
114

Type part name here:

I inherited it brick, and left it marble.
Emperor Augustus

They rightly do inherit heaven’s graces,
And husband nature’s riches from expense.

Shakespeare, Sonnets

Observe how system into system runs,
What other planets circle other suns.

Alexander Pope, An Essay on Man

A roadmap to making or
adding custom classes

Naming a new class

Specifying outlets and actions

Creating an instance of your
class

Connecting your class’s
outlets

Connecting your class’s
actions

Generating source code files

Implementing a subclass of
NSObject

Making your class a delegate

Implementing a subclass of
NSView

Adding existing classes to
your nib file

Updating a class definition

Coding

Subclassing

6

Chapter 6 Subclassing

115

A roadmap to making or adding custom classes

This chapter differs from the other chapters in this book because its subject is
different. Creating a class (or adding an existing class) is not a set of discrete,
modular tasks, but a process consisting of many interdependent tasks. The
order of tasks in this chapter is therefore significant; with some exceptions, you
need only follow the tasks sequentially, from first task to last task, and you’ll end
up with a useful class.

But those exceptions are significant, and so flowcharts are provided to point the
way. The flowchart on the facing page guides you through the tasks required to
define and implement a subclass of the NSObject class or of the NSView class.
An additional flowchart identifies the tasks you must complete to integrate an
existing class into an application.

This chapter also differs from other chapters in this book because it covers a
topic that involves both Interface Builder and Project Builder. To start creating
a class, you use Interface Builder. It helps you locate the class in the hierarchy,
name it, connect an instance of it with other objects in an application, and
generate template source files. When Interface Builder’s role is done, you switch
to Project Builder and provide the most important contribution, the source code
that gives your class its distinctive behavior. (As an alternative, you can start
creating a class in Project Builder then add it to Interface Builder and make the
connections to other objects later.)

E Determine which flowchart
applies to your situation.

E Follow the tasks in this chapter
in the order specified by that
flowchart.

A roadmap to making or adding custom classes

116

Implementing
a Subclass
of NSView

Naming a
New Class

Specifying
Outlets

and Actions

Connecting
Your Class’s

Outlets

Generating
Code Files

Implementing
Subclass
of NSView

Creating an
Instance

NSView or Non-NSView Subclass?

NSViewNon-NSView

What is Superclass?

Implementing
a Subclass
of NSObject

Connecting
Your Class’s

Actions

Making Your
Class

a Delegate

If you branch to “Implementing a
subclass of NSView” after
specifying outlets and actions,
complete only the step “Making an
Instance of an NSView Subclass”in
that task for now, and go on to the
next task. Do the rest of
“Implementing a subclass of
NSView” after you’ve generated
code files.

After generating code files, you
must switch over to Project Builder
and open the header and
implementation files.

Flowchart Legend

Main Flow

Decision Point

Optional

Task in Chapter

Chapter 6 Subclassing

117

Adding Existing
Classes to

Your Nib File

Connecting
Your Class’s

Outlets

Implementing
Subclass
of NSView

Creating an
Instance

Making Your
Class

a Delegate

NSView or Non-NSView Subclass?

NSViewNon-NSView

Connecting
Your Class’s

Actions

Flowchart Legend

Main Flow

Decision Point

Optional

Task in Chapter

A roadmap to making or adding custom classes

118

The Model-View-Controller Paradigm

A common and useful paradigm for object-oriented applications,
particularly business applications, is Model-View-Controller
(MVC). MVC derives from Smalltalk-80; it proposes three types of
objects in an application, separated by abstract boundaries and
communicating with each other across those boundaries.

Model Objects

This type of object represents special knowledge and expertise.
Model objects hold a company’s data and define the logic that
manipulates that data. For example, a Customer object, common
in business applications, is a Model object. It holds data
describing the salient facts of a customer and has access to
algorithms that access and calculate new data from those facts.
A more specialized Model class might be one in a meteorological
system called Front; objects of this class would contain the data
and intelligence to represent weather fronts. Model objects are
not displayable. They often are reusable, distributed, and portable
to a variety of platforms.

View Objects

 A View object in the paradigm represents something visible on
the user interface (a window, for example, or a button). A View
object is “ignorant” of the data it displays. The Application Kit
usually provides all the View objects you need: windows, text
fields, scroll views, buttons, browsers, and so on. But you might
want to create your own View objects to show or represent your
data in a novel way (for example, a graph view). View objects,
especially those in kits, tend to be very reusable and so provide
consistency between applications.

View

Controller

Model

Controller Object

Acting as a mediator between Model objects and View objects in
an application is a Controller object. There is usually one per
application or window. A Controller object communicates data
back and forth between the Model objects and the View objects.
It also performs all the application-specific chores, such as
loading nib files and acting as window and application delegate.
Since what a Controller does is very specific to an application, it
is generally not reusable even though it often comprises much of
an application’s code.

Because of the Controller’s central, mediating role, Model objects
need not know about the state and events of the user interface,
and View objects need not know about the programmatic
interfaces of the Model objects. You can make your View and
Model objects available to others from a palette in Interface
Builder.

Hybrid Models

MVC, strictly observed, is not advisable in all circumstances.
Sometimes its best to combine roles. For instance, in a graphics-
intensive application, such as an arcade game, you might have
several View objects that merge the roles of View and Model. In
some applications, especially simple ones, you can combine the
roles of Controller and Model; these objects join the special data
structures and logic of Model objects with the Controller’s hooks
to the interface.

Chapter 6 Subclassing

119

Naming a new class

When you create an application, you must create at least one subclass to do
anything meaningful. The OpenStep frameworks do a lot of the work for you,
but you must always supply, in one or more subclasses, the distinctive logical
and computational flow of your application.

When you subclass, the first thing you must do is select your class’s superclass.
Ideally, the superclass of your class should behave much the way you want your
class to behave. Your class merely adds the behavior you want to what the
superclass offers, or modifies the superclass’s behavior in some way. Often the
behavior you want is so bound to resolving a particular problem that the proper
choice of superclass is NSObject because it provides the most generic behavior.

Tip: Pressing Return when a class is selected is equivalent to choosing the
Subclass command.

1 In Interface Builder, display the
Classes display of the nib file
window.

2 Select the class you want your
class to inherit from.

3 Choose Subclass from the
Operations menu.

4 Type the name of your class over
the highlighted “default” name.

Click here for classes display.

See “A Short Practical Guide to
Subclassing” in this chapter for
more on the relation between
superclasses and subclasses.

Click to highlight the class that is to be
your class’s superclass.

Choose this command to insert your
(undefined) class into the class hierarchy.

Naming a new class

120

The new class is listed under its superclass with a default name: the superclass
name prefixed with “My” (such as “MyNSObject”). Replace this default name
with the new name.

Later, if you want to rename the class, first re-select the class name by double-
clicking it. Then type the new name, replacing the selected text.

Type the name of your Class over the
default name. Press Return.

A Perspective on the Class Hierarchy

The Classes display of the nib file window shows the classes that
the current nib file is aware of. The display lets you browse
through both OpenStep classes and custom classes. The Classes
display also depicts (by indentation) class-inheritance
relationships and reveals the names of each class’s outlets and
actions.

Keyboard Navigation Move up and down in the list of classes
pressing the up arrow and the down arrow. When a class is
highlighted, show its subclasses by pressing the right arrow;
collapse an indented list by selecting the superclass and pressing
the left arrow. If the nib file window is active, incremental search
is active: just type the first few letters of a class until its name is
highlighted.

If the class name is black, it is a
custom class. If the class name
is gray, the class is a NeXT-
provided class.

The Classes display shows
hierarchy by indentation (for
example, NSApplication inherits
from NSResponder). If the circle
button is filled, the class has
subclasses that are not shown.
Click the button to display the
subclasses. Outlet (electrical-outlet icon)

and target/action (cross-hairs
icon) buttons. Click to display
class outlets and actions.

A pull-down list of operations
related to creating a class.

Chapter 6 Subclassing

121

Specifying outlets and actions

An object isolated from other objects is of little use. Interface Builder provides
two ways for you to specify how objects of your class communicate with other
objects: outlets and actions.

Before you begin this task, take a moment to consider what other objects you
want instances of your class to send messages to, and the requests that instances
of your class are apt to receive from other objects. The procedure itself is simple,
and almost identical for outlets and actions.

Adding Outlets
Outlets are instance variables that identify other objects. In the Classes display,
you access the outlets of a class by clicking the electrical-outlet button.

When you press Return, the outlet is renamed and Interface Builder highlights
the new outlet. If you have another outlet to specify, choose Add Outlet again
from the Operations menu and type the outlet’s name over the default name.

1 Click the button for an outlet or
an action.

2 Select Outlets or Actions.

3 Choose the appropriate
command from the Operations
menu.

4 Enter the name of the outlet or
action in place of the default
name.

Click this button to view or add outlets.

Outlets and Actions appear then
underneath the class, with Outlets
highlighted.

Next, choose Add Outlet.

Type the name of an outlet in place of
the default name.

For background information on
outlets and actions, see
“Communicating With Other
Objects: Outlets and Actions” in
Chapter 4, “Making and
Managing Connections.”

Specifying outlets and actions

122

Adding Actions
Actions are methods invoked as a direct consequence of the manipulation of
NSControl objects in the interface, such as when users click a button. In the
Classes display, you access a class’s actions by clicking the cross-hairs button.

When you press Return, the action is renamed and Interface Builder highlights
the new action. If you have another action to specify, choose Add action from the
Operations menu, and type the new action’s name over the default action name
(“MyAction”).

When you are finished specifying outlets and actions, click the class name to
collapse the list of outlets and actions.

Tip: When an outlet or action (but not its text) is highlighted, you can add a new
outlet or action by pressing the Return key instead of using the menu.

Outlets and actions then appear
underneath the class, with Actions
highlighted.

Click this button to view or add actions.

Next, choose Add Action.

Type the name of an action in place of
the default name.

Chapter 6 Subclassing

123

A Short Practical Guide to Subclassing

Subclassing is not an esoteric art but one of the most common
and essential tasks in object-oriented programming. But it doesn’t
need to be a difficult chore, especially if you take the time to learn
what’s in the class hierarchy.

What is Subclassing?

The principal notion behind subclassing is inheritance. Classes
stand in relation to other classes as child to parent or parent to
child. A class might have many child classes (or subclasses), but
always has only one parent class (superclass). At the head of this
class hierarchy is the root class.

The attributes (instance variables) and behavior (methods)
defined by a class are shared by all descendents of that class. To
put it another way, each new class is the accumulation of all class
definitions in its inheritance chain.

For example, the NSView class defines two instance variables for
location and size (frame for the superview orientation, and
bounds for within the view) from which all instances of its
numerous subclasses derive their own basic position and
dimensions. The NSView class also defines several methods for
setting and getting these instance variables; again, all subclasses
of NSView inherit the behavior defined by these methods. You can
send the same messages to any instance of an NSView subclass
to have it resize itself.

So subclassing is usually the extension and specialization of the
inheritance chain. When you define a class that inherits from
another class, you are specifying how it differs from that
superclass.

visible = YES;

visible = YES;
radius = 0.75;
fill = NX_DKGRAY;

visible = YES;
radius = 0.5;
fill = NX_BLACK;
maskOffset =
 { -0.25, -0.25 };

Shape

Circle

Crescent

Set Instance
Variables

Class When Object
Is Drawn

Instance Variables:
float radius;
float fill;

Instance Variables:
NXPoint maskOffset;

Instance Variables:
BOOL visible;

Inherits

Inherits

But there are reasons for creating a subclass—or a “branch” of
subclasses—other than getting different behavior. You may want
to define a class that dispenses generic functionality to its
subclasses, such as an Output class that performs tasks common
to both a Printer class and a Fax class. You might want a class to
declare methods (perhaps unimplemented) that set up a protocol
that future subclasses can implement. Code reusability is an
additional motive: the behavioral elements shared among
classes can go into a single superclass for those classes.

Analyzing the Inheritance Chain

As the first step in subclassing you should analyze the inheritance
chain. This point may seem obvious, but it is important enough to
emphasize. You should do more than just identify the most
suitable superclass; you want to understand exactly what it does
and how it interacts with other classes.

Carefully read the specifications. Note which methods are
available. Determine what the methods do and how they are
related to each other; identify the accessor methods, those that
get and set the instance variables; identify the interfaces to
instances of other classes (such as outlets).

If the behavior you want for your class is targeted at a special
problem, even if that problem is managing an application or
window, it might make the most sense to subclass NSObject.
These kind of subclasses, often called controller or model
classes, are common in OpenStep applications. See
“Implementing a subclass of NSObject” for details on creating
typical controller classes. Also, see “The Model-View-Controller
Paradigm” in this chapter for a description of the distinguishing
characteristics of controller and model types of classes.

Specifying outlets and actions

124

Instance Variables: To Add or Not to Add

Instance variables represent an object’s attributes and hold
pointers to other objects (outlets). If instances of your class
require special attributes or outlets, add them.

But, as a general rule, avoid adding instance variables unless
they are absolutely necessary. Instance variables add weight to
objects. You sometimes generate certain objects (for example,
cells in a file-system browser) in large numbers. The more data
these objects carry, the more memory gets consumed.

Often you can compute values from other values. Sometimes you
can get pointers to other objects without having to specify outlets.
Or you can represent attributes in lightweight fashion, especially
if they are Boolean in nature, by encoding them as bits in an
integer.

If you do not want to give subclasses of your class access to its
instance variables, put the @private directive before the
declarations of the instance variables you want to conceal.
(Many instance variables are private in OpenStep classes.)

Instance Variables:
float radius;
float fill;

Class Set Instance
Variables

When Object
Is Drawn

Shape

Circle

Crescent

visible =YES;

visible = YES;
radius = 0.75;
fill = NSDarkGray

visible = YES;
radius = 0.5;
fill = NSBlack;
maskOffset =
 {-0.25, -0.25};

Instance Variables:
NSPoint maskOffset;

Instance Variables:
BOOL visible;

Inherits

Inherits

This example illustrates the effects of polymorphism and inheritance in
a hypothetical class hierarchy. The Shape class provides basic
functionality and a single instance variable. The Circle class, a subclass
of Shape, adds more instance data and actually implements drawing.
The Crescent class supplements its superclass (Circle) with more
specialized behavior and data.

Chapter 6 Subclassing

125

A Short Practical Guide to Subclassing (continued)

Determining Your Class’s Methods

Look at your class from the perspective of potential clients. What
will they want it to do? What information will they expect back?
The answers to these and similar questions will lead to the set of
methods for your class. Based on relation to superclass, methods
generally come in three types:

• Added methods These new methods extend the class
definition. They include accessor methods for new instance
variables.

• Replacement methods These types of methods completely
override the superclass method of the same name. They can
also, by being a “null” implementation, block the invocation of
the superclass method.

• Extended methods These methods also override a
superclass method, but then in the implementation invoke the
superclass method by calling super. This is a common
technique for adding behavior or getting cumulative behavior
(such as archiving) across the inheritance chain in response to
a single message (such as encodeWithCoder:).

What is Public, What is Private?

When designing your subclass, also identify the code that is part
of the interface and code that is private to the class.

• Public methods These implement your class’s interface.
External objects invoke these methods by sending messages
to instances of your class. Among these types of methods are
accessor methods, which mediate client access to instance
variables. You declare public methods in the header file for
your class.

• Private methods These methods can be invoked by objects
within a project but are invisible to external objects. You usually
declare them in a private header file and prefix the method
name with an underscore character.

• Functions Non-library static C functions are also private to
your class. They are marginally faster than methods because
they don’t involve the overhead of the run-time object system.

Use a method if you’re accessing instance variables, and use a
public method if that method is part of your public interface.

Alternatives to Subclassing

Sometimes you can get particular behavior without additional
subclassing. OpenStep and the Objective-C language give you

many ways to merge and synchronize your class’s behavior with
the behavior of OpenStep classes and even other custom classes.

• Delegation An object can send, on specific occasions,
messages to another object registered as its delegate. If the
delegate implements the methods so invoked, it can participate
in the work of the object. For example, an NSBrowser object
sends messages to its delegate requesting cells to insert into a
column. Other major Application Kit classes with delegation
protocols are NSApplication, NSWindow, and NSText.

• Notifications Many objects post notifications to all
interested observers when a particular event takes place or is
about to take place. Notifications allow observing objects to
coordinate related activities and sometimes give them a
chance to veto the event. This can be better than delegation
because an object can have many observers but only one
delegate. See the specification for NSNotificationCenter (a
Foundation Framework class) for details on adding an observer
object and on responding to notifications.

• Protocols A protocol is a list of method declarations
associated with a particular purpose but unattached to a class
definition. By adopting the protocol and implementing the
methods, your class can interact with OpenStep classes and
accomplish that purpose. OpenStep publishes many protocols,
including those for copying objects and encoding objects for
archiving.

• Categories These are Objective-C constructs that enable
you to add methods to a class without having to subclass it. The
methods become part of the class, inherited by all of its
subclasses. The only major drawback is that you cannot
declare new instance variables (however, you can access all
existing instance variables). Besides extending a class
definition, you use categories to group, manage, and configure
methods in large classes.

Creating an instance of your class

126

Creating an instance of your class

You cannot connect classes to other classes. Only instances of classes—objects—
can really communicate with each other. Interface Builder requires a real
instance of your class to enable the connection of your object to other objects.

The procedure for generating instances of non-NSView classes in Interface
Builder is simple. This procedure applies only to classes that don’t inherit from the
NSView class.

When the new instance appears in the Instances display, it takes the same name
as the class. Rename it, if you want, to something more indicative of an object.
(Double-click the text to select it, then type the new name.) For example,
AppController could become AppControllerObject. Be aware, however, that
this name is merely a convenient way to identify the object in Interface Builder;
it does not create an identifier that you can reference in code.

1 Select your class in the
Classes display.

2 Choose Instantiate from the
Operations menu.

Select a custom class.

Choose Instantiate from this menu.

An instance of the class appears in the
Instances display.

For details on creating an
instance of an NSView subclass,
see “Implementing a subclass of
NSView” later in this chapter.

Chapter 6 Subclassing

127

Connecting your class’s outlets

You initialize an outlet in Interface Builder by making a connection from your
instance to another object.

When you establish the line connection, the Inspector panel for the destination
object becomes the key window. Specify the outlet identifier for this object.

1 Control-drag a connection line
from the instance to another
object.

2 In the Inspector’s Connections
display, select the outlet that
identifies the destination object.

3 Click the Connect button.
Control-drag a connection
line from the instance of
your class.

When the destination object
is outlined, release the
mouse button.

This task and the next one
“Connecting your class’s
actions,” summarize information
more fully presented in
Chapter 4, “Making and
Managing Connections.”

Select the intended outlet.

Click here to make the connection.

Connecting your class’s actions

128

Connecting your class’s actions

Action connections go from an NSControl object to your class’s instance.

When the line is set between the objects, the second column of the Connections
display shows the action methods that the target object (your instance) has
declared. Select the action for this NSControl object.

1 Control-drag a connection line
from a Control object to your
class’s instance.

2 In the Inspector’s Connections
display, select the appropriate
action.

3 Click the Connect button.

Locate an NSControl object
and Control-drag a
connection line from it.

The destination object is usually a custom object whose
class has defined action methods. Release the mouse
button when this object is outlined..

You can make connections
between objects entirely within
the outline mode of the Instances
display. For more information on
the outline mode, see Chapter 4,
“Making and Managing
Connections.”

Select an action defined for the class.

A dimple indicates that a connection
already exists for the action.

Click here to make the connection.

Select the target, which is your
instance.

Chapter 6 Subclassing

129

Generating source code files

Before you begin specifying the behavior of your class in code, you typically
generate template source code files for your class from the information
contained in the nib file. The header file (MyClass.h) created by Interface
Builder declares the outlets you specified as instance variables (of type id) and
declares the actions as instance methods of the form methodName:sender. The
implementation file (MyClass.m) contains empty function blocks for each of
these methods.

When you generate source code files, Interface Builder displays an attention
panel/message box to confirm creation of the files.

If you confirm creation and the nib file is associated with a project, another
attention panel/message box subsequently asks if you wish to add the template
code files to the project. Click Yes to add the files to the project.

1 Select your class in the Classes
display.

2 Choose Create Files from the
Operations pull-down list.

3 Click Yes in the subsequent
attention panels/message boxes.

Select your custom class.

Choose the Create Files command.

Click to confirm.

Generating source code files

130

And then they appear in Project Builder.

Click to confirm.

The header and implementation
files appear in the project.

Chapter 6 Subclassing

131

Implementing a subclass of NSObject

This task summarizes the steps that you must complete—and can optionally
complete—to implement a subclass of NSObject. With this kind of subclass, the
subtleties arising from inherited behavior are simplified. Still, the interaction of
your class with the root class is very important and applies to all subclasses.

The task assumes that you have completed the following prerequisites in
Interface Builder, presented earlier in this chapter:

Naming a class, positioning it in the class hierarchy
Specifying outlets and actions for the class
Creating an instance of the class
Connecting the instance to other objects through the outlets and actions
Generating code files from the nib file

When you have generated code files in Interface Builder, switch over to the
Project Builder application and open your project. Open your class’s header file
(ClassName.h) and implementation file (ClassName.m).

E Import header files.
E Declare new instance variables.
E Implement accessor methods.
E Define target/action behavior.
E Define initialization and

deallocation behavior.
E Define how objects are copied.
E Define how objects are

compared.
E Implement archiving and

unarchiving.
E Define special behavior for

your class.

For more on the NSObject class,
see its description in the
Foundation Framework Reference.

The book Object-Oriented
Programming and the Objective-C
Language describes in detail many
topics related to the NSObject
class and class creation.

Select a file here.

Edit it here. You can press
Command-2 to split the view and
see two files at once.

Implementing a subclass of NSObject

132

Importing Header Files
This step is little different from what you must do in regular C programming: At
the beginning of your implementation file include the header files declaring all
types and functions that your code is using, as well as the header files for all
referenced classes, protocols, and methods. Instead of #include, however, use the
#import directive; #import ensures that the file is included only once.

Remember to import your class’s header file. By doing so you include the
interface files for all inherited classes. To include the Application Kit classes, all
you need to do is #import <AppKit/AppKit.h>. (Interface Builder imports both AppKit.h
and your class header files for you automatically).

Declaring New Instance Variables
The header file that Interface Builder generates declares outlets as instance
variables. You might want to add new instance variables for your class to this list.
All instance variables should be data that is essential to an instance of your
class.They can be strings, integers, floating-point values, and other objects.

Notes on the code: In this example, the instance variable tableView derives from an outlet specified in
Interface Builder. It is written to the header file when template files are generated. The instance variable
countryDict has been added to identify an instance of the Foundation class NSMutableDictionary.
Explicit typing is recommended.

/* TAController.h */

#import <AppKit/AppKit.h>

#import "Country.h"

/* TAController.m (implementation file) */

#import "TAController.h"

#import "Converter.h"/* Needed in implementation, not interface */

@interface TAController:NSObject

{

id tableView;

...

NSMutableDictionary *countryDict;

}

Chapter 6 Subclassing

133

Implementing Accessor Methods
Accessor methods retrieve and set the values of instance variables. They
provide the encapsulation of an object’s data, which only the object itself (and
usually instances of subclasses) can directly access. Accessor methods mediate
access to instance variables, allowing client objects to get and set values through
an object’s interface—that is, by sending messages.

Accessor methods that retrieve the value of an instance variable by convention
take the same name as the instance variable. They usually have a single
statement that returns the value of the instance variable. Methods that set the
value of an instance variable by convention take the name of the instance
variable (first letter capitalized) prefixed with “set.” Set methods often test
passed-in values for validity before assigning them.

Notes on the code: The name method retrieves the value of the instance variable name; it simply returns
the value. The setName: method sets the value of the instance variable name. Because name is an
object, it releases the instance variable before assigning it the new value. Again because name is an
object, the new value is copied to make sure that it remains valid.

Your class might not need to implement accessor methods if it has no need for
client objects to set or retrieve the values of its objects’ instance variables.

- (NSString *)name

{

 return name;

}

- (void)setName:(NSString *)str

{

 [name autorelease];

 name = [str copy];

}

Implementing a subclass of NSObject

134

Defining Target/Action Behavior
When you defined your class in Interface Builder, you specified certain methods
(actions) that NSControl objects in the interface invoke in your object (the target)
when an certain user event occurs. In implementing your class, you must specify
the behavior of these methods. The sole argument of action methods is sender,
the object sending the message.

Notes on the code: This method updates other fields in a window with information from an NSDictionary
when the user selects a row in a table view. It uses sender, which identifies the NSControl object sending
the message, to find out which key to use when retrieving the information from the NSDictionary.

- (void)handleTVClick:(id)sender

{

Country *newerRec;

int index = [sender selectedRow] ;

if (index >= 0 && index < [countryKeys count]) {

newerRec = [countryDict objectForKey:[countryKeys

objectAtIndex:index]];

[self populateFields:newerRec];

[commentsLabel setStringValue:[NSString stringWithFormat:

@"Notes and Itinerary for %@",

[countryField stringValue]]];

recordNeedsSaving=NO;

[tableView tile];

}

return;

}

handleTVClick: is an abbreviated
version of a method you
implemented if you worked
through the TravelAdvisor
tutorial in Discovering
OPENSTEP Programming.

Chapter 6 Subclassing

135

Defining Initialization and Deallocation Behavior
The NSObject class defines methods that subclasses must override to initialize their
instances and to deallocate them. These methods are invoked at the start and end of
an object’s life. Initialization sets the initial values of instance variables and
dynamically allocates and initializes variables. Deallocation frees the memory
allocated to these variables.

Subclasses of NSObject almost always need to override init and dealloc. (An
exception is a subclass that has no instance variables; in this case, it can rely on
NSObject’s implementation of init, which simply returns self.) You can define
other initialization methods for your class that take arguments and perform more
specialized initializations. However, a subclass of NSObject must always
implement init, even if init only invokes one of these specialized initializers,
passing in a default value.

Designated Initializer One of a subclass’s initialization methods must be the
designated initializer. The designated initializer invokes its superclass’s
designated initializer (in NSObject’s case, init), performs most of the work, and
returns self. The other initialization methods in a class eventually end up
invoking the designated initializer.

Invoking super’s Initializer Since an object’s full complement of attributes includes
those instance variables declared and initialized by superclasses, initialization
should cascade down the inheritance chain, starting with the NSObject class.
This means that initialization should almost always begin with the invocation of
the superclass’s designated initializer. For the same reason, deallocation should
almost always end by invoking the superclass’s dealloc method, after deallocating
its own dynamically allocated instance variables. If your dealloc method invokes
super’s dealloc first, the object will be deallocated before it has had a chance to
free its own allocated storage.

For more on designated
initializers, see the description of
the init method in the NSObject
class specification in the
Foundation Framework Reference
or see Object-Oriented
Programming and the Objective-C
Language.

Implementing a subclass of NSObject

136

Notes on the code: This example shows the init method (which is also the designated initializer in this
case) starting off by sending init to super to have its superclass (NSObject) complete its initializations
first. It then sets the object’s instance variables to initial values (empty strings here) and returns self. Until
it returns self, the object is in an unusable state. The dealloc method mirrors the init method. It releases
all dynamically allocated instance variables. The release method decrements an object’s reference
count and, if the count afterwards is zero, dealloc is invoked and the object is deallocated. It then invokes
super’s dealloc method to have the superclass deallocate its own instance variables.

- (id)init

{

 [super init];

 name=@"";

 airports=@"";

 airlines=@"";

 transportation=@"";

 hotels=@"";

 languages=@"";

 currencyName=@"";

 comments=@"";

 return self;

}

- (void)dealloc

{

 [name release];

 [airports release];

 [airlines release];

 [transportation release];

 [hotels release];

 [languages release];

 [currencyName release];

 [comments release];

 [super dealloc];

}Remember, if you create an
object (such as a instance of
NSString) in your initialization
code or elsewhere, you are
responsible for its deallocation
(with autorelease or release). If
you create an object in an
initialization method, the proper
place for releasing it is in dealloc.

See “Creating and Deallocating
Different Types of Objects” in
this chapter for some
background. For complete
details, read the introduction to
the Foundation Framework
Reference.

Chapter 6 Subclassing

137

Defining How Objects Are Copied
If you expect that objects of your class will be copied, adopt the NSCopying protocol;
if your class can create mutable versions of an object, also adopt the
NSMutableCopying protocol.

Next implement the protocol methods, copyWithZone: and mutableCopyWithZone:.
These are simple implementations of these methods:

Defining How Objects are Compared
A problem similar to copying objects is comparing objects. NSObject’s default
behavior, in the isEqual: method, is to compare the identifiers of objects (their
ids). If the ids of the receiving and argument objects are equal, the objects are
considered equal. You might find this behavior acceptable for instances of your
class, but if you don’t, override isEqual:.

Suppose you have a class named Color, and this class has one instance variable,
an integer which holds an industry-accepted identifier of a color. What is
important in demonstrating equality of objects in this case is not the equality of
ids, but of the values of their color instance variables.

@interface MyClass : NSObject <NSCopying, NSMutableCopying>

- (id)copyWithZone:(NSZone *)zone {

 return [[MyClass allocWithZone:zone] init];

}

- (id)mutableCopyWithZone:(NSZone *)zone {

 return [[MyMutableClass allocWithZone:zone] init];

}

Implementing a subclass of NSObject

138

Implementing Archiving and Unarchiving
When an object of your class has been around for awhile, responding to events
and to messages from other objects, its state—the values of its instance
variables—is likely to change. “Off” might change to “on,” true to false, red to
green. When the user quits the application owning your object, you want to save
the important parts of that object’s state and then restore them the next time the
application runs. This is called archiving.

The mechanism for archiving and unarchiving objects is implemented using the
classes NSCoder, NSArchiver, and NSUnarchiver and the protocol NSCoding.
It encodes an application’s object in a way that enhances their persistency and
distributability. The repository of this encoded object information can be a file
or an NSData object. You should archive any instance variables or other data
critical to an object’s state.

When a class adopts the NSCoding protocol, it receives a message requesting
that it encode itself and a message asking that it decode and initialize itself. You
implement two NSCoding methods to intercept these messages:
encodeWithCoder: and initWithCoder:.

Both encodeWithCoder: and initWithCoder: should begin by invoking the
corresponding superclass method so that the superclass archives or unarchives
its instance variables first. (If the class inherits directly from NSObject or any
other class that does not adopt NSCoding, however, these methods should not
invoke the superclass method.) The invocation of super’s initWithCoder: returns the
partially initialized object (self). End initWithCoder: by returning self.

NSArchiver and NSUnarchiver provide methods that write data to and read data
from the archive. Among these are encodeObject:, encodeValuesOfObjCTypes:,
decodeObject:, and decodeValuesOfObjCTypes:. You send the message encodeRootObject:
or archiveRootObject:toFile: to the NSArchiver class to invoke an encodeWithCoder:
method. To invoke an initWithCoder: method, you send the message
unarchiveObjectWithFile: or decodeObject to the NSUnarchiver class. You never
invoke encodeWithCoder: or initWithCoder: directly.

Chapter 6 Subclassing

139

Notes on the code: NSCoder defines matching sets of methods for encoding and decoding objects of
different types. In this example, several objects are encoded using the encodeObject: method and
decoded using the decodeObject: method. One Boolean and one float variable are encoded and decoded
using encodeValueOfObjCType: and decodeValueOfObjCType:, respectively. Note that the data, by type,
must be decoded in the same sequence as it was encoded. The superclass method is not invoked
because the class inherits directly from NSObject, which does not conform to NSCoding.

You don’t need to archive every instance variable of your class. Some of these
values you can re-create from scratch and others are transitory and hence
unimportant (such as a seconds variable used for timing the period since a
certain event). Application Kit objects configured in Interface Builder are
automatically unarchived from their nib file, but only as you originally initialized
them. If you want to retain some changed attribute of these objects, you should
archive the attribute and then initialize the object with the unarchived attribute
in the awakeFromNib method. (An awakeFromNib message is sent to each of the
objects unarchived from a nib file after all of the objects in the nib file have been
unarchived and all of the outlets are set.)

- (void)encodeWithCoder:(NSCoder *)coder

{

 [coder encodeObject:name];

 [coder encodeObject:transportation];

 [coder encodeObject:hotels];

 [coder encodeObject:languages];

 [coder encodeValueOfObjCType:"s" at:&englishSpoken];

 [coder encodeObject:currencyName];

 [coder encodeValueOfObjCType:"f" at:¤cyRate];

 return;

}

- (id)initWithCoder:(NSCoder *)coder

{

 name = [[coder decodeObject] copy];

 transportation = [[coder decodeObject] copy];

 hotels = [[coder decodeObject] copy];

 languages = [[coder decodeObject] copy];

 [coder decodeValueOfObjCType:"s" at:&englishSpoken];

 currencyName = [[coder decodeObject] copy];

 [coder decodeValueOfObjCType:"f" at:¤cyRate];

 return self;

}

Implementing a subclass of NSObject

140

Notes on the code: In this implementation of awakeFromNib, the object must communicate with fields
on its interface through the outlets countryField, commentsField, and currencyField. It places the cursor
inside countryField and makes itself the delegate of the fields commentsField and currencyRateField.
These initializations are done here and not in init because the connection between the objects must be
unarchived from the nib file first.

Defining Special Behavior
The final step in implementing a subclass of NSObject is writing the methods
that are special to your class, those methods that give it its distinctive behavior.
This step is all up to you. If you want examples that you can use as models, look
in ($NEXTROOT)/NextDeveloper/Examples.

- (void)awakeFromNib

{

[countryField selectText:self];

...

[commentsField setDelegate:self];

...

[currencyRateField setDelegate:self];

}

Other NSObject Methods You Could Override

There are several other NSObject methods
that you might want to implement:

description Implement this method to
return a descriptive debugging message as
an NSString object. When you’re debugging,
gdb displays your message when you use the
po command.

awakeAfterUsingCoder: Implement this
method to re-initialize the object, providing it
one last chance to propose another object in
its place.

replacementObjectForCoder: Implement
this method to substitute another object for
your object during encoding.

initialize Implement this class method if
you want to initialize your class before it
receives its first message. This is a good
place to set the version of your class
(setVersion:).

forwardInvocation: Implement this method
if you want to forward messages with
unrecognized selectors to another object
that can handle the message.

Chapter 6 Subclassing

141

#import <AppKit/AppKit.h>

@interface TAController:NSObject

{

id tableView;

...

BOOL recordNeedsSaving;

}

/* target/action */

- (void)addRecord:(id)sender;

- (void)deleteRecord:(id)sender;

/* housekeeping methods */

- (id)init;

- (void)awakeFromNib;

- (void)dealloc;

...

@end

#import "TAController.h"

@implementation TAController

- (void)addRecord:(id)sender

{

/* some code here */

return;

}

- (id)init

{

/* some code here */

return self;

}

/* ... */

@end

The Structure of Header Files and Implementation Files

Implementation File

• Begin by importing relevant
header files, especially the class
header file.

• @implementation followed by
class name begins implementation
section.

• Implement all methods.

• End implementation section
with @end.

Header File

• Begin by importing header files
for declaration types (#import).

• @interface begins class interface
declaration. Class name precedes
superclass, separated by a colon.

• Put the declarations of instance
variables within curly braces.

• After right curly brace declare
your methods.

• Action methods take the argument
sender.

• End class interface declaration
with @end.

Making your class a delegate

142

Making your class a delegate

Several OpenStep classes allow you to register an object as their delegate. As
certain events occur, the objects send messages to their delegates, giving them
the opportunity to participate in processing. In Interface Builder, you can easily
designate your class’s instance as a delegate.

Next, implement the delegate methods you want your class to respond to. In
this example, the object acting as delegate archives itself before the application
terminates.

Tip: You can programmatically set an object’s delegate by sending it the
setDelegate: method.

1 Connect your instance to an
object that has delegates.

2 Select the delegate outlet in the
Connections inspector.

3 Click Connect.

4 Implement the delegate methods.

Make a connection from an object of
the class with delegate methods to the
instance of your class

The delegate outlet is in
the first column of the
connections display.

Click to make the connection.

Messages to delegates
sometimes notify them of
impending or just-transpired
events, and sometimes request
them to complete some work.
Major classes with delegate
methods are NSApplication,
NSWindow, NSText, and
NSBrowser. See the Application
Kit Reference for details on
delegate methods.

- (void)applicationWillTerminate:(NSNotification *)note

{

[NSArchiver archiveRootObject:self toFile:@"TravelData"];

}

Chapter 6 Subclassing

143

Implementing a subclass of NSView

Making a subclass of the NSView class is a procedure that differs from making
a subclass of the NSObject class. But it starts out the same. In the Classes
display of Interface Builder, choose Subclass from the Operations menu while
NSView or one of its subclasses is highlighted in the browser. Then name your
class and add outlets and actions.

Making an Instance of an NSView Subclass
Place an instance of your class on your interface. If you’re subclassing an
NSView subclass (such as NSButton or NSTextField), drag the object that
represents that class (that is, the button or the text field) from the palette
window into your interface’s the window. If you’re subclassing NSView directly,
use the CustomView object on the Views palette.

1 Identify the class and its outlets
and actions.

2 Place and resize an object from
the Views palette on a window
or panel.

3 Assign your class as the class of
the object.

4 Connect the instance to other
objects in the interface.

5 Generate code files.

6 Complete programming tasks
necessary for any object.

7 Complete programming tasks
specific to NSView objects:

E Initialize an NSView object.
E Draw an NSView object.
E If necessary, handle events.

Drag the object whose class you
want to directly subclass
(NSScrollView here) from the
palette...

...and drop it on a window or panel
of your interface.

Implementing a subclass of NSView

144

Position and resize the object, and while it’s still selected, bring up the Custom
Class display of the Inspector panel by typing Command/Control-5. Assign a
class name to the object; this creates an instance of your NSView subclass.

Tip: Make sure you choose the appropriate superclass. If you subclass an NSView
subclass, rather than subclassing NSView directly, you can still set the that class’s
attributes for your object using the Inspector panel’s Attributes display. If you
subclass NSView directly, you lose the ability to set attributes using the
Inspector panel.

Choose Custom Class here or type Command-5.

Click your class name to assign it to the
object. This step creates an instance of
your class in Interface Builder.

Chapter 6 Subclassing

145

The next three steps that you must complete are the same tasks that follow the
instantiation of NSObject subclasses:

Connect the instance to other objects in the interface (“Connecting your
class’s outlets” and “Connecting your class’s actions”). But now the instance
appears as part of the interface, and not as an icon in the Instances display of
the nib file window.

Generate code files and have them inserted in your project (“Generating
source code files”).

Switch over to the project in Project Builder that contains the nib file, and
open your class’s code files.

Since NSView inherits from NSObject, next complete some of the same
programming tasks recommended for subclasses of NSObject:

Declaring new instance variables
Implementing accessor methods
Implementing target/action methods
Archiving and unarchiving

To create a functional subclass of NSView, you must complete two additional
steps (and might want to complete another), which are described on the
following pages.

Implementing a subclass of NSView

146

Initializing NSView Objects
Subclasses of NSView override initWithFrame: instead of init. In initWithFrame:
(NSView’s designated initializer) you initialize a just-allocated instance of your
class, setting its attributes to an initial state. The method’s sole argument is the
rectangle in which drawing is to occur (usually the frame of the view).

In this example, initWithFrame: initializes instance variables of varying types and
performs other housekeeping chores.

Notes on the code: The implementation of an initWithFrame: method begins by invoking super’s
initWithFrame: method, ends by returning self, and in between sets the instance variables to initial
values. Often the attributes set have a visual aspect, and affect how the view is drawn.

As with NSObject subclasses, you might have to implement the dealloc method
to deallocate dynamically allocated storage.

- (id)initWithFrame:(NSRect)frameRect {

[super initWithFrame:frameRect];

glist = [[NSMutableArray allocWithZone:[self zone]]

init];

slist = [[NSMutableArray allocWithZone:[self zone]]

init];

cacheImage = [self createCacheWithSize:[self bounds].size];

[self cache:[self bounds] andUpdateLinks:NO];

gvFlags.grid = 10;

gvFlags.gridDisabled = 1;

[self allocateGState];

gridGray = DEFAULT_GRID_GRAY;

PSInit();

currentGraphic = [Rectangle class]; /* default graphic */

/* trick to allow NSApp to control currentGraphic */

currentGraphic = [self currentGraphic];

editView = [self createEditView];

[[self class] initClassVars];

[self registerForDragging];

spellDocTag = 0;

return self;

}The NSView class offers your
subclass a wealth of inherent
functionality. It includes
methods for managing the view
hierarchy, for converting
coordinates and modifying the
coordinate system, for managing
cursors and events, and for
focusing, clipping, scrolling,
dragging, and printing. See the
description of the NSView class
in the Application Kit Reference.

Chapter 6 Subclassing

147

Drawing NSView Objects
An NSView object draws itself with the drawRect: method. To invoke drawRect:,
another object must send display to the NSView object. The drawRect: method is
also invoked automatically when windows are resized and exposed, when
NSViews are scrolled, and when similar events happen.The NSRect argument
passed to drawRect: indicates how much of the NSView needs to be drawn.

Notes on the code: The example above shows drawRect:. This example fills in the view with a white
background, draws a grid using a user-selectable gray value, then uses NSFrameRect() to draw a black
border around the view.

In implementing drawRect:, write whatever code helps to draw your NSView. You
can call pswrap-generated functions to send PostScript code to the Window
Server. You can send messages to bitmap objects, requesting them to composite
source images stored in off-screen windows. You can change font styles and text
colors. If your NSView uses an NSCell to do any of its drawing, you can send
drawWithFrame:inView: or drawInteriorWithFrame:inView: to the NSCell within
drawRect:.

- (void)drawRect:(NSRect)rect

{

int grid;

float gray;

grid = [spacing intValue];

grid = MAX(grid, 0.0);

PSsetgray(NSWhite);

NSRectFill(rect);

if (grid >= 4) {

gray = [grayField floatValue];

gray = MIN(gray, 1.0);

gray = MAX(gray, 0.0);

PSsetgray(gray);

PSsetlinewidth(0.0);

[self drawGrid:grid];

}

PSsetgray(NSBlack);

NSFrameRect([self bounds]);

}

The PostScript functions and
operators available for use are
described in DPSClientLibrary
Reference.

pswrap is a program that creates a
C function to correspond to a
sequence of PostScript code.
Note that your custom pswrap
code (extension .psw) must go in
Project Builder under Other
Sources. pswrap is described in
detail in Adobe Systems’ pswrap
Reference Manual.

Implementing a subclass of NSView

148

The drawRect: method defines an NSView’s static appearance on the screen. Your
subclass can also add other methods for dynamic drawing in response to user
events. In these methods you might highlight the NSView, drag it from one
place to another, or animate it. The Application Kit locks focus automatically
when drawRect: is invoked. In dynamic-drawing contexts you must lock and
unlock focus yourself when drawing.

If you want your view to respond to mouse clicks, key presses, or other user
events, you must do at least two things:

Re-implement NSView’s acceptsFirstResponder method to return YES.

Decide which event types you want to respond to and implement the
appropriate methods: mouseUp:, mouseDown:, keyDown:, mouseEntered:, and so on.

The event methods are defined in the NSResponder class, where the default
implementation is to forward the event message to the next responder.

When it invokes an event method, the input system passes in an NSEvent
object. This object holds details related to the event: the type of event, the
mouse’s location (in the window’s base coordinates), the window number, a time
value associated with the event, flags indicating modifier keys and mouse
buttons, and supplementary data.

You can find or derive much of the information required for handling an event
in the NSEvent parameter. For instance, you can convert the NSEvent mouse
location to your NSView’s base coordinate system with convertPoint:fromView:. You
can check for modifier keys or mouse buttons using the keyboard-state flags
masks.

The following example illustrates several of these techniques.

The NSEvent class is described
in the Application Kit Reference.

Chapter 6 Subclassing

149

Tip: If you want your NSView to handle target/action messages sent to the First
Responder (for example, copy and paste), be sure to override
acceptsFirstResponder to return YES, and then implement the appropriate
methods (copy: and paste:).

- (void)mouseDown:(NSEvent *)event

{

NSPoint p, start;

int grid, gridCount;

start = [event locationInWindow];

start = [self convertPoint:start fromView:nil];

grid = MAX([spacing intValue], 1.0);

gridCount = (int)MAX(start.x, start.y) / grid;

gridCount = MAX(gridCount, 1.0);

event = [[self window] nextEventMatchingMask:

NSLeftMouseDraggedMask|NSLeftMouseUpMask];

while ([event type] != NSLeftMouseUp) {

p = [event locationInWindow];

p = [self convertPoint:p fromView:nil];

grid = (int)MAX(p.x, p.y) / gridCount;

grid = MAX(grid, 1.0);

if (grid != [spacing intValue]) {

 [form abortEditing];

 [spacing setIntValue:grid];

 [self display];

}

event = [[self window] nextEventMatchingMask:

NSLeftMouseDraggedMask|NSLeftMouseUpMask];

}

}

Implementing a subclass of NSView

150

Creating and Deallocating Different Types of Objects

As you create objects, you need to make sure that they are going
to be deallocated eventually, and you also need to make this
doesn’t happen until you don’t need the object anymore. You do
this by sending messages that increment and decrement the
object’s reference count, a count of how many objects refer to it.
When and how you should do this depends on when and how you
create the object.

The Autorelease Pool

OpenStep uses an autorelease pool to automatically deallocate
objects. When you send an autorelease message to an object, it
adds the object to the autorelease pool. At the top of the event
loop, the pool sends every object in it the release message.
release decrements the reference count. If the reference count
becomes 0, it deallocates the object (by sending dealloc).

Application projects automatically have an autorelease pool, just
as they automatically have an event loop. If you’re working on a
non-Application project, you can create an autorelease pool by
creating an instance of the Foundation NSAutoreleasePool class.
(See its specification in the Foundation Framework Reference.)

Temporary Objects

If you create an object inside a method and you want that object
to go away after the method has finished executing, use a
+classname method (so called because their names begin with
the name of the class minus the NS prefix) to create the object.
These methods allocate the object (which increments the
reference count), initialize it, and send it an autorelease message
so that it is deallocated at the top of the event loop. For example,
this NSNumber object will exist only for one event cycle:

NSNumber *intObject = [NSNumber
numberWithInt:anInt];

The methods alloc, copy, and mutableCopy increment an object’s
reference count, so if you use one of these to create a temporary
object, be sure to send that same object an autorelease message.

Instance Variables

Objects that are instance variables should be created when an
object is initialized and not go away until that object is
deallocated. If you use a +classname method to create an
instance variable, it will be deallocated at the top of the event
loop. To prevent this, send retain to the object immediately after
you create it. retain increments the reference count. Another way
to make sure that an instance variable is not deallocated is to use
the alloc method directly (or copy or mutableCopy) to create it.

No matter which method you use to create the instance variable,
send it a release message in your object’s dealloc method to
indicate that you’re done with it.

Sometimes you have two objects with instance variables that
refer to each other. In this case, only one of the objects should
retain the other. For example, an NSView object has a superview
and one or more subviews, each pointing to other NSView
objects. If an NSView object retained both its superview and its
subviews, no NSView would ever be deallocated. The superview
won’t release its subview instance variables until it is
deallocated, and it can’t be deallocated because the subviews
don’t release the superview until they are deallocated. For this
reason, NSView objects retain their subviews, but not their
superviews.

As a rule of thumb, if your application has a similar object
hierarchy, the “parent” object should retain its “children,” but the
children should not retain their parents.

Custom Objects Created in Interface Builder

If you create a custom object that does not inherit from NSView
or NSWindow in Interface Builder, send it a release message in
your object’s dealloc method. Custom objects have a retain count
of 1 when they’re unarchived from the nib file.

NSView Objects Created in Interface Builder

Views created in Interface Builder are retained and released
automatically. Superviews retain all subviews as they are added
to the hierarchy and release them as they are removed. If you
swap views in and out of the hierarchy or move views from one
window to another, you should retain the views that are not in the
hierarchy (and release them either after you add them to the
hierarchy or in dealloc).

NSWindow Objects Created in Interface Builder

Windows created in Interface Builder are not released until the
user quits the application. If you want a window to be released
when the user closes it, set the “Release when closed” attribute
in Interface Builder.

For more on this topic, see the introduction to the Foundation
Framework Reference.

Chapter 6 Subclassing

151

Adding existing classes to your nib file

The easiest way to add a class to your nib file is to drag the header file for an
existing custom class from the Workspace Manager’s File Viewer/Desktop or
File Manager or from Project Builder’s main window into Interface Builder.

The new class appears in the Classes display under its subclass and with its
outlets and actions defined. After adding the class, you must still connect it to
other objects through its outlets and actions. To do this, complete these steps:

Make an instance of the class (for NSView subclasses, that means assigning
your class to a view object).

Connect the instance’s outlets and actions to other objects in the nib file.

E Drag the header file from the File
Viewer/Desktop, File Manager,
or Project Builder into the nib file
window.
Or

E Copy a class in one nib file and
paste it in another.

Select a header file in Project
Builder, drag its icon over
Interface Builder’s nib file
window, and drop it.

If you are going to write a header
file and then drag the file into
Interface Builder, follow the
conventions for header files
described in “The Structure of
Header Files and
Implementation Files,” in this
chapter.

Adding existing classes to your nib file

152

Creating Classes in Project Builder
Instead of defining a class in Interface Builder and using Create Files to create
the source code, you can create the source code in Project Builder first and add
the class to Interface Builder later. To create a class in Project Builder, use the
File New in Project command to create template source code files, write your
code, then drag the header file into the nib file window. When you create a class
in this manner, any method you’ve defined that takes a single argument named
sender and that returns id or void is considered an action. Any instance variable
that is type id or has the IBOutlet keyword prefixed to its declaration is an outlet.

#import <AppKit/AppKit.h>

#define IBOutlet /* Needed to avoid compiler errors. */

@interface TAController:NSObject

{

IBOutlet NSTableView *tableView; /* an outlet */

id commentsLabel; /* another outlet */

...

NSMutableDictionary *countryDict; /* not an outlet. */

...

}

/* target/action */

- (void)addRecord:(NSButton *)sender; /* an action */

- (void)convertCelsius:(id)sender; /* another action */

/* Data read and write methods */

- (void)populateFields:(Country *)aRec; /* not an action */

@end

Chapter 6 Subclassing

153

Copying Classes Between Nib FIles
You can copy class definitions between nib files, in the same or different
projects, by copying a class in one nib file and pasting it into another nib file.

A duplicate of the original class appears in the Classes display of the destination
nib file. Generate an instance of the class in the destination nib file and connect
it to other objects in the nib file through its outlets and actions.

Select the superclass in the
destination nib file. Then choose the
Paste command from the Edit menu.

Select the class to be copied and
choose the Copy command from the
Edit menu.

Updating a class definition

154

Updating a class definition

If you later add outlets and actions to the header file, or delete them from it,
Interface Builder allows you to update the nib file with this new information.

Interface Builder brings up an Open panel/dialog for you to confirm (or select)
the class definition to update.

If there are any new outlets and actions, remember to connect these outlets and
actions to other objects in the nib file.

Tip: You can also use the Read File command to add an existing class to a nib file,
or you create a header file in Project Builder using the New in Project command
and read it into a nib file using this command.

E Choose the Read File command
and select a header file in the
Open panel/dialog.

In the Classes display, select the class
to be updated.

Choose the Read File command.

The header file of the class selected in
the Classes display is highlighted. If you
did not select a class in the Classes
display, select one now or type its name.

Click to have the new information
parsed into the nib file.

