Object Ownership and Automatic Disposal

In an Objectie-C program, objects are constantly creating and disposing of other
objects. Much of the time an object creates things featgriuse and can dispose of
them as it needs. M@&ver, when an object passes something to another object through
a method imocation, the lines ofwnership—and responsibility for disposal—nblur
Suppose, foreample, that you hze a Thingamajig object that contains a number of
Sproclet objects, which another object accesses with this method:

— (NSArray*) sprockets

This declaration says nothing about who should release the returnedittinay
Thingamajig object returned an instancariable, its responsible; if the Thiragnajig

created an array and returned it, the recipient is responsible. This problem applies both
to objects returned by a method and objects passed irgas@nts to a method.

Ideally a body of code should mer be concerned with releasing something it didn’
create. The Bundation Framagork therefore sets this policIf you create an object
(usingalloc or allocWithZone:) or copy an object (usingopy copyWthZone:,
mutableCopyor mutableCopy\WhZone:), you alone a& responsible foreleasing it
If you didn't directly create or cgpthe object, you dohbwn it and shouldi'release it.

Note: It is possible for you to create an object by invoking one of the
+className... methods of the class object. However , because these class
methods allocate memory for the object, they are considered to be the
owners and are therefore responsible for releasing the object.

When you write a method that creates and returns an object, that method is responsible
for releasing the object. M@ver, it's clearly not fruitful to dispose of an object before

the recipient of the object gets it. What is needed iayatavmark an object for release

at a later time, so that it will be properly disposed of after the recipient has had a chance
to use it. The Bundation Framsork provides just such a mechanism.

Marking Objects for Disposal

Theautoreleasemethod, defined by NSObject, marks the reador later release. By
autoreleasing an object—that is, by sending itaroreleasemessage—you declare
that you dort need the object toist beyond the scope you semitoreleasan. When
your code completely finishesecuting and control returns to the application object
(that is, at the end of thevent loop), the application object releases the object. The
sprocketsmethods abee could be implemented in thisay:



Topics in OpenStep Programming

— (NSArray *)sprockets
NSArray *array;

array = [[NSArray alloc] initWithObjects:mainSprocket,
auxiliarySprocket, nil];
return [array autorelease];

}

When another method gets the array of Sgts;khat method can assume that the
array will be disposed of whenstho longer neededytbcan still be safely used
arywhere within its scope (with certairaeptions; see “&idity of Shared Objects”
belaw). It can @en return the array to itsvoker, since the application object defines
the bottom of the call stack for your code. Bloreleasamnethod thus alles every
object to use other objects withouionrying about disposing of them.

Note: Just as it’s an error to release an object after it’ s already been
deallocated, it’s an error to send so many autorelease messages that the
object would later be released after it had already been deallocated. You
should send release or autorelease to an object only as many times as
are allowed by its creation (one) plus the number of retain messages you
have sent it (retain messages are described below).

Retaining Objects

There are times when you dowant a receied object to be disposed of; for
example, you may need to cache the object in an instamiabdle. In this case, only
you knawv when the object is no longer needed, so you need wer pwensure that
the object is not disposed of while you are still usingat ¥o this with theetain
method, which stays thefe€t of a pendingutoreleasdor preempts a lateelease
or autoreleasamnessage). By retaining an object you ensure thabit'toe
deallocated until yowe done with it. Br example, if your object allavs its main
Sproclet to be set, you might ant to retain that Sproek like this:

— (void)setMainSprocket:(Sprocket *)newSprocket

[mainSprocket autorelease];
mainSprocket =[newSprocketretain]; /* Claim the new Sprocket. */
return;

}

Now, setMainSprocket: might get ioked with a Sproaét that the imoker intends
to keep around, which means your objeadwd be sharing the Sproekwith that
other object. If that object changes the Speiclkour object main Sprockt
changes. ¥u might want that, lot if your Thingamajig needs to va its avn
Sproclet the method should mela prvate copy:



— (void)setMainSprocket:(Sprocket *)newSprocket
{

[mainSprocket autorelease];
mainSprocket = [newSprocket copy]; /* Get a private copy. */
return;

}

Note that both of these methods autorelease the original mainepsickhg dont
need to check that the original main speicknd the ng one are the same. If the
simply released the original when iagithe same as themene, that sproak would
be released and possibly deallocated, causing an error as sooraasétained or
copied. Although thgcould store the old main sproetkand release it latethat kind
of code tends to be slightly more cormyl&or example:

— (void)setMainSprocket:(Sprocket *)newSprocket

Sprocket *oldSprocket = mainSprocket;
mainSprocket = [newSprocket copy];
[oldSprocket release];

return;

Retain Cycles

In general, you retain all objects that you create. However, in some cases
you may have two objects with cyclical references; that is, each object
contains an instance variable that refers to the other object. For example,
consider a text program with the object relationships shown in the following
figure. The Document object creates a Page object for each page in the
document. Each Page object has an instance variable that keeps track of
which document it’s in. If the Document object retained the Page object
and the Page object retained the Document object, neither object would
ever be released. The Document’s reference count can’t become 0 until the
Page object is released, and the Page object won’ t be released until the
Document object is deallocated.

The solution to the problem of retairycles is that the “parent” object should
retain its “childreri, but that the children should not retain their parents. So, in
the following figure the document object retains its page objectstie page



Topics in OpenStep Programming

object does not retain the document object.

Document

don't
: retain

Page

: retain

: don't

: retain
: : retain

Paragraph

Validity of Shared Objects

The Foundation Frameork’s ovnership polig limits itself to the question of when
you have to dispose of an object; it doesgpecify that ay object recaied in a
methodmustremain \alid throughout that methaglscope. A receed object nearly
always becomes vralid when its evner is released, and usually becomesiid
when its evner reassigns the instan@iable holding that object. Armethod other
thanreleasahat immediately disposes of an object is documented as doing so.

For example, if you ask for an objestmain sproost and then release the object, you
have to consider the main spratlgone, because it belonged to the object. Similarly
if you ask for the main sproekand then sergbtMainSprocket: you cant assume
that the sproast you recaied remains alid:



Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [myObject mainSprocket];

/* If this releases the original Sprocket... */
[myObject setMainSprocket:newMainSprocket];

/* ...then this causes the application to crash. */
[oldMainSprocket anyMessage |;

setMainSprocket: may release the objestriginal main sproek, possibly rendering
it invalid. Sending apmessage to the walid sproclet would then cause your
application to crash. If you need to use an object after disposing ofatsaw or
rendering it ivalid by some other means, you can retain and autorelease it before
sending the message thabuld invalidate it:

Sprocket *oldMainSprocket;
Sprocket *newMainSprocket;

oldMainSprocket = [[[myObject mainSprocket] retain] autorelease];
[myObject setMainSprocket:newMainSprocket];
[oldMainSprocket anyMessage J;

Retaining and autoreleasimgdMainSprocket guarantees that it will remainalid
throughout your scopeyen though its wner may release it when you send
setMainSprocket:.

Summary

Now that the concepts behind th@&ndation Framsork’s object avnership poliy
have been introduced, tlyecan be epressed as a short list of rules:

< Ifyou directly allocate, copy, or retain an object, you are responsible for
releasing the newly created object with release or autorelease. Any other
time you receive an object, you are not responsible for releasing it.

* Areceived object is normally guaranteed to remain valid within the
method it was received in. That method may also safely return the object
to its invoker.

« If you need to store a received object in an instance variable, you must
retain or copy it.

» Use retain and autorelease when needed to prevent an object from being
invalidated as a normal side-ef fect of a message.



Topics in OpenStep Programming




