
1

Services

Introduction
The OpenStep services facility allows an application to offer its functionality to other 
applications, without requiring the other applications to know in advance what’s 
offered. A service-providing application advertises an operation that it can perform on 
a particular type of data—for example, encrypting text, performing optical character 
recognition on a bitmapped image, or providing text such as a message of the day (with 
no input data). Any application that uses the services facility then automatically has 
access to that functionality through its Services menu, or through certain other 
mechanisms. It doesn’t need to know what the operations are in advance; it merely 
indicates what types of data it has, and the Services menu makes available the 
operations that apply to those types. The services facility thus gives applications an 
open-ended means of extending each others’ functionality.

This document describes the four available types of service: standard services, which 
the user chooses from the Services menu; filter services, which the developer invokes 
through the NSPasteboard class; print filter services, which the user chooses when 
saving a printout as a PostScript file; and spell checker services, which the user chooses 
from the standard spelling checker panel. The first section, “Standard Services,” 
describes the general structure of all the services and the details of standard services. 
The second section, “Variations on Standard Services,” describes ways that the other 
three types of service differ from standard services.

Standard Services
In general terms, the standard services facility works as though the user copies data 
from one application and pastes it into another, modifies the data, then copies the result 
and pastes it back into the original application. The standard services facility does in 
fact use the pasteboard to transfer data, automatically copying the selection from the 
service requestor and pasting the altered data back—though the data transfer doesn’t 
have to be two-way, as the examples in the introduction indicate. You should be 
familiar with the Application Kit’s NSPasteboard class before working with the 
standard services facility.

This section describes how to provide a service in your application, and how to make 
sure your application can also request appropriate services in any situation. “Providing 
a Standard Service” covers everything you need to know as the implementor of a 
service. “Using Services” shows you what you need to make your custom classes work 
as requestors of services.



Topics in OpenStep Programming

2

Providing a Standard Service
Suppose you’re working on a program to read USENET news, and have an object 
with a method to encrypt and decrypt articles, such as the one below. News articles 
containing offensive material are often encrypted with this algorithm, called “rot13,” 
in which letters are shifted halfway through the alphabet.

- (NSString *)rotateLettersInString:(NSString *)aString
{

    NSString *newString;
    unsigned length;
    unichar *buf;
    unsigned i;

    length = [aString length];
    buf = malloc( (length + 1) * sizeof(unichar) );
    [aString getCharacters:buf];
    buf[length] = (unichar)0;  // not really needed....

    for (i = 0; i < length; i++) {
        if (buf[i] >= (unichar)'a' && buf[i] <= (unichar) 'z') {
            buf[i] += 13;
            if (buf[i] > 'z') buf[i] -= 26;
        }

         else if (buf[i] >= (unichar)'A' && 

buf[i] <= (unichar) 'Z') {
            buf[i] += 13;
            if (buf[i] > 'Z') buf[i] -= 26;
        }
    }

    newString = [NSString stringWithCharacters:buf length:length];
    free(buf);

    return newString;
}

Since this feature is generally useful as a simple encryption scheme, it can be 
exported to other applications. To offer this functionality as a service, write a method 
such as this:

- (void)simpleEncrypt:(NSPasteboard *)pboard
    userData:(NSString *)data
    error:(NSString **)error
{

    NSString *pboardString;
    NSString *newString;
    NSArray *types;

    types = [pboard types];



3

    if (![types containsObject:NSStringPboardType]) {
        *error = NSLocalizedString(@"Error: couldn't encrypt text.",
                   @"pboard couldn't give string.");
        return;
     }

    pboardString = [pboard stringForType:NSStringPboardType];
    if (!pboardString) {
        *error = NSLocalizedString(@"Error: couldn't encrypt text.",
                   @"pboard couldn't give string.");
        return;
    }

    newString = [self rotateLettersInString:pboardString];

    if (!newString) {
        *error = NSLocalizedString(@"Error: couldn't encrypt text.",
                   @"self couldn't rotate letters.");
        return;
    }

    types = [NSArray arrayWithObject:NSStringPboardType];
    [pboard declareTypes:types owner:nil];
    [pboard setString:newString forType:NSStringPboardType];

    return;
}

A method for providing a standard service is of the form serviceName:userData:error: 
and takes arguments as shown in the example. The method itself takes data from the 
pasteboard as needed, operates on it, and writes any results back to the pasteboard. In 
case of an error, the method simply sets the pointer given by the error argument to a 
non-nil NSString and returns. The userData argument isn’t used here; see “Entries in a 
Service Specification” and “Add-on Services” for some suggestions on how to use it.

Making a Service Available
Now you have an object with methods that allow it to perform a service for another 
application. There are two things remaining to do: register the object at run time so the 
services facility knows which object to have perform the service, and advertise the 
service to the services facility. You create and register your object in the 
applicationDidFinishLaunching: application delegate method (or equivalent) with 
NSApplication’s setServicesProvider: method. If your object is called encryptor you create 
and register it with this code fragment:

EncryptoClass *encryptor;

encryptor = [[EncryptoClass alloc] init];
[NSApp setServicesProvider:encryptor];



Topics in OpenStep Programming

4

You can register only one service provider per application. If you have more than one 
service to provide, a single object must be able to provide all of the services.

In order for the system to know that your application provides a service, you must 
advertise that fact. You do this by adding an entry to your application project’s 
CustomInfo.plist file, which is incorporated into the application’s Info.plist file when you 
build your project. The entry you add is called the service specification. In our 
example, the service specification looks like this:

{
    NSServices = (
      { NSPortName = NewsReader;
        NSMessage = simpleEncrypt;
        NSSendTypes = (NSStringPboardType);
        NSReturnTypes = (NSStringPboardType);
        NSMenuItem = {
            default = "Encrypt Text";
            English = "Encrypt Text";
            French = "Encoder le texte";
            German = "Text verschlüsseln";
        };
        NSKeyEquivalent = {
            default = E;
            German = S;
        };

      }
    );
}

Note: CustomInfo.plist should be saved as Unicode, not NEXSTTEP 
encoding. 

The meaning of each of the subfields is explained further in the section below, 
“Entries in a Service Specification.” 

Note: If you’ve just built an application with a service and you want to test 
the service, log out and log back in again. The application must be in one 
of the standard directories: ~/Apps, /NextApps, or /LocalApps. 

Entries in a Service Specification

This template shows all possible fields in a standard service specification:

NSServices = (
{ NSMessage = messageName;

NSPortName = programName;
NSSendTypes = ( type1 [, type2] ... );
NSReturnTypes = ( type1 [, type2] ... );
NSMenuItem = { default =  item; [ language = item; ] };
NSKeyEquivalent = { default = character; [ language = character; ] };



5

NSUserData = string;
NSTimeout = milliseconds;
NSHost = hostName;
NSExecutable = pathname;

}
[, { another service entry } ] ...

);

Filter, print filter, and spell checker services differ slightly. Their service specifications 
are described in “Variations on Standard Services.”

NSMessage indicates the name of the Objective-C method to invoke. Its value is the first 
part of the method name, which follows the form messageName:userData:error:. This is 
a required entry.

NSPortName is the name of the port the application should use to listen for service 
requests. Its value depends on how you registered the service provider. If you used the 
NSApplication method setServicesProvider:, NSPortName is the application name. If you 
used the NSRegisterServicesProvider() function (which should only be used for filter 
services), NSPortName is the value passed to that function for its name argument. See 
“Filter Services” for more information on NSRegisterServicesProvider(). This is a required 
entry.

NSSendTypes and NSReturnTypes are arrays of names for data types, such as 
NSStringPboardType. Send types are the types sent from the service requestor; return 
types are the types returned to the service requestor. See the NSPasteboard class 
specification for a list of standard data types. A service provider must specify one or 
both of these entries.

NSMenuItem and NSKeyEquivalent indicate the text of the Services menu item and its key 
equivalent (if any). Both of these entries take the form of dictionaries, with language 
names as keys and the text as values. In addition to actual language names, you can 
define a value for the key default, which is used when no languages in the user’s 
preferences match the languages named in the service specification. The text of a menu 
item can indicate a single submenu with a slash; for example, “Mail/Send Selection” 
appears in the Services menu as a submenu named “Mail” with an item named “Send 
Selection”. NSMenuItem is required, but NSKeyEquivalent is optional.

NSUserData is a string containing a value of your choice. You can use this string to 
control the behavior of your service method; this entry is useful for applications that 
provide open-ended services (see “Add-on Services”). NSUserData is an optional entry.

NSTimeout is a string indicating the number of milliseconds the Services facility should 
wait for a response from the service provider when a response is required. If this time 
is exceeded, the services facility opens an attention panel informing the user that an 



Topics in OpenStep Programming

6

error has occurred. This is an optional entry. If you don’t specify this entry, the 
timeout value is 3000 milliseconds (30 seconds).

NSHost is a string containing the name of a host on the network. The executable is 
launched on this host instead of on the host of the application requesting the service. 
This is an optional entry.

NSExecutable is the path of the application that performs this service. This can either 
be a full or relative path. If it is a relative path, the application must be located in the 
same bundle as this service declaration. This entry is most useful for filter services. 
This entry is optional. 

Add-on Services

You typically define services when you create your application and advertise them 
in the Info.plist file of the application’s bundle. The services facility also allows you 
to advertise services outside of the application bundle, enabling you to create “add-
on” services after the fact. This is where the NSUserData entry becomes truly useful: 
You can define a single message in your application that performs actions based on 
the user data provided, such as running the user data string as a UNIX command 
(which the Terminal application does) or treating it as a special argument in addition 
to the selected data that gets sent through the pasteboard.

To define an add-on service, you create a bundle with a .service extension that 
contains an Info.plist file, which in turn contains the add-on service specification. You 
then put this bundle into a Services directory in the library search path (~/Library, 
/LocalLibrary, /NextLibrary). The services facility scans these directories when the user 
logs in and takes note of which services are defined; you can force this scanning by 
running the make_services UNIX command. If your application creates a service at 
run time and needs it to be available immediately, it calls this function to force 
scanning:

void NSUpdateDynamicServices(void)

Using Services
If you add a Services menu to your application in Interface Builder, there’s nothing 
else you need to do for your application to work with the standard services facility; 
your application automatically has access to all appropriate services provided by 
other applications. If you need to construct menus programmatically or if you 
subclass NSView or NSWindow (or any other subclass of NSResponder), however, 
you need to do a little work to tie things into the standard services facility. Setting a 
Services menu programmatically is straightforward. You simply designate the 
NSMenu that you want as your Services menu with NSApplication’s 
setServicesMenu: method. Tying custom NSViews or NSWindows into the standard 



7

services facility falls into three steps, in which you invoke or implement these methods:

registerServicesMenuSendTypes:returnTypes:
validRequestorForSendType:returnType:
writeSelectionToPasteboard:types:
readSelectionFromPasteboard:

The following sections cover each of these methods. A final section, “Invoking a 
Standard Service Programmatically,” shows how to invoke a standard service in your 
code.

Registering User-Interface Objects for Standard Services

The Services menu doesn’t contain every standard service offered by other 
applications. For example, in a text editor a service to invert a bitmapped image is of 
no use and shouldn’t be offered. Which services appear in the Services menu is 
determined by the data types that the objects in the application—specifically the 
NSResponder objects—can send and receive through the pasteboard.

An NSResponder registers these data types using NSApplication’s 
registerServicesMenuSendTypes:returnTypes: method. Application Kit objects already do 
this, but your custom NSResponder subclass must do this in its initialize class method. 
All types used by instances of the class must be registered, even if they’re not always 
available; Services menu items are enabled and disabled dynamically based on what’s 
available at the moment, as described in “Enabling Services Menu Items Based on the 
Selection”.

An object doesn’t have to register the same types for both sending and receiving. 
Suppose you’re writing a rich text editor that can send unformatted and rich text, but 
can only receive unformatted text. Here’s a portion of the initialization method for the 
text-editor NSView subclass:

+ (void)initialize
{

    static BOOL initialized = NO;

    /* Make sure code only gets executed once. */
    if (initialized == YES) return;
    initialized = YES;

    sendTypes = [NSArray arrayWithObjects:NSStringPboardType,
        NSRTFPboardType, nil];
    returnTypes = [NSArray arrayWithObjects:NSStringPboardType, 

nil];
    [NSApp registerServicesMenuSendTypes:sendTypes
       returnTypes:returnTypes];

    return;
}



Topics in OpenStep Programming

8

Your NSResponder object can register any pasteboard data type, public or 
proprietary, common or rare. If it handles the public and common types, of course, 
it will have access to more services. See the NSPasteboard class specification for a 
list of standard pasteboard data types.

Enabling Services Menu Items Based on the Selection

While your application is running, various types of data can be selected and available 
for transfer on the pasteboard. If a service doesn’t apply to the type of the selected 
data, its menu item needs to be disabled. To check whether a service applies, the 
application object sends validRequestorForSendType:returnType: messages to objects in 
the responder chain to see whether they have data of the type used by that service. 
While the Services menu is visible, this method is invoked frequently—typically 
many times per event—to ensure that the menu items for all service providers are 
properly enabled: It’s sent for each service and possibly for many objects in the 
responder chain. Because this method is invoked so frequently, it must be fast so that 
event handling doesn’t fall behind the user’s actions.

The following example shows how this method can be implemented for an object 
that handles unformatted text:

- (id)validRequestorForSendType:(NSString *)sendType
    returnType:(NSString *)returnType;
{

    if ( (!sendType || [sendType isEqual:NSStringPboardType]) &&
         (!returnType || [returnType isEqual:NSStringPboardType]) ) {

        if ( ([self selection] || !sendType) &&
             ([self isEditable] || !returnType) ) {
            return self;
        }
    }

    return [super validRequestorForSendType:sendType
        returnType:returnType];

}

This implementation checks both the types indicated and the state of the object. The 
object is a valid requestor if the send and return types are unformatted text or simply 
aren’t specified, and if the object has a selection and is editable (when send and 
return types are given). If this object can’t handle the service request in its current 
state, it invokes its superclass’ implementation.

validRequestorForSendType:returnType: is sent along an abridged responder chain, 
comprising only the responder chain for the key window and the application object. 
The main window is excluded.



9

Sending and Receiving Data

When the user chooses a Services menu command, the responder chain is checked with 
validRequestorForSendType:returnType: and the first object that returns a value other than nil 
is called upon to handle the service request by providing data (if any is required) with 
a writeSelectionToPasteboard:types: message. You can implement this method to provide 
the data immediately or to provide the data only when it’s actually requested. Here’s 
an implementation for an object that writes unformatted text immediately:

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
    types:(NSArray *)types
{

    NSArray *typesDeclared;

    if ([types containsObject:NSStringPboardType] == NO) {
        return NO;
    }

    typesDeclared = [NSArray arrayWithObject:NSStringPboardType];
    [pboard declareTypes:typesDeclared owner:nil];
    return [pboard setString:[self selection]
        forType:NSStringPboardType];
}

This method returns YES if it successfully writes or declares any data and NO if it fails. 
If you want to provide the data only on demand—which makes sense for large 
amounts—you have to declare an object as the owner for the data and then make sure 
that object responds to pasteboard:provideDataForType: (as described in the NSPasteboard 
class specification). In such a case, the two methods look like this:

- (BOOL)writeSelectionToPasteboard:(NSPasteboard *)pboard
    types:(NSArray *)types
{

    NSArray *typesDeclared;

    if ([types containsObject:NSStringPboardType] == NO) {
        return NO;
    }

    typesDeclared = [NSArray arrayWithObject:NSStringPboardType];
    [pboard declareTypes:typesDeclared owner:self];
    return YES;
}

- (void)pasteboard:(NSPasteboard *)pboard
    provideDataForType:(NSString *)type
{

    [pboard setString:[self selection] forType:NSStringPboardType];
    return;
}



Topics in OpenStep Programming

10

You can even write some types in writeSelectionToPasteboard:types: and offer the rest 
on demand only via pasteboard:provideDataForType:. Remember that the owner of a 
pasteboard must exist when the data is finally requested. To be safe, you should make 
sure the owner is an object that will never be deallocated.

Once the service requestor writes data to the pasteboard, it waits for a response as the 
service provider is invoked to perform the operation; if the service doesn’t return 
data, of course, the requesting application simply continues running and none of the 
following applies. The service provider reads the data from the pasteboard, works on 
it, and then returns the result. At this point the service requestor is sent a 
readSelectionFromPasteboard: message telling it to replace the selection with whatever 
data came back. Our simple text object can implement this method as follows:

- (BOOL)readSelectionFromPasteboard:(NSPasteboard *)pboard;
{
    NSArray *types;
    unsigned index;
    NSString *theText;

    types = [pboard types];
    index = [types indexOfObject:NSStringPboardType];
    if ([types containsObject:NSStringPBoardType] == NO) {
        return NO;
    }
    theText = [pboard stringForType:NSStringPboardType];
    [self replaceSelectionWithString:theText];

    return YES;
}

This method returns YES if it successfully reads the data from the pasteboard, NO 
otherwise.

Invoking a Standard Service Programmatically

Though the user typically invokes a standard service by choosing an item in the 
Services menu, you can invoke it in code using this function:

BOOL NSPerformService(NSString*serviceItem, NSPasteboard*pboard)

This function returns YES if the service is successfully performed, NO otherwise. 
serviceItem is the name of a Services menu item (in any language). It must be the full 
name of the service, including the submenu and slash; for example, 
“Mail/Selection”. pboard contains the data to be used for the service, and when the 
function returns contains the data resulting from the service. You can then do with 
the data what you wish.



11

Variations on Standard Services
The three other types of services—filter, print filter, and spell checker—all share the 
use of a service specification, but they’re each implemented in different ways. The 
following sections describe how the service specification for each type of service 
differs from that for a standard service, and how you take advantage of that type of 
service.

Filter Services
The NSPasteboard class automatically uses a filter service when you invoke a method 
for filtering data, such as:

+ (NSArray*) typesFilterableTo:(NSString*) type
+ (NSPasteboard *)pasteboardByFilteringFile:(NSString*)filename
+ (NSPasteboard *)pasteboardByFilteringData:(NSData*)data

ofType:(NSString *)type
+ (NSPasteboard *)pasteboardByFilteringTypesInPasteboard:

(NSPasteboard*)pboard

Because filter services commonly translate data from unknown file formats into known 
formats, you need a way of dynamically specifying pasteboard types. The filter 
services and pasteboard facilities define types based on file extensions with these 
functions:

NSString*NSCreateFilenamePboardType(NSString*fileExtension)
NSString*NSCreateFileContentsPboardType(NSString *fileExtension)
NSString*NSGetFileType(NSString *pboardType)
NSArray*NSGetFileTypes(NSArray *pboardTypes)

The fileExtension argument is a file extension, minus the period (for example, “eps” or 
“tif f”). You create pasteboard type strings with the first two functions, and get file types 
(extensions) from pasteboard type strings with the second two functions. In a service 
specification (in the CustomInfo.plist file), you can indicate a file type based on the 
extension as NSTypedFilenamesPboardType:fileExtension and a file contents type as 
NSTypedFileContentsPboardType:fileExtension; for example:

NSSendTypes = (NSTypedFilenamesPboardType:tiff);

NSSendTypes = (NSTypedFileContentsPboardType:tiff);

You implement a filter service exactly like a standard service, with a 
filterName:userData:error: method that accepts a pasteboard containing a file path, 
converts the contents of the file to the requested type or types, and returns the converted 
data on the pasteboard. There are two major differences between filter services and 
standard services. The first major difference is in the way you register the service 
provider. With filter services, you typically don’t have an NSApplication object to 



Topics in OpenStep Programming

12

register the service provider with. Instead, you use the function 
NSRegisterServicesProvider(). This function’s declaration is:

(void)NSRegisterServicesProvider(id provider, NSString*name)

provider is the object that provides the services, and name is the same value you 
specify for the NSPortName entry in the services specification. After making this 
function call, the filter service must enter the run loop in order to respond to service 
requests as shown:

while(1) {

NS_DURING

[[NSRunLoop currentRunLoop] run];

NS_HANDLER

NSLog(@"Received exception: %@", localException);

NS_ENDHANDLER

}

The second major difference is in the service specification: Instead of an NSMessage 
entry you define an NSFilter entry with filterName as the value; you must define both 
send and return types; and the NSMenuItem and NSKeyEquivalent entries are ignored.

A filter service can use data-transfer mechanisms other than the pasteboard, 
indicated by an optional entry in the filter service specification. The key is 
NSInputMechanism, and it can have a value of NSUnixStdio, NSMapFile, or NSIdentity. If 
you specify an input mechanism, the value for the NSFilter entry is ignored (though 
it’s still required).

NSUnixStdio allows you to turn nearly any UNIX command-line program into a filter 
service. Instead of sending an Objective-C message to an object in your filter service 
program, the services facility simply runs the executable specified in the service 
specification with the contents of the pasteboard as the argument (which must be of 
NSFilenamesPboardType or NSTypedFilenamesPboardType). If there is more than one 
filename on the pasteboard, only the first is used. The output of the filter program (on 
stdout) is captured by the services facility and put on a pasteboard for use by the 
requestor of the filter. Note that the UNIX program must be relaunched every time 
the service is invoked; if you’re creating a filter service from scratch it’s more 
efficient to package it as an application that can remain running. Here’s a sample 
service specification for a UNIX program that converts GIF images to TIFF:



13

{
    NSServices = (
      { NSFilter = "";
        NSPortName = gif2tiff;
        NSInputMechanism = NSUnixStdio;
        NSSendTypes = (NSTypedFilenamesPboardType:gif);
        NSReturnTypes = (NSTIFFPboardType);
      }
    );
}

NSMapFile defines an “empty” service for data in files, used when you invoke 
NSPasteboard’s pasteboardByFilteringFile: class method. Its value must be an 
NSFilenamesPboardType or an NSTypedFilenamesPboardType. When the filter service is 
invoked for a file, the services facility merely puts the contents of the file on the 
pasteboard. This input mechanism is useful for file types with nonstandard or special 
extensions whose format is nonetheless the same as a standard type. For example, if 
you’ve defined an image format based on a subset of TIFF and given it a file extension 
of stif, you can define a service that maps the stif file extension to NSTIFFPboardType:

{
    NSServices = (
      { NSFilter = "";
        NSInputMechanism = NSMapFile;
        NSSendTypes = (NSTypedFilenamesPboardType:stif);
        NSReturnTypes = (NSTIFFPboardType);
      }
    );
}

NSIdentity defines an empty service for data in memory, used when you invoke 
NSPasteboard’s pasteboardByFilteringData:ofType: class method. It declares that the send 
type is effectively identical to the return type—though the reverse isn’t necessarily true. 
For example, you can define a service that filters your custom image format in memory 
with this service specification:

{
    NSServices = (
      { NSFilter = "";
        NSInputMechanism = NSIdentity;
        NSSendTypes = (MyCustomImagePboardType);
        NSReturnTypes = (NSTIFFPboardType);
      }
    );
}

Neither NSMapFile nor NSIdentity result in any program being executed, so their services 
specifications lack the NSPortName entry.



Topics in OpenStep Programming

14

Print Filter Services
A print filter service is invoked when the user saves a file as a PostScript file through 
the Print panel. When the user clicks the Save... button on the Print panel a Save 
panel opens with a pop-up list near the bottom. This pop-up list contains special 
types of PostScript that the user can choose from. A print filter service adds an entry 
to this list.

You implement a print filter service as a UNIX command line program that reads 
PostScript on the standard input stream and writes it to a file specified on the 
command line by a -o option; for example:

ps2superps -o outputfile.ps

Instead of an NSMessage entry, the service specification for a print filter service 
contains a NSPrintFilter entry, whose value is the extension used for the output file. If 
it’s empty “ps” is used by default. The NSPortName entry is the name of the UNIX 
program—ps2superps in the example. NSMenuItem gives the string that appears in the 
pop-up list. The following entries are ignored in a print filter service specification:

NSKeyEquivalent
NSSendTypes
NSReturnTypes
NSUserData

A print filter service specification adds one entry: NSDeviceDependent. Its value is 
“YES” or “NO” (the default). If you specify “YES” for this entry the PostScript code 
sent through your print filter is specific to the type of printer chosen in the Print panel.

Here’s a sample print filter service specification:

{
    NSServices = (
      { NSPrintFilter = "superps";
        NSPortName = ps2superps;
        NSMenuItem = {
            default = "Super PostScript for Chosen Printer";
            English = "Super PostScript for Chosen Printer";
            French =
                "Super PostScript pour l'imprimante sélectionnée";
            German = "SuperPostScript für ausgewählten Drucker";
        };
        NSDeviceDependent = "YES";
      }
    );
}



15

Spell Checker Services
A Spell checker service is made available in the Application Kit’s standard spell 
checker panel. You implement a spell checker service by creating a program that uses 
an NSSpellServer object. See the NSSpellServer class specification for full 
information on creating a spell checker service. You’ll want to create the spell check 
service as an add-on service as described in “Add-on Services.” Instead of a NSMessage 
entry, the service specification for a spell checker service contains a NSSpellChecker 
entry, whose value is the text that should be used to identify the spell checker in the 
spelling panel’s pop-up list. A spell checker service specification should also contain a 
NSLanguages entry whose value is the language for which the spell checker applies. The 
spell checker won’t be advertised unless one of its values for NSLanguages matches one 
of the user’s preferred languages. 

As an example, here’s the service specification for the NeXT spell checker:

{
    NSServices = (
      {NSExecutable = NeXTspell; 

NSLanguages = (English); 

NSSpellChecker = NeXT; 

}, 
    );
}


