Currency Converter
Before You Go On

Exercise: While connecting ConverterController’s outlets, you probably noticed
that one outlet remains unconnected: converter. This outlet identifies an
instance of the Converter class in the Currency Converter application, but
this instance doesn’t exist yet.

Define the Converter class. This should be pretty easy because Converter, as
you might recall, is a model class within the Model-View-Controller
paradigm. Since instances of this type of class don’t communicate directly
with the interface, there is no need for outlets or actions. Here are the steps
to be completed:

1. In the Classes display, make Converter a subclass of NSObject.

2. Instantiate the Converter class.

3. Make an outlet connection between ConverterController and Converter.

When you are finished, save CurrencyConverter.nib.

Optional Exercise

Text fields and action messages: Users can also activate the Convert button by
pressing the Return key. In Currency Converter this key event occurs when
the cursor is in a text field. Text fields are control objects just as buttons are;
when the user presses the Return key and the cursor is in a text field, an action
message is sent to a target object if the action is defined and the proper
connection is made.

Connect the second text field (that is, the one with the “Dollars to Convert”
label) to the convert: action method of ConverterController. You won’t be
disconnecting the prior action connection because multiple control objects in
an interface can invoke the same action method.

Optionally, you can connect the second text field to the Convert button via
the latter’s performClick: action method. This method simulates a mouse click
on the button and consequently invokes the action method of the button’s
target.
47

Chapter 2 A Simple Application
Implementing the Classes of Currency Converter

Interface Builder generates source code files from the (partial) class definitions
you’ve made. These files are “skeletal,” in the sense that they contain little more
than essential Objective-C directives and the class-definition information. You’ll
usually need to supplement these files with your own code.

Interface Builder then displays two attention panels, one after the other:

Now we leave Interface Builder for this application. You’ll complete the
application using Project Builder.

Make sure your class is selected before you
choose Create Files.

1 In Interface Builder, generate header
and implementation files.

Go to the Classes display of the nib file
window.

Select the ConverterController class.

Choose Classes m Create Files.

Click Yes to confirm that you want
Interface Builder to generate the
header and implementation files
for your class.

Click Yes to confirm that you want
the source code files added to the
project. If, for example, you
wanted to add the files to another
project, you would click No.

Click Yes in response to a “create files”
attention panel.

Click Yes in response to an “insert files
in project” attention panel.

Repeat for the Converter class.

Save the nib file.
48

Defining the Classes of Currency Converter

49

Objective-C Quick Reference

The Objective-C language is a superset of ANSI C with special syntax and
run-time extensions that make object-oriented programming possible.
Objective-C syntax is uncomplicated, but powerful in its simplicity. You can
mix standard C and even C++ code with Objective-C code.

The following summarizes some of the more basic aspects of the language.
See Object-Oriented Programming and the Objective-C Language for
complete details. Also, see “Object-Oriented Programming” in the appendix
for explanations of terms that are italicized.

Declarations

• Dynamically type objects by declaring them as id:

id myObject;

Since the class of dynamically typed objects is resolved at run time, you
can refer to them in your code without knowing beforehand what class
they belong to. Type outlets in this way as well as objects that are likely
to be involved in polymorphism and dynamic binding.

• Statically type objects as a pointer to a class:

NSString *mystring;

You statically type objects to obtain better compile-time type checking
and to make code easier to understand.

• Declarations of instance methods begin with a minus sign (-); class
methods begin with a plus sign (+):

- (NSString *)countryName;

+ (NSDate *)calendarDate;

• Put the type of value returned by a method in parentheses between the
minus sign (or plus sign) and the beginning of the method name. (See
above example.) Methods returning no explicit type are assumed to
return id. Methods that return nothing should have a return type of void.

• Method argument types are in parentheses and go between the
argument’s keyword and the argument itself:

- (id)initWithName:(NSString *)name
 andType:(int)type;

Be sure to terminate all declarations with a semicolon.

• By default, the scope of an instance variable is protected, making that
variable directly accessible only to objects of the class that declares it
or of a subclass of that class. To make an instance variable private
(accessible only within the declaring class), insert the @private
directive before the declaration.

Messages and Method Implementations

• Methods are procedures implemented by a class for its objects (or, in the
case of class methods, to provide functionality not tied to a particular
instance). Methods can be public or private; public methods are
declared in the class’s header file (see above). Messages are invocations
of an object’s method that identify the method by name.

• Message expressions consist of a variable identifying the receiving
object followed by the name of the method you want to invoke; enclose
the expression in brackets.

[anObject doSomethingWithArg:this];

 receiver method to invoke (with possible arguments)

As in standard C, terminate statements with a semicolon.

• Messages often get values returned from the invoked method; you must
have a variable of the proper type to receive this value on the left side of
an assignment.

int result = [anObj calcTotal];

• You can nest message expressions inside other message expressions.
This example gets the window of a form object and makes the returned
NSWindow object the receiver of another message.

[[form window]

makeKeyAndOrderFront:self];

• A method is structured like a function. After the full declaration of the
method comes the body of the implementing code enclosed by braces.

• Use nil to specify a null object; this is analogous to a null pointer. Note
that some OpenStep methods do not accept nil as an argument.

• A method can usefully refer to two implicit identifiers: self and super.
Both identify the object receiving a message, but they affect differently
how the method implementation is located: self starts the search in the
receiver’s class whereas super starts the search in the receiver’s
superclass. Thus,

[super init];

causes the init method of the superclass to be invoked.

• In methods you can directly access the instance variables of your class’s
instances. However, accessor methods are recommended instead of
direct access, except in cases where performance is of paramount
importance. Chapter 4, “Travel Advisor Tutorial,” describes accessor
methods in greater detail.

Chapter 2 A Simple Application
You can add instance variables or method declarations to a header file generated
by Interface Builder. This is commonly done, but it isn’t necessary in
ConverterController’s case. But we do need to add a method to the Converter
class that the ConverterController object can invoke to get the result of the
computation. Let’s start by declaring the method in Converter.h.

This declaration states that convertAmount:byRate: takes two arguments of type float,
and returns a float value. When parts of a method name have colons, such as
convertAmount: and byRate:, they are keywords which introduce arguments. (These are
keywords in a sense different from keywords in the C language.) All declarations
of instance methods begin with a dash (-), followed by a space.

Now you need to update both implementation files. First examine Converter.m.

For the classes of an application,
Project Builder imports the
Application Kit header files, which
import the Foundation header files.

Interface definitions begin with
@interface and the class name.
The superclass appears after the
colon.

Instance variables go between
the braces.

Method declarations follow the
second brace and the definition ends
with @end.

1 Examine an interface (header) file in
Project Builder.

Click Project Builder’s main window to
activate it.

Select Headers in the project browser.

Select ConverterController.h.

#import <AppKit/AppKit.h>

@interface Converter:NSObject

{

}

- (float)convertAmount:(float)amt byRate:(float)rate;

@end

1 Add a method declaration.

Select Converter.h in the project
browser.

Insert a declaration for
convertAmount:byRate:.
50

Defining the Classes of Currency Converter
For this class, implement the method declared in Converter.h. Between
@implementation Converter and @end add the following code:

The method simply multiplies the two arguments and returns the result.
Simple enough. Next update the “empty” implementation of the convert:
method that Interface Builder generated.

The convert: method does the following:

Gets the floating-point values typed into the rate and dollar-amount fields.

The associated header file
is imported automatically.

Begin the implementation section
with @implementation and
the class name. Method
implementations go between
here and @end.

1 Examine an implementation file.

Click Classes in the project browser.

Select Converter.m.

- (float)convertAmount:(float)amt byRate:(float)rate

{

return (amt * rate);

}

1 Implement the classes.

Type the code at right between
@implementation and @end in
Converter.m.

- (void)convert:(id)sender

{

float rate, amt, total=0.0;

amt = [dollarField floatValue];

rate = [rateField floatValue];

total = [converter convertAmount:amt byRate:rate];

[totalField setFloatValue:total];

[rateField selectText:self];

}

A

B
C
D

Select ConverterController.m in the
project browser.

Update the convert: method as shown
by the example.

Import Converter.h.

A

51

Chapter 2 A Simple Application
Invokes the convertAmount:byRate: method and gets the returned value.

Uses setFloatValue: to write the returned value in the Amount in Other Currency
text field (totalField).

Sends selectText: to the rate field; this selects any text in the field or, if there is no
text, inserts the cursor so the user can begin another calculation.

Be sure to import Converter.h (that is, include the directive #import “Converter.h”).
ConverterController invokes a method defined in the Converter class, so it needs
to be aware of the method’s declaration.

Before You Go On

Each line of the convert: method shown above, excluding the declaration of floats,
is a message. The “word” on the left side of a message expression identifies the
object receiving the message (called the “receiver”). These objects are
identified by the outlets you defined and connected. After the receiver comes
the name of the method that the sending object (called the “sender”) wants to
invoke. Messages often result in values being returned; in the above example,
the local variables rate, amt, and total hold these values.

Before you build the project, add a small bit of code to ConverterController.m that will
make life a little easier for your users. When the application starts up, you want
Currency Converter’s window to be selected and the cursor to be in the Exchange
Rate per $1 field. We can do this only after the nib file is unarchived, which
establishes the connection to the text field rateField. To enable set-up operations
like this, awakeFromNib is sent to all objects when unarchiving concludes. Implement
this method to take appropriate action.

You’ve seen the selectText: message before, in the convert: implementation; it
selects the text in the text field that receives the message, inserting the cursor
if there is no text.

The makeKeyAndOrderFront: message does as it says: It makes the receiving window
the key window and puts it before all other windows on the screen. This
message also nests another message, [rateField window]. This message returns the
window to which the text field belongs, and the makeKeyAndOrderFront: method is
then sent to this returned object.

B

C

D

- (void)awakeFromNib

{

[rateField selectText:self];

[[rateField window] makeKeyAndOrderFront:self];

}

A
B

1 Implement the awakeFromNib
method.

Type the code shown at right.

Save all code files.

A

B

52

Defining the Classes of Currency Converter

What Happens When You Build an Application

.c

.o

.h.h .h

.o.o

 Building
Before Building

Result
(application
wrapper)

c.c a.h

b.m

a.m

b.h

complier

interim
files

libraries

frameworks

linker

application wrapper
(".app" extension)

application
executable

Resources

English.Iproj

<arch>_obj

c.o a.o b.o

copy copy

.m
By clicking the Build button in Project Builder, you run
the build tool. By default, the build tool is make, but it
can be any build utility that you specify as a project
default in Project Builder. The build tool coordinates the
compilation and linking process that results in an
executable file. It also performs other tasks needed to
build an application.

The build tool manages and updates files based on the
dependencies and other information specified in the
project’s makefiles. Every application project has three
makefiles: Makefile, Makefile.preamble, and
Makefile.postamble. Makefile is maintained by
Project Builder—don’t edit it directly—but you can
modify the other two to customize your build.

The build tool invokes the compiler, passing it the
source code files of the project. Compilation of these
files (Objective-C, C++, and standard C) produces
machine-readable object files for the architecture or
architectures specified for the build. The build utility
puts these files in an architecture-specific subdirectory
of dynamic_obj.

In the linking phase of the build, the build tool executes
the linker, passing it the libraries and frameworks to
link against the object files. Frameworks and libraries
contain precompiled code that can be used by any
application. Linking integrates the code in libraries,
frameworks, and object files to produce the application
executable file.

The build tool also copies nib files, sound, images, and
other resources from the project to the appropriate
localized or non-localized locations in the application
wrapper.

An application wrapper on Windows is a directory with
an extension of “.app”. It contains the application
executable and the resources needed by that
executable.
53

Chapter 2 A Simple Application
Building the Currency Converter Project

The Build process in Project Builder compiles and links the application guided by
the information stored in the project’s makefiles. You must begin builds from the
Project Build panel.

When you click the Build button on the main window, the Project Build panel is
displayed.

When you click the Build button on the Project Build panel, the build process
begins; Project Builder logs the build’s progress in the lower split view. When
Project Builder finishes—and encounters no errors along the way—it displays
“Build succeeded.”

You don’t have to maintain makefiles in Project Builder. It updates Makefile according to the
variables specified through its user interface. You can customize the build process by modifying
the Makefile.preamble and Makefile.postamble files. For more information on customizing these
files, see the on-line Help for Project Builder and Interface Builder.

1 Build the project.

Save source code files and any
changes to the project.

Click the Build button on the main
window (icon shown at right).

Click the Build button on the Project
Build panel (same icon).

Displays Project Build panel.

Build, Clean, and Build Options
buttons.

Build error browser.

Detailed build results.

You can begin building at
any time by pressing
Command-B.
54

Building the Currency Converter Project
Of course, rare is the project that is flawless from the start. Project Builder is
likely to catch some errors when you first build your project. To see the error-
checking features of Project Builder, introduce a mistake into the code.

You can use Project Builder’s graphical debugger or gdb to track bugs down. See ‘‘Using
the Graphical Debugger’’ on page 110 for an overview of the graphical debugger.

To navigate to an error in
a code file, click the line
describing the error.

Project Builder then
highlights the line that
contains the error.

1 Build the project after correcting
errors.

Delete a semicolon in the code,
creating an error.

Click the Build button on the Project
Build panel.

Click the error-notification line that
appears in the build error browser
(upper split view).

Fix the error in the code.

Re-build.
55

Chapter 2 A Simple Application

56

Where To Go For Help

Help on Development Tools

Project Builder and Interface Builder provide context-
sensitive help on the details of their use. To activate
context-sensitive help, Help-click a control, field, menu
command, or other areas of the application. A small
window appears that briefly describes the selected object.
(The next click dismisses the window.)

These applications also provide Tool Tips, short
descriptions of parts of the interface that briefly appear
when the mouse pointer hovers over those areas. You can
turn Tool Tips off.

Project Builder and Interface Builder also provide
comprehensive task-based Help, accessible from the Apple
menu.

Context help
button

Help on APIs

Project Builder gives you several ways to get information on
OpenStep APIs when you’re developing an application.

Project Find. The Project Find panel allows you to search
for definitions of, and references to, classes, methods,
functions, constants, and other symbols in your project.
Since it is based on project indexing, searching is quick and
thorough and leads directly to the relevant code. Help for
Interface Builder or Project Builder contains full task-based
instructions for using Project Find.

Reference Documentation Lookup. If the results of a
search using Project Find include OpenStep symbols, you
can easily get related reference documentation that
describes that symbol. See ‘‘Finding Information Within
Your Project’’ on page 96 for instructions on the use of this
feature.

Frameworks. Under Frameworks in the project browser,
you can browse the header files and documentation related
to OpenStep frameworks within Project Builder. The
Application Kit and Foundation frameworks always are
included by default for application projects.

Rhapsody Technical Documentation

Most Rhapsody programming documentation is located in
/System/Documentation/Developer.

Reference

• API reference documentation. Includes specifications of classes, protocols, functions,
types, and constants. This documentation is located in the appropriate Rhapsody
frameworks, except for information that is common to all frameworks (Reference).

• Development tools reference. Covers the compiler, the debugger, and other tools
(Reference/DevToolsRef).

Tasks and Concepts

• Discovering OpenStep: A Developer Tutorial (this manual).

• “Object-Oriented Programming and the Objective-C Language”: an on-line reference
and users guide for Objective-C.

• “Topics in OpenStep Programming” contains concepts and programming procedures.

Run Currency Converter
Run Currency Converter

Congratulations. You’ve just created your first OpenStep application. Find
CurrencyConverter.app in the Workspace, launch it, and try it out. Enter some rates
and dollar amounts and click Convert. Also, select the text in a field and
choose the Services menu; this menu now lists the other applications that can
do something with the selected text.

Of course, the more complex an application is, the more thoroughly you will
need to test it. You might discover errors or shortcomings that necessitate a
change in overall design, in the interface, in a custom class definition, or in the
implementation of methods and functions.

Although it’s a simple application, Currency Converter still introduced you to
many of the concepts, tools, and skills you’ll need to develop OpenStep
applications. Let’s review what you’ve learned:

• Composing a graphical user interface (GUI) with Interface Builder
• Testing the interface
• Designing an application using the Model-View-Controller paradigm
• Specifying a class’s outlets and actions
• Connecting the class instance to the interface via its outlets and actions
• Class implementation basics
• Building an application and error resolution

Optional Exercise

Nesting Messages: You can nest message expressions; in other words, you can use
the value returned by a message as the receiver of another message or as a
message argument. It is thus possible to rewrite the first three messages of the
ConverterController’s convert: method as one statement:

It is possible to go even further. Try to incorporate the fourth message
([totalField setFloatValue:total]) of the convert: method into the above statement.

total = [converter convertAmount:[dollarsField floatValue]

byRate:[rateField floatValue]];
57

Chapter 2 A Simple Application
58

	A Simple Application
	Creating the Currency Converter Project
	Creating the Currency Converter Interface
	Defining the Classes of Currency Converter
	Implementing the Classes of Currency Converter
	Building the Currency Converter Project
	Run Currency Converter

