Text System Defaults and Key Bindings

OPENSTEP 4.x has aweext system. This documentvesals some tips and tricks
about \arious dediults you can use to customize its hédialt also describes hoto
customize thedy bindings supported by thewmeext system.

Note that the ne text object &ists only in the Release 4.engion of the Application

Kit; the following notes don't apply to NEXTSTEP Release 3.3 applications. Also note
that the old (3.3) té object «ists in the 4.0 Application Kit; these deits don't apply

to it nor to ary OpenStep applications which use the ol tebject.

Heavy-duty subclassers may alter some or all of the system's functionality
rendering some or all of these features inaetiThese notes do apply to NeXsT”
OPENSTEP applications such as Project Builtigerface Buildey Text Edit, and
others which use the metext system.

Text System Defaults

NSModifierFlagMapping (dictionary) (Windows platform only)

This defult is on OPENSTEP for Wtdows only It allows you to control the mapping
between pissical modifier kys and logical modifier flags in OpenStep. Thiadéfis
actually not specific to thexiesystem, bit its main purpose is to alobEmacs bindings
to work under Vihdows. By deéult, both Control &s generate the Commane/lbit
(for menu ley equivalents) and both Altéys generate the Alternatekbit (for
mnemonics, primarily). The Controgkbit is not @ailable in the defult setup which
means it is not possible tovioke Emacs-style commands in th&tteystem. This
default can be used to re-map tivaitable leys to generate what youant. The alue
of the defult is a dictionary with four possibleks, each of which can kia one of
three possiblealues. The dictionaryeys are: “LeftControl”, “RightControl”,
“LeftAlt”, and “RightAlt”. The valid values are: “Command’Alt”, and “Control”. So
the defult setup is lile this:

{

"LeftControl" ="Command";
"RightControl" ="Command";
"LeftAlt" ="Alt";
"RightAlt" ="Alt";

}

One possible setup that alls you to use Emacsdys would be:
{

"LeftControl" ="Command";
"RightControl" = "Command";

Topics in OpenStep Programming

"LeftAlt" = "Control";
"RightAlt" = "Alt";
}

This would male it so the left Alt ky acts like a control ky for Emacs. The right Alt
key is still used for Alt.

Currently this dedult has a limitation that only a real Altdy (left or right) can be
used for the Alt bit. Therefore it is notalid to assign “LeftControl” = Alt”.

NSMnemonicsWorkInText (“YES” or “NO”)

This defwult controls whether the xésystem acceptsdy events with the Alt ley

down. The deéult value is NO on Mach and YES on indows. A value of YES

means that arkey event with the Alt bit on will be passed up the responder chain to
eventually be treated as a mnemonic instead of being accepted byt deetietual
input or a key binding command. If this dadilt is set to NO then thekevents with

the Alt bit set will be passed through thextesystem's normaldy input sequence.
This will allow ary key bindings irvolving Alt to work (such as Emacs-style
bindings like Alt-f for word forward) and, on Mach it alles typing of special
international and Symbol font characters.

NSRepeatCountBinding (key binding style string)

This defult controls the numeric gument binding. The defilt is for numeric
arguments not to be supported. If you pide a binding for this defult you enable
the feature. This alles you to repeat as¢board command awgn number of times.
For instance “Control-U 10 Control-F’ means m®forward ten characters.

NSQuotedKeystrokeBinding (key binding style string)

This defwlt controls the quote binding. The @eiit is for this to be “*q” (that's
Control-Q). This is the binding that als you to literally enter characters thatud
otherwise be interpreted as commandst Fstance “Control-Q Control-F” wuld
insert a Control-F character into the document instead of performing the command
moveForward: .

NSTextShowslinvisibleCharacters (“YES” or “NO”)

The defwlt controls whether a te object will by default shav invisible characters
like tab, space, and carriage return using some visible glyph. Bsudeit is NO. It
only controls the dedult setting for NSLayoutManagers (which can be modified
programmatically). In order for this to wrk, the rule book generating the glyphs
must support the feature. Currently our rule books do not support this feature, so
currently this defult is not very useful.

NSTextShowsControlCharacters (“YES” or “NO”)

The deéult controls whether axteobject will by defult shev control characters

visibly (usually by representing Control-C as “*C” in thet}eBy defult it is NO. It

only controls the delult setting for NSLayoutManagers (which can be modified
programmatically). In order for this toonk, the rulebook(s) generating the glyphs

must support the feature. This feature carries a cost. It will increase the memory needed
for documents that contain control characters by quite a lot. Use it with care.

NSTextSelectionColor (color)

This defwult controls the background color of selectat! 8y defwlt this is light gray
Kit defaults that accept colors accept them in one of thegs vEither as an arefed
NSColor object, or as three RGB components, or as a string that can beddsav
factory selector on NSColor that will return the desired color §anple,
“redColor”). Note that NSaxtFields and other controls that use field editors to edit
their text control their avn selection attribtes to conform with the platform Ul.

NSMarkedTextAttribute and NSMarkedTextColor (color or “underline”)

This defult controls the ay that markd text is displayed. The
NSMarkedTextAttribute can be either “Background” or “Underline”. If it is
“Background” then NSMarkdTextColor indicates the background color to use for
marked tet. If NSMarkedTextAttribute is “Underline”, NSMar&dTextColor indicates
the foreground color to use for mardd text (the marled text will be drawn in the
indicated color and underlined). By daitilt, marled text is drawn with a yellow-ish
background coloKit defaults that accept colors accept them in one of thresys.

Either as an arch:d NSColor object, or as three RGB components, or as a string that
can be resokd to a &ctory selector on NSColor that will return the desired color (for
example, “redColor”). Br compatibility with the ay this dedult worked in 4.0, if the
NSMarledTextAttribute defwlt contains a color instead of one of the strings
“Background” or “Underline” then that color is used as the background color for
marked text and the NSMar&dTextColor attritute is ignored.

NSTextKillRingSize (number string)

This defult controls the size of the kill ring (as in Emacs Control-Y). Thauliefalue
is 1 (not really a ring at all, just a singleuddfer). If you set this to a alue lager than
one, you also need to rebind Control-Y to “yankAndSelect:” instead of “yank:” for
things to work properly (note thayankAndSelect:is not listed in aly headers). See
belaw for more info on bindings.

Key bindings
The nev text system uses a generalizeeyibinding mechanism which is completely
re-mappable by the uséFhe standard bindings for canvedys be found in

Topics in OpenStep Programming

NextLibrary/Framew orks/AppKit.framew ork/Resources/
StandardKeyBinding.dict or in NextLibrary/Framew orks/AppKit.framew ork/
Resources/StandardkeyBinding-winnt.dict. On both platforms these standard
bindings include a lge number of Emacs-compatible contref bindings, all the
various arrav key bindings, bindings for making field editors and somyd&ard Ul
work, and backstop bindings for mafunction keys. On Windows the standard
bindings also include a number of Emacs-compatible At kindings (like Alt-f,
Alt-b).

All these bindings are customizable by the ustu can create afile in

~/Library/K eyBindings/DefaultkeyBinding.dict to augment or replace the
standard bindings. Use the standard bindings files as templates. Modifier flags are
specified using special characters: “*" for control, “~" for Alt, “$” for Shift, and “#"
for numeric leypad. Multiple leystroke bindings are supported through nested
binding dictionaries. &t instance, Escape could be bound to “cancel:” or it could be
bound to a whole dictionary whichauld then contain bindings for the xte

keystroke after Escape.

Here are a couple sample binding files that you might use:

1. The first one adds Altdy bindings for some common Emacs $tdthis
might be useful on Mach where the Allykbindings are not standardittV/
these bindings it auld be necessary to type “Control-Q, Alt-f” in order to
type a florin character instead of virtg forward a verd. This sample also
explicitly binds Escape to “complete:”. On Mach, this is thedifso this
override changes nothingubon Windows, Escape is bound to “cancel:”
by defwlt, so thisgample changes it so Escape will meamplete:when
a text object is ley (it will still meancancel:if some non-tetual thing, lile
an NSButton, is &y).

/* ~/Library/KeyBindings/DefaultkeyBinding.dict */

{
/* Additional Emacs bindings */

"~f" = "moveWordForward:";

"~b" ="moveWordBackward:";

"~<" ="moveToBeginningOfDocument:";
"~>"="moveToEndOfDocument:";

"~v" = "pageUp:";

"~d" = "deleteWordForward:";

"~"h" = "deleteWordBackward:";
"~\010" = "deleteWordBackward:"; /* Alt-backspace */
"~\177" ="deleteWordBackward:"; /* Alt-delete */

/* Escape should really be complete: */
"\033" ="complete:"; /* Escape */

}

2. This example shwrs hav to hare multi-keystroke bindings. It binds a number
of Emacs meta bindings using Escape as the mejaristead of the Alt
modifier So Escape follewed by f meansnoveWordForward: here. This
sample binds Esc-Esc to “complete:”. Note the nested dictionaries.

/* ~/Library/KeyBindings/DefaultKeyBinding.dict */

{

}

g < Vv A

/* Additional Emacs bindings */

"033"={
"\033" ="complete:"; /*ESC-ESC*/
"f" = "moveWordForward:"; /* ESC-f*/
"b" ="moveWordBackward:"; /* ESC-b */

" ="moveToBeginningOfDocument:"; /* ESC-<*/
'="moveToEndOfDocument:"; /* ESC->*/
'="pageUp:"; /*ESC-v*

" ="deleteWordForward:"; /* ESC-d */

"~h" = "deleteWordBackward:"; /* ESC-Ctrl-H */
"\010" = "deleteWordBackward:"; /* ESC-backspace */
"\177" = "deleteWordBackward:"; /* ESC-delete */

With the right combination of &y bindings and defult settings, it should be possible
to tailor the text system to your preferences.

Key Bindings in Project Builder

ProjectBuilder uses the Application Kit'sk binding mechanism as described &bo
to define ley bindings for its code editorThese ley-binding definitions are in
NextDeveloper/Apps/ProjectBuilder.app/Resources/KeyBindings.dict You may
define your evn key bindings to supplment or replace thesealdf Project Builder
bindings in a prvate dictionary of ley bindings,PBKeyBinding.dict in

~/Library/K eyBindings

Project Builder meges all ley-binding dictionaries to create a composite dictionary
The order of meging is:

1. Text system's defult dictionary

2. Text system's user dictionary

3. Project Builder's defult dictionary

4. Project Builder's user dictionary

Topics in OpenStep Programming

Because the mge processes replaces earlier bindings with later corresponding ones,
the bindings in your personal dictionary talprecedencever the other bindings.

The mege process &kcts bindings of multi-ley sequences, likthe Control-X

family of bindings, where the binding for the firstdy of the sequence is another
dictionary which contains the bindings for the subsequesytskin the sequence. If

you want to add yourwn Control-X binding to thexasting bindings, first copthe
Control-X dictionary from ProjectBuilderiéeyBindings.dictfile and add it to your

own PBKeyBinding.dict file. Then modify the bindings as needed.

