

To Do Tutorial - The Basics Chapter 4

114

What You’ll Learn

Designing a multi-document
application

Managing documents

Extending an Application Kit class

Loading code and resources
dynamically

Opening and saving files

Manipulating times and dates

Reading and setting user defaults

The core program framework

4

You can find the To Do project in the

AppKit

 subdirectory of

/System/Developer/Examples.

115

Chapter 4

A Multi-Document Application

Many kinds of applications—word processors and spreadsheets, to name a couple—

are designed with the notion of a

document

 in mind. A document is a body of

information, usually contained by a window, that is self-contained and repeatable.

Users can create, modify, store, and access a document as a discrete unit. Multi-

document applications (as these programs are called) can generate an almost unlimited

number of documents.

The To Do application presented in this chapter is a multi-document application. It is

a fairly simple personal information manager. Each To Do document captures the

daily “must-do” items for a particular purpose. For instance, one could have a To Do

list for work and another one for home.

This chapter guides you through the steps needed to make To Do a multi-document

application. When you finish this tutorial, the completed application will allow users to

go to specific dates on a calendar and enter a list appointments or tasks for a particular

days.

Chapter 4

A Multi-Document Application

The Design of To Do

The To Do application vaults past Travel Advisor in terms of complexity.
Instead of Travel Advisor’s one nib file, To Do has three nib files. Instead of
three custom classes, To Do has seven. The diagram at the bottom of this
page shows the interrelationships among instances of some of those
classes and the nib files that they load.

Some of the objects in this diagram are familiar, fitting as they do into the
Model-View-Controller paradigm. The ToDoItem class provides the model
objects for the application; instances of this class encapsulate the data
associated with the items appearing in documents. They also offer
functions for computing subsets of that data. And then there’s the
controller object—actually, there is more than one controller object.

To Do’s Multi-Document Design

Two types of controller objects are at the heart of multi-document
application design. They claim different areas of responsibility within an
application. ToDoController is the application controller; it manages events
that affect the application as a whole. Each ToDoDoc object is a document
controller, and manages a single document, including all the ToDoItems
that belong to the document. Naturally, it’s essential that the application
controller be able to communicate with its (potentially) numerous
document controllers, and they with it.
116

The ToDoInspector instance in this diagram
takes on some of the work that the application
controller, ToDoController, could do. By
breaking down a problem domain into distinct
areas of responsibility, and assigning certain
types of objects to each area, you increase the
modularity and reusability of the object, and
make maintenance and troubleshooting
easier. See “Object-Oriented Programming”
in the appendix for more on this.

ToDoInspe

ToDoInsp
(Contro
The File menu, which Interface Builder includes by default on the menu bar,
contains the commands that multi-document applications typically need.
When users choose New from the File menu, the application controller
allocates and initializes an instance of the ToDoDoc class. When the
ToDoDoc instance initializes itself, it loads the ToDoDoc.nib file. When the
user has finished entering items into the document and chooses Save from
the File menu, a Save dialog box appears and the user saves the document
in the file system under an assigned name. Later, the user can open the
document using the Open menu command, which causes the Open dialog
box to be displayed.

The controller objects of To Do respond to a variety of delegation messages
sent when certain events occur—primarily from windows and the
application object (NSApp)—in order to save and store object state. One
example of such an event is when the user closes a document window;
another is when data is entered into a document. Often when these events
happen, one controller sends a message or notification to the other
controller to keep it informed.
Loads

Creates/Manages

ctor.nib

ector
ller)

ToDoController
(Controller)

ToDoDoc
(Controller)

ToDoItem
(Model)

ToDoDoc.nib

ToDo.nib
(menu template)

How To Do Stores and Accesses its Data

The data elements of a To Do document (ToDoDoc) are ToDoItems. When a
user enters an item in a document’s list, the ToDoDoc creates a ToDoItem
and inserts that object into a mutable array (NSMutableArray); the
ToDoItem occupies the same position in the array as the item in the matrix’s
text field. This positional correspondence of objects in the array and items
in the matrix is an essential part of the design. For instance, when users
delete the first entry in the document’s list, the document removes the
corresponding ToDoItem (at index 0) from the array.

The array of ToDoItems is associated with a particular day. Thus the data
for a document consists of a (mutable) dictionary with arrays of ToDoItems
for values and dates for keys.

When users select a day in the calendar, the application computes the date,
which it then uses as the key to locate an array of ToDoItems in the
dictionary.

To Do’s Custom Views

The discussion so far has touched on model objects and controller objects,
but has said nothing about the second member of the Model-View-
Controller triad: view objects. Unlike Travel Advisor, which uses only “off-
the-shelf” views, To Do’s final interface features objects from three custom
Application Kit subclasses. (You’ll create only CalendarMatrix in this
chapter.)

F
s

V

CalendarMatrix (subclass of
NSMatrix): A dynamic calendar
that notifies its delegate about
selected dates.

ToDoCell (subclass of
NSButtonCell): A tri-state
control with different images for
each state. It also displays the
times when items are due.
or further discussion of the architecture of multi-document applications,
ee page 139.

Key

alue

NSMutableDictionary

15 Nov 1995 16 Nov 1995 17 Nov 1995

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem

ToDoItem
117

SelectionNotifMatrix (subclass of
NSMatrix): Notifies observing objects
when a selection in a text field occurs.

Chapter 4

A Multi-Document Application

Setting Up the To Do Project

Create the To Do project almost in the same way you created the Travel Advisor
application. There are a few differences; each, of course, has a different name and
icon. But the most important difference is that To Do has its own document type.

1 Create the application project.

Start Project Builder.

Choose New from the Project menu.

Set the project type to Application.

Name the application “ToDo.”

Click OK.

1 Add the application icon.

In the Project Attributes display of the
project inspector, drag the application
icon (ToDo.tiff) into the icon well.

Confirm that you want the image
added to the project.

(The icon is in the ToDo project in
/System/Developer/Examples/AppKit.)

1 Specify the To Do document type.

Click Add.

Double-click the new cell under the
Extension column.

Type the extension of To Do documents:
“td”.

Drag into the icon well the file
calendar.tiff from the ToDo project in
/System/Developer/Examples/AppKit.

You can have different icons and other project
attributes for Rhapsody and Yellow Box for Windows.

Instead of dragging the image file into the well, you can
add the image file to the project and then just type the
name of the file here.

As with the application icon, when you drag the
document icon into the image well (with the document
row selected in Document Icons), the image file is
added to the project.

Document types specify the kinds of files the
application can open and “understand.” Documents
appear in the desktop with the assigned icon. Double-
clicking the icon opens the document.

Before Project Builder accepts the document icon, you
must assign the extension (if the type is new) and
select the row.

If the document type is well-known (for example, “.c”)
just drag a document of that type into the well.
118

Creating the Model Class (ToDoItem)

Creating the Model Class (ToDoItem)

The ToDoItem class provides the model objects for the To Do application.
Its instance variables hold the data that defines tasks that should be done or
appointments that have to be kept. Its methods allow access to this data. In
addition, it provides functions that perform helpful calculations with that
data. ToDoItem thus encapsulates both data and behavior that goes beyond
accessing data.

Since ToDoItem is a model class, it has no user-interface duties and so the
expedient course is to create the class without using Interface Builder. We
first add the class to the project; Project Builder helps out by generating
template source-code files.

Setting Up the Programmatic Interface
As you’ve done before with Travel Advisor, start by declaring instance
variables and methods in the header file, ToDoItem.h.

You are adopting the NSCopying protocol in addition to the NSCoding
protocol because you are going to implement a method that makes
“snapshot” copies of ToDoItem instances.

1 Add the ToDoItem class to the
project.

Select Classes in the project browser.

Choose New In Project from the File
menu.

In the New File In ToDo panel, type
“ToDoItem” in the Name field.

Make sure the “Create header” switch
is checked.

Click the OK button.

1 Declare ToDoItem’s instance
variables and methods.

Type the instance variables as shown
at right.

Indicate the protocols adopted by this
class.

@interface ToDoItem:NSObject<NSCoding, NSCopying>

{

 NSCalendarDate *day;

 NSString *itemName;

 NSString *notes;

 NSTimer *itemTimer;

 long secsUntilDue;

 long secsUntilNotif;

 ToDoItemStatus itemStatus;

}

119

Chapter 4

A Multi-Document Application

Instance Variable What it Holds

day The day (a date resolved to 12:00 AM) of the to-do item

itemName The name of the to-do item (the content’s of a document text field)

notes The contents of the inspector’s Notes display; this could be any information
related to the to-do item, such as an agenda to discuss at a meeting

itemTimer A timer for notification messages

secsUntilDue The seconds after day at which the item comes due

secsUntilNotif The seconds after day at which a notification is sent (before secsUntilDue)

itemStatus Either “incomplete,” “complete,” or “deferToNextDay”

Type the method declarations shown at
right.

- (id)initWithName:(NSString *)name andDate:(NSCalendarDate *)date;

- (void)dealloc;

- (BOOL)isEqual:(id)anObject;

- (id)copyWithZone:(NSZone *)zone;

- (id)initWithCoder:(NSCoder *)coder;

- (void)encodeWithCoder:(NSCoder *)coder;

- (void)setDay:(NSCalendarDate *)newDay;

- (NSCalendarDate *)day;

- (void)setItemName:(NSString *)newName;

- (NSString *)itemName;

- (void)setNotes:(NSString *)notes;

- (NSString *)notes;

- (void)setItemTimer:(NSTimer *)aTimer;

- (NSTimer *)itemTimer;

- (void)setSecsUntilDue:(long)secs;

- (long)secsUntilDue;

- (void)setSecsUntilNotif:(long)secs;

- (long)secsUntilNotif;

- (void)setItemStatus:(ToDoItemStatus)newStatus;

- (ToDoItemStatus)itemStatus;
120

Creating the Model Class (ToDoItem)

The first set of constants are values for the itemStatus instance variable. The
second set of constants are for convenience and clarity in the methods that
deal with temporal values.

These functions provide computational services to clients of this class,
converting time in seconds to hours and minutes (as required by the user
interface), and back again to seconds (as stored by ToDoItem).

Before You Go On

Remember, build the project frequently to catch any errors quickly, to get a
sense of how the application is developing, and (just as important) to give
yourself a break from coding.

1 Define enum constants for use in
ToDoItem’s methods.

Define these constants before the
@interface directive.

typedef enum ToDoItemStatus {

 incomplete=0,

 complete,

 deferToNextDay

} ToDoItemStatus;

enum {

 minInSecs = 60,

 hrInSecs = (minInSecs * 60),

 dayInSecs = (hrInSecs * 24),

 weekInSecs = (dayInSecs * 7)

};

1 Declare two time-conversion
functions.

BOOL ConvertSecondsToTime(long secs, int *hour, int *minute);

long ConvertTimeToSeconds(int hr, int min, BOOL flag);
121

Chapter 4

A Multi-Document Application

Specifying Basic Object Behavior
Most of the method declarations of this class are for accessor methods. You know
from past experience what you must do to implement them.

The setItemTimer: method is slightly different from the other “set” accessor
methods. It sends invalidate to itemTimer to disable the timer before it autoreleases
it.

Timers (instances of NSTimer) are always associated with a run loop (an instance of
NSRunLoop). See ‘‘Tick Tock Brrrring: Run Loops and Timers’’ on page 198 for more on
timers and run loops.

In this application, you want client objects to be able to copy your ToDoItem
objects and test them for equality. You must define this behavior yourself.

Starting Up — What Happens in NSApplicationMain()

Every Rhapsody application project created through Project Builder has the
same main() function (in the file ApplicationName_main.m). When users
double-click an application or document icon in the File Manager or
Explorer, main() (the entry point) is called first; main(), in turn, calls
NSApplicationMain()—and that’s all it does.

The NSApplicationMain() function does what’s necessary to get an
Rhapsody application up and running—responding to events, coordinating
the activity of its objects, and so on. The function starts the network of
objects in the application sending messages to each other. Specifically,
NSApplicationMain():

1 Gets the application’s attributes, which are stored in the application
wrapper as a property list. From this property list,
 it gets the names of the main nib file and the principal class (for
applications, this is NSApplication or a custom subclass of
NSApplication).

2 Gets the Class object for NSApplication and invokes its
sharedApplication class method, creating an instance of

NSApplication, which is stored in the global variable, NSApp. Creating
the NSApplication object connects the application to the window system
and the Display PostScript server, and initializes its PostScript
environment.

3 Loads the main nib file, specifying NSApp as the owner. Loading
unarchives and re-creates application objects and restores the
connections between objects.

4 Runs the application by starting the main event loop. Each time through
the loop, the application object gets the next available event and
dispatches it to the most appropriate object in the application. The loop
continues until the application object receives a stop: or terminate:
message, after which the application is released and the program exits.

You can add your own code to main() to customize application start-up or
termination behavior.

- (void)setItemTimer:(NSTimer *)aTimer

{

 if (itemTimer) {

 [itemTimer invalidate];

 [itemTimer autorelease];

 }

 itemTimer = [aTimer retain];

}

1 Implement accessor methods.

Open ToDoItem.m in the code editor.

Implement methods that get and set
the values of ToDoItem’s instance
variables.

Implement the setItemTimer: method
as shown at right.
122

Creating the Model Class (ToDoItem)

The default implementation of isEqual: (in NSObject) is based on pointer
equality. However, ToDoItem has a different basis for equality; any two
ToDoItem objects for the same calendar day and having the same item name
are considered equal. The implementation of isEqual: overrides NSObject to
make these tests. (Note that it invokes NSString’s and NSDate’s own isEqual...
methods for the specific tests.)

Before You Go On

There is a specific as well as a general need for the isEqual: override. In the
To Do application, an NSArray contains a day’s ToDoItems. To access
them, other objects in the application invoke several NSArray methods that,
in turn, invoke the isEqual: method of each object in the array.

This implementation of the copyWithZone: protocol method makes a copy of a
ToDoItem instance that is an independent replicate of the original (self). It
does this by allocating a new ToDoItem and initializing it with instance
variables held by self. Copying is often implemented for value objects—
objects that represent attributes such as numbers, dates, and to-do items.

Copies of objects can be either deep or shallow. In deep copies (like ToDoItem’s) every
copied instance variable is an independent replicate, including the values referenced by
pointers. In shallow copies, pointers are copied but the referenced objects are the same.
For more on this topic, see the description of the NSCopying protocol in the Foundation
reference documentation.

- (BOOL)isEqual:(id)anObj

{

 if ([anObj isKindOfClass:[ToDoItem class]] &&

 [itemName isEqualToString:[anObj itemName]] &&

 [day isEqualToDate:[anObj day]])

 return YES;

 else

 return NO;

}

1 Implement copying and comparing
object behavior.

Implement the isEqual: method.

- (id)copyWithZone:(NSZone *)zone

{

 ToDoItem *newobj = [[ToDoItem allocWithZone:zone]
initWithName:itemName andDate:day];

 [newobj setNotes:notes];

 [newobj setItemStatus:itemStatus];

 [newobj setSecsUntilDue:secsUntilDue];

 [newobj setSecsUntilNotif:secsUntilNotif];

 return newobj;

}

Implement the copyWithZone:
method.
123

Chapter 4

A Multi-Document Application

The next method you’ll implement—description—assists you and other
developers in debugging the To Do application with gdb. When you enter the po
(print object) command in gdb with a ToDoItem as the argument, this description
method is invoked and essential debugging information is printed.

Here are some things to remember as you implement initWithName:andDate: and
dealloc:

• If the first argument of initWithName:andDate: (the item name) is not a valid
string, return nil. If the second argument (the date) is nil, set the related
instance variable to some reasonable value (such as today’s date). Also, be sure
to invoke super’s init method.

• The instance variables to initialize are day, itemName, notes, and itemStatus (to
“incomplete”).

• In dealloc, release those object instance variables initialized in
initWithName:andDate: plus any object instance variables that were initialized
later. Also invalidate any timer before you release it.

When you implement encodeWithCoder: and initWithCoder:, keep the following in
mind:

• Encode and decode instance variables in the same order.

• Copy the object instance variables after you decode them.

• You don’t need to archive the itemTimer instance variable since timers are re-
set when a document is opened.

- (NSString *)description

{

 NSString *desc = [NSString stringWithFormat:@"%@\n\tName:
 %@\n\tDate: %@\n\tNotes: %@\n\tCompleted: %@\n\tSecs Until Due:
 %d\n\tSecs Until Notif: %d",

 [super description],

 [self itemName],

 [self day],

 [self notes],

 (([self itemStatus]==complete)?@"Yes":@"No"),

 [self secsUntilDue],

 [self secsUntilNotif]];

 return (desc);

}

1 Have the object describe itself
during debugging.

Implement the description method.

1 Implement ToDoItem’s initialization
and deallocation methods.

1 Implement ToDoItem’s archiving and
unarchiving methods.
124

Creating the Model Class (ToDoItem)

The final step in creating the ToDoItem class is to implement the functions that
furnish “value-added” behavior.

This expression, as well as others in these two methods, uses the enum
constants for time-values-as seconds that you defined earlier.

The ConvertSecondsToTime() function uses indirection as a means for returning
multiple values and directly returns a Boolean to indicate AM or PM.

Breaktime!
Take a break from coding and build the project as it now stands. Go get a coffee,
soda, or other beverage while the project is building. When you return, fix any
errors that have insinuated themselves into the code. You can stop and build at
anytime— a good thing to do because it will help you locate mistakes more easily.

1 Implement ToDoItem’s time-
conversion functions.

long ConvertTimeToSeconds(int hr, int min, BOOL flag)

{

 if (flag) { /* PM */

 if (hr >= 1 && hr < 12)

 hr += 12;

 } else {

 if (hr == 12)

 hr = 0;

 }

 return ((hr * hrInSecs) + (min * minInSecs));

}

BOOL ConvertSecondsToTime(long secs, int *hour, int *minute)

{

 int hr=0;

 BOOL pm=NO;

 if (secs) {

 hr = secs / hrInSecs;

 if (hr > 12) {

 *hour = (hr -= 12);

 pm = YES;

 } else {

 pm = NO;

 if (hr == 0)

 hr = 12;

 *hour = hr;

 }

 *minute = ((secs%hrInSecs) / minInSecs);

 }

 return pm;

}

A

B

A

B

125

Chapter 4

A Multi-Document Application

126

As any developer knows well, performance is a key consideration in program
design. One factor is the timing of resource allocation. If an application
loads all code and resources that it

might

 use when it starts up, it will
probably be a sluggish, bloated application—and one that takes awhile to
launch.

You can strategically store the resources of an application (including user-
interface objects) in several nib files. You can also put code that might be
used among one or more

loadable bundles

. When the application needs a
resource or piece of code, it loads the nib file or loadable bundle that
contains it. This technique of deferred allocation benefits an application
greatly. By conserving memory, it improves program efficiency. It also
speeds up the time it takes to launch the application.

Auxiliary Nib Files

When more sophisticated applications start up, they load only a minimum
of resources in the main nib file—the application’s menus and perhaps a
window. They display other windows (and load other nib files) only when
users request it or when conditions warrant it.

Nib files other than an application’s main nib file are sometimes called

auxiliary nib files

. There are two general types of auxiliary nib files: special-
use and document.

Special-use nib files contain objects (and other resources)
that

might

 be used in the normal operation of the application. Examples of
special-use nib files are those containing inspector panels and Info (or
About) panels.

Document nib files contain objects that represent some repeatable entity,
such as a word-processor document. A document nib file is a template for
documents: it contains the UI objects and other resources needed to make
a document.

The Owner of an Auxiliary Nib File

The object that loads a nib file is usually the object that owns
it. A nib file’s owner must be external to the file. Objects unarchived from
the nib file communicate with other objects in the application only through
the owner.

In Interface Builder, the File’s Owner icon represents this external object.
The File’s Owner is typically the application controller for special-use nib
files, and the document controller for document nib files. The File’s Owner
object is not really appearing twice; it’s created in your application and
referenced in your nib file.

The File’s Owner object dynamically loads a nib file and makes itself the
owner of that file by sending

loadNibNamed

:

owner

: to NSBundle,
specifying

self

 as the second argument.

NSBundle and Bundles

A bundle is a location in the file system (a folder) that stores code and the
resources that go with that code, including images and archived objects. A
bundle is also identified as an instance of NSBundle; this object makes the
contents of the bundle available to other objects that request it.

The generic notion of bundles is pervasive throughout Rhapsody.
Applications are bundles, as are frameworks and palettes. Every
application has at least one bundle—its main bundle—which is the
“.app” directory (or application wrapper) where its executable file is
located. This file is loaded into memory when the application is launched.

Loadable Bundles

You can organize an application into any number of other bundles in
addition to the main bundle and the bundles of linked-in frameworks.
Although these loadable bundles usually reside inside the application
wrapper, they can be anywhere in the file system. Project Builder allows you
to build Loadable Bundle projects.

Loadable bundles differ from nib files in that they don’t require you to use
Interface Builder to build them. Instead of containing mostly archived
objects, they usually contain mostly code. Loadable bundles are especially
useful for incorporating extra behavior into an application upon demand.
An economic-forecast application, for example, might load a bundle
containing the code defining an economic model, but only when users
request that model. You could also use loadable bundles to integrate “plug
and play” components into an existing framework.

Loadable bundles usually have an extension of “.bundle” (although that’s
a convention, not a requirement). Each loadable bundle must have a
principal class that mediates between bundle objects and external objects.

Making Plants.bundle

Only When Needed: Dynamically Loading Resources and Code

Extending an Application Kit Class: An Example
Extending an Application Kit Class: An Example

The calendar on To Do’s interface is an instance of a custom subclass of
NSMatrix. CalendarMatrix dynamically updates itself as users select new
months, notifies a delegate when users select a day, and reflects the current
day (today) and the current selection by setting button-cell attributes.

Creating a subclass of a class that is farther down the inheritance tree poses
more of a challenge for a developer than a simple subclass of NSObject. A
class such as NSMatrix is more specialized than NSObject and carries with it
more baggage: It inherits from NSResponder, NSView, and NSControl, all
fairly complex Application Kit classes. And since CalendarMatrix inherits
from NSView, it appears on the user interface; it is an example of a view object
in the Model-View-Controller paradigm, and as such it is highly reusable.

Why NSMatrix as Superclass?

When you select a specialized superclass as the basis for your subclass, it
is important to consider what your requirements are and to understand
what the superclass has to offer. To Do’s dynamic calendar should:

• Arrange numbers (days) sequentially in rows and columns.

• Respond to and communicate selections of days.

• Understand dates.

• Enable navigation between months.

If you then started to peruse the reference documentation on Application Kit
classes, and looked at the section on NSMatrix, you’d read this:

NSMatrix is a class used for creating groups of NSCells that work together
in various ways. It includes methods for arranging NSCells in rows and
columns.... An NSMatrix adds to NSControl's target/action paradigm by
allowing a separate target and action for each of its NSCells in addition to
its own target and action.

So NSMatrix has an inherent capability for the first of the requirements
listed above, and part of the second (responding to selections). Our
CalendarMatrix subclass thus does not need to alter anything in its
superclass. It just needs to supplement NSMatrix with additional data and
behavior so it can understand dates (and update itself appropriately),
navigate between months, and notify a delegate that a selection was made.
127

Chapter 4 A Multi-Document Application

 the
Composing the Interface

When you created subclasses of NSObject in the previous two tutorials, the next step was to
instantiate the subclass. Because CalendarMatrix is a view (that is, it inherits from NSView),
procedure for generating an instance for making connections is different.

Locate NSMatrix several levels down in the class
hierarchy.

Outlets and actions already defined by the superclass
(or by its superclasses) appear in gray text. Add the
outlets and actions shown in black text.

1 Define the CalendarMatrix class in
Interface Builder.

From Project Builder, open ToDo.nib.

In Interface Builder, choose File m New
Module m New Empty to create a new
nib file.

Save the nib file as ToDoDoc.nib.

Respond Yes when asked if you want
the nib file added to the project.

In the Classes display of the nib file
window, select NSMatrix.

Choose Subclass from the Classes
menu.

Name the new class “CalendarMatrix”.

Select the new class.

Add the outlets and actions shown in
the example at right.
128

Extending an Application Kit Class: An Example
The selection of the class for the CustomView creates an instance of it that
you can connect to other objects in the nib file. Now put the controls and
fields associated with CalendarMatrix on the window.

The CustomView object is a “proxy” object that
represents any custom NSView on the interface.

Assign a class to the CustomView by selecting a class
listed here. Custom classes must be defined in the nib.
file.

1 Put a custom NSView object
(CalendarMatrix) on the user
interface.

Drag a window from the Windows
palette.

Resize the window, using the example
at right as a guide.

Turn off the window’s resize bar.

Drag a CustomView from the Views
palette onto the window.

Resize and position the CustomView,
using the example at right as a guide.

In the Attributes display of the
inspector, select CalendarMatrix from
the list of available classes.
129

Chapter 4 A Multi-Document Application
.

Next connect CalendarMatrix to its satellite objects.

Name Connection Type

monthName From CalendarMatrix to the label field above it outlet

leftButton From CalendarMatrix to the left-pointing arrow outlet

rightButton From CalendarMatrix to the right-pointing arrow outlet

monthChanged: From both arrows to CalendarMatrix action

You might have noticed that there’s an action message left unconnected: choseDay:.
Because it is impossible in Interface Builder to connect an object with itself, you
will make this connection programmatically.

This empty label will display the month and year.
Initialize it by typing “September 9999” (the longest
possible string). Set the text to Helvetica 18 points,
center it, and then delete the text.

Type the days of the week as individual labels, arrange
them as a row, and then center the labels over the
columns of days. (This latter task could take some trial
and error.)

To have the button surround the image as tightly as
possible, select the button and choose
Format m Size m Size To Fit.

1 Put the objects related to
CalendarMatrix on the window.

Drag a label object for the month-year
from the Views palette and put it over
the CalendarMatrix.

Make a small label for each day of the
week.

Drag a button onto the interface and
set its attributes to unbordered and
image only.

Drag left_arrow.tiff from the ToDo
project in
/System/Developer/Examples/AppKit
and drop it over the button.

To the attention panel that asks “Insert
image left_arrow in project?” click
Yes.

Repeat the same button procedure for
right_arrow.tiff.

1 Connect CalendarMatrix to its outlet
and to the controls sending action
messages.

1 Finish up in Interface Builder.

Save ToDoDoc.nib.

Select CalendarMatrix and in the
Classes display and choose Create
Files from the Operations pull-down
menu.

Confirm that you want the source-code
files added to the project.
130

Extending an Application Kit Class: An Example
There are a couple of interesting things to note about these declarations:

The cells in CalendarMatrix are sequentially ordered by tag number, left
to right, going downward. startOffset marks the cell (by its tag) on which
the first day of the month falls.

CalendarMatrixDelegate is a category on NSObject that declares the
methods to be implemented by the delegate. This technique creates what
is called an informal protocol, which is commonly used for delegation
methods.

@interface CalendarMatrix : NSMatrix

{

 /* ... */

 NSCalendarDate *selectedDay;

 short startOffset;

}

/* ... */

- (void)refreshCalendar;

- (id)initWithFrame:(NSRect)frameRect;

- (void)dealloc;

- (void)setSelectedDay:(NSCalendarDate *)newDay;

- (NSCalendarDate *)selectedDay;

@end

@interface NSObject(CalendarMatrixDelegate)

 - (void)calendarMatrix:(CalendarMatrix *)object

didChangeToDate:(NSDate *)date;

 - (void)calendarMatrix:(CalendarMatrix *)object

didChangeToMonth:(int)month year:(int)year;

@end

A

B

1 Add declarations to the header file
CalendarMatrix.h.

(Existing declarations are indicated by
ellipsis.)

A

B

131

Chapter 4 A Multi-Document Application
Defining the New Behavior

The initWithFrame: method is an initializer of NSMatrix, NSControl and NSView.

This invocation of date, a class method declared by NSDate, returns the
current date (“today”) as an NSCalendarDate. (NSCalendarDate is a subclass
of NSDate.)

This message to super (NSMatrix) sets the physical and cell dimensions of the
matrix, identifies the type of cell using a prototype (an NSButtonCell), and
specifies the general behavior of the matrix: radio mode, which means that
only one button can be selected at any time.

Set the tag number of each cell sequentially left to right and down. Tags are
the mechanism by which CalendarMatrix sets and retrieves the day numbers
of cells.

This NSCalendarDate class method initializes the selectedDay instance
variable to midnight of the current day, using the year, month, and day
elements of the current date. The localTimeZone message obtains an
NSTimeZone object with a suitable offset from Greenwich Mean Time.

- (id)initWithFrame:(NSRect)frameRect

{

 int i, j, cnt=0;

 id cell = [[NSButtonCell alloc] initTextCell:@""];

 NSCalendarDate *now = [NSCalendarDate date];

 [super initWithFrame:frameRect

 mode:NSRadioModeMatrix

 prototype:cell

 numberOfRows:6

 numberOfColumns:7];

 // set cell tags

 for (i=0; i<6; i++) {

 for (j=0; j<7; j++) {

 [[self cellAtRow:i column:j] setTag:cnt++];

 }

 }

 [cell release];

 selectedDay = [[NSCalendarDate dateWithYear:[now yearOfCommonEra]

 month:[now monthOfYear]

 day:[now dayOfMonth]

 hour:0 minute:0 second:0

 timeZone:[NSTimeZone localTimeZone]] copy];

 return self;

}

A

B

C

D

1 Implement CalendarMatrix’s
initialization methods.

Select CalendarMatrix.m in the
project browser.

Write the implementation of
initWithFrame: (at right).

Implement dealloc.

A

B

C

D

132

Extending an Application Kit Class: An Example
The awakeFromNib method performs additional initializations (some of which
could just have easily been done in initWithFrame:). Most importantly, it sets self
as its own target object and specifies an action method for this target,
choseDay:, something that couldn’t be done in Interface Builder. Other
methods to note:

• •setAutosizesCells: causes the matrix to resize its cells on every redraw.
• •refreshCalendar (which you’ll write next) updates the calendar.

The refreshCalendar method is fairly long and complex—it is the workhorse of
the class—so you’ll approach it in sections.

- (void)awakeFromNib

{

 [monthName setAlignment:NSCenterTextAlignment];

 [self setTarget:self];

 [self setAction:@selector(choseDay:)];

 [self setAutosizesCells:YES];

 [self refreshCalendar];

}

Implement awakeFromNib as shown
at right.

Dates and Times in Rhapsody

In Rhapsody you represent dates and times as objects that inherit from
NSDate. The major advantage of dates and times as objects is common to
all objects that represent basic values: they yield functionality that,
although commonly found in most operating systems, is not tied to the
internals of any particular operating-system.

NSDates hold dates and times as values of type NSTimeInterval and express
these values as seconds. The NSTimeInterval type makes possible a wide
and fine-grained range of date and time values, giving accuracy within
milliseconds for dates 10,000 years apart.

NSDate and its subclasses compute time as seconds relative to an absolute
reference date (the first instant of January 1, 2001). NSDate converts all
date and time representations to and from NSTimeInterval values that are
relative to this reference date.

NSDate provides methods for obtaining NSDate objects (including date,
which returns the current date and time as an NSDate), for comparing
dates, for computing relative time values, and for representing dates as
strings.

The NSCalendarDate class, which inherits from NSDate, generates objects
that represent dates conforming to western calendrical systems.
NSCalendarDate objects also adjust the representations of dates to reflect
their associated time zones. Because of this, you can track an
NSCalendarDate object across different time zones. You can also present
date information from time-zone viewpoints other than the one for the
current locale.

Each NSCalendarDate object also has a calendar format string bound to it.
This format string contains date-conversion specifiers that are very similar
to those used in the standard C library function strftime(). NSCalendarDate
can interpret user-entered dates that conform to this format string.

NSCalendarDate has methods for creating NSCalendarDate objects from
formatted strings and from component time values (such as minutes,
hours, day of week, and year). It also supplements NSDate with methods for
accessing component time values and for representing dates in various
formats, locales, and time zones.
133

Chapter 4 A Multi-Document Application
.

Before it can start writing day numbers to the calendar for a given month,
CalendarMatrix must know what cell to start with and how many cells to fill with
numbers. The refreshCalendar method begins by calculating these values.

Creates an NSCalendarDate for the first day of the currently selected month
and year (computed from the selectedDay instance variable).

Writes the month and year (for example, “February 1997”) to the label above
the calendar.

Gets from the MonthDays static array the number of days for that month; if the
month is February and it is a leap year, this number is adjusted.

Gets the day of the week for the first day of the month and stores this in the
startOffset instance variable.

static short MonthDays[] =
{31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };

#define isLeap(year) (((((year) % 4) == 0 && (((year) % 100) != 0))

|| ((year) % 400) == 0))

1 Implement the code that updates the
calendar.

Initialize the MonthDays[] array and
write the isLeap() macro.

Determine the day of the week at the
start of the month and the number of
days in the month.

- (void)refreshCalendar

{

 NSCalendarDate *firstOfMonth, *selDate = [self selectedDay],

 *now = [NSCalendarDate date];

 int i, j, currentMonth = [selDate monthOfYear];

 unsigned int currentYear = [selDate yearOfCommonEra];

 short daysInMonth;

 id cell;

 firstOfMonth = [NSCalendarDate dateWithYear:currentYear

 month:currentMonth

 day:1 hour:0 minute:0 second:0

 timeZone:[NSTimeZone localTimeZone]];

 [monthName setStringValue:[firstOfMonth

 descriptionWithCalendarFormat:@"%B %Y"]];

 daysInMonth = MonthDays[currentMonth-1]+1;

 /* correct Feb for leap year */

 if ((currentMonth == 2) && (isLeap(currentYear))) daysInMonth++;

 startOffset = [firstOfMonth dayOfWeek];

A

B

C

D

A

B

C

D

134

Extending an Application Kit Class: An Example
The first and third for-loops in this section of code clear the leading and
trailing cells that aren’t part of the month’s days. Because the current day is
indicated by highlighting, they also turn off the highlighted attribute. The
second for-loop writes the day numbers of the month, starting at startOffset and
continuing until daysInMonth, and resets the font (since the selected day is in
bold face) and other cell attributes.

This final section of refreshCalendar determines if the newly selected month
and year are the same as today’s, and if so highlights the cell corresponding to
today.

 for (i=0; i<startOffset; i++) {

 cell = [self cellWithTag:i];

 [cell setBordered:NO];

 [cell setEnabled:NO];

 [cell setTitle:@""];

 [cell setCellAttribute:NSCellHighlighted to:NO];

 }

 for (j=1; j < daysInMonth; i++, j++) {

 cell = [self cellWithTag:i];

 [cell setBordered:YES];

 [cell setEnabled:YES];

 [cell setFont:[NSFont systemFontOfSize:12]];

 [cell setTitle:[NSString stringWithFormat:@"%d", j]];

 [cell setCellAttribute:NSCellHighlighted to:NO];

 }

 for (;i<42;i++) {

 cell = [self cellWithTag:i];

 [cell setBordered:NO];

 [cell setEnabled:NO];

 [cell setTitle:@""];

 [cell setCellAttribute:NSCellHighlighted to:NO];

 }

Write the refreshCalendar code that
writes day numbers to the cells and
sets cell attributes.

 if ((currentYear == [now yearOfCommonEra])

 && (currentMonth == [now monthOfYear])) {

 [[self cellWithTag:([now dayOfMonth]+startOffset)-1]

 setCellAttribute:NSCellHighlighted to:YES];

 [[self cellWithTag:([now dayOfMonth]+startOffset)-1]

 setHighlightsBy:NSMomentaryChangeButton];

 }

}

Complete the refreshCalendar
method implementation by resetting
the “today” cell attribute.
135

Chapter 4 A Multi-Document Application
The arrow buttons above CalendarMatrix send it the monthChanged: message when
they are clicked. This method causes the calendar to go forward or backward a
month.

Determines which button is sending the message, then increments or
decrements the month accordingly. If it goes past the end or beginning of the
year, it increments or decrements the year and adjusts the month.

Resets the selectedDay instance variable with the new month (and perhaps
year) numbers and invokes refreshCalendar to display the new month.

Sends the calendarMatrix:didChangeToMonth:year: message to its delegate (which
in this application, as you’ll soon see, is a ToDoDoc controller object).

- (void)monthChanged:sender

{

 NSCalendarDate *thisDate = [self selectedDay];

 int currentYear = [thisDate yearOfCommonEra];

 unsigned int currentMonth = [thisDate monthOfYear];

 if (sender == rightButton) {

 if (currentMonth == 12) {

 currentMonth = 1;

 currentYear++;

 } else {

 currentMonth++;

 }

 } else {

 if (currentMonth == 1) {

 currentMonth = 12;

 currentYear--;

 } else {

 currentMonth--;

 }

 }

 [self setSelectedDay:[NSCalendarDate dateWithYear:currentYear

 month:currentMonth

 day:1 hour:0 minute:0 second:0

 timeZone:[NSTimeZone localTimeZone]]];

 [self refreshCalendar];

 [[self delegate] calendarMatrix:self

 didChangeToMonth:currentMonth year:currentYear];

}

A

B

C

1 Specify the behavior that occurs
when users select a new month.

Implement the monthChanged: action
method.

A

B

C

136

Extending an Application Kit Class: An Example
This method is invoked when users click a day of the calendar.

Gets the tag number of the selected cell and subtracts the offset from it (plus
one to adjust for zero-based indexing) to find the number of the selected day.

Derives an NSCalendarDate that represents the selected date.

Sets the font of the previously selected cell to the normal system font
(removing the bold attribute) and puts the number of the currently selected
cell in bold face.

Sets the selectedDay instance variable to the new date and sends the
calendarMatrix:didChangeToDate: message to the delegate.

You are finished with CalendarMatrix. If you loaded ToDoDoc.nib right now, the
calendar would work, up to a point. If you clicked the arrow buttons,
CalendarMatrix would display the next or previous months. The days of the
month would be properly set out on the window, and the current day would be
highlighted.

But not much else would happen. That’s because CalendarMatrix has not yet
been hooked up to its delegate.

- (void)choseDay:sender

{

 NSCalendarDate *selDate, *thisDate = [self selectedDay];

 unsigned int selDay = [[self selectedCell] tag]-startOffset+1;

 selDate = [NSCalendarDate dateWithYear:[thisDate yearOfCommonEra]

 month:[thisDate monthOfYear]

 day:selDay

 hour:0

 minute:0

 second:0

 timeZone:[NSTimeZone localTimeZone]];

 [[self cellWithTag:[thisDate dayOfMonth]+startOffset-1]

 setFont:[NSFont systemFontOfSize:12]];

 [[self cellWithTag:selDay+startOffset-1] setFont:

 [NSFont boldSystemFontOfSize:12]];

 [self setSelectedDay:selDate];

 [[self delegate] calendarMatrix:self didChangeToDate:selDate];

}

A

B

C

D

1 Specify the behavior that occurs
when users select a day on the
calendar.

Implement the choseDay: action
method.

1 Implement accessor methods for the
selectedDay instance variable.

A

B

C

D

137

Chapter 4 A Multi-Document Application
The Basics of a Multi-Document Application

A multi-document application, as described on page 139, has at least one
application controller and a document controller for each document opened. The
application controller also responds to user commands relating to documents and
either creates, opens, closes, or saves a document.

Interface Builder gives each new Rhapsody application the following default
menus: Apple, File, Edit, Window, Services, and Help. The Windows menu lists
windows of the application that are open and allows you to bring them to the top
window tier. The Services menu lists other Rhapsody applications on a system
and allows you to pass data to, or get data from, those applications.

Note: Disable the Preferences command in the Apple menu. This tutorial does
not specifically cover Preferences panels, but it does give you enough
information so that you can implement Preferences on your own.

1 Customize the application’s menu.

In Interface Builder:

Open ToDo.nib.

Rename the File menu “Document”

Remove unused menu items.

Put a generic menu item (“Item”) in
the Document menu and rename it
“Inspector”.

Make sure separator lines are above
and below the Inspector command.

Give the Inspector command the key
equivalent of Command-i.

Remove all file- or document-related commands from
the File menu except for the ones shown here.

The three dots after Inspector indicate that the
command displays a modal panel.
138

The Basics of a Multi-Document Application

139

The Structure of Multi-Document Applications

From a user’s perspective, a document is a unique body of information
usually contained by its own window. Users can create an unlimited
number of documents and save each to a file. Common documents are
word-processing documents and spreadsheets.

From a programming perspective, a document comprises the objects and
resources unarchived from an auxiliary nib file and the controller object that
loads and manages these things. This document controller is the owner of
the auxiliary nib file containing the document interface and related
resources.To manage a document, the document controller makes itself the
delegate of its window and its “content” objects. It tracks edited status,
handles window-close events, and responds to other conditions.

When users choose the New (or equivalent) command, a method is invoked
in the application’s controller object. In this method, the application
controller creates a document-controller object, which loads the document
nib file in the course of initializing itself. A document thus remains
independent of the application’s “core” objects, storing state data in the
document controller. If the application needs information about a
document’s state, it can query the document controller.

When users choose the Save command, the application displays a Save
panel and enables users to save the document in the file system. When
users choose the Open command, the application displays an Open panel,
allowing users to select a document file and open it.

Document Management Techniques

When you make the application controller the delegate of the application
(NSApp) and the document controller the delegate of each document
window, they can receive messages sent at critical moments of a running
application.

These moments include the closure of windows (windowShouldClose:),
window selection (windowDidResignMain:), application start-up
(applicationWillFinishLaunching:) and application termination
(applicationShouldTerminate:). In the methods handling these messages,
the controllers can then do the appropriate thing, such as saving a
document’s data or displaying an empty document.

Several NSViews also have delegation messages that facilitate document
management, particularly text fields, forms, and other controls with
editable text (controlText...) and NSText objects (text...). One important
such message is textDidChange: (or controlTextDidChange:), which
signals that the document’s textual content was modified. In responding to
this message, controllers can mark a document window as having unsaved
data with the setDocumentEdited: message (the close button of edited
documents is a “broken” X). Later, they can determine whether the
document needs to be saved by sending isDocumentEdited to the window.

Document controllers often need to communicate with the application
controller or other objects in the application. One way to do this is by
posting notifications. Another way is to use the key relationships within the
core program framework (see page 152) to find the other object (assuming
it’s a delegate of an Application Kit object). For example, the application
controller can send the following message to locate the current document
controller:

[[NSApp mainWindow] delegate]

The document controller can find the application controller with:

[NSApp delegate]

Document Creation sequence

AppController DocController
Doc.nib

creates loads

+ new
(
 // ...
 [[DocController alloc] init];
)

- init
(
 // ...
 [NSBundle loadNibNamed:@"Doc.nib"
 	 owner:self];
 // ..
)

Chapter 4 A Multi-Document Application
Defining the Controller and User Interfaces
Begin by defining in Interface Builder the object controlling the To Do
application.

Now that you’ve defined the application-controller class, define the document-
controller class, ToDoDoc. Remember, since the ToDoDoc controller must own
the nib file containing the document, it must be external to it; although it is
referenced in the main nib file (ToDo.nib) and in ToDoDoc.nib, it’s instantiated before
its nib file is loaded.

Now add the remaining objects to the document interface.

1 Define the application-controller
class.

Create ToDoController as a subclass of
NSObject.

Add the outlet and actions shown in
the example.

Make the action connections from the
appropriate File menu commands.

1 Define the document-controller
class.

Create ToDoDoc as a subclass of
NSObject.

Add to the class the outlets and action
listed at right.

Instantiate ToDoController and
ToDoDoc.

Save ToDo.nib.
140

The Basics of a Multi-Document Application
Name Connection Type

calendar From File’s Owner to the CalendarMatrix object outlet

dayLabel From File’s Owner to label “To Do on” outlet

itemMatrix From File’s Owner (ToDoDoc) to matrix of long text fields outlet

markMatrix From File’s Owner to matrix of short text fields outlet

itemChecked: From matrix of short text fields to File’s Owner action

Text fields in a matrix, just like a form’s cells, are connected for inter-field
tabbing when you create the matrix. But you must also connect ToDoDoc and
ToDoController to the delegate outlets of other objects in the application—
this step is critical to the multi-document design.

Make the text of this label
dark gray.

To assist alignment, make
these cells the same height as
the cells of the other matrix. At
run time, however, you’ll
substitute cells of your
custom class, ToDoCell.

Pad the right side of the label
with spaces so it extends
across the column.

Before creating a matrix, make
the initial field scrollable.

Remember, create a matrix by
Alternate-dragging a handle of
a suitable object.

1 Complete the document interface.

Open ToDoDoc.nib.

Add the matrices of text fields.

Add the labels above the matrices.

Make the labels 14 points in the user’s
application font.

Make the item text 12 points in the
user’s application font.

Save ToDoDoc.nib.

1 Connect the outlets and actions of
ToDoDoc.

Select File’s Owner in the Instances
display of ToDoDoc.nib.

Choose ToDoDoc from the list of
classes in the Attributes display of the
inspector.

Make the connections described in the
table at right.
141

Chapter 4 A Multi-Document Application
Name Connection

textDelegate From the CalendarMatrix object to File’s Owner (ToDoDoc)

delegate From the document window’s title bar (or the window icon in the nib file window)
to File’s Owner (ToDoDoc)

delegate In ToDo.nib, from File’s Owner (NSApp) to the ToDoController instance

The ToDoDoc class needs supplemental data and behavior to get the multi-
document mechanism working right.

The activeDays and currentItems instance variables hold the collection objects that
store and organize the data of the application. (You’ll deal with these instance
variables much more in the next section of this tutorial.) Many of the methods
declared are accessor methods that set or return these instance variables or one of
the matrices of the document.

Connect ToDoDoc and ToDoController
to other objects as their delegates.

1 Create source-code files for
ToDoDoc and ToDoController.

In Project Builder:

1 Add declarations of methods and
instance variables to the ToDoDoc
class.

Select ToDoDoc.h in the project
browser.

Add the declarations at right.

(Ellipses indicate existing
declarations.)

@interface ToDoDoc:NSObject

{

 /* ... */

 NSMutableDictionary *activeDays;

 NSMutableArray *currentItems;

}

/* ... */

- (NSMutableArray *)currentItems;

- (void)setCurrentItems:(NSMutableArray *)newItems;

- (NSMatrix *)itemMatrix;

- (NSMatrix *)markMatrix;

- (NSMutableDictionary *)activeDays;

- (void)saveDoc;

- (id)initWithFile:(NSString *)aFile;

- (void)dealloc;

- (void)activateDoc;

- (void)selectItem:(int)item;

@end
142

The Basics of a Multi-Document Application
Creating, Opening, Saving, and Closing Documents
You’ll be switching between ToDoDoc.m and ToDoController.m in the next few
tasks. The intent is not to confuse, but to show the close interaction between
these two classes.

The newDoc: method is invoked when the user chooses New from the
Document menu. The method allocates and initializes an instance of the
document controller, ToDoDoc, thereby creating a document. (See the
implementation of initWithFile: on the following page to see what happens in
this process.) It then updates the document interface by invoking activateDoc.

- (void)newDoc:(id)sender

{

 id currentDoc = [[ToDoDoc alloc] initWithFile:nil];

 [currentDoc activateDoc];

}

1 Write the code that creates
documents.

Select ToDoController.m in the project
browser.

Implement ToDoController’s newDoc:
method.
143

Chapter 4 A Multi-Document Application
This method, which initializes and loads the document, has the following steps:

Restores the document’s archived objects if the aFile argument is the
pathname of a file containing the archived objects (that is, the document is
opened). If objects are unarchived, it retains the activeDays dictionary;
otherwise it displays an attention panel.

Initializes the activeDays and currentItems instance variables. An aFile argument
with a nil value indicates that the user is requesting a new document.

Loads the nib file containing the document interface, specifying self as owner.

Sets the title of the window; this is either the file name on the left of the title
bar and the pathname on the right, or “UNTITLED” if the document is new.

Note the [itemMatrix window] message nested in the last message. Every object that
inherits from NSView “knows” its window and will return that NSWindow object
if you send it a window message.

- initWithFile:(NSString *)aFile

{

 NSEnumerator *dayenum;

 NSDate *itemDate;

 [super init];

 if (aFile) {

 activeDays = [NSUnarchiver unarchiveObjectWithFile:aFile];

 if (activeDays)

 activeDays = [activeDays retain];

 else

 NSRunAlertPanel(@"To Do", @"Couldn't unarchive file %@",

 nil, nil, nil, aFile);

 } else {

 activeDays = [[NSMutableDictionary alloc] init];

 [self setCurrentItems:nil];

 }

 if (![NSBundle loadNibNamed:@"ToDoDoc.nib" owner:self])

 return nil;

 if (aFile)

 [[itemMatrix window] setTitleWithRepresentedFilename:aFile];

 else

 [[itemMatrix window] setTitle:@"UNTITLED"];

 [[itemMatrix window] makeKeyAndOrderFront:self];

 return self;

}

A

B

C

D

Select ToDoDoc.m in the project
browser.

Implement ToDoDoc’s initWithFile:
method.

A

B

C

D

144

The Basics of a Multi-Document Application
The openDoc: method displays the modal Open panel, gets the user’s response
(which can be multiple selections) and opens the file (or files) selected.

Creates or gets the NSOpenPanel instance (an instance shared among
objects of an application). The previous message specifies the file types
(that is, the extensions) of the files that will appear in the Open panel
browser. The next message enables selection of multiple files in the
panel’s browser.

Sets the directory at which the NSOpenPanel starts displaying files either
to the directory of any document window that is currently key or, if there
is none, to the user’s home directory.

Runs the NSOpenPanel and obtains the key clicked.

If the key is NSOKButton, cycles through the selected files and, for each,
creates a document by allocating and initializing a ToDoDoc instance,
passing in a file name.

The methods invoked by the Document menu’s Close and Save commands
both simply send a message to another object. How they locate these objects
exemplify important techniques using the core program framework.

- (void)openDoc:(id)sender

{

 int result;

 NSString *selected, *startDir;

 NSArray *fileTypes = [NSArray arrayWithObject:@"td"];

 NSOpenPanel *oPanel = [NSOpenPanel openPanel];

 [oPanel setAllowsMultipleSelection:YES];

 if ([[[NSApp keyWindow] delegate] isKindOfClass:[ToDoDoc class]])

 startDir = [[[NSApp keyWindow] representedFilename]

 stringByDeletingLastPathComponent];

 else

 startDir = NSHomeDirectory();

 result = [oPanel runModalForDirectory:startDir file:nil

 types:fileTypes];

 if (result == NSOKButton) {

 NSArray *filesToOpen = [oPanel filenames];

 int i, count = [filesToOpen count];

 for (i=0; i<count; i++) {

 NSString *aFile = [filesToOpen objectAtIndex:i];

 id currentDoc = [[ToDoDoc alloc] initWithFile:aFile];

 [currentDoc activateDoc];

 }

 }

}

A

B

C

D

1 Implement the document-opening
method.

Select ToDoController.m in the project
browser.

Write the code for openDoc:.

A

B

C

D

145

Chapter 4 A Multi-Document Application
NSApp, the global NSApplication instance, keeps track of the application’s
windows, including their status. Because only one window can have main status,
the mainWindow message returns that NSWindow object— which is, of course, the
one the user chose the Close command for. The closeDoc: method sends
performClose: to that window to simulate a mouse click in the window’s close
button. (See the following section, “Managing Documents Through Delegation,”
to learn how the document handles this user event.)

As did closeDoc:, this method sends mainWindow to NSApp to get the main window,
but then it sends delegate to the returned window to get its delegate, the
ToDoDoc instance that is managing the document. It then sends the ToDoDoc-
defined message saveDoc to this instance.

Note: You could implement closeDoc: and saveDoc: in the ToDoDoc class, but the
ToDoController approach was chosen to make the division of responsibility
clearer.

- (void)closeDoc:(id)sender

{

 [[NSApp mainWindow] performClose:self];

}

1 Write the code that closes
documents.

In ToDoController.m, implement the
closeDoc: method.

- (void)saveDoc:(id)sender

{

 id currentDoc = [[NSApp mainWindow] delegate];

 if (currentDoc)

 [currentDoc saveDoc];

}

1 Write the code that saves
documents.

In ToDoController.m, implement the
saveDoc: method.
146

The Basics of a Multi-Document Application
ToDoDoc’s saveDoc method complements ToDoController’s openDoc: method
in that it runs the modal Save panel for users.

The title method returns the text that appears in the window’s title bar. If
the title doesn’t begin with “UNTITLED” (what new document
windows are initialized with), then a file name and directory location has
already been chosen, and is stored as the representedFilename.

If the window title begins with “UNTITLED” then the document needs
to be saved under a user-specified file name and directory location. This
part of the code creates or gets the shared NSSavePanel instance and sets
the file type, which is the extension that’s automatically appended. Then
it runs the Save panel, specifying the user’s home directory as the starting
location.

Archives the document under the chosen directory path and file name
and, with the setDocumentEdited: message, puts an asterisk next to the
window’s title (more on this in the next section).

- (void)saveDoc

{

 NSString *fn;

 if (![[[itemMatrix window] title] hasPrefix:@"UNTITLED"]) {

 fn = [[itemMatrix window] representedFilename];

 } else {

 int result;

 NSSavePanel *sPanel = [NSSavePanel savePanel];

 [sPanel setRequiredFileType:@"td"];

 result = [sPanel runModalForDirectory:NSHomeDirectory()
file:nil];

 if (result == NSOKButton) {

 fn = [sPanel filename];

 [[itemMatrix window] setTitleWithRepresentedFilename:fn];

 } else

 return;

 }

 if (![NSArchiver archiveRootObject:activeDays toFile:fn])

 NSRunAlertPanel(@"To Do", @"Couldn't archive file %@",

 nil, nil, nil, fn);

 else

 [[itemMatrix window] setDocumentEdited:NO];

}

A

B

C

Select ToDoDoc.m in the project
browser.

Implement the saveDoc: method.

A

B

C

147

Chapter 4 A Multi-Document Application
Don’t implement setCurrentItems: yet. This method does something special for the
application that will be covered in ‘‘Managing ToDo’s Data and Coordinating its
Display’’ on page 158.

1 Implement the accessor methods for
ToDoController and ToDoDoc.

Coordinate Systems in Rhapsody

The screen’s coordinate system is the basis for all other coordinate systems
used for positioning, sizing, drawing, and event handling. You can think of
the entire screen as occupying the upper-right quadrant of a two-
dimensional coordinate grid. The other three quadrants, which are invisible
to users, take negative values along their x-axis, their y-axis, or both axes.
The screen’s quadrant has its origin in the lower left corner; the positive x-
axis extends horizontally to the right and the positive y-axis extends
vertically upward. A unit along either axis is expressed as a pixel.

The screen coordinate system has just one function: to position windows on
the screen. When your application creates a new window, it must specify the
window's initial size and location in screen coordinates.You can “hide”
windows by specifying their origin points well within one of the invisible
quadrants. This technique is often used in off-screen rendering in buffered
windows.

The reference coordinate system for a window is known as the base
coordinate system. It differs from the screen coordinate system in only two
ways:

• It applies only to a particular window; each window has its own base
coordinate system.

• Its origin is at the lower left corner of the window, rather than the lower
left corner of the screen. If the window moves, the origin and the entire
coordinate system move with it.

For drawing, each NSView uses a coordinate system transformed from the
base coordinate system or from the coordinate system of its superview. This
coordinate system also has it origin point at the lower-left corner of the
NSView, making it more convenient for drawing operations. NSView has
several methods for converting between base and local coordinate systems.
When you draw, coordinates are expressed in the application's current
coordinate system, the system reflecting the last coordinate
transformations to have taken place within the current window.

These coordinate systems are the inverse of several other operating
systems, which put the origin point at the upper left of the window or screen
and extend dimensions downward and to the right. NSView provides means
for “flipping” coordinate systems to conform to those other systems.

x-axis

y-
ax

is

(0.0, 0.0)

(500.0, 200.0)

(-200.0,
-200.0)

.

. y axis

x axis

0,0

0,0375,310
0,0

160,155

A view’s location is specified relative to
the coordinate system of its window or
superview. The coordinate origin for
drawing begins at this point.

The location of the window is
expressed relative to the screen’s
origin, and its coordinate system
begins here too.

The origins and dimensions of
windows and panels are based on the
screen origin.
148

Managing Documents Through Delegation
Managing Documents Through Delegation

At certain points while an application is running you want to ensure that a
document’s data is preserved, that a document’s edited status is tracked, or
that the application otherwise does “the right thing” for a given circumstance.
These events occur when users:

• Edit a document.
• Close a window.
• Launch the application.
• Quit the application by choosing the Exit command.
• Quit the application by closing the last window.
• Switch to another application or window.

Several classes of the Application Kit send messages to their delegates when
these events occur, giving the delegate the opportunity to do the appropriate
thing, whether that be saving a document to the file system or marking a
document as edited.

When a control that contains editable text—such as a text field or a matrix of
text fields—detects editing in a field, it posts the controlTextDidChange:
notification which, like all notifications, is sent to the control’s delegate as well
as to all observers. The setDocumentEdited: message (with an argument of YES)
inserts an asterisk to the right of the window’s title, thereby marking it as
“dirty” (containing modified, unsaved data).

Note: The object that, by notification, invokes the controlTextDidChange:
method is itemMatrix, the matrix of to-do items (text fields). You will
programmatically set ToDoDoc to be the delegate of this object later in this
tutorial.

- (void)controlTextDidChange:(NSNotification *)notif

{

 [[itemMatrix window] setDocumentEdited:YES];

}

1 Mark a document as edited.

Open ToDoDoc.m.

Implement the controlTextDidChange:
method to mark the document.

[window setDocumentEdited:NO];

[window setDocumentEdited:YES];
149

Chapter 4 A Multi-Document Application
Assuming that you’ve completed certain steps (see “Opening Documents by
Double-Clicking,” below), when users select or double-click a To Do document
icon in the Start menu, in Explorer, or elsewhere on the desktop, To Do will
launch itself and open the document. But what happens when users simply
launch the application, without specifying a document? Rhapsody applications
have several alternatives (see side bar on page 155). To Do lends itself well to the
user-defaults technique:

• At first, open an “UNTITLED” document.
• When the user saves a document, save the document path in user defaults.
• Thereafter open the last-saved document when the user launches To Do.

The initialize message is sent to each class before it receives any other message,
giving it an opportunity to do something having global effect on all future
instances. In ToDoController’s case, the initialize method specifies a “catch-all”
default in the registration domain of user defaults. To Do applications that are
launched the first time on a system will take this default.

+ (void)initialize

{

 NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

 NSDictionary *regdom = [NSDictionary dictionaryWithObject:@"UNTITLED"
forKey:@"ToDoDocumentLastSaved"];

 [defaults registerDefaults:regdom];

 }

1 Customize the launch behavior for
your multi-document application.

Initialize the ToDoController class.

Opening Documents by Double-Clicking

To let users of your application open documents by
double-clicking the document icon in the file
system, you must complete the following steps:

1 Specify an icon and a type (file extension) for
your document in the Project Attributes display
of Project Builder’s Project Inspector (see page
118 for an example).

2 Implement the NSApplication delegation method
application:openFile:. This method is invoked
when users double-click or select a document in
the file system (for instance, using File Manager
or Explorer). In your implementation, you should
attempt to create your document using the path

given in the second argument. If you succeed,
return YES; otherwise, return NO.

3 After building the application, install it in the
conventional file-system locations for
applications, such as /LocalApps and ~/Apps.
150

Managing Documents Through Delegation
151

An NSApp’s delegate can implement the applicationOpenUntitledFile: method to
display an appropriate starting document when an Yellow Boxfor Windows
application is launched. This specific implementation does the following:

The class method standardUserDefaults returns the NSUserDefaults
representing the current user’s defaults. From this object, it gets the path of
the To Do document that was last saved (more soon on how this was done).

If the default is not the registration-domain one and the path references a real
To Do document, it re-creates and activates the document.

Otherwise, it creates a new document, which has a title of “UNTITLED.”

- (BOOL)applicationOpenUntitledFile:(NSApplication *)sender

{

NSUserDefaults *defaults = [NSUserDefaults standardUserDefaults];

 NSString *docToOpen = [defaults stringForKey:
 @"ToDoDocumentLastSaved"];

 if (![docToOpen isEqualToString:@"UNTITLED"] &&

 [[NSFileManager defaultManager] fileExistsAtPath:docToOpen] &&

 [[docToOpen pathExtension] isEqualToString:@"td"]) {

 ToDoDoc *thisDoc = [[ToDoDoc alloc] initWithFile:docToOpen];

 [thisDoc activateDoc];

return YES;

 }

 [self newDoc:self];

 return YES;

}

A

B

C

In ToDoController.m, implement the
delegation method
applicationOpenUntitledFile:.

A

B

C

User Defaults and the Defaults System

User defaults denotes information about a user's
preferences that an Rhapsody program keeps
between sessions. Also recorded in user defaults are
initial values for applications (such as the position of
windows), default values that apply globally, and
defaults specific to a language (for example, the way
in which time is expressed). An application typically
allows its users to enter their choices into users
defaults through a Preferences panel.

User defaults belong to domains. The most common
domain consists of individual applications, but there
are other domains. For example, NSGlobalDomain
holds values common to all applications; there is
also a language-specific domain and
NSRegistrationDomain (temporary default values).

Each domain has a dictionary of keys and values
representing its defaults. Keys are always strings,
but values can be property lists: complex data
structures comprising arrays, dictionaries, strings,
and binary data. Searches for a default proceed
through a search list, in which the application's
domain typically comes before the global, language-
specific, and registration domains.

The defaults system, which implements user
defaults, includes a framework component and a
command-line component. You can specify, read,
and manage user defaults with the methods of
NSUserDefaults and with the defaults utility.

Chapter 4 A Multi-Document Application

The Application Quartet: NSResponder, NSApplication, NSWindow, and NSView
Many classes of the Application Kit stand out in terms of relative
importance. NSControl, for example, is the superclass of all user-interface
devices, NSText underlies all text operations, and NSMenu has obvious
significance. But four classes are at the core of a running application:
NSResponder, NSApplication, NSWindow, and NSView. Each of these
classes plays a critical role in the two primary activities of an application:
drawing the user interface and responding to events. The structure of their
interaction is sometimes called the core program framework.

NSWindow

An NSWindow object manages each physical window on the screen. It
draws the window’s content area and responds to user actions that close,
move, resize, and otherwise manipulate the window.

The main purpose of an NSWindow is to display an application’s user
interface (or part of it) in its content area: that space below the title bar and
menu bar and within the window frame. A window’s content is the NSViews
it encloses, and at the root of this view hierarchy is the content view, which
fills the content area. Based on the location of a user event, NSWindows
assigns an NSView in its content area to act as first responder.

An NSWindow allows you to assign a custom object as its delegate and so
participate in its activities.
152

NSViewNSApplicationNSWindow

NSResponder

NSObject
NSResponder

NSResponder is an abstract class, but it enables event handling in all
classes that inherit from it. It defines the set of messages invoked when
different mouse and keyboard events occur. It also defines the mechanics

of event processing among objects in an application, especially the
passing of events up the responder chain to each next responder until the
event is handled. See the ‘‘First Responder and the Responder Chain’’ on
page 169 for more on the responder chain and a description of first
responder.

NSApplication

Every application must have one NSApplication object to supervise and
coordinate the overall behavior of the application. This object dispatches
events to the appropriate NSWindows (which, in turn, distribute them to
their NSViews). The NSApplication object manages its windows and detects
and handles changes in their status as well as in its own active and
inactive status. The NSApplication object is represented in each
application by the global variable NSApp. To coordinate your own code with
NSApp, you can assign your own custom object as its delegate.

NSView

Any object you see in a window’s content area is an NSView. (Actually, since
NSView is an abstract class, these objects are instances of NSView
subclasses.) NSView objects are responsible for drawing and for
responding to mouse and keyboard events. Each NSView owns a
rectangular region associated with a particular window; it produces
images within this region and responds to events occurring within the
rectangle.

NSViews in a window are logically arranged in a view hierarchy, with the
content view at the top of the hierarchy (see next page for more information).
An NSView references its window, its superview, and its subviews. It can be
the first responder for events or the next responder in the responder chain.
An NSView’s frame and bounds are rectangles that define its location on the
screen, its dimension, and its coordinate system for drawing.
‘The NSEvent class is also involved in event processing. For more about NSEvent and
the event cycle, see ‘‘Events and the Event Cycle’’ on page 168.

Managing Documents Through Delegation

153

The View Hierarchy

Just inside each window’s content area—the area enclosed by the title
bar and the other three sides of the frame—lies the content view. The
content view is the root (or top) NSView in the window’s view hierarchy.
Conceptually like a tree, one or more NSViews may branch from the content
view, one or more other NSViews may branch from these subordinate
NSViews, and so on. Except for the content view, each NSView has one (and
only one) NSView above it in the hierarchy. An NSView’s subordinate views
are called its subviews; its superior view is known as the superview.

On the screen enclosure determines the relationship between superview
and subview: a superview encloses its subviews. This relationship has
several implications for drawing:

• It permits construction of a superview simply by arrangement of
subviews. (An NSBrowser is an instance of a compound NSView.)

• Subviews are positioned in the coordinates of their superview, so when
you move an NSView or transform its coordinate system, all subviews are
moved and transformed in concert.

• Because an NSView has its own coordinate system for drawing, its
drawing instructions remain constant regardless of any change in
position in itself or of its superview.

Fitting Your Application In

The core program framework provides ways for your application to access
the participating objects and so to enter into the action.

• The global variable NSApp identifies the NSApplication object. By
sending the appropriate message to NSApp, you can obtain the
application’s NSWindow objects (windows), the key and main windows
(keyWindow and mainWindow), the current event (currentEvent), the
main menu (mainMenu), and the application’s delegate (delegate).

• Once you’ve identified an NSWindow object, you can get its content view
(by sending it contentView) and from that you can get all subviews of
the window. By sending messages to the NSWindow object you can also
get the current event (currentEvent), the current first responder
(firstResponder), and the delegate (delegate).

• You can obtain from an NSView most objects it references. You can
discover its window, its superview, and its subviews. Some NSView
subclasses can also have delegates, which you can access with
delegate.

By making your custom objects delegates of the NSApplication object, your
application’s NSWindows, and NSViews that have delegates, you can
integrate your application into the core program framework and participate
in what’s going on.

NSView (C)

windows
superview
subviews

NSWindow

ContentView
delegate

NSApplication

windows
delegate

NSWindows

ContentView
delegate

NSView (A)

windows
superview (nil)

subviews

NSView (B)

windows
superview
subviews

NSApp

A
B

C

Chapter 4 A Multi-Document Application
For To Do, we want the last-saved document to be opened when the user
launches the application. Accordingly, in the method that saves documents,
we store the document’s path in user defaults.

The new section of code gets the NSUserDefaults object for the current user and
stores the document path (fn) in user defaults for that user under the key
ToDoDocumentLastSaved. The synchronize method saves this default to disk.

/* ... */

if (result == NSOKButton) {

 fn = [sPanel filename];

 [[itemMatrix window] setTitleWithRepresentedFilename:fn];

/* add the code below ==========> */

 if (fn && ![fn isEqualToString:@""]) {

 NSUserDefaults *defaults =
 [NSUserDefaults standardUserDefaults];

 [defaults setObject:fn forKey:@"ToDoDocumentLastSaved"];

 [defaults synchronize];

 }

/* <========== add the code above */

 }

/* ... */

In ToDoDoc.m’s saveDoc method, add
code to write the path of the saved
document to user defaults.

(See comments in example for code to
add.)

- (BOOL)windowShouldClose:(id)sender

{

 int result;

 if (![[itemMatrix window] isDocumentEdited]) return YES;

 [[itemMatrix window] makeFirstResponder:[itemMatrix window]];

 result = NSRunAlertPanel(@"Close", @"Document has been edited.

 Save changes before closing?", @"Save", @"Don't Save",

 @"Cancel");

 switch(result) {

 case NSAlertDefaultReturn: {

[self saveDocItems];

 [self saveDoc];

return YES;

 }

 case NSAlertAlternateReturn: {

 return YES;

 }

 case NSAlertOtherReturn: {

 return NO;

 }

 }

 return NO;

}

A

B

C

1 Save edited documents when
windows are closed.

Implement the delegation method
windowShouldClose:.
154

Managing Documents Through Delegation

When an Rhapsody Application Is Launched
When the user launches an application, the default behavior is to display
the contents of the main nib file. This initial presentation could be one or
more windows, but often it is just the application’s menu. Often with
document-centric applications, this behavior is what you want. But you
aren’t restricted to this behavior.

With Rhapsody applications you have a number of alternatives. The
alternative that is best for an application depends on that application's
nature and purpose.

Put up an untitled document. The application displays a content-less
document with a window title of “UNTITLED” (or something similar). The
user can start adding content immediately or can open an existing
document. This is the course adopted by the TextEdit application. A
variation of this approach always displays an initial window with some
standard content, such as a product logo (see the Preview application).

How: The application's delegate must implement the
applicationOpenUntitledFile: method and, in that method, create a new
document or open a standard document.

Display the document that the user last saved. The first time a user
launches an application, the application creates and displays an untitled
document. When the user saves that document, the application stores the
full path of the saved file in user defaults. The next time the user launches
the application the application restores the document from the file. This is
the approach taken by the To Do application.

How: Implement applicationOpenUntitledFile:, as before, but this time first
check user defaults to see if it contains a path for a document file. If it does,
verify that the file exists (it could have been moved or deleted since the last
session) before opening and displaying it. Otherwise, display an untitled
document. When the user closes a document or terminates the application,
store the full path of the last-saved document file in user defaults.

Display an opened-document window. The opened-document window
(typically small) contains a list of documents that the user currently has
created or opened. Users can get a document to appear by clicking an item
in the list. When users choose the Exit command, the application can
terminate after closing (and, if necessary, saving) all listed documents. As
a variation, the application can, when it's next launched, restore to the
project window (via user defaults) the documents opened when the last
session was terminated.

How: In the application's main nib file create a small window that contains
a table view or browser. The project window's menu bar can contain the
complete set of menus or an appropriate subset. When the application is
launched, the project window is automatically displayed. When users open
or create a document, create and insert an appropriate entry in the table
view or browser. When users click (or double-click) on an entry, display the
document.
155

Chapter 4 A Multi-Document Application
When users click a window’s close button, the window sends windowShouldClose: to
the window’s delegate. The window expects a response directing it either to close
the window or leave it open. This implementation does the following:

Returns YES (close the window) if the document hasn’t been edited.

Makes the window its own first responder. This has the effect of forcing the
validation of cells, flushing currently entered text to the method that handles
it (more on this in the next section).

Identifies the clicked button by evaluating the constant returned from
NSRunAlertPanel() and returns the appropriate boolean value. If the user clicks
the Save button, this method also updates internal storage with the currently
displayed items (saveDocItems, described in the following section) and then
sends saveDoc to itself to archive application data to a file.

Note: Do you recall the performClose: method that ToDoController sends the
document window when the user chooses the Close command? This method
simulates a mouse click on the window’s close button, causing windowShouldClose:
to be invoked.

The NSApplication object sends applicationShouldTerminate: to its delegate to give
it notice that the application is about to terminate. In this method you should first
let the user save any edited document.

A

B

C

156

Managing Documents Through Delegation
Much of the code in this method is similar to that for windowShouldClose:; if a
window is managed by ToDoDoc, the applicationShouldTerminate: method puts
up an attention panel and responds according to the user’s choice. However,
there are some significant differences:

Returns all open windows of the application in an NSArray. Remember,
one of the jobs of an NSApplication is to track and manage all windows.

Enumerates and processes the NSWindow objects in this NSArray, as
noted.

If the user clicks “Don’t Save,” the close message forces the window to
close (without sending the windowShouldClose: delegate message).

- (BOOL)applicationShouldTerminate:(id)sender

{

 NSString *repfile = nil;

 NSArray *appWindows = [NSApp windows];

 NSEnumerator *enumerator = [appWindows objectEnumerator];

 id object;

 while (object = [enumerator nextObject]) {

 int result;

 id doc;

 if ((doc = [object delegate]) &&

 [doc isKindOfClass:[ToDoDoc class]] &&

 [object isDocumentEdited]) {

 repfile = [[NSApp keyWindow] representedFilename];

 result = NSRunAlertPanel(@"To Do", @"Save %@?", @"Save",
@"Don't Save", @"Cancel",
([repfile isEqualToString:@""]?@"UNTITLED":repfile));

 switch(result) {

 case NSAlertDefaultReturn:

 [doc saveDocItems];

 [doc saveDoc];

 break;

 case NSAlertAlternateReturn:

 [[NSApp keyWindow] close];

 break;

 case NSAlertOtherReturn:

 return NO;

 }

 }

 }

 return YES;

}

A

B

C

1 Save edited documents when the
user quits the application.

In ToDoController.m, implement the
delegation method
applicationShouldTerminate:.

A

B

C

157

Chapter 4 A Multi-Document Application
Managing ToDo’s Data and Coordinating its Display

If you recall the discussion on To Do’s design earlier in this chapter (‘‘How To Do
Stores and Accesses its Data’’ on page 117), you’ll remember that the application’s
real data consists of instances of the model class, ToDoItem. To Do stores these
objects in arrays and stores the arrays in a dictionary; it uses dates as the keys for
accessing specific arrays. (Both the dictionary and its arrays are mutable, of
course.) You might also recall that this design depends on a positional
correspondence between the text fields of the document interface and the “slots”
of the arrays.

To lend clarity to this design’s implementation, this section follows the process
from start to finish through which the ToDoDoc class handles entered data, and
organizes, displays, and stores it. It also shows how the display and manipulation
of data is driven by the selections made in the CalendarMatrix object.

Start by revisiting a portion of code you wrote earlier for ToDoDoc’s initWithFile:
method.

Assume the user has chosen the New command from the Document menu. Since
there is no archive file (aFile is nil), the activeDays dictionary is created but is left
empty. Then initWithFile: invokes its own setCurrentItems: method, passing in nil.

- initWithFile:(NSString *)aFile

{

 /* ... */

 if (aFile) {

 activeDays = [NSUnarchiver unarchiveObjectWithFile:aFile];

 if (activeDays)

 activeDays = [activeDays retain];

 else

 NSRunAlertPanel(@"To Do", @"Couldn't unarchive file %@",

 nil, nil, nil, aFile);

 } else {

 activeDays = [[NSMutableDictionary alloc] init];

 [self setCurrentItems:nil];

 }

/* ... */

}

158

Managing ToDo’s Data and Coordinating its Display
This “set” accessor method is like other such methods, except in how it
handles a nil argument. In this case, nil signifies that the array does not exist,
and so it must be created. Not only does setCurrentItems: create the array, but
it “initializes” it with empty string objects. It does this because
NSMutableArray’s methods cannot tolerate nil within the bounds of the array.

So there’s now a currentItems array ready to accept ToDoItems. Imagine
yourself using the application. What are the user events that cause a
ToDoItem to be added to the currentItems array? To Do allows entry of items
“on the fly,” and thus does not require the user to click a button to add a
ToDoItem to the array. Specifically, items are added when users type
something and then:

• Press the Tab key.
• Press the Enter key.
• Click outside the text field.

The controlTextDidEndEditing: delegation method makes these scenarios
possible. The matrix of editable text fields (itemMatrix) invokes this method
when the cursor leaves a text field that has been edited.

- (void)setCurrentItems:(NSMutableArray *)newItems

{

 if (currentItems) [currentItems autorelease];

 if (newItems)

 currentItems = [newItems mutableCopy];

 else {

 int numRows, numCols;

 [itemMatrix getNumberOfRows:&numRows columns:&numCols];

 currentItems = [[NSMutableArray alloc]

 initWithCapacity:numRows];

 while (--numRows >= 0)

 [currentItems addObject:@""];

 }

}

1 Set the current items or, if necessary,
create and prepare the array that
holds them.

Implement setCurrentItems:.
159

Chapter 4 A Multi-Document Application
A control sends controlTextDidEndEditing: to its delegate when the insertion point
leaves a text field. In addition to creating new ToDoItems, this implementation of
controlTextDidEndEditing: removes ToDoItems from arrays and modifies item text.
What it does is appropriate to what the user does.

If the document hasn’t been edited (see controlTextDidChange:) or if the selected
row exceeds the array bounds, the code returns because there’s no reason to
proceed. Otherwise, it initializes a currentItems array if one doesn’t exist.

If the user deletes the text of an existing item, the code removes the
ToDoItem that positionally corresponds to the row of that deleted text.

It changes the name of an item if the text entered in a field doesn’t match the
name of the corresponding item in the currentItems array.

- (void)controlTextDidEndEditing:(NSNotification *)notif

{

 id curItem, newItem;

 int row = [itemMatrix selectedRow];

 NSString *selName = [[itemMatrix selectedCell] stringValue];

 if (![[itemMatrix window] isDocumentEdited] ||

 (row >= [currentItems count])) return;

 if (!currentItems)

 [self setCurrentItems:nil];

 if ([selName isEqualToString:@""] &&

 ([[currentItems objectAtIndex:row] isKindOfClass:
 [ToDoItem class]]) &&

 (![[[currentItems objectAtIndex:row] itemName]
 isEqualToString:@""]))

 [currentItems replaceObjectAtIndex:row withObject:@""];

 else if ([[currentItems objectAtIndex:row] isKindOfClass:
 [ToDoItem class]] &&

 (![[[currentItems objectAtIndex:row] itemName]
 isEqualToString:selName]))

 [[currentItems objectAtIndex:row] setItemName:selName];

 else if (![selName isEqualToString:@""]) {

 newItem = [[ToDoItem alloc] initWithName:selName

 andDate:[calendar selectedDay]];

 [currentItems replaceObjectAtIndex:row withObject:newItem];

 [newItem release];

 }

 [self updateMatrix];

}

A

B

C

D

E

1 As items are entered in the interface,
add ToDoItems to internal storage,
delete them, or modify them, as
appropriate.

Implement
controlTextDidEndEditing:. as shown.

A

B

C

160

Managing ToDo’s Data and Coordinating its Display
If either of the two previous conditions don’t apply, and text has been
entered, it creates a new ToDoItem and inserts it in the currentItems array.

Updates the list of items in the document interface.

The updateMatrix method writes the names of the items (ToDoItems) in the
currentItems array to the text fields of itemMatrix. It also updates the visual
appearance of the cells in the matrix (markMatrix) next to itemMatrix. These cells
are instances of a custom subclass of NSButtonCell that you will create later
in this tutorial. For now, just type all the code above; later, when you create
the cell class (ToDoCell) you can refer back to this example.

Basically, this method cycles through the array of items, doing the following:

If an object in the array is a ToDoItem, it writes the item name to the text
field pegged to the array slot and updates the button cell next to the field.

If an object isn’t a ToDoItem, it blanks the corresponding text field and
cell.

D

E

- (void)updateMatrix

{

 int i, cnt = [currentItems count],

 rows = [[itemMatrix cells] count];

 ToDoItem *thisItem;

 for (i=0; i<cnt, i<rows; i++) {

 NSDate *due;

 thisItem = [currentItems objectAtIndex:i];

 if ([thisItem isKindOfClass:[ToDoItem class]]) {

 if ([thisItem secsUntilDue])

 due = [[thisItem day] addTimeInterval:

 [thisItem secsUntilDue]];

 else

 due = nil;

 [[itemMatrix cellAtRow:i column:0] setStringValue:

 [thisItem itemName]];

 [[markMatrix cellAtRow:i column:0] setTimeDue:due];

 [[markMatrix cellAtRow:i column:0] setTriState:

 [thisItem itemStatus]];

 }

 else {

 [[itemMatrix cellAtRow:i column:0] setStringValue:@""];

 [[markMatrix cellAtRow:i column:0] setTitle:@""];

 [[markMatrix cellAtRow:i column:0] setImage:nil];

 }

 }

}

A

B

1 Update the document interface with
the current items.

Implement updateMatrix:.

A

B

161

Chapter 4 A Multi-Document Application
As you might recall, CalendarMatrix declared two methods to allow delegates to
“hook into” its behavior. Its delegate for this application is ToDoDoc.

The calendar sends calendarMatrix:didChangeToDate: when users click a new day
of the month. This implementation saves the current items to the activeDays
dictionary. It then sets the current items to be those corresponding to the
selected date (if there are no items for that date, the objectForKey: message
returns nil and the currentItems array is initialized with empty strings). Finally it
updates the matrix with the new data.

The calendar sends calendarMatrix:didChangeToMonth:year: when users go to a new
month and (possibly) a new year. This implementation responds by saving the
current items to internal storage and presenting a blank list of items.

- (void)calendarMatrix:(CalendarMatrix *)matrix

 didChangeToDate:(NSDate *)date

{

 [[itemMatrix window] makeFirstResponder:[itemMatrix window]];

 [self saveDocItems];

 [self setCurrentItems:[activeDays objectForKey:date]];

 [dayLabel setStringValue:[date descriptionWithCalendarFormat:

 @"To Do on %a %B %d %Y" timeZone:[NSTimeZone defaultTimeZone]

 locale:nil]];

 [self updateMatrix];

}

- (void)calendarMatrix:(CalendarMatrix *)matrix

 didChangeToMonth:(int)mo year:(int)yr

{

 [self saveDocItems];

 [self setCurrentItems:nil];

 [self updateMatrix];

}

A

B

1 Respond to user actions in the
calendar.

Implement CalendarMatrix’s
delegation methods.

A

B

162

Managing ToDo’s Data and Coordinating its Display
This method inspects the currentItems array and, if it contains at least one
ToDoItem, puts the array in the activeDays dictionary with a key
corresponding to the date.

Now that you’ve completed the methods for saving and archiving the
collection objects holding ToDoItems, assume that the user has saved his or
her document and then opens it.

- (void)saveDocItems

{

 ToDoItem *anItem;

 int i, cnt = [currentItems count];

 // save day's current items (array) to document dictionary

 for (i=0; i<cnt; i++) {

 if ((anItem = [currentItems objectAtIndex:i]) &&

 ([anItem isKindOfClass:[ToDoItem class]])) {

 [activeDays setObject:currentItems forKey:

 [anItem day]];

 break;

 }

 }

}

1 Save the data to internal storage.

Implement saveDocItems:.

1 Archive and unarchive the
document’s data.

Implement encodeWithCoder: and
initWithCoder: to archive and
unarchive the dictionary holding the
arrays of ToDoItems.
163

Chapter 4 A Multi-Document Application
When the ToDoDoc.nib file is completely unarchived, awakeFromNib is invoked. It
sets the current items for today, sets a couple of delegates, and puts the document
window in front of all other windows.

Note: This method sets some delegates programmatically, which is redundant
since you set these delegates in Interface Builder. However, this code
demonstrates the programmatic route—and no harm done.

The activateDoc method is invoked right after a To Do document is created or
opened. It starts the ball rolling by updating the list matrices of the document and
writing the current date to the “To Do on <date>” label.

- (void)awakeFromNib

{

 int i;

 NSDate *date;

 date = [calendar selectedDay];

 [self setCurrentItems:[activeDays objectForKey:date]];

 /* set up self as delegates */

 [[itemMatrix window] setDelegate:self];

 [itemMatrix setDelegate:self];

 [[itemMatrix window] makeKeyAndOrderFront:self];

}

1 Perform set-up tasks when the
document’s nib file is unarchived.

Implement awakeFromNib as shown
at right.

1 Set up the document once it’s
created or opened.

Implement activateDoc as shown at
right.

- (void)activateDoc

{

 if ([currentItems count]) [self updateMatrix];

 [dayLabel setStringValue:[[calendar selectedDay]

 descriptionWithCalendarFormat:@"To Do on %a %B %d %Y"

 timeZone:[NSTimeZone defaultTimeZone] locale:nil]];

}

164

	A Multi-Document Application
	Setting Up the To Do Project
	Creating the Model Class (ToDoItem)
	Extending an Application Kit Class: An Example
	The Basics of a Multi-Document Application
	Managing Documents Through Delegation
	Managing ToDo’s Data and Coordinating its Display

