The OPENSTEP Text System

Note: This document hasgeen fully updateddm an earlier vegion. A number of
minor dhanges have occued to the tet system API that magmder some
explanations, illustations, and code samples inacater See theafeence
documentation ancefease notes for meinformation.

The text-handling component of grapplication frameork presents one of the

greatest challenges to frawark designers. Ean the most basicithandling system
must be relatiely sophisticated, alleing for text input, layout, displayediting,

copying and pasting, and mgother features. But these dayved®pers and users
commonly e&pect @en more than these basic features, requiring their simple editors to
support multiple fonts, arious paragraph styles, embedded images, spell checking,
and other features.

A framework that pravides these more adwced t&t-handling features may be
adequate for today’programming needsitfalls far short when measuredsgst the
requirements that are eng@mng from our @er more interconnected computingrid:
support for the character sets of thend’s living languages, peerful layout
capabilities to handlearious tet directionality and nonrectangulatxtecontainers,
and sophisticated typesetting capabilities including controkafikig and ligitures.

The OPENSTEP t¢-handling system is designed to pite all these capabilities

without requiring you to learn about or interact with more of the system than is required
to meet the needs of your application. It does this byiging a layering of classes, as
described in the né section. The sections that follathe architectural eerview give

you practical ®amples of hav to work with the text-handling system.

Architectural Overview

You can think of the tet-handling system as kimg three distinct layers of API.d¥
most typical uses, the general-purpose programmatic ateidf the NS&tView
class is all you need to learn. If you need moreéifle programmatic access to thette
you'll need to learn about the storage layer and the B&Storage class. And, of
course, to access all theadlable features, you can learn about and interact witiofan
the classes that support thettdandling system. The folleing discussion presents
these three layers.

The User-Interface Layer: The NSTextView Class

The vast majority of applications interact with thextehandling system through one
class: NS&tView. An NSTextView object preides a rich set of #-handling features
and can:

Topics in OpenStep Programming

« Display text in various fonts, colors, and paragraph styles
« Display images
« Read text and images from (and write them to) disk or the pasteboard

« Let users control text attributes such as font, super- and subscripting,
kerning, and the use of ligatures

« Cooperate with other views to enable scrolling and display of the ruler
« Cooperate with the Font and Spell Check panels.
= Support various key bindings, such as those used in Emacs

The interfice that this class declares (and inherits from its superclagztNiBis
you programmatically:

« Control the size of the area in which text is displayed
« Control the editability and selectability of the text
e Select and act on portions of the text

NSTextView objects are used throughout the OPENSTEP useraioterd preide
standard tet input and editing features.

An NSTextView object is a corenient package of the most generally usefut te
handling features. If the features of the 8View class satisfy your applicatian’
requirements, you can skip to the section Wdided “Working with the Bxt-
Handling System: Basic Operations”. \Wever, if you need more programmatic
control over the characters and attiiies that mad up the tet, you'll have to learn
something about the object that stores this datagktStorage.

The Storage Layer: The NSTextStorage Class

An NSTextStorage object seeg as the data repository for a group af teandling
objects. The format for this data is calleddributed string which is an association
of characters (in Unicode encoding) and the aities (such as font, colgraragraph
style) that apply to them. ConceptuglBach character in axéhas associated with
it a dictionary of keys and \alues. A ley names an attrilite (say the font) and the
associatedalue specifies the characteristics of that attté(such as Heltica 12
point).

NSTextStorage

NSTextView

An NSTextView lets users &ct character attrilies through direct action: The user
selects some Xt and reduces the spacing between characters by choosing the
Tighten menu command. N&IStorage lets you operate on the atitiés of the tet

NSTextStorage

NSLayoutManager

NSTextContainer

NSTextView

programmatically: Wur code can run through thettéosening the &ning for all
characters of a certain font and sizeldarn more about the N&IStorage class, see
“Using NSTextStorage” belu.

The Complete System

The roster of objects that mealp the completextehandling system is relagly long,
so this section concentrates on the major players and only mentions the minor ones in
passing.

To control layout of tet on the screen or printed page, yoorkwvith the objects that
link the NSExtStorage repository to the N&tView that displays its contents. These
objects are of the NSLayoutManager and M8Tontainer classes.

An NSTextContainer object defines agien where t&t can be laid out. Jpically, an
NSTextContainer defines a rectangular ara#, lty creating a subclass of
NSTextContainer you can create other shapes: circles, pentagonsgolairshapes,
for example. NS&tContainer isrt'a usefinterface object, so it cardisplay agthing

or receve events from the kyboard or mouse. It simply describes an area that can be
filled with text. Nor does an NSaxtContainer store t&—that’s the job of
NSTextStorage.

An NSLayoutManager orchestrates the operation of the ottidrardling objects. It
intercedes in operations that eern the data in an N&XtStorage object to rendered
text in an NSExtView's display It also wersees the layout ofxewithin the areas
defined by NS&tContainer objects.dbetter understand the function of an
NSLayoutManager object, you need to understand tferelifce between characters
and glyphs.

Characters and Glyphs

Characters are conceptual entities that correspond to units of written language.
Examples of characters include the letters of the Roman alphabet, the Kanji ideographs
used in Japanese, and symbols that indicate mathematical operations. Characters are
represented as numbers in a compsit@emory or on disk, ancdcharacter encoding
defines the mapping between a numeriehlerand a specific charactésr example,

the ASCII and Unicode character encodings both assigrathe 97 (decimal) to the
character ‘a’. The OPENSTEP«tehandling system uses the Unicode character
encoding internallyalthough it can read and write other encodings on disk.

You can think of glyphas the rendered image of a charadthe words of this
sentence are made visible through glyphs. A collection of glyphs that share certain
graphic qualities is calledfant

The diference between a character and a glyphiismhediately apparent in English
since theres typically a one-to-one mapping between the.tut, in some Indic

Topics in OpenStep Programming

languages, fon@ample, a single character can map to more than one glyph. And, in
mary languages, teror more characters may be needed to specify a single gtyph. T
take a simple &le, the glyph ‘6’ can be the result of ncharacters, one
representing the base character ‘o’ and the other representing the diacritical mark .
A user of aword processor can stigkthe arrav key one time to mee the insertion

point from one side of the ‘0’ glyph to the otherpwer, the current position in the
character stream must be incremented loyttwaccount for the twcharacters that
male up the single glyph.

Thus, the tet system must managedwelated bt different streams of data: the
stream of characters (and their atitéds) and the stream of glyphs that arevéelri
from these characters. The N&fStorage object stores the atiiridd characters, and
the NSLayoutManager stores the dexil glyphs. Finding the correspondence
between these tastreams is another responsibility of the NSLayoutManager

For a given glyph the NSLayoutManager can find the corresponding character or
characters in the character stream. Similgity a given charactethe
NSLayoutManager can locate the associated glyph or glyphsx&mple, when a
user selects a range oktethe NSLayoutManager must determine which range of
characters corresponds to the selection.

When characters are deleted, some glyphs maytbabe rednan. For example, if

the user deletes the characters “ee” from thedwfeel”, the ‘f and ‘I' can be
represented by the ‘I’ lgture rather than the englyphs ‘f and ‘I'. The
NSLayoutManager has waglyphs generated as needed. Once the glyphs are
regenerated, thexémust be laid out and displayed. &g, the NSLayoutManager

is instrumental in this step.&kking with the NS&tContainer and other objects of

the text system, the NSLayoutManager determines where each glyph appears in the
NSTextView. Finally, the NSExtView renders the td.

Since an NSLayoutManager is central to the operation of thédedling system,
it also seres as the repository of information shared &fous components of the
system.

These are just some of the functions of an NSLayoutManager; others are discussed
in later sections.

Common Configurations

The following diagrams gie you an idea of koyou can configure objects of these
four classes—NSXktStorage, NSLayoutManagédSTextContainerand
NSTextView—to accomplish dierent text-handling goals.

To display a single flw of text, the objects are arrangeddikhis:

With one
NSTextView, all the
text flows within a
single, typically
rectangular, area.

The NSExtView provides the vier that displays the glyphs, and the N&Container
object defines an area within thatwieshere the glyphs are laid ouggically in this
configuration, the NS&tContainers \ertical dimension is declared to be some
extremely lage \alue so that the container can accommodataount of tet, while
the NSExtView is set to size itself around thexeusing theset\krticallyResizable:
method defined by NS&t, and gven a maximum height equal to the
NSTextContainers height. Then, with the NSktView embedded in an
NSScrollMew, the user can scroll to see aportion of this text.

If the NSTextContainers area is inset from the N&XtView's bounds, a main

appears around thexteThe NSLayoutManager object, and other objects not pictured
here, vork together to generate glyphs from the B&S$torages data and lay them out
within the area defined by the N&ftContainer

This configuration is limited by hang only one NSExtContaineNSTextView pair.
In such an arrangement, thextdlows uninterrupted within the area defined by the
NSTextContainerPage breaks, multi-column layout, and more comfagouts cart’
be accommodated by this arrangement.

By using multiple NS&tContainefNSTextView pairs, more compielayout
arrangements are possibleriexample, to support page breaks, an application can
configure the tet-handling objects lik this:

As text is added, it

fills the region
defined by the first

NSTextContainer A NSTextContainer.
i The text is displayed

in the NSTextView

" — e — that is paired with the
NSTextContainer.
When there’s no
NSTextStorage 7 NSLayoutManager more room, another
S ———— NSTextContainer

(and associated
NSTextView) is
added, and the text
NSTextView A flows onto the second
/ page.

NSTextContainer

Each NS&tContainefNSTextView pair corresponds to a page of the document. The
gray rectangle in the diagram al@orepresents a custom wi@bject that your
application preides as a background for the N&i#Views. This custom vie can be

Topics in OpenStep Programming

embedded in an NSScrolt to allov the user to scroll through the documgnt’
pages.

A multi-column document uses a similar configuration:

NSTextContainer

NSTextContainer NSTextView

NSTextContainer

NSTextContainer NSTextView

Instead of hang one NS&xtView-NSTextContainer pair correspond to a single
page, there are motwo pairs—one for each column on the page. Each
NSTextContainefNSTextView controls a portion of the document. As thd te
displayed, glyphs are first laid out in the top-lefiwi#/hen there is no more room
in that viev, the NSLayoutManager informs its dgdge that it has finished filling the
containerThe delgate can check whether thereiore tgt that needs to be laid out
and add another N&XtContainer and NS&tView. The NSLayoutManager
proceeds to lay outtein the nat containernotifies the defgate when finished, and
so on. Aguin, a custom vier (depicted as a gray rectangle) pides a cauas for
these t&t columns.

Not only can you hge multiple NSExtContainefNSTextView pairs, you can also
have multiple NSLayoutManagers accessing the sameStbrage. The simplest
arrangement looks lithis:

NSTextStorage

Multiple NSLayoutManagers allow
you to have multiple presentations
of the same text. The text within
each view can have

Multiple
NSLayoutManagers
allow you llﬁ
multiple presentations
of the same text. The
text within each view
can have separate
layouts and
selections.

The efect of this arrangement is tosgimultiple vievs on the samexe If the user
alters the tet in the top vigy, the change is immediately reflected in the bottonv vie
(assuming the location of the change is within the bottormwggbounds).

Finally, comple page layout requirements, such as permittirgteewrap around
embedded graphics, can be agbieby a configuration that uses a custom subclass of
NSTextContainerThis subclass defines gjien that adapts its shape to accommodate
the graphic image:

defines a region that

MyTextContainer 3 wraps around the
y embedded graphic.

A custom view is the
super view for each
of the NSTextViews.
It both arranges the
NSTextViews as

NSTextStorage NSLayoutManager

pages and it detects
when the
graphic has
. moved.
MyTextContainer N When a
) graphic is moved or
added, the text
container must adapt
its shape to
accommodate the
new placemen

Class Hierarchy of the Text-Handling System

You've seen the four principal classes in thettandling system, Ut there are a
number of auxiliary classes and protocols that evag the system. The diagrams
belaw give you a picture of the complete systewildwing the diagrams is a list of the
elements that han't been introduced saf (see the indidual class specifications for
more information).

Topics in OpenStep Programming

Text Handling Classes

Gray Components Are Not Primarily Text-Handling Classes

NSObject
<NSObject>

NSAttributedString —| NSMutableAttributedString —_— NSTextStorage
<NSCopying, NSMutableCopying>
NSLayoutManager
NSTextContainer
NSTextView
<NSTextinput>
NSText
NSResponder | NSView i <NSChangeSpelling,
NSIgnoreMisspelledWords>
NSCStringText
NSParagraphStyle —| NSMutableParagraphStyle
NSTextTab
<NSCopying>
NSCell —f NSTextAttachmentCell
<NSCopying, NSMutableCopying>
NSTextAttachment

Text Handling Protocols

NSTextAttachmentCell
<NSObject>

NSTextinput

* NSFileWrapper, NSTextAttachment, and NSTextAttachmentCell
* NSTextlnput protocol, NSInputManager, and NSInputServer

* NSParagraphStyle, NSMutableParagraphStyle, and NSTextTab

Summary

The text-handling systens’ architecture is both modular and layered, to enhance its
ease of use and Aibility . Its modular design reflects thedel-vigv-contoller

paradigm (originating with Smalltalk-80) where the data, its visual representation,
and the logic that links the tnare represented by separate objects. In the case of the
text-handling system, NS&ktStorage holds the modellata, NS&xtContainer and

NSTextView work together to present the wieand NSLayoutManager intercedes as
the controller to maksure that the data and its representation on screen stay in
agreement.

This factoring of responsibilities mak each component less dependent on the
implementation of the others and reakt easier to replace indiual components with
improved versions without haing to redesign the entire systemoTllustrate the
independence of thexéhandling components, consider some of the operations that
are possible using dérent subsets of the x¢-handling system:

« Using only an NST extStorage object, you can search text for specific
characters, strings, paragraph styles, and so on.

« Using only an NST extStorage object you can programmatically operate
on the text without incurring the overhead of laying it out for display .

= Using all the components of the text system except foran NST extView
object you can calculate layout information, determining where line
breaks occur, the total number of pages, etc.

The layering of the t&t-handling system reduces the amount youéo learn to
accomplish commonxéhandling tasks. Manapplications interact with this system
solely through the API of the N8XtView class.

The following sections xamine the tet-handling system from a practical point of
view, shaving you haev to work with the system to achie particular goals, starting
with the most basic.

Working with the Text-Handling System:
Basic Operations

Creating an NSTextView Object

All' applications use thexe-handling system, if only to display the titles attons and
other labels. Most applications ¥efar greater need of the system than that. This
section describes the most direetys of assembling the neirk of objects that mak
up that system.

Interface Builder and the Text-Handling System

The easiest ay to use the td-handling system is through the objects on Irdeef
Builder’s palettes. The control objects (NBfa and NSéxtField) provide objects that
are preconfigured for specific uses:

Topics in OpenStep Programming

NSTextField objects configured for editing
and for static text display. Use these for
stand-alone input fields and titles.

NSForm object. Use this for grouped,
titled input fields where tabbing between

fields is required.

Using Interfice Builders Inspector panel, you can set mat-related attrintes of
these controls. & example, you can specify whether thextén a text field is

selectable, editable, scrollable, and so on. The Inspector panel also lets you set the
text alignment and background and fgreund colors.

Interface Builder also pnades a scrolling tet view that supports the features of a
basic tet editor:

NSScrollView containing an NSTextView.
Use this object for memo fields, notepads,
and other text-editing purposes.

The NSScroll\few inspector in Interice Builder lets you specifiamong other
things, whether the contained N&tView allows multiple fonts and embedded
graphics.

Much more of NS&tView's functionality is accessible through menu commands.
Interface Builders Ralettes windw offers these ready-made menus that contatn te
related commands:

Cut = FontPanel... t AlignLeft |
Copy C Bold] Center =
Paste W [talic i &lign Right }
Paste &s I Underline Hide Ruler r
Link I Kern [Copy Ruler 1
Delete Ligature = Faste Ruler 2
Undo z Baseline I

Find I Colars...

Spelling... Copy Fant 3

Check spelling ; Paste Font 4

Select all a

By default, most of the commands in these menus operate firsthresponderthat

is, the viev within the ley window that the user has selected for input. (See the
NSRespondeNSMew, and NSVihdow class specifications for more information on
the first respondgrin practice, the first responder is the object shdisplaying the
selection, say a dnang object in the case of a graphical selection or anekiSTew

in the case of axéual selection. By adding these menus to your application, you can
offer the user access to nygoowerful text-editing features.

NSTextViews cooperate with the Servicegility through the Services menu, also
available from Interfice Builders Menus palette. By simply adding the Services menu
item to your applicatios’main menu, the N&XtViews in your application can access
services praided by other applicationsoFexample, if the user selects am within

an NSExtView and chooses the Define ireWéter service, the N&fView passes its
selected tet to the Webster application for look up.

Interface Builder ders these directays of accessing the features of thxé-t@andling
system. ¥6u can also configure yowva menu items or other controls within Inteé
Builder to send messages to an N&iView. For example, you can makan

NSTextView output its text for printing or faxing by sending it gorint: or fax:

message. Oneay to do this is to drag a menu item from Intede Builders Menu

palette into your applicatios’main menu and hook it up to an N&4&View (either

through the first responder or by direct connection). By specifying that the item send a
print: message to its @get, the NS&tView’'s contents can be printed axéd when

the application is run.

Creating an NSTextView Programmatically

At times, you may need to assemble thékandling system programmaticallou
can do this in either of twways: by creating an N&XtView object and letting it create
its network of supporting objects or byudlding the netvork of objects yourself. In
most cases, yolifind it sufficient to create an N&XtView object and let it create the
underlying netwrk of text-handling objects, as discussed in this section. If your

11

Topics in OpenStep Programming

12

application has comptdext-layout requirements, yduhave to create the nebsk
yourself; see “Assembling thesdt System by Hand” bele for information.

You create an NSXKtView object in the usual ay: by sending thalloc andinit...
messages. @n an NSWhdow object represented ayVindow, you can create an
NSTextView object in this vay:

/* determine the size for the NSTextView */
NSRect cFrame =[[aWindow contentView] frame];

/* create the NSTextView and add it to the window */
NSTextView *theTextView = [[NSTextView alloc] initWithFrame:cFrame];

[aWindow setContentView:theTextView];
[aWindow makeKeyAndOrderFront:nil];
[aWindow makeFirstResponder:theTextView];

This code determines the size for the N&TView's frame rectangle by asking
aWindow for the size of its content wie The NSExtView is then created and made
aWindow’s content viev usingsetContentMew:. Finally, the
makeKeyAndOrderFront: andmakeFirstResponder:messages display the
window and caus¢heTextView to prepare to accepigboard input.

NSTextView's initW ithFrame: method not only initializes the recgng
NSTextView object, it causes the object to create and interconnect the other
components of the -handling system. This is a ceanience that frees you from
having to create and interconnect them yourself. Since theXt\d&w created these
supporting objects, i responsible for releasing them whenytee no longer
needed. When yote done with the NS&tView, release it and it ta&s care of
releasing the other objects of thedehandling system. Note that thissmership
policy is only in effect if you let NSTextView create the components of thexte
handling system. See “Assembling tretTSystem by Hand” for more information
on object avnership when you create the components yourself.

Text Input and Output

The text-handling system prades a comenient inter&ce to the file system afling
you to read, displayand write files in these formats:

Format Description

Plain Text Characters unaccompanied by attribute information.

Rich Text Format (RTF) Character and attribute information expressed in the Rich Text
Format™ (RTF). See the Rich Text Format Specification by Microsoft
Corporation for more information.

Rich Text Format Directory (RTFD)
Character and attribute information expressed in the Rich Text Format
but stored in a directory along with the images and other attachments
that are embedded in the text.

Reading Text from a File

To read tet from a file, you hee to first determine format of thexteTo illustrate hav
this is done, consider an object of the custom class Contréll€ontroller object is
responsible for opening and closing files. It stores an &87iew and declares a
variable that records the format of thextéhat it reads in. Herg'the interace
declaration:

#import <AppKit/AppKit.h>

typedef enum _dataFormat {
Unknown =0,
PlainText=1,
RichText =2,
RTFD =3,

} DataFormat;

@interface Controller : NSObject
{

DataFormat theFormat;
NSTextView *theTextView;

}

- (void)openFile:(id)sender;
- (void)saveFile:(id)sender;
@end

Now, the Controller objec$ openFile: method can be implemented dikhis:

- (void)openFile:(id)sender
NSOpenPanel *panel = [NSOpenPanel openPanel];

if ([panel runModal] == NSOKButton) {
NSString *fileName = [panel filename];
if ([[fileName pathExtension] isEqualToString: @"rtfd"]) {
[theTextView readRTFDFromFile:fileName];
theFormat = RTFD,;

13

Topics in OpenStep Programming

14

}elseif([[fileName pathExtension]isEqualToString: @"rtf"]) {
NSData *rtfData =[NSData dataWithContentsOfFile:fileName];
[theTextViewreplaceRange:NSMakeRange(0, [[theTextView

string]
length]) withRTF:rtfData];
theFormat=RichText;

Yelse{

NSString *fileContents =[NSString
stringWithContentsOfFile:fileName];
[theTextView setString:fileContents range:NSMakeRange(0,
[[theTextView string] length])];
theFormat = PlainText;

}
}

return;

}

TheopenFile:method checks the file name returned by the Open panel for the
extensions “rtfd” or “rtf” and uses the appropriate means of loading data for each
type. Files haing ary other extension are loaded as plaindeNote that the
Controller object records the format of the loaded data irtliisFormat variable.
This information is used to determine Wwahe file should be s#d, as discussed in
the net section.

Writing Textto aFile

Depending on the format of an N&XtView's text, you use slightly diferent
approaches to write thexeto a file. For plain text, you extract the contents of the
NSTextView as an NSString object and use NSStrigg/rite T oFile:atomically:
method to write the data to diskTRtext is treated similarlyexcept that the contents
is extracted as an NSData object. Easiest of allisRdata, which the NS&ktView
itself knowvs haw to write to a file:

- (void)saveFile:(id)sender
NSSavePanel *panel = [NSSavePanel savePanel];

switch (theFormat) {
case PlainText:
[panel setRequiredFileType:@™;
if ([panel runModal] == NSOKButton) {
[[theTextView string] writeToFile:[panel filename]
atomically:YES];
}

break;
case RichText:
[panel setRequiredFileType:@"rtf'"];
if (Jpanel runModal] == NSOKButton) {
[[theTextView RTFFromRange:NSMakeRange(0, [[theTextView
string]
length])] writeToFile:[panel filename] atomically:YES];

break;

case RTFD:
[panel setRequiredFileType:@"rtfd"];
if ([panel runModal] == NSOKButton) {
[theTextView writeRTFDToFile:[panel filename]
atomically:YES];
}

break;

default:
NSRunAlertPanel(@"Save Error",
@"Couldn’t save file (unknown data format).\n", nil, nil,
nil);
break;

}

return;

}

Putting an NSTextView Object in an NSScrollView

A scrolling text view is commonly required in applications, and Ingeré Builder
provides an NS&xtView configured just for this purpose. Wever, at times you may
need to create a scrollingteriew programmaticallyso it's important to understand
how to proceed.

The process consists of three steps: setting up the NSSevglBétting up the
NSTextView, and assembling the pieces.

Assuming an object has thariabletheWindow that represents the wingavhere the
scrolling view is displayed, you can set up the NSScraé lik e this:

NSScrollView *scrollview = [[NSScrollView alloc]
initWithFrame:[[theWindow contentView] frame]];
NSSize contentSize = [scrollview contentSize];

[scrollview setBorderType:NSNoBorder];

[scrollview setHasVerticalScroller:YES];

[scrollview setHasHorizontalScroller:NOJ;

[scrollview setAutoresizingMask:NSViewWidthSizable |
NSViewHeightSizable];

Note that we create an NSScrolyv that completely ceers the content area of the
window it' s displayed in. Vi also specify agrtical scroll bar lnt no horizontal scroll
bar, since this scrolling tet view wraps text within the horizontal &tent of the
NSTextView, but lets text flow beyond the \ertical extent of the NSExtView.

Finally, we set hav the NSScroll\few reacts when the winde it’ s displayed in
changes size. By turning on the N&MWidthSizable and NSewHeightSizable bits
of its resizing mask, we ensure that the NSSci@l\grons and shrinks to match the
window’s dimensions.

The net step is to create and configure an 8View to fit in the NSScrollNéew:

15

Topics in OpenStep Programming

theTextView = [[NSTextView alloc] initWithFrame:NSMakeRect(0, 0,
contentSize.width, contentSize.height)];

[theTextView setMinSize:NSMakeSize(0.0, contentSize.height)];

[theTextView setMaxSize:NSMakeSize(le7, 1e7)];

[theTextView setVerticallyResizable:YES];

[theTextView setHorizontallyResizable:NOJ;

[theTextView setAutoresizingMask:NSViewWidthSizable];

[[theTextView textContainer] setContainerSize:contentSize];
[[theTextView textContainer] setWidthTracksTextView:YES];

We specify that the NSXtView’'s width and height initially match those of the
content area of the NSScroléw. ThesetMinSize: message tells the N&IView
that it can get arbitrarily small in widthybno smaller than its initial height. The
setMaxSize:message alles the receier to grav arbitrarily big in either dimension.
These limits are used by the NSLayoutManager when it resizes thextMBW to
fit the text laid out.

The net three messages determinevtthe NSExtView's dimensions change in
response to additions or deletions af t.nd to changes in the scrollwis size. The
NSTextView is set to grav vertically as tet is added lot not horizontallylts’s
resizing mask is set to aleit to change width in response to changes in its
superviav’'s width. Since, gcept for the minimum and maximurnelues, the
NSTextView's height is determined by the amount &f tehas in it, we dor’let its
height change with that of its supervie

The last message in this step is to the &&Jontainernot the NS&tView. It tells
the NSExtContainer to resize its width according to the width of the B&Wiew.
Recall that the t¢-handling system lays outdeaccording to the dimensions stored
in NSTextContainer objects. An NSXktView provides a place for the ¥t to be
displayed, bt its dimensions and those of its NS{TContainer can be quite tifent.
ThesetWidthTracksTextView:YES message ensures that as the E8View is
resized, the dimensions stored in its N&IContainer are lilkewise resized, causing
the text to be laid out within the nev boundaries.

The last step is to assemble and display the pieces:

[scrollview setDocumentView:theTextView];
[theWindow setContentView:scrollview];
[theWindow makeKeyAndOrderFront:nil];
[theWindow makeFirstResponder:theTextView];

Working with the Text-Handling System:
Intermediate Operations

The previous section discussed basic operations that can be implemented using the
NSTextView and NSTextContainer classes. This sectiormores those classes in

greater depth and brings in the other major classes oixtHeatedling system,
shaving you hav to use them to accomplishnious goals.

Changing Character Attributes

Interface Builders Font and &t menus der mary standard commands for altering
text attributes: Bold, Superscript, Centand so on. Theseork by invoking standard
action methods, such akangefont:, superscript:, andalignCenter:, that efect a
specific change in one step. Buthdo you define and implementmeommands?

Let’s say that you ant to define a command that emphasizes the selext@iteme
way. For example, using Integfce Buildeyyou wish to add a menu command that
sends armphasize Ext: message, perhaps to a custom object theitsoan
NSTextView. The custom object then sets the font in the B&View.

In doing so, the custom object carvake ary NSTextView method that changes
attributes, it it must first ask for permission to do so and inform theext¥Tew that
changes are occurring so that the M&View can batch them together and send out
the appropriate notifications to obsers. Gven this, and assuming the custom object
has an instanceaviable (nametheTextView) that identifies the NSKtView

containing the selection, you can implementehghasizeExt: method lile this:

- (void)emphasizeText:(id)sender

NSRange changeCharRange = [theTextView
rangeForUserCharacterAttributeChange];

if ([theTextView shouldChangeTextinRange:changeCharRange
replacementString:nil]) {
[theTextStore beginEditing];

[myTextView setFont:[NSFont fontWithName: @"Helvetica-Oblique"
size:12.0] range:changeCharRange];

[theTextStore endEditing];
[theTextView didChangeText];

}

return;

}

The custom object gets the range of the selectédrnd then applies awdont to that

range. It then determines the range of characters that should be changed, and proceeds
to attempt the changeo™o so it ivokes

shouldChangeExtinRange:replacementString; which gves the NS&tView's

delegate a chance to reject the change. If the change isvaegdptbis method sets the

font of the characters being changed, betiok the change witheginEditing and

endEditing messages that allcthe NSExtView to optimize multiple changes

17

Topics in OpenStep Programming

(though only one change is made here). Findilg method imokes
didChangeText to send out the appropriate dgltee message and notifications.

This implementation sentsgtFont:range: message to the N&&View to efect its
change. NSaxtView defines othesimilar methods to set some common attiés
(such as font, te color, and alignment). These are ‘@ methods that hide the
work of invoking the NS&tStorage methods that actually modify the attréal
string. If you want to set attribtes other than those accessible through the
NSTextView API, you hae to interact more intimately with the N&XStorage
object.

Fortunately working with NSextStorage is quite straightfoewd. For example, a
reimplemente@mphasize Ext: method that acts on the underlying gBtorage
object looks lile this:

- (void)emphasizeText:(id)sender

NSTextStorage *theTextStore = [theTextView textStorage];
NSRange changeCharRange = [theTextView
rangeForUserCharacterAttributeChange];

if (changeCharRange.location == NSNotFound) return;

if (theTextView shouldChangeTextinRange:changeCharRange
replacementString:nil]) {
[theTextStore beginEditing];

[theTextStore addAttribute:NSFontAttributeName
value:[NSFontfontWithName: @"Helvetica-Oblique"size:12.0]
range:changeCharRange];

[theTextStore endEditing];
[theTextViewdidChangeText];
}

return;

}

Except forinteracting with the NS&xtStorage instead of the NS&tView, this
implementationisidentical to the first one, asking for permission to mathe
change, and informing the NS&ktView as things proceed.

Regarding the change itself: An NS&tStorage object storesxgattributesin
dictionaries (see the NSDictionary class specification for more information). Each
range of characters that share the same atiitiss conceptually share a dictionary
Within the dictionary attributes are identified by a ky which has an associated
value. Inthe preceding implementation @mphasizext:, the attribute we add to
the selected tetis identified by the globally scoped ley NSFontAttributeName
whosealue is setto the NSBnt object representing the Heética-Oblique type
face.

Perhaps setting the font to an oblique angle dopswide enough emphasis, so you
decide to additionally ha& the tet dravn in blue on a red backgroundolycan

accomplish this by sending &wnoreaddAttrib uteValue:range: messages, in which

case théeginEditing andendEditing messages are required, and not merely good
coding practice. Hoever, since you plan to use this set of atités repeatedly better

idea is to create a dictionary containing this set. This dictionary defines a style that you
can use repeatedly:

NSDictionary *emphasisAttributes = [NSDictionary
dictionaryWithObjectsAndKeys:
[NSColor blueColor],NSForegroundColorAttributeName,
[NSColor redColor], NSBackgroundColorAttributeName,
[NSFont fontWithName: @"Helvetica-Oblique" size:12.0],
NSFontAttributeName, nil];

- (void)emphasizeText:(id)sender

NSTextStorage *theTextStore = [theTextView textStorage];
NSRange changeCharRange = [theTextView
rangeForUserCharacterAttributeChange];

if (changeCharRange.location == NSNotFound) return;

if ([theTextView shouldChangeTextiInRange:changeCharRange
replacementString:nil]) {
[theTextStore beginEditing];

[theTextStore addAttributes:emphasisAttributes
range:changeCharRange];

[theTextStore endEditing];
[theTextView didChangeText];

}

return;

Note the use of thaddAttrib utes:range:method. This method is similar to the
addAttrib ute:range: method, bt applies a dictionary of attries rather than a single
attribute. With either method, an added attrie replaces arxisting one. Ibr example,

if the foreground color is set to green and you theolke theemphasize Ext: method
above, the nev value of the forground color is blue. Of course, this is the correct
behaior and is a result of storing attutes in a dictionaryhere a gien key can hae
only one alue.

Assembling the Text System by Hand

You huild the netvork of objects that makup the t&t-handling system from the
bottom up, starting with the N&XtStorage object. Herethe process:

1. Set up an NSéxtStorage object.

19

Topics in OpenStep Programming

You create an NS&ktStorage object in the normablw using thealloc and
init... messages. In the simplest case, where ther@initial contents for
the NSExtStorage, the initialization looks likthis

textStorage = [[NSTextStorage alloc] init];

If, on the other hand, you ant to initialize an NS&tStorage object with
rich text data from a file, the initialization looks léthis (assume
fileNameis defined):

NSAttributedString *attrString = [NSAttributedString
attributedStringFromRTF:[NSData
dataWithContentsOfFile:fileName]];

textStorage = [[NSTextStorage alloc]
initWithAttributedString:attrString];

We've assumed thaéxtStorageis an instanceariable of the object that
contains this method. When you create theé-teandling system by hand,
you need to kep a reference only to the N&TStorage object as wee
done here. The other objects of the system aveeml either directly or
indirectly by this NSExtStorage object, as ydusee in the ngt steps.

2. Set up an NSLayoutManager object:
Next, create an NSLayoutManager object:

NSLayoutManager *layoutManager;

layoutManager = [[NSLayoutManager alloc] init];
[textStorage addLayoutManager:layoutManager];
[layoutManager release];

Note thatlayoutManager is released after being addedtéxtStorage

This is because the N&IStorage object retains each NSLayoutManager
that's added to it—that is, the N8&Storage objeawnsits
NSLayoutManagers.

The NSLayoutManager needs a number of supporting objects—such as
those that help it generate glyphs or position ¥éthin a text container—

for its operation. It automatically creates these objects (or connects to
existing ones) upon initialization.od only need to connect the
NSLayoutManager to the N8XtStorage object and to the
NSTextContainer object, as seen in thetngtep.

3. Set up an NS&xtContainer object.

Next, create an NSXtContainer and initialize it with a size. Assume that
theWindow is defined and represents the wiwdhat displays the xé view.

NSRect cFrame = [[theWindow contentView] frame];
NSTextContainer *container;

container = [[NSTextContainer alloc]

initwithContainerSize:cFrame.size];
[layoutManager addTextContainer:container];
[container release];

Once yowe created the N&XtContaineryou add it to the list of containers
that the NSLayoutManagemms, and then you release it. The
NSLayoutManager ne owns the NS&tContainer and is responsible for
releasing it when i no longer needed. If your application has multiple
NSTextContainers, you can create them and add them at this time.

4. Set up an NSaxtView object.
Finally, create the NS&xtView (or NSTextViews) that displays the

NSTextView *textView = [[NSTextView alloc]
initWithFrame:cFrame textContainer:container];

[theWindow setContentView:textView];
[theWindow makeKeyAndOrderFront:nil];

[textView release];

Note that we us@itW ithFrame:textContainer: to initialize the

NSTextView. This initialization method does nothing more than what it says:
initialize the receier and set its t& containerThis is in contrast to

initW ithFrame:, as discussed in “Creating an N&iView

Programmatically” abee, which not only initializes the reger, but creates
and interconnects the netvk of objects that makup the tet-handling

system. Once the N8XtView has been initialized, #'added to the windg
which is then displayed. Finallyou release the N&XtView.

Note that in creating the te-handling netwrk by hand, we created four objectstb
then released three asyhveere added to the netwk. e are left with a reference only
to the NS&xtStorage object. The N&XtView is retained by both its N&ftContainer
and its supervie, though; to fully destrg this group of text objects you must send
removeFromSuperiew to the NSTextView object and then release the
NSTextStorage object.

An NSTextStorage object is conceptually thevoer of ary network of text-handling
objects, no matter he complex. When you release the N&XtStorage object, it

21

Topics in OpenStep Programming

22

releases its NSLayoutManagers, which release theietiSdntainers, which in
turn release their N&XtViews.

\ NSLayoutManager)

release
release

NSTextStorage b

MyTextContainer

MyTextContainer .
release MyTextContainer -
NSLayoutManager) o

- release =T
MyTextContainer release

However, recall that the t¢ system implements a simplifiedioership polig for
those whose only interaction with the system is through thextt&&w class. See
“Creating an NS&tView Programmatically” abge for more information.

release
release

release

release
release

@
release
@

]

The code in the four steps aleooserlooks an important issue: resizing. As the
window is resized, does thexdaenrap within the ne boundaries? What happens
when theres more t&t than fits within the content weof the NSWhdow? For
information on these subjects, see the “Controlling the Size of thexNg&dw” and
“Putting an NS'ExtView Object in an NSScrolliéw” sections.

