
1

The OPENSTEP Text System

Note: This document hasn’t been fully updated from an earlier version. A number of
minor changes have occurred to the text system API that may render some
explanations, illustrations, and code samples inaccurate. See the reference
documentation and release notes for more information.

The text-handling component of any application framework presents one of the
greatest challenges to framework designers. Even the most basic text-handling system
must be relatively sophisticated, allowing for text input, layout, display, editing,
copying and pasting, and many other features. But these days developers and users
commonly expect even more than these basic features, requiring their simple editors to
support multiple fonts, various paragraph styles, embedded images, spell checking,
and other features.

A framework that provides these more advanced text-handling features may be
adequate for today’s programming needs but falls far short when measured against the
requirements that are emerging from our ever more interconnected computing world:
support for the character sets of the world’s living languages, powerful layout
capabilities to handle various text directionality and nonrectangular text containers,
and sophisticated typesetting capabilities including control of kerning and ligatures.

The OPENSTEP text-handling system is designed to provide all these capabilities
without requiring you to learn about or interact with more of the system than is required
to meet the needs of your application. It does this by providing a layering of classes, as
described in the next section. The sections that follow the architectural overview give
you practical examples of how to work with the text-handling system.

Architectural Overview
You can think of the text-handling system as having three distinct layers of API. For
most typical uses, the general-purpose programmatic interface of the NSTextView
class is all you need to learn. If you need more flexible programmatic access to the text,
you’ll need to learn about the storage layer and the NSTextStorage class. And, of
course, to access all the available features, you can learn about and interact with any of
the classes that support the text-handling system. The following discussion presents
these three layers.

The User-Interface Layer: The NSTextView Class
The vast majority of applications interact with the text-handling system through one
class: NSTextView. An NSTextView object provides a rich set of text-handling features
and can:

Topics in OpenStep Programming

2

• Display text in various fonts, colors, and paragraph styles

• Display images

• Read text and images from (and write them to) disk or the pasteboard

• Let users control text attributes such as font, super- and subscripting,
kerning, and the use of ligatures

• Cooperate with other views to enable scrolling and display of the ruler

• Cooperate with the Font and Spell Check panels.

• Support various key bindings, such as those used in Emacs

The interface that this class declares (and inherits from its superclass NSText) lets
you programmatically:

• Control the size of the area in which text is displayed

• Control the editability and selectability of the text

• Select and act on portions of the text

NSTextView objects are used throughout the OPENSTEP user interface to provide
standard text input and editing features.

An NSTextView object is a convenient package of the most generally useful text-
handling features. If the features of the NSTextView class satisfy your application’s
requirements, you can skip to the section below titled “Working with the Text-
Handling System: Basic Operations”. However, if you need more programmatic
control over the characters and attributes that make up the text, you’ll have to learn
something about the object that stores this data, NSTextStorage.

The Storage Layer: The NSTextStorage Class
An NSTextStorage object serves as the data repository for a group of text handling
objects. The format for this data is called an attributed string, which is an association
of characters (in Unicode encoding) and the attributes (such as font, color, paragraph
style) that apply to them. Conceptually, each character in a text has associated with
it a dictionary of keys and values. A key names an attribute (say the font) and the
associated value specifies the characteristics of that attribute (such as Helvetica 12
point).

An NSTextView lets users affect character attributes through direct action: The user
selects some text and reduces the spacing between characters by choosing the
Tighten menu command. NSTextStorage lets you operate on the attributes of the text

NSTextView

NSTextView

NSTextStorage

3

programmatically: Your code can run through the text loosening the kerning for all
characters of a certain font and size. To learn more about the NSTextStorage class, see
“Using NSTextStorage” below.

The Complete System
The roster of objects that make up the complete text-handling system is relatively long,
so this section concentrates on the major players and only mentions the minor ones in
passing.

To control layout of text on the screen or printed page, you work with the objects that
link the NSTextStorage repository to the NSTextView that displays its contents. These
objects are of the NSLayoutManager and NSTextContainer classes.

An NSTextContainer object defines a region where text can be laid out. Typically, an
NSTextContainer defines a rectangular area, but by creating a subclass of
NSTextContainer you can create other shapes: circles, pentagons, or irregular shapes,
for example. NSTextContainer isn’t a user-interface object, so it can’t display anything
or receive events from the keyboard or mouse. It simply describes an area that can be
filled with text. Nor does an NSTextContainer store text—that’s the job of
NSTextStorage.

An NSLayoutManager orchestrates the operation of the other text handling objects. It
intercedes in operations that convert the data in an NSTextStorage object to rendered
text in an NSTextView’s display. It also oversees the layout of text within the areas
defined by NSTextContainer objects. To better understand the function of an
NSLayoutManager object, you need to understand the difference between characters
and glyphs.

Characters and Glyphs

Characters are conceptual entities that correspond to units of written language.
Examples of characters include the letters of the Roman alphabet, the Kanji ideographs
used in Japanese, and symbols that indicate mathematical operations. Characters are
represented as numbers in a computer’s memory or on disk, and a character encoding
defines the mapping between a numerical value and a specific character. For example,
the ASCII and Unicode character encodings both assign the value 97 (decimal) to the
character ‘a’. The OPENSTEP text-handling system uses the Unicode character
encoding internally, although it can read and write other encodings on disk.

You can think of a glyph as the rendered image of a character. The words of this
sentence are made visible through glyphs. A collection of glyphs that share certain
graphic qualities is called a font.

The difference between a character and a glyph isn’t immediately apparent in English
since there’s typically a one-to-one mapping between the two. But, in some Indic

NSTextView

NSTextStorage

NSLayoutManager

NSTextContainer

Topics in OpenStep Programming

4

languages, for example, a single character can map to more than one glyph. And, in
many languages, two or more characters may be needed to specify a single glyph. To
take a simple example, the glyph ‘ö’ can be the result of two characters, one
representing the base character ‘o’ and the other representing the diacritical mark ‘¨’.
A user of a word processor can strike the arrow key one time to move the insertion
point from one side of the ‘ö’ glyph to the other; however, the current position in the
character stream must be incremented by two to account for the two characters that
make up the single glyph.

Thus, the text system must manage two related but different streams of data: the
stream of characters (and their attributes) and the stream of glyphs that are derived
from these characters. The NSTextStorage object stores the attributed characters, and
the NSLayoutManager stores the derived glyphs. Finding the correspondence
between these two streams is another responsibility of the NSLayoutManager.

For a given glyph the NSLayoutManager can find the corresponding character or
characters in the character stream. Similarly, for a given character, the
NSLayoutManager can locate the associated glyph or glyphs. For example, when a
user selects a range of text, the NSLayoutManager must determine which range of
characters corresponds to the selection.

When characters are deleted, some glyphs may have to be redrawn. For example, if
the user deletes the characters “ee” from the word “feel”, the ‘f’ and ‘l’ can be
represented by the ‘fl’ ligature rather than the two glyphs ‘f’ and ‘l’. The
NSLayoutManager has new glyphs generated as needed. Once the glyphs are
regenerated, the text must be laid out and displayed. Again, the NSLayoutManager
is instrumental in this step. Working with the NSTextContainer and other objects of
the text system, the NSLayoutManager determines where each glyph appears in the
NSTextView. Finally, the NSTextView renders the text.

Since an NSLayoutManager is central to the operation of the text-handling system,
it also serves as the repository of information shared by various components of the
system.

These are just some of the functions of an NSLayoutManager; others are discussed
in later sections.

Common Configurations

The following diagrams give you an idea of how you can configure objects of these
four classes—NSTextStorage, NSLayoutManager, NSTextContainer, and
NSTextView—to accomplish different text-handling goals.

To display a single flow of text, the objects are arranged like this:

5

The NSTextView provides the view that displays the glyphs, and the NSTextContainer
object defines an area within that view where the glyphs are laid out. Typically in this
configuration, the NSTextContainer’s vertical dimension is declared to be some
extremely large value so that the container can accommodate any amount of text, while
the NSTextView is set to size itself around the text using the setVerticallyResizable:
method defined by NSText, and given a maximum height equal to the
NSTextContainer’s height. Then, with the NSTextView embedded in an
NSScrollView, the user can scroll to see any portion of this text.

If the NSTextContainer’s area is inset from the NSTextView’s bounds, a margin
appears around the text. The NSLayoutManager object, and other objects not pictured
here, work together to generate glyphs from the NSTextStorage’s data and lay them out
within the area defined by the NSTextContainer.

This configuration is limited by having only one NSTextContainer-NSTextView pair.
In such an arrangement, the text flows uninterrupted within the area defined by the
NSTextContainer. Page breaks, multi-column layout, and more complex layouts can’t
be accommodated by this arrangement.

By using multiple NSTextContainer-NSTextView pairs, more complex layout
arrangements are possible. For example, to support page breaks, an application can
configure the text-handling objects like this:

Each NSTextContainer-NSTextView pair corresponds to a page of the document. The
gray rectangle in the diagram above represents a custom view object that your
application provides as a background for the NSTextViews. This custom view can be

NSTextStorage NSLayoutManager NSTextContainer NSTextView

With one
NSTextView, all the
text flows within a
single, typically
rectangular, area.

NSTextStorage NSLayoutManager

NSTextContainer NSTextView

NSTextContainer NSTextView

As text is added, it
fills the region
defined by the first
NSTextContainer.
The text is displayed
in the NSTextView
that is paired with the
NSTextContainer.
When there’s no
more room, another

NSTextContainer
(and associated
NSTextView) is
added, and the text
flows onto the second
page.

Topics in OpenStep Programming

6

embedded in an NSScrollView to allow the user to scroll through the document’s
pages.

A multi-column document uses a similar configuration:

Instead of having one NSTextView-NSTextContainer pair correspond to a single
page, there are now two pairs—one for each column on the page. Each
NSTextContainer-NSTextView controls a portion of the document. As the text is
displayed, glyphs are first laid out in the top-left view. When there is no more room
in that view, the NSLayoutManager informs its delegate that it has finished filling the
container. The delegate can check whether there’s more text that needs to be laid out
and add another NSTextContainer and NSTextView. The NSLayoutManager
proceeds to lay out text in the next container, notifies the delegate when finished, and
so on. Again, a custom view (depicted as a gray rectangle) provides a canvas for
these text columns.

Not only can you have multiple NSTextContainer-NSTextView pairs, you can also
have multiple NSLayoutManagers accessing the same NSTextStorage. The simplest
arrangement looks like this:

The effect of this arrangement is to give multiple views on the same text. If the user
alters the text in the top view, the change is immediately reflected in the bottom view
(assuming the location of the change is within the bottom view’s bounds).

NSTextStorage NSLayoutManager

NSTextContainer NSTextView

NSTextContainer NSTextView

such as in
paginated
documents
having
multiple
columns.

As a
column
fills with

With
multiple
text views
and
containers
text can
flow in
more
complex
layouts,

NSTextContainer NSTextView

NSTextContainer NSTextView

such as in
paginated
documents
having
multiple
columns.

As a
column
fills with

text, a new
column is
added.
When the
second
column on
the page is
filled, a
new page
is added.

NSTextStorage

NSLayoutManager

NSLayoutManager

NSTextViewNSTextContainer

NSTextViewNSTextContainer

Multiple NSLayoutManagers allow
you to have multiple presentations
of the same text. The text within
each view can have separate
layouts.

Multiple
NSLayoutManagers
allow you to have
multiple presentations
of the same text. The
text within each view
can have separate
layouts and
selections.

separate

have

7

Finally, complex page layout requirements, such as permitting text to wrap around
embedded graphics, can be achieved by a configuration that uses a custom subclass of
NSTextContainer. This subclass defines a region that adapts its shape to accommodate
the graphic image:

Class Hierarchy of the Text-Handling System

You’ve seen the four principal classes in the text-handling system, but there are a
number of auxiliary classes and protocols that make up the system. The diagrams
below give you a picture of the complete system. Following the diagrams is a list of the
elements that haven’t been introduced so far (see the individual class specifications for
more information).

NSTextStorage NSLayoutManager

MyTextContainer NSTextView

MyTextContainer NSTextView

As asThe text
asdfacontainer
defines a region that
wraps around the
embedded graphic.
A custom view is the
super view for each
of the NSTextViews.
It both arranges the
NSTextViews as
pages

pages and it detects
when the
graphic has
moved.
When a
graphic is moved or
added, the text
container must adapt
its shape to
accommodate the
new placement.

Topics in OpenStep Programming

8

• NSFileWrapper, NSTextAttachment, and NSTextAttachmentCell

• NSTextInput protocol, NSInputManager, and NSInputServer

• NSParagraphStyle, NSMutableParagraphStyle, and NSTextTab

Summary
The text-handling system’s architecture is both modular and layered, to enhance its
ease of use and flexibility. Its modular design reflects the model-view-controller
paradigm (originating with Smalltalk-80) where the data, its visual representation,
and the logic that links the two are represented by separate objects. In the case of the
text-handling system, NSTextStorage holds the model’s data, NSTextContainer and

NSText
<NSChangeSpelling,

NSIgnoreMisspelledWords>

NSObject
<NSObject>

NSMutableAttributedString NSTextStorage

NSMutableParagraphStyle

NSTextContainer

NSAttributedString
<NSCopying, NSMutableCopying>

NSCell
<NSCopying, NSMutableCopying>

NSTextAttachment

NSParagraphStyle

NSTextTab
<NSCopying>

NSTextAttachmentCell

NSTextView
<NSTextInput>

NSViewNSResponder

NSLayoutManager

NSCStringText

Text Handling Classes
Gray Components Are Not Primarily Text-Handling Classes

NSTextInput

NSTextAttachmentCell
<NSObject>

Text Handling Protocols

9

NSTextView work together to present the view, and NSLayoutManager intercedes as
the controller to make sure that the data and its representation on screen stay in
agreement.

This factoring of responsibilities makes each component less dependent on the
implementation of the others and makes it easier to replace individual components with
improved versions without having to redesign the entire system. To illustrate the
independence of the text-handling components, consider some of the operations that
are possible using different subsets of the text-handling system:

• Using only an NSTextStorage object, you can search text for specific
characters, strings, paragraph styles, and so on.

• Using only an NSTextStorage object you can programmatically operate
on the text without incurring the overhead of laying it out for display .

• Using all the components of the text system except for an NST extView
object you can calculate layout information, determining where line
breaks occur, the total number of pages, etc.

The layering of the text-handling system reduces the amount you have to learn to
accomplish common text-handling tasks. Many applications interact with this system
solely through the API of the NSTextView class.

The following sections examine the text-handling system from a practical point of
view, showing you how to work with the system to achieve particular goals, starting
with the most basic.

Working with the Text-Handling System:
Basic Operations

Creating an NSTextView Object
All applications use the text-handling system, if only to display the titles of buttons and
other labels. Most applications have far greater need of the system than that. This
section describes the most direct ways of assembling the network of objects that make
up that system.

Interface Builder and the Text-Handling System

The easiest way to use the text-handling system is through the objects on Interface
Builder’s palettes. The control objects (NSForm and NSTextField) provide objects that
are preconfigured for specific uses:

Topics in OpenStep Programming

10

Using Interface Builder’s Inspector panel, you can set many text-related attributes of
these controls. For example, you can specify whether the text in a text field is
selectable, editable, scrollable, and so on. The Inspector panel also lets you set the
text alignment and background and foreground colors.

Interface Builder also provides a scrolling text view that supports the features of a
basic text editor:

The NSScrollView inspector in Interface Builder lets you specify, among other
things, whether the contained NSTextView allows multiple fonts and embedded
graphics.

Much more of NSTextView’s functionality is accessible through menu commands.
Interface Builder’s Palettes window offers these ready-made menus that contain text-
related commands:

NSForm object. Use this for grouped,
titled input fields where tabbing between
fields is required.

NSTextField objects configured for editing
and for static text display. Use these for
stand-alone input fields and titles.

NSScrollView containing an NSTextView.
Use this object for memo fields, notepads,
and other text-editing purposes.

11

By default, most of the commands in these menus operate on the first responder, that
is, the view within the key window that the user has selected for input. (See the
NSResponder, NSView, and NSWindow class specifications for more information on
the first responder.) In practice, the first responder is the object that’s displaying the
selection, say a drawing object in the case of a graphical selection or an NSTextView
in the case of a textual selection. By adding these menus to your application, you can
offer the user access to many powerful text-editing features.

NSTextViews cooperate with the Services facility through the Services menu, also
available from Interface Builder’s Menus palette. By simply adding the Services menu
item to your application’s main menu, the NSTextViews in your application can access
services provided by other applications. For example, if the user selects a word within
an NSTextView and chooses the Define in Webster service, the NSTextView passes its
selected text to the Webster application for look up.

Interface Builder offers these direct ways of accessing the features of the text-handling
system. You can also configure your own menu items or other controls within Interface
Builder to send messages to an NSTextView. For example, you can make an
NSTextView output its text for printing or faxing by sending it a print: or fax:
message. One way to do this is to drag a menu item from Interface Builder’s Menu
palette into your application’s main menu and hook it up to an NSTextView (either
through the first responder or by direct connection). By specifying that the item send a
print: message to its target, the NSTextView’s contents can be printed or faxed when
the application is run.

Creating an NSTextView Programmatically

At times, you may need to assemble the text-handling system programmatically. You
can do this in either of two ways: by creating an NSTextView object and letting it create
its network of supporting objects or by building the network of objects yourself. In
most cases, you’ll find it sufficient to create an NSTextView object and let it create the
underlying network of text-handling objects, as discussed in this section. If your

Topics in OpenStep Programming

12

application has complex text-layout requirements, you’ll have to create the network
yourself; see “Assembling the Text System by Hand” below for information.

You create an NSTextView object in the usual way: by sending the alloc and init...
messages. Given an NSWindow object represented by aWindow, you can create an
NSTextView object in this way:

/* determine the size for the NSTextView */
NSRect cFrame =[[aWindow contentView] frame];

/* create the NSTextView and add it to the window */
NSTextView *theTextView = [[NSTextView alloc] initWithFrame:cFrame];

[aWindow setContentView:theTextView];
[aWindow makeKeyAndOrderFront:nil];
[aWindow makeFirstResponder:theTextView];

This code determines the size for the NSTextView’s frame rectangle by asking
aWindow for the size of its content view. The NSTextView is then created and made
aWindow’s content view using setContentView:. Finally, the
makeKeyAndOrderFront: and makeFirstResponder: messages display the
window and cause theTextView to prepare to accept keyboard input.

NSTextView’s initW ithFrame: method not only initializes the receiving
NSTextView object, it causes the object to create and interconnect the other
components of the text-handling system. This is a convenience that frees you from
having to create and interconnect them yourself. Since the NSTextView created these
supporting objects, it’s responsible for releasing them when they are no longer
needed. When you’re done with the NSTextView, release it and it takes care of
releasing the other objects of the text-handling system. Note that this ownership
policy is only in effect if you let NSTextView create the components of the text-
handling system. See “Assembling the Text System by Hand” for more information
on object ownership when you create the components yourself.

Text Input and Output
The text-handling system provides a convenient interface to the file system allowing
you to read, display, and write files in these formats:

13

Format Description

Plain Text Characters unaccompanied by attribute information.

Rich Text Format (RTF) Character and attribute information expressed in the Rich Text
Format (RTF). See the Rich Text Format Specification by Microsoft
Corporation for more information.

Rich Text Format Directory (RTFD)
Character and attribute information expressed in the Rich Text Format
but stored in a directory along with the images and other attachments
that are embedded in the text.

Reading Text from a File

To read text from a file, you have to first determine format of the text. To illustrate how
this is done, consider an object of the custom class Controller. A Controller object is
responsible for opening and closing files. It stores an NSTextView and declares a
variable that records the format of the text that it reads in. Here’s the interface
declaration:

#import <AppKit/AppKit.h>

typedef enum _dataFormat {
 Unknown = 0,
 PlainText = 1,
 RichText = 2,
 RTFD = 3,
} DataFormat;

@interface Controller : NSObject
{
 DataFormat theFormat;
 NSTextView *theTextView;
}

- (void)openFile:(id)sender;
- (void)saveFile:(id)sender;
@end

Now, the Controller object’s openFile: method can be implemented like this:

- (void)openFile:(id)sender
{
 NSOpenPanel *panel = [NSOpenPanel openPanel];

 if ([panel runModal] == NSOKButton) {
 NSString *fileName = [panel filename];
 if ([[fileName pathExtension] isEqualToString:@"rtfd"]) {
 [theTextView readRTFDFromFile:fileName];
 theFormat = RTFD;

Topics in OpenStep Programming

14

 } else if([[fileName pathExtension] isEqualToString:@"rtf"]) {
 NSData *rtfData = [NSData dataWithContentsOfFile:fileName];
 [theTextView replaceRange:NSMakeRange(0, [[theTextView
string]
 length]) withRTF:rtfData];
 theFormat = RichText;
 } else {

 NSString *fileContents = [NSString
 stringWithContentsOfFile:fileName];
 [theTextView setString:fileContents range:NSMakeRange(0,
 [[theTextView string] length])];
 theFormat = PlainText;
 }
 }
 return;
}

The openFile: method checks the file name returned by the Open panel for the
extensions “rtfd” or “rtf” and uses the appropriate means of loading data for each
type. Files having any other extension are loaded as plain text. Note that the
Controller object records the format of the loaded data in its theFormat variable.
This information is used to determine how the file should be saved, as discussed in
the next section.

Writing Text to a File

Depending on the format of an NSTextView’s text, you use slightly different
approaches to write the text to a file. For plain text, you extract the contents of the
NSTextView as an NSString object and use NSString’s writeToFile:atomically:
method to write the data to disk. RTF text is treated similarly, except that the contents
is extracted as an NSData object. Easiest of all is RTFD data, which the NSTextView
itself knows how to write to a file:

- (void)saveFile:(id)sender
{
 NSSavePanel *panel = [NSSavePanel savePanel];

 switch (theFormat) {
 case PlainText:
 [panel setRequiredFileType:@""];
 if ([panel runModal] == NSOKButton) {
 [[theTextView string] writeToFile:[panel filename]
 atomically:YES];
 }
 break;

 case RichText:
 [panel setRequiredFileType:@"rtf"];
 if ([panel runModal] == NSOKButton) {
 [[theTextView RTFFromRange:NSMakeRange(0, [[theTextView
string]
 length])] writeToFile:[panel filename] atomically:YES];
 }
 break;

15

 case RTFD:
 [panel setRequiredFileType:@"rtfd"];
 if ([panel runModal] == NSOKButton) {
 [theTextView writeRTFDToFile:[panel filename]
atomically:YES];
 }
 break;

 default:
 NSRunAlertPanel(@"Save Error",

 @"Couldn’t save file (unknown data format).\n", nil, nil,
nil);
 break;
 }
 return;
}

Putting an NSTextView Object in an NSScrollView
A scrolling text view is commonly required in applications, and Interface Builder
provides an NSTextView configured just for this purpose. However, at times you may
need to create a scrolling text view programmatically, so it’s important to understand
how to proceed.

The process consists of three steps: setting up the NSScrollView, setting up the
NSTextView, and assembling the pieces.

Assuming an object has the variable theWindow that represents the window where the
scrolling view is displayed, you can set up the NSScrollView like this:

NSScrollView *scrollview = [[NSScrollView alloc]
 initWithFrame:[[theWindow contentView] frame]];
NSSize contentSize = [scrollview contentSize];

[scrollview setBorderType:NSNoBorder];
[scrollview setHasVerticalScroller:YES];
[scrollview setHasHorizontalScroller:NO];
[scrollview setAutoresizingMask:NSViewWidthSizable |
 NSViewHeightSizable];

Note that we create an NSScrollView that completely covers the content area of the
window it’ s displayed in. We also specify a vertical scroll bar but no horizontal scroll
bar, since this scrolling text view wraps text within the horizontal extent of the
NSTextView, but lets text flow beyond the vertical extent of the NSTextView.

Finally, we set how the NSScrollView reacts when the window it’ s displayed in
changes size. By turning on the NSViewWidthSizable and NSViewHeightSizable bits
of its resizing mask, we ensure that the NSScrollView grows and shrinks to match the
window’s dimensions.

The next step is to create and configure an NSTextView to fit in the NSScrollView:

Topics in OpenStep Programming

16

theTextView = [[NSTextView alloc] initWithFrame:NSMakeRect(0, 0,
 contentSize.width, contentSize.height)];
[theTextView setMinSize:NSMakeSize(0.0, contentSize.height)];
[theTextView setMaxSize:NSMakeSize(1e7, 1e7)];
[theTextView setVerticallyResizable:YES];
[theTextView setHorizontallyResizable:NO];
[theTextView setAutoresizingMask:NSViewWidthSizable];

[[theTextView textContainer] setContainerSize:contentSize];
[[theTextView textContainer] setWidthTracksTextView:YES];

We specify that the NSTextView’s width and height initially match those of the
content area of the NSScrollView. The setMinSize: message tells the NSTextView
that it can get arbitrarily small in width, but no smaller than its initial height. The
setMaxSize: message allows the receiver to grow arbitrarily big in either dimension.
These limits are used by the NSLayoutManager when it resizes the NSTextView to
fit the text laid out.

The next three messages determine how the NSTextView’s dimensions change in
response to additions or deletions of text and to changes in the scroll view’s size. The
NSTextView is set to grow vertically as text is added but not horizontally. Its’s
resizing mask is set to allow it to change width in response to changes in its
superview’s width. Since, except for the minimum and maximum values, the
NSTextView’s height is determined by the amount of text it has in it, we don’t let its
height change with that of its superview.

The last message in this step is to the NSTextContainer, not the NSTextView. It tells
the NSTextContainer to resize its width according to the width of the NSTextView.
Recall that the text-handling system lays out text according to the dimensions stored
in NSTextContainer objects. An NSTextView provides a place for the text to be
displayed, but its dimensions and those of its NSTextContainer can be quite different.
The setWidthTracksTextView:YES message ensures that as the NSTextView is
resized, the dimensions stored in its NSTextContainer are likewise resized, causing
the text to be laid out within the new boundaries.

The last step is to assemble and display the pieces:

[scrollview setDocumentView:theTextView];
[theWindow setContentView:scrollview];
[theWindow makeKeyAndOrderFront:nil];
[theWindow makeFirstResponder:theTextView];

Working with the Text-Handling System:
Intermediate Operations
The previous section discussed basic operations that can be implemented using the
NSTextView and NSTextContainer classes. This section explores those classes in

17

greater depth and brings in the other major classes of the text-handling system,
showing you how to use them to accomplish various goals.

Changing Character Attributes
Interface Builder’s Font and Text menus offer many standard commands for altering
text attributes: Bold, Superscript, Center, and so on. These work by invoking standard
action methods, such as changeFont:, superscript:, and alignCenter:, that effect a
specific change in one step. But how do you define and implement new commands?

Let’s say that you want to define a command that emphasizes the selected text in some
way. For example, using Interface Builder, you wish to add a menu command that
sends an emphasizeText: message, perhaps to a custom object that owns an
NSTextView. The custom object then sets the font in the NSTextView.

In doing so, the custom object can invoke any NSTextView method that changes
attributes, but it must first ask for permission to do so and inform the NSTextView that
changes are occurring so that the NSTextView can batch them together and send out
the appropriate notifications to observers. Given this, and assuming the custom object
has an instance variable (named theTextView) that identifies the NSTextView
containing the selection, you can implement the emphasizeText: method like this:

- (void)emphasizeText:(id)sender
{
 NSRange changeCharRange = [theTextView
 rangeForUserCharacterAttributeChange];

 if ([theTextView shouldChangeTextInRange:changeCharRange
 replacementString:nil]) {
 [theTextStore beginEditing];

 [myTextView setFont:[NSFont fontWithName:@"Helvetica-Oblique"
 size:12.0] range:changeCharRange];

 [theTextStore endEditing];
 [theTextView didChangeText];
 }

 return;
}

The custom object gets the range of the selected text and then applies a new font to that
range. It then determines the range of characters that should be changed, and proceeds
to attempt the change. To do so it invokes
shouldChangeTextInRange:replacementString:, which gives the NSTextView’s
delegate a chance to reject the change. If the change is approved, this method sets the
font of the characters being changed, bracketing the change with beginEditing and
endEditing messages that allow the NSTextView to optimize multiple changes

Topics in OpenStep Programming

18

(though only one change is made here). Finally, this method invokes
didChangeText to send out the appropriate delegate message and notifications.

This implementation sent a setFont:range: message to the NSTextView to effect its
change. NSTextView defines other, similar, methods to set some common attributes
(such as font, text color, and alignment). These are “cover” methods that hide the
work of invoking the NSTextStorage methods that actually modify the attributed
string. If you want to set attributes other than those accessible through the
NSTextView API, you have to interact more intimately with the NSTextStorage
object.

Fortunately, working with NSTextStorage is quite straightforward. For example, a
reimplemented emphasizeText: method that acts on the underlying NSTextStorage
object looks like this:

- (void)emphasizeText:(id)sender
{
 NSTextStorage *theTextStore = [theTextView textStorage];
 NSRange changeCharRange = [theTextView
 rangeForUserCharacterAttributeChange];

 if (changeCharRange.location == NSNotFound) return;

 if ([theTextView shouldChangeTextInRange:changeCharRange
 replacementString:nil]) {
 [theTextStore beginEditing];

 [theTextStore addAttribute:NSFontAttributeName
 value:[NSFont fontWithName:@"Helvetica-Oblique" size:12.0]
 range:changeCharRange];

 [theTextStore endEditing];
 [theTextView didChangeText];
 }

 return;
}

Except for interacting with the NSTextStorage instead of the NSTextView, this
implementation is identical to the first one, asking for permission to make the
change, and informing the NSTextView as things proceed.

Regarding the change itself: An NSTextStorage object stores text attributes in
dictionaries (see the NSDictionary class specification for more information). Each
range of characters that share the same attributes conceptually share a dictionary.
Within the dictionary, attributes are identified by a key which has an associated
value. In the preceding implementation of emphasizeText:, the attribute we add to
the selected text is identified by the globally scoped key NSFontAttributeName
whose value is set to the NSFont object representing the Helvetica-Oblique type
face.

19

Perhaps setting the font to an oblique angle doesn’t provide enough emphasis, so you
decide to additionally have the text drawn in blue on a red background. You can
accomplish this by sending two more addAttrib uteValue:range: messages, in which
case the beginEditing and endEditing messages are required, and not merely good
coding practice. However, since you plan to use this set of attributes repeatedly, a better
idea is to create a dictionary containing this set. This dictionary defines a style that you
can use repeatedly:

NSDictionary *emphasisAttributes = [NSDictionary
 dictionaryWithObjectsAndKeys:
 [NSColor blueColor],NSForegroundColorAttributeName,
 [NSColor redColor], NSBackgroundColorAttributeName,
 [NSFont fontWithName:@"Helvetica-Oblique" size:12.0],
 NSFontAttributeName, nil];

- (void)emphasizeText:(id)sender
{
 NSTextStorage *theTextStore = [theTextView textStorage];
 NSRange changeCharRange = [theTextView
 rangeForUserCharacterAttributeChange];

 if (changeCharRange.location == NSNotFound) return;

 if ([theTextView shouldChangeTextInRange:changeCharRange
 replacementString:nil]) {
 [theTextStore beginEditing];

 [theTextStore addAttributes:emphasisAttributes
 range:changeCharRange];

 [theTextStore endEditing];
 [theTextView didChangeText];
 }
 return;

Note the use of the addAttrib utes:range: method. This method is similar to the
addAttrib ute:range: method, but applies a dictionary of attributes rather than a single
attribute. With either method, an added attribute replaces an existing one. For example,
if the foreground color is set to green and you then invoke the emphasizeText: method
above, the new value of the foreground color is blue. Of course, this is the correct
behavior and is a result of storing attributes in a dictionary, where a given key can have
only one value.

Assembling the Text System by Hand
You build the network of objects that make up the text-handling system from the
bottom up, starting with the NSTextStorage object. Here’s the process:

1. Set up an NSTextStorage object.

Topics in OpenStep Programming

20

You create an NSTextStorage object in the normal way, using the alloc and
init... messages. In the simplest case, where there’s no initial contents for
the NSTextStorage, the initialization looks like this

textStorage = [[NSTextStorage alloc] init];

If, on the other hand, you want to initialize an NSTextStorage object with
rich text data from a file, the initialization looks like this (assume
fileName is defined):

NSAttributedString *attrString = [NSAttributedString
 attributedStringFromRTF:[NSData
dataWithContentsOfFile:fileName]];

textStorage = [[NSTextStorage alloc]
 initWithAttributedString:attrString];

We’ve assumed that textStorage is an instance variable of the object that
contains this method. When you create the text-handling system by hand,
you need to keep a reference only to the NSTextStorage object as we’ve
done here. The other objects of the system are owned either directly or
indirectly by this NSTextStorage object, as you’ll see in the next steps.

2. Set up an NSLayoutManager object:

Next, create an NSLayoutManager object:

NSLayoutManager *layoutManager;

layoutManager = [[NSLayoutManager alloc] init];
[textStorage addLayoutManager:layoutManager];
[layoutManager release];

Note that layoutManager is released after being added to textStorage.
This is because the NSTextStorage object retains each NSLayoutManager
that’s added to it—that is, the NSTextStorage object owns its
NSLayoutManagers.

The NSLayoutManager needs a number of supporting objects—such as
those that help it generate glyphs or position text within a text container—
for its operation. It automatically creates these objects (or connects to
existing ones) upon initialization. You only need to connect the
NSLayoutManager to the NSTextStorage object and to the
NSTextContainer object, as seen in the next step.

3. Set up an NSTextContainer object.

21

Next, create an NSTextContainer and initialize it with a size. Assume that
theWindow is defined and represents the window that displays the text view.

NSRect cFrame = [[theWindow contentView] frame];

NSTextContainer *container;

container = [[NSTextContainer alloc]
 initWithContainerSize:cFrame.size];
[layoutManager addTextContainer:container];
[container release];

Once you’ve created the NSTextContainer, you add it to the list of containers
that the NSLayoutManager owns, and then you release it. The
NSLayoutManager now owns the NSTextContainer and is responsible for
releasing it when it’s no longer needed. If your application has multiple
NSTextContainers, you can create them and add them at this time.

4. Set up an NSTextView object.

Finally, create the NSTextView (or NSTextViews) that displays the text:

NSTextView *textView = [[NSTextView alloc]
 initWithFrame:cFrame textContainer:container];

[theWindow setContentView:textView];
[theWindow makeKeyAndOrderFront:nil];

[textView release];

Note that we use initW ithFrame:textContainer: to initialize the
NSTextView. This initialization method does nothing more than what it says:
initialize the receiver and set its text container. This is in contrast to
initW ithFrame: , as discussed in “Creating an NSTextView
Programmatically” above, which not only initializes the receiver, but creates
and interconnects the network of objects that make up the text-handling
system. Once the NSTextView has been initialized, it’s added to the window,
which is then displayed. Finally, you release the NSTextView.

Note that in creating the text-handling network by hand, we created four objects but
then released three as they were added to the network. We are left with a reference only
to the NSTextStorage object. The NSTextView is retained by both its NSTextContainer
and its superview, though; to fully destroy this group of text objects you must send
removeFromSuperview to the NSTextView object and then release the
NSTextStorage object.

An NSTextStorage object is conceptually the owner of any network of text-handling
objects, no matter how complex. When you release the NSTextStorage object, it

Topics in OpenStep Programming

22

releases its NSLayoutManagers, which release their NSTextContainers, which in
turn release their NSTextViews.

However, recall that the text system implements a simplified ownership policy for
those whose only interaction with the system is through the NSTextView class. See
“Creating an NSTextView Programmatically” above for more information.

The code in the four steps above overlooks an important issue: resizing. As the
window is resized, does the text rewrap within the new boundaries? What happens
when there’s more text than fits within the content view of the NSWindow? For
information on these subjects, see the “Controlling the Size of the NSTextView” and
“Putting an NSTextView Object in an NSScrollView” sections.

NSTextStorage

NSLayoutManager

MyTextContainer NSTextView

release

release
release

MyTextContainer NSTextViewrelease

release

NSLayoutManager

MyTextContainer NSTextView

release

release

MyTextContainer NSTextViewrelease

release

release

release

