
2

Type part name here:

I have a bit of FIAT in my soul,
And can myself create my little world.

Thomas Lovell Beddoes

But from these create he can
Forms more real than living man,
Nurslings of immortality!

Percy Bysshe Shelley

I must Create a System, or be enslav’d by another Man’s;
I will not Reason and Compare: my business is to Create.

William Blake, Jerusalem

Creating a project

Setting indexing preferences

Grouping projects

Changing a project’s name

Setting the application icon

Setting document icons

Setting system-defined
document icons

Starting Out

Creating and

Managing a Project1

Creating and Managing a Project

3

Creating a project

A project is a set of files that produces a given end product, such as an application,
a tool, a library, or a loadable bundle. When you create a project in Project
Builder, you create a directory that will hold all of the project’s code files and
resource files. Project Builder adds several supporting files, such as project
makefiles and templates that you can use to create source files, to that directory.

1 In Project Builder, choose New
from the Project menu.

2 In the New Project panel, choose
the project’s type from the
Project Type pop-up list.

3 Name the project.

4 Choose OK.

Use the Open command on
the Project menu to open a
project that already exists.
In the Open panel, select the
project’s folder.

Project Builder creates a directory named
CurrencyConverter and places the project’s
supporting files in it.

Choose the project type from this list.
Remember to choose the project type; you can’t
change the type of an Application project later.

Project Types

Project Builder can create these types of
projects:

Application A standalone OPENSTEP
application.

Tool A server or command-line tool.

Loadable Bundle A directory of resources,
such as images, sounds, character strings,
nib files, and dynamically loadable
executable code, to be used by one or more
applications.

Library A static or dynamic shared library.

Framework A bundle that contains a
dynamic shared library plus resources. See
“Frameworks: Easy to Use, Easy to Create” in
this chapter.

Palette A static Interface Builder
palette—a palette with code that you must
compile before it can be used.

Legacy A project for which Project Builder
doesn’t maintain the makefile. Use this when
you have created your own makefile. See
“Legacy Projects” in this chapter.

Aggregate A collection of loosely related
projects. See “Grouping projects” in this
chapter.

For the most part, the only difference
between project types is the kind of
executable they produce. However, there
are some special issues involved in
frameworks and libraries. See Chapter 12 for
more information.

Creating a project

4

Managing Project Files With Project Builder

Project Builder makes it easy for you to manage a project’s files.
It organizes your project for you by grouping files into the
following types (not all types are available for all projects):

Classes The “.m” files that implement an Objective-C class.

Headers The “.h” files that define a class’s interface or declare
C functions, data types, and variables.

Documentation The documentation files for framework
projects, which must be RTF files.

Context Help The help files for this project, which must be RTF
files. This only exists for application projects and subprojects.

Other Sources Objective-C files that don’t implement a class or
files containing code in other languages, such as C, C++,
Objective-C++, or PostScript.

Interfaces Interface Builder nib files that define the user
interface. Nib files are described further in Chapter 2.

Images Image files, such as TIFF or EPS files, other than icons.

Other Resources Files containing other resources (such as
sound files or eomodels) that the project uses.

Subprojects Subprojects. See “Grouping projects” in this
chapter.

Supporting Files Makefiles and other files the project does not
use directly.

Libraries Libraries that the project links to, such as those in
/usr/lib or /lib.

Frameworks Dynamic shared libraries that the project links to,
such as the Application Kit. OPENSTEP-supplied frameworks are
in /NextLibrary/Frameworks. (See “Frameworks: Easy to Use,
Easy to Create” in this chapter.)

Non Project Files Files that you have opened that aren’t part of
the project.

In addition, Project Builder creates and maintains some files for
you. For all projects, it creates a makefile and templates for a
class’s interface (“.h”) and implementation (“.m”) files. For
application projects, it also creates a Project_main.m file, which
contains the main function, and a nib file, which defines your
application’s interface. You can customize both of these files for
your application.

Of course, you can add your own files to the project. You can also
remove files, rename files, create new files, and even open files
that aren’t part of the project using commands on the File menu.

This is shaded when the file
has been modified.

The browser shows the files
in the project, the classes in
that file, and the methods in
that class.

The code editor shows the
currently selected file and
allows you to edit it.

This button showas you a list
of the files that are already
loaded. You can use that list to
jump between files quickly.

To add a file, double-click one
of these types.

Creating and Managing a Project

5

Setting indexing preferences

For you to take full advantage of Project Builder, the source code must be
indexed. When a project is indexed, Project Builder keeps track of each symbol
in the project, what that symbol defines (such as a class or a function), where it
is declared, and where it is used. The Indexing Preferences panel allows you to
control when and how a project is indexed.

By default, “Index when project is opened” and “Invalidate when quitting” are
selected. These preferences cause Project Builder to create a new index in
memory each time it is opened and to delete the index when you quit the
application. (This ensures that the index is updated at least when you quit
Project Builder.) If you deselect “Invalidate when quitting,” the project index
will persist until you reboot.

Indexing requires overhead. To improve performance, you can turn indexing
off; however if you do this, many useful features, such as project-wide name
completion and language-based searching, aren’t available. Another option is to
have the indexing process run on another computer on your network. To do this,
enter that computer’s host name in Host field of the Indexing Preferences panel.

1 Choose Info Preferences.

2 In the Preferences panel, choose
Indexing from the pop-up list.

3 Select or deselect the
preferences you want.

Choose Indexing from this list.

Automatic indexing controls. Indexing is turned
on by default. Deselect all of these to turn it off.

Controls for how symbols are listed in the
browser in the main window.

Setting indexing preferences

6

Tip: If the project indexes incorrectly, make sure that you have set the
information in the Project Attributes and Build Attributes inspectors. Use the
same host to index the project as you use to build the project.

Chapter 9, Building, describes
the Build Attributes inspector
and how to build the project on
another host.

The editor jumps to
the class or method
you select.

When you index, the browser
can show you information
about a file’s contents.

The classes, protocols,
and other symbols the
selected file defines.

The methods defined for
that class or protocol.

The Project Server

Indexing is actually performed by a background process called
the project server. The project server is the brains behind
Project Builder. When you request information stored in the
index, Project Builder asks the project server for that
information, then relays it to you.

The project server starts up as soon as you open a project. In
just a short time, project server can build a cache of symbol
information about your project.

The project server is a continually running process. Even after
you quit Project Builder, the project server may continue
running. This saves time at startup; Project Builder only has to

start up a project server when you reboot.

When you set the Host attribute on the Preferences panel, the
project server runs on that host. If other people on the network
use the same computer for their project servers, one project
server is created per user.

If you need to control the project server, use the commands on
the Indexing menu under the Project menu. The command
Purge Indices kills the current project server. After you use this
command, use Index Source Code to start a new project server
and reindex your project.

Creating and Managing a Project

7

Grouping projects

If you have many projects that relate to each other, you may want to organize
them as a single project in Project Builder. You can group projects into a single
project in two ways: by creating a subproject and by creating an Aggregate
project.

If one of the projects is clearly a part of the other, create it as a subproject of that
other project. To create a subproject within a project, choose New Subproject
from the Project menu to bring up the New Subproject panel, choose the type
of subproject you want to create, type a name for the subproject in the Name
field, and click OK.

When you create a subproject, you are creating a project whose build result
(executable or bundle) is incorporated into the build result of the main project.
(A bundle is simply a file package directory that contains all of the resources the
user needs to execute the program.) If the main project produces a bundle as its
build result, the subproject’s executable or bundle is placed inside the main
project’s bundle. Component subprojects produce an object file that is linked
with the main project’s executable. A component’s resources are merged into
the resource directory of the main project.

For example, if you are creating an application named MyApp and one of the
application’s commands invokes a tool named aTool, you might want to have the
aTool project be a subproject of the application project. When you build the
application, aTool is built as well. After all of the code in both projects has been
compiled and linked, Project Builder creates a directory (bundle) named
MyApp.app. That directory contains aTool as well as the application’s executable
and its resources.

By creating a subproject, you are creating a project that is subordinate to the
main project. In some cases, a subordinate relationship doesn’t make sense. For
example, you can’t have one application be a subproject or another application.

E To incorporate the build result of
one project into the build result
of another project, create a
subproject.

E To group together related
projects of any type, create an
Aggregate project.

Type the subproject’s name here.

Choose the type here. If none of the available
types matches, choose Component.

Grouping projects

8

If the projects’ executables don’t need to be tied to each other but you want to
group them together as a convenience, create an Aggregate project. Then make
those projects be subprojects of the aggregate. (You create an Aggregate project
the same way you create any other type of project.)

The only purpose of an aggregate project is to group other projects together.
The aggregate itself produces no executable or bundle. Because of this, you can
have any type of project, even applications and frameworks, be a subproject of
an aggregate.

For example, suppose you’ve created several tools to test a framework that
you’re working on. If you want to manage all of these projects as a single unit,
you can create an aggregate project and include the tools and the framework as
subprojects of the aggregate.

Tip: To have all subprojects be listed in the top level of the browser (rather than
under Subprojects), set the preference on the Miscellaneous Preferences panel.

An aggregate project contains only
subprojects and a makefile that
builds all of the subprojects at once.

Frameworks: Easy to Use, Easy to Create

Frameworks are new in OPENSTEP 4.0. A
framework is just a simpler, more convenient
way to package a dynamic shared library
and the resources associated with it.

In previous releases, you had to install
essential library components in three different
locations: the library file in /usr/local/lib,
header files in /LocalDeveloper/Headers, and
documentation in
/LocalLibrary/Documentation. Now, you can
store all three of these components in one
directory, the framework directory, which you
install in /LocalLibrary/Frameworks. Plus, you
can package other resources (such as nib
files and images) in your framework.

All OPENSTEP kits, including the Application
Kit, are now distributed as frameworks. You
can find these in /NextLibrary/Frameworks.

Another big advantage to frameworks is that
Project Builder can see inside the framework
package. For example, if you select
AppKit.framework in Project Builder’s
browser, you can access its header files and
documentation. This means you can look up
how to use a method without ever leaving
Project Builder!

To find out how to create your own
framework, see Chapter 12 in this book.

Creating and Managing a Project

9

Changing a project’s name

By default, the project’s name is the name of the directory you chose when you
created the project. The same name is used for the executable or bundle that
the project creates. If this isn’t the name you want to use, change it in the Project
Attributes inspector.

The Project Attributes inspector contains information Project Builder needs to
know to build the project and to maintain the project makefiles. Different types
of projects have different Project Attributes inspectors, but all of them have the
Project Name attribute.

For application projects, this panel contains the language used to develop the
application, the class for the application object, the name of the main nib file,
and the icons used by the application in addition to the project name. You can
change these attributes as well.

1 Click the Inspector button.

2 In the Project Inspector panel,
choose Project Attributes.

3 Type the new name in the Project
Name field.

4 Press Return.
Click this button, or choose Inspector
from the Tools menu.

Select Project Attributes.

Type the new name here.

Setting the application icon

10

Setting the application icon

For most applications, you’ll want to use a unique icon. You can create your
application icon using any graphics tool, but it must be a 48 X 48 pixel
TIFF image. Once you’ve created the icon for your application, add it to the
project and to the Project Attributes inspector.

1 Add the icons to the project
under Images.

2 Bring up the Inspector and
choose Project Attributes.

3 Place the cursor in the
Application Icon field.

4 Drag the application’s icon from
the main window into the icon
well.

Click here, or choose Inspector
from the Tools menu.

Select Project Attributes.

Legacy Projects

If Project Builder can’t understand a
project’s Makefile, it decides that the project
is a legacy project, a project created using
a previous release. Project Builder won’t
create or maintain the Makefile for legacy
projects; you must do that yourself.

You don’t have to use the legacy project type
every time you want to control the Makefile.
Instead, you can make your changes in the

Makefile.preamble or Makefile.postamble
files. The project Makefile includes
Makefile.preamble at the beginning of the
build and Makefile.postamble at the end of
the build. Project Builder won’t overwrite
these files, so making changes to them is
safe.

For more information about Makefiles, see
Chapter 9 in this book.

Creating and Managing a Project

11

Setting document icons

If an application creates documents of a unique type, you should create an icon
for that document type in addition to the icon for the application itself. Like the
application icon, the document icon must be a 48 X 48 pixel TIFF image. Again
like the application icon, you add the document icon to the project, and then to
the Project Attributes inspector.

1 Add the icons to the project
under Images.

2 Bring up the Project Inspector
and choose Project Attributes.

3 Click Add Row.

4 Drag the icon from the main
window into the icon well.

5 Type the file extension to be
represented by this icon in the
Name field of the Document
Icons table.

Click here, or choose Inspector
from the Tools menu.

Select Project Attributes.

of file.

Type the file extension here.

Are you creating a multi-
document application? Be sure to
read the section on multi-
document applications in
Discovering OPENSTEP.

Setting system-defined document icons

12

Setting system-defined document icons

In addition to listing the file types that the application can create, the Document
Icons table should list the file types that the application can read but cannot
create. For example, if you are creating a word processing application that can
open RTF files and translate them into its own unique file type, you should list
the RTF extension in this table.

1 Bring up the Project Inspector
and choose Project Attributes.

2 Click Add Row.

3 Type the file extension in the
Name field of the Document
Icons table.

Click this button, or choose Inspector
from the Tools menu.

Select Project Attributes.

Type the file extension here.

Click here.

