
1

Text System Defaults and Key Bindings

OPENSTEP 4.x has a new text system. This document reveals some tips and tricks
about various defaults you can use to customize its behavior. It also describes how to
customize the key bindings supported by the new text system.

Note that the new text object exists only in the Release 4.x version of the Application
Kit; the following notes don't apply to NEXTSTEP Release 3.3 applications. Also note
that the old (3.3) text object exists in the 4.0 Application Kit; these defaults don't apply
to it nor to any OpenStep applications which use the old text object.

Heavy-duty subclassers may alter some or all of the text system's functionality,
rendering some or all of these features inactive. These notes do apply to NeXT’s
OPENSTEP applications such as Project Builder, Interface Builder, Text Edit, and
others which use the new text system.

Text System Defaults

NSModifierFlagMapping (dictionary) (Windows platform only)
This default is on OPENSTEP for Windows only. It allows you to control the mapping
between physical modifier keys and logical modifier flags in OpenStep. This default is
actually not specific to the text system, but its main purpose is to allow Emacs bindings
to work under Windows. By default, both Control keys generate the Command key bit
(for menu key equivalents) and both Alt keys generate the Alternate key bit (for
mnemonics, primarily). The Control key bit is not available in the default setup which
means it is not possible to invoke Emacs-style commands in the text system. This
default can be used to re-map the available keys to generate what you want. The value
of the default is a dictionary with four possible keys, each of which can have one of
three possible values. The dictionary keys are: “LeftControl”, “RightControl”,
“LeftAlt”, and “RightAlt”. The valid values are: “Command”, “Alt”, and “Control”. So
the default setup is like this:

{

"LeftControl" = "Command";

"RightControl" = "Command";

"LeftAlt" = "Alt";

"RightAlt" = "Alt";

}

One possible setup that allows you to use Emacs keys would be:

{

"LeftControl" = "Command";

"RightControl" = "Command";

Topics in OpenStep Programming

2

"LeftAlt" = "Control";

"RightAlt" = "Alt";

}

This would make it so the left Alt key acts like a control key for Emacs. The right Alt
key is still used for Alt.

Currently this default has a limitation that only a real Alt key (left or right) can be
used for the Alt bit. Therefore it is not valid to assign “LeftControl” = “Alt”.

NSMnemonicsWorkInText (“YES” or “NO”)
This default controls whether the text system accepts key events with the Alt key
down. The default value is NO on Mach and YES on Windows. A value of YES
means that any key event with the Alt bit on will be passed up the responder chain to
eventually be treated as a mnemonic instead of being accepted by the text as textual
input or a key binding command. If this default is set to NO then the key events with
the Alt bit set will be passed through the text system's normal key input sequence.
This will allow any key bindings involving Alt to work (such as Emacs-style
bindings like Alt-f for word forward) and, on Mach it allows typing of special
international and Symbol font characters.

NSRepeatCountBinding (key binding style string)
This default controls the numeric argument binding. The default is for numeric
arguments not to be supported. If you provide a binding for this default you enable
the feature. This allows you to repeat a keyboard command a given number of times.
For instance “Control-U 10 Control-F” means move forward ten characters.

NSQuotedKeystrokeBinding (key binding style string)
This default controls the quote binding. The default is for this to be “^q” (that's
Control-Q). This is the binding that allows you to literally enter characters that would
otherwise be interpreted as commands. For instance “Control-Q Control-F” would
insert a Control-F character into the document instead of performing the command
moveForward: .

NSTextShowsInvisibleCharacters (“YES” or “NO”)
The default controls whether a text object will by default show invisible characters
like tab, space, and carriage return using some visible glyph. By default it is NO. It
only controls the default setting for NSLayoutManagers (which can be modified
programmatically). In order for this to work, the rule book generating the glyphs
must support the feature. Currently our rule books do not support this feature, so
currently this default is not very useful.

3

NSTextShowsControlCharacters (“YES” or “NO”)
The default controls whether a text object will by default show control characters
visibly (usually by representing Control-C as “^C” in the text). By default it is NO. It
only controls the default setting for NSLayoutManagers (which can be modified
programmatically). In order for this to work, the rulebook(s) generating the glyphs
must support the feature. This feature carries a cost. It will increase the memory needed
for documents that contain control characters by quite a lot. Use it with care.

NSTextSelectionColor (color)
This default controls the background color of selected text. By default this is light gray.
Kit defaults that accept colors accept them in one of three ways. Either as an archived
NSColor object, or as three RGB components, or as a string that can be resolved to a
factory selector on NSColor that will return the desired color (for example,
“redColor”). Note that NSTextFields and other controls that use field editors to edit
their text control their own selection attributes to conform with the platform UI.

NSMarkedTextAttribute and NSMarkedTextColor (color or “underline”)
This default controls the way that marked text is displayed. The
NSMarkedTextAttribute can be either “Background” or “Underline”. If it is
“Background” then NSMarkedTextColor indicates the background color to use for
marked text. If NSMarkedTextAttribute is “Underline”, NSMarkedTextColor indicates
the foreground color to use for marked text (the marked text will be drawn in the
indicated color and underlined). By default, marked text is drawn with a yellow-ish
background color. Kit defaults that accept colors accept them in one of three ways.
Either as an archived NSColor object, or as three RGB components, or as a string that
can be resolved to a factory selector on NSColor that will return the desired color (for
example, “redColor”). For compatibility with the way this default worked in 4.0, if the
NSMarkedTextAttribute default contains a color instead of one of the strings
“Background” or “Underline” then that color is used as the background color for
marked text and the NSMarkedTextColor attribute is ignored.

NSTextKillRingSize (number string)
This default controls the size of the kill ring (as in Emacs Control-Y). The default value
is 1 (not really a ring at all, just a single buffer). If you set this to a value larger than
one, you also need to rebind Control-Y to “yankAndSelect:” instead of “yank:” for
things to work properly (note that yankAndSelect: is not listed in any headers). See
below for more info on bindings.

Key bindings
The new text system uses a generalized key binding mechanism which is completely
re-mappable by the user. The standard bindings for can always be found in

Topics in OpenStep Programming

4

NextLibrary/Framew orks/AppKit.framew ork/Resources/
StandardKeyBinding.dict or in NextLibrary/Framew orks/AppKit.framew ork/
Resources/StandardKeyBinding-winnt.dict. On both platforms these standard
bindings include a large number of Emacs-compatible control key bindings, all the
various arrow key bindings, bindings for making field editors and some keyboard UI
work, and backstop bindings for many function keys. On Windows the standard
bindings also include a number of Emacs-compatible Alt key bindings (like Alt-f,
Alt-b).

All these bindings are customizable by the user. You can create a file in
~/Library/K eyBindings/DefaultKeyBinding.dict to augment or replace the
standard bindings. Use the standard bindings files as templates. Modifier flags are
specified using special characters: “^” for control, “~” for Alt, “$” for Shift, and “#”
for numeric keypad. Multiple keystroke bindings are supported through nested
binding dictionaries. For instance, Escape could be bound to “cancel:” or it could be
bound to a whole dictionary which would then contain bindings for the next
keystroke after Escape.

Here are a couple sample binding files that you might use:

1. The first one adds Alt-key bindings for some common Emacs stuff. This
might be useful on Mach where the Alt-key bindings are not standard. With
these bindings it would be necessary to type “Control-Q, Alt-f” in order to
type a florin character instead of moving forward a word. This sample also
explicitly binds Escape to “complete:”. On Mach, this is the default so this
override changes nothing, but on Windows, Escape is bound to “cancel:”
by default, so this example changes it so Escape will mean complete: when
a text object is key (it will still mean cancel: if some non-textual thing, like
an NSButton, is key).

/* ~/Library/KeyBindings/DefaultKeyBinding.dict */

{

/* Additional Emacs bindings */

"~f" = "moveWordForward:";

"~b" = "moveWordBackward:";

"~<" = "moveToBeginningOfDocument:";

"~>" = "moveToEndOfDocument:";

"~v" = "pageUp:";

"~d" = "deleteWordForward:";

"~^h" = "deleteWordBackward:";

"~\010" = "deleteWordBackward:"; /* Alt-backspace */

"~\177" = "deleteWordBackward:"; /* Alt-delete */

/* Escape should really be complete: */

"\033" = "complete:"; /* Escape */

5

}

2. This example shows how to have multi-keystroke bindings. It binds a number
of Emacs meta bindings using Escape as the meta key instead of the Alt
modifier. So Escape followed by f means moveWordForward: here. This
sample binds Esc-Esc to “complete:”. Note the nested dictionaries.

/* ~/Library/KeyBindings/DefaultKeyBinding.dict */

{

/* Additional Emacs bindings */

"\033" = {

"\033" = "complete:"; /* ESC-ESC */

"f" = "moveWordForward:"; /* ESC-f */

"b" = "moveWordBackward:"; /* ESC-b */

"<" = "moveToBeginningOfDocument:"; /* ESC-< */

">" = "moveToEndOfDocument:"; /* ESC-> */

"v" = "pageUp:"; /* ESC-v */

"d" = "deleteWordForward:"; /* ESC-d */

"^h" = "deleteWordBackward:"; /* ESC-Ctrl-H */

"\010" = "deleteWordBackward:"; /* ESC-backspace */

"\177" = "deleteWordBackward:"; /* ESC-delete */

};

}

With the right combination of key bindings and default settings, it should be possible
to tailor the text system to your preferences.

Key Bindings in Project Builder
ProjectBuilder uses the Application Kit's key binding mechanism as described above
to define key bindings for its code editor. These key-binding definitions are in
NextDeveloper/Apps/ProjectBuilder.app/Resources/KeyBindings.dict. You may
define your own key bindings to supplment or replace these default Project Builder
bindings in a private dictionary of key bindings, PBKeyBinding.dict in
~/Library/K eyBindings.

Project Builder merges all key-binding dictionaries to create a composite dictionary.
The order of merging is:

1. Text system's default dictionary

2. Text system's user dictionary

3. Project Builder's default dictionary

4. Project Builder's user dictionary

Topics in OpenStep Programming

6

Because the merge processes replaces earlier bindings with later corresponding ones,
the bindings in your personal dictionary take precedence over the other bindings.
The merge process affects bindings of multi-key sequences, like the Control-X
family of bindings, where the binding for the first key of the sequence is another
dictionary which contains the bindings for the subsequent keys in the sequence. If
you want to add your own Control-X binding to the existing bindings, first copy the
Control-X dictionary from ProjectBuilder's KeyBindings.dict file and add it to your
own PBKeyBinding.dict file. Then modify the bindings as needed..

