

59

Travel Advisor Tutorial Chapter 3

60

What You’ll Learn

Using forms and table views

Grouping objects

Adding images to applications

Formatting and validating fields

Simple printing

Object allocation and initialization

Using collection objects and string
objects

Delegation and notification

Archiving and unarchiving objects

Object ownership, retention, and
disposal

Using the graphical debugger

Finding project information

3

You can find the Travel Advisor project in the

AppKit

 subdirectory of

/System/Developer/Examples.

61

Chapter 3

A Forms-Based Application

In this chapter you create Travel Advisor, a considerably more complex application than

Currency Converter. Travel Advisor is a forms-based application used for entering,

viewing, and deleting records on countries that the user travels to. Users enter a country

name and information associated with that country. When they click Add, the country

appears in the table below the country name. They can select countries in the table, and

the information on that country appears in the forms. The application also performs

temperature and currency conversions.

Chapter 3

A Forms-Based Application

Travel Advisor — An Overview

This chapter presents a lot of information on OpenStep programming.
Among other things, you’ll learn how to:

• Use several new objects on Interface Builder’s palettes.

• Assign an icon to an application.

• Print the contents of a view.

• Use collection objects (NSArray and NSDictionary) and NSString objects.

• Archive and unarchive object data.

• Format and validate field contents.

• Manage events through delegation.

• Quickly find information related to your project.

• Use Project Builder’s graphical debugger.

Perhaps most interestingly, you will reuse the Converter class you
implemented in the previous tutorial.

Note: You can find the TravelAdvisor project in the AppKit subdirectory of
/System/Developer/Examples.
62

France

Country

Key

Value

Germany

Country
The Design of Travel Advisor

Travel Advisor is much like Currency Converter in its basic design. Like Currency
Converter, it’s based on the Model-View-Controller paradigm. A controller object
(TAController) manages a user interface comprised of Application Kit objects. Also
as before, the controller sends a message to the Converter object to get the result
of a computation. In other words, the Converter object is reused.

Travel Advisor’s view objects, in terms of Model-View-Controller, are all off-the-
palette Application Kit objects, so the following discussion concentrates on those
parts of the design distinctive to Travel Advisor.

Model Objects

Travel Advisor’s design is more interesting and dynamic than Currency
Converter’s because it must display a unique set of data depending on the
country the user selects. To make this possible, the data for each country is stored
in a Country object. These objects encapsulate data on a country (in a sense,
they’re like records in a relational database). The application can manage
potentially hundreds of these objects, tracking each without recourse to a
“hardwired” connection.

Another model object in the application is the instance of the Converter class.
This instance does not hold any data, but does provide some specialized behavior.
NSDictionary

Converter

TAController

Spain

Country

Controller

The controller object for the application is TAController. Like all controller
objects, TAController is responsible for mediating the flow of data between
the user interface (the View part of the paradigm) and the model objects
that encapsulate that data: the Country objects. Based on user choices in
the interface, TAController can find and display the requested Country
object; it can also save changes made by users to the appropriate Country
object.

What makes this possible is an NSDictionary object (called a dictionary
from here on). A dictionary is a container that stores objects and permits
their retrieval through key-value associations. The key is some identifier
paired with an object in the dictionary (the object often holds the identifier
as one of its instance variables). To get the object, you send a message to
the dictionary using the key as an argument (objectForKey:). For example:

NSColor *aColor = [aDictionary objectForKey:
@”BackgroundColor”];

A Country object holds the name of a country as an instance variable; this
country name also functions as the dictionary key. When you store a Country
object in the dictionary, you also store the country name (in the form of an
NSString) as the object’s key. Later you retrieve the object by sending the
dictionary the message objectForKey: with the country name as
argument.

Storing Data Source Information. TAController also manages the data
source for the table view on the interface. It stores the keys of the dictionary
in an array object (NSArray), sorted alphabetically. When the table view
requests data, the TAController “feeds” it the objects in the array.
France
England
Germany

TAController
Creation of Country Objects. Another important point of design is the
manner in which the Country objects are created. Instead of Interface
Builder creating them, the TAController object creates Country objects in
response to users clicking the Add button.

Delegation and Notification. An essential aspect of design not evident
from the diagram are the roles delegation and notification play. The
TAController object is the delegate of the application object and thereby
receives messages that enable it to manage the application, which
includes tracking the edited status of Country objects, initiating object
archival upon application termination, and setting up the application at
launch time.

How TAController Manages Data

The TAController class plays a central role in the Travel Advisor application.
As the application’s controller object, it transfers data from the model
objects (Country instances) to the fields of the interface and, when users
enter or modify data, back to the correct Country object. The TAController
must also coordinate the data displayed in the table view with the current
object, and it must do the right thing when users select an item in the table
view or click the Add or Delete button. All custom code specific to the user
interface resides in TAController.

The mechanics of this activity require an array (NSMutableArray) and a
dictionary (NSMutableDictionary) for storing and accessing Country data.
The diagram below illustrates the relationship among interface
components, TAController, and the sources of data.

The dictionary contains Country objects (values) that are identified by the
names of countries (keys). The dictionary is the source of data for the fields
of Travel Advisor. The array derives from the dictionary and is sorted. It is
the source of data for the table view.
63

France
England
Germany

Country
Country
Country

Key Value

Chapter 3

A Forms-Based Application

Creating the Travel Advisor Interface

In creating the interface of Travel Advisor, you’ll be exercising the capabilities of
Interface Builder much more than you did with Currency Converter.

Getting Started
You should be familiar with many of the objects on the Travel Advisor interface
because you’ve encountered them in the Currency Converter tutorial. The
following illustration points out the objects that are new to you in this tutorial.

The following pages describe the purpose of each new object found on Interface
Builder’s palettes and explain how to set these objects up for Travel Advisor.
Before getting to these new objects, start with the familiar ones: buttons and text
fields.

1 Create the application project.

Start Project Builder.

Choose New from the Project menu.

In the New Project panel, select the
Application project type.

Name the application “TravelAdvisor”
and click OK.

image view

form

groups (NSBox objects)switch (button)table viewScroll view (containing
an NSText object)

1 Open the application’s nib file.

Click Interfaces in the project browser.

Select TravelAdvisor.nib, and double-
click its icon.

1 Customize the application’s window.

In Interface Builder:

Resize the window, using the example
at right as a guide.

In the Attributes display of the
Inspector panel, entitle the window
“Travel Advisor.”

Turn off the resize bar.
64

Creating the Travel Advisor Interface

You might think the “English widely spoken” object is a new kind of object.
It’s actually a button, a special style of button called a switch.

Be sure this label
contains enough
“padding” for the
longest country name.

Drag the switch
object from the
views palette
and drop it here.

1 Put the text fields, labels, and
buttons on the window.

Position, resize, and initialize the
objects as shown.

Double-click to select text, then type new label.Set up the switch.

Varieties of Buttons

If in Interface Builder you select the “English widely
spoken” switch and bring up the Attributes inspector,
you can see that the switch is a button set up in a
special way.

Buttons are two-state control objects. They are either
off or on, and this state can be set by the user or
programmatically (setState:). For certain types of
buttons (especially standard buttons like Currency
Converter’s Convert button), when the state is
switched, the button sends an action message to a
target object. Toggle-type buttons—such as
switches and radio buttons— visually reflect their
state. Applications can learn of this state with the
state message. You can make your own buttons,
associating icons and titles with a button’s off and on
states, and positioning title and icon relative to each
other.
65

Chapter 3

A Forms-Based Application

New Objects: Forms, Groups, and Scroll Views
Construct the “Logistics” section of the interface using a form object.

Drag to lengthen the fields.

As you alternate-drag, new form fields
appear underneath the cursor.

Double-click to select label text.

Type the new label text and click outside
the form to set the text.

Create two more form fields by
Alternate-dragging the bottom-middle
resize handle downward.

Rename the field labels.

Increase the size of the form’s fields by
dragging the middle resize handle
sideways.

1 Place a form on the interface and
prepare it.

Drag the form object from the Views
palette.
66

Creating the Travel Advisor Interface

To make titled sections of the fields, forms, and buttons on the Travel Advisor
interface, group selected objects. By grouping them, you put them in a box.

Boxes are a useful way to organize and name sections of an interface. In Interface
Builder you can move, copy, paste, and do other operations with the box as a unit.
For Travel Advisor, you don’t need to change the default box attributes.

Before You Go On

The box, an instance of NSBox, is the superview of all of its grouped objects. (A
view, simply put, is any object visible on a window.) A superview encloses its
subviews and is the next in line to respond to user actions if its subviews cannot
handle them.

The scroll view on the DataViews palette encloses a text object (an instance of
NSText). This object allows users to enter, edit, and format text with minimal
programmatic involvement on your part.

To select the objects as a group, drag a selection rectangle
around them or Shift-click each object. (To make a selection
rectangle, start dragging from an empty spot on the window.)

After you choose the Group in Box command, the objects are
enclosed by a titled box.

1 Group the objects on the interface.

Select the two Convert buttons and the
Dollars, Local, Celsius, Fahrenheit
labels and text fields.

Choose Format m Group m Group in
Box.

Double-click “Title” to select it.

Choose Format m Font m Bold to
make the title bold face.

Rename “Title” to “Conversions.”

Repeat for the next two groups:
“Logistics” and “Other.”

More About Forms

Forms are labelled fields bound vertically in a
matrix. The fields are the same size and each label
is to the left of its field. Forms are ideal objects for
applications that display and capture multiple rows
of data, as do many corporate client-server
applications.

The editable fields in a form are actually cells that
you programmatically identify through zero-based
indexing; the first cell is at index 0 of the matrix, the
second cell at index 1, and so on. NSForm defines
the behavior of forms; individual cells are instances
of NSFormCell. Access these cells with NSForm’s
cellAtIndex: method.

Form Attributes

In addition to the obvious controls in the Forms
inspector, there’s the “Cell tags = positions”
attribute. Switching this on assigns tags to each
NSFormCell that correspond to the cells’ indices. (A
tag is a number assigned to an object that is used
to identify and access that object. You’ll use tags
extensively in the next tutorial.)

The Scrollable option, turned on by default, enables
the user to type long entries in fields, scrolling
contents to the left as characters are entered.
67

Chapter 3

A Forms-Based Application

You don’t need to change any of the default attributes of the scroll view (but you
might want to look at the attributes that you can set, if you’re curious).

1 Put the scroll view on the window and
resize it.

Drag the scroll view from the
DataViews palette and drop it on the
lower-left corner of the window.

Resize the scroll view.

A table view is an object for displaying and editing tabular data. Often that
data consists of a set of related records, with rows for individual records
and columns for the common fields (attributes) of those records, Table
views are ideal for applications that have a database component, such as
Enterprise Objects Framework applications.

The table view on Interface Builder’s TabulationViews palette is actually
several objects, bound together in a scroll view. Inside the scroll view is an
instance of NSTableView in which data is displayed and edited. At the top
of the table view is an NSTableHeaderView object, which contains one or
more column headers (instance of NSTableColumn).

Later in this tutorial you will learn some basic techniques for accessing and
managing the data in a table view. Here’s a quick preview of the essential
pieces:

• Data source. The data source is any object in your application that
supplies the NSTableView with data. The elements of data (usually
records) must be identifiable through zero-based indexing. The data
source must implement some or all of the methods of the
NSTableDataSource informal protocol.

• Column identifier. Each column (NSTableColumn) of a table view has
an identifier associated with it, which can be either an NSString or a
number. You use the identifier as a key to obtain the value of a record
field.

• Delegate methods. NSTableView sends several messages to its
delegate, giving it the opportunity to control the appearance and
accessibility of individual cells, and to validate or deny editing in fields.

NSTableColumn

NSTableViewScroll view
(NSScrollView)

More About Table Views
68

Creating the Travel Advisor Interface

More New Objects: Table Views, Image Views, and Menus
Next, add a table view for displaying the list of countries.

The other object on the TabulationViews palette is a browser. It is just as
suitable for the Travel Advisor application as a table view. Browsers are ideal
for displaying hierarchically structured information (such as is found in typical
file systems) as well as single-level views of data such as the list of countries
in Travel Advisor. A table view can also handle single-column rows of data
easily.

Click to select the
Tabulation Views palette.

1 Place and configure the table view.

Drag the table view object from the
TabulationViews palette.

Resize the table view.

Double-click column twice (first to select the column,
second to insert the cursor). Type “Countries”, then click
anywhere outside the column.

Set the title of the first column to
“Countries.”

When this cursor appears over the line separating columns,
drag the line so that it’s flush with the right edge.

You can also delete the unneeded column by selecting it and
pressing the Delete key.

Make the table header only one
column.
69

Chapter 3

A Forms-Based Application

To configure the table view, you must set attributes of two component objects: the
NSTableView object and the NSTableColumn object.

The Attributes display for NSTableView is the same as that for NSScrollView.

The Travel Advisor window is nearly complete. For a decorative touch, you’re
next going to add an image to the interface.

Since this is a single-column view and country names
are of limited length, you need only the vertical scroller in
case there’s more countries than can be shown at once.

Whether to show the grid is a matter of personal
preference, but turn off resizing and reordering.
The user shouldn’t be able to affect the contents
of the column directly.

Select the NSTableView by double-
clicking the interior of the table view.

Set the attributes as shown at right.

Type the name with which you want to identify the column
programmatically. For Travel Advisor, make this the same
as the column title.

Click the left column to select it.

Set the NSTableColumn attributes as
shown at right.
70

Creating the Travel Advisor Interface

Before You Go On

Sometimes buttons are the preferred objects for holding images—for instance
when you want a different image for either state of a button. But when
buttons are disabled, any image they display is dimmed. So for decorative
images, use image views (NSImageView) instead of buttons.

When you drop an image over a button or image view, Interface Builder
adds it to the both the nib file and the project (upon your approval). You can
add the image only to the nib file by dropping the image over the nib file
window. Resources in a nib file are accessible only when the nib file has
been loaded; an application’s project-wide resources are always accessible.

1 Add an image to the interface.

Select the DataViews palette (see
example).

Drag the image view onto the window.

In Project Builder:

Double-click Images in the project
browser.

In the Open panel, select the file
Airline.eps in /SystemDeveloper/
Examples/AppKit/TravelAdvisor.

Enter the name of the image file, minus the extension. The
image can be in any acceptable format, and must be a part
of the project.

You can also insert an image in an image view and add it to
the project by dragging it from the File Viewer and dropping
it over the image view.

The border of the image should not be visible.

Since the image is larger than the image view, have
it scale proportionally.

Uncheck if you don’t want users to affect the image
in any way.

In Interface Builder:

In the Attributes inspector for the
image view, type the name of the
image and set the NSImageView
attributes.

Make the image view (and the
enclosed image) small enough to fit
between the menu bar and the
Logistics group.

Add a “velocity” line behind the
airplane. (Tip: Make an untitled black
box with a vertical offset of zero and
run the top and bottom lines together.)
71

Chapter 3

A Forms-Based Application

Travel Advisor’s menu contains default submenus and commands. You need a
submenu and menu commands that are not included in the default set and that
are not found on the Menus palette. Use the Submenu and the Item cells to create
customized menus and menu items, respectively.

To delete a menu item, select it and choose Delete from the Edit menu or press
Command-x.

You don’t need to add any menu items to the Services submenu. Applications can offer their
services to other applications, based on the operations they can perform on types of selected
data. As part of advertising their services, these applications specify the menu items to be
used to access those services. At run time, these submenus and commands appear in the
Services menu. For more on services, see “Services” in the on-line Programming Topics.

To insert a menu item, drag it from the Menus palette
and drop it between or after the menu items currently
on the menu.

To add a Command-key equivalent, double-click
the area on the right side of a menu item and then
press the key you want assigned.

Put the print command here for now.

1 Add a menu and menu items to the
menu bar.

Select the Menus palette.

Drag the generic Submenu item and
drop it between the Edit and Window
submenus.

Double-click Submenu to select the
menu title; change the name to
“Records”.

Click the new Records menu to expose
the Item command.

Add three Items to the Records
submenu (making four altogether) by
dragging them from the Menus
palette.

Change the command names to those
shown at right.

Add Command-key equivalents to the
right of the Next Record and Prior
Record commands.

Drag an Item cell and drop it between
the Windows and Services submenus.

Change “Item” to “Print Notes...”.

Remove unnecessary menu items from
the File menu.
72

Creating the Travel Advisor Interface

Finishing Touches: Formatters, Printing, and the Application Icon
One way to make your application’s user interface more attractive is to format
the contents of fields that display currencies and other numeric data. Fields
can have fixed decimal digits, can limit numbers to specific ranges, can have
currency symbols, and can show negative values in a special color. Interface
Builder provides two formatter objects on its standard palettes, one for
formatting dates and the other for formatting numbers. You’ll use the second
of these.

Formatters are objects that “translate” the values of certain objects to specific
on-screen representations; formatters also convert a formatted string on a user
interface into the represented object.

You can create, set, and modify formatter objects programmatically as well as by using
Interface Builder. And you can create your own special formatter objects (such as ones,
for example, that format phone numbers) and “palettize” them. For more on formatters,
see ‘‘Behind ‘Click Here’: Controls, Cells, and Formatters’’ on page 107.

When a text field (or other control) has a formatter
applied to it, Interface Builder's inspector includes a
Formatter display when that field is selected.

Click a predefined format in the table view to apply it to
the field, or specify a custom format in the Positive and
Negative fields.

For the Dollar and Local fields, specify the first predefined
format ($9,999.99).

Click to select DataViews palette.

1 Apply formatters to the rate and
currency fields.

Select the DataViews palette in the
Palette window.

Drag a number-formatter object and
drop it over the Rate field.

In the Formatter display of the
inspector, specify a rate format by
selecting the table-view row with the
“99.99” format.

Type a zero in the field to initialize it.

Repeat for the Dollar and Local fields,
but apply a suitable format.
73

Chapter 3

A Forms-Based Application

You can now connect many of the objects on the Travel Advisor interface through
outlets and actions defined by the Application Kit. As you might recall, windows
have an initialFirstResponder outlet for the object in the window that should be the
initial focus of events. Text fields have a nextKeyView outlet that you connect so that
users can tab from field to field. Forms also have a nextKeyView outlet for tabbing.
(The fields within a form are already interconnected, so you don’t need to connect
them.)

The Application Kit also has “preset” actions that you can connect your
application to. The NSText object in the scroll view can print its contents as can
all objects that inherit from NSView. To take advantage of this capability, “hook
up” the menu command with the NSText action method for printing.

When a line borders the form inside the box, the form is selected.
Release the mouse button and set the nextKeyView outlet
connection in the Connections inspector.

1 Connect Application Kit outlets for
inter-field tabbing and printing.

Make a connection from the window
icon in the nib file window to the
Country field.

Select initialFirstResponder in the
Connections display of the inspector
and click Connect.

In top-to-bottom sequence, connect
the fields and the form through their
nextKeyView outlets.

When you reach the Languages field,
connect it with the Country field,
making a loop.

Make sure the text object
(the white rectangle) is
selected and not the scroll
view that encloses it.

Connect the Print Notes menu
command to the text object in the
scroll view.

Select the print: action method in the
Connections display of the Inspector
panel.

Click the Connect button in the
Inspector’s Connection display.
74

Creating the Travel Advisor Interface

The final step in crafting the Travel Advisor interface has nothing to do with the
main window, but with what users see of your application when they encounter it
in the File Viewer: the application’s icon.

You’re finished with the Travel Advisor interface. Test it by choosing Test
Interface from Interface Builder’s File menu.Try the following:

• Press the Tab key repeatedly. Notice how the cursor jumps between the
fields of the form, and how it loops from the Languages field to the Country
field. Press Shift-Tab to make the cursor go in the reverse direction.

• Enter some text in the scroll view, then click the Print Notes menu item. The
Print dialog box is displayed. Print the text object’s contents.

• Also in the scroll view, press the Return key repeatedly until a scroll box
appears in the scroll bar.

1 Add the application icon.

In Project Builder:

Open the Project Inspector.

Go to the Project Attributes display of
the inspector.

Click in the Application Icon field.

In File Viewer:

Locate TravelAdvisor.eps in
/System/Developer/Examples/
AppKit/TravelAdvisor.

Drag the image file into the icon well in
the Project Attributes display.

1 Test the interface.
75

Chapter 3

A Forms-Based Application

Defining the Classes of Travel Advisor

Travel Advisor has three classes: Country, Converter, and TAController. Only
TAController has outlets and actions. And, rather than defining the Converter
class, you are simply going to add it to the project from the CurrencyConverter
project and reuse it.

1 Specify the Country and TAController
classes.

In Interface Builder, bring up the
Classes display of the nib file window.

Select NSObject as the superclass.

Choose Subclass from the Classes
menu.

Type “Country” in place of
“MyNSObject.”

Repeat for class TAController.

Through this outlet the TAController object
establishes a connection with the instance
of the Converter class. You will reuse this
class later in this section.

1 Specify TAController’s outlets and
actions.

Add the outlets shown in the nib file
window at right.
76

Creating the Travel Advisor Interface

In OpenStep there are many ways to reuse objects. For example, subclassing
an existing class to obtain slightly different behavior is one way to reuse the
functionality of the superclass. Another way is to integrate an existing class—
like the Converter class—into your project.

When you’re finished with this procedure, the Converter class is copied both to the
TravelAdvisor project and to the TravelAdvisor main nib file.

Define the action methods shown in
the nib file window at right.

1 Reuse the Converter class.

In Project Builder:

Double-click Classes in the project
browser.

In the Add Classes panel, navigate to
the CurrencyConverter project
directory in
/System/Developer/Examples/AppKit.

Select Converter.m and click OK.

When asked if you want to include the
header file, click OK.

In Interface Builder:

Select the superclass of Converter
(NSObject) in the Classes display of
the TravelAdvisor nib file window.

Choose Classes m Read File.

In the Open panel, select Converter.h
in the TravelAdvisor project directory.

Click OK.
77

Chapter 3

A Forms-Based Application

You don’t need to instantiate the Country class in the nib file because it is not
involved in any outlet or action connections. However, you must create an
instance of TAController for making connections. TAController interacts behind
the scenes with users as they manipulate the application’s interface and mediates
the data coming from and going to Country objects. It therefore needs access to
interface objects and should be made the target of action messages.

1 Generate instances of the
TAController and Converter classes.

To see connections from the object, click a
right-pointing triangle; click a left-pointing
triangle for connections to the object.

Move the vertical line left or right to see
details (this is a vertical split view).

Click here for icon mode.

Checking and Making Connections in Outline Mode

The nib file window of Interface Builder gives you two modes in which to
view the objects in a nib file and to make connections between those
objects. So far you’ve been working in the icon mode of the Instances
display, which pictorially represents objects such as windows and custom
objects.

Outline mode, as the phrase suggests, represents objects in a hierarchical
list: an outline. The advantages of outline mode are that it represents all
objects and graphically indicates the connections between them. You can
connect objects through their outlets and actions in outline mode, as well
as disconnect them by Control-clicking a connection line.

Click here for outline mode.

Connect objects in outline
mode just as you do in icon
mode: Control-drag a
connection line between
objects.

A connection is identified by name and icon
for type (electrical outlet for outlet, cross-
hairs for action).
78

Creating the Travel Advisor Interface

Outlet Make Connection To

celsius Text field labeled “Celsius”

commentsLabel Label that reads “Notes and Itinerary for”

commentsField Text object within scroll view

converter Instance of Converter class (cube in Instances display)

countryField Text field labeled “Country”

currencyDollarsField Text field labeled “Dollars”

currencyLocalField Text field labeled “Local”

currencyNameField Text field labeled “Currency”

currencyRateField Text field labeled “Rate”

englishSpokenSwitch Switch (button) labeled “English widely spoken”

fahrenheit Text field labeled “Fahrenheit”

languagesField Text field labeled “Languages”

logisticsForm Form in group (box) labeled “Logistics”; the form is selected when a gray
line borders it.

tableView The area underneath the “Countries” column

1 Connect the TAController instance to
its outlets and actions.

Connect TAController to the outlets
listed in this table.

File’s Owner

Every nib file has one owner, represented by the
File’s Owner icon in a nib file window. The owner is
an object, external to the nib file, that relays
messages between the objects unarchived from the
nib file and the other objects in your application.

You specify a file’s owner programmatically, in the
second argument of NSBundle’s
loadNibNamed:owner:. The File’s Owner icon in
Interface Builder is a “proxy” object for that owner.
Although you can assign owners to this object in
Interface Builder, this doesn’t necessarily
guarantee anything about the file’s real owner.

In the main nib file File’s Owner always represents
NSApp, the global NSApplication constant. The

main nib file is automatically created when you
create an application project; it is loaded in main()
when an application is launched.

Nib files other than the main nib file— auxiliary nib
files—contain objects and resources that an
application may load only when it needs them (for
example, an Info panel). You must specify the owner
of auxiliary nib files.

You can determine or set the class of the current nib
file’s owner in Interface Builder by selecting the
File’s Owner icon in the nib file window and then
displaying the Custom Class inspector view. You’ll
get to practice this technique when you learn how to
create multi-document applications in the next
tutorial.
79

Chapter 3 A Forms-Based Application
Action Make Connection From

addRecord: “Add” button

blankFields: “Clear” button

convertCelsius: “Convert” button to the right of the “Fahrenheit” field

convertCurrency: “Convert” button to the right of the “Local” field

deleteRecord: “Delete” button

handleTVClick: The table view (the area beneath the “Countries” column header)

nextRecord: The “Next Record” menu command on the Records submenu

prevRecord: The “Prior Record” menu command on the Records submenu

switchChecked: The “English widely spoken” switch

Before You Go On

You’re next going to connect objects through an outlet defined by several
OpenStep classes. This outlet, named delegate, is assigned the id value of a custom
object. As the delegate of NSApp (the NSApplication object), TAController will
receive messages from it as certain events happen.

Every application has a global NSApplication object (called NSApp) that
coordinates events specific to the application. Among many other messages,
NSApp sends a message to its delegate notifying it that the application is about to
terminate. Later, you will implement TAController so that, when it receives this
message, it archives (saves) the dictionary containing the Country objects.

Connect the TAController instance to
control objects in the interface via its
actions.
80

Creating the Travel Advisor Interface

81

Compiled and Dynamic Palettes

A palette is an area on Interface Builder’s Palettes window that holds one
or more reusable objects. You can add these objects to your application’s
interface using the drag-and-drop technique. There are two types of
palettes: dynamic and compiled (also called “static palettes”). To the user
they seem identical, but the differences are many.

Static palettes are built as a project and have code defining their objects;
dynamic palettes include no special code—they’re unique configurations
of objects found on static palettes. Consequently, static palettes must be
compiled, but you can create dynamic palettes on the fly, without writing
and compiling code. Objects on static palettes can have their own
inspectors and editors, which dynamic-palette objects cannot have.

You usually create a static palette as a way to distribute your objects—and
the logic informing these objects’ behavior—to potential users. Many
developers of commercial OpenStep objects make use of static palettes as
a distribution medium. Creating static palettes (and their inspectors and
editors) is a more complex process than creating dynamic palettes, but the
resulting product has more value added to it.

Using Dynamic Palettes

Dynamic palettes are a great convenience. You can save groups of objects,
with or without their interconnections, to a dynamic palette at any time. You
can save dynamic palettes and store them in the file system, just as you do
with the traditional compiled palette. You can remove the palette from the
Palette viewer and, when you need it again, load it back into Interface
Builder.

To store objects on a dynamic palette:

• Choose Tools m Palettes m New to create a blank palette.

• Select objects singly or in groups on the interface or in the nib file
window (either icon or outline mode).

• Alternate-drag these objects and drop them on the blank palette.

You can use dynamic palettes to:

• Store collections of often-used View objects configured with specific
sizes and other attributes. For instance, you could have a “standard”
text field of a certain length, font, and background color stored on a
dynamic palette.

• Hold windows and panels that are replicated in your projects (such as
Info panels).

• Store versions of interfaces.

• Keep interconnected objects as a template that you can later use as-is
or modify for particular circumstances. For instance, you could store a
group of text fields and their delegate, or a set of controls and their
connections to a controller object.

• Assist in prototyping and group work. For example, you could mail a
palette file containing an interface to interested parties.

Alternate-drag objects
to move them onto
palettes, to move them
around palettes, and to
take them off of
palettes.

Chapter 3 A Forms-Based Application
When you generate the header and implementation files for all classes of
Currency Converter, you are finished with the Interface Builder portion of
development. Be sure you save the nib file before you switch over to Project
Builder.

You can assign delegates programmatically or by using Interface Builder. For more
information, see ‘‘Getting in on the Action: Delegation and Notification’’ on page 100.

Notice that the direction of the connection is
from the File’s Owner (which is the application
object) to the TAController object.

1 Connect the delegate outlet.

Drag a connection line from File’s
Owner to the TAController object.

In the Connections display of the
Inspector panel select delegate and
click OK.

1 Generate source code files for the
TAController and Country classes.

Save TravelAdvisor.nib.

Select the class in the Classes display
of the nib file window.

Choose Classes m Create Files.

Respond Yes to the confirmation
messages.
82

Creating the Travel Advisor Interface
Implementing the Country Class

Although it has no outlets, the Country class defines a number of instance
variables that correspond to the fields of Travel Advisor.

Declares that the Country class adopts the NSCoding protocol.

Explicitly types the instance variable as “a pointer to class NSString”—or
an NSString object. See below for more about the NSString class.

Declare non-object instance variables the same way you declare them in C
programs. In this case, currencyRate is of type float.

1 Declare instance variables.

In Project Builder, click Headers in the
project browser, then select Country.h.

Add the declarations shown between
the braces at right.

@interface Country : NSObject <NSCoding>

{

 NSString *name;

 NSString *airports;

 NSString *airlines;

 NSString *transportation;

 NSString *hotels;

 NSString *languages;

 BOOL englishSpoken;

 NSString *currencyName;

 float currencyRate;

 NSString *comments;

}

A

B

C

A

B

C

NSString: A String for All Countries

NSString objects represent character strings. They’re behind almost all text
in an application, from labels to spreadsheet entries to word-processing
documents. NSStrings (or string objects) supplant that familiar C
programming data type, char *.

“But why?” you might be saying. “Why not stick with the tried and true?” By
representing strings as objects, you confer on them all the advantages that
belong to objects, such as persistency and the capability for distribution.
Moreover, thanks to data encapsulation, string objects can use whatever
encoding is needed and can choose the most efficient storage for
themselves.

The most important rationale for string objects is the role they play in

internationalization. String objects contain Unicode characters rather than
the narrow range of characters afforded by the ASCII character set. Hence
they can represent words in Chinese, Arabic, and many other languages.

The NSString and NSMutableString classes provide API to create static and
dynamic strings, respectively, and to perform string operations such as
substring searching, string comparison, and concatenation.

None of this prevents you from using char * strings, and there are
occasions where for performance or other reasons you should. However, the
public interfaces of OpenStep classes now use string objects almost
exclusively. A number of NSString methods enable you to convert string
objects to char * strings and back again.
83

Chapter 3 A Forms-Based Application

84

The Foundation Framework: Capabilities, Concepts, and Paradigms

The Foundation framework consists of a base layer of classes that specify
fundamental object behavior plus a number of utility classes. It also
introduces several paradigms that define functionality not covered by the
Objective-C language. Notably, the Foundation framework:

• Makes software development easier by introducing consistent
conventions for things such as object deallocation

• Supports Unicode strings, object persistence, and object distribution

• Provides a level of operating-system independence, enhancing
application portability

Root Class

NSObject, the principal root class, provides the fundamental behavior and
interface for objects. It includes methods for creating, initializing,
deallocating, copying, comparing, and querying objects (introspection).
Almost all OpenStep objects inherit ultimately from NSObject.

Deallocation of Objects

The Foundation framework introduces a mechanism for ensuring that
objects are properly deallocated when they’re no longer needed. This
mechanism, which depends on general conformance to a policy of object
ownership, automatically tracks objects that are marked for release within
a loop and deallocates them at the close of the loop. See ‘‘Object
Ownership, Retention, and Disposal’’ on page 88 for more information.

Data Storage and Access

The Foundation framework provides object-oriented storage for

• Arrays of raw bytes (NSData) and characters (NSString)

• Simple C data values (NSValue and NSNumber)

• Objective-C objects of any class (NSArray, NSDictionary, NSSet, and
NSPPL)

NSArray, NSDictionary, and NSSet (and related mutable classes) are
collection classes that also allow you to organize and access objects in
certain ways (see ‘‘The Collection Classes’’ on page 86).

Text and Internationalization

NSString internally represents text in various encodings, most importantly
Unicode, making applications inherently capable of expressing a variety of
written languages. NSString also provides methods for searching,
combining, and comparing strings. NSCharacterSet represents various
groupings of characters which are used by NSString. An NSScanner object
scans numbers and words from an NSString object. For more information,
see ‘‘NSString: A String for All Countries’’ on page 83.

You use NSBundle objects to load code and localized resources dynamically
(see ‘‘Only When Needed: Dynamically Loading Resources and Code’’ on
page 126). The NSUserDefaults class enables you to store and access
default values based on locale as well as user preferences.

Object Persistence and Distribution

NSSerializer makes it possible to represent the data that an object contains
in an architecture-dependent way. NSCoder and its subclasses take this
process a step further by storing class information along with the data,
thereby enabling archiving and distribution. Archiving (NSArchiver) stores
encoded objects and other data in files. Distribution denotes the
transmission of encoded object data between different processes and
threads (NSPortCoder, NSConnection, NSDistantObject, and others).

Other Functionality

Date and time. The NSDate, NSCalendarDate, and NSTimeZone classes
generate objects that represent dates and times. They offer methods for
calculating temporal differences, for displaying dates and times in any
desired format, and for adjusting times and dates based on location in the
world.

Application coordination. NSNotification, NSNotificationCenter, and
NSNotificationQueue implement a system for broadcasting notifications of
changes within an application. Any object can specify and post a
notification, and any other object can register itself as an observer of that
notification. You can use an NSTimer object to send a message to another
object at specific intervals.

Operating system services. Many Foundation classes help to insulate
your code from the peculiarities of disparate operating systems.

• NSFileManager provides a consistent interface for file-system
operations such as creating files and directories, enumerating directory
contents, and moving, copying, and deleting files.

• NSThread lets you create multi-threaded applications.

• NSProcessInfo enables you to learn about the environment in which an
application runs.

• NSUserDefaults allows applications to query, update, and manipulate a
user’s default settings across several domains: globally, per
application, and per language.

Creating the Travel Advisor Interface
Country.h also declares a dozen or more methods. Most of these are accessor
methods. Accessor methods fetch and set the values of instance variables. They are
a critical part of an object’s interface.

Object initialization and deallocation. In OpenStep you usually create an object by
allocating it (alloc) and then initializing it (init or init... variant):

When Country’s init method is invoked, it initializes its instance variables
to known values and completes other start-up tasks. Similarly, when an
object is deallocated, its dealloc method is invoked, giving it the
opportunity to release objects it’s created, free malloc’d memory, and so on.

Object archiving and unarchiving. The encodeWithCoder: declaration indicates that
objects of this class are to be archived. Archiving encodes an object’s class
and state (typically instance variables) and stores it in a file. Unarchiving,
through initWithCoder:, reads the encoded class and state data from the file

1 Declare methods.

After the instance variables, add the
declarations listed here.

/* initializtion and de-allocation */

- (id)init;

- (void)dealloc;

/* archiving and unarchiving */

- (void)encodeWithCoder:(NSCoder *)coder;

- (id)initWithCoder:(NSCoder *)coder;

/* accessor methods */

- (NSString *)name;

- (void)setName:(NSString *)str;

- (NSString *)airports;

- (void)setAirports:(NSString *)str;

- (NSString *)airlines;

- (void)setAirlines:(NSString *)str;

- (NSString *)transportation;

- (void)setTransportation:(NSString *)str;

- (NSString *)hotels;

- (void)setHotels:(NSString *)str;

- (NSString *)languages;

- (void)setLanguages:(NSString *)str;

- (BOOL)englishSpoken;

- (void)setEnglishSpoken:(BOOL)flag;

- (NSString *)currencyName;

- (void)setCurrencyName:(NSString *)str;

- (float)currencyRate;

- (void)setCurrencyRate:(float)val;

- (NSString *)comments;

- (void)setComments:(NSString *)str;

A

B

A

Country *aCountry = [[Country alloc] init];

B

85

Chapter 3 A Forms-Based Application
and restores the object to its previous state. There’s more on this topic in the
following pages.

Accessor methods. The declaration for accessor methods that return values is, by
convention, the name of the instance variable preceded by the type of the
returned value in parentheses. Accessor methods that set the value of instance
variables begin with “set” prepended to the name of the instance variable
(initial letter capitalized). The “set” method’s argument takes the type of the
instance variable and the method itself returns void.

When a class adopts a protocol, it asserts that it implements the methods the protocol
declares. Classes that archive or serialize their data must adopt the NSCoding protocol. See
“Objective-C Extensions” in the on-line Programming Languages for more on protocols.

Before You Go On

If you don’t want to allow an instance variable’s value to be changed by any object
other than one of your class, don’t provide a set method for the instance variable.
If you do provide a set method, make sure objects of your own class use it when
specifying a value for the instance variables. This has important implications for
subclasses of your class.

Exercise: The previous example shows the declarations for only a few accessor
methods. Every instance variable of the Country class should have an accessor
method that returns a value and one that sets a value. Complete the remaining
declarations.

C

The Collection Classes

Several classes in OpenStep’s Foundation framework create objects whose
purpose is to hold other objects. These collection classes are very useful.
Instances of them can store and locate their contents through a number of
mechanisms.

• Arrays (NSArray) store and retrieve objects in an ordered fashion through
zero-based indexing.

• Dictionaries (NSDictionary) store and quickly retrieve objects using
key/value pairs. For example, the key “red” might be associated with an
NSColor object representing red.

• Sets (NSSet) are unordered collections of distinct elements. Counted
sets (NSCountedSet) are sets that can contain duplicate (non-distinct)
elements; these duplicates are tracked through a counter. Use sets
when the speed of membership-testing is important.

The mutable versions of these classes allow you to add and remove objects
programmatically after the collection object is created.

Collection objects also provide a valuable way to store data. When you store
(or archive) a collection object in the file system, its constituent objects are
also stored.

NSObject

NSDictionaryNSArray NSSet

NSMutableDictionaryNSMutableArray NSMutableSet

NSCountedSet
86

Creating the Travel Advisor Interface
Now that you’ve declared the Country class’s accessor methods, implement
them.

For “get” accessor methods (at least when the instance variables, like
Travel Advisor’s, hold immutable objects) simply return the instance
variable.

For accessor methods that set object values, first send autorelease to the
current instance variable, then copy (or retain) the passed-in value to the
variable. The autorelease message causes the previously assigned object to
be released at the end of the current event loop, keeping current
references to the object valid until then.

If the instance variable has a non-object value (such as an integer or float
value), you don’t need to autorelease and copy; just assign the new value.

In many situations you can send retain instead of copy to keep an object around. But for
“value” type objects, such as NSStrings and our Country objects, copy is better. For the
reason why, and for more on autorelease, retain, copy, and related messages for object
disposal and object retention, see ‘‘Object Ownership, Retention, and Disposal’’ on page
88.

Before You Go On

Exercise: The example above shows the implementation of the accessor
methods for the name instance variable. Implement the remaining accessor
methods.

1 Implement the accessor methods.

Select Country.m in the project
browser.

Write the code that obtains and sets
the values of instance variables.

- (NSString *)name

{

 return name;

}

- (void)setName:(NSString *)str

{

 [name autorelease];

 name = [str copy];

}

A

B

A

B

87

Chapter 3 A Forms-Based Application

Object Ownership, Retention, and Disposal
The problem of object ownership and disposal is a natural concern in
object-oriented programming. When an object is created and passed
around various “consumer” objects in an application, which object is
responsible for disposing of it? And when? If the object is not deallocated
when it is no longer needed, memory “leaks.” If the object is deallocated too
soon, problems may occur in other objects that assume its existence, and
the application may crash.

The Foundation framework introduces a mechanism and a policy that helps
to ensure that objects are deallocated when—and only when—they are no
longer needed.

Who Owns Which Object?

The policy is quite simple: You are responsible for disposing of all objects

that you own. You own objects that you create, either by allocating or
copying them. You also own (or share ownership in) objects that you retain,
since retaining an object increments its reference count (see facing page).
The flip side of this rule is: If you don’t own an object, you need not worry
about releasing it.

But now another question arises. If the owner of an object must release the
object within its programmatic scope, how can it give that object to other
objects? The short answer is: the autorelease method, which marks the
receiver for later release, enabling it to live beyond the scope of the owning
object so that other objects can use it.

The autorelease method must be understood in a larger context of the
autorelease mechanism for object deallocation. Through this
programmatic mechanism, you implement the policy of object ownership
88

myObj yourObj

BA

1 1anObj

reference

count

C

2

1

2

1 1

E

0 0

yourObj

yourObj

yourObj

Autorelease pool

Autorelease pool

Autorelease pool

Autorelease pool

A. myObj creates an object:

anObj = [[MyClass alloc] init];

B. myObj returns the object to yourObj, autoreleased:

return [anObj autorelease];

The object is “put” in the autorelease pool; that is, the autorelease pool starts
tracking the object.

C. yourObj retains the object:

[anObj retain];

The retain message increments the reference count.(If the object wasn’t
retained it would be deallocated at the end of the current event cycle.)

D. At the end of the event cycle, the autorelease pool sends release to all of its
objects, thereby decrementing their reference counts. Objects with reference
counts of zero are deallocated. Since anObj now has a reference count of one,
it is not deallocated.

E. yourObj sends autorelease to anObj, putting it into an autorelease pool
again. At the end of the event cycle, the autorelease pool sends release to its
objects; since anObj’s reference count is now zero, it’s deallocated.

For a fuller description of object ownership and disposal, see the introduction to
the Foundation framework reference documentation.

How Autorelease Pools Work: An Example

Creating the Travel Advisor Interface

A possible side effect of retain: An object that owns an instance variable assigns
a new object to it after releasing the previously assigned object. Another object
that had retained the prior instance variable is now referencing an invalid object.

setlvar:
owning object

instance variable

i bj t

retain
and disposal.

Reference Counts, Autorelease Pools, and Deallocation

Each object in the Foundation framework has an associated reference
count. When you allocate or copy an object, its reference count is set at 1.
You send release to an object to decrement its reference count. When the
reference count reaches zero, NSObject invokes the object’s dealloc
method, after which the object is destroyed. However, successive
consumers of the object can delay its destruction by sending it retain,
which increments the reference count. You retain objects to ensure that
they won’t be deallocated until you’re done with them.

Each application puts in place at least one autorelease pool (for the event
cycle) and can have many more. An autorelease pool tracks objects marked
for eventual release and releases them at the appropriate time. You put an
object in the pool by sending the object an autorelease message. In the
case of an application’s event cycle, when code finishes executing and
control returns to the application object (typically at the end of the cycle),
the application object sends release to the autorelease pool, and the pool
releases each object it contains. If afterwards the reference count of an
object in the pool is zero, the object is deallocated.

Putting the Policy Into Practice

When an object is used solely within the scope of the method that creates
it, you can deallocate it immediately by sending it release. Otherwise, send
autorelease to all created objects that you no longer need but will return
or pass to other objects.

You shouldn’t release objects that you receive from other objects (unless
you precede the release or autorelease with a retain). You don’t own
these objects, and can assume that their owner has seen to their eventual
deallocation. You can also assume that (with some exceptions, described
below) a received object remains valid within the method it was received
in. That method can also safely return the object to its invoker.

You should send release or autorelease to an object only as many times
as are allowed by its creation (one) plus the number of retain messages
you have sent it. You should never send free or dealloc to an OpenStep
object.

Implications of Retained Objects

When you retain an object, you’re sharing it with its owner and other objects
that have retained it. While this might be what you want, it can lead to
some undesirable consequences. If the owner is released, any object you
received from it and retained can be invalid. If you had retained an instance
variable of the owning object, and that instance variable is reassigned,
your code could be referencing something it does not expect.

copy Versus retain

When deciding whether to retain or copy objects, it helps to categorize them
as value objects or entity objects. Value objects are objects such as
NSNumbers or NSStrings that encapsulate a discrete, limited set of data.
Entity objects, such as NSViews and NSWindows, tend to be larger objects
that manage and coordinate subordinate objects. For value objects, use
copy when you want your own “snapshot” of the object (the object must
conform to the NSCopying protocol); use retain when you intend to share
the object. Always retain entity objects.

In accessor methods that set value-object instance variables, you usually
(but not always) want to make your own copy of the object and not share it.
(Otherwise it might change without your knowing.) Send autorelease to
the old object and then send copy—not retain—to the new one:

- (void)setTitle:(NSString *)newTitle
{

[title autorelease];
title = [newTitle copy];

}

OpenStep framework classes can, for reasons of efficiency, return objects
cast as immutable when to the owner (the framework class) they are
mutable. Thus there is no guarantee that a vended framework object won’t
change, even if it is of an immutable type. The precaution you should take
is evident: copy objects obtained from framework classes if it’s important
the object shouldn’t change from under you.
89

Chapter 3 A Forms-Based Application
Invokes super’s (the superclass’s) init method to have inherited instance
variables initialized. Always do this first in an init method.

Initializes an NSString instance variable to an empty string. @“” is a compiler-
supported construction that creates an immutable NSString object from the
text enclosed by the quotes.

You don’t need to initialize instance variables to null values (nil, zero, NULL,
and so on) because the run-time system does it for you. But you should
initialize instance variables that take other starting values. Also, don’t
substitute nil when empty objects are expected, and vice versa.The Objective-
C keyword nil represents a null “object” with an id (value) of zero. An empty
object (such as @‘‘’’) is a true object; it just has no “real” content.

By returning self you’re returning a true instance of your object; up until this
point, the instance is considered undefined.

Before You Go On

Implement the dealloc method. In this method you release (that is, send release or
autorelease to) objects that you’ve created, copied, or retained (which don’t have
an impending autorelease). For the Country class, release all objects held as
instance variables. If you had other retained objects, you would release them,
and if you had dynamically allocated data, you would free it. When this method
completes, the Country object is deallocated. The dealloc method should send
dealloc to super as the last thing it does, so that the Country object isn’t released by
its superclass before it’s had the chance to release all objects it owns.

Note that release itself doesn’t deallocate objects, but it leads to their deallocation. For more
on release and autorelease, see ‘‘Object Ownership, Retention, and Disposal’’ on page 88.

1 Write the object-initialization and
object-deallocation code.

Implement the init method, as shown
here.

Implement the dealloc method,
following the suggestions in the Before
You Go On section below.

- (id)init

{

 [super init];

 name = @"";

 airports = @"";

 airlines = @"";

 transportation = @"";

 hotels = @"";

 languages = @"";

 currencyName = @"";

 comments = @"";

 return self;

}

A

B

C

A

B

C

90

Creating the Travel Advisor Interface
You want the Country objects created by the Travel Advisor application to be
persistent. That is, you want them to “remember” their state between sessions.
Archiving lets you do this by encoding the state of application objects in a file
along with their class memberships. The NSCoding protocol defines two
methods that enable archiving for a class: encodeWithCoder: and initWithCoder:.

The encodeObject: method encodes a single object in the archive file. For both
object and non-object types, you can use encodeValueOfObjCType:at: (shown in this
example encoding a string and a float). NSCoder provides other encoding
methods.

The order of decoding should be the same as the order of encoding; since
name is encoded first it should be decoded first. Use copy when you assign
value-type objects to instance variables (see ‘‘Object Ownership,
Retention, and Disposal’’ on page 88). NSCoder defines decode... methods
that correspond to the encode... methods, which you should use.

As in any init... method, end by returning self—an initialized instance.

1 Implement the methods that archive
and unarchive the object.

Implement the encodeWithCoder:
method as shown at right.

- (void)encodeWithCoder:(NSCoder *)coder

{

 [coder encodeObject:name];

 [coder encodeObject:airports];

 [coder encodeObject:airlines];

 [coder encodeObject:transportation];

 [coder encodeObject:hotels];

 [coder encodeObject:languages];

 [coder encodeValueOfObjCType:"s" at:&englishSpoken];

 [coder encodeObject:currencyName];

 [coder encodeValueOfObjCType:"f" at:¤cyRate];

 [coder encodeObject:comments];

}

Implement the initWithCoder: method
as shown at right.

- (id)initWithCoder:(NSCoder *)coder

{

 name = [[coder decodeObject] copy];

 airports = [[coder decodeObject] copy];

 airlines = [[coder decodeObject] copy];

 transportation = [[coder decodeObject] copy];

 hotels = [[coder decodeObject] copy];

 languages = [[coder decodeObject] copy];

 [coder decodeValueOfObjCType:"s" at:&englishSpoken];

 currencyName = [[coder decodeObject] copy];

 [coder decodeValueOfObjCType:"f" at:¤cyRate];

 comments = [[coder decodeObject] copy];

 return self;

 }

A

B

A

B

91

Chapter 3 A Forms-Based Application
Implementing the TAController Class

After describing what other instance variables you must add to TAController, this
section covers the following implementation tasks:

• Getting the data from Country objects to the interface and back
• Getting the table view to work, including updating Country records
• Adding and deleting “records” (Country objects)
• Formatting and validating field values
• “Housekeeping” tasks (application management)

The variables countryDict and countryKeys identify the array and the dictionary
discussed on ‘‘Travel Advisor — An Overview’’ on page 62. The boolean
recordNeedsSaving flags that record if the user modifies the information in any field.

This declaration is not essential, but the enum constants provide a clear and
convenient way to identify the cells in the Logistics form. Methods such as
cellAtIndex: identify the editable cells in a form through zero-based indexing. This
declaration gives each cell in the Logistics form a meaningful designation.

 NSMutableDictionary *countryDict;

 NSMutableArray *countryKeys;

 BOOL recordNeedsSaving;

1 Update TAController.h.

Import Country.h.

Add the instance-variable
declarations shown at right.

enum LogisticsFormTags {

 LGairports=0,

 LGairlines,

 LGtransportation,

 LGhotels

};

Add the enum declaration shown at
right between the last #import
directive and the @interface
directive.
92

Creating the Travel Advisor Interface

Turbo Coding With Project Builder
When you write code with Project Builder you have a set of “workbench”
tools at your disposal, among them:

Indentation

In Preferences you can set the characters at which indentation
automatically occurs, the number of spaces per indentation, and other
global indentation characteristics. The Edit menu includes the Indentation
submenu, which allows you to indent lines or blocks of code on a case-by-
case basis.

Delimiter Checking

Double-click a brace (left or right, it doesn’t matter) to locate the matching
brace; the code between the braces is highlighted. In a similar fashion,
double-click a square bracket in a message expression to locate the
matching bracket and double-click a parenthesis character to highlight the
code enclosed by the parentheses. If there is no matching delimiter, Project
Builder emits a warning beep.

Name Completion

Name completion is a facility that, given a partial name, completes it from
all symbols known by the project. You activate it by pressing Escape. You
can use name completion in the code editor and in all panels where you are
finding information or searching for files to open.

As an example: you know there's a certain constant to use with fonts, but
you cannot remember it. In your code, type NSFont. Then press the Escape
key several times. These symbols appear in succession (the found portion
is underlined):

NSFontIdentityMatrix
NSFontManager
NSFontPanel

Emacs Bindings

You can use the most common Emacs commands in Project Builder’s code
editor. (Emacs is a popular editor for writing code.) For example, there are
the commands page-forward (Control-v), word-forward (Meta-f), delete-
word (Meta-d), kill-forward (Control-k), and yank from kill ring (Control-y).

Some Emacs commands may conflict with some of the standard Windows
key bindings. You can modify the key bindings the code editor uses to
substitute other “command” keys—such as the Alternate key or Shift-
Control— for Emacs’ Control or Meta keys. For instructions on custom key
bindings, see “Text Defaults and Key Bindings” in the Programming
Topics section of
/System/Documentation/Developer/TasksAndConcepts.
93

Chapter 3 A Forms-Based Application
Data Mediation
TAController acts as the mediator of data exchanged between a source of data and
the display of that data. Data mediation involves taking data from fields, storing it
somewhere, and putting it back into the fields later. TAController has two
methods related to data mediation: populateFields: puts Country instance data into
the fields of Travel Advisor and extractFields: updates a Country object with the
information in the fields.

Causes the Country field to display the value of the name instance variable of
the Country record (aRec) passed into the method. Since [aRec name] is nested,
the object it returns is used as the argument of setStringValue:, which sets the
textual content of the receiver (in this case, an NSFormCell).

The cellAtIndex: message is sent to the form and returns the cell identified by the
enum constant LGairports.

Sets the state of the switch according to the boolean value held by the Country
instance variable; if the state is YES, the X appears in the switch box.

Selects the text in the Country field or, if there is no text, inserts the cursor.

1 Implement the methods that transfer
data to and from the application’s
fields.

Implement the populateFields:
method as shown at right.

- (void)populateFields:(Country *)aRec

{

 [countryField setStringValue:[aRec name]];

 [[logisticsForm cellAtIndex:LGairports] setStringValue:
 [aRec airports]];

 [[logisticsForm cellAtIndex:LGairlines] setStringValue:
 [aRec airlines]];

 [[logisticsForm cellAtIndex:LGtransportation] setStringValue:
 [aRec transportation]];

 [[logisticsForm cellAtIndex:LGhotels] setStringValue:
 [aRec hotels]];

 [currencyNameField setStringValue:[aRec currencyName]];

 [currencyRateField setFloatValue:[aRec currencyRate]];

 [languagesField setStringValue:[aRec languages]];

 [englishSpokenSwitch setState:[aRec englishSpoken]];

 [commentsField setString:[aRec comments]];

 [countryField selectText:self];

}

A

B

C

A

B

C

D

94

Creating the Travel Advisor Interface
Although it doesn’t do anything with data, the blankFields: method is similar in
structure to populateFields:. The blankFields: method clears whatever appears in Travel
Advisor’s fields by inserting empty string objects and zeros.

The setState: message affects the appearance of two-state toggled controls,
such as a switch button. With an argument of YES, the checkmark
appears; with an argument of NO, the checkmark is removed.

The setString: message sets the textual contents of NSText objects (such as
the one enclosed by the scroll view).

Before You Go On

Exercise: Implement the extractFields: method. In this method set the values of the
passed-in Country record’s instance variables with the contents of the
associated fields.

Here’s a little tip for you: This implementation is extractFields: in reverse. Use
the stringValue method to get field contents and use Country’s accessor
methods to set the values of instance variables.

- (void)blankFields:(id)sender

{

 [countryField setStringValue:@""];

 [[logisticsForm cellAtIndex:LGairports] setStringValue:@""];

 [[logisticsForm cellAtIndex:LGairlines] setStringValue:@""];

 [[logisticsForm cellAtIndex:LGtransportation] setStringValue:@""];

 [[logisticsForm cellAtIndex:LGhotels] setStringValue:@""];

 [currencyNameField setStringValue:@""];

 [currencyRateField setFloatValue:0.000];

 [languagesField setStringValue:@""];

 [englishSpokenSwitch setState:NO];

 [currencyDollarsField setFloatValue:0.00];

 [currencyLocalField setFloatValue:0.00];

 [celsius setIntValue:0];

 [commentsField setString:@""];

 [countryField selectText:self];

}

A

B

Implement the blankFields: method as
shown at right.

A

B

95

Chapter 3 A Forms-Based Application

96

Finding Information Within Your Project
The Project Find Panel

The Project Find panel lets you find any symbol defined or referenced in your
project. It also allows you to look up related reference documentation,
search for text project-wide using regular expressions, and replace symbols
Symbol Definition Search Syntax

You can narrow your search for definitions of symbols by indicating type in
the Find field of the Project Find panel along with the symbol name. Once
the symbol items are listed in the browser, you can click an item to navigate
to the definition in the header file, or click a book icon to display the relevant
reference documentation.

The following table lists examples of searching for symbol definitions by
type:

Example Finds Definition For

@NSArray NSArray class

<NSCoding> NSCoding protocol

-objectAtIndex: Instance method

+stringWithFormat: Class method

[NSBox controlView] Method specific to class

NSRunAlertPanel() Function

NSApp Type or constant

Lists the targets of recent
find operations; selecting
one re-displays the results
in the browser.

Click a book icon to see the
related reference
documentation.
or strings of text. To use the full power of Project Find, your project must be
indexed; once it is, you have access to all symbols that the project
references, including symbols defined in the frameworks and libraries
linked into the project.

Other Ways of Finding Information

Project Builder includes other facilities for finding information:

• Incremental search. Control-s brings up the incremental-search
panel for the currently edited file. As you type, the cursor advances to the
next sequence of characters in the file that match what you type. Click
Next (or press Control-s) to go to the next occurrence; click Prev (or press
Control-r) to go to the previous occurrence.

Note thatControl-s might not invoke incremental search on all systems
because of different native key bindings on those systems. However, you
can customize your key bindings, both generally and specific to Project
Builder, and thus get the incremental-search (and other) functionality.
See ‘‘Turbo Coding With Project Builder’’ on page 93 for more
information.

• Help. Project Builder and Interface Builder also feature tool tips,
context-sensitive help, and task-related help. See page 56 for details.

Search for: symbol definition,
symbol reference, textual strings
(with or without regular
expressions).

Find and replace buttons.

Search results.

Click an item to display
the relevant code.

Creating the Travel Advisor Interface
Getting the Table View to Work
Table views are objects that display data as records (rows) with attributes
(columns). The table view in Travel Advisor displays the simplest kind of
record, with each record having only one attribute: a country name.

Table views get the data they display from a data source. A data source is an
object that implements the informal NSTableDataSource protocol to respond
to NSTableView requests for data. Since the NSTableView organizes records
by zero-based indexing, it is essential that the data source organizes the data
it provides to the NSTableView similarly: in an array.

The [countryDict allKeys] message returns an array of keys (country names)
from countryDict, the unarchived dictionary that contains Country objects as
values. The sortedArrayUsingSelector: message sorts the items in this “raw”
array using the compare: method defined by the class of the objects in the
array, in this case NSString (this is an example of polymorphism and
dynamic binding). The sorted names go into a temporary NSArray—since
that is the type of the returned value—and this temporary array is used to
create a mutable array, which is then assigned to countryKeys. A mutable
array is necessary because users may add or delete countries.

The [tableView setDataSource:self] message identifies the TAController object as
the table view’s data source. The table view will commence sending
NSTableDataSource messages to TAController. (You can effect the same
thing by setting the NSTableView’s dataSource outlet in Interface Builder.)

If users are supposed to edit the cells of the table view, you could make TAController
the delegate of the table view at this point (with setDelegate:).The delegate receives
messages relating to the editing and validation of cell contents. For details, see the
specification on NSTableView in the Application Kit reference documentation.

1 Implement the behavior of the table
view’s data source.

In TAController’s awakeFromNib
method, create and sort the array of
country names.

In the same method, designate self as
the data source.

- (void)awakeFromNib

{

 NSArray *tmpArray = [[countryDict allKeys]
 sortedArrayUsingSelector:@selector(compare:)];

 countryKeys = [[NSMutableArray alloc] initWithArray:tmpArray];

 [tableView setDataSource:self];

 [tableView sizeLastColumnToFit];

}

A

B

A

B

97

Chapter 3 A Forms-Based Application
To fulfill its role as data source, TAController must implement two methods of the
NSTableDataSource informal protocol.

Returns the number of country names in the countryKeys array. The table view
uses this information to determine how many rows to create.

If you had an application with multiple table views, each table view would
invoke this NSTableView delegation method (as well as the others). By
evaluating the theTableView argument, you could distinguish which table view
was involved.

This method first evaluates the column identifier to determine if it’s the right
column (it should always be “Countries”). If it is, the method returns the
country name from the countryKeys array that is associated with rowIndex. This
name is then displayed at rowIndex of the column. (Remember, the array and the
cells of the column are synchronized in terms of their indices.)

The NSTableDataSource informal protocol has another method,
tableView:setObjectValue:forTableColumn:row:, that you won’t implement in this tutorial. This
method allows the data source to extract data entered by users into table-view
cells; since Travel Advisor’s table view is read-only, there is no need to implement
it.

Implement two methods of the
NSTableDataSource informal protocol:

 – numberOfRowsInTableView:
 – tableView:
 objectValueForTableColumn:
 row:

- (int)numberOfRowsInTableView:(NSTableView *)theTableView

{

 return [countryKeys count];

}

- (id)tableView:(NSTableView *)theTableView

 objectValueForTableColumn:(NSTableColumn *)theColumn

 row:(int)rowIndex

{

 if ([[theColumn identifier] isEqualToString:@"Countries"])

 return [countryKeys objectAtIndex:rowIndex];

 else

 return nil;

}

A

B

A

B

98

Creating the Travel Advisor Interface
Finally, you have to have the table view respond to mouse clicks in it, which
indicate a request that a new record be displayed. As you recall, you defined
in Interface Builder the handleTVClick: action for this purpose. This method must
do a number of things:

• Save the current Country object or create a new one.
• If there’s a new record, re-sort the array providing data to the table view.
• Display the selected record.

This method has two major sections, each introduced by an if statement.

1 Update records.

Implement the method that responds
to user selections in the table view.

- (void)handleTVClick:(id)sender

{

 Country *aRec, *newRec, *newerRec;

 int index;

 /* does current obj need to be saved? */

 if (recordNeedsSaving) {

 /* is current object already in dictionary? */

 if (aRec=[countryDict objectForKey:[countryField stringValue]]) {

 /* remove if it's been changed */

 if (aRec) {

 NSString *country = [aRec name];

 [countryDict removeObjectForKey:country];

 [countryKeys removeObject:country];

 }

 }

 /* Create Country obj, add to dict, add name to keys array */

 newRec = [[Country alloc] init];

 [self extractFields:newRec];

[countryDict setObject:newRec forKey:[countryField stringValue]];

 [newRec release];

 [countryKeys addObject:[countryField stringValue]];

 /* sort array here */

 [countryKeys sortUsingSelector:@selector(compare:)];

 [tableView reloadData];

 }

 index = [sender selectedRow];

 if (index >= 0 && index < [countryKeys count]) {

 newerRec = [countryDict objectForKey:

 [countryKeys objectAtIndex:index]];

 [self populateFields:newerRec];

 [commentsLabel setStringValue:[NSString stringWithFormat:

 @"Notes and Itinerary for %@", [countryField stringValue]]];

 recordNeedsSaving=NO;

 }

}

A

B

99

Chapter 3 A Forms-Based Application

100

Getting in on the Action: Delegation and Notification

A lot goes on in a running application: events are being interpreted, files a
being read, views are being drawn. Because your custom objects might b
interested in any of these activities, OpenStep offers two mechanisms
through which your objects can participate in or be kept informed of even
going on in the application: delegation and notification.

Delegation

Many OpenStep framework objects hold a delegate as an instance variabl
A delegate is an object that receives messages from the framework obje
when specific events occur. Delegation messages are of several types,
depending on the expected role of the delegate:

• Some messages are purely informational, occurring after an event ha
happened. They allow a delegate to coordinate its actions with the oth
object.

• Some messages are sent before an action will occur, allowing the
delegate to veto or permit the action.

• Other delegation messages assign a specific task to a delegate, like
filling a browser with cells.

You can set your custom object to be the delegate of a framework object
programmatically or in Interface Builder. Your custom classes can also
define their own delegate variables and delegation protocols for client
objects.

.
delegate

= C

oddB
all:w

illActSillyA

B

C

re
e

ts

e.
ct

s
er

Notification

A notification is a message that is broadcast to all objects in an application
that are interested in the event the notification represents. As does the
informational delegation message, the notification informs these observers
that this event took place. It can also pass along relevant data about the event.

Here’s the way the notification process works:

.
delegate

= C

oddball

A

B

C

posts

OddBallDidActSillyNotification

• Objects interested in an event that happens elsewhere in the application
— say the addition of a record to a database — register themselves
with a notification center (an instance of NSNotificationCenter) as
observers of that event. Delegates of an object that posts notifications
are automatically registered as observers of those notifications.

• The object that adds the object to the database (or some such event)
posts a notification (an instance of NSNotification) to a notification
center. The notification contains a tag identifying the notification, the
id of the associated object, and, optionally, a dictionary of supplemental
data.

• The notification center then sends a message to each observer, invoking
the method specified by each, and passing in the notification.

Notifications hold some advantages over delegation messages as a means
of inter-application communication. They allow an object to synchronize its
behavior and state with multiple objects in an application, and without
having to know the identity of those objects. With notification queues, it
is also possible to post notifications asynchronously and coalesce similar
notifications.

Creating the Travel Advisor Interface
When any Country-object data is added or altered, Travel Advisor sets the
recordNeedsSaving flag to YES (you’ll learn how to do this later on). If
recordNeedsSaving is YES, the code first deletes any existing Country record
for that country from the dictionary and also removes the country name
from the table view’s array. (Upon removal, the objects are automatically
released by the array.) Then it creates a new Country instance, initializes it
with the values currently on the screen, adds the instance to the
dictionary, and releases the instance (the dictionary has retained it). For
the table view’s array, it adds the country name to it, sorts it, and invokes
the reload method, which causes the table view to request data from its data
source.

The selectedRow message queries the table view for the row index of the cell
that was clicked. If this index is within the array’s bounds, the code uses it
to get the country name from the array, and then uses the country name as
the key to get the associated Country instance. It writes the instance-
variable values of this instance to the fields of the application, updates the
“Notes and Itinerary for” label, and resets the recordNeedsSaving flag.

Optional Exercise

Users often like to have key alternatives to mouse actions such as clicking a
table view. One way of acquiring a key alternative is to add a menu command
in Interface Builder, specify a key as an attribute of the command, define an
action method that the command will invoke, and then implement that
method.

The methods nextRecord: and prevRecord: should be invoked when users choose
Next Record and Prev Record or type the key equivalents Command-n and
Command-r. In TAController.m, implement these methods, keeping the following
hints in mind:

1. Get the index of the selected row (selectedRow).

2. Increment or decrement this index, according to which key is pressed (or
which command is clicked).

3. If the start or end of the table view is encountered, “wrap” the selection.
(Hint: Use the index of the last object in the countryKeys array.)

4. Using the index, select the new row, but don’t extend the selection.

5. Simulate a mouse click on the new row by sending handleTVClick: to self.

A

B

101

Chapter 3 A Forms-Based Application
Breaktime: Build the Project
Now is a good time to take a break and build Travel Advisor. See if there are any
errors in your code or in the nib file you’ve created with Interface Builder.
Remember, if you unsure about any of the code discussed so far, especially code
that you’re encouraged to write on your own as part of an “exercise,” refer to the
example project in /System/Developer/Examples/AppKit. You may also want to take this
time to test drive Project Builder’s graphical debugger, discussed on the following
two pages.
102

Creating the Travel Advisor Interface
Adding and Deleting Records
When users click Add Record to enter a Country “record,” the addRecord:
method is invoked. You want this method to do a few things besides adding a
Country object to the application’s dictionary:

• Ensure that a country name has been entered.
• Make the table view reflect the new record.
• If the record already exists, update it (but only if it’s been modified).

This section of code verifies that a country name has been entered and
sees if there is a Country object in the dictionary. If there’s no object for
the key, objectForKey: returns nil. If the object exists and it’s flagged as
modified, the code removes it from the dictionary and removes the

1 Implement the method that adds a
Country object to the NSDictionary
“database.”

- (void)addRecord:(id)sender

{

 Country *aCountry;

 NSString *countryName = [countryField stringValue];

 if (countryName && (![countryName isEqualToString:@""])) {

 aCountry = [countryDict objectForKey:countryName];

 if (aCountry && recordNeedsSaving) {

 /* remove old Country object from dictionary */

 [countryDict removeObjectForKey:countryName];

 [countryKeys removeObject:countryName];

 aCountry = nil;

 }

 if (!aCountry) /* record is new or has been removed */

 aCountry = [[Country alloc] init];

 else /* record already exists and hasn't changed */

 return;

 [self extractFields:aCountry];

 [countryDict setObject:aCountry forKey:[aCountry name]];

 [countryKeys addObject:[aCountry name]];

 [countryKeys sortUsingSelector:@selector(compare:)];

 recordNeedsSaving=NO;

 [commentsLabel setStringValue:[NSString stringWithFormat:

 @"Notes and Itinerary for %@",[countryField stringValue]]];

 [countryField selectText:self];

 [tableView reloadData];

 [tableView selectRow:[countryKeys indexOfObject:

 [aCountry name]] byExtendingSelection:NO];

 }

}

A

B

C

D

A

103

Chapter 3 A Forms-Based Application
country name from the countryKeys array. Note that removing an object from a
dictionary or array also releases it, so the code sets aCountry to nil. It then tests
aCountry and, if it’s nil, creates a new object; otherwise it just returns, because an
object already exists for this country and it hasn’t been modified.

After updating the new Country object with the information on the
application’s fields (extractFields:), this code adds the Country object to the
dictionary and the country name to the countryKeys array.

This section of code performs some things that have to be done, such as
resetting the recordNeedsSaving flag and updating the label over the scroll view to
reflect the just-added country.

The reloadData message forces the table view to update its contents. The
selectRow:byExtendingSelection: message highlights the new record in the table view.

Note: In the code example on the previous page, note the expression “if
(!aCountry)”. For objects, this is shorthand for “if (aCountry == nil)”; in the same
vein, “if (aCountry)” is equivalent to “if (aCountry != nil)”.

Before You Go On

Exercise: Implement the deleteRecord: method. Although similar in structure to
addRecord: this method is much simpler, because you don’t need to worry about
whether a Country record has been modified. Once you’ve deleted the record,
remember to update the table view and clear the fields of the application.

B

C

D

Flattening the Object Network: Coding and Archiving

Coding, as implemented by NSCoder, takes
a network of objects such as exist in an application
and serializes that data, capturing the state,
structure, relationships, and class memberships of
the objects. As a subclass of NSCoder, NSArchiver
extends this behavior by storing the serialized data
in a file.

When you archive a root object, you archive not only
that object but all other objects the root object
references, all objects those second-level objects
reference, and so on. To be archived, however,
objects must conform to the NSCoding protocol.
This conformance requires that they implement the
encodeWithCoder: and initWithCoder: methods.

Thus sending archiveRootObject:toFile: to
NSArchiver leads to the invocation of
encodeWithCoder: in the root object and in all
referenced objects that implement it. Similarly,
sending unarchiveObjectWithFile: to
NSUnarchiver results in initWithCoder: being
invoked in those objects referenced in the archive
file. These objects reconstitute themselves from the
instance data in the file. In this way, the network of
objects, three-dimensional in abstraction, is
converted to
a two-dimensional stream of data and
back again.
104

Creating the Travel Advisor Interface
Field Validation
The NSControl class gives you an API for validating the contents of cells.
Validation verifies that the values of cells fall within certain limits or meet
certain criteria. In Travel Advisor, we want to make sure that the user does not
enter a negative value in the Rate field.

The request for validation is a message—control:isValidObject:—that a control
sends to its delegate. The control, in this case, is the Rate field.

Because you might have more than one field’s value to validate, this
example first determines which field is sending the message. It then
checks the field’s value (passed in as the second object); if it is negative, it
displays a message box and returns NO, blocking the entry of the value.
Otherwise, it returns YES and the field accepts the value.

The NSRunAlertPanel() function allows you to display an attention panel from
any point in your code. The above example calls this function simply to
inform the user why the value cannot be accepted.

Although Travel Advisor doesn’t evaluate it, the NSRunAlertPanel() function
returns a constant indicating which button the user clicks on the message
box. The logic of your code could therefore branch according to user
input. In addition, the function allows you to insert variable information
(using printf()-style conversion specifiers) into the body of the message.

1 Validate the values entered in a field.

In awakeFromNib, make TAController
a delegate of the field to be validated:
the Rate field.

Implement the control:isValidObject:
method to validate the value of the
field.

 [currencyRateField setDelegate:self];

- (BOOL)control:(NSControl *)control isValidObject:(id)obj

{

 if (control == currencyRateField) {

 if ([obj floatValue] < 0.0) {

NSRunAlertPanel(@"Travel Advisor",
@"Rate cannot be negative.", nil, nil, nil);

 return NO;

 }

 }

 return YES;

}

A

B

A

B

105

Chapter 3 A Forms-Based Application
Application Management
By now you’ve finished the major coding tasks for Travel Advisor. All that remains
to implement are a half dozen or so methods. Some of these methods perform
tasks that every application should do. Others provide bits of functionality that
Travel Advisor requires. In this section you’ll:

• Archive and unarchive the TAController object.
• Implement TAController’s init and dealloc methods.
• Save data when the application terminates.
• Mark the current record when users make a change.
• Obtain and display converted currency values.

The data that users enter into Travel Advisor should be saved in the file system,
or archived. The best time to initiate archiving in Travel Advisor is when the
application is about to terminate. Earlier you made TAController the delegate of
the application object (NSApp). Now respond to the delegate message
applicationShouldTerminate:, which is sent just before the application terminates.

Constructs a pathname for the archive file, “TravelData.” This file is stored in
the resource directory of the application’s main bundle. The application
wrapper—the directory holding the application executable and the resource
directory—is a bundle (the main bundle), so NSBundle methods are used to get
the path to this directory.

This technique of storing application data in the main bundle is for the purposes of
demonstrating NSBundle APIs and is not recommended for most applications. See the
following chapter, “To Do Tutorial—The Basics,” for examples and explanations of storing
user-specific document data in the file system.

If the countryDict dictionary holds Country objects, TAController archives it with
the NSArchiver class method archiveRootObject:toFile:. Since the dictionary is
designated as the root object for archiving, all objects that the dictionary
references (that is, the Country objects it contains) will be archived too.

1 Archive the application’s objects
when it terminates.

Implement the delegate method
applicationShouldTerminate:, as
shown at right.

- (BOOL)applicationShouldTerminate:(id)sender

{

 NSString *storePath = [[[NSBundle mainBundle] resourcePath]

 stringByAppendingPathComponent:@"TravelData"];

 /* save current record if it is new or changed */

 [self addRecord:self];

 if (countryDict && [countryDict count])

 [NSArchiver archiveRootObject:countryDict toFile:storePath];

 return YES;

}

A

B

A

B

106

Creating the Travel Advisor Interface

Behind ‘Click Here’: Controls, Cells, and Formatters
Controls and cells lie behind the appearance and behavior of most user-
interface objects in OpenStep, including buttons, text fields, sliders, and
browsers. Although they are quite different types of objects—controls
inherit from NSControl while cells inherit from NSCell—they interact
closely.

Controls enable users to signal their intentions to an application, and thus
to control what is happening. By interpreting mouse and keyboard events
and asking another object to respond to them, controls implement the
target/action paradigm described in ‘‘Paths for Object Communication:
Outlets, Targets, and Actions’’ on page 40. Controls themselves can hold
targets and actions as instance variables, but usually they get this data
from the affected cell (which must inherit from NSActionCell).

Cells are rectangular areas “embedded” within a control. A control can hold
multiple cells as a way to partition its surface into active areas. Cells can
draw their own contents either as text or image (and sometimes as both),
and they can respond individually to user actions. Since cells are typically
more frugal consumers of memory than controls, they help applications be
more efficient.

Controls act as managers of their cells, telling them when and where to
draw, and notifying them when a user event (mouse clicks, keystrokes)
occurs in their areas. This division of labor, given the relative “weight” of
cells and controls, provides a great boost to application performance.

Control
tracking messages

Cell

drawing messages

cell (NSButtonCell)

control (NSMatrix)

control (NSTextField)
cell(NSTextFieldcell)
A control does not have to have a cell associated with it, but most user-
interface objects available on Interface Builder’s standard palettes are
cell-control combinations. Even a simple button—from Interface Builder or
programmatically created—is a control (an NSButton instance) associated
with an NSButtonCell. The cells in a control such as a matrix must be the
same size, but they can be of different classes. More complex controls, such
as table views and browsers, can incorporate various types of cells.

Cells and Formatters

When one thinks of the contents of cells, it’s natural to consider only text
(NSString) and images (NSImage). The content seems to be whatever is
displayed. However, cells can hold other kinds of objects, such as dates
(NSDate), numbers (NSNumber), and custom objects (say, phone-number
objects).

Formatter objects handle the textual representation of the objects
associated with cells and translate what is typed into a cell into the
underlying object. Using NSCell’s setFormatter:, you must
programmatically associate a formatter with a cell to get this behavior.

The Foundation framework provides the NSDateFormatter and
NSNumberFormatter classes to generate date formatters and currency and
number formatters. You can make a custom subclass of NSFormatter to
derive your own formatters.

NSDateFormatter

NSDate

translates
textual
contents...

...into the
underlying
object...

...and vice
versa
107

Chapter 3 A Forms-Based Application
Using NSBundle methods, locates the archive file “TravelData” in the
application wrapper and returns the path to it.

The unarchiveObjectWithFile: message unarchives (that is, restores) the object whose
attributes are encoded in the specified file. The object that is unarchived and
returned is the NSDictionary of Country objects (countryDict).

If no NSDictionary is unarchived, the countryDict instance variable remains nil. If
this is the case, TAController creates an empty countryDict dictionary and an
empty countryKeys array. Otherwise, it retains the instance variable.

When users modify data in fields of Travel Advisor, you want to mark the current
record as modified so later you’ll know to save it. The Application Kit broadcasts
a notification whenever text in the application is altered. To receive this
notification, add TAController to the list of the notification’s observers.

- (id)init

{

 NSString *storePath = [[NSBundle mainBundle]

 pathForResource:@"TravelData" ofType:nil];

 [super init];

 countryDict =

 [NSUnarchiver unarchiveObjectWithFile:storePath];

 if (!countryDict) {

 countryDict = [[NSMutableDictionary alloc] init];

 countryKeys = [[NSMutableArray alloc] initWithCapacity:10];

 } else

 countryDict = [countryDict retain];

 recordNeedsSaving=NO;

 return self;

}

A

B

C

1 Implement TAController’s methods
for initializing and deallocating itself.

Implement the init method, as shown
at right.

Implement the dealloc method to
release object instance variables.

A

B

C

108

Creating the Travel Advisor Interface
Next, implement the method that you indicated would respond to the
notification; this method sets a flag, thereby marking the record as changed.

You post notifications and add objects as observers of notifications with methods defined
in the NSNotificationCenter class. NSNotification defines methods for creating
notification objects and for accessing their attributes. See the specifications of these
classes in the Foundation framework reference documentation.

Two of the editable fields of Travel Advisor hold temporary values used in
conversions and so are not saved. This statement checks if these fields are the
ones originating the notification and, if they are, returns without setting the
flag. (The object message obtains the object associated with the notification.)

The final method to implement is almost identical to the one you wrote for
Currency Converter to display the results of a currency conversion when the
user clicks the Convert button for currency conversion.

Optional Exercise

Convert Celsius to Fahrenheit: Implement the convertCelsius: method. You’ve already
specified and connected the necessary outlets (celsius, fahrenheit) and action
(convertCelsius:), so all that remains is the method implementation. The formula
you’ll need is:

F° = 9/5C° + 32

 [[NSNotificationCenter defaultCenter] addObserver:self

 selector:@selector(textDidChange:)

 name:NSControlTextDidChangeNotification object:nil];

1 Write the code that marks records as
modified.

In the awakeFromNib method, make
TAController an observer of
NSControlTextDidChangeNotification.

Implement textDidChange: to set the
recordNeedsSaving flag.

- (void)textDidChange:(NSNotification *)notification

{

 if ([notification object] == currencyDollarsField ||

 [notification object] == celsius) return;

 recordNeedsSaving=YES;

}

1 Implement the method that responds
to a request for a currency
conversion.

- (void)convertCurrency:(id)sender

{

 [currencyLocalField setFloatValue:

 [converter convertAmount:[currencyDollarsField floatValue]

 byRate:[currencyRateField floatValue]]];

}

109

Chapter 3 A Forms-Based Application

110

Using the Graphical Debugger

To smooth the task of debugging, Project Builder puts a graphical user
interface over the GNU debugger, gdb. To access the Launch panel that
serves as this graphical debugger, click the button outlined at right.

1. Run the debugger.

The Launch panel allows you to run programs or debug them. If you want to
debug a program, start up gdb by clicking this button:

Before you run gdb you should first build your project with a target of
“debug” to get an executable with full debugging information. You should
also verify that the proper executable is being debugged. To select the
“debug” executable for debugging, click the checkmark button and, in the
Executables display of the Launch Options panel, choose the file with an
extension of debug.

Set options: executable to run or debug,
directories to search, command-line
arguments, and so on.

Start gdb.

Launch program (instead of debugging it).

2. Set a breakpoint.

When you start the debugger, a narrow gray band appears along the left
margin of the code editor. You set a breakpoint by double-clicking in the
gray band next to a line of code.

You can see which breakpoints are set in the Breakpoints display of the Task
Inspector, which you access by clicking this button:

In this inspector, you can disable and re-enable breakpoints by double-
clicking under the “Use?” column.

Reset the breakpoint by
dragging it.

Disable the breakpoint by
double-clicking it.

Delete the breakpoint by
dragging it into the code
editor until it disappears.

3. Start debugging the application.

To begin debugging an application click the right-triangle button:

The application starts up. If necessary, use the application until the first
breakpoint is encountered. When that happens, the “(gdb)” prompt
appears in the command-line section of the panel.

You can type gdb commands at this prompt. There are many gdb
commands not represented in the user interface. For on-line information on
these commands, enter “help” at the prompt. You can also find more about
commands in the on-line gdb reference.

Creating the Travel Advisor Interface

111

4. Inspect the stack trace.

When a program running under the debugger hits a breakpoint, the
graphical debugger displays a trace of the call stack. You can see the
sequence of calls leading up to the breakpoint as well as the values of
arguments of methods or functions implemented by your project.

The Stack display is part of the Task Inspector, which you open by clicking
the following button on the Launch panel:

5. Step through code.

When the program you’re debugging hits a breakpoint, you usually want to
step through a section of the code and see what happens (in terms of the
stack and the values of variables). The Launch panel gives you two buttons
for stepping through code.

You can step into code (going from a call site to an invoked method or called
function) only with code that your project implements.

Step intoStep past

The arrow shows the program
counter as you step through
code.

6. Examine data values.

With the graphical debugger, you can inspect the values of variables,
pointers, and objects as you step through code. First select a symbol in the
code after the statement in which it appears has been executed. Then click
one of the “print” buttons to learn about its present value:

The gdb command-line section of the Launch panel then displays the
requested value. When you click the rightmost button and an object is
selected, that object’s description method is invoked. If you are debugging
your own objects, it might be worthwhile to implement the description
method to yield information as precise and detailed as is required (see
page 124 for an example of this).

For more information on debugging, see the on-line Help for Project Builder.

Print referencePrint value

Print object
description

Chapter 3 A Forms-Based Application
Building and Running Travel Advisor

When Travel Advisor is built, start it up by double-clicking the icon in the File
Manager. Then put the application through the following tests:

• Enter a few records. Make up geographical information if you have to—
you’re not trusting your future travels to this application. Not yet, anyway.

• Click the items in the table view and notice how the selected records are
displayed. Press Command-n and Command-r and observe what happens.

• Enter values in the conversion fields to see how they’re automatically
formatted. Try to enter a negative value in the Rate field.

• Quit the application and then start it up again. Notice how the application
displays the same records that you entered.

Tips for Eliminating Deallocation Bugs

Problems in object deallocation are not unusual in OpenStep applications
under development. You might release an object too many times or you
might not release an object as many times as is needed to deallocate it.
Both situations lead to nasty problems —in the first case, to run-time
errors when your code references non-existent objects; the second case
leads to memory leaks.

If you’re releasing an object too many times, you’ll get run-time error
messages telling you that a message was sent to a freed object. To find
which methods were releasing the object, in gdb or the graphical debugger:

1 Set a breakpoint on main() and run the program.

2 When you hit the breakpoint, send enableFreedObjectCheck: to
NSAutoreleasePool with an argument of YES.

3 Set a breakpoint on _NSAutoreleaseFreedObject.

4 Continue running the program.

5 When the program hits the breakpoint, do a backtrace and check the
stack to find the method releasing the object.

Avoiding Deallocation Errors

Here’s a few things to remember that might help you avoid deallocation
bugs in OpenStep code:

• Make sure there’s an alloc, copy, mutableCopy, or retain message
sent to an object for each release or autorelease sent to it.

• When you release a collection object (such as an NSArray), you release
all objects stored in it as well. When you add an object to a collection,
it’s retained; when you remove an object from a collection, it’s released.

• Superviews retain subviews as you add them to the view hierarchy and
release subviews as you release them. If you want to keep swapped-out
views, you should retain them. Similarly, when you replace a window’s or
box’s content view, the old view is released and the new view is retained.

• To avoid retain cycles, objects should not retain their delegates. Objects
also should not retain their outlets, since they do not own them.
112

	A Forms-Based Application
	Creating the Travel Advisor Interface
	Defining the Classes of Travel Advisor
	Implementing the Country Class
	Implementing the TAController Class
	Building and Running Travel Advisor

