
186

Type part name here:

When we build, let us think that we build for ever.
John Ruskin

Well building hath three Conditions: Commodity, Firmness,
and Delight.

Sir Henry Wotton, Elements of Architecture

Burrow awhile and build, broad on the roots of things.
Robert Browning, Abt Vogler

Building the program

Building for multiple
architectures

Building on a remote computer

Using build targets

Creating your own build
targets

Setting search paths

Setting compiler and linker
options

Creating a precompiled
header

Customizing your makefiles

Building and Debugging

Building

9

Chapter 9 Building

187

Building the program

When you build a program in Project Builder, you are really invoking the make
utility to create an executable. The make utility invokes the compiler and linker
using information from the project makefile.

Before the build begins, Project Builder prompts you to save any unsaved
source files, nib files, or the project itself. In this way, Project Builder ensures
that you are always building the latest version of the project.

If the build fails because of link errors, look in the bottom browser for more
information.The bottom browser shows the exact compiler and linker
commands being executed, and it shows all messages produced by these
commands. If the Project Build panel appears to only have one browser, drag the
split view knob up until you can see the bottom browser.

1 Click the Build button to bring up
the Project Build panel.

2 In the Project Build panel, click
the Build button to start the build.

Click this button or choose
Build Panel from the Tools menu.

Click here to start the build.

Click an error or warning message
in the Project Build panel to go to
the source of the message.

Before you build, you might want
to set specific build options for
the project or modify its
makefiles. The rest of this
chapter describes these tasks.

If the build fails because of link
errors, chances are you aren’t
linking against the correct library
or framework. See “Some
OPENSTEP Libraries” in this
chapter.

Building the program

188

All About make and gnumake

make is a standard command-line program that builds programs.
Its main purpose is to make it easy for you to perform incremental
builds. Project Builder uses gnumake, a version of make written
by the Free Software Foundation.

A make Terminology Primer

You tell make how to build a program by creating a makefile. A
makefile consists of rules, which in turn are made up of build
targets, a list of dependencies, and one or more commands.

Build targets are the targets of the make command, that is, what
you want to build. In Project Builder, there are several provided
targets that build the project in different ways. The default is to
build an optimized, debuggable executable. You can select a
different target to turn optimizations off, to generate profiling
information, and to install the project in its end location. (One
special target is clean, which removes all object files and
executables, forcing a full build the next time around.)

Dependencies are the input files used to create the target. For
example, an executable depends on the object files linked
together to create it. When make is asked to build an executable,
it checks all object files listed as dependencies. If the object file is
out of date or does not exist yet, it creates that object file by
compiling the source file. Once all object files listed as
dependencies are created and are up-to-date, make can link
them together to create the executable.

Commands are the commands used to create the target. For
example, to create an application, you need to specify commands
that compile all of the source code files into object files, link the
object files into an executable, create the application’s wrapper
directory, and copy the executable and the application’s
resources into that directory.

A makefile can also contain macros, which make it easier to write
consistent makefile rules. Makefile macros serve the same
purpose as #define macros in a C program. They make it easier to
update the makefile. For example, you can define a macro
CFLAGS to be all of the flags you usually pass to the Objective-C
compiler and use it everywhere you specify a compile command.
Then, if you want to change one of these options, you only need
to change it in one place, in the definition of CFLAGS.

If you need to update makefiles at all in Project Builder, you
usually only need to redefine some provided macros. If you want
to, you can also create your own targets. This chapter describes
how to perform these tasks.

gnumake

gnumake, from the Free Software Foundation, is now the default
make utility for OPENSTEP. gnumake has many features that
aren’t available in other make utilities.

Some of the unique things you can do if you use gnumake are:

• Perform parallel compiles so that your project builds faster.

• Use conditional statements in a rule. You can use this feature
to specify in a single rule different compiler arguments based
on which type of compiler you are using. In other make utilities,
you would have to define two different rules.

• Use a standard set of functions to manipulate strings and
filenames used in the makefile. For example, gnumake
provides functions that return a specified file’s extension, its
basename, and its directory.

• Define a macro based on its own previous definition. For
example, gnumake allows you to say ‘CFLAGS := $(CFLAGS) -O’
which assigns to the macro CFLAGS its previous definition with
-O appended to it.

• Define a macro that contains a newline using the define
directive.

• Use MAKELEVEL to keep track of recursive use of make.

• Declare a phony target with .PHONY.

• Specify a search path for included makefiles and specify extra
makefiles to be read with an environment variable.

• Use vpath to specify a search path for files with a particular
extension.

• Use a special search mechanism for libraries by specifying
-lname as a dependency. This causes gnumake to search for
the library in the VPATH, then in vpath, then in /lib, /usr/lib, and
/usr/local/lib.

For More Information

A number of books describe make in general terms. If you need to
learn more about gnumake, see the document “GNU Make”
provided by the Free Software Foundation.

Chapter 9 Building

189

Building for multiple architectures

Usually when you build, you create an executable that runs only on the type of
computer you used. If you build on an Intel computer, the executable will run
only on Intel computers. If you want the executable to run on more than one
type of computer, you need to set this up in the Build Options panel. You can
build executables for any architecture that OPENSTEP currently supports:
Intel, NeXT, and SPARC. You must have the libraries for that architecture
installed on your computer.

1 Click the Build button to bring up
the Project Build panel.

2 In the Project Build panel, click
the check-mark button.

3 In the Build Options panel, select
the architectures you want to
build for.

Click this button.

Click to check each architecture
that you want the resulting
executable to run on.

Portability Do’s and Don’ts

If you build multiple architecture (“fat”)
binaries or you build code on one
architecture to run on another, make sure
you’re writing portable code. If you use the
OpenStep libraries and avoid hard-wired
data values, your application will probably be
portable. Here’s a list of some specific do’s
and don’ts for writing portable code.

• Do use relative values when positioning
windows on the screen. Don’t use
absolute positions.

• Do use the NSEvent characters method to
find out what key was pressed. Don’t use
keyCode.

• Do use sizeof when passing the size value
to malloc(). Don’t use a constant.

• Do refer to a structure’s fields and a
function’s parameters by name. Don’t try
to deconstruct data formats, such as float
or struct, or a function’s argument list
yourself.

• Do use the OpenStep objects NSData,
NSString, and NSDictionary to read and
write external data. Don’t rely on a
particular byte order or alignment when
reading and writing external data.

Building for multiple architectures

190

Building a Multiple Architecture (“Fat”) Binary

The following sequence of events occurs when you build a fat
binary:

• Each source file is compiled once for each architecture to
produce thin object files.

The object files are stored in subdirectories under
dynamic_obj (or dynamic_debug_obj) that are named for the
processor. For example, if you build for both Intel and NeXT,
there are two directories under dynamic_obj: i386, containing
object files for Intel, and m68k, containing object files for NeXT.

• After all of the source files have been compiled, the linker is
invoked once for each architecture to produce thin
executables.

Each executable has an extension that describes the type of
processor it runs on, for example, MyProject.m68k.

• After an executable has been built for each processor, the lipo
command is invoked to combine the executables into one
binary file named MyProject.

lipo

ld
ld

cc
 cc
 cc
 cc

arch1 executable
 arch2 executable

arch2 object files
arch1 object files

libraries

frameworks

fat executable

Chapter 9 Building

191

Three Ways to Set Build Options

You can set build options in three different places: in the
Preferences panel, in the Project Inspector panel, and in the Build
Options panel. Each panel has a unique purpose.

• Use the Build Preferences panel to set options you’re always
going to use, no matter which project you’re working on.

For example, you may want to change the sound you hear upon
each successful build. To open the Build Preferences panel,
choose Info Preferences, then choose Build from the pop-
up list in the Preferences panel.

• Use the Build Attributes inspector to set options that apply to a
specific project, no matter which user is working on the project.

For example, you might define a build target specific to one

project. Or you might want to use a specific compiler option for
one project. To bring up the Build Attributes inspector, choose
Tools Inspector Show Panel, then choose Build
Attributes from the pop-up list in the Project Inspector panel.

• Use the Build Options panel to set your preferences for a
specific project. Options on this panel apply only when you
yourself are building the project..

To bring up this panel, click the check mark button on the
Project Build panel. The options on the Build Options panel
remain set even after you quit Project Builder.

The Build preferences panel
sets options for all projects.

The Build Attributes inspector
set options per project.

The Build Options panel overrides
the user preferences for this project.

Building on a remote computer

192

Building on a remote computer

A build takes up a lot of your computer’s CPU time and disk resources. You can
still perform other tasks while the build is running, but these other tasks may
run slower. If this happens, you may choose to build remotely on another
computer on your network. This way, the CPU on your computer can be
dedicated to the other tasks you are performing.

There’s no difference in what you see when you build on another host; the
Project Build panel still displays the status of the build and updates as the build
status changes.

Note: Be sure you know what version of OPENSTEP the host is running before
you use it to build your project.

1 Click the Build button to bring up
the Project Build panel.

2 In the Project Build panel, click
the check-mark button.

3 Type the host name of the
computer that should perform
the build in the Host field.

4 Build the program. Click this button.

Type the name of the
computer (host) that should
perform builds here.

The App Wrapper and Other Bundles

Some project types (namely Application,
Loadable Bundle, and Framework) don’t just
produce an executable when you build them.
They create the executable, and then they
create a directory containing the executable
and the project’s resources (the files under
Images, Interfaces, and Other Resources in
the project browser).

The generic term for a directory containing
such items is “bundle.” When the bundle
contains an application, it is often called an
“app wrapper” because it wraps up all of the
things an application needs into a single unit.

app wrapper

executable

Interfaces
Images

Other

Chapter 9 Building

193

Using build targets

A build target is an argument passed to the make utility that tells it which makefile
rules to use when building. The default build target, which is named for the
project type, produces an optimized, debuggable executable and places it in the
project directory. This target is often suitable, so in many cases you don’t have
to worry about the build target. If you need a different target, choose it from the
Build Options panel before you build the project

.

If you’re running OPENSTEP on a RISC architecture and you need to debug,
you may want to choose a target that does not optimize your code.

1 Click the Build button to bring up
the Project Build panel.

2 In the Project Build panel, click
the check-mark button.

3 In the Build Options panel,
choose a target from the Target
pop-up list.

Click this button.

Choose the build target here.

To do a make clean, click the
broom button on the Project
Build panel. As described in “All
About make and gnumake,”
make clean is a special target that
deletes all object and executable
files.

Other Build Targets

Besides the default target, the one named for
the project type, the other available targets
are:

debug Compiles with -DDEBUG on and
optimizations off. Use this target if your
program uses the DEBUG macro to provide
more debugging information or if you want
to make sure local variables do not get
optimized while you are debugging.

install Places the executable in the
installation directory specified in the Build
Attributes inspector.

profile Generates (with -DPROFILE, -pg,
and all warnings on) a file containing code to
generate a gprof report. Use this target when
you are tuning the performance of an
application. See the gprof man page for
details.

<default> Uses the first target listed in the
makefile. Warning: If you place a target at
the end of the Makefile.preamble file, it
becomes the default target.

Creating your own build targets

194

Creating your own build targets

If the targets provided by Project Builder don’t meet your needs, you can define
your own target in the file Makefile.postamble.

Caution: Don’t use Makefile.postamble to redefine targets that are already defined (debug, install, profile,
app, and so on). If you do, the results are unpredictable.

After you define a target, you need to let Project Builder know about it so that it
appears in the Target pop-up list in the Build Options panel. You do this using
the Build Attributes inspector.

1 Define a new target in the
Makefile.postamble file and save
the file.

2 Click the Project Inspector
button and choose Build
Attributes in the Project
Inspector panel.

3 Type the name of the target in the
Build Targets list.

The makefiles are under Supporting Files.

Put your new build target and any other
make rule you want to define here.

Click here or choose Inspector from
the Tools menu.

Choose Build Attributes here.

Choose Build Targets here.

Type the name of the target here
and press Return.

Your target shows up here.

Project Builder uses the
information you specify in the
Build Attributes inspector to
index the project and to update
the project makefile. You’ll read
about the other fields in the Build
Attributes inspector later in this
chapter.

If you refer to the executable
name in your target, use the
EXECUTABLE_EXT makefile
macro to give it the correct
extension. EXECUTABLE_EXT is
.exe in Windows environments
and nothing on Rhapsody and
supported UNIX environments.
For other makefile macros, see
the section “Customizing your
makefiles” in this chapter.

Chapter 9 Building

195

Setting search paths

The compiler and linker search a standard set of directories for library
executables and header files. If you link with a library or framework that is not
stored in one of the standard locations, you need to add its location to the search
path. You do this from the Build Options inspector.

The standard search paths are:

Type of file Search path

Frameworks /LocalLibrary/Frameworks
/NextLibrary/Frameworks

Header files the project directory
/LocalDeveloper/Headers
/NextDeveloper/Headers

Libraries /lib
/usr/lib
/usr/local/lib

1 Click the Project Inspector
button and choose Build
Attributes in the Project
Inspector panel.

2 Add the library’s location to the
Library Search Order list.

3 Add the location of its header
files to the Header Search Order
list.

Or

2 Add the framework’s location to
the Framework Search Order list.

Click here or choose Inspector from the
Tools menu.

Choose Build Attributes.

Choose the appropriate search order list.

Nonstandard directories that are already a part
of the search path are displayed here.

Type the directory to be searched here and click Add.

Or click here and choose the directory to be searched
from the panel that appears.

Setting search paths

196

For libraries in nonstandard locations, add the library location to Library Search
Order and the header file location to Header Search Order. For frameworks, just
add the framework location to Framework Search Order; Project Builder already
knows to look inside of a framework for its header files.

Some OPENSTEP Libraries

Most of the OPENSTEP libraries are now
delivered as frameworks. Because all of the
files associated with a framework are in one
location, it’s pretty easy to find out which
framework you need to link with if you import
one of its headers.

There are still a few old-style libraries
delivered with OPENSTEP. Here’s a list of the
more commonly used ones and when you
would link against them:

• /usr/lib/libcurses Contains cursor
control functions. Link with this library if
you import the header file curses.h.

• /usr/lib/libdbm Contains database
subroutines. Link with this library if you
import the header file dbm.h.

• /usr/lib/libDriver Link with this library if
your program interacts with a device
driver.

• /usr/lib/libg++ Contains the C++
libraries. Link with this library for projects
that contain C++ code.

• /usr/lib/libiostream Contains C++ I/O
streams support.

• /usr/lib/libMallocDebug Contains a
special implementation of malloc. Link
with this library if you want to use the
MallocDebug application to examine your
application’s memory usage.

Chapter 9 Building

197

Setting compiler and linker options

The make utility passes the same options to the compiler and linker every time
you build a project. You can add to these options using the Build Attributes
inspector. The compiler and linker options you specify here are also added to
the compiler and linker options used when building the project’s subprojects.

1 Click the Project Inspector
button and choose Build
Attributes in the Project
Inspector panel.

2 Type compiler options in the
Compiler Flags field.

3 Type linker options in the Linker
Flags field.

The pop-up list above the
compiler flags controls the target
platform for those flags. You can
specify different values for the
bottom five options depending
on what platform you are
building for—Mach, Windows, or
a PDO platform. For more
information, see “The Platform
Pop-Up’s Purpose.”

Click here or choose Inspector from the
Tools menu.

Choose Build Attributes.

Type compiler and linker options in these fields. For library
projects, the linker options are passed to libtool.

Interesting Compiler and Linker Options

Here are some interesting compiler and linker options you may
want to try. For more options, see the cc(1) and ld(1) man pages.

Compiler Options

-ansi Use strict ANSI C definition.

-traditional Use the traditional Kernigan & Ritchie C definition.

-bsd Use strict BSD semantics.

-Wpointer-arith Print a warning if pointer arithmetic is used on
a void pointer or a function pointer.

-finline-functions Make all simple functions inline.

-pipe Use pipes in place of temporary intermediate files.

Linker Options

-sectorder Order the blocks in a specified section.

-undefined Specify how undefined symbols are treated: as
errors, warnings, or ignored.

-whyload Indicate why each member of a library is loaded.

-ysym For a given symbol, list files that referenced it.

-Yn For the first n undefined symbols, lists the file that
referenced the symbol.

Setting compiler and linker options

198

Dynamic Linking

OPENSTEP 4.0 introduces dynamic linking. When you use
dynamic linking, references are resolved at run time instead of at
link time. This means you don’t have to relink your application
every time a definition in a dynamic library changes. You get the
benefit of the changes without having to perform a build.

Dynamic linking is the default, and you must use it if you link with
a dynamic shared library. All frameworks are dynamic shared
libraries. (If you want to create your own dynamic shared library,
see Chapter 12, “Creating Frameworks and Dynamic Shared
Libraries.”)

The main difference between static and dynamic linking is in how
libraries are searched for unresolved references. When you use
static linking, each library is searched for unresolved references
exactly once.

When you use dynamic linking, the static linker must simulate the
dynamic link editor to see if there are any unresolved references.
It places each library in a search list. Then, whenever an
unresolved reference is encountered, it searches each library in
the search list in order until it can resolve the symbol. With
dynamic linking, a library might be searched several times.

Static Linking

symbol1 library1

library2

library3

symbol1 resolved

Dynamic Linking

library1

library2

library3

symbol1 resolved

1.

symbol12.

symbol13.

symbol11.

Chapter 9 Building

199

Creating a precompiled header

A precompiled header is a header file that has been parsed and preprocessed,
thereby improving compile time and reducinng symbol table size. Only those
macros and external declarations needed to compile the file are read from the
prcompiled header. Precompiled headers have a .p extension. You can define
one for any type of project.

When you create a header file that you intend to precompile, follow these
guidelines:

Make sure that you import files in the proper order to avoid undefined symbol
errors. If ClassA defines an instance variable of the ClassB, ClassB’s header
should be listed before ClassA’s header in the precompiled header.

Only import the system headers that are necessary for the interface.

A system header imports many other headers. The more headers you import
into your precompiled header, the greater the risk of having a name conflict.
For example, a system file might define a public struct that conflicts with a
private struct declared in your project’s headers. If a name conflict occurs,
the compiler won’t used the precompiled header.

1 Select the header file in the
project browser.

2 Click the Inspector button.

3 Choose File Attributes in the
Inspector panel.

4 Select Precompiled Header in
the inspector.

Select the header file you
want to make public.

Deselect Public Header.

Click here, or choose
Inspector from the
Tools menu.

Choose File Attributes.

If you select both Public Header
and Precompiled Header in the
File Attributes inspector, the .h
file is installed, not the .p file. If
you want the .p file installed (for
example, if you’re building a
Framework or Library, see
“Installing a precompiled
header” in Chapter 12, “Creating
Frameworks and Dynamic
Shared Libraries/DLLs.”

Creating a precompiled header

200

To avoid name conflicts, import all of the project’s header files into one
precompiled header, and import all other header files separately. Make sure that
system files that aren’t necessary for the interface aren’t imported indirectly
either.

For example, suppose you have a project with a precompiled header named
Precomp.h that imports ClassA.h along with all other header files in the project.
ClassA defines an object that uses Foundation API in its interface declaration,
and the implementation of ClassA uses functions from libc. ClassA.h should
import the Foundation’s precompiled header and Precomp.h. It should not import
libc.h because the interface declaration doesn’t need it and importing it increases
the risk of a name conflict. Instead, libc.h should be imported in the
implementation file, ClassA.m, because it is necessary for the implementation.

ClassA.h

ClassA.m

#import <Foundation/Foundation.h>

#import "Precomp.h" /* use this for faster compiles */

@interface ClassA : NSObject

{

NSString *aString;

}

- (NSString *)aString;

...

@end

#import "ClassA.h"

#import <libc/libc.h>

@implementation ClassA

...

@end

Chapter 9 Building

201

Customizing your makefiles

Sometimes it’s necessary to alter the standard build process as defined by the
project makefile. If you need to do this, first look for the options you need to
change in the Build Attributes inspector. Project Builder uses the information
you set in the Build Attributes inspector to index the project. So to make sure
the project index is correct, you should use this inspector instead of editing the
makefile directly. (Project Builder updates the makefile for you.)

If the inspector does not have an option for what you need to set, edit the files
Makefile.preamble and Makefile.postamble. Both files contain makefile variable
definitions, and the comments in these files describe what each macro defines.

In general, Makefile.preamble contains macros that add to the standard makefile
definitions, and Makefile.postamble contains macros that override the standard
definitions. For example, the LIBS macro defines the libraries that your program
should link with. The standard makefile sets this macro to the libraries in the
project. If you want to change this definition, you uncomment the LIBS definition
in Makefile.postamble and change the definition. However, if you want to link with
more libraries than those added to the project, set OTHER_LIBS in Makefile.preamble
to the additional library’s name.

E Set information in the Build
Attributes inspector.
Or

E Edit the files Makefile.preamble
and Makefile.postamble.

Click here or choose Inspector from the
Tools menu.

Choose Build Attributes.

Search paths for files in nonstandard locations.

Options for the cc, ld, and libtool commands.

Where the executable lives after it is installed.

Where intermediate files (such as .o files) are placed.

Path for the make utility.

“Creating your own build
targets,” “Setting search paths,”
and “Setting compiler and linker
options” in this chapter describe
some of the fields in the Build
Attributes inspector.

Customizing your makefiles

202

Reducing Compile Time
Each build begins by exporting any public headers to a location where they are
visible to the rest of the project (for example, headers in subprojects are
exported to the derived_src directory if you mark them as Project Headers in the
File Attributes inspector). If you’re building a project that does not export any
headers (no boxes are turned on for header files in the File Attributes inspector),
such as an application or tool with no distributed objects or library API, you can
omit this step by setting this macro in Makefile.preamble:

Preamble Macro Description

SKIP_EXPORTING_HEADERS Skips the exporting headers step of the build.

Adding Make Dependencies
If you add dependencies or targets to the makefile, set these macros in
Makefile.preamble.

Preamble Macro Description

OTHER_PRODUCT_DEPENDS Dependencies you defined that should be used in all builds.

OTHER_INITIAL_TARGETS Targets you defined that should be built before subprojects.

OTHER_INSTALL_DEPENDS Dependencies you defined that should be used for the install target.

Setting Up The Install Target
To set up the install target to work the way you want, set these macros in
Makefile.preamble.

Preamble Macro Description

DSTROOT Path to prepend to the installation path specified in the Build Attributes
inspector. The default is /.

If you’re building a library or
framework, see Chapter 12,
“Creating Frameworks and
Dynamic Shared Libraries,” for
more information on setting up
the makefiles.

Chapter 9 Building

203

And these macros in Makefile.postamble.

Postamble Macro Description

INSTALL_AS_USER The owner of the installed files. The default is root.

INSTALL_AS_GROUP The group for the installed files. The default is wheel.

 INSTALL_PERMISSIONS The installed files’ permissions. The default is read and execute
permissions turned on for all users.

APP_STRIP_OPTS Stripping options to pass to the strip tool. The default is no options,
which strips debugging symbols out of the executable. Only set options
here if the application loads other bundles.

APP_WRAPPER_EXTENSION The extension to use for application’s output. The default is .app.

Setting Up Make Clean
To set up make clean to work the way you want, set these macros in
Makefile.preamble.

Preamble Macro Description

OTHER_GARBAGE Files that should be deleted in addition to object files and executables.

CLEAN_ALL_SUBPROJECTS If defined, make clean cleans subprojects as well. This macro is
defined by default. To undefine it, comment it out in
Makefile.preamble.

The Platform Pop-Up’s Purpose

Do you want your project to run on multiple platforms? For
example, are you writing an application that you plan to have run
on both Mach and Windows? Or maybe you’re writing a
framework that you also want to build on one of the Portable
Distributed Objects (PDO) platforms.

If this is your situation, the platform pop-up list is for you. (This is
the list that appears just above the compiler options on the Build
Attributes inspector.) Different platforms have different
requirements. For example, you might install the application in a
different location on a Windows platform than you would a Mach
platform. You’ll need to use different linker options because the
platforms each use a native linker. Set the options as you want

them for one platform, then change the pop-up, and set them for
the other.

The platform pop-up list is just a convenience that allows you to
have one version of the project even though you’re building for
two platforms. It doesn’t magically build an executable that will
run on all the platforms you want. That is, if you’re building an
application on Windows, you’ll get an application that runs on
Windows, not on Mach. To get a version that runs on Mach, you’ll
need to transfer the project directory to a machine running
OPENSTEP for Mach and build again.

Customizing your makefiles

204

Overriding Compiler and Linker Options
Most targets produce an optimized, debuggable executable and do not suppress
compiler warnings. To change the compiler options used to produce the usual
executable, override these macros in Makefile.postamble.

Postamble Macro Description

OPTIMIZATION_CFLAG Compiler optimization option, used by all but the debug target.
The default is -O, which reduces code size and execution time.

LOCAL_DIR_INCLUDE_DIRECTIVE Override if you don’t want the current directory in the default
search path. By default, this is defined as -I.

DEBUG_SYMBOLS_CFLAG Compiler debug symbols options, used by all but the install target.
The default is -g, which produces line number and symbol
information.

WARNING_CFLAGS Compiler warning message level, used by all targets. The default
is -Wall, which suppresses none of the warning messages.

DEBUG_BUILD_CFLAGS Compiler options used only by the debug target. The default is
-DDEBUG, which defines the DEBUG preprocessor macro.

PROFILE_BUILD_CFLAGS Compiler options used only by the profile target. The default is
-pg, which produces information for gprof, and -DPROFILE,
which defines the PROFILE preprocessor macro.

Chapter 9 Building

205

Setting Up Other Tools
Some tools are invoked by make if the project contains files with certain
extensions. To set up these tools, set these macros in Makefile.preamble.

Preamble Macro Description

PSWFLAGS Options for the pswrap tool (invoked on .psw files).

YFLAGS Options for the yacc tool (invoked on .y.c or .ym.m files).

LFLAGS Options for the lex tool (invoked on .l.c or .lm.m files).

MSGFILES Input files for the msgwrap tool. These should have the .msg extension.

DEFSFILES Input files with a .defs extension for the mig tool.

MIGFILES Input files with a .mig extension for the mig tool.

RPCFILES Input files for the rpcgen tool (invoked on .x files).

Including More Files in the Build
There may be files that you don’t want to add to the project but that should be
included in the build. Use these macros in Makefile.preamble to have the build
handle more files.

Preamble Macro Description

OTHER_LIBS Libraries to link with besides the libraries included in the project.

OTHER_OFILES Object files to link into the executable besides those produced by the
source files in the project.

OTHER_SOURCEFILES Source files besides those included in the project.

INCLUDED_ARCHS Architectures to which this project or subproject should be restricted
to building for. Building for other architectures is skipped. Must be a
subset of the architectures selected in the Build Options panel.

EXCLUDED_ARCHS Similar to INCLUDED_ARCHS, but lists architectures that this project
or subproject shouldn’t build for instead of architectures it should build
for. Don’t use if using INCLUDED_ARCHS.

For more information about the
tools listed here, see their man
pages.

Customizing your makefiles

206

