
1

 

EODatabase

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EODatabase.h

Class Description

An EODatabase represents a single database server. It contains an EOAdaptor which is capable of 
communicating with the server, a list of EOModels that describe the server’s schema, a list of 
EODatabaseContexts that are connected to the server, and a set of snapshots representing the state of all 
objects stored in the server. An EODatabase’s EODatabaseContexts automatically use it to record 
snapshots. There’s little need for your code to interact directly with it.

Each of an EODatabase’s EODatabaseContexts forms a separate transaction scope, and is in effect a 
separate logical user to the server. An EODatabaseContext uses one or more pairs of EODatabaseChannel 
and EOAdaptorChannel objects to manage data operations (insert, update, delete, and fetch). Adaptors may 
support a limited number of contexts per database or channels per context, but an application is guaranteed 
at least one of each.

The EODatabase, EODatabaseContext, and EODatabaseChannel classes form the database level of the 
Enterprise Objects Framework, which operates in terms of enterprise objects. The database level is a client 
of the adaptor level, which operates in terms of dictionary objects and which is defined by the adaptor 
classes: EOAdaptor, EOAdaptorContext, and EOAdaptorChannel. The objects of the database level create 
their own corresponding adaptor objects, so you don’t have to use adaptor API when you’re working at the 
database level. You do have access to the adaptor objects, however, should you need a feature available only 
in the adaptor level.

Snapshots

EODatabase’s most significant responsibility is to record snapshots for its EODatabaseContexts. The 
snapshots made by an EODatabase form the global view of data for nearly every other part of the 
application, representing the current view of data in the server as far as the application is concerned (though 
other applications may have made changes). This global view is only overridden locally by 
EODatabaseContexts, which form their own snapshots as they make changes during a transaction. When 
an EODatabaseContext commits its top-level transaction, it reconciles all changed snapshots with the 
global view of the database object, so that other database contexts (except those with open transactions) 
immediately use the new snapshots as well.



2

Method Types

Creating instances – initWithModel:
– initWithAdaptor:
– adaptor

Adding and removing EOModels – addModel:
– addModelIfCompatible:
– removeModel:
– models

Getting EOEntities – entityForObject:
– entityNamed:

Recording snapshots – recordSnapshot:forGlobalID:
– recordSnapshots:
– forgetSnapshotForGlobalID:
– forgetSnapshotsForGlobalIDs:
– forgetAllSnapshots
– snapshotForGlobalID:
– snapshots

Registering EODatabaseContexts – registerContext:
– unregisterContext:
– registeredContexts

Managing the result cache – invalidateResultCache
– invalidateResultCacheForEntityNamed:
– resultCacheForEntityNamed:
– setResultCache:forEntityNamed:

Class Methods

adaptor
– (EOAdaptor *)adaptor

Returns the EOAdaptor used by the EODatabase for communication with the database server. Your 
application can interact directly with the EOAdaptor, but should avoid altering its state (for example, by 
starting a transaction with one of its adaptor contexts).



3

 

addModel:
– (void)addModel:(EOModel *)aModel

Adds aModel to the receiver’s list of EOModels. This allows EODatabases to load entities and their 
properties only as they’re needed, by dividing them among separate EOModels. aModel must use the same 
EOAdaptor as the receiver and use the same connection dictionary as the receiver’s other EOModels.

See also: – addModelIfCompatible: , –models, – removeModel:

addModelIfCompatible:
– (BOOL)addModelIfCompatible:(EOModel *)aModel

Adds aModel to the receiver’s list of EOModels, checking first to see whether it’s compatible with those 
other EOModels. Returns YES if aModel is already in the list or if it’s successfully added. Returns NO if 
aModel’s adaptor name differs from that of the receivers or if the receiver’s adaptor returns NO to a 
canServiceModel: message.

See also: – addModel:, –models, – removeModel:

entityForObject:
– (EOEntity *)entityForObject: (id)anObject

Returns the EOEntity mapped to anObject in the receiver’s EOModels, or nil  if there is no such EOEntity. 
This method works by sending entityForObject:  messages to each of the receiver’s EOModels and 
returning the first one found.

See also: – entityNamed:

entityNamed:
– (EOEntity *)entityNamed:(NSString *)entityName

Returns the EOEntity named entityName in the receiver’s EOModels, or nil  if there is no such EOEntity. 
This method works by sending entityNamed: messages to each of the receiver’s EOModels and returning 
the first one found.

See also: – entityForObject:



4

forgetAllSnapshots
– (void)forgetAllSnapshots

Clears all of the receiver’s snapshots.

See also: – forgetSnapshotForGlobalID:, – forgetSnapshotsForGlobalIDs:, 
– recordSnapshot:forGlobalID:, – recordSnapshots:

forgetSnapshotForGlobalID:
– (void)forgetSnapshotForGlobalID:(EOGlobalID *)globalID

Clears the snapshot made for the enterprise object identified by globalID.

See also: – forgetSnapshotsForGlobalIDs:, – forgetAllSnapshots, – recordSnapshot:forGlobalID:

forgetSnapshotsForGlobalIDs:
– (void)forgetSnapshotsForGlobalIDs:(NSArray *)globalIDs

Clears the snapshots made for the enterprise objects identified by each of the EOGlobalIDs in globalIDs.

See also: – forgetSnapshotForGlobalID:, – forgetAllSnapshots, – recordSnapshots:

initWithAdaptor:
– initWithAdaptor: (EOAdaptor *)anAdaptor

Initializes a newly allocated EODatabase with anAdaptor as its adaptor and returns self. You should never 
associate more than one EODatabase with a given EOAdaptor. In general, use initWithModel: , which 
automatically selects the adaptor. This is the designated initializer for the EODatabase class.

initWithModel:
– initWithModel: (EOModel *)aModel

Initializes a newly allocated EODatabase by creating an instance of EOAdaptor named in aModel and 
invoking initWithAdaptor: . Returns self.

See also: + adaptorWithModel: (EOAdaptor), –adaptorName(EOModel)



5

 

invalidateResultCache
– (void)invalidateResultCache

Invalidates all of the arrays in the receiver’s result cache, regardless of the associated entities. See the 
method description for setResultCache:forEntityNamed: for more discussion of this topic.

See also: – invalidateResultCacheForEntityNamed:, – resultCacheForEntityNamed:

invalidateResultCacheForEntityNamed:
– (void)invalidateResultCacheForEntityNamed:(NSString *)entityName

Invalidates the result cache containing an array of globalIDs for the objects associated with the entity  
entityName. See the method description for setResultCache:forEntityNamed: for more discussion of this 
topic.

See also: – invalidateResultCache, – resultCacheForEntityNamed:

models
– (NSArray *)models

Returns the receiver’s EOModels.

See also: – initWithModel: , –addModel:, –addModelIfCompatible: , – removeModel:

recordSnapshot:forGlobalID:
– (void)recordSnapshot:(NSDictionary *)aSnapshot forGlobalID: (EOGlobalID *)globalID

Records aSnapshot under globalID.

See also: – globalIDForRow: (EOEntity), –recordSnapshots:, – forgetSnapshotForGlobalID:

recordSnapshots:
– (void)recordSnapshots:(NSDictionary *)snapshots

Records the snapshots in snapshots. snapshots is a dictionary whose keys are EOGlobalIDs and whose 
values are the snapshots for those global IDs.

See also: – recordSnapshot:forGlobalID:, – forgetSnapshotsForGlobalIDs:



6

registerContext:
– (void)registerContext:(EODatabaseContext *)aContext

Records aContext as one of the receiver’s EODatabaseContexts, without retaining it. aContext must have 
been created with the receiver using EODatabaseContext’s initWithDatabase: method, which invokes this 
method automatically. You should never need to invoke this method directly.

See also: – unregisterContext:, – registeredContexts

registeredContexts
– (NSArray *)registeredContexts

Returns all EODatabaseContexts that have been registered with the receiver.

– registerContext:, –unregisterContext:

removeModel:
– (void)removeModel:(EOModel *)aModel

Removes aModel from the receiver’s list of EOModels.

See also: – addModel:, –addModelIfCompatible: , –models

resultCacheForEntityNamed:
– (NSArray *)resultCacheForEntityNamed:(NSString *)entityName

Returns an array containing the globalIDs of the objects associated with entityName. See the method 
description for setResultCache:forEntityNamed: for more discussion of this topic.

See also: – invalidateResultCache, – invalidateResultCacheForEntityNamed:

setResultCache:forEntityNamed:
– (void)setResultCache:(NSArray *)cache forEntityNamed: (NSString *)entityName

Sets to cache the array of globalIDs for the objects associated with the entity entityName. This cache can 
be used by the receiver’s EODatabaseContexts to evaluate qualifiers in memory rather than in the database.

See also: – invalidateResultCache, – invalidateResultCacheForEntityNamed:, 
– resultCacheForEntityNamed:



7

 

snapshotForGlobalID:
– (NSDictionary *)snapshotForGlobalID:(EOGlobalID *)globalID

Returns the snapshot associated with globalID if there is one; otherwise returns nil .

See also: – recordSnapshot:forGlobalID:, – forgetSnapshotForGlobalID:

snapshots
– (NSDictionary *)snapshots

Returns all of the receiver’s snapshots, stored in an NSDictionary under their EOGlobalIDs.

unregisterContext:
– (void)unregisterContext:(EODatabaseContext *)aContext

Removes aContext as one of the receiver’s EODatabaseContexts, without releasing it. EODatabaseContext 
automatically invokes this method when deallocated; you should never need to invoke it directly.

See also: – registerContext:, – registeredContexts


