
1

EOAttribute

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EOAttribute.h

Class Description

An EOAttribute represents a column, field or property in a database, and associates an internal name with
an external name or expression by which the property is known to the database. The property an
EOAttribute represents may be a meaningful value, such as a salary or a name, or it may be an arbitrary
value used for identification but with no real-world applicability (ID numbers and foreign keys for
relationships fall into this category). An EOAttribute also maintains type information for binding values to
the instance variables of objects.

EOAttributes are also used to represent arguments for EOStoredProcedures.

You usually define attributes in your EOModel with the EOModeler application, which is documented in
the Enterprise Objects Framework Developer’s Guide. Your code probably won’t need to programmatically
interact with EOAttribute unless you’re working at the adaptor level.

An attribute may be simple, derived, or flattened. A simple attribute typically corresponds to a single
column in the database, and may be read or updated directly from or to the database. A simple EOAttribute
may also be set as read-only with its setReadOnly: method. Read-only attributes of enterprise objects are
never updated.

A derived attribute doesn’t correspond to a single database column in its entity’s database table, and is
usually based on some other attribute, which is modified in some way. For example, if an Employee entity
has a simple monthly salary attribute, you can define a derived annualSalary attribute as “salary * 12”.
Derived attributes, since they don’t correspond to actual values in the database, are effectively read-only; it
makes no sense to write a derived value.

A flattened attribute of an entity is actually an attribute of some other entity reached through a relationship.
A flattened attribute’s external definition is a data path ending in an attribute name. For example, if the
Employee entity has the relationship toAddress and the Address entity has the attribute street, you can
define streetName as an attribute of your Employee EOEntity by creating an EOAttribute for it with a
definition of “toAddress.street”.

Like the other major modeling classes, EOAttribute provides a user dictionary for the application to store
any auxiliary information it needs.

2

Mapping from Database to Objects

Every EOAttribute has an external type, which is the type used by the database to store its associated data,
and an Objective-C class used as the type for that data in the client application. The type used by the
database is accessed with the setExternalType: and externalType methods. The class type used by the
application is accessed with the setValueClassName: and valueClassName methods. You can map
database types to a set of standard value classes, which includes:

• NSString
• NSNumber
• NSDecimalNumber
• NSData
• NSDate

Database-specific adaptors automatically handle value conversions for these classes. You can also create
your own custom value class, so long as you define a format that it uses to interpret data. Your value class
must also implement the EOCustomClassArchiving protocol to work as a custom value; see that protocol
specification for more information. For more information on using EOAttribute methods to work with
custom data types, see the next section, “Working with Custom Data Types.”

The handling of dates assumes by default that both the database server and the client application are running
in the same, local, time zone. You can alter the server time zone with the setServerTimeZone: method. If
you alter the server time zone, the adaptor automatically converts dates as they pass into and out of the
server.

Working with Custom Data Types

When you create a new model, EOModeler maps each attribute in your model to one of the primitive data
types the adaptor knows how to manipulate: NSString, NSData, NSNumber, NSDecimalNumber, and
NSDate. For example, suppose you have a photo attribute that’s stored in the database as a LONG RAW.
When you create a new model, this attribute is mapped to NSData. However, NSData is just an object
wrapper for binary data—for instance, it doesn’t have any methods for operating on images, which would
limit what you’d be able to do with the image in your application. This is a case in which you’d probably
choose to use a custom data type, such as NSImage.

For a custom data type to be usable in Enterprise Objects Framework, it must supply methods for importing
and exporting itself as one of the primitive types so that it can be read from and written to the database.
Specifically, to implement a custom data type you need to do the following:

• Set the attributes’s value class (using the EOAttribute method setValueClassName:).

• Set the factory method that will be used to create instances of your class from raw data (using the
EOAttribute method setValueFactoryMethodName:).

• Set the type of the argument that should be passed to the factory method (using the EOAttribute method
setFactoryMethodArgumentType:).

3

• Set the conversion method that will be used to convert your data back into one of the primitive data types
the adaptor can work with; this enables the data to be stored in the database (using the EOAttribute
method setAdaptorValueConversionMethodName:).

If an EOAttribute represents a binary column in the database, the factory method argument type can be
either EOFactoryMethodArgumentIsNSData or EOFactoryMethodArgumentIsBytes, indicating that the
method takes an NSData object or raw bytes as an argument. If the EOAttribute represents a string or
character column, the factory method argument type can be either EOFactoryMethodArgumentIsNSString
or EOFactoryMethodArgumentIsBytes, indicating that the method takes an NSString object or raw bytes
as an argument. These types apply when fetching custom values, as described below.

The following code excerpt demonstrates how these methods work together. The example shows two
custom data types: an image that’s initialized with an NSData, and a custom zip code that’s initialized with
a string.

[imageAttribute setValueClassName:@"NSImage"];

[imageAttribute setFactoryMethodArgumentType:EOFactoryMethodArgumentIsNSData];

[imageAttribute setValueFactoryMethodName:@"imageWithData:"];

[imageAttribute setAdaptorValueConversionMethodName:@"TIFFRepresentation"];

[zipCodeAttribute setValueClassName:@"MyZipCodeClass"];

[zipCodeAttribute setFactoryMethodArgumentType:EOFactoryMethodArgumentIsBytes];

[zipCodeAttribute setValueFactoryMethodName:@"zipCodeWithBytes:length:"];

[zipCodeAttribute setAdaptorValueConversionMethodName:@"zipCodeString"];

You can also define a custom data type using the Attributes Inspector in EOModeler. For more information,
see the chapter “Advanced Modeling Techniques” in the Enterprise Objects Framework Developer’s Guide.

Fetching Custom Values

Custom values are created during fetching in EOAdaptorChannel’s fetchRowWithZone: method. This
method fetches data in the external (server) type and converts it to a value object. For scalar database types
such as numbers and dates, the EOAdaptorChannel converts the value itself. For binary and string database
types, it calls upon the EOAttribute being fetched to perform the conversion, into either a standard or
custom value class. EOAttribute’s methods for performing this conversion are newValueForBytes:length:
for binary data and newValueForBytes:length:encoding: for strings. These methods either convert the raw
data directly into an NSData or NSString, or apply the custom value factory method to convert it into the
custom class. Once the value is converted, the EOAdaptorChannel puts it into the NSDictionary for the row
being fetched.

newValueForBytes:length: can handle NSData and raw bytes (void *). It converts the raw bytes into an
NSData if the custom value argument type is EOFactoryMethodArgumentIsNSData, then invokes the
custom value factory method with the NSData or bytes. If the EOAttribute has no custom value factory
method, this method simply returns an NSData object containing the bytes.

newValueForBytes:length:encoding: can handle NSString and raw bytes. It converts the raw bytes into
an NSString if the custom value argument type is EOFactoryMethodArgumentIsNSString, then invokes the

4

custom value factory method with the string or bytes. If the EOAttribute has no custom value factory
method, this method simply returns an NSString object created from the bytes.

Converting Custom Values

Custom values are converted back to binary or character data in EOAdaptorChannel’s evaluateExpression:
method. For each value in the EOSQLExpression to be evaluated, the EOAdaptorChannel sends the
appropriate EOAttribute an adaptorValueByConvertingAttributeValue: message to convert it. If the
value is any of the standard value classes, it’s returned unchanged. If the value is of a custom class, though,
it’s converted by applying the conversion method specified in the EOAttribute.

SQL Statement Formats

In addition to mapping database values to object values, an EOAttribute can alter the way values are
selected, inserted, and updated in the database by defining special format strings. These format strings allow
a client application to extend its reach right down to the server for certain operations. For example, you
might want to view an employee’s salary on a yearly basis, without defining a derived attribute as in a
previous example. In this case, you could set the salary attribute’s SELECT statement format to
“salary * 12” (with setReadFormat:) and the INSERT and UPDATE statement formats to “salary / 12”
(setWriteFormat:). Thus, whenever your application retrieves values for the salary attribute they’re
multiplied by 12, and when it writes values back to the database they’re divided by 12.

Your application can use any legal SQL value expression in a format string, and can even access
server-specific features such as stored procedures (see EOEntity’s setStoredProcedure: method description
for more information). Accessing server-specific features can offer your application great flexibility in
dealing with its server, but does limit its portability. You’re responsible for ensuring that your SQL is
well-formed and will be understood by the database server.

Format strings for the setReadFormat: and setwriteFormat: methods should use “%P” as the substitution
character for the value that is being formatted. “%@” will not work. For example:

[myAttribute setReadFormat:@"TO_UPPER(%P)"];

[myAttribute setWriteFormat:@"TO_LOWER(%P)"];

Creating a Simple Attribute

A simple attribute needs at least the following characteristics:

• A name unique within its EOEntity

• The name of a column in the database table for its entity (the external name)

• A declaration of the type of that column as defined by the database and adaptor (the external type)

• A declaration of the Objective-C class used to represent values in the application

• For Objective-C value classes that require it, a subtype for such distinctions as between numeric types

5

You also have to set whether the attribute is part of its entity’s primary key, is a class property, or is used for
locking. See the EOEntity class description for more information on these three groups of attributes. This
code excerpt gives an example of creating a simple EOAttribute and adding it to an EOEntity:

EOEntity *employeeEntity; /* Assume this exists. */

EOAttribute *salaryAttribute;

NSArray *empClassProps;

NSArray *empLockAttributes;

BOOL result;

salaryAttribute = [[EOAttribute alloc] init];

[salaryAttribute setName:@"salary"];

[salaryAttribute setColumnName:@"SALARY"];

[salaryAttribute setExternalType:@"money"];

[salaryAttribute setValueClassName:"NSDecimalNumber"];

[employeeEntity addAttribute:salaryAttribute];

[salaryAttribute release];

empClassProps = [[employeeEntity classProperties] mutableCopy];

[empClassProps addObject:salaryAttribute];

[employeeEntity setClassProperties:empClassProps];

[empClassProps release];

empLockAttributes = [[employeeEntity attributesUsedForLocking]

 mutableCopy];

[empLockAttributes addObject:salaryAttribute];

result = [employeeEntity setAttributesUsedForLocking:empLockAttributes];

[empLockAttributes release];

Creating a Derived Attribute

A derived attribute depends on another attribute, so you base it on a definition including that attribute’s
name rather than on an external name. Because a derived attribute isn’t mapped directly to anything in the
database, you shouldn’t include it in the entity’s set of primary key attributes or attributes used for locking:

EOEntity *employeeEntity; /* Assume this exists. */

EOAttribute *bonusAttribute;

NSArray *empClassProps;

BOOL result;

bonusAttribute = [[EOAttribute alloc] init];

[bonusAttribute setName:@"bonus"];

[bonusAttribute setDefinition:@"salary * 0.5"];

[bonusAttribute setValueClassName:@"NSDecimalNumber"];

[employeeEntity addAttribute:bonusAttribute];

[bonusAttribute release];

6

empClassProps = [[employeeEntity classProperties] mutableCopy];

[empClassProps addObject:bonusAttribute];

result = [employeeEntity setClassProperties:empClassProps];

[empClassProps release];

Creating a Flattened Attribute

A flattened attribute depends on a relationship, so you base it on a definition including that relationship’s
name rather than on an external name. Because a flattened attribute doesn’t correspond directly to anything
in its entity’s table, you don’t have to specify an external name, and shouldn’t include it in the entity’s set
of primary key attributes or attributes used for locking:

EOEntity *employeeEntity; /* Assume this exists. */

EOAttribute *deptNameAttribute;

NSArray *empClassProps;

BOOL result;

deptNameAttribute = [[EOAttribute alloc] init];

[deptNameAttribute setName:@"departmentName"];

[deptNameAttribute setValueClassName:"NSString"];

[deptNameAttribute setExternalType:@"varchar"];

[employeeEntity addAttribute:deptNameAttribute];

[deptNameAttribute setDefinition:@"toDepartment.name"];

[deptNameAttribute release];

empClassProps = [[employeeEntity classProperties] mutableCopy];

[empClassProps addObject:deptNameAttribute];

result = [employeeEntity setClassProperties:empClassProps];

[empClassProps release];

Method Types

Getting the entity – entity
– parent

Setting the name – beautifyName
– name
– setName:
– validateName:

Setting date information – serverTimeZone
– setServerTimeZone:

7

Setting external definitions – columnName
– definition
– externalType
– setColumnName:
– setDefinition:
– setExternalType:

Setting value type information – allowsNull
– precision
– scale
– setAdaptorValueConversionMethodName:
– setAllowsNull:
– setFactoryMethodArgumentType:
– setPrecision:
– setScale:
– setValueClassName:
– setValueFactoryMethodName:
– setValueType:
– setWidth:
– validateValue:
– valueClassName
– valueType
– width

Checking type information – isDerived
– isFlattened
– isReadOnly
– setReadOnly:

Setting SQL statement formats – setWriteFormat:
– setReadFormat:
– readFormat
– writeFormat

Setting the user dictionary – setUserInfo:
– userInfo

8

Methods used by the adaptor – adaptorValueByConvertingAttributeValue:
– adaptorValueConversionMethod
– adaptorValueConversionMethodName
– adaptorValueType
– factoryMethodArgumentType
– newDateForYear:month:day:hour:minute:second:millisecond:

timezone:zone:
– newValueForBytes:length:
– newValueForBytes:length:encoding:
– valueFactoryMethod
– valueFactoryMethodName

Working with stored procedures – parameterDirection
– storedProcedure
– setParameterDirection:

Instance Methods

adaptorValueByConvertingAttributeValue:
– (id)adaptorValueByConvertingAttributeValue: (id)value

Ensures that value is either an NSString, NSData, NSNumber, or NSDate, converting it if necessary. If value
needs to be converted, adaptorValueByConvertingAttributeValue: uses the adaptor conversion method to
convert value to one of these four primitive types. If the attribute hasn’t a specific adaptor conversion
method, and the type to be fetched from the database is EOAdaptorBytesType, “archiveData” will be
invoked to convert the attribute value.

See also: – adaptorValueConversionMethod, –adaptorValueType

adaptorValueConversionMethod
– (SEL)adaptorValueConversionMethod

Returns the method used to convert a custom class into one of the primitive types that the adaptor knows
how to manipulate: NSString, NSData, NSNumber, or NSDate. The return value of this method is derived
from the attribute’s adaptor value conversion method name. If that name doesn’t map to a valid selector in
the Objective-C run-time, nil is returned.

See also: – adaptorValueByConvertingAttributeValue: , – adaptorValueConversionMethodName

9

adaptorValueConversionMethodName
– (NSString *)adaptorValueConversionMethodName

Returns the name of the method used to convert a custom class into one of the primitive types that the
adaptor knows how to manipulate: NSString, NSData, NSNumber, or NSDate.

See also: – adaptorValueByConvertingAttributeValue:

adaptorValueType
– (EOAdaptorValueType)adaptorValueType

Returns an EOAdaptorValueType that indicates the data type that will be fetched from the database.
Currently, this method returns one of the following values:

EOAdaptorNumberType
EOAdaptorCharactersType
EOAdaptorBytesType
EOAdaptorDateType

See also: – factoryMethodArgumentType:

allowsNull
– (BOOL)allowsNull

Returns whether or not the attribute can have a nil value. If the attribute maps directly to a column in the
database, it also is used to determine whether the database column can have a NULL value.

beautifyName
– (void)beautifyName

Makes the attribute name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”. This method is used in
reverse-engineering an EOModel.

See also: – validateName:

10

columnName
– (NSString *)columnName

Returns the name of the column in the database that corresponds to this attribute, or nil if the attribute isn’t
simple (that is, if it’s derived or flattened). An adaptor uses this name to identify the column corresponding
to the attribute. Your application should never need to use this name. Note that columnName and definition
are mutually exclusive; if one returns a value, the other returns nil .

See also: – definition, –externalType

definition
– (NSString *)definition

Returns a derived or flattened attribute’s definition, or nil if the attribute is simple. An attribute's definition
is either a value expression defining a derived attribute, such as “salary * 12”, or a data path for a flattened
attribute, such as “toAuthor.name”. Note that columnName and definition are mutually exclusive; if one
returns a value, the other returns nil .

See also: – columnName, –externalType

entity
– (EOEntity *)entity

Returns the entity that owns the attribute, or nil if this attribute is acting as an argument for a stored
procedure.

See also: – storedProcedure

externalType
– (NSString *)externalType

Returns the attribute’s type as understood by the database; for example, a Sybase “varchar” or an Oracle
“NUMBER”.

See also: – columnName

factoryMethodArgumentType
– (EOFactoryMethodArgumentType)factoryMethodArgumentType

Returns the type of argument that should be passed to the “factory method”—which is invoked by the
attribute to create an attribute value for a custom class. This method returns one of the following values:

11

Return Value Argument Type

EOFactoryMethodArgumentIsNSData an NSData

EOFactoryMethodArgumentIsNSString an NSString

EOFactoryMethodArgumentIsBytes raw bytes

See also: – valueFactoryMethod

isDerived
– (BOOL)isDerived

Returns NO if the attribute corresponds exactly to one column in the table associated with its entity, and
YES if it doesn't. For example, an attribute with a definition of “otherAttributeName + 1” is derived.

Note that flattened attributes are also considered as derived attributes.

See also: – isFlattened, –definition

isFlattened
– (BOOL)isFlattened

Returns YES if the attribute is flattened, NO otherwise. A flattened attribute is one that’s accessed through
an entity’s relationships but belongs to another entity.

Note that flattened attributes are also considered to be derived attributes.

See also: – isDerived, –definition

isReadOnly
– (BOOL)isReadOnly

Returns YES if the value of the attribute can’t be modified, NO if it can.

name
– (NSString *)name

Returns the attribute’s name.

See also: – columnName, –definition

12

newDateForYear:month:day:hour:minute:second:millisecond:timezone:zone:
– (NSCalendarDate *)newDateForYear:(int)year month:(unsigned)month day:(unsigned)day

hour: (unsigned)hour minute:(unsigned)minute second:(unsigned)second
millisecond:(unsigned)millisecond timezone:(NSTimeZone *)timezone zone:(NSZone *)zone

Returns an NSCalendarDate given discrete values for year, month, day, and so on. This method is used by
EOAdaptorChannel subclasses to create a calendar date object to return in an adaptor row. For efficiency
reasons, the caller is responsible for releasing the return value.

newValueForBytes:length:
– (id)newValueForBytes:(const void *)bytes length:(int)length

Generates an NSString or custom class value object from a supplied set of bytes. This method is called by
the adaptor during value creation while fetching from the database. For efficiency reasons, the caller is
responsible for releasing the return value.

newValueForBytes:length:encoding:
– (id)newValueForBytes:(const void *)bytes length:(int)length

encoding:(NSStringEncoding)encoding

Generates an NSData or custom class value object from a supplied set of bytes with a given
NSStringEncoding. This method is called by the adaptor during value creation while fetching from the
database. For efficiency reasons, the caller is responsible for releasing the return value.

parameterDirection
– (EOParameterDirection)parameterDirection

Returns the parameter direction for attributes that are arguments to a stored procedure. This method returns
one of the following values:

EOVoid
EOInParameter
EOOutParameter
EOInOutParameter

See also: – storedProcedure, –storedProcedureForOperation: (EOEntity)

13

parent
– (id)parent

Returns the attribute’s parent, which is either an EOEntity or an EOStoredProcedure. Use this method when
you need to find the model for an attribute:

myModel = [[anAttribute parent] model];

precision
– (unsigned)precision

Returns the precision of the database representation for attributes with a value class of NSNumber or
NSDecimalNumber.

See also: – scale

readFormat
– (NSString *)readFormat

Returns a format string of the appropriate type that can be used when building an expression that contains
the value of the attribute.

See also: – setReadFormat:, –writeFormat

scale
– (int)scale

Returns the scale of the database representation for attributes with a value class of NSNumber or
NSDecimalNumber. The returned value can be negative.

See also: – precision

serverTimeZone
– (NSTimeZone *)serverTimeZone

Returns the time zone assumed for NSDates in the database server, or the local time zone if one hasn't been
set. An EOAdaptorChannel automatically converts dates between the time zones used by the server and the
client when fetching and saving values. Applies only to attributes that represent dates.

See also: + localTimeZone (NSTimeZone)

14

setAdaptorValueConversionMethodName:
– (void)setAdaptorValueConversionMethodName:(NSString *)conversionMethodName

Sets the name of the method used to convert a custom class into one of the primitive types that the adaptor
knows how to manipulate: NSString, NSData, NSNumber, or NSDate. Note that your adaptor value
conversion method should return a an autoreleased object.

setAllowsNull:
– (void)setAllowsNull:(BOOL)allowsNull

Sets whether or not the attribute can have a nil value. If the attribute maps directly to a column in the
database, it also controls whether the database column can have a NULL value.

setColumnName:
– (void)setColumnName:(NSString *)columnName

Sets to columnName the name of the attribute used in communication with the database server. An adaptor
uses this name to identify the column corresponding to the attribute; this name must match the name of a
column in the database table corresponding to the attribute’s entity.

This method makes a derived or flattened attribute simple; the definition is released and the column name
takes its place for use with the server.

Note: setColumnName and setDefinition are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to be set to nil .

See also: – setDefinition:

setDefinition:
– (void)setDefinition:(NSString *)definition

Sets to definition the attribute’s definition as recognized by the database server. definition should be either a
value expression defining a derived attribute, such as “salary * 12”, or a data path for a flattened attribute,
such as “toAuthor.name”.

Prior to invoking this method, the attribute's entity must have been set by adding the attribute to an entity.
This method will not function correctly if the attribute’s entity has not been set.

This method converts a simple attribute into a derived or flattened attribute; the column name is released
and the definition takes its place for use with the server.

15

Note: setColumnName and setDefinition are closely related. Only one can be set at any given time.
Invoking either of these methods causes the other value to be set to nil .

See also: – setColumnName:

setExternalType:
– (void)setExternalType:(NSString *)typeName

Sets to typeName the type used for the attribute in the database adaptor; for example, a Sybase “varchar” or
an Oracle7 “NUMBER”. Each adaptor defines the set of types that can be supplied to setExternalType:.
The external type you specify for a given attribute must correspond to the type used in the database server.

See also: – setDefinition:

setFactoryMethodArgumentType:
– (void)setFactoryMethodArgumentType:(EOFactoryMethodArgumentType)argumentType

Sets the type of argument that should be passed to the “factory method”—which is invoked by the attribute
to create an attribute value for a custom class. The factory method accepts NSStrings, NSDatas, and raw
bytes; specify an argumentType of EOFactoryMethodArgumentIsNSString,
EOFactoryMethodArgumentIsNSData, or EOFactoryMethodArgumentIsBytes as appropriate.

See also: – setValueFactoryMethodName:

setName:
– (void)setName:(NSString *)name

Sets the attribute’s name to name. Raises an NSInvalidArgumentException if name is already in use by
another attribute or relationship of the same entity, or if name is not a valid attribute name.

See also: – validateName:

setParameterDirection:
– (void)setParameterDirection:(EOParameterDirection)parameterDirection

Sets the parameter direction for attributes that are arguments to a stored procedure. parameterDirection
should be one of the following values:

EOVoid
EOInParameter

16

EOOutParameter
EOInOutParameter

See also: – setStoredProcedure:forOperation: (EOEntity)

setPrecision:
– (void)setPrecision:(unsigned)precision

Sets the precision of the database representation for attributes with a value class of NSNumber or
NSDecimalNumber.

See also: – setScale:

setReadFormat:
– (void)setReadFormat:(NSString *)string

Sets the format string that’s used to format the attribute’s value for SELECT statements. In string, %P is
replaced by the attribute’s external name. For example:

[myAttribute setReadFormat:@"TO_UPPER(%P)"];

The read format string is used whenever the attribute is referenced in a select list or qualifier.

See also: – setWriteFormat:, – readFormat

setReadOnly:
– (void)setReadOnly:(BOOL)flag

Sets whether the value of the attribute can be modified according to flag. Raises an
NSInvalidArgumentException if flag is NO and the argument is derived but not flattened.

See also: – isDerived, – isFlattened

setScale:
– (void)setScale:(int)scale

Sets the scale of the database representation for attributes with a value class of NSNumber or
NSDecimalNumber. scale can be negative.

See also: – setPrecision:

17

setServerTimeZone:
– (void)setServerTimeZone:(NSTimeZone *)aTimeZone

Sets to aTimeZone the time zone used for NSDates in the database server. If aTimeZone is nil then the local
time zone is used. An EOAdaptorChannel automatically converts dates between the time zones used by the
server and the client when fetching and saving values. Applies only to attributes that represent dates.

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types (that is, NSDictionaries, NSStrings, NSArrays, and NSDatas).

setValueClassName:
– (void)setValueClassName:(NSString *)name

Sets the class name for values of this attribute to name. When an EOAdaptorChannel fetches data for the
attribute, it’s presented to the application as an instance of this class.

The class need not exist in the run-time system when this message is sent, but it must exist when an adaptor
channel performs a fetch; if the class isn’t present the result depends on the adaptor. See your adaptor’s
documentation for information on how absent value classes are handled.

 As an example, if your attribute’s values are instances of NSImage, send the following:

[myAttribute setValueClassName:@"NSImage"];

See also: – setValueType:

setValueFactoryMethodName:
– (void)setValueFactoryMethodName:(NSString *)factoryMethodName

Sets the “factory method”—which is invoked by the attribute to create an attribute value for a custom
class—to factoryMethodName. The factory method should be a class method that returns an autoreleased
object. Use setFactoryMethodArgumentType: to specify the type of argument that is to be passed to your
factory method.

18

setValueType:
– (void)setValueType:(NSString *)typeName

Sets to typeName the format type for custom value classes, such as “TIFF” or “RTF”.

See also: – setValueClassName:

setWidth:
– (void)setWidth:(unsigned)length

Sets to length the maximum amount of bytes the attribute’s value may contain. Adaptors may use this
information to allocate space for fetch buffers.

See also: – width

setWriteFormat:
– (void)setWriteFormat: (NSString *)string

Sets the format string that’s used to format the attribute’s value for INSERT or UPDATE expressions. In
string, %P is replaced by the attribute’s value. For example:

[myAttribute setWriteFormat:@"TO_LOWER(%P)"];

See also: – setReadFormat:, – writeFormat

storedProcedure
– (EOStoredProcedure *)storedProcedure

Returns the stored procedure for which this attribute is an argument. If this attribute isn’t an argument to a
stored procedure but instead is owned by an entity, this method returns nil .

See also: – entity

userInfo
– (NSDictionary *)userInfo

Returns a dictionary of user data. Your application can use this to store any auxiliary information it needs.

See also: – setUserInfo:

19

validateName:
– (NSException *)validateName:(NSString *)name

Validates name and returns nil if it is a valid name, or an exception if it isn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a character other
than a letter, a number, “@”, “#”, “_”, or “$”.

setName: uses this method to validate its argument.

validateValue:
– (NSException *)validateValue:(id *)valueP

Validates the argument by converting it to the attribute’s value type and by testing other attribute validation
constraints (such as allowsNull, width , and so on). Returns nil if *valueP is deemed to be a legal value for
this attribute. Returns a validation exception otherwise. If, during the validation process, any coercion was
performed, the converted value is assigned to *valueP.

See also: – adaptorValueByConvertingAttributeValue: , –allowsNull, –valueType:,
– valueClassName, –width

valueClassName
– (NSString *)valueClassName

Returns the name of the class for custom value types. When data is fetched for the attribute, it’s presented
to the application as an instance of this class. For example, if a column from the database is represented by
instances of NSImage, this method returns “NSImage”.

This class must be present in the run-time system when an EOAdaptorChannel fetches data for the attribute;
if the class isn’t present the result depends on the adaptor. See your adaptor's documentation for information
on how absent value classes are handled.

See also: – valueType

valueFactoryMethod
– (SEL)valueFactoryMethod

Returns the factory method that’s invoked by the attribute when creating an attribute value that’s of a custom
class. The value returned from this method is derived from the attribute’s valueFactoryMethodName. If
that name doesn’t map to a valid selector in the Objective-C run-time, this method returns nil .

20

valueFactoryMethodName
– (NSString *)valueFactoryMethodName

Returns the name of the factory method that’s used for creating a custom class value.

See also: – valueFactoryMethod

valueType
– (NSString *)valueType

Returns the format type for custom-value classes, such as “TIFF” or “RTF”.

See also: – valueClassName

width
– (unsigned)width

Returns he maximum length (in bytes) for values that are mapped to this attribute. Returns zero for numeric
and date types.

See also: – setWidth:

writeFormat
– (NSString *)writeFormat

Returns the format string that’s used to format the attribute’s value for INSERT or UPDATE expressions.
In the returned string, %P is replaced by the attribute’s value.

See also: – readFormat, – setWriteFormat:

