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This chapter covers specific low-level details of the PowerPC runtime 
environment, including the following:


• data storage types 


• stack structure


• routine calling conventions


These conventions may be useful for low-level programming (if you are 
writing in assembly language, for example) or for optimizing higher-level 
code. 


 


Data Types


 


The following table lists the binary data types and their sizes in the 
PowerPC runtime environment. 


All numeric and pointer data types are stored in big-endian format (that is, 
high bytes first, then low bytes). Signed integers use two’s-complement 
representation. 


 


Type Size
(bytes)


Alignment
(bytes)


Range Notes


 


UInt8 1 1 0 to 255


SInt8 1 1 –128 to 127


SInt16 2 2 –32,768 to 32,767


UInt16 2 2 0 to 65,535


SInt32 4 4 –2


 


–31


 


 to 2


 


31


 


 –1


UInt32 4 4 0 to 2


 


32


 


–1


Boolean 1 1 0 = false, nonzero = true


float 4 4


 


±


 


(2


 


-149


 


 to 2


 


127


 


) IEEE 754 standard


double 8 8


 


±


 


(2


 


-1074


 


 to 2


 


1023


 


) IEEE 754 standard


Pointer 4 4 0 to FFFFFFFF
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Data Alignment


 


The PowerPC runtime environment supports multiple data alignment modes. 
These alignments fall into two categories:


• the


 


 natural alignment


 


, which is the alignment of a data type when allocated in 
memory or assigned a memory address


• the 


 


embedding alignment


 


, which is the alignment of a data type within a 
composite data item


For example, the alignment of a 


 


UInt16


 


 variable may differ from that of a 


 


UInt16


 


 
data item embedded in a data structure. 


 


Note: 


 


Data items passed as parameters in a routine call have their own special alignment rules. See “Routine 
Calling Conventions,” beginning on page 10, for more information.


 


The binary data type table shows the natural alignment of each data type, which 
is simply the size of the data type. This alignment is fixed. 


In data structures, you can specify an embedding alignment that varies 
depending on the alignment mode selected. Typically you can select the 
alignment mode using compiler options or pragmas. The table below shows the 
possible alignment modes.


In all but the 68K alignment mode, the embedding alignment of a composite 
(for example, a data structure or an array) is determined by the largest 
embedding alignment of its members. The total size of a composite is rounded 
up to be a multiple of its embedded alignment. 


 


Data type PowerPC 68K Packed Natural


 


SInt8
UInt8
Boolean


1 1 1 1


SInt16
UInt16


2 2 1 2


SInt32
UInt32


4 2 1 4


float 4 2 1 4


double 4 or 8 2 1 8


Pointer 4 2 1 4


Composite 4 or 8 2 1 16
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In 68K alignment mode, the embedded alignment of a composite is always 
2 bytes. The total size of the composite is rounded up to a multiple of two. 


In PowerPC alignment mode, if the first embedded element in a data 
structure is type 


 


double


 


, then the embedding alignment of all type 


 


double


 


 
members in the structure is 8. In such cases, the embedding alignment for 
the entire structure is also 8 bytes.


Note that you may need to adjust embedded alignments if you are 
converting code from the classic 68K environment to the PowerPC (or 
CFM-68K) runtime environments. If you wish to enforce classic 68K 
alignment on your PowerPC code, you can often specify compiler pragmas 
or options to do so. Note, however, that the PowerPC processor is less 
efficient when accessing data that is not placed according to its natural 
alignment. 


 


PowerPC Stack Structure


 


The PowerPC runtime environment uses a grow-down stack that contains 
linkage information, local variables, and a routine’s parameter information 
as shown in Figure 1.


 


Figure 1.  
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The typical PowerPC stack conventions use only a stack pointer (held in 
register GPR1) and no frame pointer. This configuration assumes a fixed stack 
frame size, which is known at compile time. Parameters are not passed by 
pushing them onto the stack. 


The calling routine’s stack frame includes a parameter area and some linkage 
information. The 


 


parameter area


 


 has space for the parameters of any routines the 
caller calls (


 


not


 


 the parameters of the caller itself). Since the calling routine 
might call several different routines, the parameter area must be large enough to 
accomodate the largest parameter list of all the routines the caller calls. It is the 
calling routine’s responsibility for setting up the parameter area before each call 
to some other routine, and the called routine’s responsibility for accessing the 
parameters placed within it. See “Routine Calling Conventions,” beginning on 
page 10, for more information about the calling conventions. 


The calling routine’s 


 


linkage area


 


 holds a number of values, some of which are 
saved by the calling routine and some by the called routine. Figure 2 shows the 
structure of the linkage area.


 


Figure 2.  


 


A stack frame’s linkage area


 


The elements within the linkage area are as follows:


• The base register (GPR2) value is saved at 


 


20(SP)


 


 by the calling routine 
prior to the call if the call is to an imported routine or the call is a pointer-
based call (which may or may not be cross-fragment). This ensures that the 
calling routine can still access its own direct data area upon return. Local 
calls do not need to save this value. 


• The Link Register (LR) value is saved at 


 


8(SP)


 


 by the 


 


called routine


 


 if it 
chooses to do so. 
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• The Condition Register (CR) value may be saved at 


 


4(SP)


 


 by the 


 


called 
routine


 


. As with the Link Register value, the called routine is not 
required to save this value. 


• The stack pointer is always saved by the calling routine as part of its 
stack frame. 


Note that the linkage area is at the top of the stack, adjacent to the stack 
pointer. This positioning is necessary so the calling routine can find and 
restore the values stored there and also to enable the called routine to find 
the caller’s parameter area. This placement means that a routine cannot 
push and pop parameters from the stack once the stack frame is set up. 


The stack frame also includes space for the called routine’s local variables. 
In general, the general-purpose registers GPR13 through GPR31 and the 
floating-point registers FPR14 through FPR31 are reserved for the routine’s 
local variables. However, if the routine contains more local variables than 
would fit in the registers, it uses additional space on the stack. The size of 
the local variable area is determined at compile time; once a stack frame is 
allocated, the size of the local variable area cannot change. 


 


Prologs and Epilogs


 


The called routine is responsible for allocating its own stack frame, making 
sure to preserve 16-byte alignment on the stack. This action is 
accomplished by the prolog before entering the actual routine. The 
compiler-generated prolog code does the following:


• Decrements the stack pointer to account for the new stack frame.


• Writes the previous value of the stack pointer to its own linkage area. 
This procedure ensures that the stack can be restored to its original 
state after returning from the call. 


• Saves all nonvolatile general-purpose and floating-point registers into 
the saved-registers area. Note that if the called routine does not change 
a particular nonvolatile register, it does not save it. 


• Saves the Link Register and Condition Register values in the caller’s 
linkage area, if needed. 


 


Note: 


 


The order in which the prolog executes these actions is determined by convention, not by any 
requirements of the PowerPC runtime architecture.


 


The following is a sample of prolog code. Note that the order of these 
actions differs from the order previously described. 
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linkageArea: set 24 ; size in PowerPC environment
params: set 32 ; callee parameter area
localVars: set 0 ; callee local variables
numGPRs: set 0 ; volatile GPRs used by callee
numFPRs: set 0 ; volatile FPRs used by callee)


spaceToSave: set linkageArea + params + localVars
spaceToSave: set spaceToSave + 4*numGPRs + 8*numFPRs


.moo: ; PROLOG
mflr r0, ; extract return address 
stw r0,8(SP) ; save the return address
stwu SP, -spaceToSave(SP) ; skip over caller save area


 


After the called routine exits, the epilog code executes, which does the 
following:


• Restores the nonvolatile general-purpose and floating-point registers that 
were saved in the stack frame. 


• Restores the Condition Register and Link Register values that were stored 
in the linkage area.


• Restores the stack pointer to its previous value.


• Returns to the calling routine using the address stored in the Link Register.


Below is some sample epilog code.


 


; EPILOG
lwz r0,spaceToSave(SP)+8 ; get the return address
mtlr R0 ; reset Link Register
addic SP,SP,spaceToSave ; restore stack pointer
blr ; return


 


The calling routine is responsible for restoring its GPR2 value immediately after 
returning from the called routine. 


 


The Red Zone


 


The space beneath the stack pointer, where a new stack frame would normally 
be allocated, is called the Red Zone. This area, as shown in Figure 3, may be 
used for any purpose as long as a new stack frame does not need to be added to 
the stack. 
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Figure 3.  
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A leaf procedure does not allocate a stack frame nor does it decrement the 
stack pointer. Instead it stores the Link Register and Condition Register 
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streamlining means that a leaf procedure’s prolog and epilog do only 
minimal work; they do not have to set up and take down a stack frame. 


When an exception handler is called, the Exception Manager automatically 
decrements the stack pointer by 224 bytes (the largest possible area used to 
save registers), to skip over any possible Red Zone information, and then 
restores the stack pointer when the handler exits. The Exception Manager 
does this because an exception handler cannot know in advance if a leaf 
procedure is executing at the time the exception occurs. If you are writing 
code that modifies the stack at interrupt time, you must similarly decrement 
the stack pointer by 224 bytes to preserve any Red Zone information and 
restore it after the interrupt call. 


 


Note: 


 


The value of 224 bytes is the space occupied by nineteen 32-bit general-purpose registers plus 
eighteen 64-bit floating-point registers, rounded up to the nearest 16-byte boundary. If a leaf 
procedure’s Red Zone usage would exceed 224 bytes, then it must set up a stack frame just like 
routines that call other routines.
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Routine Calling Conventions


 


This section details the process of passing parameters or other information to a 
routine in the PowerPC runtime environment. 


 


Note: 


 


These parameter passing conventions are part of Apple’s standard for procedural interfaces. Object-
oriented languages may use different rules for their own method calls. For example, the conventions for 
C++ virtual function calls may be different from those for C functions.


 


Indirect Calls


 


A routine that branches indirectly to another routine must store the target of the 
call in the GPR12 register. This convention applies to all code used with the 
dynamic compiler flag, which is on by default for all user code. It does not apply 
to kernel or driver code. Standardizing the register used to store the target 
address makes it possible to optimize dynamic code generation in the future. All 
code must adhere to this standard from the very first release of Rhapsody 
compilers in order to take advantage of it later.


As an example, the following code:


 


foo() {
bar();


}


 


Compiled with this command:


 


% cc -arch ppc -S -O foo.c


 


Produces the following assembly output:


 


.text
.align 2


.globl _foo
_foo:
mflr r0
stw r0,8(r1)
stwu r1,-64(r1)


# end prolog
bl L_bar$stub


# start epilog
addi r1,r1,64
lwz r0,8(r1)
mtlr r0
blr


.picsymbol_stub
L_bar$stub:
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.indirect_symbol _bar
mflr r0
bl L0$_bar


L0$_bar:
mflr r11
mtlr r0


# load value to branch to into r12 from lazy pointer location
addis r11,r11,ha16(L_bar$lazy_ptr-L0$_bar)
lwz r12,lo16(L_bar$lazy_ptr-0L0$_bar)(r11)


# move branch location to the counter register
mtctr r12
addi r11,r11,lo16(L_bar$lazy_ptr-L0$_bar)
bctr


.lazy_symbol_pointer
L_bar$lazy_ptr:
.indirect_symbol _bar
.long dyld_stub_binding_helper


 


Because the target address needs to be stored in a register in any event, this 
convention simply standardizes what register to use. Routines that may 
have been called directly should not depend on the value of GPR12, 
because in the case of a direct call its value is not defined.


 


Parameters


 


A routine can have a fixed or variable number of arguments. In an ANSI-
style C syntax definition, a routine with a variable number of arguments 
typically appears with ellipsis points (…) at the end of its input parameter 
list.


A variable-argument routine may have several required (that is, fixed) 
parameters preceding the variable parameter portion. For example, the 
routine definition


 


mooColor(


 


number


 


,


 


[


 


color1. . .


 


]


 


)


 


gives no restriction on the number of 


 


color


 


 arguments, but you must always 
precede them with a 


 


number


 


 argument. Therefore, 


 


number


 


 is a fixed 
parameter. 
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Typically the calling routine passes parameters in registers. However, the 
compiler generates a parameter area in the caller’s stack frame that is large 
enough to hold all parameters passed to the called routine, regardless of how 
many of the parameters are actually passed in registers. There are several 
reasons for this scheme:


• It provides the callee with space to store a register-based parameter if it 
wants to use one of the parameter registers for some other purpose (for 
instance, to pass parameters to a subroutine). 


• Routines with variable-length parameter lists must often access their 
parameters from RAM, not from registers. Such routines must reserve eight 
registers (32 bytes) in the parameter area to hold the parameter values. 


• To simplify debugging, some compilers may write parameters from the 
parameter registers into the parameter area in the stack frame; this allows 
you to see all the parameters by looking only at that parameter area.


You can think of the parameter area as a data structure that has space to hold all 
the parameters in a given call. The parameters are placed in the structure from 
left to right according to the following rules:


• All parameters are aligned on 4-byte (word) boundaries. 


• Noncomposite parameters smaller than 4 bytes occupy the low order bytes 
of their word. 


• Composite parameters (such as data structures) are followed by padding to 
make a multiple of 4 bytes, with the padding bytes being undefined.


For a routine with fixed parameters, the first 8 words (32 bytes) of the data 
structure, no matter the size of the individual parameters, are passed in registers 
according to the following rules:


• The first 8 words are placed in GPR3 through GPR10 unless a floating-point 
parameter is encountered. 


• Floating-point parameters are placed in the floating-point registers FPR1 
through FPR13.


• If a floating-point parameter appears before all the general-purpose registers 
are filled, the corresponding GPRs that match the size of the floating-point 
parameter are skipped. For example, a 


 


float


 


 item causes one (4-byte) GPR 
to be skipped, while an item of type 


 


double


 


 causes two GPRs to be skipped. 
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• If the number of parameters exceeds the number of usable registers, 
the calling routine writes the excess parameters into the parameter area 
of its stack frame. 


 


Note: 


 


Currently the parameter area must be at least 8 words (32 bytes) in size.


 


For example, consider a routine 


 


mooFunc


 


 with this declaration:


 


void mooFunc (SInt32 i1, float f1, double d1, SInt16 s1, double d2, 
UInt8 c1, UInt16 s2, float f2, SInt32 i2);


 


To see how the parameters of 


 


mooFunc


 


 are arranged in the parameter area on 
the stack, first convert the parameter list into a structure, as follows:


 


struct params {
SInt32 p_i1;
float p_f1;
double p_d1;
SInt16 p_s1;
double p_d2;
UInt8 p_c1;
UInt16 p_s2;
float p_f2;
SInt32 p_i2;


};


 


This structure serves as a template for constructing the parameter area on 
the stack. (Remember that, in actual practice, many of these variables are 
passed in registers; nonetheless, the compiler still allocates space for all of 
them on the stack, for the reasons just mentioned.)


The “top” position on the stack is for the field 


 


pi_1


 


 (the structure field 
corresponding to parameter 


 


i1


 


). The floating-point field 


 


p_f1


 


 is assigned to 
the next word in the parameter area. The 64-bit double field 


 


p_d1


 


 is 
assigned to the next two words in the parameter area. Next, the short 
integer field 


 


p_s1


 


 is placed into the following 32-bit word; the original value 
of 


 


p_s1


 


 is in the lower half of the word, and the padding is in the upper half. 
The remaining fields of the params structure are assigned space on the stack 
in exactly the same way, with unsigned values being extended to fill each 
field to make it a 32-bit word. The final arrangement of the stack is 
illustrated in Figure 4. (Because the stack grows down, it looks as though 
the fields of the params structure are upside down.)
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Figure 4.  The organization of the parameter area of the stack


To see which parameters are passed in registers and which are passed on the 
stack, you need to map the stack, as illustrated in 4, to the available general-
purpose and floating-point registers. Therefore, the parameter i1 is passed in 
GPR3, the first available general-purpose register. The floating-point parameter 
f1 is passed in FPR1, the first available floating-point register. This action 
causes GPR4 to be skipped. 


The parameter d1 is placed into FPR2 and the corresponding general-purpose 
registers GPR5 and GPR6 are unused. The parameter s1 is placed into the next 
available general-purpose register, GPR7. Parameter d2 is placed into FPR3, 
with GPR8 and GPR9 masked out. Parameter c1 is placed into GPR10, which 
fills out the first 8 words of the data structure. Parameter s2 is then passed in the 
parameter area of the stack. Parameter f2 is passed in FPR4, since there are still 
floating-point registers available. Finally, parameter i2 is passed on the stack. 
Figure 5 shows the final layout of the parameters in the registers and the 
parameter area. 
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Figure 5.  Parameter layout in registers and the parameter area


If you have a C routine with a variable number of parameters (that is, one 
that does not have a fixed prototype), the compiler cannot know whether to 
pass a parameter in the variable portion of the routine in the general-
purpose (that is, fixed-point) registers or in the floating-point registers. 
Therefore, the compiler passes the parameter in both the floating-point and 
the general-purpose registers, as shown in Figure 6.


Figure 6.  Passing a variable number of parameters


The called routine can access parameters in the fixed portion of the routine 
definition as usual. However, in the variable-argument portion of the 
routine, the called routine must copy the GPRs to the parameter area and 
access the values from there. The code below shows a routine that accesses 
values by walking through the stack.


double dsum (int count, ...) 
{
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count -= 1;
}
return sum;


}


Function Return
In the PowerPC runtime environment, floating-point function values are 
returned in register FPR1 (or FPR1 and FPR2 for long double values). Other 
values are returned in GPR3 as follows: 


• Functions returning simple values smaller than 4 bytes (such as type SInt8, 
Boolean, or SInt16) place the return value in the least significant byte or 
bytes of GPR3. The most significant bytes in GPR3 are undefined.


• Functions returning 4-byte values (such as pointers, including array 
pointers, or types SInt32 and UInt32) return them normally in GPR3. 


• If a function returns a composite value (for example, a struct or union data 
type) or a value larger than 4 bytes, a pointer must be passed as an implicit 
left-most parameter before passing all the user-visible arguments (that is, 
the address is passed in GPR3, and the actual parameters begin with GPR4). 
The address of the pointer must be a memory location large enough to hold 
the function return value. Since GPR3 is treated as a parameter in this case, 
its value is not guaranteed on return.


Register Preservation 
The following table lists registers used in the PowerPC runtime environment 
and their volatility in routine calls. Registers that retain their value after a 
routine call are called nonvolatile. All registers are 4 bytes long. 


Type Register Preserved by a
routine call?


Notes


General- purpose register GPR0 No


GPR1 See next column Used as the stack pointer to store 
parameters and other temporary data 
items. 


GPR2 See next column Used as the base register to access the 
direct data area. GPR2 is preserved by 
direct calls; for indirect calls the caller 
must restore the value after the call.
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GPR3 See next column Holds the return value or the address of 
the return value in function calls. For 
routine calls that do not return a value, 
GPR3 is used to pass parameter values. 


GPR4-GPR10 No Used to pass parameter values in routine 
calls. 


GPR11 No


GPR12 No Set to the value of the target before an 
indirect call for dynamic code 
generation. Unless a routine knows it’s 
been called indirectly, it should not 
depend on the value of this register.


GPR13-GPR31 Yes


Floating- point register FPR0 No


FPR1-FPR13 No Used to pass floating- point parameters 
in routine calls. 


FPR14-FPR31 Yes


Link Register LR No Stores the return address of the calling 
routine during a routine call. 


Count Register CTR No


Fixed-point exception 
register


XER No


Condition Registers CR0-CR1 No


Condition Registers 
(continued)


CR2-CR4 Yes  


CR5-CR7 No


Type Register Preserved by a
routine call?


Notes
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