
1

Class Clusters

The Foundation Framework’s architecture makes extensive use of class clusters. Class
clusters group a number of private, concrete subclasses under a public, abstract
superclass. The grouping of classes in this way simplifies the publicly visible
architecture of an object-oriented framework without reducing its functional richness.

Simple Concept, Complex Interface
To illustrate the class cluster architecture and its benefits, consider the problem of
constructing a class hierarchy that defines objects to store numbers of different types
(chars, ints, floats, doubles). Since numbers of different types have many features in
common (they can be converted from one type to another and can be represented as
strings, for example), they could be represented by a single class. However, their
storage requirements differ, so it’s inefficient to represent them all by the same class.
This suggests the following architecture:

Figure 1-1. A Simple Hierarchy for Number Classes

Number is the abstract superclass that declares in its methods the operations common
to its subclasses. However, it doesn’t declare an instance variable to store a number.
The subclasses declare such instance variables and share in the programmatic interface
declared by Number.

So far, this design is relatively simple. However, if the commonly used modifications
of these basic C types are taken into account, the diagram looks more like this:

Figure 1-2. A More Complete Number Class Hierarchy

Number

Char Int Float Double

Number

Char UnsignedChar Short UnsignedShort Int UnsignedInt LongInt

Topics in OpenStep Programming

2

The simple concept—creating a class to hold number values—can easily burgeon to
over a dozen classes. The class cluster architecture presents a design that reflects the
simplicity of the concept.

Simple Concept, Simple Interface
Applying the class cluster design to this problem yields the following hierarchy
(private classes are in gray):

Figure 1-3. Class Cluster Architecture Applied to Number Classes

Users of this hierarchy see only one public class, Number, so how is it possible to
allocate instances of the proper subclass? The answer is in the way the abstract
superclass handles instantiation.

Creating Instances
The abstract superclass in a class cluster must declare methods for creating instances
of its private subclasses. It’s the superclass’s responsibility to dispense an object of
the proper subclass based on the creation method that you invoke—you don’t, and
can’t, choose the class of the instance.

In the Foundation Framework, you generally create an object by invoking a
+ className... method or the alloc... and init... methods. Taking the Foundation
Framework’s NSNumber class as an example, you could send these messages to
create number objects:

NSNumber *aChar = [NSNumber numberWithChar:’a’];

NSNumber *anInt = [NSNumber numberWithInt:1];

NSNumber *aFloat = [NSNumber numberWithFloat:1.0];

NSNumber *aDouble = [NSNumber numberWithDouble:1.0];

(This style of instantiation creates objects that will be deallocated automatically—
See “Object Ownership and Automatic Disposal” for more information. Many
classes also provide the standard alloc... and init... methods to create objects that
require you to manage their deallocation.)

Each object returned—aChar, anInt, aFloat, and aDouble—may belong to a
different private subclass (and in fact does). Although each object’s class

Number

Char UnsignedChar Short UnsignedShort Int UnsignedInt LongInt

3

membership is hidden, its interface is public, being the interface declared by the
abstract superclass, NSNumber. Although it is not precisely correct, it’s convenient to
consider the aChar, anInt, aFloat, and aDouble objects to be instances of the
NSNumber class, since they’re created by NSNumber class methods and accessed
through instance method declared by NSNumber.

Class Clusters With Multiple Public Superclasses
In the example above, one abstract public class declares the interface for multiple
private subclasses. This is a class cluster in the purest sense. It’s also possible, and often
desirable, to have two (or possibly more) abstract public classes that declare the
interface for the cluster. This is evident in the Foundation Framework, which includes
these clusters:

Class Cluster Public Superclasses

NSData NSData
NSMutableData

NSArray NSArray
NSMutableArray

NSDictionary NSDictionary
NSMutableDictionary

NSString NSString
NSMutableString

Other clusters of this type also exist, but these clearly illustrate how two abstract nodes
cooperate in declaring the programmatic interface to a class cluster. In each of these
clusters, one public node declares methods that all cluster objects can respond to, and
the other node declares methods that are only appropriate for cluster objects that allow
their contents to be modified.

This factoring of the cluster’s interface helps make an object-oriented framework’s
programmatic interface more expressive. For example, imagine a Book object that
declares this method:

- (NSString *) title ;

The book object could return its own instance variable or create a new string object and
return that—it doesn’t matter. It’s clear from this declaration that the returned string
can’t be modified. Any attempt to modify the returned object will elicit a compiler
warning.

Topics in OpenStep Programming

4

Creating Subclasses Within a Class Cluster
The class cluster architecture involves a trade-off between simplicity and
extensibility: Having a few public classes stand in for a multitude of private ones
makes it easier to learn and use the classes in a framework but somewhat harder to
create subclasses within any of the clusters. However, if it’ s rarely necessary to create
a subclass, then the cluster architecture is clearly beneficial. Clusters are used in the
Foundation Framework in just these situations.

If you find that a cluster doesn’t provide the functionality your program needs, then
a subclass may be in order. For example, imagine that you want to create an array
object whose storage is file-based rather than memory-based, as in the NSArray class
cluster. Since you are changing the underlying storage mechanism of the class, you’d
have to create a subclass.

On the other hand, in some cases it might be sufficient (and easier) to define a class
that embeds within it an object from the cluster. Let’s say that your program needs
to be alerted whenever some data is modified. In this case, creating a simple cover
for a data object that the Foundation Framework defines may be the best approach.
An object of this class could intervene in messages that modify the data, intercepting
the messages, acting on them, and then forwarding them to the embedded data
object.

In summary, if you need to manage your object’s storage, create a true subclass.
Otherwise, create a composite object, one that embeds a standard Foundation
Framework object in an object of your own design. The sections below give more
detail on these two approaches.

A True Subclass
A new class that you create within a class cluster must:

• Be a subclass of the cluster’ s abstract superclass

• Declare its own storage

• Override the superclass’s primitive methods (described below)

Since the cluster’s abstract superclass is the only publicly visible node in the cluster’s
hierarchy, the first point is obvious. This implies that the new subclass will inherit the
cluster’s interface but no instance variables, since the abstract superclass declares
none. Thus the second point: The subclass must declare any instance variables it
needs. Finally, the subclass must override any method it inherits that directly
accesses an object’s instance variables. Such methods are called primitive methods.

5

A class’s primitive methods form the basis for its interface. For example, take the
NSArray class, which declares the interface to objects that manage arrays of objects.
In concept, an array stores a number of data items, each of which is accessible by index.
NSArray expresses this abstract notion through its two primitive methods, count and
objectAtIndex: . With these methods as a base, other methods—derived methods—
can be implemented, for example:

Derived Method Possible Implementation

lastObject Find the last object by sending the array object this message: [self
objectAtIndex:[self count] –1].

containsObject: Find an object by repeatedly sending the array object an
objectAtIndex: message, each time incrementing the index until all
objects in the array have been tested.

The division of an interface between primitive and derived methods makes creating
subclasses easier. Your subclass must override inherited primitives, but having done so
can be sure that all derived methods that it inherits will operate properly.

The primitive-derived distinction applies to the interface of a fully initialized object.
The question of how init... methods should be handled in a subclass also needs to be
addressed.

In general, a cluster’s abstract superclass declares a number of init... and + className
methods. As described in “Creating Instances” above, the abstract class decides which
concrete subclass to instantiate based your choice of init... or + className method.
You can consider that the abstract class declares these methods for the convenience of
the subclass. Since the abstract class has no instance variables, it has no need of
initialization methods.

Your subclass should declare its own init... (if it needs to initialize its instance
variables) and possibly + className methods. It should not rely on any of those that it
inherits. To maintain its link in the initialization chain, it should invoke its superclass’s
designated initializer within its own designated initializer method. (See the Object-
Oriented Programming and the Objective-C Language manual for a discussion of the
designated initializers.) Within a class cluster, the designated initializer of the abstract
superclass is always init .

True Subclasses: An Example
An example will help clarify the foregoing discussion. Let’s say that you want to create
a subclass of NSArray, named MonthArray, that returns the name of a month given its
index position. However, a MonthArray object won’t actually store the array of month
names as an instance variable. Instead, the method that returns a name given an index

Topics in OpenStep Programming

6

position (objectAtIndex:) will return constant strings. Thus, only twelve string
objects will be allocated, no matter how many MonthArray objects exist in an
application.

The MonthArray class is declared as:

#import <foundation/foundation.h>

@interface MonthArray : NSArray

{

}

+ monthArray;

- (unsigned)count;

- objectAtIndex:(unsigned)index;

@end

Note that the MonthArray class doesn’t declare an init... method since it has no
instance variables to initialize. The count and objectAtIndex: methods simply
cover the inherited primitive methods, as described above.

The implementation of the MonthArray class looks like this:

#import "MonthArray.h"

@implementation MonthArray

static MonthArray *sharedMonthArray = nil;

static NSString *months[] = { @"January", @"February", @"March",
 @"April", @"May", @"June", @"July", @"August", @"September",
 @"October", @"November", @"December" };

+ monthArray

{
if (!sharedMonthArray) {

sharedMonthArray = [[MonthArray alloc] init];
}

 return sharedMonthArray;

}

- (unsigned)count
{
 return 12;
}

- objectAtIndex:(unsigned)index
{

 if (index >= [self count])

7

 [NSException raise:NSRangeException format:@"***%s: index
 (%d) beyond bounds (%d)", sel_getName(_cmd), index,
 [self count] - 1];

 else

 return months[index];

}

@end

Since MonthArray overrides the inherited primitive methods, the derived methods that
it inherits will work properly without being overridden. NSArray’s lastObject,
containsObject:, sortedArrayUsingSelector:, objectEnumerator, and other
methods work without problems for MonthArray objects.

A Composite Object
By embedding a private cluster object in an object of your own design, you create a
composite object. This composite object can rely on the cluster object for its basic
functionality, only intercepting messages that it wants to handle in some particular way.
Using this approach reduces the amount of code you must write and lets you take
advantage of the tested code provided by the Foundation Framework.

A composite object can be viewed in this way:

Figure 1-4. Embedding a Cluster Object

The composite object must declare itself to be a subclass of the cluster’s abstract node.
As a subclass, it must override the superclass’s primitive methods. It can also override
derived methods, but this isn’t necessary since the derived methods work through the
primitive ones.

Using NSArray’s count method as an example, the intervening object’s
implementation of a method it overrides can be as simple as:

- (unsigned)count

{

 return [embeddedObject count];

}

composite object

embedded
object

primitive methods

- setIvar:

- ivar:messages to and
from other objects

Topics in OpenStep Programming

8

However, your object could put code for its own purposes in the implementation of
any method it overrides.

A Composite Object: An Example
To illustrate the use of a composite object, imagine you want a mutable array object
that tests changes against some validation criteria before allowing any modification
to the array’s contents. The example that follows describes a class called
ValidatingArray, which contains a standard mutable array object. ValidatingArray
overrides all of the primitive methods declared in its superclasses, NSArray and
NSMutableArray. It also declares the array, validatingArray , and init methods,
which can be used to create and initialize an instance:

#import <foundation/foundation.h>

@interface ValidatingArray : NSMutableArray

{

 NSMutableArray *embeddedArray;

}

+ validatingArray;

- init;

- (unsigned)count;

- objectAtIndex:(unsigned)index;

- (void)addObject:object;

- (void)replaceObjectAtIndex:(unsigned)index withObject:object;

- (void)removeLastObject;

- (void)insertObject:object atIndex:(unsigned)index;

- (void)removeObjectAtIndex:(unsigned)index;

@end

The implementation file shows how, in a ValidatingArray’s init method, the
embedded object is created and assigned to the embeddedArray variable. Messages
that simply access the array but don’t modify its contents are relayed to the
embedded object. Messages that could change the contents are scrutinized (here in
pseudo-code) and relayed only if they pass the hypothetical validation test.

#import "ValidatingArray.h"

@implementation ValidatingArray

- init

{

 embeddedArray = [[NSMutableArray allocWithZone:[self zone]]
init];

 return self;

}

9

+ validatingArray

{

 return [[[self alloc] init] autorelease];

}

- (unsigned)count

{

 return [embeddedArray count];

}

- objectAtIndex:(unsigned)index

{

 return [embeddedArray objectAtIndex:index];

}

- (void)addObject:object

{

 if (/* modification is valid */) {

 [embeddedArray addObject:object];

 }

}

- (void)replaceObjectAtIndex:(unsigned)index withObject:object;

{

 if (/* modification is valid */) {

 [embeddedArray replaceObjectAtIndex:index withObject:object];

 }

}

- (void)removeLastObject;

{

 if (/* modification is valid */) {

 [embeddedArray removeLastObject];

 }

}

- (void)insertObject:object atIndex:(unsigned)index;

{

 if (/* modification is valid */) {

 [embeddedArray insertObject:object atIndex:index];

 }

}

- (void)removeObjectAtIndex:(unsigned)index;

{

 if (/* modification is valid */) {

 [embeddedArray removeObjectAtIndex:index];

 }

}

Topics in OpenStep Programming

10

