
1

Object Ownership and Automatic Disposal

In an Objective-C program, objects are constantly creating and disposing of other
objects. Much of the time an object creates things for private use and can dispose of
them as it needs. However, when an object passes something to another object through
a method invocation, the lines of ownership—and responsibility for disposal—blur.
Suppose, for example, that you have a Thingamajig object that contains a number of
Sprocket objects, which another object accesses with this method:

– (NSArray*)sprockets

This declaration says nothing about who should release the returned array. If the
Thingamajig object returned an instance variable, it’s responsible; if the Thingamajig
created an array and returned it, the recipient is responsible. This problem applies both
to objects returned by a method and objects passed in as arguments to a method.

Ideally a body of code should never be concerned with releasing something it didn’t
create. The Foundation Framework therefore sets this policy: If you create an object
(using alloc or allocWithZone:) or copy an object (using copy, copyWithZone:,
mutableCopy, or mutableCopyWithZone:), you alone are responsible for releasing it.
If you didn’t directly create or copy the object, you don’t own it and shouldn’t release it.

Note: It is possible for you to create an object by invoking one of the
+className... methods of the class object. However , because these class
methods allocate memory for the object, they are considered to be the
owners and are therefore responsible for releasing the object.

When you write a method that creates and returns an object, that method is responsible
for releasing the object. However, it’s clearly not fruitful to dispose of an object before
the recipient of the object gets it. What is needed is a way to mark an object for release
at a later time, so that it will be properly disposed of after the recipient has had a chance
to use it. The Foundation Framework provides just such a mechanism.

Marking Objects for Disposal
The autorelease method, defined by NSObject, marks the receiver for later release. By
autoreleasing an object—that is, by sending it an autorelease message—you declare
that you don’t need the object to exist beyond the scope you sent autorelease in. When
your code completely finishes executing and control returns to the application object
(that is, at the end of the event loop), the application object releases the object. The
sprockets methods above could be implemented in this way:

Topics in OpenStep Programming

2

– (NSArray *)sprockets
{
 NSArray *array;

 array = [[NSArray alloc] initWithObjects:mainSprocket,
 auxiliarySprocket, nil];
 return [array autorelease];
}

When another method gets the array of Sprockets, that method can assume that the
array will be disposed of when it’s no longer needed, but can still be safely used
anywhere within its scope (with certain exceptions; see “Validity of Shared Objects”
below). It can even return the array to its invoker, since the application object defines
the bottom of the call stack for your code. The autorelease method thus allows every
object to use other objects without worrying about disposing of them.

Note: Just as it’s an error to release an object after it’ s already been
deallocated, it’s an error to send so many autorelease messages that the
object would later be released after it had already been deallocated. You
should send release or autorelease to an object only as many times as
are allowed by its creation (one) plus the number of retain messages you
have sent it (retain messages are described below).

Retaining Objects
There are times when you don’t want a received object to be disposed of; for
example, you may need to cache the object in an instance variable. In this case, only
you know when the object is no longer needed, so you need the power to ensure that
the object is not disposed of while you are still using it. You do this with the retain
method, which stays the effect of a pending autorelease (or preempts a later release
or autorelease message). By retaining an object you ensure that it won’t be
deallocated until you’re done with it. For example, if your object allows its main
Sprocket to be set, you might want to retain that Sprocket like this:

– (void)setMainSprocket:(Sprocket *)newSprocket
{
 [mainSprocket autorelease];
 mainSprocket = [newSprocket retain]; /* Claim the new Sprocket. */
 return;
}

Now, setMainSprocket: might get invoked with a Sprocket that the invoker intends
to keep around, which means your object would be sharing the Sprocket with that
other object. If that object changes the Sprocket, your object’s main Sprocket
changes. You might want that, but if your Thingamajig needs to have its own
Sprocket the method should make a private copy:

3

– (void)setMainSprocket:(Sprocket *)newSprocket
{
 [mainSprocket autorelease];
 mainSprocket = [newSprocket copy]; /* Get a private copy. */
 return;
}

Note that both of these methods autorelease the original main sprocket, so they don’t
need to check that the original main sprocket and the new one are the same. If they
simply released the original when it was the same as the new one, that sprocket would
be released and possibly deallocated, causing an error as soon as it was retained or
copied. Although they could store the old main sprocket and release it later, that kind
of code tends to be slightly more complex. For example:

– (void)setMainSprocket:(Sprocket *)newSprocket
{
 Sprocket *oldSprocket = mainSprocket;
 mainSprocket = [newSprocket copy];
 [oldSprocket release];
 return;
}

Retain Cycles
In general, you retain all objects that you create. However , in some cases
you may have two objects with cyclical references; that is, each object
contains an instance variable that refers to the other object. For example,
consider a text program with the object relationships shown in the following
figure. The Document object creates a Page object for each page in the
document. Each Page object has an instance variable that keeps track of
which document it’s in. If the Document object retained the Page object
and the Page object retained the Document object, neither object would
ever be released. The Document’s reference count can’t become 0 until the
Page object is released, and the Page object won’ t be released until the
Document object is deallocated.

The solution to the problem of retain cycles is that the “parent” object should
retain its “children,” but that the children should not retain their parents. So, in
the following figure the document object retains its page objects but the page

Topics in OpenStep Programming

4

object does not retain the document object.

Validity of Shared Objects
The Foundation Framework’s ownership policy limits itself to the question of when
you have to dispose of an object; it doesn’t specify that any object received in a
method must remain valid throughout that method’s scope. A received object nearly
always becomes invalid when its owner is released, and usually becomes invalid
when its owner reassigns the instance variable holding that object. Any method other
than release that immediately disposes of an object is documented as doing so.

For example, if you ask for an object’s main sprocket and then release the object, you
have to consider the main sprocket gone, because it belonged to the object. Similarly,
if you ask for the main sprocket and then send setMainSprocket: you can’t assume
that the sprocket you received remains valid:

text

parent

parent

paragraph

Paragraph

Page

page

Document

retain

don’t

retain

don’t

retain

retain

5

Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [myObject mainSprocket];

/* If this releases the original Sprocket... */
[myObject setMainSprocket:newMainSprocket];

/* ...then this causes the application to crash. */
[oldMainSprocket anyMessage];

setMainSprocket: may release the object’s original main sprocket, possibly rendering
it invalid. Sending any message to the invalid sprocket would then cause your
application to crash. If you need to use an object after disposing of its owner or
rendering it invalid by some other means, you can retain and autorelease it before
sending the message that would invalidate it:

Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [[[myObject mainSprocket] retain] autorelease];
[myObject setMainSprocket:newMainSprocket];
[oldMainSprocket anyMessage];

Retaining and autoreleasing oldMainSprocket guarantees that it will remain valid
throughout your scope, even though its owner may release it when you send
setMainSprocket:.

Summary
Now that the concepts behind the Foundation Framework’s object ownership policy
have been introduced, they can be expressed as a short list of rules:

• If you directly allocate, copy , or retain an object, you are responsible for
releasing the newly created object with release or autorelease. Any other
time you receive an object, you are not responsible for releasing it.

• A received object is normally guaranteed to remain valid within the
method it was received in. That method may also safely return the object
to its invoker.

• If you need to store a received object in an instance variable, you must
retain or copy it.

• Use retain and autorelease when needed to prevent an object from being
invalidated as a normal side-ef fect of a message.

Topics in OpenStep Programming

6

