
44

Type part name here:

But four young Oysters hurried up,
All eager for the treat;

Their coats were brushed, their faces washed,
Their shoes were clean and neat —

And this was odd, because, you know,
They hadn’t any feet.

Lewis Carroll, Through the Looking Glass

Is it a world to hide virtues in?
Shakespeare, Twelfth Night

Examining an object’s
attributes

Customizing windows and
panels

Setting button attributes

Associating images or sounds
with buttons

Managing images and sounds

Customizing titles, text fields,
and scroll views

Setting textual attributes

Setting text and background
colors

Setting mnemonics

Setting box (group) attributes

Customizing browsers

Setting attributes of menu
items and pop-up lists

Setting matrix attributes

Setting up table views

Automatically resizing objects

Using tags

Creating the User Interface

Setting an Object’s Attributes

3

Chapter 3 Setting an Object’s Attributes

45

Examining an object’s attributes

You can examine the attributes of any object, whether that object is a graphical
object such as a button or panel, or a non-UI object in the Instances display.

The Inspector panel displays the attributes of the currently selected object.

Tip: You can also bring up the Attributes display of the Inspector panel by
pressing Command-1.

Once the Inspector panel is visible on the screen, it stays there until you close
it. As you select different objects, their attributes are displayed (or dimensions
or connections or help links—whatever Inspector display is current).

1 Choose Inspector from the Tools
menu.

2 Select an object in the interface.

To switch to the Connections, Size,
Help, or Custom Class displays for the
selected object, pull down this menu
and make the appropriate choice.

Many attribute buttons have to do with
an object’s appearance. Click some of
these to see their effects on the object.

Examining an object’s attributes

46

You can also select objects in the Instances display and examine their attributes.
Some of these objects (like First Responder) have no attributes. Others, like an
instance of a custom class, have only one attribute.

Select an object. In this case
the object is an instance of a
custom class.

For custom instances, the Attributes
display is the same as the Custom
Class display.

The class of the selected custom
instance is displayed. If you want to,
you can change its class in this display
by selecting another class name.

Chapter 3 Setting an Object’s Attributes

47

Customizing windows and panels

A single Attributes display serves for both windows and panels.

Window Backing
The backing determines how to redraw part of a window when that part is re-
exposed after being covered by another window.

Nonretained: The application is responsible for all drawing on the screen
because there is no buffer. If the application does nothing, the re-exposed
part is replaced by the background color. Nonretained windows are
appropriate for transitory images that you don’t need to save.

Retained: The Window Server copies the covered part’s pixels to a buffer.
When the obscured part of the window is later revealed, the Window Server
redraws only that part, not the rest of the window. A retained window is the
appropriate choice for most situations.

Buffered: The Window Server first draws in the buffer and then copies the
buffer to the screen. When an obscured part is revealed, the Window Server
refreshes the entire window using the buffer. A buffered window is
appropriate when you don’t want users watching complicated images being
rendered on-screen. It is also the best choice for animation or for redrawing
lines of rapidly typed text.

E Set the window title.
E Determine how the Window

Server buffers window contents.
E Choose the window’s controls.
E Set the window’s options.

Change the window’s
title (what appears in
the window’s title bar).

Choose the controls for
the window.

Select the window’s
options.

Choose the window’s
backing (the way its
contents are buffered).

Customizing windows and panels

48

Window Controls

Window Options

Option Description

Release when closed The window object is sent a release message when it is closed.

Hide on deactivate The window should disappear when the application is deactivated.

VIsible at launch time The window should appear when the nib file is loaded.

Deferred A window device for this object is deferred until it's placed on-screen.

One shot The window device is released when it is removed from the screen.

Dynamic depth limit The window’s depth limit can change to match the depth of the screen.

Wants to be color The window is displayed on a color screen (2-monitor systems only).

Miniaturize button

Resize bar

Close button

What’s the Difference Between a Window and a Panel?

A panel is a window that serves an auxiliary function within an
application. Because it’s intended for a supporting role, a panel
typically has these features:

• A panel can be the key window, but never the main window.

• When the application is deactivated, the panel moves off-
screen (it’s removed from the screen list). When the
application is reactivated, the panel appears again.

• When a panel is closed, it moves off-screen; it isn’t destroyed.

• When instantiated programmatically, panels have a grey
background by default, while programmatically created
windows have a white background.

Also, a panel usually has fewer controls: only a close button;
rarely a resize bar; and sometimes no controls at all.

You can make some panels exhibit special behavior for
specialized roles:

• A panel can be precluded from becoming the key window until
the user makes a selection in it.

• Some panels (e.g., palettes) can float above windows and
other panels.

• You can have a panel receive mouse and keyboard events
while an attention panel is on-screen. Actions within the panel
can thus affect the attention panel.

Chapter 3 Setting an Object’s Attributes

49

Setting button attributes

The Attributes display for buttons enables you to set a button’s type, title, icon,
alternate title and icon, and various other characteristics. The object labeled
Button on the Views palette is only one style of button (albeit the most common
style). The palette also holds radio buttons and switch buttons. Using the
Attributes display for buttons, you can customize any palette button, making it
something that is uniquely suitable for a particular circumstance.

E Enter the button’s main and
alternate titles.

E Select the button type.
E Specify any key equivalent.
E Specify button options.

The Icon Position and Pixels
Inset controls as well as the
Sound and Icon fields are
described in detail in the next
task, “Associating images or
sounds with buttons.”

For more information on the Tag
field, see “Using tags” in this
chapter.

You might think of storing
specially configured buttons on a
dynamic palette. See Chapter 5,
“Using Dynamic Palettes,” for
complete information.

The button’s main
and alternate title.

The key equivalent to
clicking the button.Sets the type of button.

Holds an integer that
you can use to
identify the button.

The button’s main
and alternate icons.

Aligns the text within
the button boundaries.

Options controlling the
button’s appearance
and state.

The Anatomy of a Button

A button is essentially a two-state NSControl
object. When a user clicks a button, an
action message is sent to a target object. It is
two-state because it is either on or off, and
when it is on, it typically sends its action
message. For a button, the states are also
known as “normal” (off) and “alternate” (on).

Like most objects on the Views palette in
Interface Builder, a button is actually a

compound object: an NSButton object and
an NSButtonCell object. (See “Compound
Objects” in this chapter.) Most of NSButton's
methods match identically declared methods
in NSButtonCell. Aside from dispatching the
action message, NSButton’s unique role is to
set the font of the key equivalent, and to
manage the highlighting or depiction of the
NSButton's current state.

Setting button attributes

50

Button Titles and Icons
The Title field’s value is what appears in most buttons; you can set the title by
double-clicking inside the button. The Icon field identifies an image stored in
the nib file (Images display) that appears within the button. The alternate title
(Alt. Title) and the alternate icon (Alt. Icon) appear when the user clicks a
button of type Momentary Change or Toggle.

Button Key
The Key field identifies a keyboard alternative to clicking the button. Possible
values are: \e (Escape), \r (Return), and any normal letter or number.

Button Type

Type Button Behavior When Clicked

Momentary Push Button is highlighted, appears to be pressed.

Momentary Change Alternate button title and icon appear (while mouse button is pressed).

Momentary Light Button is highlighted, but no illusion of being pressed.

Push On/Push Off First click highlights button with illusion of being pushed in; second
click returns it to normal.

On/Off First click highlights button. Second click returns it to normal.

Toggle First click displays alternate title and button. Second click returns to
normal.

Button Options

Option Description

Bordered A line is drawn around the button’s border.

Transparent The button has no border, text, icon, or background color.

Continuous The button sends its action message continuously when pressed.

Disabled Prevents activation of the button; title is in gray.

Selected The button, when initialized, is to be selected (applies to switch and
radio buttons).

Chapter 3 Setting an Object’s Attributes

51

Associating images or sounds with buttons

When you click a button that has a sound associated with it, it plays the sound.
Images appear in buttons with or without text.

When you drag an image or sound from the File Viewer, it automatically gets
added to the Images or Sounds section of the nib file.

E Drag the icon representing an
image or sound from the nib file
window or the Workspace and
drop it over a button.
Or

E Enter the file name of the image
or sound in the appropriate field
of the button’s Attributes
inspector.

...and drop over
the button.

Drag the image (in this case)
or sound icon from the nib
file window...

...and drop it over
the button.

Drag the image or (in this
case) sound file icon from
the File Viewer...

Associating images or sounds with buttons

52

Several fields and controls in the Inspector’s Attributes display for buttons relate
to images and sounds.

Note that the name of an image or sound in this display is the file name (find.tiff
and Poit.snd, for example) minus the extension. Instead of dragging and dropping
image and sound icons, you can type their file names (minus the extension) in
the appropriate field.

Icon Position and Pixels Inset
The six buttons in the Icon Position group position the button title and icon
relative to each other. Thus, you can have the title above, below, to the left, or
to the right of the icon, or show only one or the other. The Pixels Inset pop-up
list gives several pixel distances for adjusting the spacing between the icon and
the nearest edge of the button.

Tip: If you want to import images into your interface for decorative purposes, use
the image view object on the DataViews palette. You simply drop the image on
the image view. You’ll probably want to deselect the bordered option and the
Editable option in the image view’s Attributes inspector.

The name of the sound
file played when button
is clicked.

The button’s main
and alternate icons.

Positions title and icon
relative to each other.

Adjusts icon distance
from button boundary.

Before you type in the file name,
you should insert the resource
into the nib file or the project.
Usually, you want to add the
resource to the project. See
“Managing images and sounds”
for more information.

Chapter 3 Setting an Object’s Attributes

53

Managing images and sounds

You can add images and sounds to a nib file. The image or sound is added to the
appropriate display no matter what display is currently showing.

Although the association of images and sounds with buttons is an important
reason for putting them into a nib file, there are other reasons. When you
composite an image or play a sound in your code, the search path (if your code
supplies no path) starts with the application’s executable (already loaded
resources), the main bundle, and the main bundle’s .lproj directories. Then the
standard directories are searched:

the appropriate subdirectory of the user’s ~/Library directory
the appropriate directory in /LocalLibrary
the appropriate directory in /NextLibrary

If you do not want to risk an image or sound not being in one of these standard
directories, then you should store it in a nib file or in the project.

Tip: For most situations, the recommended course of action is to add images and
sounds to your project. If you add them only to a nib file, they won’t be available
to an application until the nib file is loaded.

E To add an image or sound, drag
its file icon from the File Viewer
and drop it over the nib file
window.

E Examine the image or sound in
the Inspector’s Attributes display.

...and drop it over
the nib file window.

Drag the image (in this case)
or sound icon from the File
Viewer...

As shown in “Associating images
or sounds with buttons,” you can
add images and sounds to a nib
file as a side effect of associating
them with a button.

Managing images and sounds

54

Images and sounds have their own Attributes displays. For images, this is mostly
useful for images that are too large to show in the nib file window.

If your system has a microphone or some other input source connected, you can
record new sounds. Click OK to save new sounds.

The image itself.

The dimensions of the
image, in pixels.

Click to get back the
original sound.

Controls to record and
play sound. Above the
controls is a horizontal
sound meter.

Select a sound and then
select the Attributes
display to see the sound’s
waveform. You can cut,
copy, and paste the
waveform.

Chapter 3 Setting an Object’s Attributes

55

Customizing titles, text fields, and scroll views

The objects that exist principally to display text—text fields, titles, and scroll
views—have controls for initializing those objects with various characteristics.
To see what certain effects look like, drag a text field onto a window and click
the buttons on this display. The Title object is just a specially configured text
field: non-selectable with transparent backgrounds and no borders.

An NSScrollView object is a compound object consisting of one or two
NSScroller objects and an NSClipView object, which has as its document view
(subview) an NSText object in Interface Builder. The document view is what is
scrolled. The NSScrollView object has a slightly different Attributes display: no
text alignment buttons and a different set of options.

Text Field and Scroll View Options

Option Description

Editable Allows the user to edit text.

Selectable Allows the user to select text.

Scrollable (NSTextField) Text scrolls to the left if necessary.

Multiple fonts allowed (NSScrollView) Text is in RTF format.

Graphics allowed (NSScrollView) Text is in RTFD format (graphics can be inserted).

E Set background and text color,
text alignment, border style, tag,
and options affecting access to
text.

Color of the text.

An internal identifier of
the text field or scroll
view.

Color of the bounding
rectangle behind the text.

Alignment of the text
within the bounding
rectangle.

No border, black border,
3-D border.

Options affecting user
operations on the text.

A tag is an internal identifier of an
object that you can use in your
code. See “Using tags” in this
chapter for more information.

For more information on the
NSTextField, NSScrollView,
NSScroller, NSText, and
NSClipView classes, see the
Application Kit Reference.

Setting textual attributes

56

Setting textual attributes

Almost all palette objects—from buttons to browsers—can display text. You can
set the font and alignment attributes of this text.

The Text submenu of the Format menu also has commands that affect selected
text; it offers options for aligning text and for displaying, copying, and pasting
the ruler in a Text object. With rulers you can set tabs and indentation. Note that
rulers can only appear in NSText objects (for instance, inside a scroll view).

E Set the font characteristics of
selected text using the Font
Panel.

E Set the alignment of selected
text within its boundaries using
commands on the Text menu.

Select the text.

Click to display the font panel.

Click to display the Text submenu.

Shows an example of the
selected font.

Select font family.

Type font size or select in column
beneath this field.

Select typeface within font family.

Contains options for using default
system or user fonts, or for using
selected font.

Click to apply font to selected text.

Click to display example of font in
field above.

Chapter 3 Setting an Object’s Attributes

57

Setting text and background colors

You can set the color of any of the text objects (NSTextField, NSScrollView, and
NSMatrix). You can specify both a color for the text and a color for the
background.

As with setting fonts, you can either choose to enforce a specific color or allow
the user to select the color. For example, if you choose Black for the Text Color
from the NeXT list in the PANTONE view, the text will be black for all users.
However, if you choose textColor from the System list, the text will be the color
the user selects in the system default settings (which is black unless the user
changes it).

As a shortcut, drag a color from the Colors panel directly to the object to color its
text. If you hold down the Shift key when you drag, the background is colored
instead.

1 Select an NSTextField,
NSScrollView, or NSMatrix
object.

2 In the Inspector panel, select the
Background or Text color well.

3 In the Colors panel, choose a
color.

Click the border of the color
well to bring up the Colors
panel.

Choose System to select from
the system default colors. This
allows user preferences to
decide the color scheme.

Select a color here, and the
color in the color well changes.

The selected text field’s background
and text color change as you choose
colors in the Attributes display.

Setting mnemonics

58

Setting mnemonics

You can set a mnemonic in any object that displays a title, such as a form, a text
field, or a button. Users can select that object by holding down the Alternate key
and pressing the mnemonic you’ve chosen for the object. In this way, you give
your users the option of navigating through the interface through the keyboard
instead of the mouse.

To delete a mnemonic, Alternate-double-click the letter again.

E Alternate-double-click a letter to
choose that as the mnemonic.

Hold down the Alternate key and
double-click the letter to set the
mnemonic. The letter is underlined.

Mnemonics, together with inter-
field tabbing, allow users to
navigate through objects in a
window using only the keyboard.
Inter-field tabbing allows users to
select objects by tabbing. See
Chapter 4 for more information.

Chapter 3 Setting an Object’s Attributes

59

Setting box (group) attributes

When you group a selection of objects in a box, that box (actually the box’s
content view) becomes the superview of the enclosed objects. In Interface
Builder, you can move, copy, paste, and delete the group of objects as one. The
box has several attributes that you can set.

You can drag a box onto your interface and then programmatically replace its
content view (blank by default) with another NSView object, or
programmatically add subviews to the content view. You can also manipulate
this box to make decorative rectangles and lines.

Tip: To make a line in an interface (such a a divider line between sections of a
panel), drag a box onto the interface. Then switch off the title and make the box
as narrow as possible in the required dimension (vertically or horizontally).
Finally, set the offset (vertical or horizontal, whichever is applicable) to zero.

E Set title position, border style,
and horizontal and vertical
offsets.

Adjusts the distance (in pixels) between
the enclosed objects and the top and
bottom edges of the box.

Adjusts the distance (in pixels) between
the enclosed objects and the left and
right edges of the box.

Sets the border style of the box.

Sets the location of the title in relation
to the box, or removes the title.

See Chapter 2, “Composing the
Interface,” to learn how to group
objects inside of a box.

For more information on box
objects, see the NSBox class
specification in the Application Kit
Reference.

Customizing browsers

60

Customizing browsers

Browsers display lists of data and allow users to select items from the list. They
can hold one-dimensional lists or hierarchically organized lists of data such as
directory paths. Browsers display these hierarchical levels in columns, which
users can navigate using buttons or scrollers. An entry in a column can be either
a leaf node or a branch node. Leaf nodes terminate a path; branch nodes, which
have a right-arrow icon, lead into the next level in the hierarchy. A browser’s
attributes affect its navigation controls, methods of selection, and appearance.

Browser Options

Option Description

Allow multiple selection The user can select more than one node at a time.

Allow empty selection Makes it possible to have no cells selected; otherwise, the first cell in
the column is selected by default.

Allow branch selection The user can select branch nodes (such as directories).

Separate columns Separates columns with a bezeled bar (if not set, a black line appears).

Display titles Titles are above columns and column divider is bezeled bar.

Allow horizontal scroller Allows users to scroll horizontally as well as vertically.

E Select the browser options.

Select options for browser.

Chapter 3 Setting an Object’s Attributes

61

Setting attributes of menu items and pop-up lists

Menus and pop-up or pull-down lists (NSPopUpButton instances) are
compound objects containing objects that conform to the NSMenuItem
protocol. The Attributes displays for menu items and NSPopUpButtons are
almost identical. The following is the display for NSPopUpButtons.

If you choose Disabled, the menu item’s text is gray at application launch. When
the user clicks the item, no action message is sent. If conditions change to make
the items’s function relevant, your code must re-enable the item.

Pop-Up Lists and Pull-Down Lists
An NSPopUpButton contains a trigger button and three menu items. Double-
click the trigger button to see the menu items; you can initialize their titles or
(in the Attributes display) disable them and assign them tags.

A pop-up list’s trigger button always displays the item that was last selected. In a
pull-down list the trigger button’s title is fixed. A pull-down list is effective for
selecting actions in a very specific context, like the “Operations” pull-down list
in Interface Builder’s Classes display.

E Set whether the list is a pop-up
or pull-down type (not applicable
to menu items).

E Set whether the item is initially
disabled.

E Assign a tag to the item.

Sets whether the list behaves
as a pop-up or pull-down menu
(NSPopUpButton only).

Sets whether the menu item is
initially deactivated (text grayed
out).

Enter an internal identifier of
the menu item.

A tag is an internal identifier of an
object that you can use in your
code. See the task, “Using Tags,”
in this chapter for more
information.

Once you expose a pop-up list’s
menu items, you can add more
menu items to it from the Menus
palette. See “Creating menus” in
Chapter 2 for details.

Trigger button
(when deactivated).

Menu items
(when activated).

Setting attributes of menu items and pop-up lists

62

Compound Objects

Each cell in a matrix can have its own action and target. A matrix
also has its own action and target. If a cell doesn't have an action,
the matrix’s action is sent to its target. If a cell doesn't have a
target, the matrix sends the cell's action to its own target.

In Interface Builder, you can convert a single-celled control (such
as an NSButton, NSSlider or NSTextField) into a matrix by
Alternate-dragging a resize handle of that control. The associated
cell, whether an NSButtonCell, NSSliderCell, or NSTextFieldCell,
is duplicated for each row and column of the matrix.

Forms are a special type of matrix (NSForm inherits from
NSMatrix). They have special cells (NSFormCell instances) that
compose both the form entry fields and the titles of those fields.

Special Compound Objects

Some objects on Interface Builder’s standard palettes are of a
more complex composition.

• Scroll View This object coordinates the interaction between
NSScroller objects and an NSClipView object to scroll a
document. It consists of one or two NSScrollers, an
NSClipView, and the document view, which is generally
NSText.

• Browser This object has scroll bars for controls and columns
to show hierarchically organized data. Each column is a matrix
of NSBrowserCell objects.

• Pop-Up List This object has a trigger button and an array of
objects that conform to the NSMenuItem protocol.

• Menu This object’s content area contains an array of objects
that conform to the NSMenuItem protocol.

• Table View See “Inside the NSTableView Object” in this
chapter.

Most of the objects you can drag from the standard Interface
Builder palettes are actually compound objects. They consist of
two or more objects that work together in specific ways.

Controls and Cells

A control (an instance of an NSControl subclass) functions as an
event translator. It translates a user event like a mouse click into
an action message and directs that message to another object in
the application (the target).

Controls supply the mechanism but not the content of the
target/action paradigm. They need action cells (or instances of
NSActionCell subclasses) to hold this information:

• target the object receiving the action message

• action the method that specifies what the target is to do

At least one of these cells occupies the same area as its control.
Because it descends from NSCell, a cell also has content (text or
image), which it draws upon request from the control.

This division of responsibility makes for greater efficiency
because a control can have multiple cells and send a different
action message to a different target for each of those cells.
Because cells are lightweight objects, it is more efficient in some
contexts to associate one control with many cells.

Matrices

A matrix (an instance of the NSMatrix class) is a control that
manages more than one cell. It organizes its cells in rows and
columns. The cells must be the same size and usually are of the
same class (although a matrix can have instances of different
subclasses of NSCell).

NSMatrix

NSScroller NSBrowserCell

NSBrowser

NSClipView
(content view)

NSScroller NSText
(document view)

NSScrollView

NSArray

NSMenuItem NSButton

NSPopUpButton

Chapter 3 Setting an Object’s Attributes

63

Setting matrix attributes

The Attributes display for matrices allows you to determine how a matrix and its
cells look and behave.

Matrix Selection Mode
The selection modes specify how cells behave when a user is dragging a mouse
within a matrix. They also determine if the user can select multiple items in the
matrix—a column of switch buttons, for example, allows multiple selection.

Track: The cells track the mouse when it is within their bounds but do not
highlight themselves. This mode would be suitable for a “graphic equalizer”
matrix of sliders. Dragging the mouse causes the sliders to move.

Radio: Only one cell in the matrix can be selected at a time, as is the typical
case with a matrix of radio buttons.

Highlight: Each cell is highlighted while it tracks the mouse and is
unhighlighted when done tracking. This mode allows multiple selections. A
matrix of switch buttons commonly has this mode.

List: Cells are highlighted as the mouse is dragged across them, but they do not
track the mouse. In this mode, a matrix supports multiple selection, enabling
a user, for instance, to select a range of text in a matrix of text objects.

E Set the background gray of the
matrix.

E Set the matrix selection mode.
E Set autosizing behavior and

other properties of cells.
E Inspect the cell prototype and

change it, if necessary.

Determines how cells
track the mouse and
whether selections are
exclusive or inclusive.

Various options
affecting the cells of the
matrix.

Shows what the
prototype cell looks like.

Draws the background
color of the matrix.

An internal identifier of
the matrix.

Setting matrix attributes

64

Cells Options

Option Description

Autosize If set, the cells resize when the matrix is resized, keeping the space
between cells constant. If not set, the space between cells changes.

Selection by rect Allows users to select multiple cells by dragging the mouse around
them.

Match Prototype Applies the new prototype to the selected matrix’s existing cells.

Tags = Position Resequences the cell’s tags if you’ve added cells to a previously
created matrix. When you create a matrix, cells are assigned
consecutive tags starting from zero. For two dimensional matrices, the
progression is from left to right (row), then down (column). When you
later add new cells, they all have tags of zero.

A tag is an internal identifier of an
object that you can use in your
code. See “Using tags” in this
chapter for more information.

Changing the Prototype Cell

When a matrix creates its cells, it typically makes them by
copying a prototype cell stored as an instance variable. (It can
also instantiate its cells from their class.)

You can examine and alter this prototype cell’s attributes through
the Inspector’s Prototype display. This display is only available
when you select a matrix.

If you change the prototype, you must click the Match Prototype
button on the Attributes display of the matrix for the existing cells
to reflect the changes.

Choose Prototype here
to display the prototype
cell’s attributes.

Chapter 3 Setting an Object’s Attributes

65

Setting up table views

A table view displays information in a table and allows the user to select and
change that information. Table views contain rows and columns of information.
When you create a table view in Interface Builder, you create the number of
columns you want. Rows are added programmatically.

Tip: To add a column to a table view, select an existing column, then copy and
paste.

The Selection options control how the user can select information in the table
view. By default, the user can select rows in the table one at a time. Allows
Column Selection means the user can select columns of information. Allows
Multiple Selection means the user can select more than one row or column at a
time.

Table View Options

Option Description

Show Grid Lines are drawn around each cell in the table.

Allows Resizing The user can resize the table columns.

Allows Reordering The user can rearrange the table rows.

E Set the type of selections the
user can make.

E Set whether the table view
should scroll vertically,
horizontally, or both.

E Set the height for table rows.
E Set if the user can resize

columns, reorder rows, and if
cells are bordered.

Controls how the users
are able to select
information in the table.

Controls how the user
can scroll the table.

Height of each row.

Options affecting how
data is displayed.

Setting up table views

66

Inside the NSTableView Object

NSTableView used to be available only to people using the
Enterprise Objects Framework or, before that, DBKit. Now,
NSTableView is part of the Application Kit, so every application
can take advantage of its features.

When you drag a table view from the TabulationViews palette to
your interface, you’re actually getting several objects. The
NSTableView is nested inside of an NSScrollView. The
NSTableView itself is made up of one NSTableColumn object for
each column and an NSTableHeaderView, which displays the
column headings.

Each NSTableColumn has an NSCell associated with it that is
used to draw all of the cells in that column. The NSCell may have
an NSFormatter associated with it that defines how the contents
of that cell are formatted. You can associate an NSFormatter with
the NSTableColumn’s NSCell in Interface Builder by dragging one
from the Formatters palette.

Also associated with an NSTableView is an object conforming to
the NSTableDataSource protocol. You don’t create this object in
Interface Builder unless you’re creating an application based on
the EO Framework. The data source controls the display of data in
the NSTableView. You implement methods defined by the protocol
to retrieve values from the table, to change values in the table, or
to add rows to the table.

For more information about table views, see the NSTableView
class specification in the Application Kit Reference.

NSTableColumn

NSTableView

NSScrollView

Chapter 3 Setting an Object’s Attributes

67

Automatically resizing objects

When you resize a window, the objects in the window must often adjust their
size or the distances between themselves and other objects. The Size display of
the Inspector panel lets you tell a selected object how to resize itself. The lines
inside and outside the box affect different aspects of resizing behavior.

1 Select an object.

2 Choose the Size display of the
Inspector panel.

3 In the Autosizing view of the
display, click lines to make them
springs or click springs to make
them lines.

For examples of the effects of
these “autosizing” characteristics
on views within a resized
window, see “Some Effects of
Automatic Resizing.”

Choose Size here.

Click to toggle between a
line and a spring, setting
resizing characteristic..

Inside the box
This spring indicates that, when the window or superview
is resized vertically, the object resizes itself to maintain its
distance from the top and bottom edges of the window
or superview.

This sraight line indicates that, when the window or
superview is resized horizontally, the object maintains its
initial size.

Outside the box
This spring indicates that, when the window or superview
is resized vertically, the space between the top edge of
the object and the top of the enclosing view or window is
adjusted proportionally.

This sraight line indicates that, when the window or
superview is resized, the object maintains the initial distance
between its bottom edge and the bottom of the enclosing
view or window.

Automatically resizing objects

68

If you do not make a view resize itself when its superview or window resizes,
some ugly behavior could result. For instance, if the user makes a window small,
objects that don’t resize themselves could become truncated by the resized
window’s borders. One recourse to this unwanted outcome is to specify a
minimum size for the window.

You might need to make several iterations in Interface Builder—setting resizing
characteristics in objects and shrinking the window in test mode—to determine
what the ideal minimum size should be.

When There Are Conflicts
You can create an impossible resizing relationship, such as specifying as fixed the
object’s dimensions and its distance from the window’s edges. In cases of
conflict, an object’s fixed dimension takes precedence over its fixed distance
from a border. If all dimensions are made resizable, adjustments to the window
or superview’s changed dimensions are made equally to the object and its
distance from a border.

Or click here to make the window’s
current dimensions the minimum size.

Set all springs to have the window
proportionally positioned on a screen
of different size. Unset a spring to have
window maintain the absolute distance
to the screen edge.

Enter the minimum width and height
of the window. Resizing will stop at
these dimensions.

Interface Builder includes a test
mode that simulates the actual
operation of the interface. In test
mode, you can test the resizing
behavior of your windows and
views, see how connected objects
communicate, play sounds
associated with buttons, and do
similar operations. See “Testing
the Interface” in Chapter 4,
“Making and Managing
Connections,” for more
information.

Chapter 3 Setting an Object’s Attributes

69

Some Effects of Automatic Resizing

The window below has two identical scroll view objects. Different
autosizing “springs” are set in each, and then the window is
resized in test mode. The screen shots under After Resizing show
you the results.

In the first example, one object resizes vertically while the other
doesn’t (distances to borders are absolute for both). The result:
the object that doesn’t resize itself is truncated when the window
is vertically shortened.

In the second example, both objects resize themselves, but
Object B maintains its distance to surrounding objects. This
causes Object B to be more severely resized than Object A.

To learn more about the effects of resizing, try some experiments
on your own using different combinations of objects and
autosizing attributes.

After ResizingObject A Object B

Automatically resizing objects

70

Automatic Resizing: An Example

This example interface incorporates autosizing attributes in such
a combination that the window can shrink to a very small size and
still be usable.

The window is resized.

The window’s minimum
size is set to a dimension
just large enough for the
main view to show content
and for the slider and
button to be manipulated.

The box containing the
slider keeps the same
distance from the window’s
adjacent edges, but resizes
the gaps between itself and
the other views. It resizes
itself horizontally, but not
vertically.

The button’s autosizing
attributes complements the
box’s attributes. It keeps
the same distance from the
window’s adjacent edges,
but resizes all other
distances. It also resizes
itself horizontally, but not
vertically.

The main view of the
interface (a custom view)
maintains a constant
distance from the window’s
edges, but is itself resizable
in all directions.

Chapter 3 Setting an Object’s Attributes

71

Using tags

Tags are integers that you use in your code to identify objects. They offer a
convenient alternative to such methods of object identification as fetching an
object’s title. (What if the object’s title changes while the application is running,
or the application is localized?) Tags can also carry useful information associated
with an object, and thus make it easier to integrate that information into a
program. Tags are commonly assigned to the cells contained by matrices.

You can specify tags in the Tag fields of most Attributes displays.

You can also set tags programmatically in most NSView objects by sending those
objects the setTag: message.

1 In Interface Builder, specify the
tag integers for objects.

2 If the integers are not
intrinsically meaningful, define
constants for them in your source
code.

3 Send the tag message to a tagged
object to get the integer.

4 Evaluate the integer and act upon
it.

Enter a number to identify the object
in your source code.

Using tags

72

The integers that you assign could have some intrinsic value; for instance, they
could be numbers that are multiplication factors for a document-zoom feature,
or numbers that correspond to the number of a keypad in a calculator
application. If the tag numbers are not intrinsically meaningful (that is, they’re
arbitrary), it’s prudent to define constants to express them.

When you need to identify a tagged objects in your code, use the tag method.

typedef enum {

LEFT = 1,

RIGHT,

BOTTOM,

TOP,

HORIZONTAL_CENTERS,

VERTICAL_CENTERS,

BASELINES

} AlignmentType;

- (void)align:sender

{

 [self alignBy:(AlignmentType)[[sender selectedCell] tag]];

}

