
1

EORelationship

Inherits From: NSObject

Conforms To: NSObject (NSObject)

Declared In: EOAccess/EORelationship.h

Class Description

An EORelationship describes an association between two entities, based on attributes of those two entities.
By defining EORelationships in your application’s EOModel, you can cause the relationships defined in the
database to be automatically resolved as enterprise objects are fetched. For example, an Employee entity
may contain its department ID as an attribute, but without an EORelationship this will only appear in an
employee enterprise object as a number. With an EORelationship explicitly connecting the Employee entity
to the Department entity, an employee enterprise object will automatically be given its department
enterprise object when an EODatabaseChannel fetches it from the database. The two entities that make up
a relationship can be in the same model or two different models, as long as they are in the same model group.

You usually define relationships in your EOModel with the EOModeler application, which is documented
in the Enterprise Objects Framework Developer’s Guide. EORelationships are primarily for use by the
Enterprise Objects Framework; unless you have special needs you shouldn’t need to access them in your
application’s code.

A relationship is directional: One entity is considered the source, and the other is considered the destination.
The relationship belongs to the source entity, and may only be traversed from source to destination. To
simulate a two-way relationship you have to create an EORelationship for each direction. Although the
relationship is directional, no inverse is implied (although an inverse relationship may exist).

A relationship maintains an array of joins identifying attributes from the related entities (see the EOJoin
class specification for more information). Most relationships simply relate the objects of one entity to those
of another by comparing attribute values between them. Such a relationship must be defined as to-one or
to-many based on how many objects of the destination match each object of the source. This is called the
cardinality of the relationship. In a to-one relationship, there must be exactly one destination object for each
source object; in a to-many relationship there can be any number of destination objects for each source
object. See “Creating a Simple Relationship,” below, for more information.

A chain of relationships across several entities can be flattened, creating a single relationship that spans
them all. For example, a relationship between employees and departments and a relationship between
departments and facilities can be flattened into a relationship going directly from employees to facilities. A
flattened relationship is determined to be to-many or to-one based on the relationships it spans; if all are
to-one, then the flattened relationship is to-one, but if any of them is to-many the flattened relationship is
to-many. See “Creating a Flattened Relationship,” below, for more information.

2

Like the other major modeling classes, EORelationship provides a user dictionary that the application can
use to store application-specific information related to the relationship.

Specifying the Join Semantic

The relationship holds the join semantic; you specify this semantic with setJoinSemantic:. There are four
types of join semantic, as specified by the EOJoinSemantic type: EOInnerJoin, EOFullOuterJoin,
EOLeftOuterJoin, and EORightOuterJoin. An inner join produces results only for destinations of the join
relationship that have non-NULL values. A full outer join produces results for all source records, regardless
of the values of the relationships. A left outer join preserves rows in the left (source) table, keeping them
even if there’s no corresponding row in the right table, while a right outer join preserves rows in the right
(destination) table.

Note: Not all join semantics are supported by all database servers.

Creating a Simple Relationship

A simple relationship is defined by the attributes it compares in connecting its source and destination
entities. Each source-destination pair of attributes is encapsulated in an EOJoin object. For example, to
create a relationship from the Employee entity to the Department entity, a join has to be created from the
deptID attribute of the Employee entity to the same attribute of the Department entity. The values of these
two attributes must be equal for a match to result. Note that deptID is the primary key attribute for the
Department entity, so there can only be one department per employee; this relationship is therefore to-one.

This code excerpt creates an EORelationship for the relationship described above and adds it to the
EOEntity for the Employee entity:

EOEntity *employeeEntity; /* Assume this exists. */

EOEntity *deptEntity; /* Assume this exists. */

EOAttribute *empDeptIDAttribute;

EOAttribute *deptIDAttribute;

EOJoin *toDeptJoin;

EORelationship *toDeptRelationship;

empDeptIDAttribute = [employeeEntity attributeNamed:@"deptID"];

deptIDAttribute = [deptEntity attributeNamed:@"deptID"];

toDeptJoin = [[[EOJoin alloc]

 initWithSourceAttribute:empDeptIDAttribute

 destinationAttribute:deptIDAttribute] autorelease];

toDeptRelationship = [[[EORelationship alloc]

 initWithName:@"department"]] autorelease];

[toDeptRelationship setName:@"department"];

[employeeEntity addRelationship:toDeptRelationship];

[toDeptRelationship addJoin:toDeptJoin];

3

[toDeptRelationship setToMany:NO];

[toDeptRelationship setJoinSemantic:EOInnerJoin];

This code first gets the attributes from the source and destination entities, and then creates an EOJoin with
them. Next, a new EORelationship is created, the EOJoin is added to it, and it’s set as to-one. Then, in the
setJoinSemantic: line, EOInnerJoin indicates that only objects that actually have a matching destination
object will be included in the result when the relationship is traversed. Finally, employeeEntity is assigned
the new EORelationship.

Creating a to-many relationship in the opposite direction merely swaps the source and destination attributes,
and assigns the relationship to the EOEntity for the Department entity:

EOJoin *toEmployeesJoin;

EORelationship *toEmployeesRelationship;

toEmployeesJoin = [[[EOJoin alloc]

 initWithSourceAttribute:deptIDAttribute

 destinationAttribute:empDeptIDAttribute] autorelease];

toEmployeesRelationship = [[[EORelationship alloc] init] autorelease];

[toEmployeesRelationship setName:@"department"];

[toEmployeesRelationship addJoin:toEmployeesJoin];

[toEmployeesRelationship setToMany:YES];

[toEmployeesRelationship setJoinSemantic:EOInnerJoin];

[deptEntity addRelationship:toEmployeesRelationship];

Note that this relationship is to-many precisely because the destination attribute isn’t the primary key for its
entity (Employee), and therefore isn’t unique with regard to that entity.

A relationship isn’t restricted to only one EOJoin. It’s entirely possible for a relationship to be defined based
on two or more attributes in the source and destination entities. For example, if the employees database
contains a picture of each employee identified by first and last name, you define the relationship by joining
each of the first and last names in the Employee entity to the same attribute in the EmpPhoto attribute.

A simple relationship is considered to reference all of the attributes in its joins. You can use the
referencesProperty: method to find out if an EORelationship references a particular attribute.

Creating a Flattened Relationship

A flattened relationship depends on several simple relationships already existing. Assuming that several do
exist, creating a flattened relationship is straightforward. Suppose that, in addition to the department
relationship used above, the Department entity has a relationship to its facility (building)—the facility
relationship. This code excerpt creates a flattened relationship directly from Employee to each employee's
facility:

EOEntity *employeeEntity; /* Assume this exists. */

4

EORelationship *toFacilityRelationship;

toFacilityRelationship = [[EORelationship alloc] init];

[toFacilityRelationship setName:@"facility"];

[toFacilityRelationship setEntity:employeeEntity];

[employeeEntity addRelationship:toFacilityRelationship];

[toFacilityRelationship setDefinition:@"department.facility"];

All that’s needed to establish the relationship is a data path (also called the definition) naming each
component relationship connected, with the names separated by periods. Note that because the cardinality
of a flattened relationship is determinable from its components, no setToMany: message is required here.

A simple relationship is considered to reference all of the relationships in its definition, plus every attribute
referenced by the component relationships. You can use the referencesProperty: method to find out if an
EORelationship references another relationship or attribute.

Method Types

Setting the relationship name – beautifyName
– name
– setName:
– validateName:

Using joins – addJoin:
– joins
– joinSemantic
– removeJoin:
– setJoinSemantic:

Getting attributes joined on – destinationAttributes
– ownsDestination
– sourceAttributes

Getting the definition – componentRelationships
– definition
– setDefinition:

Getting the entities joined – anyInverseRelationship
– destinationEntity
– entity
– inverseRelationship
– setEntity:

5

Checking the relationship type – isCompound
– isFlattened
– isMandatory
– setIsMandatory:

Setting to-many – isToMany
– setToMany:

Relationship qualifiers – qualifierWithSourceRow:

Checking references – referencesProperty:

Controlling batch fetches – numberOfToManyFaultsToBatchFetch
– setNumberOfToManyFaultsToBatchFetch:

Taking action upon a change – deleteRule
– propagatesPrimaryKey
– setDeleteRule:
– setPropagatesPrimaryKey:

Setting the user dictionary – setUserInfo:
– userInfo

Instance Methods

addJoin:
– (void)addJoin:(EOJoin *)aJoin

Adds a source-destination attribute pair to the relationship. Raises an NSInvalidArgumentException if the
relationship is flattened, if either the source or destination attributes are flattened, or if either of aJoin’s
attributes already belongs to another join of the relationship.

See also: – joins, – isFlattened, –setDefinition:

anyInverseRelationship
– (EORelationship *)anyInverseRelationship

Searches the relationship’s destination entity for a user-created, back-pointing relationship joining on the
same keys. If none is found, it looks for a “hidden” inverse relationship that was manufactured by the
Framework. If none is found, the Enterprise Objects Framework creates a “hidden” inverse relationship and
returns that. Hidden relationships are used internally by the Framework.

See also: – inverseRelationship

6

beautifyName
– (void)beautifyName

Makes the relationship’s name conform to a standard convention. Names that conform to this style are all
lower-case except for the initial letter of each embedded word other than the first, which is upper case. Thus,
“NAME” becomes “name”, and “FIRST_NAME” becomes “firstName”.

See also: – setName:, –validateName:

componentRelationships
– (NSArray *)componentRelationships

Returns an array of base relationships making up a flattened relationship, or nil if the relationship isn’t
flattened.

See also: – definition

definition
– (NSString *)definition

Returns the data path of a flattened relationship; for example “department.facility”. If the relationship isn’t
flattened, definition returns nil .

See also: – componentRelationships

deleteRule
– (EODeleteRule)deleteRule

Returns a rule that describes the action to take when an object is being deleted. The returned rule is one of
the following:

EODeleteRuleNullify
EODeleteRuleCascade
EODeleteRuleDeny

For example, suppose you have a department with multiple employees. When a user tries to delete the
department, your application could:

• Delete the department and remove any back pointer the employee has to the department (nullify)
• Delete the department and all of the employees it contains (cascade)
• Refuse the deletion if the department contains employees (deny)

7

destinationAttributes
– (NSArray *)destinationAttributes

Returns the destination attributes of the relationship. These correspond one-to-one with the attributes
returned by sourceAttributes. Returns nil if the relationship is flattened.

See also: – joins, –destinationAttribute (EOJoin)

destinationEntity
– (EOEntity *)destinationEntity

Returns the relationship’s destination entity, which is determined by the destination entity of its joins for a
simple relationship, and by whatever ends the data path for a flattened relationship. For example, if a
flattened relationship’s definition is “department.facility”, the destination entity is the Facility entity.

See also: – entity

entity
– (EOEntity *)entity

Returns the relationship’s source entity.

See also: – destinationEntity, –addRelationship: (EOEntity)

inverseRelationship
– (EORelationship *)inverseRelationship

Searches the relationship’s destination entity for a user-created, back-pointing relationship joining on the
same keys. Returns the inverse relationship if one is found, nil otherwise.

See also: – anyInverseRelationship

isCompound
– (BOOL)isCompound

Returns YES if the relationship contains more than one join (that is, if it joins more than one pair of
attributes), NO if it has only one join. See “Creating a Simple Relationship” in the class description for
information on compound relationships.

See also: – joins, – joinSemantic

8

isFlattened
– (BOOL)isFlattened

Returns YES if the relationship traverses more than two entities, NO otherwise. See “Creating a Flattened
Relationship” in the class description for an example of a flattened relationship.

isMandatory
– (BOOL)isMandatory

Returns YES if the target of the relationship is required, NO if it can be nil .

See also: – setIsMandatory:

isToMany
– (BOOL)isToMany

Returns YES if the relationship is to-many, NO if it’s to-one.

See also: – setToMany:

joinSemantic
– (EOJoinSemantic)joinSemantic

Returns the semantic used to create SQL expressions for this relationship. The returned join semantic is one
of the following:

EOInnerJoin
EOFullOuterJoin
EOLeftOuterJoin
EORightOuterJoin:

See also: – joins

joins
– (NSArray *)joins

Returns all joins used by relationship.

See also: – destinationAttributes, – joinSemantic, –sourceAttributes

9

name
– (NSString *)name

Returns the relationship’s name.

numberOfToManyFaultsToBatchFetch
– (unsigned int)numberOfToManyFaultsToBatchFetch

Returns the number of to-many faults that are triggered at one time.

ownsDestination
– (BOOL)ownsDestination

Returns YES if the relationship should insert or delete the target object when added or removed, NO
otherwise.

See also: – destinationAttributes

propagatesPrimaryKey
– (BOOL)propagatesPrimaryKey

Returns YES if objects should propagate their primary key to related objects through this relationship.
Objects only propagate their primary key values if the corresponding values in the destination object aren’t
already set.

qualifierWithSourceRow:
– (EOQualifier *)qualifierWithSourceRow:(NSDictionary *)sourceRow

Returns a qualifier that can be used to fetch the destination of the receiving relationship, given sourceRow.

referencesProperty:
– (BOOL)referencesProperty:(id)aProperty

Returns YES if aProperty is in the relationship’s data path or is an attribute belonging to one of the
relationship’s joins; otherwise, it returns NO. See the class description for information of how relationships
reference properties.

See also: – referencesProperty: (EOEntity)

10

removeJoin:
– (void)removeJoin:(EOJoin *)aJoin

Deletes aJoin from the relationship. Does nothing if the relationship is flattened.

See also: – addJoin:

setDefinition:
– (void)setDefinition:(NSString *)definition

Changes the relationship to a flattened relationship by releasing any joins and attributes (both source and
destination) associated with the relationship and setting definition as its data path. “department.facility” is
an example of a definition that could be supplied to this method.

If the relationship’s entity hasn’t been set, this method won’t work correctly. See “Creating a Flattened
Relationship” in the class description for more information on flattened relationships.

See also: – addJoin:, –setEntity:

setDeleteRule:
– (void)setDeleteRule:(EODeleteRule)deleteRule

Set a rule describing the action to take when object is being deleted. deleteRule can be one of the following:

EODeleteRuleNullify
EODeleteRuleCascade
EODeleteRuleDeny

For more discussion of what these rules mean, see the method description for deleteRule.

setEntity:
– (void)setEntity:(EOEntity *)anEntity

Sets the entity of the relationship to anEntity. If the relationship is currently owned by a different entity, this
method will remove the relationship from that entity. This method doesn’t add the relationship to the new
entity. EOEntity’s addRelationship: method invokes this method.

You only need to use this method when creating a flattened relationship; use EOEntity’s addRelationship:
to associate an existing relationship with an entity.

See also: – setDefinition:

11

setIsMandatory:
– (void)setIsMandatory:(BOOL)flag

Specifies according to flag whether the target of the relationship must be supplied or can be nil .

setJoinSemantic:
– (void)setJoinSemantic:(EOJoinSemantic)joinSemantic

Sets the semantic used to create SQL expressions for this relationship. joinSemantic should be one of the
following:

EOInnerJoin
EOFullOuterJoin
EOLeftOuterJoin
EORightOuterJoin:

See also: – addJoin:

setName:
– (void)setName:(NSString *)name

Sets the relationship’s name to name. Raises a verification exception if name is not a valid relationship
name, and NSInvalidArgumentException if name is already in use by an attribute or another relationship in
the same entity.

This method forces all objects in the model to be loaded into memory.

See also: – beautifyName:, –validateName:

setNumberOfToManyFaultsToBatchFetch:
– (void)setNumberOfToManyFaultsToBatchFetch:(unsigned int)size

Sets the number of “toMany” faults that are fired at one time to size.

See also: – isToMany

setPropagatesPrimaryKey:
– (void)setPropagatesPrimaryKey:(BOOL)flag

Specifies according to flag whether objects should propagate their primary key to related objects through
this relationship. For example, an Employee object might propogate its primary key to an EmployeePhoto

12

object. Objects only propagate their primary key values if the corresponding values in the destination object
aren’t already set.

setToMany:
– (void)setToMany:(BOOL)flag

Sets a simple relationship as to-many according to flag. Raises an NSInvalidArgumentException if the
receiver is flattened. See the class description for considerations in setting this flag.

See also: – isFlattened

setUserInfo:
– (void)setUserInfo:(NSDictionary *)dictionary

Sets the dictionary of auxiliary data, which your application can use for whatever it needs. dictionary can
only contain property list data types (that is, NSDictionaries, NSStrings, NSArrays, and NSDatas).

sourceAttributes
– (NSArray *)sourceAttributes

Returns the source attributes of a simple (non-flattened) relationship. These correspond one-to-one with the
attributes returned by destinationAttributes. Returns nil if the relationship is flattened.

See also: – joins, –sourceAttribute (EOJoin)

userInfo
– (NSDictionary *)userInfo

Returns a dictionary of user data. Your application can use this data for whatever it needs.

validateName:
– (NSException *)validateName:(NSString *)name

Validates name and returns nil if its a valid name, or an exception if it isn’t. A name is invalid if it has zero
length; starts with a character other than a letter, a number, or “@”, “#”, or “_”; or contains a character other
than a letter, a number, “@”, “#”, “_”, or “$”.

setName: uses this method to validate its argument.

13

