
1

NSException Additions

Inherits From: NSObject

Declared In: EOControl/EOClassDescription.h

Class Description

Enterprise Objects Framework adds methods to the Foundation Framework’s NSException class for
handling validating errors and augmenting an exception’s userInfo dictionary. The methods used for
validation errors are validationExceptionWithFormat: and aggregateExceptionWithExceptions:. You
use validationExceptionWithFormat: in an enterprise object’s validateFor... or validateProperty:
method, as described in the NSObject Additions class specification. The other method used for validation
errors, aggregateExceptionWithExceptions:, is used internally by the Framework to group multiple
validation exceptions together.

The method exceptionAddingEntriesToUserInfo: is used to augment an exception’s userInfo dictionary.

Method Types

Creating a validation exception + validationExceptionWithFormat:

Collecting exceptions + aggregateExceptionWithExceptions:

Returning an exception with an augmented userInfo dictionary
– exceptionAddingEntriesToUserInfo:

Class Methods

aggregateExceptionWithExceptions:
+ (NSException *)aggregateExceptionWithExceptions:(NSArray *)exceptions

Returns the first NSException in exceptions, with the remaining exceptions collected in its userInfo
dictionary as an NSArray under the key EOAdditionalExceptionsKey.

2

validationExceptionWithFormat:
+ (NSException *)validationExceptionWithFormat: (NSString *)format, ...

Returns an NSException whose name is EOValidationException and whose reason is an NSString created
from format and subsequent arguments. For example:

[NSException validationExceptionWithFormat:@"invalid name \"%@\": entity names

cannot be nil or empty", name];

Instance Methods

exceptionAddingEntriesToUserInfo:
– (NSException *)exceptionAddingEntriesToUserInfo:(NSDictionary *)additions

Returns an NSException whose userInfo dictionary has been augmented with the object and property
information contained in additions. When exceptions are raised by certain validation methods such as
validateValue:forKey: , this message is sent to the exception to create a duplicate exception with object and
property information added to the new exception’s userInfo dictionary. This information is stored in the
userInfo dictionary under the keys EOValidatedObjectUserInfoKey and
EOValidatedPropertyUserInfoKey, respectively. The exception that’s returned by this method has the same
class with the same name and reason as the original exception; the only difference is the augmented
userInfo dictionary.

