
206

Type part name here:

A fly, Sir, may sting a stately horse and make him wince; but
one is but an insect, and the other is a horse still.

Samuel Johnson

Errors, like straws, upon the surface flow;
He who would search for pearls must dive below.

John Dryden

Starting a debugging session

Running the program in the
debugger

Interrupting the program

Executing a single line of code

Stepping into a method or
function

Setting breakpoints

Managing breakpoints

Executing several lines of
code

Navigating using the stack

Examining the value of a
variable or an object

Debugging object allocation
and deallocation

Debugging a multithreaded
program

Changing program execution
while debugging

Changing code while
debugging

Debugging multiple projects

Debugging frameworks

Building and Debugging

Basic Debugging

10

Basic Debugging

207

Starting a debugging session

You can use Project Builder’s Launch panel to run your program in the debugger
or, if you want, outside of the debugger. The Launch panel provides an interface
to the Free Software Foundation’s gdb debugger.

gdb is a command line tool, and it has a rich command-line interface. Project
Builder provides a user interface for the most common debugging tasks. You
perform other debugging tasks using the gdb command line interface.

After gdb starts up, you can click the run button to start up your program.

1 Click the launch button to bring
up the Launch panel.

2 If necessary, click the
checkmark button in the Launch
panel to set the executable name
and environment.

3 Click the debug button to start the
debugger.

Or

3 Click the launch button to run
your program without debugging.

Click this button or
choose Launch from
the Tools menu.

Click here to start the
debugger.

When the debugger is
running, this column
displays the program
counter and marks
each breakpoint.

Project Builder automatically
includes debugging symbols in
your program if you use the
default build target. See
Chapter 9, “Building” for more
information on building a
program.

For a complete list of gdb
commands, see the OPENSTEP
Development Tools Reference.

Starting a debugging session

208

If the Launch panel isn’t displaying the name of the project executable in its
titlebar, you need to set it in the Launch Options panel before you can run or
debug the program. Needing to set the executable usually occurs when your
project contains subprojects or builds a binary that doesn’t run on its own (for
example, it’s a framework or a loadable bundle).

Click this button to set
up debugger.

Select Executables.

Select one of the
executables listed here.
If there are none, click
Update List. Or click Add
and select the executable
from the Open panel.

Basic Debugging

209

Setting Up the Program’s Environment
Besides allowing you to choose the executable, the Launch Options panel also
lets you set environment variables, pass arguments to your program, and specify
other directories that contain source code for this project.

You can change environment variables and command line arguments while your
program is running, but they won’t take effect until you restart your program.

To have gdb look in other directories for
source code, click Add to enter them here.

If there are environment
variables you want to use,
click Add to enter them
here.

Enter any arguments
you want passed to the
executable here, one per
line. Click Add to add a
new line.

Starting a debugging session

210

Running the Program Outside of the Debugger
If you want to launch the program outside of the debugger, click the Launch
button instead of the Debug button. The program is started up and operates
independantly, just as if you’d started it outside of Project Builder.

Click here to run the program.

Attaching to an Already Running Process

Sometimes, a problem occurs only when you launch an
application outside the debugger. When you launch it inside gdb,
the problem disappears. If this happens , launch the application
using the launch button and use the gdb command attach to hook
up to it:

(gdb) attach pid

pid is the process ID of the process you want to debug.

attach immediately stops the application. When you use attach,
you can debug the process just like you normally would: by setting
breakpoints, modifying storage, and so on.

When you’re finished debugging, use detach (which takes no
arguments) to detach the debugger from the process. The

process resumes executing. You’ll kill the process if you try to quit
gdb or if you try to start the program from the beginning. (gdb asks
for confirmation before it allows you to do these things.)

If you’re having trouble attaching to a process before the errant
code is executed, send your program a stop signal as one of the
first messages:

[NSThread sleepUntilDate:
[NSDate distantFuture]];

This indefinitely suspends execution of the application. Once you
attach in gdb, click the continue button to go on from there.

Basic Debugging

211

Running the program in the debugger

The run button starts you program from the beginning. Typically, you only use
the run button to start the program for the first time. If you’ve interrupted the
program or hit a breakpoint and you want to continue executing from that point,
use the continue button.

E Click the continue button to
continue from where you left off.
Or

E Click the run button to start the
program over.

Click here to start the program over.
If it was already started, the current
state is thrown away.

Click here to continue from where
the program is stopped.

When you continue,
execution starts here.
When you click the Run
button, it starts over (at
the main() function).

Interrupting the program

212

Interrupting the program

It’s often necessary to suspend the program that you’re debugging so that you
can examine its state or enter gdb commands. For example, to set a breakpoint
or to see the value of a certain variable, you must interrupt the program first.

If you’re debugging an application, it will display the spinning cursor when you
suspend it. The application won’t accept any input until you continue
execution.

E Click the suspend button.

Click here to suspend
the program.

The program counter shows where
the program stopped executing.

Basic Debugging

213

Executing a single line of code

If you know that a particular method has an error in it somewhere, you can
execute that method a line at a time (called stepping) to see exactly where the
error occurs.

The next button always executes until control returns to the line of code directly
below the current line. That is, if the current line contains a function call or
invokes an Objective-C method, the entire function or method is executed, and
the program doesn’t stop until it returns (unless a breakpoint is hit).

E Click the next button.

Click here .

The program stops here.

Stepping into a method or function

214

Stepping into a method or function

If the program counter is pointing to a line containing a method invocation and
you click the next button, that method executes before the program stops. If you
want the program to stop inside of that method, click the step button instead.

The step button executes the program until control reaches a different line in
the program. If the current line contains a method invocation, the program stops
at the beginning of that method. If the method isn’t part of your program (if it’s
in one of the OpenStep frameworks, for example), the entire method is
executed. Execution doesn’t stop until the next line of code you own.

E Click the step button.

Click here .

The program stops at the first
line inside populateFields.

Basic Debugging

215

Setting breakpoints

A breakpoint makes your program stop whenever a certain point in the program
is reached. Every time the program encounters the line of code that has the
breakpoint, it stops executing.

If you’re debugging an application, the cursor spins when it hits a breakpoint.
When you enter this state, go to the Launch panel and examine the program’s
state (print values of variables, examine the stack, and so on).

1 If the program is running, click
the suspend button to stop it.

2 In the Project Builder main
window, double-click in the gray
area next to the line where you
want the breakpoint.

3 Click the continue button to
execute up to the breakpoint.

Double-click next to the line
where you want the breakpoint.

Setting breakpoints on data

Sometimes you want to stop the program
whenever the value of a variable changes,
no matter which part of your code is doing
the changing. To do this, use a watchpoint .
To set a watchpoint:

(gdb) watch expr

where expr is any expression or variable.

gdb treats watchpoints and breakpoints the
same. Anything you can do to a breakpoint,
you can also do to a watchpoint (see “Cool
Breakpoint Stuff” in this chapter). The

Breakpoints display of the Task Inspector
provides information on both breakpoints
and watchpoints.

When a watchpoint is set, your program runs
much more slowly that if you had set a
normal breakpoint, so use watchpoints
sparingly. (One alternative is to set a
conditional breakpoint, described in “Cool
Breakpoint Stuff.”) However, watchpoints
are sometimes the only way to catch an error
when you don’t know where the error
occurs.

Setting breakpoints

216

Using gdb commands, you can add more power to your
breakpoints and make debugging a breeze. For complete
information on gdb breakpoints, see the OPENSTEP Development
Tools Reference manual. Here are some highlights.

Setting Breakpoints in Dynamically Loaded Code

gdb doesn’t know about symbols in dynamically loaded code
(such as code inside frameworks or loadable bundles) because
it’s not laoded until run time. This means you can’t set a breakpoint
in a framework until after you start the program that uses it. This
is pretty frustrating when the framework is what you want to
debug. However, you can set a future breakpoint when the
framework isn’t loaded yet. To do this, use the future-break
command:

(gdb) future-break address

(address can be a method name, a function name, a file name and
line number, and so on.) When you enter this command, gdb
checks the loaded symbols for a symbol matching address. If one
is found, it resolves the breakpoint. If not, it holds on to it. Then,
whenever a dynamic shared library is loaded, gdb checks the
breakpoint against the newly loaded symbols until it can resolve
the symbol in the breakpoint. (If the symbol can never be resolved,
the future-break just sits around doing nothing.)

When you quit the program, gdb unloads all of the breakpoints set
in dynamic shared libraries. These breakpoints are converted into
future breakpoints—when the library is loaded again, the
breakpoints are resolved again.

Future breakpoints are just like normal breakpoints in every other
respect; you can add commands to them, disable them, enable
them, and so on. In the Breakpoints display of the Task Inspector,
they are listed as “unloaded.”

Conditional Breakpoints

If you only want a breakpoint to stop when a certain condition is
true, use the condition command:

(gdb) condition bnum expression

expression is any Boolean expression and it’s associated with
breakpoint number bnum. (The Breakpoints view of the Task
Inspector tells you the breakpoint number.) From now on, this
breakpoint will stop the program only if the value of expression is
true. To remove a condition from a breakpoint, enter condition
with no expression.

Ignoring Breakpoints

You can disable a breakpoint for a specific length of time with gdb
command ignore:

(gdb) ignore bnum count

This command ignores the breakpoint the next count times it is
reached. (0 means the program stops the next time it’s reached.)
If the breakpoint is a conditional breakpoint, the condition isn’t
checked unless the ignore count is 0.

Executing Commands at a Breakpoint

You can give any breakpoint a series of commands to execute
when the program stops at it. For example, if you want to know
what the value of the variable x is whenever breakpoint 5 is hit,
enter the following. (You must type end when you’re through to
make the gdb prompt return.)

(gdb) commands 5
> print x
> end

This brings up a handy trick for ignoring breakpoints. Often, you
don’t know how many times you want to ignore a breakpoint
(making the ignore command useless), but you know that you
want to ignore it until a specific point in a program is reached. For
example, say you want to stop at a method named setCurrent: but
only if the message is sent by the processParagraph method. In
this case, you can do the following:

(gdb) break setCurrent:
Breakpoint #1 set
(gdb) break processParagraph
Breakpoint #2 set
(gdb) disable 1
(gdb) commands 2
> silent
> enable 1
> continue
> end
(gdb) continue

This example sets two breakpoints, one at the beginning of each
method. Then, it disables the breakpoint at setCurrent:. When the
breakpoint at processParagraph is reached, it enables the
breakpoint at setCurrent: and continues executing. (silent is just
a convenience. It means that gdb won’t print the usual stopped at
breakpoint message.)

Cool Breakpoint Stuff

Basic Debugging

217

Managing breakpoints

When you no longer need to stop at a breakpoint anymore, you can delete the
breakpoint; however, you might want to just disable it. When you delete a
breakpoint, it is gone forever. When you disable a breakpoint, it still exists and
is still displayed in the Project Builder main window, but the program does not
stop at the breakpoint. You can enable the disabled breakpoint later.

E To move a breakpoint, drag it to
where you want it to be.

E To delete a breakpoint, drag it off
the Project Builder window.

E To disable a breakpoint, double-
click it.

E To find out information about
breakpoints, bring up the
Breakpoints display of the Task
Inspector.

To move a breakpoint, drag it
to where you want it to be.

To delete a breakpoint, drag it
out of the margin.

To disable a breakpoint, Double-
click it. Double-click it again to
reenable it.

Managing breakpoints

218

Sometimes it’s useful to know how many breakpoints you’ve set and where they
are. The Breakpoints view of the Task Inspector provides this information. The
first column of this display gives you the breakpoint number, which is used in
many gdb commands.

Using the Breakpoints display, you can also enabled and disable each
breakpoint by clicking the Use column, or you can enable, disable, and remove
all breakpoints. Use the View button to have Project Builder go to the line where
the breakpoint is set.

See “Cool Breakpoint Stuff” in
this chapter for some useful gdb
commands involving
breakpoints.

Click here.

Select Breakpoints here.

Breakpoint name.

Breakpoint number.

Basic Debugging

219

Executing several lines of code

When you’re stepping through code, you often hit a place where you’d like to
execute several lines of code and stop again. For example, if you encounter a for
loop that is executed several dozen times, you probably want to jump through
the for loop and resume stepping after the loop ends. To do this, just drag the
program counter to the first line of code past the for loop. The entire loop
executes, and the program stops when it reaches the line of code you’ve dragged
the counter to. You can then click the next or step button to resume stepping.

Dragging the program counter is more convenient than setting a breakpoint at
the end of the loop. You don’t have to delete the breakpoint when you’re done.

E Drag the program counter to the
line where you want execution
to stop.

Drag the program counter past the
lines of code yo want to skip over.

Navigating using the stack

220

Navigating using the stack

Each time your program invokes a C function, a C++ member function, or an
Objective-C method, the information about where in the program the call was
made is saved in a block of data called a stack frame. The frame also contains
the arguments of the call and the local variables of the function that was called.

The Task Inspector displays the stack on the right side of the window. Each row
in the stack display represents one stack frame. The current stack frame is
numbered 0, the frame that called it is 1, and so on.

At any given time, one of the stack frames is selected by gdb; many gdb
commands refer implicitly to this selected frame. In particular, whenever you
ask gdb for the value of a variable in the program, the value is found in the
selected frame. You can select any frame by clicking it. You can then examine
the values of variables pertaining to that stack frame. As you navigate to a
different stack frame, the Project Builder main window shows you the currently
executing line of code at that frame.

Tip: You can return from the current level by Shift-clicking the program counter.

1 Click the inspector button on the
Launch panel to bring up the Task
Inspector.

2 Choose Stack from the pop-up
list.

3 Click a stack frame to have the
debugger jump to that stack
frame.

Click here to bring up the Task
Inspector.

Click a row to navigate to a
different stack level.

Drag the name column to see
more of the name and the
arguments to the function or
method.

Basic Debugging

221

Examining the value of a variable or an object

The three rightmost Debugger buttons print the values of variables or expressions.

The first of the three buttons (the Print button) prints the value of a variable or
expression if it’s not a pointer or an object. If the variable (or the result of the
expression) is a pointer, the Print button prints the address. Usually, you want to
know the value at that address, not the address itself. In that case, use the next
button over (the one with a dereference symbol), which prints the value pointed
to by the selected variable. Similarly, use the button with a cube (the Print-
object button) instead of Print to see the information about Objective-C objects.

1 If the program is running, click
the Suspend button to suspend it.

2 Select the variable in the Project
Builder main window.

3 In the Launch panel, click the
object button if the variable is an
object.

Or

3 Click the * button if the variable
is a pointer.

Or

3 Click the Print button.

Select a variable or an expression. Click one of these buttons.

gdb displays
the value.

Getting Useful Information From Print-object

The Print-object button (which invokes the gdb command print-
object) sends the message description to the selected object.
NSObject defines the description method, so all objects respond
to it. By default, this method prints the object’s class name and
hexidecimal address:

<NSApplication: 0xbb5e4>

However, you can override this method in your classes to provide

more useful data. Compared to dumping the contents of the
underlying struct, an implementation of description can print out
just the information that is helpful and use a more readable
format. Your description method should return an NSString.

Many Foundation classes override description. For example,
NSArrays, NSDictionaries, and NSStrings print their contents
instead of their addresses.

Examining the value of a variable or an object

222

For the Experts: More on Examining Variables

Making Sure Variables Stick Around

When you build the program using the default build target (for
example, app for Application projects), an optimized, debuggable
executable results. This executable is helpful if a bug surfaces
only in the optimized version; however, debugging optimized code
sometimes gives surprising results. Control flow may change and
variables may disappear without a trace. You ask gdb to print
such a variable and even though the source clearly shows it is in
scope, gdb replies:

(gdb) print num
No symbol "num" in current context

To ensure that a variable be available in the debugger even after
optiumization, declare the variable volatile.

Value History

gdb maintains a value history for your session. This means that
every expression you evaluate using the print command (or the
Print, Print *, and PO buttons) is assigned a value number in the
history, like this:

(gdb) print self
$7 = (struct NSApplication *) 0xbb5e4

You can refer to this value as $7 and use it in future expressions:

(gdb) print (char *) [$7 appName]
$8 = 0xb80cc "FunWithGDB"

Once a value is entered into the history, it doesn’t change. The
value is stored as $7, not the expression that generated it. This
means that $7 doesn’t change to hold the new value of self when
your program enters a different scope.

Also, at any time, $ refers to the last value in the history and $$ to
the next-to-last value.

The output command has the same semantics as the print
command, but doesn’t add the result to the value history. You can
use this difference to avoid cluttering the value history with
unimportant results. For more sophisticated printing needs, gdb
provides a printf command similar to the C version that provides
for formatted output. Like output, the results from printf are not
entered into the value history.

Any name that begins with a $ can be used as the name of a gdb
convenience variable. These variables are implicitly typed and
created at first reference. Use print to get the value of a
convenience variable and the set command to set or change the
value. You can set the value to any valid C or Objective-C
expression, including methods or functions:

(gdb) p $array = [NSArray array]
$24 = 793052
(gdb) p $num = 1230 % 4
$25 = 2

All registers have convenience variables associated with them.
The info registers command dumps the contents of all registers
so you can see the names associated with each register. The
register convenience variables most often used are $fp, which
holds the frame pointer, $sp for the stack pointer, and $pc for the
program counter.

Locating Your Variables

To find out how a variable is stored, use this command:

(gdb) info address self

Symbol "self" is a variable in register a2.

info address tells you if the variable is stored on the stack or in a
register. This command is useful to determine if optimizations are
causing problems, particularly on RISC machines.

Examining Raw Memory

Use the command x (for “examine”) to examine memory without
referencing the program's data types.

x is followed by a slash and an output format specification,
followed by an expression for an address:

x/ fmt addr

These fmt letters specify the size of unit to examine:

b Examine individual bytes.
h Examine halfwords (two bytes each).
w Examine words (four bytes each).
g Examine giant words (eight bytes).

These fmt letters specify how to print the contents:

x Print as integers in unsigned hexadecimal.
d Print as integers in signed decimal.
u Print as integers in unsigned decimal.
o Print as integers in unsigned octal.
a Print as an address, both absolute and relative
c Print as character constants (this implies size b).
f Print as floating-point. This works only with sizes w and g.
s Print a null-terminated string of characters.
i Print a machine instruction in assembler syntax (or nearly).

Once you’ve entered x to see the value at an address, hit return to
see the value at the next address.

Basic Debugging

223

Debugging object allocation and deallocation

Object allocation and deallocation are often trouble spots. Two common
problems are using an object after it has been deallocated and releasing an
object too many times. Here are some strategies and tools to debug object
allocation and deallocation.

A typical autorelease error:

objc: FREED(id): message objectForKey: sent to freed object=0xfde44

E Use enableFreedObjectCheck:
inside gdb.
Or

E Use the oh tool to see where and
when objects are allocated and
deallocated.
Or

E Use the AnalyzeAllocation tool to
see where and when objects are
allocated and deallocated.

Ignoring Autorelease Errors

You may want to debug the rest of your program first, saving
the release problems until later. The enableRelease:
convenience method defined in Foundation’s
NSAutoreleasePool class helps you ignore autorelease
errors. NSAutoreleasePool defines the application’s
autorelease pool. When an object is autoreleased, it is added
to the autorelease pool. At the top of the event loop, all objects
in the pool are sent a release message, which decrements the
reference count and potentially deallocates the object.
NSAutoreleasePool allows you to control that pool.

If you receive messages from the debugger indicating that

you are sending messages to deallocated objects, enter this
command:

(gdb) call [NSAutoreleasePool
enableRelease:NO]

This message disables the deallocation of all objects in your
program, ignoring autorelease errors.

Your program must be started when you send this message.
It’s often useful to break on main() and send this message
after the first line or two of the program.

Debugging object allocation and deallocation

224

Debugging Autorelease Errors in gdb
If you are releasing an object too many times, invoke the NSAutoreleasePool
class method enableFreedObjectCheck: and set a breakpoint on
_NSAutoreleaseFreedObject.

enableFreedObjectCheck: causes all autorelease and release messages to first check to
see if the receiving object is already in an autorelease pool. If it is, they won’t
deallocate the object. When the program hits the breakpoint, look at the stack
to see what method was releasing the object.

Invoke enableFreedObjectCheck:
and break on
_NSAutoreleaseFreedObject.

Jump to the first stack frame that shows code
from your program to see which line caused
the error.

Basic Debugging

225

Using the oh Command
Another way to debug the autorelease and release errors is to use the oh command
in conjunction with gdb. When you start the oh command, it starts recording
allocation and deallocation events related to the process you specify. You set
NSZombieEnabled so that the memory for deallocated objects is not reclaimed.
(Released objects are just turned into “zombies.”) The advantage to setting this
variable is that you can ensure than an object’s address is unique.

When you receive an autorelease error perform the command:

% oh pid address

where address is address of the object that is being release twice. oh will produce
a report showing you the stack frame each time that object is allocated, copied,
retained, or released, like the one shown on the next page.

Click here to bring up
the options panel.

In a Terminal window,
start oh on the process
ID of the process you’re
debugging.

Set NSZombieEnabled
to YES.

Debugging object allocation and deallocation

226

== Stacks for address 0xfa31c, in temporal order (oldest first):

(

 "+[NSMutableDictionary allocWithZone:]",

 "+[NSDictionary dictionary]",

 "-[TAController init]",

 "-[NSCustomObject nibInstantiate]",

 "-[NSIBObjectData instantiateObject:]",

 "-[NSIBObjectData nibInstantiateIn:owner:]",

 _loadNib,

 "+[NSBundle(NSNibLoading) loadNibFile:...]",

 "+[NSBundle(NSNibLoading) loadNibNamed:owner:]",

 _main,

 start

)

(

 "+[NSDictionary dictionary]",

 "-[TAController init]",

 "-[NSCustomObject nibInstantiate]",

 "-[NSIBObjectData instantiateObject:]",

 "-[NSIBObjectData nibInstantiateIn:owner:]",

 _loadNib,

 "+[NSBundle(NSNibLoading) loadNibFile:...]"

 "+[NSBundle(NSNibLoading) loadNibNamed:owner:]",

 _main,

 start

)

(

 __NSAPDataReleaseToOffset,

 "-[NSAutoreleasePool release]",

 "+[NSBundle(NSNibLoading) loadNibFile:...]",

 "+[NSBundle(NSNibLoading) loadNibNamed:owner:]",

 _main,

 start

)

(

 "-[NSConcreteMutableDictionary release]",

 __NSAPDataReleaseToOffset,

 "-[NSAutoreleasePool release]",

 "+[NSBundle(NSNibLoading) loadNibFile:...]",

 "+[NSBundle(NSNibLoading) loadNibNamed:owner:]",

 _main,

 start

)

Basic Debugging

227

Keeping Memory Allocation Statistics
Another command, AnalyzeAllocation, lets you look at memory allocation after
your program has finished executing. To use AnalyzeAllocation:

1. Set this environment variable:

% setenv NSKeepAllocationStatistics YES

The NSKeepAllocationStatistics variable tells your program to record information
about memory allocation in a file named /tmp/alloc_stats_name_pid.

2. Run a specific task in your application.The allocation statistics file becomes
very large very quickly, so it is important not to run too much of your program
at once with NSKeepAllocationStatistics turned on.

3. Turn off the environment variable:

% unsetenv NSKeepAllocationStatistics

4. Perform this command in a Terminal window:

% AnalyzeAllocation -v /tmp/alloc_stats_ name_pid

Common Autorelease Mistakes

Once you find the object with the autorelease error, look for the
following:

• For every autorelease and release message in your
application, make sure there is a corresponding alloc, copy,
mutableCopy, or retain message sent to the same object.
autorelease and release decrement an object’s reference
count. alloc, copy, mutableCopy, and retain increment the
reference count. The number of increments and decrements
for an object must be equal. Another way of thinking about this
is: If you don’t allocate, copy, or retain an object, you’re not
responsible for releasing it.

• When an NSArray, NSDictionary, or NSSet (known as the
collection objects) is deallocated, the objects stored in the
collection are released as well. If you need to access an object

you stored in a collection after the collection is released, you
must retain that object before you release the collection.

• Superviews retain subviews as you add them to the hierarchy
and release subviews as you remove them from the hierarchy.
If you swap views in and out of the hierarchy, you should retain
the views that are not in the hierarchy.

• When you change a window’s content view, the window
releases the old content view and retains the new content
view.

• Objects do not retain their delegates (to avoid retain cycles).

• decodeValuesOfObjCTypes: returns a retained object.
decodeObject returns an autoreleased object. If you
unarchive an instance variable with decodeObject, send it the
retain or copy message.

Debugging a multithreaded program

228

Debugging a multithreaded program

A single program may have more than one thread of execution. A thread is an
executable unit that has its own stack and is capable of independent I/O, but
shares the address space of the other threads in a task.

gdb allows you to observe all threads while your program runs, but whenever gdb
takes control, one thread in particular is always the focus of debugging. This
thread is called the current thread. Debugging commands show program
information from the perspective of the current thread. If you want to change to
a different thread, use the thread-select command (passing it the thread number,
which is displayed in the first column of the thread-list output).

E Use the gdb command thread-list
to obtain information about all of
the threads running in the
program.

E Use the thread-select command
to switch to a different thread.

The thread-list command
shows information about all
of the threads in the program.

Use the thread-select command
to jump to a different thread.

Basic Debugging

229

Changing program execution while debugging

Once you find out what’s wrong with your program, you might want to test that
the solution you’ve come up with will work before you change the source code
and rebuild. For example, what if you set a variable to a different value? Will that
solve the problem?

Command Description

call function Executes the function. You can also use this for Objective-C messages.

jump linenum Resume execution at line number linenum. Execution may stop
immediately if there's a breakpoint there.

The jump command doesn't change the current stack frame, or the
stack pointer, or the contents of any memory location or any register
other than the program counter. If linenum is in a different function
from the one currently executing, the results may be wild if the two
functions expect different patterns of arguments or of local variables.
For this reason, the jump command requests confirmation if the
specified line isn't in the function currently executing.

jump *address Resume execution at the instruction at address address.

set var = exp Perform an assignment .

E Use gdb commands to simulate a
solution to a bug before building.

You can use the set command to
set a variable in the program to a
new value then continue executing.

Changing code while debugging

230

Changing code while debugging

After you’ve found a bug, you need to fix your code and rebuild the program.
You don’t need to quit the debugger. Just edit the file in Project Builder like you
normally would, save it, and rebuild. When the build finished, stop and restart
the program in gdb. When you click the run button, gdb checks for a more recent
version of the executable and loads it if necessary. By not quitting gdb, you can
preserve all of your breakpoints.

1 Use the gdb command kill to quit
your program in the debugger.

2 Make changes to file in Project
Builder.

3 Click the build button to bring up
the Project Build panel.

4 Click the build button to build the
program.

5 Go back to the Launch panel.

6 Click the debugger’s run button.

Click Build to rebuild
after making a change.

Click Run to reload the
program.

Basic Debugging

231

Debugging multiple projects

A debugger session applies to only one project file at a time. If you have more
than one project open, the Launch panel displays the debugger session for the
currently selected project. If you set a breakpoint in one project, it doesn’t affect
the other project’s debugger session.

If you want to debug two projects that relate to each other (for example, and
application and a framework), you need to make the debugging symbols of one
project visible to the other project. You do this in the Launch Options panel.

When you’re debugging multiple projects and the debugger stops in code that’s
part of the unopened project, it displays the appropriate source code file under
Non Project Files. If you want to go to other files in the second project and set
breakpoints there, open them in the current project window.

1 Open the first project.

2 Click the checkmark button in
the Launch panel.

3 In the Directories display of
Launch Options panel, click the
Add button.

4 Select the second project’s
directory in the Open panel.

5 Start the debugger.
Click this button to set
up the debugger.

Click Add.

Select Directories.

Select the section
project’s directory.

Debugging frameworks

232

Debugging frameworks

To debug a framework or library project, you usually create a tool project that
uses all of the framework’s features. However, you don’t really want to debug
the tool’s code; you want to debug the framework’s code. To debug the
framework, you can select a tool’s executable as the framework’s debugger
target. When you click the debugger’s run button, the tool’s executable is what
is run. However, you can set breakpoints in the framework’s code and step
through it, just as if you were debugging an application.

1 Create a tool that tests your
framework.

2 In the framework project, bring
up the Launch Options panel.

3 Select Executables.

4 Click the Add button.

5 Select the tool’s executable in
the Open panel that appears.

6 Start the debugger.

Click this button to set
up the debugger.

Click Add.

Select Executables.

Select the Tool
project’s executable.

