

Rhapsody C Preprocessor
(CPP) Reference

Table of Contents
Contents i

The GNU C Preprocessor 5

Global Transformations 8

Preprocessor Commands 9

Header Files 10
Uses of Header Files 10

The #include Command 10

#include <> 11

#include "" 12
#include anything else 12

Multiple Inclusion of Header Files 12

Precompiled Header Files 13
Using Precompiled System Header Files 13

Creating Your Own Precompiled Header Files 14

Troubleshooting 16

Macros 17
Simple Macros 18

Macros that Take Arguments 19

Predefined Macros 22

ANSI C standard macros 22

__FILE__ 22

__LINE__ 22

__DATE__ 22

__TIME__ 23

__STDC__ 23

GNU C Macros 23

__GNUC__ 23

__STRICT_ANSI__ 23

__GNUG__ 23

__cplusplus 23

__VERSION__ 24

__OPTIMIZE__ 24

__CHAR_UNSIGNED__ 24
Rhapsody macros 24

__OBJC__ 24

__ASSEMBLER__ 24

__STRICT_BSD__ 24

__MACH__ 25

Platform-Dependant Predefined Macros 25

Stringification 26

Concatenation 27

Undefining Macros 29

Redefining Macros 29

Pitfalls and Subtleties of Macros 30

Improperly Nested Constructs 30

Unintended Grouping of Arithmetic 30

Swallowing the Semicolon 31

Duplication of Side Effects 32

Self-Referential Macros 33

Separate Expansion of Macro Arguments 34

Cascaded Use of Macros 36

Newlines in Macro Arguments 37

Inability to Define a Macro that Produces a # Character 37

Macro Arguments inside String Constants 37

Conditionals 38
Syntax of Conditionals 38

The #if Command 39

The #else Command 40

The #elif Command 40

Keeping Deleted Code for Future Reference 41

Conditionals and Macros 41

The #error and #warning Commands 42

Pragmas 43

Combining Source Files 44

C Preprocessor Output 44
iii

Invoking the C Preprocessor 45
-P 45

-C 46

-traditional 46

-trigraphs 47

-pedantic 47

-I 47

-I- 47

-F 47

-nostdinc 48

-D 48

-Uname 48

-undef 48

-d 48

-M 48

-MD 48

-MM 49

-MMD 49

-H 49

-i 49

Index 51
iv

The GNU C Preprocessor

The GNU C preprocessor (cpp) is a macro processor the C compiler uses to
transform your program before actual compilation. It’s called a macro
processor because it allows you to define macros, which are brief
abbreviations for longer constructs.

The C preprocessor provides the following four facilities:

• Inclusion of header files. These are files of declarations that can be
substituted into your program.

• Macro expansion. You can define and use macros, which are
abbreviations for arbitrary fragments of C code. The C preprocessor
will replace the macros with their definitions throughout the program.

• Conditional compilation. Using special preprocessor commands, you
can include or exclude parts of the program according to various
conditions.

• Line control. If you use a program to combine or rearrange source files
into an intermediate file which is then compiled, you can use line
control to inform the compiler of where each source line originally came
from.

C preprocessors vary in their implementation details. This section
describes the GNU C preprocessor, which provides a superset of the
features of ANSI-standard C.

Note: On Rhapsody, the development environment actually includes two
preprocessors: the standard GNU C preprocessor (cpp) and the
precompilation preprocessor (cpp-precomp). The precompilation preprocessor
mirrors the functionality of the GNU C preprocessor (except for some rarely
used extensions) and is the default preprocessor for C and Objective-C
code. The standard preprocessor is the default for Objective-C++ code. You
can switch to the GNU C preprocessor for use on platforms on which
precompiled headers are available by specifying the compiler’s -traditonal-cpp
flag on the command line.

ANSI-standard C requires the rejection of many harmless constructs
commonly used by today’s C programs. Such incompatibility would be
inconvenient for users, so the C preprocessor is configured to accept these
constructs by default. To get ANSI-standard C you would use the options
-trigraphs, -undef, and -pedantic, although in practice the consequences of having
strict ANSI Standard C may make it undesirable to do this. See the section
“Invoking the C Preprocessor” for more information.
7

Global Transformations

Most C preprocessor features are inactive unless you give specific commands to
request their use. But there are three transformations that the preprocessor
always makes on all the input it receives, even in the absence of commands:

• C, C++, and Objective C comments are replaced with single spaces.

• Backslash-newline sequences are deleted. This feature allows you to break
long lines for cosmetic purposes without changing their meaning.

• Predefined macro names are replaced with their expansions (see the section
“Predefined Macros”).

The first two transformations are done before nearly all other parsing and before
preprocessor commands are recognized. Thus, for example, you can split a line
cosmetically with backslash-newline anywhere (except when trigraphs are in
use; see below).

/*
/ # /
*/ defi\
ne FO\
O 10\
20

is equivalent to #define FOO 1020. You can even split an escape sequence with
backslash-newline. For example, you can split “foo\bar” between the
backslash and the b to get

"foo\\
bar"

This behavior is unclean: in all other contexts, a backslash can be inserted in a
string constant as an ordinary character by writing a double backslash, and this
creates an exception. But the ANSI C standard requires it. (Strict ANSI C
doesn’t allow newlines in string constants, so this isn’t considered a problem.)

There are a few exceptions to all three transformations:

• C comments and predefined macro names aren’t recognized inside an
#include command in which the file name is delimited with < and >.

• C comments and predefined macro names are never recognized within a
character or string constant. (Strictly speaking, this is the rule rather than an
exception.)
8

Preprocessor Commands

• Backslash-newline may not safely be used within an ANSI trigraph
(trigraphs are converted before backslash-newline is deleted). If you
write what looks like a trigraph with a backslash-newline inside, the
backslash-newline is deleted as usual, but it is then too late to recognize
the trigraph.

This exception is relevant only if you use the -trigraphs option to enable
trigraph processing.

Preprocessor Commands

Most preprocessor features are active only if you use preprocessor
commands to request their use.

Preprocessor commands are lines in your program that start with #. The # is
followed by an identifier that’s the command name. For example, #define is
the command that defines a macro. White-space characters are allowed
before and after the #.

The set of valid command names is fixed. Programs can’t define new
preprocessor commands.

Some command names require arguments; these make up the rest of the
command line and must be separated from the command name by one or
more white-space characters. For example, #define must be followed by a
macro name and the intended expansion of the macro.

A preprocessor command normally can’t be more than one line. It may be
split cosmetically with backslash-newline, but that has no effect on its
meaning. Comments containing newlines can also divide the command
into multiple lines, but the comments are changed to spaces before the
command is interpreted. The only way a significant newline can occur in a
preprocessor command is within a string constant or character constant.
(Note that most C compilers that might be applied to the output from the
preprocessor do not accept string or character constants containing
newlines. This compiler does accept them, however..

The # and the command name can’t come from a macro expansion. For
example, if foo is defined as a macro expanding to define, that doesn’t make
#foo a valid preprocessor command.
9

Header Files

Header files can contain C declarations and macro definitions that are to be
shared by more than one source file. You request the inclusion of a header file
in a source file by using the C preprocessor command #include (or more typically
in the Rhapsody environment, the Objective-C preprocessor command #import).

Uses of Header Files
Header files serve two kinds of purposes:

• System header files declare the interfaces to parts of the operating system.
You include them in your program to supply the definitions you need to
invoke system calls and libraries.

• Your own header files contain declarations for interfaces between the source
files of your program. Each time you have a group of related declarations
and macro definitions, all or most of which are needed in several different
source files, it’s a good idea to create a header file for them.

Including a header file produces the same results in C compilation as copying
the header file into each source file that needs it. But such copying would be
time-consuming and error-prone. With a header file, the related declarations
appear in only one place. If they need to be changed, they can be changed in
one place, and programs that include the header file will automatically use the
new version when recompiled.

By convention, names of header files end with the extension “.h”.

The #include Command
Both user and system header files are included using the preprocessor command
#include. The #include command directs the C preprocessor to scan the specified file
as input before continuing with the rest of the current file. The output from the
preprocessor will contain the output already generated, followed by the output
resulting from the included file, followed by the output that comes from the text
after the #include command. Included files can themselves contain #include
commands to include other files.

Included files are not limited to declarations and macro definitions, although
those are the typical uses. Any fragment of a C program can be included from
another file. The include file could even contain the beginning of a statement
that is concluded in the containing file, or the end of a statement that was started
in the including file. However, a comment or a string or character constant may
10

Header Files

not start in the included file and finish in the including file. An
unterminated comment, string constant or character constant in an included
file is considered to end (with an error message) at the end of the file.

The line following the #include command is always treated as a separate line
by the C preprocessor, even if the included file lacks a final newline.

Note: The Objective-C language equivalent of #include is #import; the only
difference is that #import doesn’t include a file more than once, no matter how
many #import commands try to include it. You should feel free to use #import
in your code, but be aware that it isn’t defined as part of ANSI-standard C.

The #include command has three variants:

#include <>

#include < file >

This variant is used for system or framework header files. It searches for a
file named file in a list of directories specified by you, and then, if it isn’t
found, in a standard list of system directories. You specify directories to
search for header files with the command option -I (see the section
“Invoking the C Preprocessor”). The option -nostdinc inhibits searching the
standard system directories; in this case only the directories you specify are
searched.

For frameworks the semantics of the text between the angle brackets is
different. The word preceding the slash indicates a framework. Thus the
line:

<AppKit/AppKit.h>

causes the search for the header file AppKit.h to occur in the Application Kit
framework (/System/Library/Frameworks/AppKit.framework). The PrivateHeaders
subdirectory is searched first, and then the Headers directory, thus allowing a
private header file to override a public one. The flags -F, -I, and -L affect
search path for frameworks (see “Invoking the Preprocessor,” below); The
linker’s -framework flag, however, has no effect.

The parsing of this form of #include is slightly special because comments are
not recognized within the <file> argument. (The < and > are similar to string
delimiters instead of operators.) Thus, in #include <x/*y> the /* doesn’t start a
comment and the command specifies inclusion of a system header file
named x/*y. (Of course, a header file with such a name is unlikely to exist on
Rhapsody or a UNIX system, where shell wildcard features would make it
hard to manipulate.)
11

The file argument may not contain a > character, although it may contain a <
character. Whitespace characters in the file argument may or may not be ignored,
so do not use them.

#include ""
#include " file "

This variant is used for header files of your own program. It searches for a file
named file first in the current directory, then in the same directories used for
system header files. The current directory is tried first because it’s presumed to
be the location of the files of the program being compiled. (If the -I- option is
used, the special treatment of the current directory is inhibited.)

The file argument may not contain " characters. If backslashes occur within file,
they might be considered ordinary text characters, not escape characters. None
of the character escape sequences appropriate to string constants in C are
processed. Thus, #include "x\n\\y" specifies a file name containing three
backslashes. It isn’t clear why this behavior is ever useful, but the ANSI
standard specifies it.

#include anything else
#include anything else

This variant is called a computed #include. Any #include command whose argument
doesn’t fit the above two forms is a computed #include. The text anything else is
checked for macro calls, which are expanded. When this is done, the result must
fit one of the above two variants.

This feature allows you to define a macro that controls the file name to be used
at a later point in the program. One application of this is to allow a site-
configuration file for your program to specify the names of the system header
files to be used. This can help in porting the program to various operating
systems in which the necessary system header files are found in different places.

Multiple Inclusion of Header Files
Very often one header file includes another, which can result in a certain header
file being included more than once. This may lead to errors if the header file
defines structure types or typedefs, and in any event is wasteful. For these
reasons, you should try to avoid multiple inclusion of a header file.

The standard way to prevent multiple inclusion of a file is to enclose the entire
real contents of the file in a conditional, like this:
12

Precompiled Header Files

#ifndef __FILE_FOO_SEEN__
#define __FILE_FOO_SEEN__
the entire file
#endif /* __FILE_FOO_SEEN__ */

The macro __FILE_FOO_SEEN__ indicates that the file has been included once
already; its name begins with __ to avoid conflicts with user programs, and
it contains the name of the file and some additional text to avoid conflicts
with other header files.

Alternatively (if compatibility with non-Rhapsody platforms isn’t an issue),
you can ensure that each file is included only once simply by using the
Objective-C #import command instead of the #include command.

Precompiled Header Files

A precompiled header is a C header file that has been preprocessed and
parsed, thereby improving compile time and reducing symbol table size.
The macros and external declarations from the original header are sorted to
enable fast lookup. A new implementation of the C preprocessor can use
precompiled headers in place of standard headers.

In most cases, the use of precompiled headers is transparent. Precompiled
headers are simple enough to use that most projects require no conversion
at all, or can be converted in a day or less.

Note that the following information on precompiled headers applies only to
to this compiler. This feature may not be avaiable, or may take another
form, in other compilers.

Using Precompiled System Header Files
The precompiled version of a header file has a “.p” extension, rather than
the standard “.h” extension. You should not refer to AppKit.p in your source
files; just use AppKit.h and the preprocessor will use the precompiled form if
it’s available and appropriate.

When the preprocessor encounters an include directive, it automatically
looks for a precompiled version of the header. If one is found, it checks
whether the context is equivalent to the context in which the precompiled
header was built—if it is, the precompiled header is used. However, if any
of the following problems occur, the non-precompiled form is included
instead:
13

• A header which was included by the precompiled header could not be found
in the filesystem to verify its modification time, or the modification time did
not match. In practice, this never occurs for precompiled headers that are
part of the release, and occurs only rarely when programmers build their
own precompiled headers.

• A macro was defined when the precompiled header was built, but is not
defined in the current context. This is only a problem if the macro was
actually referenced somewhere in the precompiled header.

• A macro was undefined when the precompiled header was built, but is
defined in the current context. This is only a problem if there might have
been an invocation of the macro in the precompiled header.

Compile-time warnings (described at the end of this file) indicate the nature of
any problems that occur. However, you may suppress these warning messages
with -Wno-precomp. The intent of these messages is to point out problems that, if
corrected, would improve compilation speed.

If you’re developing a small project, you don’t need to bother building your own
precompiled headers—just use the precompiled system headers AppKit.p,
Foundation.p, mach.p and so on. If these system precompiled header files don’t exist
on Rhapsody, you can create them by running the fixPrecomps utility. Also, it’s easy
to create your own precompiled headers if you wish to do so, however, as
described in the next section.

Creating Your Own Precompiled Header Files
You create a precompiled header by passing the -precomp switch to cc. Depending
on the context(s) in which the header is used, -D switches should also be passed
to cc, as explained below.

% cc -precomp foo.h -o foo.p

We say a header is “context dependent” if the definitions in the header may
change depending on the context in which it is included. Most uses of
conditional compilation and macro expansions cause context dependence. For
instance, the following header is context dependent:

#ifdef DEBUG

int a;

#else

int b;

#endif

The context at any point is determined by the macros that are defined there. A
precompiled header must be created in a context equivalent to that where it is
14

Precompiled Header Files

used. By passing switches to the preprocessor, any set of macros can be
predefined, creating a context in which the precompiled header is built.
This is done by passing a -D switch for each macro in the context.

A precompiled header built from system headers typically requires no -D
switches, because programmers usually include system headers in a
context-independent way. For instance, the public Application Kit headers
contain almost no preprocessor conditionals; clients cannot change
declarations in headers by defining macros. So the command to build a
precompiled header from AppKit.h is:

% cc -precomp AppKit.h -o AppKit.p -arch i386 -arch ppc

(The architectures affected are usually specified using the -arch switch: “fat”
compilation requires “fat” precompilation.) But if you must use a header
bar.h in a context where FOO is defined, you should build the precompiled
header as follows:

% cc -precomp -DFOO bar.h -o bar.p

You should also pass any preprocessor switches, such as -I, that you use in
your project.

By making precompiled headers bigger (that is, containing more headers),
a given C file may include fewer precompiled headers, and will generally
compile faster. However, the bigger a precompiled header is, the more
likely that name conflicts will occur.

For example, if you were to combine all the headers for a project, including
system headers, into a single precompiled header, it is possible that there
would be a name conflict. There may be a macro defined that happens to
match one of your local identifiers, or there may be a public struct declared
that happens to match one of your private struct names. Such conflicts
manifest themselves as preprocessing errors, syntax errors, or semantic
errors. The conflicts may be resolved by renaming identifiers, or removing
a conflicting header from the precompiled header.

Another disadvantage to big precompiled headers is file dependencies. If
all of the C files in a project depend on a single precompiled header which
in turn depends on all headers in the project, then changing a header
requires recompilation of the entire project. A better approach is to build a
precompiled header containing all the system headers used by a project,
and perhaps also a separate precompiled header for the local headers in the
project. We recommend that during development, while local headers are
changing, precompiled headers be used only for system files. When local
headers have stabilized, they may be combined into a precompiled header.
15

A precompiled header is dependent on all the files it includes. A make
dependency rule can be constructed similar to the way rules are constructed for
source files. The following rule builds a precompiled header from a header:

.h.p:
 cc -precomp $(CFLAGS) $*.h -o $*.p

A precompiled header records absolute path names for all the headers that went
into it. These paths are then checked when the precompiled header is used.
Therefore a precompiled header should be built in the same directory in which
it is to be used, and all the headers that went into the precompiled header must
not be moved or modified.

Troubleshooting
To use precompiled headers you must have the cpp-precomp preprocessor and
parser, which has several incompatibilities with the standard GNU C
preprocessor and parser. For example, preprocessing errors and syntax errors are
in a slightly different format.

Only rarely will you have trouble building a precompiled header. The most
common problem you might encounter is that the header doesn’t parse; this is
often because the header does not include other headers it depends on, so that
there are undefined types. Another typical problem is conflicting definitions,
which can be solved by renaming identifiers or removing a header from the
precompiled header.

The following list describes the compile-time warnings that may occur when
using a precompiled header:

• could not use precompiled header ‘header.p’

The precompiled header could not be used for one of the reasons below.

• macro ‘macro’ undefined

The macro was defined when the precompiled header was built, but is not
defined in the current context.

• macro ‘macro’ previously defined on command line for precomp. Not defined.

The macro was undefined when the precompiled header was built, but is
defined in the current context. This error can often be avoided by
importing precompiled headers in the source file before any other headers.

• macro ‘macro’ defined by ‘header.p’ conflicts with precomp
16

Macros
A previously included precompiled header defines a macro differently
than does the current precompiled header being processed.

• macro ‘macro’ defined on command line conflicts with precomp

Similar to the previous warning, except that the earlier definition of the
macro occurred on the command line (with the -D flag).

• macro ‘macro’ redefined, locations of the conflict are:
header1.h:23
header2.h:47 (within the precompiled header)

The macro has been defined in two different ways in two different
precompiled headers

• #ifdef ‘SYM’ not defined when precompiled

A symbol was defined for the inclusion of this precompiled header, but
was not when the header was precompiled. Since this symbol is used
in an #ifdef, the precompiled header does not contain all the source
code desired by the including context.

• ‘header.h’ has different date than in precomp

The modification time of the header on the disk does not match the
modification time of the header when the precompiled header was
built.

• could not find ‘header.h’

The header which was included by the precompiled header could not
be found on the disk to verify its modification time.

• could not use precomp ‘header.p’ (incorrect version)

It was discovered that the version of the referenced precompiled
header is incompatible with the compiler, possibly signifying a corrupt
or obsolete header.p.

Macros

A macro is an abbreviation you define once and then use later. This section
describes some important features associated with macros in the C
preprocessor.
17

Simple Macros
A simple macro is a kind of abbreviation—it’s a name that stands for a fragment
of code. Simple macros are sometimes referred to as manifest constants.

Before you can use a macro, you must define it explicitly with the #define
command. #define is followed by the name of the macro and then the code it
should be an abbreviation for. For example,

#define BUFFER_SIZE 1020

defines a macro named BUFFER_SIZE as an abbreviation for the text 1020. With this
definition in effect, the C preprocessor would expand the following statement

foo = (char *) xmalloc (BUFFER_SIZE);

to

foo = (char *) xmalloc (1020);

The definition must be a single line; however, it may not end in the middle of a
multiline string constant or character constant.

For readability, uppercase is used for macro names by convention. Programs are
easier to read when it’s possible to tell at a glance which names are macros.

Normally, a macro definition must be a single line (although you can always split
a long macro definition cosmetically with backslash-newline). There’s one
exception: Newlines can be included in the macro definition if they’re within a
string or character constant. It isn’t possible for a macro definition to contain an
unbalanced quote character; the definition automatically extends to include the
matching quote character that ends the string or character constant. Comments
within a macro definition may contain newlines (which make no difference,
since the comments are entirely replaced with spaces regardless of their
contents).

Aside from the above, there is no restriction on what can go in a macro body.
Parentheses need not balance, and the body need not resemble valid C code.
(Of course, you might get error messages from the C compiler when you use the
macro.) However, tokens must be valid C tokens. For example, the symbol 1A
would cause an error in both the compiler and the preprocessor.

The C preprocessor scans your program sequentially, so macro definitions take
effect at the place you write them. Therefore, the following input to the C
preprocessor

foo = X;
#define X 4
bar = X;
18

Macros
produces as output:

foo = X;
bar = 4;

After the preprocessor expands a macro name, the macro’s definition body
is appended to the front of the remaining input, and the check for macros
continues. Therefore, the macro body can contain other macros. For
example, after the following definitions

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

the name TABLESIZE when used in the program would go through two stages
of expansion, resulting ultimately in 1020.

This isn’t the same as defining TABLESIZE to be 1020. The #define for TABLESIZE
uses exactly the body you specify—in this case, BUFSIZE—and doesn’t check
to see whether it too is the name of a macro. It’s only when you use TABLESIZE
that the result of its expansion is checked for more macro names. See the
section “Cascaded Use of Macros.”

Macros that Take Arguments
A simple macro always stands for exactly the same text, each time it’s used.
Macros can be more flexible when they accept arguments. Arguments are
fragments of code that you supply each time the macro is used. These
fragments are included in the expansion of the macro according to the
directions in the macro definition.

To define a macro that takes arguments, you use the #define command with a
list of parameters in parentheses after the name of the macro. The
parameters may be any valid C identifiers separated by commas at the top
level (that is, commas that aren’t within parentheses) and, optionally, by
white-space characters. The left parenthesis must follow the macro name
immediately, with no space in between.

For example, here’s a macro that computes the minimum of two numeric
values:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

Note that this isn’t the best way to define a “minimum” macro in GNU C
(see the section “Duplication of Side Effects” for more information).

To use a macro that takes arguments, you write the name of the macro
followed by a list of arguments in parentheses, separated by commas. The
19

number of arguments you give must match the number of parameters in the
macro definition. The following examples show the use of the macro min:

min (1, 2)
min (x + 28, *p)

The expansion text of the macro depends on the arguments you use. Each of
the macro’s parameters is replaced, throughout the macro definition, with the
corresponding argument. Using the same macro min defined above, min (1, 2)
expands to

((1) < (2) ? (1) : (2))

where 1 has been substituted for X and 2 for Y.

Likewise, min (x + 28, *p) expands into

((x + 28) < (*p) ? (x + 28) : (*p))

Parentheses in the arguments must balance; a comma within parentheses
doesn’t end an argument. However, there’s no requirement for brackets or
braces to balance; thus, if you want to supply

array[x = y, x + 1]

as an argument, you would write it as

array[(x = y, x + 1)]

After the arguments are substituted into the macro body, the entire result is
appended to the front of the remaining input, and the check for macros
continues. Therefore, the arguments can contain other macros, either with or
without arguments, or even the same macro. The macro body can also contain
other macros. For example, min (min (a, b), c) expands into

((((a) < (b) ? (a) : (b))) < (c)
 ? (((a) < (b) ? (a) : (b)))
 : (c))

Line breaks shown here for clarity wouldn’t actually be generated.

If a macro takes one argument, and you want to supply an empty argument, you
must write at least some whitespace between the parentheses. For example

foo ()

is acceptable, but

foo ()
20

Macros
generates an error if foo expects an argument.

The correct way to call a macro defined to take zero arguments is:

#define foo()

. . .

foo()

If you use the macro name followed by something other than a left
parenthesis (after ignoring any spaces, tabs, and comments that follow), it
isn’t considered a macro invocation, and the preprocessor doesn’t change
what you’ve written. Therefore, it’s possible for the same name to be a
variable or function in your program as well as a macro, and you can choose
in each instance whether to refer to the macro (if an argument list follows)
or the variable or function (if an argument list doesn’t follow).

Such dual use of one name could be confusing and should be avoided
except when the two meanings are effectively synonymous: that is, when
the name is both a macro and a function and the two have similar effects.
You can think of the name simply as a function; use of the name for
purposes other than calling it (such as, to take the address) will refer to the
function, while calls will expand the macro. For example, you can use a
function named min in the same source file that defines the macro. If you
write &min with no argument list, you refer to the function. If you write min
(x, bb), with an argument list, the macro is expanded. If you write (min) (a, bb),
where the name min isn’t followed by a left parenthesis, the macro isn’t
expanded; rather, the function min is called.

A name can’t be defined as both a simple macro and a macro with
arguments.

In the definition of a macro with arguments, the list of argument names
must follow the macro name immediately with no space in between. If
there is a space after the macro name, the macro is defined as taking no
arguments, and the rest of the name is taken to be the expansion. The
reason for this is that it’s often useful to define a macro that takes no
arguments and whose definition begins with an identifier in parentheses.
This rule about spaces makes it possible for you to do either this (which
defines FOO to take an argument and expand into minus the reciprocal of that
argument)

#define FOO(x) - 1 / (x)

or this (which defines FOO to take no argument and always expand into (x) - 1
/ (x)):

#define FOO (x) - 1 / (x)
21

It matters only in the macro definition whether there’s a space before the left
parenthesis; when you use the macro, it doesn’t matter if there are spaces there
or not.

Predefined Macros
Several standard macros are predefined, some by ANSI C and some as
extensions. Their names all start and end with double underscores.

ANSI C standard macros
The following predefined macros are part of the ANSI C standard:

__FILE__
__FILE__

This macro expands to the name of the current input file, in the form of a C
string constant.

__LINE__
__LINE__

This macro expands to the current input line number, in the form of a decimal
integer constant. (Note that although this is considered a predefined macro, its
definition changes with each new line of source code.)

This and __FILE__ are useful in generating an error message to report an
inconsistency detected by the program; the message can state the source line at
which the inconsistency was detected. For example:

fprintf (stderr,
 "Internal error: negative string length "
 "%d at %s, line %d."
 length, __FILE__, __LINE__);

An #include command changes the expansions of __FILE__ and __LINE__ to
correspond to the included file. At the end of that file, when processing resumes
on the input file that contained the #include command, the expansions of __FILE__
and __LINE__ revert to the values they had before the #include (but __LINE__ is then
incremented by one as processing moves to the line after the #include).

The expansions of both __FILE__ and __LINE__ are altered if a #line command is
used. See the section “Combining Source Files.”

__DATE__
__DATE__
22

Macros
This macro expands to a string constant that describes the date on which
the preprocessor is being run. The string constant contains 15 characters
and looks like “Tue Jun 02 1992”.

__TIME__
__TIME__

This macro expands to a string constant that describes the time at which the
preprocessor is being run. The string constant contains 12 characters and
looks like “23:59:01 EDT”.

__STDC__
__STDC__

This macro expands to the constant 1, to signify that this is ANSI-standard
C. (Whether that’s actually true depends on what C compiler will operate
on the output from the preprocessor.)

GNU C Macros
The following predefined macros are GNU C extensions to the ANSI C
standard:

__GNUC__
__GNUC__

This macro is defined if and only if this is GNU C. Moreover, it’s defined
only when the entire GNU C compiler is in use; if you invoke the
preprocessor directly, __GNUC__ is undefined.

__STRICT_ANSI__
__STRICT_ANSI__

This macro is defined if and only if the -ansi switch was specified when GNU
C was invoked. Its definition is the null string. This macro exists primarily
to direct certain GNU header files not to define traditional UNIX constructs
that are incompatible with ANSI C.

__GNUG__
__GNUG__

The GNU C compiler defines this when the compilation language is C++;
use __GNUG__ or __cplusplus to distinguish between GNU C and GNU C++
code.

__cplusplus
__cplusplus
23

The draft standard for C++ requires the predefinition of this variable. GNU C++
to define it as 1, to indicate that this compiler does not yet fully support the
standard C++ language. You can use __cplusplus to test whether a header is
compiled by a C compiler or a C++ compiler.

__VERSION__
__VERSION__

This macro expands to a string describing the version number of the compiler.
The string is normally a sequence of decimal numbers separated by periods,
such as “1.18”. The main use of this macro is to incorporate the version number
into a string constant.

__OPTIMIZE__
__OPTIMIZE__

This macro is defined in optimizing compilations. It causes certain GNU
header files to define alternative macro definitions for some system library
functions. It’s unwise to refer to or test the definition of this macro unless you
make sure that programs will execute with the same effect regardless.

__CHAR_UNSIGNED__
__CHAR_UNSIGNED__

This macro is defined if and only if the data type char is unsigned on the target
machine. Its purpose is to cause the standard header file limit.h to work correctly.
It’s bad practice to refer to this macro yourself; instead, refer to the standard
macros defined in limit.h.

Rhapsody macros
The following macros are defined in Rhapsody:

__OBJC__
__OBJC__

This macro is defined when you compile Objective-C “.m” files or Objective-
C++ “.M” files, or when you override the file extension with -ObjC or -ObjC++.

__ASSEMBLER__
__ASSEMBLER__

This macro is defined when compiling “.s” files.

__STRICT_BSD__
__STRICT_BSD__
24

Macros
This macro is defined if and only if the -bsd switch was specified when GNU
C was invoked.

__MACH__
__MACH__

This macro is defined if Mach system calls are supported.

Platform-Dependant Predefined Macros
The C preprocessor normally has several predefined macros that vary
between machines because their purpose is to indicate what type of system
and machine is in use. This section lists some that are useful on Rhapsody
computers.

Some platform-dependant predefined macros describe the operating
system in use. For example:

Other nonstandard predefined macros describe the kind of CPU. For
example:

Yet other nonstandard predefined macros describe the manufacturer of the
system. For example:

These predefined symbols aren’t only nonstandard, they’re contrary to the
ANSI standard because their names don’t start with underscores. The -ansi
option, which requests complete support for ANSI C, inhibits the definition
of these predefined symbols.

Macro Where it’s defined

unix Predefined on Rhapsody and supported UNIX systems.

BSD Predefined on versions of Berkeley 4.3BSD. Note that this isn’t predefined under Rhapsody.

Macro Where it’s defined

mc68000 Predefined on most computers whose CPU is a Motorola 68000, 68010, 68020, 68030, or 68040.

Macro Where it’s defined

NeXT Predefined on a NeXT computer.
25

This tends to make the use of -ansi problematic, since some programs depend on
the customary nonstandard predefined symbols that indicate computer type.
Even system header files check them and will generate incorrect declarations if
they do not find the names that are expected. Header files supplied for a
specific computer type sometimes don’t assume the type but test for it using the
customary names.

What, then, should you do in an ANSI C program to test the type of machine it
will run on?

GNU C offers a parallel series of symbols for this purpose, whose names are
made from the customary ones by adding __ at the beginning and end.

Stringification
“Stringification” means turning a code fragment into a string constant whose
contents are the text for the code fragment. For example, stringifying foo (z)
results in "foo (z)".

In the C preprocessor, stringification is an option available when macro
arguments are substituted into the macro definition. In the body of the
definition, when an argument name appears, the character # before the name
specifies stringification of the corresponding argument when it’s substituted at
that point in the definition. The same argument may be substituted in other
places in the definition without stringification if the argument name appears in
those places with no #.

Here’s an example of a macro definition that uses stringification:

#define WARN_IF(EXP) \
do { if (EXP) fprintf(stderr, "Warning: " #EXP "\n"); } while(0)

Here the argument for EXP is substituted once as given, into the if statement, and
once as stringified, into the argument to fprintf. The do and while (0) make it
possible to write WARN_IF (ARG); safely (see the section “Swallowing the
Semicolon”).

The stringification feature is limited to transforming one macro argument into
one string constant: There’s no way to combine the argument with other text
and then stringify it all together. But the example above shows how an
equivalent result can be obtained in ANSI-standard C using the feature that
adjacent string constants are concatenated as one string constant. The
preprocessor stringifies the actual value of EXP into a separate string constant,
resulting in text like

do { if (x==0) fprintf (stderr, "Warning: " "x == 0" "\n"); } while(0)
26

Macros
but the C compiler then sees three consecutive string constants and
concatenates them into one, producing:

do { if (x==0) fprintf (stderr, "Warning: x == 0\n"); } while (0)

Stringification in C involves more than putting double quotes around the
fragment; it’s necessary to put backslashes in front of all double quotes, and
all backslashes in string and character constants, in order to get a valid C
string constant with the proper contents. Thus, stringifying p = "foo\n"; results
in "p = \"foo\\n\";". However, backslashes that aren’t inside string or character
constants aren’t duplicated: \n by itself stringifies to "\n".

White-space characters (including comments) in the text being stringified
are handled according to the following rules:

• All leading and trailing white-space characters are ignored.

• Any sequence of white-space characters in the middle of the text is
converted to a single space in the stringified result.

It’s often useful to define, for example:

STR(X) #X

so that when you use the macro instead of #X directly, X is re-scanned one
more time for macro expansion.

Concatenation
Concatenation means joining two strings into one. In the context of macro
expansion, concatenation refers to joining two lexical units into one longer
one. Specifically, an argument to the macro can be concatenated with
another argument or with fixed text to produce a longer name. The longer
name might be the name of a function, variable or type, or a C keyword; it
might even be the name of another macro, in which case it will
be expanded.

When you define a macro, you request concatenation with the special
operator ## in the macro body. When the macro is invoked, arguments are
substituted. Then all ## operators are deleted, along with any white-space
characters next to them (including white-space characters that are part of an
argument). The result is to concatenate the syntactic tokens on either side
of the ##.

Consider a C program that interprets named commands. There probably
needs to be a table of commands, perhaps an array of structures declared as
follows:
27

struct command
{
 char *name;
 void (*function) ();
};

struct command commands[] =
{
 { "quit", quit_command},
 { "help", help_command},
 . . .
};

It would be cleaner not to have to give each command name twice, once in the
string constant and once in the function name. A macro that takes the name of
a command as an argument can make this unnecessary. The string constant can
be created with stringification, and the function name by concatenating the
argument with “_command”:

#define COMMAND(NAME) { #NAME, NAME ## _command }

struct command commands[] =
{
 COMMAND (quit),
 COMMAND (help),
 . . .
};

The usual case of concatenation is concatenating two names (or a name and a
number) into a longer name. But this isn’t the only valid case. It’s also possible
to concatenate two numbers (or a number and a name, such as 1.5 and e3) into a
number. Also, multicharacter operators such as += can be formed by
concatenation. In some cases it’s even possible to piece together a string
constant. However, two pieces of text that don’t together form a valid lexical
unit cannot be concatenated. For example, concatenation with x on one side and
+ on the other isn’t meaningful because those two characters can’t fit together in
any lexical unit of C. Although the ANSI standard says that such an attempt at
concatenation is undefined, the GNU C preprocessor handles it as follows: it
puts the x and + side by side with no particular special results.

The C preprocessor converts comments to whitespace before macros are even
considered. Therefore, you cannot create a comment by concatenating / and *:
the /* sequence that starts a comment is not a lexical unit, but rather the
beginning of a “long” space character. You can freely use comments next to a ##
in a macro definition, or in arguments that will be concatenated, because the
comments will be converted to spaces at first sight, and concatenation will later
discard the spaces.
28

Macros
Undefining Macros
To undefine a macro means to cancel its definition. This is done with the
#undef command. #undef is followed by the macro name to be undefined.

Like definition, undefinition occurs at a specific point in the source file, and
it applies starting from that point. The name ceases to be a macro name,
and from that point on it’s treated by the preprocessor as if it had never been
a macro name.

For example,

#define FOO 4
x = FOO;
#undef FOO
x = FOO;

expands into

x = 4;
x = FOO;

In this example, FOO must be a variable or function as well as (temporarily) a
macro, in order for the result of the expansion to be valid C code.

The same form of #undef command will cancel definitions with arguments or
definitions that don’t expect arguments. The #undef command has no effect
when used on a name not currently defined as a macro.

Redefining Macros
Redefining a macro means defining (with #define) a name that is already
defined as a macro.

A redefinition is trivial if the new definition is transparently identical to the
old one. You probably wouldn’t deliberately write a trivial redefinition, but
they can happen automatically when a header file is included more than
once (see the section “Header Files”), so they’re accepted silently and
without effect.

Nontrivial redefinition is considered likely to be an error, so it provokes a
warning message from the preprocessor. However, sometimes it’s useful to
change the definition of a macro in mid-compilation. You can inhibit the
warning by undefining the macro with #undef before the second definition.

In order for a redefinition to be trivial, the new definition must exactly
match the one already in effect, with two possible exceptions:

• Whitespace may be added or deleted at the beginning or the end.
29

• Whitespace may be changed in the middle (but not inside strings).
However, it may not be eliminated entirely, and it may not be added where
there was no whitespace previously. Remember, comments count as
whitespace.

Pitfalls and Subtleties of Macros
This section describes some special rules that apply to macros and macro
expansion, and points out certain cases in which the rules have counterintuitive
consequences that you must watch out for.

Improperly Nested Constructs
Recall that when a macro is invoked with arguments, the arguments are
substituted into the macro body and the result is checked, together with the rest
of the input file, for more macros.

It’s possible to piece together a macro invocation coming partially from the
macro body and partially from the arguments. For example,

#define double(x) (2*(x))
#define call_with_1(x) x(1)

would expand call_with_1 (double) into (2*(1)).

Macro definitions don’t have to have balanced parentheses. By writing an
unbalanced left parenthesis in a macro body, it’s possible to create a macro
invocation that begins inside the macro body but ends outside it. For example:

#define strange(file) fprintf (file, "%s %d",
. . .
strange(stderr) p, 35)

This bizarre example expands to

fprintf (stderr, "%s %d", p, 35)

Unintended Grouping of Arithmetic
You may have noticed that in most of the macro definition examples shown
above, each occurrence of a macro argument name has parentheses around it. In
addition, another pair of parentheses usually surround the entire macro
definition. This section discusses why it’s best to write macros that way.

Suppose you define a macro

#define ceil_div(x, y) (x + y - 1) / y
30

Macros
whose purpose is to divide, rounding up. (One use for this operation is to
compute how many int objects are needed to hold a certain number of char
objects.) Then suppose it’s used as follows:

a = ceil_div (b & c, sizeof (int));

This expands into

a = (b & c + sizeof (int) - 1) / sizeof (int);

which doesn’t do what’s intended. The operator-precedence rules of C
make this equivalent to:

a = (b & (c + sizeof (int) - 1)) / sizeof (int);

But what we want is:

a = ((b & c) + sizeof (int) - 1)) / sizeof (int);

Defining the macro as follows provides the desired result:

#define ceil_div(x, y) ((x) + (y) - 1) / (y)

However, unintended grouping can happen in another way. Consider sizeof
ceil_div(1, 2). This has the appearance of a C expression that would compute
the size of the type of ceil_div (1, 2), but in fact it means something very
different. Here’s what it expands to:

sizeof ((1) + (2) - 1) / (2)

This would take the size of an integer and divide it by 2. The precedence
rules have put the division outside the sizeof() when it was intended to be
inside.

Parentheses around the entire macro definition can prevent such problems.
Here’s the recommended way to define ceil_div:

#define ceil_div(x, y) (((x) + (y) - 1) / (y))

Swallowing the Semicolon
Often it’s desirable to define a macro that expands into a compound
statement. Consider, for example, the following macro, which advances a
pointer across space characters:

#define SKIP_SPACES (p, limit) \
{ register char *lim = (limit); \
 while (p != lim) { \
 if (*p++ != ’ ’) { \
 p-; break; }}}
31

Here backslash-newline is used to split the macro definition, which must be a
single line, so that it resembles the way such C code would appear if not part of
a macro definition.

An invocation of this macro might be SKIP_SPACES (p, lim). Strictly speaking, the
invocation expands to a compound statement, which is a complete statement
with no need for a semicolon to end it. But it looks like a function call. So it
minimizes confusion if you can use it like a function call, writing a semicolon
afterward:

SKIP_SPACES (p, lim);

But this can cause trouble before else statements, because the semicolon is
actually a null statement. Suppose you write

if (*p != 0)
 SKIP_SPACES (p, lim);
else . . .

The presence of two statements—the compound statement and a null
statement—in between the if condition and the else makes invalid C code.

The definition of the macro SKIP_SPACES can be altered to solve this problem,
using a do ... while statement:

#define SKIP_SPACES (p, limit) \
do { register char *lim = (limit); \
 while (p != lim) { \
 if (*p++ != ’ ’) { \
 p-; break; }}} \
while (0)

Now SKIP_SPACES (p, lim); expands into one statement:

do {. . .} while (0);

Duplication of Side Effects
Many C programs define a macro min (for “minimum”), like this:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))

When you use this macro with an argument containing a side effect (as shown
here)

next = min (x + y, foo (z));

it expands as follows:

next = ((x + y) < (foo (z)) ? (x + y) : (foo (z)));

where x + y has been substituted for X and foo (z) for Y.
32

Macros
The function foo is used only once in the statement as it appears in the
program, but the expression foo (z) has been substituted twice into the macro
expansion. As a result, foo might be called two times when the statement is
executed. If it has side effects or if it takes a long time to compute, the
results might not be what you intended. Therefore min is an “unsafe”
macro.

One way to solve this problem is to define min in a way that computes the
value of foo (z) only once. The C language offers no standard way to do this,
but it can be done with GNU C extensions as follows:

#define min(X, Y) \
({ typeof (X) __x = (X), __y = (Y); \
 (__x < __y) ? __x : __y; })

If you don’t wish to use GNU C extensions, the only solution is to be careful
when using the macro min. For example, you can calculate the value of foo
(z), save it in a variable, and use that variable in min:

#define min(X, Y) ((X) < (Y) ? (X) : (Y))
. . .
{
 int tem = foo (z);
 next = min (x + y, tem);
}

Self-Referential Macros
A self-referential macro is one whose name appears in its definition. A
special feature of ANSI-standard C is that the self-reference isn’t
considered a macro invocation. It’s passed into the preprocessor output
unchanged.

Consider the following example (assume that foo is also a variable in your
program):

#define foo (4 + foo)

Following the ordinary rules, each reference to foo will expand into (4 + foo);
then this will be rescanned and will expand into (4 + (4 + foo)); and so on until
it causes a fatal error (memory full) in the preprocessor.

However, the special rule about self-reference cuts this process short after
one step, at (4 + foo). Therefore, this macro definition has the possibly useful
effect of causing the program to add 4 to the value of foo wherever foo is
referred to.

In most cases, it’s a bad idea to take advantage of this feature. A person
reading the program who sees that foo is a variable won’t expect that it’s a
33

macro as well. The reader will come across the identifier foo in the program and
think its value should be that of the variable foo, whereas in fact the value is 4
greater.

The special rule for self-reference applies also to indirect self-reference. This is
the case where a macro X expands to use a macro y, and y’s expansion refers to
the macro x. The resulting reference to x comes indirectly from the expansion
of x, so it’s a self-reference and isn’t further expanded. Thus, after

#define x (4 + y)
#define y (2 * x)

x would expand into (4 + (2 * x)).

But suppose y is used elsewhere, not from the definition of x. Then the use of x
in the expansion of y isn’t a self-reference because x isn’t in progress. So it does
expand. However, the expansion of x contains a reference to y, and that’s an
indirect self-reference now because y is in progress. The result is that y expands
to (2 * (4 + y)).

Separate Expansion of Macro Arguments
We have explained that the expansion of a macro, including the substituted
arguments, is scanned over again for macros to be expanded.

What really happens is more subtle: First each argument text is scanned
separately for macros. Then the results of this are substituted into the macro
body to produce the macro expansion, and the macro expansion is scanned again
for macros to expand.

The result is that the arguments are scanned twice to expand macros in them.

Most of the time, this has no effect. If the argument contained any macros,
they’re expanded during the first scan. The result therefore contains no macros,
so the second scan doesn’t change it. If the argument were substituted as given,
with no prescan, the single remaining scan would find the same macros and
produce the same results.

You might expect the double scan to change the results when a self-referential
macro is used in an argument of another macro (see the section “Self-Referential
Macros” above); the self-referential macro would be expanded once in the first
scan, and a second time in the second scan. But this isn’t what happens. The
self-references that don’t expand in the first scan are marked so that they won’t
expand in the second scan either.

The prescan isn’t done when an argument is stringified or concatenated. (More
precisely, stringification and concatenation use the argument as written, in
34

Macros
unprescanned form. The same argument would be used in prescanned
form if it’s substituted elsewhere without stringification or concatenation.)
Thus,

#define str(s) #s
#define foo 4
str (foo)

expands to "foo". Once more, prescan has been prevented from having any
noticeable effect.

The prescan does make a difference in three special cases:

• Nested invocations of a macro
• Macros that invoke other macros that stringify or concatenate
• Macros whose expansions contain unshielded commas

Nested invocations of a macro occur when a macro’s argument contains an
invocation of that very macro. For example, if f is a macro that expects one
argument, f (f (1)) is a nested pair of invocations of f. The desired expansion
is made by expanding f (1) and substituting that into the definition of f. The
prescan causes the expected result to happen. Without the prescan, f (1)
itself would be substituted as an argument, and the inner use of f would
appear during the main scan as an indirect self-reference and wouldn’t be
expanded. Here, the prescan cancels an undesirable side effect of the
special rule for self-referential macros.

But prescan causes trouble in certain other cases of nested macro calls. For
example:

#define foo a,b
#define bar(x) lose(x)
#define lose(x) (1 + (x))

bar(foo)

We would like bar(foo) to turn into (1 + (foo)), which would then turn into (1 +
(a,b)). But instead, bar(foo) expands into lose(a,b), and you get an error because
lose requires a single argument. In this case, the problem is easily solved by
the same parentheses that ought to be used to prevent misnesting of
arithmetic operations:

#define foo (a,b)

#define bar(x) lose((x))

The problem is more serious when the operands of the macro aren’t
expressions (for example, when they are statements). Then parentheses
are unacceptable because they would make for invalid C code:
35

#define foo { int a, b; ... }

In GNU C you can shield the commas using the ({ . . . }) construct, which turns
a compound statement into an expression:

#define foo ({ int a, b; ... })

Or you can rewrite the macro definition to avoid such commas:

#define foo { int a; int b; ... }

There’s also one case where prescan is useful. It’s possible to use prescan to
expand an argument and then stringify it—if you use two levels of macros. Let’s
add a new macro xstr to the example shown above:

#define xstr(s) str(s)
#define str(s) #s
#define foo 4
xstr (foo)

This expands to "4", not "foo". The reason for the difference is that the argument
of xstr is expanded at prescan (because xstr doesn’t specify stringification or
concatenation of the argument). The result of prescan then forms the argument
for str. str uses its argument without prescan because it performs stringification;
but it can’t prevent or undo the prescanning already done by xstr.

Cascaded Use of Macros
A cascade of macros occurs when one macro’s body contains a reference to
another macro (a very common practice). For example:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE

This isn’t at all the same as defining TABLESIZE to be 1020. The #define for TABLESIZE
uses exactly the body you specify—in this case, BUFSIZE—and doesn’t check to
see whether it too is the name of a macro.

It’s only when you use TABLESIZE that the result of its expansion is checked for more
macro names.

This makes a difference if you change the definition of BUFSIZE at some point in
the source file. TABLESIZE, defined as shown, will always expand using the
definition of BUFSIZE that’s currently in effect:

#define BUFSIZE 1020
#define TABLESIZE BUFSIZE
#undef BUFSIZE
#define BUFSIZE 37

Now TABLESIZE expands in two stages to 37.
36

Macros
Newlines in Macro Arguments
Traditional macro processing carries forward all newlines in macro
arguments into the expansion of the macro. This means that, if some of the
arguments are substituted more than once, or not at all, or are out of order,
newlines can be duplicated, lost, or moved around within the expansion. If
the expansion consists of multiple statements, then the the line numbers
of some of these statements can become distorted. The result can be
incorrect line numbers in error messages or as displayed by a debugger.

The C preprocessor operating in ANSI C mode adjusts itself for multiple
uses of an argument---the first use expands all the newlines, and
subsequent uses of the same argument produce no newlines. But even in
this mode, it can produce incorrect line numbering if arguments are used
out of order, or are not used at all.

Here is an example illustrating this problem:

#define ignore_second_arg(a,b,c) a; c

ignore_second_arg (foo (),

 ignored (),

 syntax error);

The syntax error triggered by the tokens syntax error results in an error
message citing line four, even though the statement text comes from line
five.

Inability to Define a Macro that Produces a # Character
You can’t use the C preprocessor to define macros that produce # characters.
For instance, the following has unexpected results:

#define linkmacro(numBytes) link #numBytes,a6

Note that you can use the # character inside a string or character constant, as
shown here:

#define PrintSharp() printf("#")

Macro Arguments inside String Constants
The C preprocessor doesn’t substitute macro arguments that appear inside
string constants. For example, the following macro will produce the output
"a" no matter what the argument a is:

#define foo(a) "a"

The -traditional option directs cc to handle such cases (among others) in the
traditional non-ANSI way.
37

Conditionals

In a macro processor, a conditional is a command that allows part of the program
to be ignored during compilation, on some conditions. In the C preprocessor, a
conditional can test either an arithmetic expression or whether a name is defined
as a macro.

A conditional in the C preprocessor resembles an if statement in C, but it’s
important to understand the difference between them. The condition in an if
statement is tested during the execution of your program. Its purpose is to allow
your program to behave differently from run to run, depending on the data it’s
operating on. The condition in a preprocessor conditional command is tested
when your program is compiled. Its purpose is to allow different code to be
included in the program depending on the situation at the time of compilation.

There are three reasons to use a conditional:

• A program may need to use different code depending on the target machine
or operating system. In some cases, the code for one operating system may
be erroneous on another operating system; for example, it might refer to
library routines that don’t exist on the other system. When this happens, it
isn’t enough to avoid executing the invalid code: Merely having it in the
program makes it impossible to link the program and run it. With a
preprocessor conditional, the offending code can be effectively excised from
the program when it isn’t valid.

• You may want to be able to compile the same source file into two different
programs. Sometimes the difference between the programs is that one
makes frequent time-consuming consistency checks on its intermediate
data while the other doesn’t.

• A conditional whose condition is always false is a good way to exclude code
from the program but keep it for future reference.

Most programs using only Rhapsody API won’t need to use preprocessor
conditionals.

Syntax of Conditionals
A conditional in the C preprocessor begins with a conditional command: #if,
#ifdef, or #ifndef. These and a few related commands are described in the
following sections.
38

Conditionals
The #if Command
The #if command in its simplest form consists of

#if expression
conditional-text
#endif /* expression */

The comment following the #endif isn’t required, but it makes the code
easier to read. Such comments should always be used, except in short
conditionals that aren’t nested. (Although you can put anything at all after
the #endif and it will be ignored by the C preprocessor, only comments are
acceptable in ANSI Standard C.)

expression is a C expression of type int, subject to stringent restrictions. It
may contain:

• Integer constants, which are all regarded as long or unsigned long.

• Character constants, which are interpreted according to the character
set and conventions of the machine and operating system on which the
preprocessor is running. The C preprocessor uses the C data type char
for these character constants; therefore, whether some character codes
are negative is determined by the C compiler used to compile the
preprocessor. If it treats char as signed, then character codes large
enough to set the sign bit will be considered negative; otherwise, no
character code is considered negative.

• Character constants. The C preprocessor uses the C data type char for
these character constants.

• Arithmetic operators for addition, subtraction, multiplication, division,
bitwise operations, shifts, comparisons, &&, and ||.

• Identifiers that aren’t macros, which are all treated as 0.

• Macro invocation. All macros in the expression are expanded before
actual computation of the expression’s value begins.

sizeof operators and enum-type values aren’t allowed. enum-type values, like all
other identifiers that aren’t taken as macro invocations and expanded, are
treated as 0.

The controlled text inside a conditional can include preprocessor
commands. Then the commands inside the conditional are obeyed only if
that branch of the conditional succeeds. The text can also contain other
conditional groups. However, the #if and #endif commands must balance.
39

The #else Command
The #else command can be added to a conditional to provide alternative text to
be used if the condition is false:

#if expression
text-if-true
#else /* not expression */
text-if-false
#endif /* not expression */

If expression is nonzero, text-if-true is included; then #else acts like a failing
conditional and text-if-false is ignored. If expression is 0, the #if conditional fails
and text-if-false is included.

The #elif Command
A common use of nested conditionals is to check for more than two possible
alternatives:

#if X == 1
. . .
#else /* X != 1 */
#if X == 2
. . .
#else /* X != 2 */
. . .
#endif /* X != 2 */
#endif /* X != 1 */

The conditional command #elif (which stands for “else if”) can be used to
abbreviate this as follows:

#if X == 1
. . .
#elif X == 2
. . .
#else /* X != 2 and X != 1*/
. . .
#endif /* X != 2 and X != 1*/

Like #else, #elif goes in the middle of a #if-#endif pair and subdivides it; it doesn’t
require a matching #endif of its own. Like #if, the #elif command includes an
expression to be tested.

The text following the #elif is processed only if the original #if-condition failed
and the #elif condition succeeds. More than one #elif can go in the same #if-#endif
group. Then the text after each #elif is processed only if the #elif condition
succeeds after the original #if and any previous #elif commands within it have
failed. #else is allowed after any number of #elif commands, but #elif may not
follow a #else.
40

Conditionals
Keeping Deleted Code for Future Reference
If you replace or delete part of the program but want to keep the old code
around as a comment for future reference, you can simply put #if 0 before it
and #endif after it.

This works even if the code being turned off contains conditionals, but they
must be entire conditionals (balanced #if and #endif).

Conditionals and Macros
Conditionals are useful in macros or assertions, because those are the only
ways that an expression's value can vary from one compilation to another.
An #if command whose expression uses no macros or assertions is equivalent
to #if 1 or #if 0; you might as well determine which one—by computing the
value of the expression yourself—and then simplify the program.

For example, here’s a conditional that tests the expression BUFSIZE == 1020,
where BUFSIZE must be a macro:

#if BUFSIZE == 1020
 printf ("Large buffers!\n");
#endif /* BUFSIZE is large */

(Programmers often wish they could test the size of a variable or data type
in #if expressions, but this does not work. The preprocessor does not
understand sizeof, or typedef names, or even the type keywords such as int.)

The special operator defined is used in #if expressions to test whether a certain
name is defined as a macro. Either defined NAME or defined (NAME) is an expression
whose value is 1 if NAME is defined as macro at the current point in the
program, and 0 otherwise. For the defined operator it makes no difference
what the definition of the macro is; all that matters is whether there’s a
definition. Thus, for example,

#if defined (vax) || defined (ns16000)

will include the following code if either vax or ns16000 is defined as a macro.

If a macro is defined and later undefined with #undef, subsequent use of the
defined operator returns 0, because the name is no longer defined. If the
macro is defined again with another #define, defined will again return 1.

Conditionals that test just the definedness of one name are very common,
so there are two special short conditional commands for this case:

• #ifdef name is equivalent to #if defined (name).
• #ifndef name is equivalent to #if ! defined (name).
41

Macro definitions can vary between compilations for any of the following
reasons:

• Some macros are predefined on each kind of machine. For example, on a
NeXT computer the name NeXT is a nonstandard predefined macro. On
other machines, it isn’t defined.

• Many more macros are defined by system header files. Different systems
and machines define different macros, or give them different values. It’s
useful to test these macros with conditionals to avoid using a system feature
on a machine where it isn’t implemented.

• Macros are a common way for you to customize a program for different
machines or applications. For example, the macro BUFSIZE might be defined
in a configuration file for your program that’s included as a header file in each
source file. You would use BUFSIZE in a preprocessor conditional in order to
generate different code depending on the chosen configuration.

• Macros can be defined or undefined with -D and -U command options when
you compile the program. You can arrange to compile the same source file
into two different programs by choosing a macro name to specify which
program you want, writing conditionals to test whether or how this macro is
defined, and then controlling the state of the macro with compiler command
options. You can also use macros to specify different build types of the same
program. For example, you could use -DDEBUG and -DPROFILE for debugging and
profililing builds, respectively. See the section “Invoking the
C Preprocessor.”

The #error and #warning Commands
The #error command causes the preprocessor to report a fatal error. The rest of
the line that follows #error is used as the error message.

You would use #error inside a conditional that detects a combination of
parameters that you know the program doesn’t support.

For example, if you know that the program won’t run properly on a VAX, you
might write

#ifdef vax
#error Won’t work on Vaxen. See comments at get_last_object.
#endif

Similarly, if you have several configuration parameters that must be set up by the
installation in a consistent way, you can use conditionals to detect an
inconsistency and report it with #error. For example:
42

Pragmas
#if (HASH_TABLE_SIZE % 2 == 0) || (HASH_TABLE_SIZE % 3 == 0) \
 || (HASH_TABLE_SIZE % 5 == 0)
#error HASH_TABLE_SIZE shouldn’t be divisible by a small prime
#endif

The #warning command is like the #error command, but causes the
preprocessor to issue a warning and continue preprocessing. The rest of the
line that follows #warning is used as the warning message.

You might use #warning in obsolete header files, with a message directing the
user to the header file which should be used instead.

Pragmas

The #pragma command is specified in the ANSI standard to have an arbitrary
implementation-defined effect. For example, a #pragma might be used to
indicate to the translator the best way to generate code, optimize, or
diagnose errors. It may also pass information to the translator about the
environment, or add debugging information.

The effect of anything specified in a #pragma is currently limited to the
outermost declaration (that is, a function or a global data declaration).

The following pragmas are passed on by the C preprocessor to the compiler
itself:

All other #pragma commands are ignored by the C preprocessor.

Pragma Description

#pragma CC_OPT_ON Force optimization on.

#pragma CC_OPT_OFF Force optimization off.

#pragma CC_OPT_RESTORE Restore optimization to what was specified on the command line
(on if -O was specified, off if not).

#pragma CC_WRITABLE_STRINGS Place strings in the data segment.

#pragma CC_NON_WRITABLE_STRINGS Place strings in the text segment.
43

Combining Source Files

One of the jobs of the C preprocessor is to tell the C compiler the source file and
line number that each line of C code came from.

C code can come from multiple source files if you use #include or #import. If you
include header files, or if you use conditionals or macros, the line number of a
line in the preprocessor output may be different from the line number of the
same line in the original source file. Normally you would want both the C
compiler (in error messages) and the GDB debugger to use the line numbers of
your source file.

The C preprocessor offers a #line command by which you can control this feature
explicitly. #line specifies the original line number and source file name for
subsequent input in the current preprocessor input file. #line has three variants:

#line commands alter the results of the __FILE__ and __LINE__ predefined macros
from that point on. See the section “Predefined Macros.”

The output of the preprocessor (which is the input for the rest of the compiler)
contains commands that look much like #line commands. They start with just #
instead of #line, but this is followed by a line number and file name as in #line.

C Preprocessor Output

The output from the C preprocessor looks much like the input, except that all
preprocessor command lines have been replaced with blank lines and all
comments with spaces. White-space characters within a line aren’t altered;
however, a space is inserted after the expansions of most macros. Also, pragmas
are passed through verbatim.

Command Description

#line linenum linenum is a decimal integer constant. This resets the current line number in the source file to linenum.

#line linenum "file" linenum is a decimal integer constant and "file" is a string constant. This resets the line number to linenum
and changes the name of the file referred to by file.

#line macros macros should be one or more macros that have been defined by earlier preprocessing directives. When the
macros have been expanded by the preprocessor, the #line instruction will then resemble one of the first two
forms and be interpreted appropriately.
44

Invoking the C Preprocessor
Source file name and line number information is conveyed by lines of the
form

linenum file {digit}

which are inserted as needed into the middle of the input (but never within
a string or character constant). Such a line means that the following line
originated in file file at line linenum.

After the file name comes zero or more numeric flags: 1, 2 or 3, separated by
spaces if multiple flags:

Invoking the C Preprocessor

Usually you won’t have to invoke the C preprocessor explicitly, because the
C compiler does so automatically. However, there may be times when you
want to use the preprocessor by itself by invoking the cpp command.

The cpp and cpp-precomp commands expect two file names as arguments, infile
and outfile. The preprocessor reads infile together with any other files that
infile specifies by means of #include or #import. All the output generated by the
combined input files is written in outfile.

Either infile or outfile may be -, which as infile means to read from the
standard input and as outfile means to write to the standard output. Also, if
outfile or both file names are omitted, the standard output and standard
input are used for the omitted file names.

Here’s a list of command options accepted by the C preprocessor. Most of
them can also be given when compiling a C program; they’re passed along
automatically to the preprocessor when it’s invoked by the compiler.

-P
-P

Flag Description

1. The start of a new file

2. Return to a file (after having included another file).

3. Text that follows comes from a system header file
(so certain warnings should be suppressed).
45

Inhibit generation of # lines with line-number information in the output from
the preprocessor (see the section “C Preprocessor Output”). This might be
useful when running the preprocessor on something that isn’t C code and that
will be sent to a program which might be confused by the # lines.

-C
-C

Don’t discard comments: Pass them through to the output file. Comments
appearing in arguments of a macro invocation will be copied to the output before
the expansion of the macro.

-traditional
-traditional

Try to imitate the behavior of old-fashioned C, as opposed to ANSI C.
Traditional C preprocessing has these characteristics:

• Traditional macro expansion pays no attention to single-quote or double-
quote characters; macro argument symbols are replaced by the argument
values even when they appear within apparent string or character constants.

• Traditionally, a macro expansion may end in the middle of a string or
character constant. The constant continues into the text surrounding the
macro call.

• Traditionally the end of the line terminates a string or character constant,
with no error.

• In traditional C a comment is equivalent to no text at all. (In ANSI C, a
comment counts as whitespace.)

• Traditional C does not have the concept of a preprocessing number. It
considers 1.0e+4 to be three tokens: 1.0e, +, and 4.

• In traditional C a macro is not suppressed within its own definition. Thus,
any macro that is used recursively inevitably causes an error.

• The character # has no special meaning within a macro definition in
traditional C.

• In traditional C, the text at the end of a macro expansion can run together
with the text after the macro call to produce a single token.

• Traditionally, \ inside a macro argument suppresses the syntactic
significance of the following character.
46

Invoking the C Preprocessor
-trigraphs
-trigraphs

Process ANSI standard trigraph sequences.

-pedantic
-pedantic

Issue warnings required by the ANSI C standard in certain cases, such as
when text other than a comment follows #else or #endif.

-I
-I dir

Add the directory dir to the end of the list of user-supplied directories to be
searched for header files (see the section “The #include Command”). This
can be used to override a system header file, substituting your own version,
since these directories are searched before the system header file
directories. If you use more than one -I option, the directories are scanned
in left-to-right order; the standard system directories come later.

-I-
-I-

Any directories specified with -I options before the -I- option are searched
only for the case of #include "file"; they aren’t searched for #include <file>.

If additional directories are specified with -I options after the -I-, these
directories are searched for all #include commands.

In addition, the -I- option inhibits the use of the current directory as the first
search directory for #include "file". Therefore, the current directory is searched
only if it’s requested explicitly with a -I. option. Specifying both -I- and -I.
allows you to control precisely which directories are searched before the
current one and which are searched after.

-F
-F dir

Add dir to the end of the list of directories in which to search for
frameworks. Directories specified with -F are searched before the standard
framework directories.
47

-nostdinc
-nostdinc

Don’t search the standard system directories for header files. Only the
directories you specify with -I options (and the current directory, if appropriate)
are searched.

-D
-D name

Predefine name as a macro, with definition 1.

-D name=definition

Predefine name as a macro, with definition definition.

-Uname
-U name

Don’t predefine name. If both -U and -D are specified for one name, the name
won’t be predefined.

-undef
-undef

Don’t predefine any nonstandard macros.

-d
-d

Produce a list of #define commands for all the macros defined during the
execution of the preprocessor, instead of producing the normal preprocessing
output.

-M
-M

Produce a rule suitable for make describing the dependencies of the main source
file, instead of outputting the result of preprocessing. The preprocessor
produces one make rule containing the object file name for that source file, a
colon, and the names of all the included files. If there are many included files
then the rule is split into several lines using backslash-newline.

This feature is used in automatic updating of makefiles.

-MD
-MD

This is similar to -M, but the dependency information is written to files with
names made by replacing “.c” with “.d” at the end of the input file names. This
48

Invoking the C Preprocessor
is in addition to compiling the file as specified; -MD doesn’t inhibit ordinary
compilation the way -M does.

-MM
-MM

This is similar to -M, but mentions only the files included with #include "file".
System header files included with #include <file> are omitted.

-MMD
-MMD

This is similar to -MM, but mentions only user header files, not system header
files.

-H
-H

Print the name of each header file used, in addition to other normal
activities.

-i
-i file

Process file as input, discarding the resulting output, before processing the
regular input file. Because the output generated from file is discarded, the
only effect of -ifile is to make the macros defined in file available for use in
the main input.
49

50

Index

Index
Operator

preprocessor directive 27

C

C preprocessor 5
commands 9
conditionals 38
global transformations 8
invoking 44
output 44

conditional, C preprocessor
with macro 41

 38
syntax 38

D

#define preprocessor directive 18, 19

E

#elif preprocessor directive 40
#else preprocessor directive 40
#error preprocessor directive 42

G

GNU C preprocessor See C preprocessor

H

header files 10
multiple inclusion of 12
precompiled 13

I

#if preprocessor directive 38
#import preprocessor directive 10
#include preprocessor directive 10

M

macro, C preprocessor
arguments See macro arguments
cascaded use 36
with conditional 41
duplication of side effects 32
expansion 17, 19, 20
pitfalls and subtleties 30
predefined 22, 25
redefining 29
self-referential 33

simple 18
stringification 26
undefining 29
unsafe 33

macro arguments, C preprocessor 19
concatenation 27
inside string constants 37
separate expansion of 34

manifest constants 18

N

newlink Concatenation 27

P

#pragma preprocessor directive 43
precompiled header files

creating 14
troubleshooting 16

preprocessor See C preprocessor

S

source files
combining 44

stringification and macros 26

U

#undef preprocessor directive 29

W

#warning preprocessor directive 42
53

Index
54

	Rhapsody C Preprocessor (CPP) Reference
	Table of Contents
	The GNU C Preprocessor
	Global Transformations
	Preprocessor Commands
	Header Files
	Uses of Header Files
	The #include Command
	#include <>
	#include ""
	#include anything else

	Multiple Inclusion of Header Files

	Precompiled Header Files
	Using Precompiled System Header Files
	Creating Your Own Precompiled Header Files
	Troubleshooting

	Macros
	Simple Macros
	Macros that Take Arguments
	Predefined Macros
	ANSI C standard macros
	__FILE__
	__LINE__
	__DATE__
	__TIME__
	__STDC__

	GNU C Macros
	__GNUC__
	__STRICT_ANSI__
	__GNUG__
	__cplusplus
	__VERSION__
	__OPTIMIZE__
	__CHAR_UNSIGNED__

	Rhapsody macros
	__OBJC__
	__ASSEMBLER__
	__STRICT_BSD__
	__MACH__

	Platform-Dependant Predefined Macros
	Stringification
	Concatenation
	Undefining Macros
	Redefining Macros
	Pitfalls and Subtleties of Macros
	Improperly Nested Constructs
	Unintended Grouping of Arithmetic
	Swallowing the Semicolon
	Duplication of Side Effects
	Self-Referential Macros
	Separate Expansion of Macro Arguments
	Cascaded Use of�Macros
	Newlines in Macro Arguments
	Inability to Define a Macro that Produces a # Character
	Macro Arguments inside String Constants

	Conditionals
	Syntax of Conditionals
	The #if Command
	The #else Command
	The #elif Command

	Keeping Deleted Code for Future Reference
	Conditionals and Macros
	The #error and #warning Commands

	Pragmas
	Combining Source Files
	C Preprocessor Output
	Invoking the C�Preprocessor
	-P
	-C
	-traditional
	-trigraphs
	-pedantic
	-I
	-I-
	-F
	-nostdinc
	-D
	-Uname
	-undef
	-d
	-M
	-MD
	-MM
	-MMD
	-H
	-i

	Index

