
156

Type part name here:

Then, arising with Aurora’s light,
The Muse invoked, sit down to write;
Blot out, correct, insert, refine,
Enlarge, diminish, interline.

On Poetry
Jonathan Swift

I write until beer o’clock.

Stephen King

Moving, copying, deleting, and
replacing code

Checking delimiters

Indenting code

Navigating within code files

Navigating between code files

Using name completion in
editing

Displaying multiple views of
code

Undoing and redoing changes

Formatting and inserting
graphics in RTF text

Coding

Editing Code

7

Chapter 7 Editing Code

157

Moving, copying, deleting, and replacing code

As you can in other OpenStep applications, you can use the Copy, Move, and
Paste commands to delete, move, copy, and replace code.

When you choose the Copy or Cut commands, the selected code goes into a kill
buffer. The Paste command puts the contents of this buffer into the stream of
characters at the location marked by the cursor. You can issue multiple Paste
commands to copy the same contents multiple times. Of course, if you only
want to delete code, don’t follow the Cut command with Paste.

Several techniques can help you move and copy code:

If the “Indent pasted lines” option is checked in the Indentation preferences,
pasted code will be automatically indented.

To replace code rather than inserting it, select the destination code before
pasting the new code in place of it.

To delete code without copying it to the kill buffer, select the code and then
press the Delete key.

1 Select the code to be copied or
moved.

2 Choose the appropriate
command from the Edit menu:

E Copy
Or

E Cut

3 Insert the cursor where you want
the code to go.

4 Choose Paste from the Edit menu.

The cursor marks the point where
pasted code is inserted.

Drag horizontally or
diagonally across
code to select it.

To select a single
line, triple-click it.

You can use the delimiter-
checking feature as a shortcut for
selecting messages or blocks of
code prior to copying, moving, or
replacing them. See ‘‘Checking
delimiters’’ on page 158.

Several Emacs commands also
allow you to copy, cut, and paste
code. See ‘‘Emacs Key Bindings’’
on page 162 for details.

Checking delimiters

158

Checking delimiters

One common source of compiler errors is mismatched code delimiters: braces
for blocks of code, brackets for message expressions, and parentheses for C
expressions and function arguments. Project Builder’s code editor allows you to
check which delimiters match just by double-clicking.

In addition to checking for missing or extra delimiters, you can use this
technique for selecting the code in between (and including) the delimiters.

If a matching delimiter is missing, the code editor displays the error in the status
area in its upper-right corner. Project Builder also checks for delimiters as you
type code. When you type a delimiter of any type, the cursor briefly jumps to
the opposite delimiter. If the opposite delimiter is out of view, the line it’s on
appears in the status area.

E Double-click a brace to highlight
the block it delimits.

E Double-click a square bracket to
highlight the message it delimits.

E Double-click a parenthesis to
highlight the function arguments
or C expression delimited.

You can double-click either the starting delimiter
or the ending delimiter to highlight code.

Put the cursor as close as possible over the delimiter
before double-clicking.

This is a good way to check for nested messages.

You can also enable your right
mouse button so that when you
click anywhere in a type or
message expression, that type or
message is selected and then the
Project Find panel performs a
definition lookup. See <<x-
ref?>> for more on this feature.

Chapter 7 Editing Code

159

Indenting code

One of the more tedious tasks programmers must do is indenting code: aligning
statements and blocks of code with the same scope on the same tab stop. Project
Builder alleviates much of this tedium by providing options for both automatic
and manual indentation.

In the Indentation preferences display, you can tell the code editor when to
indent each line of code based on the final character of the previous line. You can
also specify how many spaces lines should be indented, based on certain
conditions.

Tip: The Key Bindings preference display has options related to using the Tab
key for indentation: “Indent only at beginning of line” and “Indent always.”
Use the second option if you want to use Tab to indent a line when the cursor is
anywhere in that line.

E To customize automatic code
indentation, choose Preferences
from the Info menu and select
the desired Indentation
preferences.

E To indent a line of code, click
anywhere in the line and choose
Edit Indentation Indent.

E To force indentation left or right,
select code and then chose Shift
Left or Shift Right from the
Indentation menu.

E To format messages with many
arguments, choose Expand
Message Expression from the
Indentation menu. Select the characters after which the

following line is indented.

"Per level" is the default indentation spacing ; the
other fields define spacing for special cases.

In this browser you can request
indentation on certain conditions

Click Preview to see how the indentation
you’ve requested would look.

160

For both single lines and ranges of lines, you can you can issue commands to
indent according to the indentation characteristics specified in Preferences; or
you can give commands to force a certain indentation.

Messages with multiple arguments can be hard to read. Project Builder gives
you a command on the Indentation menu with which to format them.

To return a formatted message expression to an unformatted message
expression (in other words, reverse the sequence in the above example), select
the expression and choose Edit Indentation Compress White space.

When indenting single
lines of code, you can
Insert the cursor
anywhere.

Choose Indent from the
Indentation menu to
indent the line according
to preferences

Select multiple lines of code
to indent them as a group.

This example shows multiple
lines force-indented right
after Shift Right is chosen
twice from the Indentation
menu.

Select a message
expression, preferably
one with many
arguments.

When you choose the
Expand Message
Expression command, the
message is formatted so
arguments are aligned.

Chapter 7 Editing Code

161

Navigating within code files

You can, of course, go from one place in a source-code file to another place in the
same file by scrolling the code editor. Although this mode of navigation is
sometimes inescapable, you have other navigation techniques at your disposal.

Methods, functions, and types appear in the project browser only if the project
has been indexed. In the Indexing preferences, you can specify how items in
the browser should be sorted: by position in the file, by symbol name (that is,
alphabetically), or by symbol name within type.

As its name suggests, you can use the Line Range panel not only to navigate to
specific line numbers, but to select ranges of text by specifying colon-separated
line numbers. The panel is also a useful tool for learning the current line
number. One place where this might be useful is gdb (run from the command
line) where you can set breakpoints within methods by file:line number.

Tip: You can “visit” a line of code and return directly to your original location with
a couple of Emacs commands. First set a mark by pressing Escape, then the
spacebar. Naviagate to the other line, view it (or copy it, or whatever), and press
Control-x Control-x to return the marked line.

E Go directly to methods and
functions by selecting their
names in the project browser.

E Enter a line number in the Line
Range panel to go that line.

Italicized names indicate class
interface declarations. Other type
declarations are unitalicized.

You can set the sort order
of names in the browser
as a preference.

Display this panel by choosing
Edit mFind mLine Number.

Check this to have the line number
in the panel automatically updated
as you move from line to line.

You can use Emacs key bindings
to move around in code without
ever touching the mouse. See
‘‘Emacs Key Bindings’’ on page
162 for a list of enabled Emacs
commands.

The incremental-search feature
(Emacs binding Control-s) is a
powerful code-navigation tool for
locating text strings within a file.
You can also use the Find panel
and especially the Project Find
panel to find (and replace)
specific definitions, reference,
and text strings. See the chapter
“Finding Information” for details
on all of these search features.

Navigating within code files

162

Emacs Key Bindings

Emacs is an interactive, customizable, richly featured code editor
that is popular among many programmers, especially UNIX
programmers. Project Builder’s code editor incorporates many
common Emacs commands.

You issue Emacs commands with the Control key (Ctl) or the
Escape (Esc) key, but how you give the command differs with
each key. You press the Control key just before the character key,
and keep pressing them together. For Escape commands, press
the Escape key first, then press the character key. Also, some
commands begin with Control-x and are followed by a separate
key press. The separation of the final character in Control-x and
Escape commands is represented by a space.

Notes:

• On OpenStep for Windows, many Emacs key bindings conflict
with the standard bindings for Control keys on Windows
applications (for example, Ctl-v is scroll forward in Emacs but
is Paste in Windows). Windows key binding override any
corresponding Emacs key bindings.

• To use the Emacs commands that begin with the Escape key
(Esc), you must select the “Act as Emacs Meta key” option in
the Key Bindings preferences display.

Moving Around

Command What It Does

Ctl-f Move forward one character

Ctl-b Move backward one character

Esc f Move forward one word

Esc b Move backward one word

Ctl-n Move to the next line

Ctl-p Move to the previous line

Ctl-e Move to the end of the line

Ctl-a Move to the beginning of the line

Ctl-v Scroll foward a “page”

Esc v Scroll backward a “page”

Esc > Go to the end of the edited file

Esc < Go to the beginning of the edited file

Ctl-l Center cursor in middle of displayed code

Ctl-x Ctl-x Exchange point and mark (return to mark)

Ctl-s Search forward incrementally

Ctl-r Search backward incrementally

Editing, Deleting, and Copying

Command What It Does

Ctl-d Delete character under cursor

Ctl-k Delete (kill) to end of line

Ctl-y Paste (yank) contents of kill buffer

Esc-d Delete next word or to end of current word

Esc-Del Delete previous word

Ctl-x u Undo last change (applies successive undos)

Ctl-i Indent line

Esc w Copy region

Esc y Yank-pop: paste previously cut text in kill buffer

Files and Views (Buffers)

Command What It Does

Ctl-x 2 Split current view into two views (Split command)

Ctl-x 1 Make one view (Maximize command)

Ctl-x o Edit in other view

Ctl-x Ctl-b Open Loaded Files panel

Ctl-x b Next loaded file

Ctl-x Ctl-f Display Open Quickly panel

Ctl-x Ctl-s Save current view to file

Ctl-x Ctl-w Write to file (Save As)

Ctl-x s Save all loaded files

Ctl-x i Insert file

Ctl-x k Close current file

Miscellaneous

Command What It Does

Ctl-x space Sets a mark which, with point, marks a region.

Ctl-x ‘ Go to next error (as displayed in Build panel
exception browser)

Ctl-x p Go to previous error

Esc . Find definition of current symbol using Project
Find panel (as identified by location of cursor)

Ctl-q Quote next character (for example, a control
sequence)

Ctl-g Quit current command

Chapter 7 Editing Code

163

Navigating between code files

When you select header files, Objective-C implementation files, and other
source-code files in the project browser, those files are displayed in the code
editor. Although this is a useful feature, it can sometimes require complicated
mouse work, especially if you have many project files spread across many
categories. The Loaded Files browser provides a navigational focus for the set
of files you’re most interested in—the files that you’ve already opened.

To remove a file from the Loaded Files browser, select it and choose Close from
the Edit menu.

A quick way to locate files in the file system, especially good for non-project
files, is to use the “Open File or Project” panel. To display this panel, choose
Open Quickly from the File menu.

Tip: You can use several Emacs commands to edit the path in the Open File field:
Control-a (beginning of line), Control-e (end of line), Control-k (delete to end
of line), Control-f (forward character), Escape b (backward “word), and so on.

You can also drag document icons from the File Viewer and drop them over the
code editor to open and display them.

E Select souce-code files in the
project browser.

E Use the Loaded Files browser to
navigate among opened files

E Use the “Open File or Project”
panel to locate and open project
or non-project files.

To display the Loaded Files
browser, click here or
choose Tools m Loaded
Files.

Click a file to redisplay it in
the code editor.

The default sort order is
by time visitied. You can
change the order to
alphabetical by choosing
Tools m Loaded File m
Sort by Name.

Press the spacebar or Escape to invoke
name completion. The next possibly
matching file or directory is underlined.

Using name completion in editing

164

Using name completion in editing

Name completion is a feature that displays all completions of a partial symbol
name, including classes, methods, functions, constants, structures, and even
local variables. Its has several uses in code editing: It allows you to locate
symbols that are only vaguely familiar; it also helps to prevent compilation errors
due to misspellings; and it simply a convenient way to insert symbols without
having to type them. With name completion, you can obtain symbols local to a
file or global to the project.

If you insert the cursor within an existing symbol, any symbol chosen from name
completion will be inserted before the existing symbol.

If you prefer not to cycle through all symbols with a given prefix, you can display
a panel that lists possible completions from among the project’s global symbols.

To use name completion, the project must be indexed. When a project is
indexed, it “knows” about all symbols—both those that the project internally
defines and those that it imports.

E To cycle through the symbols
local to a given scope and having
thesame prefix, type the prefix
and press Escape repeatedly.

E To cycle through all project
symbols with the same prefix,
type the prefix and press
Alternate-Escape repeatedly

E To display a list of all global
symbols with the same prefix,
type the prefix and press
Alternate-l.

You must type at least a one-character
prefix or insert the cursor within an
existing symbol.

The part of the symbol that
completes the prefix is
underlined.

Choose a name by clicking
the mouse or pressing any
key other than Escape.
Cancel by pressing the
Backspace key.

Click Cancel to undo
the insertion, click OK
to confirm it.

When you select a
symbol name, it’s
immediately
inserted.Name completion is available in

many other contexts, including
the fields of the Project Find and
Find panels, and in some fields of
the Project Inspector panel. In
addition, you can use name
completion to complete file
names and pathnames in all
Open and Save panels and in the
Open Quickly file (where the
space bar rather than Escape is
used). See chapter 9, “Finding
Information,” to learn how name
completion is used in find and
replace operations.

Chapter 7 Editing Code

165

Displaying multiple views of code

You can edit code in multiple views in the code editor. The views can display
different areas of the same file or different files. The multiple-view feature
permits you to view and edit related sections of code—like method declarations
in a header file and their implementations in the .m file—without have to
navigate among files, and lose context in the process.

You can split views repeatedly, with each split view being halved. As you edit in
one view, your changes are reflected in all other views of that same file.

Tip: Press Control-x o to cycle through the current views, selecting each one in
turn.

You can enlarge the editing area temporarily by “closing” views. To do this,
move a divider (a bar with a dimple in its center) to the top or bottom of the code
editor, or to an adjacent divider.

To remove a specific view, select it and choose File View Close (the
“parent” view is automatically selected next). To remove all views except the
one you’re working in, select that view and choose File View Maximize.

E To open a new view in the code
editor, chose File View Split.

E To tear off a window from the
code editor, chose File View

 Tear Off.

Click in a view to
select it. Open a file
or select it from the
project or Loaded
Files browser to
display it.

When you split a
view, the new view
occupies the lower
half of the previous
view and displays
the same general
contents.

These two views are
dragged "closed,"
enlarging the editing
area. To restore
them, you’d drag the
dividers upward.

166

Instead of cluttering the code editor with views that become smaller and smaller
as you add each subsequent view, you can “tear off” a view and put it in its own
window. To tear off a view, select it and choose File View Tear Off.

The window of the tear-off view behaves like any other window, except that
editing of its contents is synchronized with any other view displaying the same
file. To close a tear-off window, click the close button. Do not choose Close from
the View menu.

Note: You cannot display files in tear-off windows by dragging file icons into them
and you cannot split tear-off windows. You also cannot use the Emacs command
Control-x o to jump to other tear-off windows or views in the code editor.

You can also create
a tear-off window by
Alternate-dragging
the file icon off the
Project Builder main
window.

Chapter 7 Editing Code

167

Undoing and redoing changes

Project Builder saves every editing change you make to a kill buffer. If you make
a mistake, or decide that a modification you made earlier is not what you want,
you can undo the change. Because the kill buffer is a stack, when you give the
Undo command, you’re undoing the most recent change; the next Undo
command (without any other intervening command) undoes the previous
modification, and so on until the beginning of the editing session (that is, when
the file last had no unsaved modifications).

In undoing changes, deselect code if you want to retain it; keep the code
selected to continue cycling through Undos.

To reinstate a change that you’ve just undone, give the Redo command. For
example, if you decide that you don’t want the currentMonth variable you’ve just
restored by undoing (last illustration, above), choosing Redo will yield this:

Instead of undoing changes in succession by repeatedly choosing the Undo
command, you can simultaneously undo all changes made to a region of code
since the beginning of the last editing session. Simply select the region and
choose Edit Undo Undo Region.

E To undo a change, choose
Edit Undo Undo .

E To redo an undone change,
choose Edit Undo Redo .

You delete these
variables and their
initializations.

Choose the Undo
command once.

After deselecting the
restored text , choose
Undo again.

If you leave the text
selected, the change is
left undone when you
perform the next Undo.

 Successive Redo
commands reverse
the effects of each
successive Undo.

Formatting and adding graphics to RTF text

168

Formatting and adding graphics to RTF text

You can create and format RTF (rich text) and RTFD files in Project Builder.
These files can be project or non-project files. Typical RTF project files are
context-sensitive help files and, for framework projects, reference
documentation. A common non-project RTF file might be a README file.

You can find RTF editing commands on the Format menu and its submenus.
Possibly the most important of these is the one that displays the Font panel
(Format Font Font Panel). The Font menu also has submenus of
commands for performing fairly sophisticated typographical operations

Font Submenus Description

Kern Adjusts the spacing between selected letters.

Ligature Use All or Use Default joins certain combinations of characters, such
as “fl”.

Baseline Superscript and Subscript commands lower and raise the selected
text’s baseline by a set amount. The Raise and Lower commands
adjusts the baseline incrementally.

1 Create or add an RTF or RTFD file
as a project or non-project file.

2 Format the text using the
commands on the Format menu
or on one of its submenus.

3 If you want to add graphics, drag
and image from the File Manager
or from the Images suitcase and
drop it over the code editor. Create or add context

help files here. Non-
project files go in the
Non Project Files
"suitcase" of the
project browser.

Text can have various
attributes, including
font, size, style, and
color. It can also
include graphical
images.

Chapter 7 Editing Code

169

You can display a ruler above RTF text by choosing Format Text Show
Ruler. This ruler enables you to set margins and tabs in selected text, to adjust
line height (spacing between lines), to set alignment, and to lock changes.

Note: The unfixed (open lock icon) and fixed (closed lock icon) buttons affect the
minimum line height. If the fixed button is selected, users can decrement the
line height below the limit set by the highest character. If the unfixed button is
selected, the line height cannot be adjusted below that limit.

Code files are ASCII files by default. You can, however, convert them to RTF
by inserting the cursor anywhere in the file and choosing Make Rich Text from
the Format menu. You can then give portions of the code their own attributes;
for instance, comments can be in blue and recently modified text can be in bold
face. Code with RTF attributes can be safely compiled.

Line height amount.
Decrements and increments line
height by specified amount.

Click to set text alignment: left-aligned,
centered, justified, and right-aligned.

Tab well: left,
centered,
right, decimal
tabs

Unfixes and fixes minimum line height.

To set a tab, drag it from the tab well and place it
on the ruler; reposition tabs by dragging them across
the ruler; remove by dragging off the ruler.

Customizing the Editing Environment

Drag a color into one of the Text Colors
color wells to set the default foreground
(text) and background colors.

The plain text font should be a fixed-pitch
font to ensure that indented lines are
aligned properly.

In the Fonts, Sizes & Colors preferences
panel, you can customize the default
attributes of the code editor, including text
color and font, background color, and the
size of tear-off windows. Attributes take
effect when the next file is opened or
when you create the next tear-off window.

Formatting and adding graphics to RTF text

170

RTFD files are Rich Text Format files that can display graphical images. You
can easily add EPS and TIFF images to RTF text displayed in Project Builder.

You add images by dragging them from the File Viewer or Project Builder and
dropping them in the code editor; they’re inserted where the cursor is. (These
files become RTFD files in the process, if they’re not already.).

