
1

 

EOFetchSpecification

Inherits From: NSObject

Conforms To: NSCopying
NSObject (NSObject)

Declared In: EOControl/EOFetchSpecification.h

Class Description

An EOFetchSpecification collects the criteria needed to select and order a group of records or enterprise 
objects, whether from an external repository such as a relational database or an internal store such as an 
EOEditingContext. An EOFetchSpecification contains these elements:

• The name of an entity for which to fetch records or objects. This is the only mandatory element.

• An EOQualifier, indicating which properties to select by and how to do so.

• An array of EOSortOrderings, which indicate how the selected records or objects should be ordered when 
fetched.

• An indicator of whether to produce distinct results or not. Normally if a record or object is selected 
several times, such as when forming a join, it appears several times in the fetched results. An 
EOFetchSpecification that makes distinct selections causes duplicates to be filtered out, so that each 
record or object selected appears exactly once in the result set.

• An indicator of whether to fetch deeply or not. This is used with inheritance hierarchies when fetching 
for an entity with sub-entities. A deep fetch produces all instances of the entity and its sub-entities, while 
a shallow fetch produces instances only of the entity in the fetch specification.

• A dictionary of hints, which an EODatabaseContext or other object can use to optimize or alter the results 
of the fetch.

EOFetchSpecifications are used most often in the objectsWithFetchSpecification:editingContext: 
method defined by EOObjectStore, EOEditingContext, and EODatabaseContext, as well as 
objectsWithFetchSpecification:, defined by EOEditingContext alone. EOAdaptorChannel and 
EODatabaseChannel also define methods that use EOFetchSpecifications.

Adopted Protocols

NSCopying – copyWithZone:



2

Method Types

Creating instances + fetchSpecificationWithEntityName:qualifier:sortOrderings:
– init
– initWithEntityName:qualifier:sortOrderings:usesDistinct:

isDeep:hints:

Configuring fetch parameters – setEntityName:
– entityName
– setQualifier:
– qualifier
– setSortOrderings:
– sortOrderings
– setUsesDistinct:
– usesDistinct
– setLocksObjects:
– locksObjects
– setIsDeep:
– isDeep
– setRefreshesRefetchedObjects:
– refreshesRefetchedObjects
– setHints:
– hints

Class Methods

fetchSpecificationWithEntityName:qualifier:sortOrderings:
+ (EOFetchSpecification *)fetchSpecificationWithEntityName:(NSString *)entityName

qualifier: (EOQualifier *)qualifier
sortOrderings:(NSArray *)sortOrderings

Returns an EOFetchSpecification for entityName, using qualifier to select and sortOrderings to sort the 
results. This EOFetchSpecification doesn’t perform distinct selection, is deep, and has no hints.

See also: – initWithEntityName:qualifier:sortOrderings:usesDistinct:isDeep:hints:



3

 

Instance Methods

entityName
– (NSString *)entityName

Returns the name of the entity to be fetched.

See also: – isDeep, –setEntityName:

hints
– (NSDictionary *)hints

Returns the receiver’s hints, which other objects can use to alter or optimize fetch operations. 
EODatabaseContext’s objectsWithFetchSpecification:editingContext: uses a hint to prefetch the 
destinations of relationships, for example. See the EODatabaseContext class specification for more 
information.

See also: – setHints:

init
– (id)init

Initializes a new EOFetchSpecification with no state, except that it fetches deeply and doesn’t use distinct. 
Use the set... methods to add other parts of the specification. This is the designated initializer for the 
EOFetchSpecification class. Returns self.

See also: – initWithEntityName:qualifier:sortOrderings:usesDistinct:isDeep:hints:

initWithEntityName:qualifier:sortOrderings:usesDistinct:isDeep:hints:
– (id)initWithEntityName: (NSString *)entityName

qualifier: (EOQualifier *)qualifier
sortOrderings:(NSArray *)sortOrderings
usesDistinct:(BOOL)distinctFlag
isDeep:(BOOL)deepFlag
hints:(NSDictionary *)hints

Initializes a new EOFetchSpecification with the given arguments. Returns self.

See also: + fetchSpecificationWithEntityName:qualifier:sortOrderings:



4

isDeep
– (BOOL)isDeep

Returns YES if a fetch should include sub-entities of the receiver’s entity, NO if it shouldn’t. 
EOFetchSpecifications are deep by default.

For example, if you have a Person entity with two sub-entities, Employee and Customer, fetching Persons 
deeply also fetches all Employees and Customers matching the qualifier, and fetching Persons shallowly 
fetches only Persons matching the qualifier.

See also: – setIsDeep:

locksObjects
– (BOOL)locksObjects

Returns YES if a fetch should result in the selected objects being locked in the data repository, NO if it 
shouldn’t. The default is NO.

See also: – setLocksObjects:

qualifier
– (EOQualifier *)qualifier

Returns the EOQualifier the indicates which records or objects to fetch.

See also: – setQualifier:

refreshesRefetchedObjects
– (BOOL)refreshesRefetchedObjects

Returns YES if existing objects are overwritten with fetched values when they’ve have been updated or 
changed. Returns NO if existing objects aren’t touched when their data is refetched (the fetched data is 
simply discarded). The default is NO.

See also: – setRefreshesRefetchedObjects:



5

 

setEntityName:
– (void)setEntityName:(NSString *)entityName

Sets the name of the root entity to be fetched to entityName.

See also: – isDeep, –entityName

setHints:
– (void)setHints:(NSDictionary *)hints

Sets the receiver’s hints to hints. Other objects can use these to alter or optimize fetch operations. See the 
description of the objectsWithFetchSpecification:editingContext: method in the EODatabaseContext 
class specification for an example.

See also: – hints

setIsDeep:
– (void)setIsDeep:(BOOL)flag

Controls whether a fetch should include sub-entities of the receiver’s entity. If flag is YES, sub-entities are 
also fetched; if flag is NO, they aren’t. EOFetchSpecifications are deep by default.

For example, if you have a Person entity/class/table with two sub-entities and subclasses, Employee and 
Customer, fetching Persons deeply also fetches all Employees and Customers matching the qualifier, while 
fetching Persons shallowly fetches only Persons matching the qualifier.

See also: – isDeep

setLocksObjects:
– (void)setLocksObjects:(BOOL)flag

Controls whether a fetch should result in the selected objects being locked in the data repository. If flag is 
YES it should, if NO it shouldn’t. The default is NO.

See also: – locksObjects



6

setQualifier:
– (void)setQualifier:(EOQualifier *)qualifier

Sets the receiver’s qualifier to qualifier.

See also: – qualifier

setRefreshesRefetchedObjects:
– (void)setRefreshesRefetchedObjects:(BOOL)flag

Controls whether existing objects are overwritten with fetched values when they’ve have been updated or 
changed. If flag is YES, they are; if flag is NO, they aren’t (the fetched data is simply discarded). The default 
is NO.

– refreshesRefetchedObjects

setSortOrderings:
– (void)setSortOrderings:(NSArray *)sortOrderings

Sets the receiver’s array of EOSortOrderings to sortOrderings. When a fetch is performed with the receiver, 
the results are sorted by applying each EOSortOrdering in the array.

See also: – sortedArrayUsingKeyOrderArray: (NSArray Additions), –sortOrderings

setUsesDistinct:
– (void)setUsesDistinct:(BOOL)flag

Controls whether duplicate objects or records are removed after fetching. If flag is YES they’re removed; 
if flag is NO they aren’t. EOFetchSpecifications by default don’t use distinct.

See also: – usesDistinct

sortOrderings
– (NSArray *)sortOrderings

Returns the receiver’s array of EOSortOrderings. When a fetch is performed with the receiver, the results 
are sorted by applying each EOSortOrdering in the array.

See also: – sortedArrayUsingKeyOrderArray: (NSArray Additions), –setSortOrderings:



7

 

usesDistinct
– (BOOL)usesDistinct

Returns YES if duplicate objects or records are removed after fetching, NO if they aren’t. 
EOFetchSpecifications by default don’t use distinct.

See also: – setUsesDistinct:


