

Object-Oriented Programming Appendix A

202

What You’ll Learn

Characteristics of an object-
oriented program

What an object is

Encapsulation

Messages

What a class is

Inheritance

Categories and protocols

A

AB

C

A

BC

D

E F

A

B

C

D

203

Appendix A

Object-Oriented Programming

You can’t get far in Rhapsody or Yellow Box for Windows development without a grasp

of the basic concepts of object-oriented programming. For those new to this approach to

programming, it might seem strange at first glance, but a common reaction after learning

a bit more is “Yes, of course.” This appendix presents an overview of object-oriented

programming from the particular perspective of Objective-C.

Appendix A

“Object-oriented programming” has become one of the premier buzzwords in the
computer industry. To understand why, it’s important to cut through the hype and
focus on the problem that motivated the object-oriented approach.

In classic procedural programming (used with COBOL, Fortran, C, and other
languages), programs are made of two fundamental components: data and code.
The data represents what the user needs to manipulate, while the code does the
manipulation. To improve project management and maintenance, procedural
programs compartmentalize code into procedures. However, much of the data is
global, and each procedure may manipulate any part of that global data directly.

With the procedural approach, the network of interaction between procedures
and data becomes increasingly complex as an application grows. Inevitably, the
interrelationships become a hard-to-maintain tangle—spaghetti code. A simple
change in a data structure can affect many procedures, many lines of code—a
nightmare for those who must maintain and enhance applications. Procedural
programming also leads to nasty, hard-to-find bugs in which one function
inadvertently changes data that another function relies on.

Objects change all that.

procedure

data

data

data

data

data

data

procedure

procedure
204

Objects

An object is a self-contained programmatic unit that combines data and the
procedures that operate on that data. In the Objective-C language, an object’s
data comprises its instance variables, and its procedures, the functions that
affect or make use of the data, are known as methods.

Like objects in the physical world, objects in a program have identifying
characteristics and behavior. Often programmatic objects are modeled on real
objects. For example, an object such as a button has an analog in the buttons
on control devices, such as stereo equipment and telephones. A button object
includes the data and code to generate an appearance on the screen that
simulates a “real” button and to respond in a familiar way to user actions.

Encapsulation
Just as procedures compartmentalize code, objects compartmentalize both
code and data. This results in data encapsulation, effectively surrounding data
with the procedures for manipulating that data.

Typically, an object is regarded as a “black box,” meaning that a program
never directly accesses an object’s variables. Indeed, a program shouldn’t
even need to know what variables an object has in order to perform its
functions. Instead, the program accesses the object only through its methods.
In a sense, the methods surround the data, not only shielding an object’s
instance variables but mediating access to them:

Objects are the basic building blocks of Objective-C applications. By
representing a responsibility in the problem domain, each object
encapsulates a particular area of functionality that the program needs. The
object’s methods provide the interface to this functionality. For example, an

A button object highlights its on-screen representation when the user
clicks it.

method

met
ho

d m
ethod

data
205

Appendix A

object representing a database record both stores data and provides well-defined
ways to access that data.

Using this modularity, object-oriented programs can be divided into distinct
objects for specific data and specific tasks. Programming teams can easily parcel
out areas of responsibility among individual members, agreeing on interfaces to
the distinct objects while implementing data structures and code in the most
efficient way for their specific area of functionality.

Messages
To invoke one of the object’s methods you send it a message. A message requests
an object to perform some functionality or to return a value. In Objective-C, a
message expression is enclosed in square brackets, like this:

In this example converter is the receiver, the object that receives the message.
Everything to the right of this term is the message itself; it consists of a method
name and any arguments the method requires. The message received by converter
tells it to convert a temperature from Fahrenheit to Celsius and return that value.

In Objective-C, every message argument is identified with a label. Arguments
follow colon-terminated keywords, which are considered part of the method name.
One argument per keyword is allowed. If a method has more than one
argument—as NSString’s rangeOfString:options: method does, for example—the
name is broken apart to accept the arguments:

Often, but not always, messages return values to the sender of the message.
Returned values must be received in a variable of an appropriate type. In the
above example, the variable range must be of type NSRange. Messages that return
values can be nested, especially if those returned values are objects. By enclosing
one message expression within another, you can use a returned value as an
argument or as a receiver without having to declare a variable for it.

celsius = [converter convertTemp:fahrenheit]

returned value receiver method name argument

range = [string rangeOfString:@”Rhapsody” options:NSLiteralSearch];

newString = [stringOne stringByAppendingString:
[substringFromRange:[stringTwo rangeOfString:
@”Rhapsody” at:NSAnchoredSearch]]];
206

The above message nests two other messages, each of which returns a value
used as an argument. The inmost message expression is resolved first, then
the next nested message expression is resolved, then the third message is sent
and a value is returned to newString.

An Object-Oriented Program
Object-oriented programming is more than just another way of organizing
data and functions. It permits application programmers to conceive and
construct solutions to complex programs using a model that resembles—
much more so than traditional programs—the way we organize the world
around us. The object-oriented model for program structure simplifies
problem resolution by clarifying roles and relationships.

You can think of an object-oriented program as a network of objects with well-
defined behavior and characteristics, objects that interact through messages.

Different objects in the network play different roles. Some correspond to
graphical elements in the user interface. The elements that you can drag from
an Interface Builder palette are all objects. In an application, each window is
represented by a separate object, as is each button, menu item, or display of
text.

Applications also assign to objects functionality that isn’t directly apparent in
the interface, giving each object a different area of responsibility. Some of
these objects might perform very specific computational tasks while others
might manage the display and transfer of data, mediating the interaction
between user-interface objects and computational objects.

Once you’ve defined your objects, creating a program is largely a matter of
“hooking up” these objects: creating the connections that objects will use to
communicate with each other.

Messages
207

Appendix A

Polymorphism and Dynamic Binding
Although the purpose of a message is to invoke a method, a message isn’t the
same as a function call. An object “knows about” only those methods that were
defined for it or that it inherits. It can’t confuse its methods with another object’s
methods, even if the methods are identically named.

Each object is a self-contained unit, with its own name space (an name space
being an area of the program where it is uniquely recognized by name). Just as
local variables within a C function are isolated from other parts of a program, so
too are the variables and methods of an object. Thus if two different kinds of
objects have the same names for their methods, both objects could receive the
same message, but each would respond to it differently. The ability of one
message to cause different behavior in different receivers is referred to as
polymorphism.

The advantage polymorphism brings to application developers is significant. It
helps improve program flexibility while maintaining code simplicity. You can
write code that might have an effect on a variety of objects without having to know
at the time you write the code what objects they might be. For example, most
user-interface objects respond to the message display; you can send display to any
of these objects in your interface and it will draw itself, in its own way.

Dynamic binding is perhaps even more useful than polymorphism. It means both
the object receiving a message and the message that an object receives can be set
within your program as it runs. This is particularly important in a graphical, user-
driven environment, where one user command—say, Copy or Paste—may apply
to any number of user-interface objects.

The example of display highlights the role of inheritance in polymorphism: a subclass often
implements an identically named method (that is, overrides the method) of its superclass to
achieve more specialized behavior. See the following section, “Classes,” for details.

A

A

A

Polymorphism
208

In dynamic binding, a run-time process finds the method implementation
appropriate for the receiver of the message; it then invokes this
implementation and passes it the receiver’s data structure. This mechanism
makes it easier to structure programs that respond to selections and actions
chosen by users at run time. For example, either or both parts of a message
expression—the receiver and the method name—can be variables whose
values are determined by user actions. A simple message expression can
deliver a Cut, Copy, or Paste menu command to whatever object controls the
current selection.

Dynamic binding even enables applications to deal with new kinds of objects,
ones that were not envisioned when the application itself was built. For
example, it lets Interface Builder send messages to objects such as
EOModeler when it is loaded into the application by means of
custom palettes.

Polymorphism and dynamic binding depend on two other features: dynamic
typing and introspection. The Objective-C language allows you to identify
objects generically with the data type of id. This type defines a pointer to an
object and its data structure (that is, instance variables) which, by inheritance
from the root class NSObject, include a pointer to the object’s class. What this
means is that you don’t have to type objects strictly by class in your code: the
class for the object can be determined at run time through introspection.

Introspection means that an object, even one typed as id, can reveal its class
and divulge other characteristics at run time. Several introspection methods
allow you to ascertain the inheritance relationships of an object, the methods
it responds to, and the protocols that it conforms to.

Dynamic Binding

AB

C

A

BC

D

E F

A

B

C

D

209

Appendix A

Classes

Some of the objects networked together in an applications are of different kinds,
and some might be of the same kind. Objects of the same kind belong to the same
class. A class is a programmatic entity that creates instances of itself—objects. A
class defines the structure and interface of its instances and specifies their
behavior.

When you want a new kind of object, you define a new class. You can think of a
class definition as a type definition for a kind of object. It specifies the data
structure that all objects belonging to the class will have and the methods they will
use to respond to messages. Any number of objects can be created from a single
class definition. In this sense, a class is like a factory for a particular kind of object.

In terms of lines of code, an object-oriented program consists mainly of class
definitions. The objects the program will use to do its work are created at run time
from class definitions (or, if pre-built with Interface Builder, are loaded at run time
from the files where they are stored).

A class is more than just an object “factory,” however. It can be assigned methods
and receive messages just as an object can. As such it acts as a class object.

Object Creation
One of the primary functions of a class is to create new objects of the type the class
defines. For example, the NSButton class creates new NSButton objects and the
NSArray class creates new NSArrays. Objects are created at run time in a two-step
process that first allocates memory for the instance variables of the new object and
then initializes those variables. The following code creates a new Country object:

The receiver for the alloc message is a class (the Country class from the Travel
Advisor tutorial). The alloc method dynamically allocates memory for a new
instance of the receiving class and returns the new object. The receiver for the init
message is the new Country object that was dynamically allocated by alloc. Once
allocated and initialized, this new record is assigned to the variable newCountry.

Note: You can create objects in your code with the alloc and init methods described
here. But when you define a class in Interface Builder, that class definition is
stored in a nib file. When an application loads that nib file, Interface Builder
causes an instance of that class to be created.

id newCountry = [[Country alloc] init];
210

Classes

After being allocated and initialized, a new object is a fully functional member
of its class with its own set of variables. The newCountry object has all the
behavior of any Country object, so it can receive messages, store values in its
instance variables, and do all the other things a Country object does. If you
need other Country objects, you create them in the same way from the same
class definition.

Objects can be typed as id, as in the above example, or can be more
restrictively typed, based on their class. Here, newCountry is typed as a Country
object:

The more restrictive typing by class enables the compiler to perform type-
checking in assignment statements.

Inheritance
Inheritance is one of the most powerful aspects of object-oriented
programming. Just as people inherit traits from their forbearers, instances of a
class inherit attributes and behavior from that class’s “ancestors.” An object’s
total complement of instance variables and methods derives not only from the
class that creates it, but from all the classes that class inherits from.

Because of inheritance, an Objective-C class definition doesn’t have to
specify every method and variable. If there’s a class that does almost
everything you want, but you need some additional features, you can define
a new class that inherits from the existing class. The new class is called a
subclass of the original class; the class it inherits from its superclass.

Country *newCountry = [[Country alloc] init];

A

BC

D

XY

Z

Inherited

New

Instance of Superclass

Instance of subclass

Inheritance
211

Appendix A

Creating a new class is often a matter of specialization. Since the new class inherits
all its superclass’s behavior, you don’t need to re-implement the things that work
as you want them to. The subclass merely extends the inherited behavior by
adding new methods and any variables needed to support the additional methods.
All the methods and variables defined for—or inherited by—the superclass are
inherited by the subclass. A subclass can also alter superclass behavior by
overriding an inherited method, re-implementing the method to achieve a
behavior different from the superclass’s implementation. (The technique for
doing this is discussed later.)

The Class Hierarchy and the Root Class
A class can have any number of subclasses, but only one superclass. This means
that classes are arranged in a branching hierarchy, with one class at the top—the
root class—that has no superclass:

NSObject is the root class of this hierarchy, as it is of most Objective-C class
hierarchies. From NSObject, other classes inherit the basic functionality that
makes messaging work, enables objects to work together, and otherwise invests
objects with the ability to behave as objects. Among other things, the root class
creates a framework for the creation, initialization, deallocation, introspection, and
storage of objects.

Note: Other root classes are possible. In fact, Distributed Objects makes use of
another root class, NSProxy.

Part of the Yellow Box class hierarchy.

NSObject

NSResponderNSArray NSString

NSViewNSWindow NSApplication

NSControl

NSMatrixNSTextField NSButton

NSForm
212

Classes

As noted earlier, you often create a subclass of another class because that
superclass provides most, but not all, the behavior you require. But a subclass
can have its own unique purpose that does not build on the role of an existing
class. To define a new class that doesn’t need to inherit any special behavior
other than the default behavior of objects, you make it a subclass of the
NSObject class. Subclasses of NSObject, because of their general-purpose
nature as objects, are very common in Rhapsody applications. They often
perform computational or application-specific functions.

Advantages of Inheritance
Inheritance makes it easy to bundle functionality common to a group of
classes into a single class definition. For example, every object that draws on
the screen—whether it draws an image of a button, a slider, a text display, or
a graph of points—must keep track of which window it draws in and where in
the window it draws. It must also know when it’s appropriate to draw and
when to respond to a user action. The code that handles all these details is
part of a single class definition (the NSView class in the Application Kit). The
specific work of drawing a button, a slider, or a text display can then be
entrusted to a subclass.

This bundling of functionality both simplifies the organization of the code
that needs to be written for an application and makes it easier to define
objects that do complicated things. Each subclass need only implement the
things it does differently from its superclass; there’s no need to reimplement
anything that’s already been done.

What’s more, hierarchical design assures more robust code. By building on a
widely used, well-tested class such as NSView, a subclass inherits a proven
foundation of functionality. Because the new code for a subclass is limited to
implementing unique behavior, it’s easier to test and debug that code.

Any class can be the superclass for a new subclass. Thus inheritance makes
every class easily extensible—those provided by the Yellow Box frameworks,
those you create, and those offered by third-party vendors.

Defining a Class
You define classes in two parts: One part declares the instance variables and
the interface, principally the methods that can be invoked by messages sent
to objects belonging to the class, and the other part actually implements those
methods. The interface is public. The implementation is private, and can
change without affecting the interface or the way the class is used.
213

Appendix A

The basic procedure for defining a class (using Interface Builder) is covered in the
Currency Converter tutorial. However, here is a supplemental list of conventions
and other points to remember when you define a class:

• The public interface for a class is usually declared in a header file (with an .h
extension), the name of which is the name of the class. This header file can
be imported into any program that makes use of the class.

• The code implementing a class is usually in a file taking the name of the class
and having an extension of .m. This code must be present—in the form of a
framework, dynamic shared library, static library, or the implementation file
itself—when the project containing the class is compiled.

• Method declarations and implementations must begin with a minus (–) sign
or a plus (+) sign. The dash indicates that these methods are used by instances
of the class; a + sign precedes methods that the class object itself uses.

• Method definitions are much like function definitions. Note that methods not
only respond to messages, they often initiate messages of their own—just as
one function might call another.

• In a method implementation you can refer directly to an object’s instance
variables, as long as that object belongs to the class the method is defined in.
There’s no extra syntax for accessing variables or passing the object’s data
structure. The language keeps all that hidden.

• A method can also refer to the receiving object as self. This variable makes it
possible for an object, in its method definitions, to send messages to itself.

Overriding a Method
A subclass can not only add new methods to the ones it inherits, it can also replace
an inherited method with a new implementation. No special syntax is required;
all you do is reimplement the method.

Overriding methods doesn’t alter the set of messages that an object can receive; it
alters the method implementations that will be used to respond to those
messages. As mentioned earlier, this ability of each class to implement its own
version of a method is referred to as polymorphism.

It’s also possible to extend an inherited method, rather than replace it outright. To
do this you override the method but invoke the superclass’s same method in the
new implementation. This invocation occurs with a message to super, which is a
special receiver in the Objective-C language. The term super indicates that an
inherited method should be performed, rather than one defined in the current
class.
214

Classes

The Yellow Box Frameworks
When you write an object-oriented program, you rarely do it from scratch.
There are almost always class definitions available that you can use. All you
need are the class interface files, a library or framework with compiled
versions of the class implementations, and some documentation. The task is
to fit your pieces with the pieces that are already provided. As you’ll realize
after awhile, much of the task of writing object-oriented programs is simply
implementing methods that respond to system-generated messages.
215

Appendix A

Categories and Protocols

In addition to subclassing, you can expand an object and make it fit with other
classes using two Objective-C mechanisms: categories and protocols.

Categories provide a way to extend classes defined by other implementors—for
example, you can add methods to the classes defined in the Yellow Box
frameworks. The added methods are inherited by subclasses and are
indistinguishable at run time from the original methods of the class. Categories
can also be used as a way to distribute the implementation of a class into groups
of related methods and to simplify the management of large classes where more
than one developer is responsible for components of the code.

Protocols provide a way to declare groups of methods independent of a specific
class—methods which any class, and perhaps many classes, might implement.
Protocols declare interfaces to objects, leaving the programmer free to choose the
implementation most appropriate for a specific class. Protocols free method
declarations from dependency on the class hierarchy, so they can be used in ways
that subclasses and categories cannot. They allow objects of any class to
communicate with each other for a specific purpose.

The Rhapsody APIs provide a number of protocols. For example, the spell-
checking protocols and the object-dragging protocols enable other developers to
seamlessly integrate their spell-checking and object-dragging implementations
into an existing system.
216

	Objects
	Classes
	Categories and Protocols
	Object-Oriented Programming

